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ABSTRACT OF DISSERTATION 
OPTIMAL DESIGN OF

GROUNDWATER DUALITY MONITORING NETWORKS

This research focuses on the optimal design of groundwater quality monitoring 
networks. The optimization technique developed allows for incorporation of both 
the model structure, data error, and model parameter uncertainty into the 
monitoring network design, with concurrent determination of sampling frequency 
and well locations.
Particular emphasis has been placed on the use of stochastic models to describe 
groundwater quality data in order to incorporate both the deterministic and random 
behavior of groundwater quality in the model evaluation and monitoring network 
design processes.

A protocol is developed for the evaluation of model applicability and the design of 
monitoring networks. This protocol was developed based on the results of a 
simulation study, with the developed protocol tested against field data; The 
simulation study provided a method of evaluating the performance of various model 
applicability tests and monitoring network designs against a known correct model. 
The performance of the protocol could therefore be evaluated for correct models 
with different magnitudes and types of error (additive and multiplicative normal and 
lognormal errors were considered), as well as for incorrect models with different 
magnitudes and types of error.

The results of this research strengthen the importance of a detailed statistical 
evaluation of model applicability prior to the use of a model as a tool for describing 
groundwater quality behavior or prior to the design of monitoring networks. The 
model applicability evaluation should include the use of a variety of statistical tests 
to assess model applicability, and more importantly, should include the evaluation of 
the behavior of statistical tests compared to the theoretical expected behavior of 
the statistical tests for a correct model under conditions of varying sampling 
frequency, record length, and sampling density. In addition, the optimal monitoring 
network was found to be highly dependent on the sampling locations used to fit the 
model and to the monitoring locations identified to be considered for inclusion in the 
monitoring network.
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1. INTRODUCTION

Groundwater monitoring programs are being undertaken at numerous sites across 
the country. These groundwater monitoring programs are used to either increase 
the understanding of a groundwater system or to verify the effectiveness of 
remedial actions. The monitoring programs are heavily influenced by the 
requirements of government regulators; however, these requirements are often not 
based on a quantitative physical or statistical analysis of groundwater information 
from the site. In addition, the groundwater monitoring programs are most 
commonly not optimized to meet the information goals of the monitoring program. 
This results in a rather arbitrary number of wells and frequency of sampling. In 
addition, the data collected can often be misinterpreted because there is not a clear 
understanding of how groundwater quality is expected to change over time or what 
degree of variability is expected in the data.

Current methods used to design groundwater monitoring systems rely 
predominantly on either physical or statistical data analysis techniques. However, 
neither physical nor statistical data analyses performed separately provide an 
optimal basis for the design of groundwater monitoring networks. Physical analysis 
of data from a site can provide information on aquifer properties from which a 
model can be developed to predict changes in groundwater conditions. However, 
purely deterministic approaches to physical modeling provide little insight to the 
effects of expected variability in groundwater quality, i.e., no measure of the 
uncertainty level is obtained. Statistical data analyses provide information on the 
variability of the data, but do not often provide information with which to predict 
groundwater quality trends in the future. This research focuses on using both 
physical and statistical analyses conjunctively such that the maximum benefit of the 
available data can be realized and a more optimal groundwater monitoring network 
can be designed.

1.1 Objective.

The objective of this research is to develop a protocol for the optimal design of 
groundwater quality monitoring systems which result in more efficient and effective 
monitoring networks. The premise of this research is that the optimal groundwater 
quality monitoring network is dependent on the expected behavior of the 
groundwater quality. Due to the complex behavior of groundwater quality in 
response to physical, chemical, and biological processes, the processes which 
affect those changes must be incorporated explicitly in the design process. In 
addition, due to the non-deterministic behavior of grpundwater quality and due to 
the error in data collection and analysis, the expected variability of the groundwater 
quality must also be explicitly incorporated into the design. Therefore, the objective



of this research is to develop a protocol for the design of groundwater quality 
monitoring networks which incorporates information on the deterministic and non- 
deterministic processes affecting groundwater quality.

1.2 Scope and Limitations.

The monitoring network design protocol developed in this research is not intended 
to be a rigid methodology for designing groundwater quality monitoring networks. 
Rather, the protocol is intended to be a general procedure for the design of site- 
specific monitoring networks. The application of the protocol is expected to be 
continually evolving as the field of groundwater quality data analysis and monitoring 
network design evolves.

The specification of a groundwater quality monitoring system depends on the 
system's information expectations and includes the locations of the groundwater 
monitoring wells, the sampling frequency, and the selection of constituents for 
analysis. The selection of appropriate constituents to be analyzed will not be 
included in this design methodology. However, it is recognized that additional 
efficiencies in the monitoring network design may be realized by incorporating this 
last factor into the design process.

The focus of the monitoring network optimization is to design a monitoring network 
with which to assess the effectiveness of long-term groundwater remedial actions. 
In order to meet the objective of this type of verification information goal, it is 
necessary that sufficient information exist (i.e., data is available) to quantify the 
model structure with an uncertainty level which is consistent with the information 
goals of the groundwater monitoring system. Rather than to continue to 
extensively monitor the groundwater system, the purpose of the groundwater 
monitoring network optimization is to replace groundwater monitoring efforts with 
groundwater modeling efforts. The premise of this effort to improve the design of 
groundwater quality monitoring systems is that monitoring has been underway long 
enough to result in a data record that can support development of the physical and 
statistical descriptions necessary to reduce the sampling at a site and not reduce 
the information obtained.

These physical and statistical processes are incorporated into a groundwater quality 
model. The focus of this research is not the development of groundwater quality 
models. However, the focus of this research is the development of groundwater 
quality monitoring networks based on the used of groundwater quality models to 
explain the processes affecting groundwater quality behavior. Therefore, it is 
necessary to evaluate the applicability of groundwater quality models and how the 
structure and uncertainty in the model affect the design of groundwater quality 
monitoring networks.

The development of a model of a system encompasses four steps: system 
representation, data measurement, model parameter estimation, and model 
validation [Mendel, 1973]. For this research, only mathematical statistically-based 
or physically-based models will be used to represent the groundwater quality 
system. Evaluation of the data measurement process is not addressed specifically



in this research but it is assumed to introduce error into the data and therefore 
reduce the ability to accurately model the groundwater system. Model parameter 
estimation techniques are reviewed and statistical tests are evaluated relative to the 
analysis of model applicability. Lastly, the model is validated by the use of model 
prediction analyses.

The ability to represent and validate an appropriate model depends on site-specific 
conditions and information available. The decision as to whether additional effort 
should be placed on increasing the understanding of a system (additional modeling 
or data acquisition) or maintaining the current understanding of a system 
(optimization of the existing monitoring network) is based on the confidence in the 
understanding of the system dynamics and is based on whether the confidence in 
the system dynamics is sufficient to meet the information goals of the monitoring 
network.

Regardless of whether the specific monitoring objective is to increase or validate the 
understanding in a system, the protocol for groundwater monitoring network design 
developed in this research can be used to evaluate the uncertainty associated with 
a given model structure and data set. These models can then be incorporated 
explicitly into the monitoring network design process to define an optimal 
groundwater quality monitoring network. Ongoing collection of data from this 
network can cause a réévaluation of the model and/or a redesign of the 
groundwater monitoring network. A schematic of this general design process is 
included as Figure 1.1.

1.3 Approach.

The development of the protocol for groundwater quality monitoring network design 
is based on the results of a simulation study; i.e., a simulation study is used to 
develop a procedure for designing groundwater quality monitoring networks. The 
use of a simulation study allows for testing the performance of different data 
evaluation techniques and monitoring network design protocol against a known 
correct model. To assess the applicability of the protocol developed, the 
procedures are applied to field case studies.

The organization of this dissertation is as follows:

Chapter 2 - Literature Review: summarizes current methods for groundwater
quality data analysis and monitoring network design and specifies the 
limitation of those methods

Chapter 3 -

Chapter 4 - 

Chapter 5 -

Simulation of Data Records: describes the method used to simulate 
groundwater quality data using a two-dimensional advection- 
dispersion model and a superimposed random error

Model Parameter Estimation: 
model parameter estimation

discusses and compares methods for

Analysis of Model Applicability: assesses the ability of goodness-of- 
fit and predictive tests to discriminate between models; evaluates



Figure 1.1 Monitoring Network Design Process Flow Chart



Chapter 6 - Error Prediction Propagation: evaluates the propagation of predicted 
error based on model structure and assumed error distributions

Chapter 7 - Design of Optimal Monitoring Netv\/orks: develops method for the 
design of monitoring networks (frequency and location of samples) 
based on the model structure and the model/data uncertainty

Chapter 8 - Results of Simulation Study: summarizes the applicability of the 
statistical tests and monitoring network optimization procedures 
based on a simulation study; focuses on the results for one incorrect 
model structure relative to the correct model structure

Chapter 9 - Monitoring Network Design Protocol: summarizes the monitoring 
network design protocol proposed based on the simulation study 
performed

Chapter 10- Case Studies: summarizes the application of the monitoring network 
design protocol to groundwater quality data collected at the IBM 
facility in East Fishkill, New York

Chapter 11- Summary, Conclusions, and Recommendations: summarizes the 
research conducted, conclusions made, and recommendations for 
future work

behavior of selected statistics for a correct model

For the reader who wishes to bypass the theoretical basis for the protocol, a 
condensed applications approach can be obtained by reading the following sections 
of this dissertation:

Chapter 9 - Monitoring Network Design Protocol 
Chapter 10 - Case Studies - Area C (pp. 200-239)
Chapter 11 - Summary, Conclusions and Recommendations



2. LITERATURE REVIEW

Data collected from water quality monitoring networks have historically been 
analyzed either statistically, with little attention to physical processes causing the 
observations, or physically, with little attention to the statistical variability of the 
data or uncertainty in model structure and model parameters. This research focuses 
on the combined physical/statistical analysis of groundwater quality monitoring data 
and how that analysis affects the design of groundwater quality monitoring 
networks. The following literature review is concentrated in two main areas: 1) 
Legal Basis for Water Quality Monitoring, and 2) Data Analysis and Design of Water 
Quality Monitoring Networks.

Regulations regarding water quality specify the objectives for monitoring and have 
been an influence on the analysis of water quality data and on the design of 
monitoring networks. The analysis of water quality data and the design of 
monitoring networks are discussed concurrently. These two topics can not be 
dissociated because the design of the monitoring network is influenced by the 
methods of data analysis. The three general methods for data analysis and 
monitoring network design are: 1) statistical, 2) physical, and 3) combined 
statistical/physical. These three general categories of methods for water quality 
data analysis and monitoring network design are reviewed and the limitations of 
these existing methods are discussed.

2.1 Legal Basis for Water Quality Monitoring.

Two general legal approaches exists for controlling water quality; these are: 1) 
controlling the receiving water quality and 2) controlling the effluent quality. The 
first approach, maintaining a specified quality of receiving water, is dependent on 
effluent standards for meeting the specified water quality. Based on the beneficial 
use of the water, the number and types of effluent discharges to the water, and 
area-specific conditions, these effluent standards need not be uniform. The second 
approach is to control the quality of effluent based on the best available technology 
(BAT). This approach however does not necessarily arrive at meeting "acceptable " 
receiving water quality. Frequently, a combination of these two approaches are 
employed.

Prior to the mid 1960's, water quality laws in the United States (the Refuse Act of 
1899, the Qil Pollution Act of 1924, and the Water Pollution Control Act of 1948) 
were substantially ineffective in controlling water pollution. During the 1960’s an 
increase in public awareness of the environment occurred, as evidenced by the 
popularity of Rachel Carson's 1962 book. Silent Spring. This increased



environmental concern resulted in the enactment of a series of more effective 
environmental pollution regulations.

In 1965, the Federal Water Quality Act (Public Law (PL) 89-234) was passed.
Under this act, surface water quality was controlled by the establishment of stream 
standards. These standards were set individually by each state and were allowed 
to vary within the state, depending on the defined use of the water. The focus of 
this act on in-stream conditions made it difficult to associate in-stream conditions 
with actions of dischargers due to the complex relationship between sources of 
discharge and the water bodies.

Due to the delay in states setting water quality standards and problems in 
enforcement, the Federal Water Pollution Control Act was enacted in 1972 (PL 
92-500). This act was amended by the Clean Water Act of 1977, which is how 
this Act is commonly named. The objective of the Clean Water Act is to restore 
and maintain the chemical, physical, and biological integrity of the Nation's waters. 
This act requires that a combination of stream or groundwater and effluent 
standards be used as the basis for water quality monitoring. The effluent standards 
are primarily technology based and rely on a permit system, the National Pollution 
Discharge Elimination System (NPDES), for enforcement. Under the NPDES, every 
discharger is required to obtain a permit prior to discharge of a pollutant. The 
requirements of the NPDES permit focus on effluent standards. Evaluation of data 
in determining whether these effluent standards are being met, as well as the 
design of a monitoring network to meet these requirements can often best be met 
by the use of statistical tests since the physical/chemical/biological relationship 
between the effluent and the receiving water is not required to be known.
During the mid to late 1970s, the focus in environmental monitoring was directed 
toward hazardous wastes. It was realized that the regulatory authority over 
hazardous wastes was spread over several agencies. This resulted in the 
enactment of the Resource Conservation and Recovery Act (RCRA) in 1976. RCRA 
required the United Stated Environmental Protection Agency (EPA) to develop 
regulations governing all aspects of the generation, use, transportation and disposal 
of hazardous wastes, a "cradle to grave" regulation. This law, like the amended 
Federal Pollution Control Act, monitored water quality based on acceptable 
discharge levels from the facility to the environment. As for the NPDES permit, this 
type of regulation focuses on the evaluation of extreme conditions (or standard 
violations). These type of information goals are often best met by statistical tests.

During the 1980s, the emphasis of environmental monitoring continued to be 
focused on hazardous wastes. In 1980, the Comprehensive Environmental 
Response, Compensation and Liability Act (CERCLA) was passed to address the 
inadequacies of RCRA in cleaning up abandoned hazardous waste disposal facilities. 
CERCLA, also known as the Superfund Act, establishes mechanisms for cleaning up 
abandoned hazardous waste facilities. The clean-up requirements for a hazardous 
waste site are often set by EPA. These requirements are frequently based on both 
BAT and receiving water goals. To evaluate BAT for a groundwater system, the 
physical processes affecting the chemical of concern in the environment need to be 
addressed. This has caused an increase interest in the evaluation of groundwater 
quality data and on the design of groundwater quality monitoring networks based 
on the incorporation of physical system processes.



As a result of these acts, a lot of water quality data has been generated. Generally, 
this data has been collected to meet specific monitoring requirements specified in 
laws (often discharge only), rather than meeting the objectives of the law (of 
maintaining specific quality of the receiving water). However, there is more of a 
focus now on meeting the objective of these laws. To do this, both a physical 
understanding of the transport processes is needed to associate discharge levels 
with receiving water quality as well as an understanding of the statistical variability 
of the data.

2.2 Data Analysis and Design of Monitoring Networks.

Monitoring networks are designed to meet specific information goals regarding 
water quality. Four primary water quality monitoring objectives are the detection 
of;

1) average conditions,
2) better definition of existing conditions,
3) changing conditions, and
4) extreme conditions.

The last objective, which focuses on standard violations, is not addressed in this 
research. However, as discussed in Section 2.1, this type of information objective 
can generally best be met by the design of monitoring networks and evaluation of 
data based on the application of statistical tests.

In order to meet the information goals of a groundwater quality monitoring network, 
hypotheses regarding expected groundwater quality behavior must be made and 
tests specified for evaluating whether that behavior occurs. The data needs for the 
tests results in the specification of a monitoring network. The design of the 
monitoring network includes the determination of sampling locations, selection of 
water quality variables, and determination of sampling frequencies.

In the last ten years, research has focused on improving the design of monitoring 
systems in order to better understand the behavior of water quality. This has led to 
the design of data analysis and monitoring systems in a more systematic manner.
A number of researchers have recommended different steps for the systematic 
design of water quality monitoring systems [Sanders, et al ,1983; Schillerpoot and 
Groot ,1983; Ward ,1986; Ward, Loftis and McBride ,1986; Ward and McBride, 
1986]. These methods concentrate on establishing procedures for the design of a 
monitoring network that will meet specified monitoring objectives. They stress the 
incorporation of physical or statistical factors as the basis for design. In addition to 
purely statistical or deterministic physical bases for design, recently there has been 
an interest in the use of stochastic models for data analysis. However, there has 
been little effort in applying these stochastic models to the design of monitoring 
networks. The use of statistical, physical, and combined physical/statistical 
techniques for evaluation of water quality data and the design of monitoring 
networks are discussed below.



The use of statistics in water quality data analysis and network design is promoted 
by many [eg. Palmer and MacKenzie, 1985; Provost, 1984; Schweitzer and Black, 
1985; Steele, 1986; and Ward and Loftis, 1986). The sophistication of the 
recommended statistical methods depends on the monitoring objectives, the data 
availability, and the assumptions concerning the statistical distribution of the data.

Generally, purely statistical bases for groundwater quality data analysis and network 
design are applicable where the information goal is either to verify that no changes 
in groundwater quality are occurring with time or to better define existing 
conditions which are expected to change negligibly within the time period of 
interest. For a specified information objective, the selection of the appropriate 
statistical method of analysis depends on the characteristics of the data set 
including the distribution of the data, seasonality and correlation of the data, 
existence of missing values, and the number of values reported below the detection 
level.

2.2.1 Statistical Basis for Groundwater Quality Data Analysis and Network Design.

One method used for evaluating whether changes in groundwater quality are 
occurring is the two-sample t-test, as used by Sanders and Ward [1979], Loftis and 
Ward [1986], and Loftis, Harris, and Montgomery [1987]. The two-sample t-test is 
based on separation of a data record into two subsets and then testing whether the 
mean of the two subsets is significantly different. This test can be applied at a 
particular point in space or over a larger area which does not exhibit any spatial 
non-homogeneous variability in groundwater quality. Given a desired confidence 
level and a known data variability, the required number of samples can be specified 
for a monitoring network.

Loftis, Porter and Settembre [1987] used the two-sample t-test for evaluating 
differences in the means of monthly averaged wastewater data (averaging was 
performed to eliminate serial correlation; values were paired annually to remove the 
effects of seasonality). A corollary non-parametric test which can be used if the 
data is non-normally distributed is the Wilcoxon test.

If the information goal of the monitoring network is a better definition of an existing 
condition in which spatial variability exists and the data is temporally stationary, 
spatial correlation techniques such as kriging can be used. Kriging is a statistical 
method in which estimates of a variable at a non-measured location are made based 
on a weighted sum of observed measurements at other locations. The weights are 
determined based on the spatial data correlation. Sophocleous, Paschetto, and Olea 
[1982] used kriging to evaluate the variability of groundwater levels. This variability 
was used to assess the optimal groundwater level monitoring network. Carrera, 
Usunoff, and Szidarovsky [1984] used kriging to design a groundwater quality 
monitoring network for fluoride, where no trend was observed in the data.

The last information goal for which statistical tests are commonly used for 
evaluating data and designing monitoring networks is the evaluation of changing 
conditions. Rather than try to evaluate the physical reasons for change, statistical 
models are often employed to describe observed trends in data. Spectral or time 
series analyses are statistical techniques often suggested for assessing trends in



water quality data and for the design of monitoring networks. Gunnerson [1966] 
applied spectral analysis to the design of a monitoring system in a tidal estuary and 
Munn [1981] reviews the use of spectral analysis for the detection of trends in air 
quality monitoring. Sanders and Adrian [1978] used an Autoregressive Moving 
Average (ARMA) time series model to evaluate river flow (found to be highly 
correlated with water quality), and then used this ARMA model to calculate 
variances for given sampling frequencies. Kontur [1982] used time series analysis 
to predict groundwater levels based on a 40-year record of mean annual water 
levels. Tabios [1984] used different time series models to evaluate dissolved 
oxygen trends in a river.

Non-parametric methods can be used for non-normally distributed data. Slack and 
Smith [1982], van Belle and Hughes [1984], and Herricks, et al [1985] strongly 
recommend the use of non-parametric statistics based on the observation that most 
water quality records are non-normally distributed. Some non-parametric 
techniques for trend detection are the Mann-Whitney (step t-test), the Spearman 
Rho (linear trend test), and the Seasonal Kendal Tau test, as reviewed by Ward and 
Loftis [1986].

The problem with the use of these statistical models to predict changing conditions 
in water quality is that often the driving force for change is not included in the 
statistical model and therefore there is a high level of uncertainty in the use of the 
model as a predictive tool. Therefore, these statistical techniques are all limited in 
their applicability to the design of groundwater quality monitoring networks in that 
they assume that future behavior will mimic past behavior. Statistical techniques 
are better suited to detection of standard violations for spatially and temporally 
stationary systems rather than meeting the objective of the majority of groundwater 
quality monitoring systems which is to detect non-linear changing conditions.

2.2.2 Physical Basis for Groundwater Quality Data Analysis and Network Design.

Subsurface hazardous waste legislation in the 1970s focused groundwater quality 
data analysis and the design of monitoring networks on the understanding of the 
physical processes which cause changes in groundwater quality. These physically- 
based groundwater quality models allow for non-uniform changing behavior based 
on expected changes in physical conditions affecting the groundwater system. 
Therefore, instead of a statistically-based model, physically-based groundwater 
quality models may be used to predict changes in groundwater quality under 
changing conditions.

For groundwater flow and groundwater contaminant transport models, the 
parameters in the deterministic physical model can be estimated by either a trial and 
error procedure or by the use of statistical fitting techniques. The trial and error 
approach is now used infrequently in favor of statistical techniques. However, 
because the mathematical problem of parameter identification is improperly posed, 
an infinite number of solutions exist. A variety of methods have been developed to 
solve this problem referred to as the inverse problem (or the Cauchy problem), 
including least squares [Hughes and Lettenmaier, 1981; Kashwap and Chandra, 
1982; Bruch, 1974], time series analysis, kriging [Binsariti, 1980; Kitanidis and 
Vomvoris, 1983; Hoeksema and Kitanidis, 1984; Bruch, 1974], nonlinear regression
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[Neuman and Yakowitz, 1979; Knopman, 1987; Knopman and Voss, 1987 and 
1988], mini-max and linear programming [Yeh, 1975; Neuman, 1973; Gorelick et 
al, 1983], gradient search [Vemuri and Karpluy, 1969], quasi-linearization [Yeh and 
Tauxe, 1971a and 1971b; Lin and Yeh, 1974], maximum principle, and influence 
coefficient. The use of these different statistical techniques for estimating model 
parameters may result in different levels of uncertainty in the parameter estimates 
depending on the applicability of the method to the specific data available.

Although the parameters of these deterministic models are often estimated by 
statistical methods, deterministic physical models only include specific parameter 
values. Whereas these deterministic physical models may be better at predicting 
expected groundwater quality conditions, they do not provide an evaluation of the 
uncertainty in those predictions. The design of a water quality monitoring network 
based on a deterministic physical model is often used to identify sampling locations. 
However, since no uncertainty is included in the model, no estimate of confidence 
in the monitoring network can be made.

2.2.3 Physical/Statistical Basis for Groundwater Quality Analysis and Network 
Design.

The focus in the late 1980s towards remediating sites contaminated with hazardous 
wastes has focused groundwater quality data analysis on the use of models to 
predict groundwater quality under changing conditions. The prediction of future 
conditions and the evaluation of the confidence in those predictions requires the use 
of a combination of physical and statistical data analysis and monitoring design 
techniques as discussed in this section.

Frequently, physical factors are incorporated into the design of a water quality 
monitoring network based on observations or experience (empirically), with 
statistical considerations incorporated explicitly. For example, Erlebach [1979] 
defines the sampling frequency for a surface water quality monitoring network 
based on a time series analysis from a pilot study, and incorporates the sampling 
location and number of sampling sites based on the expected physical 
representativeness of the location. In the design of a network for evaluating 
long-term mean precipitation and mean annual rainfall from a storm event, 
Rodriguez-lturbe and Mejia [1974] model rainfall as a stationary process in which 
space and time can be separated. Their method is essentially statistical, although 
the estimation of the parameters in the spatial correlation structure are dependent 
on the type of storm event. Bradford and Iwatsubo [1979] designed a water quality 
monitoring network for San Francisco Bay in which statistical analysis of flow was 
used to identify stable water quality locations.

Eccles and Nicklen [1979] describe physical factors to consider in designing 
groundwater quality monitoring networks, but do not propose any method for 
including these factors explicitly into the monitoring network design. Tinlen and 
Everett [1979] also emphasize the importance of the consideration of physical 
factors in their proposed 1 5-step methodology for monitoring groundwater quality. , 
However, they too do not provide any explicit method of incorporating these factors 
into the design of groundwater quality monitoring networks. Todd, et al [1976] 
discuss that the groundwater monitoring network must take into account the
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physical processes affecting the transport of pollutants through the subsurface, 
although they conclude that the determination of a sampling frequency often 
involves trial-and-error procedures.

Because these models empirically include physical processes, there is no physical 
causal relationship incorporated explicitly into the monitoring network design 
process. In the last ten years, increased emphasis has been placed in explicitly 
incorporating the physical attributes of the system and the spatial variability of the 
data into a model. Two principle types of stochastic models are used;

1 ) stochastic physical models with deterministic parameter estimates

2) stochastic physical models with stochastic parameter estimates.

These two types of models are discussed below relative to the evaluation of 
groundwater quality data and to the design of groundwater quality monitoring 
networks.

2.2.3.1 Stochastic Physical Models with Deterministic Parameter Estimates. 
Stochastic physical models are frequently developed in which the parameters are 
considered to be deterministic. The variability of the system is modeled by a 
separate random term in the model. One common type of stochastic model used in 
the design of groundwater quality monitoring networks is the kalman filter.

Kalman filtering is a means of evaluating the uncertainty of an estimation based on 
a physical and statistical understanding of a system. Kalman filtering is based on 
two equations: 1) the state equation and 2) the measurement equation. The state 
equation consists of a deterministic physical model plus a random system error 
term. The measurement equation includes a measurement error which is assumed 
independent from the system error. Based on these equations, the quality of a 
monitoring network can be defined based on the confidence of predictions at 
arbitrary locations. By incorporating a physical model in the state equation, the 
kalman filtering bases the correlation structure on the process dynamics rather that 
the statistics of the data. However, the correlation structure can only be 
determined a priori if the state equation is linear. For nonlinear state equations, the 
covariance matrix depends on the actual state vector.

The application of kalman filtering to water quality modeling necessitates the 
approximation of the nonlinear equations describing the solute transport with linear 
equations. Van Geer [1982 and 1987], van Geer and van der Kluet [1986], and 
Schillerpoot and Groot [1983] propose the use of kalman filtering for monitoring 
network design. Pimentel [1975] uses kalman filtering to maximize the time 
between samples for a specified error based on a purely diffusive contaminant 
transport problem. He utilizes separation of variables to reduce the partial 
differential equations (PDEs) to ordinary differential equations (ODEs) and solves the 
problem in two sub-problems: 1) the specification of model, variables to measure, , 
measuring devices, and spatial distribution of sampling sites, and 2) the sequencing 
of measurements in time.
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Lettenmaier and Burges [1977] use the extended kalman filter (an approximate 
solution when the process dynamics are nonlinear) to design a river water quality 
monitoring network. An iterative solution method was used for determining the 
optimal sample station locations. Sivakumaran [1989] utilized a kalman filtering 
approach in the design of an estuary water quality monitoring system.

All kalman filtering is limited in that the state system does not incorporate 
uncertainty in the model parameters. That is, it uses a stochastic model with 
deterministic parameter values.

2.2.3.2 Stochastic Physical Models with Stochastic Parameter Estimates. The 
models discussed above treated data error separately from the physical model. 
During the past ten years, there has been an increased focus in groundwater quality 
research in the incorporation of variability of parameter estimates into physical 
models. These models are frequently used to evaluate model behavior relative to 
assumed model parameter behavior. These models are rarely used for designing a 
monitoring network or for developing a method of evaluating data collected from an 
existing network.

Freeze [1975] evaluated the distribution of hydraulic heads based on the results of 
500 Monte Carlo simulations where the hydraulic conductivity (K) was assumed to 
be lognormally distributed. For the steady-state case with known boundary 
conditions, the heads were normally distributed in the middle of the simulated area 
and skewed near the boundaries. The largest variance was in the center. With 
unknown boundary conditions, the variance increased at the boundaries and was 
approximately normal everywhere. To analyze the transient case, the porosity and 
compressibility were assumed to be normally and lognormally distributed, 
respectively. This resulted in a non-normally distributed head distribution.

Frind, et al [1987] ran a contaminant transport model in which the two-dimensional 
hydraulic conductivity (k) field had been randomly generated in order to verify the 
theory of the scale dependence of dispersion. Due to the extensive computer time 
required to run this micro-scale model, only three realizations of the K field were 
generated. The authors concluded that the effective longitudinal dispersivity 
converges to a macroscopic value within approximately 50 correlation lengths. At 
early time, the plume for one realization had a distinct transverse component due to 
molecular diffusion under a strong gradient. Because only three realization were 
made, the statistical significance of the scale and time dependence of the dispersion 
and the effects of this distribution on network design could not be assessed.

This type of work has also been done by other researchers. Bakr et al [1978] 
assess the head variance produced by specified hydraulic conductivity variances. 
Smith and Freeze [1979a and 1979b], Delhomme [1979], and Gutjahr [1984] also 
investigated the covariance between heads and log hydraulic conductivity.

Some work has been conducted to use these stochastic models to design 
monitoring networks. Knopman and Voss [1987] developed general groundwater 
quality monitoring design criteria for better defining an appropriate model and model 
parameters based on the use of a stochastic one-dimensional advection-dispersion 
model. The authors concluded that observations should be taken at points in time
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and space that were highly sensitive to model parameters. The determination of 
these points depends on the form of the model, the estimation of the parameters, 
and the type of error in the data, in order to design an optimal monitoring network, 
they conclude that a multi-objective approach is required.

Dawdy and Moore [1979] developed a water quality sampling program for rivers 
using a one-dimensional advection model. Sources of uncertainty (initial conditions, 
boundary conditions, waste sources, tributary inflow, model structure itself, and 
parameters in model) were characterized using time series analysis. Based on given 
costs for sampling, dynamic programming was used to identify a cost-effective 
sampling design.

Moore, Dawdy and DeLucia [1976] use a stochastic eutrophication model to 
describe the uncertainty in water quality variables and then used the model to 
determine sampling frequencies. They compute the mean and variance of the state 
variables directly using expectations of the stochastic process. Tung [1986] uses a 
stochastic groundwater management model where the transmissivity and storage 
coefficients are assumed random. He then uses first-order analysis to estimate the 
mean and variance of drawdown at each control point.

Most recently, Loaiciga [1989] developed a method for optimizing the design of 
groundwater quality monitoring networks based on a stochastic physically-based 
model. The objective function was to minimize the sum of the variance of expected 
concentration estimation errors at sampled locations subject to an unbiasedness 
constraint which required that the mean of all sampling locations be equal to the 
mean concentration over the region of interest. This optimization constraint placed 
unrealistic demands on the monitoring network for general application. However, 
the application of this methodology is the first time that monitoring networks have 
been designed incorporating physical and statistical knowledge of the variable of 
interest.

This research focuses on the development of an optimization procedure which 
incorporates knowledge of the model structure and model uncertainty explicitly into 
the monitoring network design. Stochastic physically-based models are used which 
provide a mechanism for predicting non-uniform changes in groundwater quality 
based on changing physical conditions and for evaluating the confidence level 
associated with data interpretation and predictions. The optimization procedure 
allows for a wide spectrum of information goals by not constraining that the 
samples be unbiased (as developed by Locaigia). In addition, this research focuses 
on the use of model applicability/discrimination tools in the model selection process 
and in the use of the information obtained from the model applicability evaluation in 
the optimization of the monitoring network.
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3. SIMULATION OF DATA RECORDS

Groundwater quality data was simulated for this study using a physically based 
two-dimensional advection-dispersion solute transport model and a superimposed 
random error. Since the focus of this research is not the discrimination between 
various physical models, but rather the development of an appropriate data analysis 
and network design protocol for designing monitoring networks, no other 
deterministic model was considered for data simulation. Four types of random error 
were considered: 1) additive normal; 2) multiplicative normal; 3) additive lognormal; 
and 4) multiplicative lognormal. These deterministic and random components of the 
simulated data record are discussed below. Rather than performing Monte Carlo 
simulations, the statistics of interest were evaluated using expectations. The 
derivation of these statistics is discussed in Chapter 5.

3.1 Physical Model.

The partial differential equation describing solute transport in saturated porous 
media is derived based on the law of mass conservation, where [Freeze & Cherry, 
1979, p.389]

f net rate of 1
I change of mass I =
I of solute I
I within element j

Í flux of 1
I solute out I
I of the I
I element J

i flux of 1 i loss/gain
I solute I -I- I of solute
I into the I I mass due to
I element J I reactions

1

The transport of solutes in groundwater occurs due to both advective transport and 
dispersion. Advective transport is the movement of chemicals due to bulk 
groundwater flow, where the average rate of transport is equal to the average linear 
groundwater velocity. Dispersion is a result of mechanical mixing and molecular 
diffusion. Mechanical dispersion is caused by the tortuosity of the pore channels, 
varying pore sizes, and by drag at the pore surfaces. Molecular diffusion is the 
movement of chemicals due to concentration gradients.

In addition to fluxes due to advection and dispersion, losses or gains of the solute 
may occur as a result of chemical or biological processes or radioactive decay.

Combining constitutive relations with the law of mass conservation yields the 
general equation for advective-dispersive transport in a homogeneous, isotropic, 
saturated porous media:
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dC
= -div(Cy - D grad C) - RXC (3.1)

a

where,

R = retardation factor 
C = mass concentration of constituent 
y  = the average fluid velocity vector 
D = hydrodynamic dispersion tensor 
X = radioactive decay constant

This partial differential equation can be simplified for a two-dimensional problem in 
which the groundwater flow is unidirectional and steady state and the direction of 
flow is oriented along the x axis of a Cartesian coordinate system. The equation 
describing this flow system is:

d̂ c d̂ c ac ac
D|̂ — -l- Dy — - V — - RXC = R "

dx  ̂ dy  ̂ dx a t

where,

= longitudinal dispersion coefficient 
Dy = transverse dispersion coefficient 
V = average pore water velocity in x-direction

(3.2)

To derive an analytical solution to this equation, the initial and boundary conditions 
must be specified. For this simulation, a finite-width decaying source is specified at 
the source Xq, Yq, with initial and boundary conditions given as;

-a ^ y á a 

other values of y

C(0,y,t) = Co e "

C(0,y,t) = 0

ac
lim -  = 0
y - ± »  ay

ac
lim -  = 0
X- ±<» dx

C(x,y,0) = 0

where,

X = X’ - Xo and Y = Y' - Yo
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X', Y' are observed values.

The analytical solution to this partial differential equation with initial and boundary 
conditions as specified above, is:

C(x,y,t) = {{CoX)/[4(7tDJ’̂ ]} * exp[(vx/2DJ-atl (3.3)

t/R
• / exp{-[XR - ctR + v V(4D,)]t  - x "/(4D l T)}t  ' 6 *

{[erf((a-y)/(2(D,T)’'̂ )] + erf[(a+ y)/(2(D,T)>')l} dt

Using dimensional analysis, it can be shown that this solution is equivalent for all 
problems in which

1) v/D,
2) v /D t
3) v/R
4) a
5) k
6) a

are equivalent. This means that for similar boundary conditions, systems with 
equivalent relative flow velocities (v/R, v/Dy, and v/DJ will have the same non- 
dimensional solution.

A computer program was modified from Javandel, et al [1984] and Ferziger [1981] 
to calculate the ratio of C/Co for any point downgradient from the source of 
contamination, at any point in time. A copy of the computer code (ANAL) is 
included in Appendix A.

For the simulation study, the parameters of the model were defined as follows:

v/R = 0.5 meters/day 
v/D|_ = .025 meters^/day 
v/Dy = .25 meters^/day 
a = 0.001 /day
A. = 0.0 /day
a = 3 0  meters

Using the computer program developed, solutions were calculated at X = 40 to 
400 meters, at 40 meter intervals, and at Y = -80 to 80 meters at 40 meter 
intervals. Solutions were calculated at biweekly intervals for 10 years. Figure 3.1 
is a schematic of the idealized aquifer and monitoring system. Figure 3.2 illustrates 
the concentration at the source. The relative concentrations (C/Co) predicted by
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this analytical model are plotted in Figures 3.3, 3.4 and 3.5 for wells at Y = 0 
meters, Y =40 meters, and Y = 80 meters, respectively.

3.2. Distribution and Magnitude of Error Component.

Errors in water quality data records are derived from two sources:

1) laboratory error, and

2) sampling error.

Therefore, the

( Measured )
I I
I Value J

i'True" 1
= I I ± I

I Value J

i Laboratory 1
I 1
I Error J

i Sampling 1

I Error J

If a model is used to simulate the measured values, an additional error is introduced 
in the analysis, that of the model. That is, neglecting laboratory and sampling error, 
an error is introduced because a model cannot predict exactly what occurs in a 
natural system. Therefore,

i Measured 1 
I I =
I Value j

i Model \ ( Model 1 i Laboratory 1 i Sampling 1
I l ±  I l ±  I l ±  I I
I Value J I Error J I Error J I Error J

Research has been conducted to investigate the statistical distribution of these 
three sources of error. Laboratory error is the most clearly defined with both 
additive and multiplicative random normal errors being most commonly assumed 
(Porter, 1985). The relative magnitude of sampling versus laboratory errors was 
reviewed by McBean and Rovers [1984] via the analysis of sample duplicates and 
laboratory replicates. For the site chosen for analysis, these authors found that the 
laboratory error variance was three to fifty  times less than the sampling error 
variance.

The error introduced by the use of a deterministic physical model has been 
investigated by Gelhar [1977], Gutjahr [1984], Vomvoris and Gelhar [1986], and 
Frind et al [1987], among others. For water levels, Gelhar [1977] found that the 
variance of the water level was much smaller than the variance of the hydraulic 
conductivity. Vomvoris and Gelhar [1986] developed an analytical expression for 
the variance of the concentration as a function of the mean concentration gradient, 
variance, and correlation scales of the log-hydraulic conductivity field and local 
dispersivity values. The derived covariance function of the concentration field 
involves the evaluation of a three-dimensional integral which in general cannot be 
solved analytically. The field is in general spatially and temporally variant. Via
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Monte Carlo simulation, Frind [1987] showed that the concentration distribution 
approached a normal distribution after mature development of a contaminant plume.

The combined contribution from all three sources of error was investigated by Loftis 
et al [1987] for groundwater quality variables. In the data sets analyzed, many of 
the water quality variables were non-normally and non-symmetrically distributed. 
After review of available data, Harris [1988] used normal and log-normal additive 
errors to simulate groundwater quality data.

For this simulation, the three sources of errors (sampling, laboratory, and model) 
were combined into one error component. Four types of error were considered: 
additive normal distribution e -  N(0, o /); 2) multiplicative normal distribution e -  
N(0, Co/) (where C = concentration); 3) additive lognormal distribution 
o /); and 4) multiplicative lognormal distribution e -  LN(0, Co/).

1)

e -  LN(0,

Therefore,

i Simulated 1 i Analytical
I 1 = 1
I Value J I Solution

I -F 
J

where,

€ is distributed as described above.
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Figure 3.1 Schematic of Simulated Aquifer and Monitoring Network
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Figure 3.2 Concentration of Contaminant at Source (C) Relative to Initial 
Concentration at Source (CJ
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Figure 3.3 Simulated Concentrations at Y = 0 Meters
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Figure 3.4 Simulated Concentrations at Y = 40 Meters

23



X=280M X«400M

Figure 3.5 Simulated Concentrations at Y = 80 Meters
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4. MODEL PARAMETER ESTIMATION

Data can be fit to models using a variety of estimation techniques. Four of the 
most common techniques are:

1) least squares,
2) weighted least squares,
3) method of moments, and
4) method of maximum likelihood.

The appropriateness of the estimation technique can be evaluated by the efficiency, 
consistency and sufficiency of the estimator. An efficient estimator is unbiased and 
has minimum variance. An estimate is unbiased if the expectation of the estimator 
equals the estimator; bias is an estimate of the systematic error in an estimator.
The variance of an estimator measures random error. If a parameter estimate 
approaches the true parameter value as the sample size increases, then it is a 
consistent estimator. Lastly, a sufficient estimator contains ail the relevant 
information from a sample. It is desirable to use a parameter estimation method 
which produces efficient, consistent, and sufficient estimators.

The four common parameter estimation methods listed above are described below 
in light of these properties.

4.1 Method of Least Squares.

The method of least squares minimizes the square of the differences between 
observations and model predictions. The least squares estimators are found by 
solving the following set of simultaneous equations:

a/apj E (c; - = o
i = l

V j, j = 1,..,p (4.1)

where.

p = number of model parameters
n = number of observations
C/ = observed concentration at time t
Ci = concentration predicted by model at time t 
Pj = model parameters
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For a linear model (£ = + e), these equations can be solved explicitly, where

1  = (X'X) ’ X'Q. (4.2)

0. = (X'X) ’ X ’ ( M  + e)

Taking expectations results in

E(D = E[{X’X) ’ X' (X£)] + E[(X'X) ’ X'e)] (4.3)

For a zero mean error.

E(fi) = (4.4)

Therefore, the linear squares estimation method will provide unbiased estimators 
regardless of the error distribution as long as the error is a zero mean process.

To be an efficient estimate, the variance of the estimator must also be a minimum. 
The variance of the estimators is defined as follows (Farebrother, 1988):

VAR(l) = E(P )̂ - E (̂p)

VAR(£) = E[(X'X) ’ X' E(€€')X(X'X) ’ 1 (4.5)

For an additive normal or lognormal error

E[€€'] = o \ [  

where,

= variance of error 

i  = identify matrix

For a multiplicative normal or lognormal error 

Ele i’ l = o M £

Therefore, for an additive error
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VAR[£.] = a \\(X 'X )' (4.6)

and for a multiplicative error

V A R lil = (X'X) ’ X’(oM£)X(X'X) (4.7)

For the variance to be a minimum, 3VAR(p)/5p = 0. For an additive error, since 
VAR(P) * f(p), 5VAR(p)/6p = 0 regardless of the distribution of the error.
According to Yevyevich [1972], for the method of least squares to yield an efficient 
parameter estimate, the residuals should be normally or at least symmetrically 
distributed, mutually independent, and exhibit constant variance. As shown by the 
previous analysis, the normality or symmetric requirement is unnecessary. For a 
least squares estimator where the error is additive, the variance of the parameter 
estimates decreases with an increase in sample size. In addition, since all the 
available data is utilized, the least squares estimation technique provides an 
efficient, sufficient and consistent estimator for models with zero mean additive 
errors.

For multiplicative errors, the variance of the parameters is a function of the 
parameters (VAR(P) = f(p)) and therefore the variance of the estimator may not be 
a minimum. Furthermore, the condition of independence is important for assuring 
an efficient estimator when using least squares regression.

For a nonlinear model, the variance of the parameters may be solved using the same 
equations as for a linear model, where X is substituted by S  where

ac
£  = --

For a nonlinear model, the least squares equations cannot be solved explicitly, but 
must be solved iteratively. If the initial estimate is close to the true solution, then 
this iterative procedure will converge to the true solution.

4.2 Method of Weighted Least Squares.

The least squares method of parameter estimation weights all variables equally. If 
variables are of different dimensions or some observations are less reliable than 
others, then the estimation of model parameters should be modified. One way of 
doing this is by weighting the errors. If the model equations are linear in the 
parameters or the number of observations is large, the inverse of the covariance 
matrix of the errors can be used. This method of analysis would be appropriate for 
multiplicative errors in which case the weights would be the inverse of the 
predicted concentrations.
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Using weighted least squares, the expected value of the estimators are

1  = (X'WX) ’ X’WY

= £  (unbiased estimators)

(4.8)

Unlike for the ordinary least squares, the variance of the parameter estimates would 
be equivalent for the additive and multiplicative errors of the same relative error 
variance.

VAR(£) = E[(X'X)-’ X'WE(6€')>T(X'X)-’ ] (4.9)

For additive errors,

W = i

VAR(£) = o"i(X'X)' (4.10)

For multiplicative errors,

W = !£•’ and E(€e') = ^  o' 

VAR(fi) = o 'i(X ’X )’ (4.11)

Therefore, the weighted least squares results in efficient estimators. However, 
because the predicted values depend on the parameter estimates, this method 
requires an iterative estimation procedure.

4.3 Method of Moments.

The method of moments equates theoretical population moments with sample 
moments (the expected value of a random variable to the rth power is the rth 
population moment of the random variable). In this method, the first p population 
and sample moments are equated, where p is the number of parameters in the 
model. When the underlying distribution is normal, the method of moments 
provides asymptotically efficient estimators. This is generally not true for skewed 
variables for which method of moments results in biased parameter estimates 
[Salas, et al, 1980].
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4.4 Method of Maximum Likelihood.

The method of maximum likelihood maximizes the likelihood function of the 
parameters in a model. The likelihood function is the joint probability of the model 
errors where L(-) = H  Clc/^.), where

C = f( l)  + €.

The maximum likelihood estimators are calculated solving the following 
simultaneous equations:

dl{-)

81
= 0

These maximum likelihood estimators are asymptotically efficient. However, for 
certain functions, the equations used are nonlinear and the solutions can only be 
approximated. The maximum likelihood method is equivalent to the least squares 
method when the error is normally distributed, independent, zero mean and 
constant variance.

4.5 General Discussion.

If a model is correct and the errors are distributed with zero mean and constant 
variance, then the least squares parameter estimation method provides efficient 
estimators. If the errors are not distributed with constant variance, the least 
squares estimators are unbiased with minimum variance among all linear squares 
estimators, but they are not efficient. If the variance of the residuals is not 
constant, least squares does not provide minimum variance estimators.

If the distribution of the errors are known and are non-normal, maximum likelihood 
estimators may be used. The maximum likelihood estimator does provide a 
minimum variance estimator, although this method often needs to be solved by trial 
and error. An alternative method to maximum likelihood when the errors are 
multiplicative, is a weighted least squares estimation technique. For this case, the 
weights would be the inverse of the covariance matrix.

Least squares, weighted least squares, method of moments, and maximum 
likelihood estimators all may be used to estimate model parameters. The effect of 
the estimation techniques on model fit is not evaluated in this study. This work is 
reserved for future research but has been mentioned herein so as not to imply that 
the parameter estimation method chosen, least squares, is necessarily the best 
method to use for a given data set and model.
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5. ANALYSIS OF MODEL APPLICABILITY

A wide spectrum of models are available for modeling water quality. The statistical 
and physical models considered for this study and the statistical tools used to 
evaluate model applicability are discussed below.

5.1 Description of Models Considered.

5.1.1 Statistical Models.

Spectral analysis and ARMA models are commonly used for statistical analysis of 
water quality data as discussed in Chapter 2. However, because of the limited data 
available in most groundwater quality records, the use of these models for 
statistical data analysis is rarely applicable. Instead, the data is often fit to some 
simpler statistical distribution for trend detection. The statistical analysis of water 
quality data sets frequently concentrates on the detection of linear trends in order 
to assess whether long-term deterioration of groundwater quality is occurring. 
However, in many groundwater problems, particularly in the remediation of site 
specific groundwater contamination problems, it is rare to expect a linear trend in 
groundwater quality. Therefore, in this study, in addition to linear trend models, 
higher order polynomial trends were also fit to both individual wells and groups of 
wells (trend surfaces).

The polynomial models for individual wells were of the form:

C(T) = I
i = 0

The trend surface models were of the form (example for quadratic):

C(X,Y,T) = B. -I- B ,*X  -I- B j*Y  -t- B j 'T  -1- +  Bb*X *T  +

Be*Y*T B /X "  -I- Bb»Y" -I- B , * r

where.

C = concentration of constituent of concern
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X = X location of well

Y = Y location of well

T = time of observation

p = model order

Bi = least squares fitted parameter

5.1.2 Physical Models.

The general class of physical models considered are two-dimensional 
advection-dispersion models. This model is described in Chapter 3.1. The same 
form of the model as that used to simulate the deterministic component of the 
simulated data was considered for model fit. This model will be fit to subsets of the 
data set based on sampling frequency and sampling density.

5.2 Model Applicability Evaluation.

To discriminate between the applicability of the various models considered, the 
models were evaluated for goodness-of-fit and predictive capabilities. The 
statistical tests utilized are described in the following two sections.

5.2.1 Goodness-of-fit Tests.

To assess the goodness-of-fit of the models evaluated, three statistical techniques 
were utilized: 1) an analysis of variance, 2) an analysis of model parameter 
behavior, and 3) an analysis of residuals. In this analysis, no non-parametric 
methods were used since the focus of the research is not the discrimination of 
various tests. The specific tests used in each of these three categories are 
discussed below.

5.2.1.1 Analysis of Variance. An Analysis of Variance (ANOVA) is based on 
separation of the total variance into various components. ANOVA tests whether 
the variance about the model is different than the variance in the observations, i.e., 
it tests the hypothesis (Hq) and the alternative (H,):

Ho:

H,: o* #

where.

= variance about the model.

The statistic used to test this hypothesis is the F-test. The F-test is a test to 
determine equality of variances, assuming that the variances are normally
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distributed. This assumption implies that both the deviation of the model about the 
mean and the deviation of the model predictions about the observations are 
normally distributed.

The F statistic for the regressions is calculated as follows:

MSR
F stat =

MSD

where,

MSR = Mean Square Residual 

MSD = Mean Square Deviation

SSR
MSR =

(P-1)

SSD
MSD =

(N-P-l-1)

where.

SSR = Sum of Square Residual 

SSD = Sum of Square Deviation

(5.1)

(5.2)

(5.3)

N
SSR = E (C -C )" 

i = 1

N
SSD = £ (C -C ') "  

i = 1

where.

N = number of samples 

C = average of observations 

C = predicted values of model 

C  = observations
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p = the number of parameters in the model

The F-test can also be used to test the significance of higher order models. The F- 
test statistic calculated to determine if the model of order P added significantly to 
the model, is

F add =
(SSRp - SSRp.,)

SSDp / ( N -P + 1)
(5.6)

where the subscript designates the order of the model.

This statistic can be evaluated for the simulated data by using expectations. For a 
stochastic model,

C  = C + €

where

C  = observed value,

C = true value, and 

€ = error.

The expected value of the F-test function can be evaluated as follows:

i MSR )
E[FTEST] = E

IM S D  J

For a nonlinear function, the expectation of the F-test function can be approximated 
using a Taylor series expansion as:

E[FTEST1 =
ElMSR]

E[MSD]

where.

E[MSR] = EISSR]/(P-1) 

E[MSD] = E[SSD]/(N-P-M)
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The sum of squares residuals (SSR) is unaffected by the error in the data or model, 
therefore E[MSR] = MSR. However, the sum of squares deviation (SSD) is 
increased by error in the data or in the model. Therefore, the expected value of the 
F-test statistic decreases when an error is introduced. The sum of squares 
deviation can be expanded to;

SSD = XC' - 2ZCC - 2ZCe + + 2£C€ + (5.7)

Taking expectations, this reduces to:

E[SSD] = £{C-C)" + ElZe^ (5.8)

For additive normal or lognormal errors.

E[SSD1 = £(C -0" + N a/ (5.9)

This expression is the same for either the normal or lognormal errors since only 
second order moments are considered in the expectation of the F-test statistic. 
Therefore, for an additive error.

E[FTEST] =
(N-P-M) X(C - O"

[^(C - O" -t- N o/] (P-1)
(5.10)

For multiplicative normal or lognormal errors, 

C  = C -F €

where, € -  N(0,Co/) or e -  LN(0,Co/)

E[SSD] = Z(C - C)" -I- o /  EC (5.11)

Therefore, for a multiplicative error.

EIFTEST] =
(N-P-M) £(C - O" 

[E (C -0 ^  -I- o /£C ] (P-1)
(5.12)
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With no data error and a perfect model, the F-test value equals infinity, regardless 
of the length of record, frequency of sampling, or number of wells. When an 
additive normal or lognormal error is present, the expected value of the F-test 
statistic is:

EiFTestJ =
SSR (N-P-M)

<P-1)N o /
(5.13)

When a multiplicative normal or lognormal error is present, the expected value of 
the F-test statistic is:

E[F Test^l =
SSR (N-P-M:

(P-1)o.^ £C
(5.14)

It is clear by the form of equations 5.13 and 5.14 that as the sampling frequency or 
number of wells is increased, the expected value of the F-test value is increased. 
This is because theoretically, SSR is constant for a specified period. However, it is 
important to note that the F-test may increase or decrease with the length of record 
because of the variability of SSR temporally. Therefore, increasing the sampling 
frequency or the density of wells sampled should increase the expected value of the 
F-test for a correct model, for a specified record length. Theoretically, it does not 
matter whether the sampling frequency or the number of wells is increased. Either 
one will increase the expected value of the F-test statistic by a factor of (N-i-n- 
P + 1 )/(N-P-t-1), where n equals the number of additional samples. This assumes 
that SSR is not affected by the addition of new samples and that the samples are 
independent. Therefore, the selection of well locations and sampling frequency 
should be made so as to estimate SSR most accurately. To do this, it is necessary 
to select locations and sampling frequencies such that

(1/N)JC" - [(1/N)JC]" = d/N)£C" - (XOVN

Clearly an increase in data error will reduce the F-test statistic and the significance 
of a specified model. The difference between the additive and multiplicative error 
on the F-test statistic is

E[F te s t j Om" XC 

E[F test„] N
(5.15)

Therefore, if the average variances are equivalent for the two errors, i.e..
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2 _= —  oj^ XC 
N

(5.16)

then the expected value of the F-test calculated will be the same, regardless of 
whether the error is additive or multiplicative.

For a correct model, it is also true that this increase in F-test value with an increase 
in sampling frequency or density of the network will be linear where

Fx(N-Fn) = Fj{N) 

where,

F^IN-t-n) =

Ft (N) =

i n
11 + ---------
I N-p-M

1
(5.17)

F-test with N-i-n samples for specified record length

F-test with N samples for specified base record 
length

p = number of model parameters

5.2.1.2 Model Parameter Analysis. For a correct model, as the data size increases, 
the model parameter estimates should converge towards the "true" model 
parameter values. As shown in Chapter 4, for a zero mean error process,

E(£) = 1

and for a nonlinear model, the variance of the parameter estimates can be 
approximated using a first-order approximation, as

VAR(p) = o^(X'X) ’ l for additive errors

= (X’X) ’X'(o^l£)X'(X'X) ’ for multiplicative errors

where

X = £  = for nonlinear models

Therefore, the behavior of the model parameters should be evaluated relative to this 
expected behavior for a correct model. Upper and lower error bounds can be 
defined, assuming a normal distribution to the parameter values, using the student 
t-test. The error bounds are defined as:

P = P ± Ui2.n.: o/v'n (5.18)
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5.2.1.3 Residual Analyses. The correlation of residuals was evaluated to assess 
whether any systematic error existed, i.e., whether the errors exhibited any 
non-random behavior indicative of improper model selection. To assess this, the 
temporal lag-one and spatial lag-zero (for multi-site models) correlation of the 
residuals were calculated. The hypothesis of normality of the residuals was 
evaluated by use of the skewness test. These tests are described below.

5.2.1.3.1 Correlation of Residuals. The correlation of the residuals (RHO) is 
defined as

RHO =

where.

R’i

N

Ri

XR'iR's - d R ', IR ’2)/N

d R ’ i ' - (lR 'i)*/N l’‘ * d R 'i"  - (IR'2)"/N]’‘

= residual of series i =  R| -I- €

= number of samples 

= C, - C,

(5.19)

For the lag-one temporal correlation, series one is summed from 1 to (N-1) 
and series two from 2 to N, at the same well. For the lag-zero temporal 
correlation, R, and Rj are summed from 1 to N.

The expected value of the correlation function can be approximated using a 
first order approximation as:

EIRHOl =
EdR ’ iR’j] - E(ZR’ , iR 'jl/N  

E{IER',"-(ER’ ,)VN]>‘ * llR '^ r iE R ’^l'/NlM
(5.20)

The calculation of the expected value of the residual variance (in the 
denominator of equation 5.20) is an extension of the Sum of Squares 
Deviation analysis discussed previously (pp. 52-53), in that

E[£R’^  - (ER’ ,)VN1 = ER^ - (ER,)^N -t- N * o^ (5.21)

for additive normal and lognormal errors, and

EdR 'S  - (ER’,)*/N] = ER*, - (ER,)*/N + o*. * EC (5.22)

for multiplicative normal and lognormal errors.
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The expected value of the covariance of the residuals (the numerator of 
equation 5.20 times (N-D) is unaffected by an error in the model since the 
error is assumed to be uncorrelated in time and space, i.e.,

e [ I r ;R j ' - E R / iR z ’/N] = i r ,R2 - e r ,e r 2/n (5.23)

Therefore,

E[RH0] =
ER,R2 - ER1ER2/N

iER'i + EE(e/)i’‘ * [ER% + EE(€2*)1'
(5.24)

The variance of the residual correlation can be approximated as:

VARIRHO] = E(RH0=*) - E"(RH0)

This results for an additive error in

o."(E(RrERi/N)" + E(R2-ER2/N)" + (N-1)o/)
VARIRHO] =

lER^ + N o/] * + N o/]
(5.25)

and for a multiplicative error

VARIRHO] =
0/  {E(RyCj - ERyCj/N)^ + E(R2v'c , -

(5.26)
lERi^ + o /Z c ,] * i e R2̂  + 0/E C 2I 

ER^v^C/N)^ + o/E(C,Cj)(1-2/N) + o/EC,ECa/N^}

Theoretically, the correlation of the residuals should be zero for a correct model. 
This is easily seen by setting R = 0 (R = C-C) in equation 5.24. In addition, for a 
correct model, the variance of the residual correlation is expected to be o/(N-1)/N^ 
for additive errors and o /{(N -2)EC,C2/NEC,EC2 + 1/N^} for multiplicative errors. 
This shows that the variance reduces with an increase in sample size and therefore 
the residual correlation will converge towards zero with an increase in sample size. 
The hypothesis (H / and the alternative (H,) to be tested are:

H, RHO = 0

H, : RHO 0
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The significance of the correlation of the residuals can be tested for independence 
by the limits given by:

r =
± u ,„ . * y N - 2

N - 1
(5.27)

where.

Ui-H, = the l-V ia quantile of the standard normal distribution 

N = sample size

o = the probability level (a = 0.05 is used for all statistics in this 
research)

5.2.1.3.2 Skewness of Residuals. The skewness of the data was also 
calculated to test the assumption of normality of the residuals. The 
skewness coefficient (K) for the residuals is defined as:

K =
1/N J (̂R' - 1;R7N)" 

[1/N X(R' - IR'/N)^]=
(5.28)

The expected value of the skewness coefficient can be approximated using a 
first-order Taylor series expansion. For a least squares fit (E(ER'/N) =0), the 
approximate expected value of the skewness coefficient is therefore:

E(K) =

where.

1/N

[1/N £E(R'^)]^'^

E(R’=*) = E(R=*) -1- 3E(R"€) + 3E{Rc*) -t- E{6̂ ) 

E{R'") = E(R') -I- E(R€) + E(e")

(5.29)

(5.30)

(5.31)

For a zero mean process.

E(R’=*) = E(R") 3E(Re") -I- E(e")

E(R'") = E(R") -I- E(e")

(5.32)

(5.33)
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Therefore, the expected value of the skewness coefficient for the four error 
types (AN = additive normal; MN = multiplicative normal; ALN = additive 
lognormal; MLN = multiplicative lognormal) considered are:

E(K,^) =
l/N ^R " - 3/N" IR IR "+  2/N=* 

[1/N XlR") -1/N' (IR )"+  0, (̂1
(5.34)

E(vJ =
1/N£R*- S/N^J^R^R" + 2/N’ (£R)=*

[1/N £(R") -1/N" (£R)" -I- o."[£C/N(l - 1/N)]
(5.35)

E(K^J = E(K^) -I-
P3(1-3/N-I-2/N") -I- 3o."/N *

[1/N £(R") -1/N" (£R)"-t- o."(1-1/N)l"'" 

(£RC-£R£C/N)(N-2)/N

(5.36)

P3 (1 - 3/N -I- 2/N")
E(K„,J = E(K^J -h

1 /N£(R")-1 /N"(£R)" + o."£C/N(1 -1 /N)]"
(5.37)

Unlike the F-test statistic and the correlation of the residuals, the expected 
value of the skewness coefficient is affected by the third order moment of 
the error and therefore the skewness coefficient is different for normal 
versus lognormal errors.

For a correct model, if the error is normally distributed, the expected value of 
the residual skewness is zero. The skewness coefficients of the residuals for 
the lognormally distributed errors are dependent on the variance, skew, and 
the groundwater quality concentration values (in the case of multiplicative 
error).

The skewness coefficient for a normal variable is zero. If the series comes 
from a normal distribution, y, is asymptotically normally distributed with 
mean zero and variance 6/N (Snedecor and Cochran, 1967, p.86). The (1-a) 
probability limits on y, are therefore:

± u,.H. * v'6/N. (5.38)
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5.2.2 Predictive Tests.

The ultimate test of a models applicability is its ability to accurately predict future 
behavior. To assess the predictive capabilities of the models, the average bias of 
the prediction deviations was used. The average prediction bias is defined as:

BIAS = (1/N) * £ (C  - C) (5.39)

For a correct model, the expected bias is zero. Therefore, a systematic bias is 
indicative of an improper model. A negative bias indicates that the model 
overpredicts groundwater quality concentrations and a positive bias indicates that 
the model underpredicts groundwater quality concentrations. Because the average 
bias is a first order moment statistic, it is unaffected by the assumption of model 
error for a zero mean error.

The expected value of the bias is as shown 

E(BIAS) = 1/N XlC - C) (5.40)

The variance of the bias is defined as:

VAR(BIAS) = E(BIAS') - E'(BIAS)

= E (1/N I(C ’-C)"] - {E[1/N £{C’-C)]}= 

= 1/N £  E(€̂ ) + VAR(C-C) (5.41)

For additive normal or lognormal errors,

E(ê ) =

For multiplicative normal or lognormal errors,

E(€*) = o% C

The significance of the bias can be evaluated using the student t-test where 

BIAS
t = (5.42)

v/VAR(BIAS)/N
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If t i  then the bias is significant. For the correct model, the expected 
prediction bias is zero with a variance of o//N  for additive errors and (o//N)J^C for 
multiplicative errors. That is, the variance decreases with an increase in data.
Since the expected value of the bias is zero for a correct model, the expected value 
of the t-test would be infinity.
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6. ERROR PREDICTION PROPAGATION

The groundwater quality model, selected by the model applicability analyses 
described in Chapter 5, is used to predict expected groundwater quality and 
variability in groundwater quality predictions. The expected value of the 
groundwater quality is the value of the deterministic model for models with 
independent parameters and error. The expected variability of a linear model may 
be calculated explicitly, whereas for a nonlinear model, the expected variability 
must often be approximated. The methods for calculating expected variability for 
these two general types of models are discussed below.

6.1 Expected Variability of Linear Models. 

A linear model may be generalized as 

Y = M  + € ( 6 . 1)

For a future state of interest X., we would like to predict Y. (Y.) and estimate the 
variability of Y. about Y..

Y. = X.£ + 6.

Y. = X . i  = X.£ + X.(X'X)-^X'€

EIY.] = X.£

VAR[Y.l = X.VpX.’ 

where,

V j = o^l(X'X) ’ for additive errors

Vj = (X'X) ’ (X'Ylo^X)(X'X) ’ for multiplicative errors

(see Chapter 4 for these derivations)

( 6 . 2 )

(6.3)

(6.4)

(6.5)

( 6 . 6 ) 

(6.7)

The prediction error, C, is defined as the difference between the observed and 
predicted values.

i  = Y. - Y. ( 6 . 8 )
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E li] = E[Y.l - E[Y.] = 0 

VARKl = X .V jX ’. + V,. 

where,

V ,.  = E lc V 'l

( 6 . 10 )

(6 . 11 )

(6.9)

If the model error is additive and e. -  e, then

VAR(i) = o^(X.I(X'X) ’X. + I) for an additive error

VAR(i) = (X*X)-’ (X'Ylo"X)(X'X) ’ + o*Y.) for a
multiplicative error

( 6 . 12)

(6.13)

6.2 Expected Variability of Nonlinear Models.

The expected variability of nonlinear models may be evaluated using prediction error 
propagation theory. There are three general methods used to predict error 
propagation for nonlinear models, namely:

1) evolution of probability density function of the system with time,

2) Monte Carlo simulations, or

3) first (or higher) order error analysis.

The evolution of the probability density function (pdf) involves the solution of a 
Fokker-Plank or Kolmogorov forward equation. However, the computational effort 
and complication of deriving a solution for a nonlinear model are formidable [Beck, 
19871.

Due to this complexity, the first order error analysis will be used to estimate the 
first and second moments. First order error analysis was chosen over using a 
Monte Carlo simulation in order to have an analytical function to incorporate 
explicitly into the optimization of a groundwater quality monitoring network. First 
order error analysis is a statistical sensitivity analysis using the first order partial 
derivatives of the model function with respect to the model parameters. The 
analysis may provide inaccurate results if the errors in a system are relatively large 
or if significant non-linearities exist in the system. These inaccuracies can generally 
be overcome by using higher order error analysis.

In this method, the sources of error attributable to the initial state of the system 
(model selection), inputs to the model, parameters of the model, and unmeasured 
input disturbances or other errors are incorporated into prediction of future error.
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The total prediction error is defined as:

C(x,y,t,i) = C.(x,y,t,£.) - C.(x,y,t,£.) 

where,

C = prediction error

C.(x,y,t,£.) = true state of system in future 

C.(x,y,t,£.) = predicted state of system in future 

£  = true model parameters

£  = predicted model parameters

(6.14)

If Si is assumed to be random and not deterministic, the first and second order 
moments of C can be estimated. The variance of the error can be approximated 
by:

VAR [Cl = E {[C(i + 51) - Cd)]^} 

where,

C = predicted error

51 = perturbation in 1

1  = deterministic model parameters

(6.15)

Linearization of Cd + 51) about 1  using a taylor series expansion yields

VAR [ i l  = X.V,X’. + Vc. (6.16)

where,

Vc. = E[€V ']

X. = dQ/31 matrix for nonlinear functions evaluated at the predicted 
values

V, = parameter variance matrix, as defined in Chapter 4 (equation
4.3 for additive errors and equation 4.4 for multiplicative 
errors)
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For the two-dimensional advection dispersion model (equation 3.3), where the 
parameters and model variables are assumed independent,

C(x,y,t) = {(C,x)/[4(jiDjy2]} * exp[(vx/2DJ-atl

t/R
* /  exp{-[XR - «R -I- v "/(4D l )]t  - x V(4D l T)}t  ’ ® *

0

{[erf((a-y)/(2(Dxx)'‘ )l + erf[{a-t-y)/(2(DTT)’‘ ]} dx

the partials of the equation with respect to the parameters can be calculated as 
follows:

ac C
(6.17)

ac Í -1  vx
-  = C * I ........................
ao^ I 2Dl " 2D,"

1 -F

B J A * [(v"x/(4*D,") -F (x"/4D,"x)l dx

where.

(6.18)

A = exp{-[XR - aR -F v"/(4D,)lx - x"/(4D,x)}x ’ ® * 

{[erf((a-y)/(2(DTx)’‘ )l -F erf[(a-Fy)/(2(DxX)’‘ ]}

(6.19)

C.X ( vx 1
B = ------  • exp I ......... at I

4(iïD,)’‘ 12D, J
( 6 . 20 )

ac
—  = B * Jexp{-[XR-aR-Fv"/(4D,)lx -x "/(4D ,x )}f’ ® * 
aDr

{-(a-y)/(2DT’ ^nx)**) * exp l-(a-y)’‘ /(4DTx)] -F 

-(a + y)/(2DT’ ®(jtx)’‘ ) * exp[-(a-y)’‘ /(4DTx)]} dx ( 6 . 21 )

46



ac i X 1
-- = C I — - I + B JA [-2v t /(4DJ] d t }
av I 2D, J

(6.22)

ac
-  = B * {;exp{-[XR-aR + v"/(4D,)]T - x V(4D,t )}t  ’ ® * 
da

[1/(Dt Ji t )’‘ ’] * {exp [-(a-y)V(4DTT)] + exp[-{a+ y )^/(4Dtt )]} d t (6.23)

ac
-  = B * { /A  (-A.T + at)dT + A l * (-t/R^)} 
aR T=t/R

(6.24)

ac

ex
= B • jA  (-Rt ) dT (6.25)

ac
-- = C * (-t) + B JA (Rt ) dT } 
da

(6.26)

ac
—  = B * jA[2x/(4DLT)]dt + [-Bv/(2DJ - 1/x] jA d t
axo

(6.27)

ac
-  = B • {Jexp{-[XR-aR+v"/(4D,)]T - x V(4D,t )}t  ’ ® •
3Yo

[IAD t Ut )*“ ] * {exp I-(a-y)*/(4DTT)l - exp[-(a + y)*/(4DTt)]} d t (6.28)

The variance of the nonlinear model parameters are calculated as described in 
Chapter 5, where the total model error variance, o /,  is calculated as

2 _
( E(C; - CJ  ̂ 1
I --------------  I (6.29)
I (N - P + 1) J

where,

N = number of observations

P = number of model parameters
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7. DESIGN OF OPTIMAL GROUNDWATER MONITORING NETWORKS

The design of any monitoring network is based on the objective of maximizing 
information for a specified cost, or alternatively, minimizing the cost of a monitoring 
system for specified information goals. The quantification of the objective and 
information goals into an objective function and constraints in the design of a 
monitoring system is critical to the success of the monitoring program. The 
objective function and constraints used for this optimization are discussed below.

7.1 Definition of Objective Function.

For this analysis, the objective of the monitoring network is to minimize the total 
costs of monitoring. The basic form for this objective function is as follows;

n n„
MIN Z = E C,F, + I  q

i=1 j=1

where.

Z = objective function

n = total number of wells monitored

n„ = number of new wells, n„ ^ n

Fj = sampling frequency for monitoring well i

Cj = cost of installing well j

C; = cost of sampling and laboratory analysis for sample i

This objective function can be substantially simplified if it is assumed that the cost 
of installing a well is constant for all wells (C„) and that the unit price of sample 
collection and laboratory analysis (C.) is constant for all samples. A more complex 
objective function could accommodate more realistic costs for installation and 
sampling of wells; however, since this is not the focus of this research, this 
simplified form of the objective function will be utilized. This results in the 
following objective function:

MIN Z = C. IF , + C,
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For systems where only existing wells will be utilized, this objective function 
simplifies to

MIN Z = ZC.Fj or simply 
i = l

MIN Z =
i = 1

since C, = a constant and does not affect the minimization

7.2 Optimization Constraints.

The focus of this research is to design monitoring networks in order to evaluate the 
effectiveness of remedial actions, that is, to design networks that will verify 
whether expected conditions, developed based on existing information, are or are 
not occurring. At a particular point in space and time, these future conditions can 
be expressed in a number of ways, including:

1) expected value,
2) expected variance,
3) expected coefficient of variation, or
4) expected correlation.

The future conditions can be in reference to either concentrations or errors in 
predicted concentrations. The expected value of the groundwater quality does not 
incorporate information on the expected variability of the system. In addition, the 
expected value of the concentration error is zero for a correct model. Therefore, 
the expected value will not be used as a means of evaluating an information goal 
for the design of a monitoring network.

The definition of the monitoring network involves the definition of the sampling 
frequency and the spatial density of the wells. The selection of the sampling 
frequency and well locations is based on constraints applied to the objective 
function. Constraints used for the frequency and well location selection are 
discussed below.

7.2.1 Sampling Frequency.

The frequency of sampling required at a particular location depends on the expected 
behavior of groundwater quality. Specifically, we are interested in the expected 
confidence we have in a prediction at a particular time in the future. This can be 
expressed as either a variance, coefficient of variation, or correlation, relative to 
either a future concentration or a future concentration error. These functions are all 
dependent on the frequency of sampling, which is a decision variable in the
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monitoring network design problem. Any of these measures could be appropriate 
depending on the representation of goals for the monitoring network system. For 
this study, however, the expected variance of prediction error was selected to 
constrain the sampling frequency. This statistic incorporates information on the 
model structure and model uncertainty into the monitoring network design process.

As shown in Chapter 6, equation 6.10, if we assume a model with stochastic 
model parameters, the variance of the prediction error can be expressed as

VARICI = X.V.X’. + Vc (7.1)

7.2.2 Sampling Locations.

Groundwater quality at different sampling locations varies in expected behavior. 
The relationship between locations can be expressed as a spatial correlation. The 
correlation of the predicted error concentration was used to restrict the spatial 
density of the monitoring network. This function can be expressed as:

CORR(C*„C%) = 

where.

COV(C»„C%)

IVAR(C*,) VAR(C%)]’‘
(7.2)

COV(C*i,C%) = E[(C*, - C *,)(f% - C%)] 

= E(C*, C% )

= E[(X*,(X 'X)’X'€)((X*2(X'X)’X'€)’1

(7.3)

7.3 Optimization Procedure.

The optimization of the monitoring network needs to incorporate both the spatial 
location and temporal frequency constraints described above. For a specified 
number of potential sampling locations and sampling frequencies, a branch and 
bound optimization technique can be utilized to meet this objective. This technique 
is summarized below and applied to an example problem for illustration purposes.

7.3.1 Branch and Bound Optimization Technique.

The optimization of a groundwater quality monitoring network can be made by 
using a modified branch and bound technique where the objective function (Zj) is 
expressed as:
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MIN Z, = £  VAR(I) * VL(I) 
i = 1

where.

n
i
VAR(I)
VL(I)

number of wells 
index on well number
predicted variance at well i for sampling frequency F| 
binary variable indicating whether well is or is not being 
sampled; 1 = sampled, 0 = not sampled

The objective function minimizes the number of wells sampled for a specified 
sampling frequency. The wells are selected based on the following constraint:

C0RR(1,J) i  CORRMIN V J = 1 ,N and at least one I where VL(I) = 1

where.

CORR(l,J) = predicted correlation between wells i and j

CORRMIN = user specified minimum correlation

This form of the objective function imbeds the sampling frequency constraint. In 
addition, it requires that all possible well locations be specified. It is not required 
that these well locations have been sampled in the past. Therefore, a different 
combination of wells could be identified as optimal for each sampling frequency, 
minimum spatial correlation, and potential monitoring network chosen. The 
networks resulting from different sampling frequency selection can then be 
compared and an optimal network selected from among those frequencies and 
potential wells considered.

In the branch and bound optimization technique, all wells to be considered in the 
network need to be specified. The branch and bound method employs an 
enumeration technique which can be applied to integer programming problems.
This technique partitions the set of all feasible solutions into subsets. For each 
subset, a lower bound is calculated for the objective function of the solutions within 
that subset. If the lower bound in that subset exceeds the current "best objective 
function", it is excluded from further consideration. An excluded subset is said to 
be fathomed. This partitioning and fathoming continues until an optimal feasible 
solution is found. This process is summarized below in four principle steps:

Initialization Step;

Branch Step:

Begin with entire set of solutions (equivalent to sampling all 
wells) and apply bound and fathom to the entire set. 
Calculate an upper bound on the solution Z„.

Use some branch rule to select one of the remaining subsets 
(a feasible solution) and partition it
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Bound Step: 

Fathom Step:

Stopping Rule:

Calculate a lower bound Z, for the feasible solutions in the 
subset

For each subset, compare Z, to Z„, exclude it from further 
consideration if

1) Z, > Z„; or
2) Subset is an infeasible solution

If Z, < Ẑ , then reset Z„ = Z, and store this as the 
incumbent solution

Stop when there are no remaining unfathomed subsets

For the design of a monitoring network, Z, = £  VAR(I) * VL{I). The set is feasible if 
there exist at least one CORR(l,J) ^ CORRMIN for VUJ) = 1 V I # J, when VL{I) = 
0 .

A brief example is shown below to illustrate the application of the branch and 
bound technique to a monitoring network design.

7.3.2 Example Application of Branch and Bound Technique to a Monitoring 
Network Design.

Five wells are located on a site. For a specified sampling frequency of 30 days, the 
prediction error variance for these five wells is:

Location
MW-1
MW-2
MW-3
MW-4
MW-5

Prediction Error Variance 
0.15 
0.4 
0.3 
0.1 
0.25

The correlation between the predicted concentration errors at these five wells is:

MW-1 MW-2 MW-3 MW-4 MW-5
MW-1 1.Ó ò.è CT55 0.7 0.5
MW-2 0.8 1.0 0.85 0.8 0.55
MW-3 0.85 0.85 1.0 0.9 0.9
MW-4 0.7 0.8 0.9 1.0 0.95
MW-5 0.5 0.55 0.9 0.95 1.0

For a desired minimum correlation of 0.85 for all wells (CORRMIN = 0.85), the 
following steps outline the branch and bound optimization technique for this data 
set.
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1) Select a subset equal to all wells being sampled

Z„ = E VAR(I) * VL(I) = 1.20 
i = 1

VL(I) = 1 V 1 = 1,..,5

2) Apply a Branch Step: delete all wells in order from 1 to n 

First Branch (delete Well Number 1, lower branch):

1/2-5’ (Z,„, = 0.2)

First Bound Step:

lower branch is feasible since CORRd ,J)*VL(J) ¿ CORRMIN for J = 3; 
therefore, set VL(1) = 0 and proceed with lower branch

upper branch is feasible; hold in reserve with Z,„ = 0.2 (Z„„ equals the 
minimum lower bound where Z^^= £  VAR for all solutions where i = 
all wells denoted to the left of the slash)

Second Branch:

2/3-5 (Z,„ = 0.4)

Second Bound:

•  lower branch is feasible since CORR(2,J)*VL(J) i  CORRMIN for J = 3; 
therefore continue with lower branch and set VL(2) = 0

A/B: "A" signifies that these wells are to be sampled; "B" wells are not yet 
specified
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upper branch is feasible; hold in reserve with Z,„ = 0.4

Third Branch:

3/4-5 (Z,„ = 0.3)

4-5 (Infeasible)

Third Bound:

•  lower branch is infeasible since C0RR{3,J)*VL(J) <
CORRMIN for J = 4  and J = 5; therefore proceed with upper branch

Fourth Branch:

3/4-5

3,4/5 |Z,„ = 0.4)

Fourth Bound:

•  Lower branch is feasible; therefore proceed with lower branch

•  upper branch is feasible; hold in reserve with = 0.4

Fifth Branch:

3/5-

-3,5 (Z,  ̂ = 0.55)

lower branch is feasible and Z, = 0.3; therefore revise Z„ = 0.3 and 
set VL(I) = 0,0,1,0,0 to the incumbent solution

upper branch is feasible; hold in reserve with Z,„, = 0.4
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At the completion of this first branch and bound procedure, the following set 
of fathomed subsets exists:

1-5

1/2-5 (Z,„ = 0.15)

2/3-5 (Z,„ = 0.4) 3,4/5 (Z,„ = 0.4)

3-5

3/4-5 3,5 (Z,„ = 0.55)

4-5 (Infeasible) 3 (Ẑ , = 0.3)

3) Proceed backward through branches and check for any Z,„ < Z„. If Z,„ is less 
then Z ,̂ than fathom that subset of the data.

In the second, third, fourth,and fifth branches Z,„, > Zu. In the first branch, 
=0.15; therefore, proceed to the first branch and branch and bound as 

follows:

1/2-5

1,2/3-5 (Z|„, = 0 .5 5 )-Fathomed

1/3-5‘

,1,3/4,5 {Zt- = 0.45) - Fathomed

1,4/5 (Z,„ = 0.25)

1/4,5 1,5 (Z|„, = 0.4) - Fathomed

1 (Infeasible)

On the last branch the lower branch is infeasible. The only upper branch 
which is feasible and not fathomed is VL(I) = 1,0,0,1,0. Therefore, proceed to 
this branch and continue branching as follows:
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1,4/5
1,4,5 (Z, = 0.5) 

1,4 (Z, = 0.25)

The lower branch is feasible and Z, < 2.̂ , therefore set Z„ = 0.25 and VL(I) = 
1,0,0,1,0 as the incumbent solution. At this point, all possible subsets have 
been fathomed and the optimal solution is to sample MW-1 and MW-4. The 
objective function value for this optimal solution is 0.25.

This branch and bound optimization technique was used to evaluate monitoring 
network designs for this study. A Fortran 77 computer code, BB.FOR was 
developed and used for these analyses. A copy of this code is included in Appendix 
C.

7.4 Evaluation of Optimal Monitoring Network.

Application of this branch and bound optimization to the design of groundwater 
quality monitoring networks results in the identification of monitoring wells for a 
specified sampling frequency which minimizes the prediction error variance at 
sampled wells and insures a minimum spatial error correlation between sampled and 
non-sampled wells. Sampling at the optimal monitoring network reduces the 
prediction error variance at non-sampled well locations. This prediction error 
variance surface can be used to evaluate the uncertainty in the understanding of the 
system and the locations of the optimal sampling locations relative to the 
uncertainty surface.

The prediction error variance surface can be expressed as 

VAR(C) = X .V jX .' -F V,.

The reduced error variance surface using the optimal monitoring network can be 
expressed as

VAR(iJ = X.V»^ X.' -F Vy. 

where

V, = ( X A ') ’ o l̂ 

V(N =  ( X , . iX , . ; ) 'o ^ l

k = sampling points in existing monitoring network 

i = sampling points in optimal monitoring network
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8. SIMULATION STUDY

A simulation study was performed as a basis for the development of a groundwater 
quality monitoring network design protocol. The methods used in the development 
of the groundwater monitoring network protocol have been discussed in Chapters 
four through seven. Specifically, the simulated groundwater quality data was fit to 
groundwater quality models (Chapter 4) and the applicability of the models was 
evaluated (Chapter 5). The prediction error was propagated (Chapter 6) and based 
qn these errors, monitoring networks were designed (Chapter 7).

This chapter discusses the results of the simulation study. Evaluation of model 
applicability is discussed in Section 8.1. The design of the monitoring network 
based on this evaluation is discussed in Section 8.2.

8.1 Model Applicability.

Models with incorrect structure are used to evaluate the ability of the statistical 
model applicability tests to identify incorrect models. The correct physical model 
used to generate the simulated data is used as a basis of comparison. The effect of 
different types and magnitudes of error on the model applicability tests is evaluated 
based on the inclusion of additive and multiplicative normal and lognormal data 
errors in the simulated data.

The two classes of incorrect model structures which are examined relative to the 
correct model structure are the multi-site polynomial (trend surface) models, and the 
single-site polynomial models. In addition, the physical model applied to individual 
wells is used as an additional basis of comparing single-site to multi-site models. 
Linear, quadratic, and cubic polynomials were considered for the polynomial 
single-site and trend surface models. The detailed results of the model applicability 
tests applied to these models are included as Appendix G. General conclusions 
regarding the ability of the statistical tests to identify incorrect models are 
discussed herein. However, in this chapter, detailed results are only included for 
the linear trend surface model.

For the multi-site models (trend surface and multi-site physical), the models were fit 
to data from different combination of sampling locations, specifically to wells at 40 
meter intervals (50 wells), wells at 80 meter intervals (15 wells), and wells at 120 
(direction parallel to flow) by 80 meter (direction perpendicular to flow) intervals (9 
wells). For all models evaluated, sampling frequencies of biweekly (24 
samples/year), monthly (12 samples/year), bimonthly (6 samples/year), quarterly (4 
samples/year), triannual (3 samples/year) and biannual (2 samples/year) were 
considered with record lengths ranging from two to ten years.
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To perform the model applicability analyses described in Chapter 5, the following 
computer codes were written:

1) SWT

2) AWT

fits and evaluates goodness-of-fit and predictive test 
statistics for single-site polynomial models

fits and evaluates goodness-of-fit and predictive test 
statistics for trend surface models

A copy of each of these programs is included in Appendix B. Each of the models 
considered was evaluated for model applicability via goodness-of-fit tests and 
predictive tests, as discussed below in Sections 8.1.1 and 8.1.2, respectively.

8.1.1 Goodness-of-fit Tests.

As discussed in Chapter 5, to evaluate the goodness-of-fit of the models, analysis 
of variance, analysis of model parameter behavior, and analysis of residuals were 
used, as described below.

8.1.1.1 Analysis of Variance. An analysis of variance (ANOVA) was used as a 
measure of testing the applicability of a model for describing the observed behavior 
in a specific data set. As discussed in Chapter 5, the ANOVA tests whether the 
variance about the model is different than the variance in the observations. The F- 
test is used to test the equality of the variances. Using least squares regression (as 
discussed in Chapter 4), the statistical models were fit to the simulated data.

For a correct model with no error, the expected value of the F-test statistic equals 
infinity. With data error present, the expected value of the F-test can be evaluated 
from a non-distributional approach where e-N(0,o„^> and

2 _  _ 2o„ for additive errors, and

„ 2 _ „ 2 o„ — o. 2^C/N for multiplicative errors. 

An error coefficient of variation can be defined as

o,
CV. = -  

C
( 8 . 1)

where the error coefficient of variation (CV.) is a dimensionless parameter. 
Substituting equation 8.1 into either equation 5.10 or equation 5.12 results in the 
following expression for the expected value of the F-test statistic:

(N-P-M) E(C,- C)=
E[F-test] = (8 .2 )

(P-1) CV.^ (1/N)(EO=
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This relationship can be used to calculate the maximum error coefficient of variation 
allowable for identification of the correct physical model using the F-test analysis. 
Figures 8.1 and 8.2 illustrate this relationship. Clearly, as the data set increases in 
size (either due to an increase in sampling frequency or sampling density), a higher 
error coefficient of variation is allowable for detection of the correct physical model. 
For example, for an error coefficient of variation of 10.0, the correct physical model 
would be correctly identified using the F-test with the following approximate 
sampling density, record length, and sampling frequency combinations:

Number of Record Length Sampling Total Number
Wells (Years) Freouencv of Samóles

50 <2 Biweekly/Monthly <1200
50 4.5 Bimonthly 1350
50 6.6 Quarterly 1300
50 7.8 Triannual 1150
50 9.5 Biannual 950
15 5 Monthly 900
9 8 Monthly 850

For this example, the least number of samples required in order to detect that the 
physical model is significant using the F-test analysis is associated with the 
monitoring network of 9 wells sampled monthly for 8 years. This however is 
probably not an unacceptable solution due to the length of record required. 
Therefore, a denser network would facilitate the early identification of the correct 
model.

In general, for this example, a fairly high relative error needs to be present in the 
data before the correct model is misidentified. It must be emphasized that this 
identification is based on the change in the system over the period of interest 
relative to the sampling locations and sampling frequency. Since the expected 
value of the F-test statistic is increased by an increase in SSR, the F-test will be 
maximized by collecting samples where the expected groundwater quality will 
maximize £(C - C) .̂ This means that samples should be collected spatially covering 
the entire zone of contamination with location and lengths of record chosen such 
that = JC. In addition, due to the non-stationary nature of the plume, this 
means that the optimal network is dependent on the period of interest and the 
expected plume distribution for that period. Therefore, significantly more 
information can be obtained from 9 wells spaced uniformly across a plume than 9 
wells clustered at the center of mass of the plume or at the plume boundaries.

The expected value of the F-test statistic is increased for an incorrect model relative 
to the correct model. The sum of squares deviation (SSD) is the sum of squared 
deviations between the predicted concentrations and the observed concentrations.

E[SSD] = £  (C - O "  

For ah incorrect model.

(8.3)

C = C" -I- C
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■ BIWEEKLY 
QUARTERLY

YEARS OF DATA 

+ MONTHLY 
X TTVANNUAL

BIMONTHLY 
«  BIANNUAL

Figure 8.1 Maximum Error Coefficient of Variation for Detection of Correct 
Physical Model Fit to 50 Wells Based on Expected Value of F-test

SOWELLS 1SWEUS •  WELLS

Figure 8.2 Maximum Error Coefficient of Variation for Detection of Correct
Physical Model Fit to Monthly Data Based on Expected Value of F- 
test ____
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C  = C + e 

where C" * 0

Therefore, for an incorrect model, 

EiSSD] = E(C")" + E(e") 

For a correct model,

EISSD] = E(e")

(8.4)

(8.5)

For a correct model with incorrect parameters, C" should converge towards zero, 
thereby reducing the SSD toward the minimum variance. However, for an incorrect 
model structure, C" will not converge towards zero. The behavior of the expected 
value of the squared model error deviations (E[C"^1) with time depends on the 
particular correct and incorrect models, but should increase with time and therefore 
decrease the F-test statistic.

Using a linear trend surface model as an example of an incorrect model structure. 
Table 8.1 summarizes the F-test results for the linear trend surface model fit to the 
simulated data with no error from monitoring networks of 50, 15, and 9 wells. The 
F-test did consistently increase with an increase in the sampling frequency and with 
an increase in monitoring well density, as illustrated by Figure 8.3 for the linear

SAMPUNG FREQUENCY

SOWELLS 15 WELLS 9WEUS

Figure 8.3 F-test Results for Linear Trend Surface Model Fit to Deterministic 
Data
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Table 8.1 F-Test Results for Linear Trend Surface Model Fit to Deterministic 
Data

50 WELLS
YEARS'*' SAMPLING FREQUENCY

BIWEEKLY MONTHLY BIMONTHLY QUARTERLY TRIANNUAL BIANNUAL 
2 237.0454 121.3795 63.4433 44.1031 34.4234 24.7543
3 186.4653 97.2285 53.2172 38.6155
4 86.8890 46.6866 26.8211 20.4377
5 21.1426 11.5033 6.9460 5.6707
6 29.6961 12.9760 4.8659 2.4056
7 123.2865 56.7892 23.7799 13.0277
8 295.9511 140.1669 62.5117 36.8807
9 533.2402 229.2628 117.6888 71.8188
10 817.1028 395.5283 184.9554 115.0046

47.1998 24.6710 
26.1658 14.8956 

7.8457 5.2188
2.0527 0.7367

11.7660 3.0611
36.3940 
73.6320 
120.677

12.0546
26.7778
45.9400

15 WELLS

YEARS'*' SAMPLING FREQUENCY
BIWEEKLY MQNTHLY BIMONTHLY QUARTERLY TRIANNUAL BIANNUAL

2 52.87393 26.82855 13.78474 9.38431 7.153795 4.903283
3 46.6837 24.11769 12.84187 9.073751 7.193333 5.343843
4 27.07912 14.2198 7.8236 5.714241 4.679226 3.706742
5 11.08819 5.831526 3.255012 2.430925 2.046879 1.73109
6 8.59423 4.056823 1.853165 1.158906 0.8396 0.583559
7 22.95242 10.66826 4.604502 2.61844 1.651004 0.744104
8 53.49017 25.38204 11.4196 6.794122 4.497849 2.260843
9 97.4891 46.8739 21.66992 13.28204 9.099033 4.970928
10 151.4847 73.43607 34.52096 21.54774 15.06208 8.622322

9 WELLS

YEARS'*’ SAMPLING FREQUENCY
BIWEEKLY MONTHLY BIMONTHLY QUARTERLY TRIANNUAL BIANNUAL

2 34.36651
3 30.16461
4 16.75223
5 5.735729
6 3.601407
7 12.43817
8 31.76589
9 59.81982
10 . 94.30384

18.42738
15.60672
8.84826
3.083971
1.672295
5.719257
15.01169
28.69895
45.63411

8.935874
8.329202

4.915828
1.790124
0.746088
2.403223
6.688004
13.19793
21.37276

6.089182
5.900434

3.617918
1.382794
0.474950
1.347696
3.974208
8.106728
13.36707

4.642464
4.680270
2.976714
1.196938
0.361014
0.843851
2.643599
5.584185
9.383489

3.130548
3.442648

2.351949
1.042505
0.283329
0.372598
1.335245
3.068868
5.404370

(a) Record Length for Model Fit
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trend surface model fit to ten years of data. As for the correct model, it is true that 
as the sampling frequency or the number of wells increased, that the linear trend 
surface model becomes more significant. This behavior was not observed for the 
quadratic and cubic order trend surface models nor for the single-site polynomial 
models, as summarized in Appendix G. This non-consistent trend in the F-test for 
the quadratic and cubic trend surface models is indicative of an improper model fit.

The model significance evaluations discussed above were based on fitting the 
statistical models to errorless data. The effect of data error on model significance is 
illustrated by Figure 8.4 for a linear trend surface model fit to simulated data from 
50 wells. This figure illustrates that the maximum allowable relative error 
(expressed as an error coefficient of variation) in the data increases with an increase 
in the sampling frequency. Excluding the six year record length, the linear model

• MONTHLY • QUARTERLY »A N N U A L

Figure 8.4 Maximum Error Coefficient of Variation for Detection of 
Significant Linear Trend Surface Model Fit to Data from 50 Wells 
Based on Expected Value of F-test

was significant for all sampling frequencies and record lengths considered with error 
coefficients of variation less than 1.0. Comparison of Figure 8.4 to Figure 8.1 
(page 87) illustrates the increase in allowable error for the detection of a correct 
physical model relative to the incorrect linear trend surface model.

To evaluate the trend in the F-test statistic relative to the theoretical linear increase 
in the F-test statistic for a correct model (as discussed in Chapter 5), the F-test 
values were fit to linear models with the independent variable being the number of 
additional samples (n) and the dependent variable being the calculated F-test values. 
The slope of the calculated linear trend p was compared to the theoretical slope, p, 
of Ft (N)/(N-p -h 1). The t-test statistic was used to evaluate whether the slope of
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the calculated linear trend was significantly different than the theoretical slope for a 
correct model where t = (p- p)/(yVAR(P)/N).

These t-test statistics are summarized for the exemplary linear trend surface model 
in Table 8.2 for well densities of 50, 15, and 9 wells and record lengths ranging 
from two to 10 years of data. For the linear
trend surface models, the only two t-test statistics which were significant were for 
record lengths of three years with network densities of 15 and 9 wells. The 
inclusion of data error would reduce the significance of these tests. Therefore, it 
appears that this test is insensitive to an incorrect model structure. The 
insensitivity of this test to detecting an incorrect model structure was also evident 
for the quadratic and cubic trend surface models, as summarized in Appendix G.

Table 8.2 T-Test Statistics'" on Linear Trend in F-Test Statistics for Linear 
Trend Surface Model Applied to Deterministic Data

SAMPLING DENSITY (NUMBER OF WELLS)
YEARS'*” 50 15 _ â ALL'"

2 -1.07216 -0.47156 -0.08290 0.00289
3 -0.01299 -4.44597 -4.16SÔ7 -0.00958
4 -0.01418 -0.56459 -1.55558 -0.01711
5 -0.01503 -0.18303 -0.36520 -0.02557
6 0.01301 0.02225 0.00535 0.00674
7 0.01540 0.17540 0.19091 0.01409
8 0.00788 0.31185 0.29278 0.01045
9 0.00288 0.44889 0.35122 0.00751
10 0.00326 0.69374 0.38370 0.00648

(a) t-test statistics significant at a =0.05 confidence level are highlighted

(b) Record Length for Model Fit

(c) F-tests from all combination of well densities

In summary, the F-test can be used to help identify a correct model. The F-test 
should be applied to subsets of the available data, both in frequency of sampling 
and number of wells. For a correct model, an increase in either the sampling 
frequency or network density should result in an increase in the F-test statistic, with 
the increase proportional to the increase in the number of samples. In addition, the 
correct model will continue to be significant under conditions of higher data error.

8.1.1.2 Model Parameter Analysis. The behavior of the estimated model 
parameters was evaluated using confidence limit bounds about the mean parameter 
values as defined in Chapter 5, where

ß = ß ± W y (V A R ,/n ) ( 8 . 6 )
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For the correct model structure, the variance of the parameter estimates decreases 
with an increase in the record length, sampling frequency, or sampling density.
This results in a convergence of the parameter estimates towards the true 
parameter values.

As discussed in Chapter 4, using a least squares regression to fit the correct model 
to the simulated data will result in the expected value of the parameter estimates 
being equal to the true parameter values for all types of zero mean errors. In 
addition, the variance of the parameter estimate decreases with an increase in data 
size or a reduction in data error.

For an incorrect model structure, the parameter estimates do not necessarily 
converge towards a single value, but vary with the record length and sampling 
frequency. Figure 8.5 illustrates the variability of parameters A, B, C and D for the 
linear trend surface model fit to the simulated data with no superimposed error. As 
illustrated by this figure, the parameter estimates do not fall within a specified 
confidence interval which decreases with sample size as do the parameter values

LINEAR TREND MODEL
PARAMETER A

LINEAR TREND MODEL
PARAMETER B

LINEAR TREND MODEL
PARAMETER C

LINEAR TREND MODEL
PARAKCTER 0

Figure 8.5 Upper and Lower 95% Confidence Limits on Parameter
Estimates for Linear Trend Surface Model Fit to Deterministic 
Data
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for a correct model. This parameter behavior was also exhibited by the quadratic 
and cubic trend surface models, as summarized in Appendix G.

The effect of error on the parameter behavior can be evaluated using the estimate 
for the parameter variance. For an additive error,

VAR(p) = o* (X'X) M

where

o = -f o.

a j = model error 

o.* = data error

Figure 8.6 illustrate the increase in the upper and lower 95% confidence limits on 
the parameter estimate A for a linear trend surface model fit to the simulated data 
with error coefficients of variation of 1.0 and 10.0. Clearly, the ability to detect an 
incorrect model is reduced with shorter record lengths. However, as the length of 
the record increases, the behavior of the parameter estimates still indicates an 
incorrect model, even with significant data error. Therefore, this parameter 
behavior test appears to be robust and a good method of evaluating model 
applicability.

8.1.1.3 Residual Analyses. Systematic error in the residuals indicates an improper 
model fit. Correlation of the residuals was used to assess non-random behavior and 
skewness of the residuals was used to test the distribution of the data errors, as 
discussed below.

The correlation of the residuals, RHO, can be used to identify non-random behavior. 
The expected value of the residual correlation for a correct model is zero, with the 
variance decreasing with an increase in data size. For an incorrect model, the 
expected value of the residual correlation is not zero and should be greater than for 
a correct model. The value of RHO will depend on the behavior of the correct 
model relative to the incorrect model.

For a linear trend surface model fit to the simulated data with no error present.
Table 8.3 summarizes the average lag-one temporal and lag-zero spatial residual 
correlations. As the sampling frequency and record length increase, the temporal 
residual correlation increases. There is however no observable correlation between 
the average spatial residual correlation and either the record length or the sampling 
frequency. However, the spatial correlation was generally high where the record 
length and the sampling frequency were relatively high. The residual correlations 
significant at the 5% confidence limit are highlighted on Table 8.3. Clearly, when 
no data error is present, the detection of an incorrect model is easily identified using 
the residual correlations.
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LINEAR TREND MODEL
PARAMETER A

ERROR VARIANCE = 1 ERROR VARIANCE = 10

Figure 8.6 Upper and Lower 95% Confidence Limits on Parameter Estimate 
A For Linear Trend Surface Model Fit to Stochastic Data

The introduction of error to the simulated data greatly reduces the correlation of the 
residuals. The average temporal and spatial residual correlations are plotted against 
the error coefficient of variation in Figures 8.7 and 8.8, respectively. These two 
figures illustrate that, in general, if the error coefficient of variation is greater than 
1.0, no significant residual correlation will be detected for a monitoring network of 
50 wells sampled monthly fit to a linear trend model. However, despite the 
insignificant correlation of the residuals when data error is present, evaluation of 
trends in the residuals can often still be useful in identifying an appropriate model 
structure.

The skewness of the residuals is assessed to determine whether the error is 
normally distributed. For a correct model, if the error is normally distributed, the 
expected value of the residual skewness is zero. The skewness coefficients of the 
residuals for lognormally distributed errors are dependent on the variance, skew, 
and, for a multiplicative data error, the groundwater quality concentration values.
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2 YEARS 6 YEARS 10 YEARS

Figure 8.7 Effect of Error Coefficient of Variation on Average Temporal 
Residual Correlation from Linear Trend Surface Models Fit to 
Monthly Data at 50 Wells

2 YEARS 6 YEARS 10 YEARS

Figure 8.8 Effect of Error Coefficient of Variation on Average Spatial Residual 
Correlation for Linear Trend Surface Models Fit to Monthly Data at 
50 Wells ____________
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Table 8.3 Average Residual Temporal and Spatial Correlations'" for Linear 
Trend Surface Model Fit to Deterministic Data from 50 Wells

RESIDUAL TEMPORAL CORRELATION 

SAMPLING FREQUENCY
YEARS'”' BIWEEKLY MONTHLY BIMONTHLY QUARTERLY TRIANNUAL
BIANNUAL 

2 *9948 .9794 .9191 .8244 .7009 .4053
3 9967 .9870 .9505 .8947 .8225 .6371
4 .9973 .9894 .9582 .9076 .8384 .6538
5 .9978 .9912 .9663 .9274 .8764 .7432
6 .9982 .9928 .9719 ,9382 .8910 .7635
7 .9983 .9934 .9747 .9462 .9096 .8152
8 .9983 .9935 .9754 .9481 .9141 .8309
9 .9983 .9936 .9757 .9489 .9168 .8369
10 9984 .9937 .9762 .9498 .9173 .8405

RESIDUAL SPATIAL CORRELATION

SAMPLING FREQUENCY
YEARS'”' BIWEEKLY MONTHLY BIMONTHLY QUARTERLY TRIANNUAL
BIANNUAL 

2 .0120 .0119 .0131 .0157 .0193 .0287
3 .1530 .1461 .1325 .1193 .1065 .0820
4 .3747 3715 .3637 .3539 .3418 .3112
5 .5245 .6199 .5131 .5180 .5037 .4951
6 .5285 .5424 .5710 6016 .6349 .6505
7 .4679 .4790 .5013 .6240 .5470 .5949
8 .4282 .4383 .4582 .4781 .4979 .5379
9 .3995 .4088 .4511 4453 .4634 .4994
10 .3786 .3872 .4041 .4280 .4375 .4707

(a) correlations significant at the a = 0.05 confidence level are highlighted

(b) Record Length for Model Fit
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For an incorrect model structure, the expected value of the residual does not equal 
zero and therefore the expected value of the skew will be greater than for a correct 
model. The skewness of the residuals for a linear trend surface model fit to the 
simulated data without any superimposed error is summarized in Table 8.4. The 
residual skewness coefficients were significant for approximately one-half of the 
data subsets evaluated. These significant skewness coefficients are indicative of an 
incorrect model structure.

Table 8.4 Average Residual Skewness'*' for Linear Trend Surface Model fit to 
Deterministic Data from 50 Wells

YEARS"" SAMPLING FREQUENCY
BIWEEKLY MONTHLY BIMONTHLY QUARTERLY TRIANNUAL BIANNUAL

2 .0619 .0666 .0785 .0897 .0976 .1018
3 .0110 .0161 .0267 .0373 .0469 .0611
4 -.0550 -.0475 -.0314 -.0147 .0021 .0345
5 -.1290 -.1209 -.1032 -.0843 -.0647 -.0243
6 -.2067 -.1991 -.1820 - 1630 -.1426 -.0983
7 -.2838 -.2775 -.2627 -.2456 -.2262 -.1812
8 -.3512 -.3470 -.3363 -.3226 -.3056 -.2634
9 -.3997 -.3980 -.3922 -.3831 -.3701 -.3333
10 -.4228 -.4237 -.4232 -.4191 -.4107 -.3819

(a) significant skew at the a = 0.05 confidence level are highlighted

(b) Record Length for Model Fit

The effect of error on the expected value of the residual skewness is illustrated by 
Figure 8.9 for a normal error and Figure 8.10 for a lognormal error. For a normally 
distributed error, the significant skew of the residuals for an incorrect model fit to 
record lengths of 6 and 10 years is obliterated by relatively small data errors. 
Therefore, it is unlikely that skew can be used to identify an improper model. For a 
lognormal error, the skew of the residual increases with an increase in data error. 
Since the skew of the residual for a correct model also increases with an increase in 
data error, the detection of a significant residual skew may therefore be a good 
indicator of non-normality of the data error, but not a good indicator of an improper 
model structure.

8.1.1.4 Summary of Goodness-of-fit Tests. The three criteria used to determine 
the goodness-of-fit of a model, the F-test, parameter behavior, and residual 
behavior, have been discussed above. For a correct model, an increase in the 
sampling frequency, sampling density, or record length increases the ability to 
detect a correct model structure (except for the F-test which varies with an increase 
in the record length). This is not necessarily true for an incorrect model, as 
exemplified by fitting the linear trend surface model to different subsets of the
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ERROR COEFFICIENT OF VARIATION

2 YEARS 6 YEARS 10 YEARS

Figure 8.9 Effect of Error Coefficient of Variation on Average Residual
Skewness from Linear Trend Surface Model Fit to Monthly Data at 
50 Wells with Normal Error Variance
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Figure 8.10 Effect of Error Coefficient of Variation on Average Residual
Skewness from Linear Trend Surface Model Fit to Monthly Data at 
50 Wells with Lognormal Error Variance
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simulateci data. Therefore, it is important to look at the behavior of these model 
applicability statistics under the conditions of varying sampling frequency, sampling 
density, and record length.

In addition to the convergent behavior of each of the individual statistics for a 
correct model, it is important to use a combination of statistics. This is 
exemplified by comparison of the range of error coefficients of variation allowed for 
evaluating the significance of the correct physical model versus the incorrect linear 
trend surface model based on the results of the F-test, parameter behavior, and 
residual behavior.

For detection of a significant model based on the F-test, the error coefficient of 
variation must be less than the error coefficient of variation lines shown on Figures 
8.11 and 8.12 for a correct physical model and for an incorrect linear trend surface 
model, respectively. For the detection of a significant linear trend surface model 
based on the parameter estimate behavior or the residual behavior, the error 
coefficient of variation must be greater than the error coefficient of variation lines 
shown on Figure 8.12. Since the expected value of the parameter estimates should 
converge towards a single value and since the expected value of the residual 
temporal and spatial correlation is zero for a correct model, the data error should 
not limit the ability of these tests to detect the correct model. The shaded region 
on each figure illustrates the range of error allowable for detection of a significant 
model based on the use of all the goodness-of-fit statistics evaluated. Figures 8.11 
and 8.12 illustrate that the F-test and parameter behavior analyses are more robust

50

Figure 8.11

5 6 7
YEARS o r  DATA

F-TEST

Error Coefficient of Variation for Detection of Significant Physical 
Model Fit to Monthly Data from 50 Wells
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Figure 8.12 Error Coefficient of Variation for Detection of Significant Linear 
Trend Surface Model Fit to Monthly Data From 50 Wells

tests for model significance evaluation than are the residual tests. In addition, the 
combined use of goodness-of-fit statistics significantly aids in the model 
discrimination process. This is exemplified by Figure 8.12 for which, when using all 
model applicability statistics, the linear trend surface model would only be 
incorrectly identified as significant with
approximately three or less years of data with an error coefficient of variation 
between approximately one and seven. Lastly, the residual skew may be used to 
identify non-normal data errors, but is generally not effective at discriminating 
between models.

8.1.2 Predictive Tests.

For a correct model, the expected value of the prediction bias is zero, and the 
variance of the prediction bias decreases with an increase in data. For an incorrect 
model structure, the expected value and variance of the prediction bias is greater 
than for a correct model. The systematic behavior of the bias should be evident in 
the prediction error residuals.

Table 8.5 summarizes the average one-year prediction bias, variance, and 
associated t-test of the prediction error for a linear trend surface model fit to the 
simulated data without superimposed errors from 50 wells. The average one-year 
prediction bias varies in magnitude with an
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Table 8.5 Average One-year Prediction Bias, Variance and Associated t-test 
for Linear Trend Surface Model Fit to Deterministic Data from 50 
Wells

ONE-YEAR PREDICTION BIAS

YEARS'”
BIWEEKLY

SAMPLING FREQUENCY
MONTHLY BIMONTHLY QUARTERLY TRIANNUAL BIANNUAL

2 -.0781 -.0784 -.0790 -.0795 -.0801 -.0812
3 -.0891 -.0903 -.0923 -.0951 -.0975 -.1022
4 -.0789 -.0805 -.0836 -.0867 -.0898 -.0961
5 -.0612 -.0627 -.0659 -.0690 -.0722 -.0787
6 -.0428 -.0442 -.0471 -.0501 -.0530 -.0590
7 -.0264 -.0277 -.0302 -.0328 -.0355 -.0409
8 -.0126 -.0137 -.0159 -.0182 -.0205 -.0253
9 -.0012 -.0022 -.0042 -.0061 -.0081 -.0124

VARIANCE

YEARS
BIWEEKLY

SAMPLING FREQUENCY
MONTHLY BIMONTHLY QUARTERLY TRIANNUAL BIANNUAL

2 .01540 .01553 .01576 .01596 .01613 .01638
3 .00893 .00907 .00933 .00958 .00982 .01022
4 .00441 .00449 .00465 .00480 .00494 .00521
5 .00208 .00211 .00219 .00227 .00234 .00218
6 .00097 .00099 .00103 .00106 .00109 .00116
7 .00046 .00047 .00048 .00050 .00052 .00054
8 .00022 .00023 .00023 .00024 .00025 .00026
9 .00011 .00011 .00012 .00012 .00012 .00012

T-TEST

YEARS
BIWEEKLY

FREQUENCY OF SAMPLING
MONTHLY BIMONTHLY QUARTERLY TRIANNUAL BIANNUAL

2
3
4
5
6
7
8 
9

-21.80125
-32.66199
-41.15744
-46.48474
-47.60456
-42.63985
-29.42726
-3.96347

-15.41012
-23.22521
-29.42716
-33.43505
-34.40965
-31.29727
-22.1275
5.138093

-10.89958
-16.5509

-21.23442
-24.39068
-25.41926
-23.8752

-18.15908
-6.640783

-8.899502
-13.74082
-17.69756

-20.481
-21.76205

-20.74454
-16.61425
-7.875066

-7.724333
-12.05021
-15.64799

-18.27995
-19.66112

-19.06656
-15.87923
-9.056075

-6.344525
-10.1094
-13.31388

-16.85569
-17.323

-17.60056
-15.69039
-11.3196

(a) Record Length for Model Fit
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increase in record length but does decrease with an increase in sampling frequency. 
The fact that the bias does not converge towards zero with both an increase in 
sampling frequency or record length is indicative of an incorrect model structure.

The significance of the bias can be evaluated using the Student t-test, where

E(BIAS)
t = (8.7)

y(VAR(BIAS)/N)

At the 5% significance level, there is a significant bias in all the one-year 
predictions based on the linear trend surface model fit to errorless data from 50 
wells.

For the multi-year prediction bias (i.e. average prediction bias more than one year 
irito the future), in general, the magnitude of the prediction bias increases with the 
number of years predicted, as summarized in Table 8.6 for the linear trend surface 
model fit to the simulated data without superimposed errors. The non-convergence 
of the bias towards zero is indicative of an improper model fit. Table 8.7 
summarizes the t-test statistics associated with these multi-year prediction biases. 
All the prediction biases are significant at the a = 0.05 level with the significance of 
the bias increasing with an increase in the number of years predicted.

The introduction of error to the data reduces the significance of the bias. Figure 
8.13 illustrates the maximum error coefficient of variation for detection of a one- 
year significant prediction bias for a linear trend surface model fit to 50 wells. As 
the record length or sampling frequency increases, the maximum error coefficient of 
variation tends to generally decrease (excluding less than four year of data). 
Therefore, with a larger data set, the ability to detect significant bias in the 
predictions decreases.

In summary, use of the prediction bias and associated t-test statistic to evaluate the 
significance of the bias appear to be good tools when data error is low, the data 
record is significant in length, or change

is rapid relative to sampling density. When data error is present, evaluation of 
trends in the prediction bias resulting from fitting the model to subsets of the 
available data should still aid in model discrimination.

8.1.3. Summary of Model Applicability.

In general, for a correct model, increasing the sampling frequency, sampling 
density, or record length will result in

an increase in the F-test statistic (excluding record length), 
a decrease in parameter estimate uncertainty, 
a reduction in residual correlation, 
convergence in residual skewness, and 
a reduction in prediction bias.
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Table 8.6 Average Multi-year Prediction Bias for Linear Trend Surface Model 
fit to Monthly Deterministic Data from 50 Wells

50 WELLS

YEARS'*'
_______ 1

NUMBER OF YEARS PREDICTED 
3 4 5 6 8

2 -.0784 -.1362 -.1999 -.2521 -.3073
3 -.0903 -.1300 -.1675 -.2025 -.2355
4 -.0805 -.1034-.1240-.1426 -.1595
5 -.0627 -.0742 -.0838 -.0918 -.0988
6 -.0442 -.0485 -.0513 -.0531
7 -.0277 -.0275 -.0264
8 -.0137-.0109
9 -.0022

.3605 -.4120 -.4261 

.2668 -.2967 

.1752

15 WELLS

YEARS 
______ 1

NUMBER OF YEARS PREDICTED 
2 3 4 5 6 A .

2 -.0921 -.1421 -.2890 -.3644 -.4173 -.4893 -.5020 -.5321
3 -.1004 -.1360 -.1875 -.2243 -.2886 -.3115 -.4043
4 -.0988 -.1109 -.1334 -.1506 -.1627 -.1833
5 -.0882 -.0932 -.1138 -.1223 -.1331
6 -.0613 -.0721 -.0854-.0902
7 -.0305 -.0314-.0404
8 -.0221 -.0229
9 -.0102

9 WELLS

YEARS NUMBER OF YEARS PREDICTED
1 2 3 4 5 6 8

2 -.0998 -.1662 -.2994 -.3767 -.4253 -.5088 -.5533 -.5990
3 -.1133 -.1411 -.1905 -.2445 -.2017 -.3265 -.4154
4 -.1004 -.1178 -.1459 -.1663 -.1804 -.2002
5 -.0921 -.0988 -.1155 -.1243 -.1445
6 -.0661 -.0725 -.0883 -.0921
7 -.0317 -.0356 -.0467
8 -.0223 -.0323
9 -.0031

(a) Record Length for Model Fit
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T a bl e 8. 7  T- t e st St ati sti c A s s o ci at e d wit h M ulti- y e ar Pr e di cti o n Bi a s fr o m 
Li n e ar Tr e n d S urf a c e M o d el Fit t o M o nt hl y D at a

5 0 W E L L S

Y E A R S  T- S T A TI S TI C A S S O CI A T E D WI T H P R E DI C TI O N O F
1 Y R 2 Y R  S Y R  4 Y R  S Y R  6 Y R  7 Y R 8 Y R

2 - 1 5. 4 1 - 3 6. 1 5 - 5 8. 4 0
3 - 2 3. 2 3 - 4 7. 4 7 - 7 0. 8 5
4 - 2 9. 4 3 - 5 6. 1 5 - 8 2. 3 6
5 - 3 3. 4 4 - 6 1. 2 7 - 8 9. 4 4
6 - 3 4. 4 1 - 6 0. 5 5 - 8 6. 7 1
7 - 3 1. 3 0 - 5 0. 2 1 - 6 5. 7 7
8 - 2 2. 1 3 - 2 8. 1 4
9 - 5. 1 4

- 7 4. 8 6 - 9 0. 0 3 - 1 0 3. 1 3 - 1 1 4. 7 2 - 1 1 5. 4 3 
- 9 0. 9 4 - 1 0 7. 9 4 - 1 2 2. 5 2 - 1 3 5. 2 6 

- 1 0 5. 9 2 - 1 2 6. 3 6 - 1 4 4. 2 6 
- 1 1 6. 5 1 - 1 4 2. 6 1 
- 1 1 3. 0 0

1 5 W E L L S

Y E A R S T- S T A TI S TI C A S S O CI A T E D WI T H P R E DI C TI O N O F
1 Y R 2 Y R 3  Y R 4 Y R 5 Y R  e; Y R  7 Y R 8 Y R

2 - 6. 3 4 - 1 6. 0 3 - 2 6. 9 2 - 3 7. 0 1 - 4 5. 7 9 - 5 3. 4 0 - 6 0. 1 1 - 6 6. 1 4

3 - 9. 9 6 - 2 1. 4 4 - 3 3. 5 0 - 4 4. 6 2 - 5 4. 3 2 - 6 2. 7 5 - 7 0. 1 2
4 - 1 2. 8 6 - 2 5. 4 3 - 3 8. 4 8 - 5 0. 8 6 - 6 2. 0 2 - 7 1. 9 6

5 - 1 4. 7 5 - 27. 5 6 - 4 0. 9 7 - 5 4. 2 0 - 6 7. 0 2
6 - 1 5. 3 6 - 27. 2 1 - 3 9. 2 4 - 5 1. 6 5
7 - 1 4. 2 5 - 23. 3 8 - 3 1. 3 3
8 - 1 0. 9 6 - 15. 1 5
9 - 4. 7 7

9 W E L L S

Y E A R S  T- S T A TI S TI C A S S O CI A T E D WI T H P R E DI C TI O N O F
1 Y R  2 Y R  3 Y R  4 Y R  5 Y R  6 Y R  7 Y R 8 Y R

2

3
4
5
6
7
8 
9

- 5. 4 2
- 8. 5 1

- 1 0. 9 0
- 1 2. 4 6
- 1 3. 0 3
- 1 2. 2 0
- 9. 5 9
- 4. 4 6

- 1 3. 6 0
- 1 8. 1 7
- 2 1. 4 7
- 2 3. 3 3
- 2 3. 2 2
- 2 0. 3 9
- 1 3. 6 6

- 2 2. 4 0
- 2 7. 9 6
- 3 2. 2 0
- 3 4. 5 3
- 3 3. 7 4
- 2 7. 6 2

- 3 0. 2 4
- 3 6. 6 8
- 4 2. 0 8
- 4 5. 6 8
- 4 4. 6 2

• 3 6. 9 2
■4 4. 0 7
- 5 0. 7 5
- 5 5. 9 5

- 4 2. 6 4 - 4 7. 6 6 - 5 2. 1 7 
- 5 0. 3 9 - 5 5. 8 6 
- 5 8. 2 9

( a)  R e c or d L e n gt h f or M o d el Fit

7 7
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Figure 8.13 Effect of Error on One-Year Prediction Bias for Linear Trend Surface 
Model Fit to Data from 50 Wells _________

For an incorrect model, these statistics will not all behave as described above. Due 
to the sensitivity of the power of individual statistical tests in the presence of data 
error, it is important to look at a combination of goodness-of-fit and predictive test 
statistics and most important, to look at the behavior of these statistics as the 
sampling frequency, record length, and sampling density varies. The consistency of 
these statistics is an important tool due to the ability of error to reduce the 
significance of individual tests.

8.2. Optimization of Monitoring Networks

The design of optimal monitoring networks based on the results of the model 
applicability analyses is discussed in this section. The objective function and 
constraints for the monitoring network optimization are expressed as:

MIN Z, = £  VAR(I) * VL(I) 
i = 1

Subject to,

CORR(l,J) ^ CORRMIN V J = 1 ,N and at least one I where VL(I) = 1

where.
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CORR(l,J) == predicted correlation between wells i and j
CORRMIN = minimum spatial correlation
n = number of wells
i = index on well number
VAR(I) = predicted variance at well i for sampling

P
frequency

VL(I)
' i

binary variable indicating whether well is or is not
being sampled; 1 = sampled, 0 = not sampled

The variance of the expected error (C) is developed in Chapter 6 and shown to be:

VAR[C] = X.VjX. -1- V(-. (8.8)

As for all models, the expected variance of the predicted error at a well is a 
minimum at the beginning of the prediction period. However, the prediction error 
variance is not necessarily monotonically increasing for a nonlinear function.

The correlation between expected errors was shown in Chapter 7 to be:

X.,V,X.2’

[(X.,V,X./+Vc.,)(X.2V,X.2' + Vc.2)]’‘
CORR(C*,,i * ) = 2/ •“ (8.9)

The sampling density for the multi-site models is defined based on meeting 
minimum specified spatial prediction error correlations and minimizing the sum of 
the expected error variance at the sampled wells. Based on the equation for 
predicted error variance, every location would have a different optimal sampling 
frequency with that frequency changing over time. A widely varying sampling 
frequency is impractical to apply, therefore a single sampling frequency was 
specified and the optimal location of wells for that frequency determined.
Therefore, it is guaranteed that the minimum allowed prediction variance is met at 
all sampling points for the first sampling event.

Ideally, the model should be reevaluated after each sampling event and the sampling 
frequency and sampling locations redefined. This is also an impractical constraint. 
Therefore, it is assumed that the defined sampling network will be monitored for 
some user-specified interval prior to réévaluation.

Computer models were written to calculate the optimal sampling frequencies for the 
single-site models and sampling frequencies and sampling locations for the 
multi-site models based on the branch and bound technique discussed in Chapter 7. 
These programs, included in Appendix C, are:

VARASS - calculates parameter variance matrix (V )̂ for single-site 
polynomial models
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VARATS - calculates parameter variance matrix (V^) for trend surface 
models

VARP - calculates parameter variance matrix (V,) for physical model

OPTASS - calculates prediction error variance (X.V^X.') for a specified 
frequency for single-site polynomial models

OPTATS - calculates prediction error variance (X.VjX.') for a specified 
frequency for trend surface models

OPTAP - calculates prediction error variance (X.VpX.') for a specified 
frequency for physical model

BB - performs branch and bound optimization

The optimal monitoring network for the correct physical model (Section 8.2.1) is 
compared to the optimal monitoring network for a linear trend surface model 
(Section 8.2.2), selected as an example of an incorrect model structure. Optimal 
monitoring networks for other incorrect model structures are discussed in detail in 
Appendix G.

8.2.1 Optimization Based on a Physical Model

The design of a monitoring network is dependent on the model structure and on the 
fit of the model to the data. The optimal monitoring network is reduced with an 
increase in the confidence of a model. This is expressed as a reduction in the 
sampling frequency, number of wells, and/or objective function value. This is 
exemplified by the results of the monitoring network optimization for the physical 
model fit to monthly data, as summarized in Table 8.8. As shown in Table 8.8, the 
objective function value decreases and the sampling density decreases with an 
increase in the data set used to fit the m odel.Therefore, the increase in the data 
set is associated with a decrease in the uncertainty of the model.

The value of the objective function decreases with an increase in sampling 
frequency used to fit the model, where the lower frequencies include the same 
samples. That is, the objective function based on the monitoring network 
sampled biweekly is less than the objective function for the same network 
sampled monthly which is less than for the objective function for the same 
network sampled bimonthly which is less than the objective function for the 
same network sampled triannually. However, since the monitoring network 
comprised of triannual samples contains different samples than does the 
monitoring network sampled biannually, the triannual monitoring network does 
not necessarily result in a lower objective function than does the biannual 
network from the same wells. This is due to the dependence of Vp on the 
specific data used to fit the selected model to the data.
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Table 8.8 Objective Function"’ and Number of Monitoring Wells for Physical
Model fit to 50 Wells;
Minimum Spatial Error Prediction Correlation = 0.9;
Future Monthly Sampling Frequency

EXISTING MONITORING NETWORK SAMPLED
YEARS "’BIWEEKLY MONTHLY BIMONTH QUARTER TRIANN BIANN
2 1.0002'*' 5.4830 5.5690 15.2924 541.1 13 17.786

^  (b ) 4 4 4 5 4
3 1.00008 1.1839 2.4802 3.3403 261.657 5.2947

1 1 2 2 4 3
4 1.00002 1.0016 1.0039 1.1468 82.834 2.4680

1 1 1 1 4 2
5 1.00001 1.00003 1.00004 1.10109 42.258 1.00004

1 1 1 1 4 1
6 1.00000 1.00001 1.00001 1.00004 22.414 1.00004

1 1 1 1 4 1
7 1.00000 1.00000 1.00000 1.00001 16.863 1.00001

1 1 1 1 4 1
8 1.00000 1.00000 1.00000 1.00000 8.9529 1.00001

1 1 1 1 3 1
9 1.00000 1.00000 1.00000 1.00000 7.0719 1.00000

1 1 1 1 3 1
10 1.00000 1.00000 1.00000 1.000000 3.7687 1.00000

1 1 1 1 2 1

(a) Value shown * Data Error Variance equals the Objective Function for the
Designed Monitoring Network

(b) Number of monitoring wells in network

(c) Record Length for Model Fit

The results of this optimization indicate that after two years of monthly sampling 
from 50 wells, the monitoring network could be reduced to four wells sampled 
monthly. After three years of the same 50 wells sampled monthly, the monitoring 
network could be reduced to a single well sampled monthly. Therefore, the 
monitoring network could be significantly reduced by using a physical model to 
explain the correlation of samples spatially and temporally. A spatial error 
correlation of 0.9 would be maintained between the sampled and non-sampled 
wells, with an uncertainty represented by the objective function value.

This uncertainty associated with the sampled and non-sampled wells can be 
illustrated graphically by plotting the prediction error variances calculated for use in 
the optimization. The error prediction variances for the physical model fit to two



82

years of monthly data from 50 wells associated with the objective function value of 
5.4830 in Table 8.8 are plotted and contoured on Figure 8.14a. The reduced 
prediction error variances based on the optimal monitoring network is plotted as 
Figure 8.14b.

a)

0 .0 0  4 0 .0 0  6 0 .0 0  1 20.00  16 0 .0 0  2 0 0 .0 0  2 4 0 .0 0  2 6 0 .0 0  3 2 0 .0 0  3 6 0 .0 0  4 0 0 .0 0

b)

0 .0 0  4 0 .0 0  6 0 .0 0  1 2 0 .0 0  1 6 0 .0 0  2 0 0 .0 0  2 4 0 .0 0  2 6 0 .0 0  3 2 0 .0 0  3 6 0 .0 0  4 0 0 .0 0

X ( F T )

Figure 8.14 Prediction Error Variance for Physical Model a)prediction b) with 
optimal sampling network
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An alternative means of representing the uncertainty in the system is by plotting the 
confidence bounds on a specified concentration of interest. These confidence 
bounds can be defined based on the prediction error variances as follows:

C* = E[C*] ± t,a / 2 ,n * l yVAR(C)/n

This surface is plotted for a concentration of 100 ppb (relative to a source 
concentration of 1000 ppb) in Figure 8.1 5 for the physical model fit to two years of 
monthly data from 50 wells with an error coefficient of variation equal to 5% and a 
5% (a= 0.05) significance level. Figure 8.15 is an alternative representation of 
Figure 8.14b. The shaded region on Figure 8.15 illustrates the 95% confidence 
limits on the 100 ppb concentration. The confidence bounds illustrated in Figure 
8.15 can be calculated for any concentration of interest and are informative in 
evaluating the confidence associated with a given model and a given monitoring 
network. If the uncertainty in the optimally designed monitoring system, as 
represented by either Figure 8.14b or Figure 8.15, is unacceptable to the 
groundwater quality monitoring manager, then the required minimum spatial 
correlation (CORRMIN) can be increased which will result in additional sampling and 
a reduction in the uncertainty interval for a given concentration of interest.

The example optimal monitoring networks described above were for a specified 
future monthly sampling frequency. Increasing the future sampling frequency does

0 4 0  8 0  120 160 2 0 0  2 4 0  2 80 3 2 0  3 60 4 00 440

X ( F T )

Figure 8.15 Predicted Concentration Estimates with Confidence Limits for
Physical Model Fit to Two Years of Monthly Data at 50 Wells with 
Optimal Sampling
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not necessarily decrease the sampling density or the value of the objective function, 
as summarized in Table 8.9. The number of monitoring wells required to be 
sampled does not change with an increase in the future sampling frequency and 
therefore the cost would be reduced by sampling less frequently. This is due to the 
functions for the correlation and variance of the prediction error not being 
monotonically decreasing and increasing functions, respectively. For this case, an 
additional alterative sampling constraint may be prudent to be imposed regarding 
the expected maximum change in expected behavior of the variable of interest or 
some other constraint which may constrain the frequency or density of sampling.

Table 8.9 Objective Function'*' and Number of Monitoring Wells for Physical
Model Fit to Monthly Data from 50 Wells;
Minimum Spatial Error Prediction Correlation = 0.9

FUTURE SAMPLING FREQUENCY (IN DAYS)
YRsibi 15 30 45 90 120 1$0
2 5.6484 5.5690 7.1802 6.9559 6.7993 6.5465 5.7277

3 3 3 3 3 3 3
3 2.4927 2.4802 2.4682 2.4566 2.4344 2.4135 2.3750

2 2 2 2 2 2 2
4 1.0041 1.0039 1.0038 1.0037 1.0025 1.0002 1.0001

c
1 1 1 1 1 1

0
1

5 1.000041.00004 1.0004 1.0003 1.0003 1.00003 1.0000 
o

1 1 1 1 1 1
o

1
6 1.00001 1.00001 1.0001 1.00001 1.00001 1.00001 1.0000 

1
11 1 1 1 1 1

7 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.0000

1 1 1 1 1 1
u

1
8 1.000001.00000 1.00000 1.00000 1.00000 1.00000 1.0000 

A
1 1 1 1 1 1

V
1

9 1.000001.00000 1.00000 1.00000 1.00000 1.00000 1.0000 
A

1 1 1 1 1 1
\J

1
10 1.000001.00000 1.00000 1.00000 1.00000 1.00000 1,0000

A
1 1 1 1 1 1

u
1

(a) Value shown * Data Error Variance equals the Objective Function for the
Designed Monitoring Network

(b) Record Length for Model Fit
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These additional constraints can be easily incorporated in the branch and bound 
optimization technique used herein.

The effect of the choice of minimum spatial correlation is summarized in Table 8.10 
for existing monitoring networks of 50, 1 5, and 9 wells sampled monthly, with a 
future monthly sampling frequency specified. The value of the objective function 
increases with a decrease in the network density and with an increase in the 
minimum spatial correlation. The number of wells required to be sampled also 
increased with an increase in the minimum spatial correlation.

Clearly, the monitoring network optimization is highly dependent on the data used 
to fit the model. This can be seen by comparing the monitoring network 
optimization for three different monitoring networks each composed of 9 wells, as 
summarized in Table 8.11. Monitoring network A consists of 9 wells at X = 120, 
240, and 360 meters and at Y = -80, 0, and 80 meters. Monitoring network B 
consists of 9 wells at X = 80, 240, and 400 meters and at Y = -80, 0 and 80 
meters. Monitoring network C consists of 9 wells at X = 80, 120, and 240 meters 
and at Y = -40, 0 and 40 meters. The objective function value generally decreases 
with a more equally spaced existing monitoring network. The 
prediction error variances predicted by these three monitoring networks are plotted 
on Figure 8.16. The reduction in these prediction error variance surfaces, based on 
the optimal monitoring networks, are illustrated in Figure 8.17. Due to the low 
minimum achievable spatial correlation, the prediction error variance surface is 
affected relatively little by the optimal monitoring network.

In addition to being sensitive to the data used to fit the model, the monitoring 
network optimization is also sensitive to the potential wells to be included in the 
optimal monitoring network. Therefore, additional well locations were considered 
for the optimal future monitoring network based on the physical model fit to one 
and two years of data. All wells within the predicted extent of the groundwater 
plume (defined as 5 ppb relative to a source concentration of 1000 ppb) were 
considered for the future monitoring network. This introduced potentially twenty 
new monitoring wells into the monitoring network design. The spacing of any new 
wells considered was consistent with the existing network used to define the 
plume.

Optimal monitoring networks were determined for a maximum spatial correlation of 
0.8 and a specified future monthly sampling frequency. The results for these 
optimizations are summarized in Table 8.12. The objective function values and 
number of wells required generally increase with a reduction in the sampling 
frequency or record length. The prediction error variances for the wells are plotted 
in Figure 8.18a for the physical model fit to one year of monthly data. Figure 8.18a 
illustrates the predicted error variance without monitoring and Figure 8.18b 
illustrates the reduction of the prediction error variance with the specified optimal 
monitoring network.

An alternative representation of this uncertainty is represented by Figure 8.19. 
Figure 8.19 illustrates the 95% upper and lower confidence limits on the 100 ppb 
concentration contour with and without the sampling from the optimal monitoring
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Table 8.10 Objective Function'"’ and Number of Monitoring Wells for Physical 
Model Fit to Monthly Data from 50 Wells;
Future Monitoring Network Sampled Monthly

SPECIFIED
M I N I M U M  S P A T IA L  C O R R E L A T IO N  OF W E L L S  

N U M B E R  OF W E L L S  IN E X IS T IN G  M O N IT O R IN G  N E T W O R K
Y R S "” 0 . 9 0 0 . 9 5 0 . 9 9

5 0 1 5 9 1 5 9 1 5 9
2 5 . 5 6 9 ' " ’ 2 0 . 6 3 4 IS " ’ 1 3 .5 1 IS IS IS IS IS

3id’ 3 9
C

3 2 . 4 8 0 2 IS IS
D

4 . 0 7 2 IS 3 . 3 0 7 IS IS IS
2 3 6

3 2
4 1 . 0 0 3 9 1 . 1 5 6 0 2 . 6 0 6 7 1 .0 4 5 2 . 3 1 0 2 . 6 1 3 IS IS IS

1 1 2 5 8 0
1 2 2

5 1 . 0 0 0 4 1 . 0 0 5 5 1 . 1 0 7 7 1 . 0 0 0 1 .0 5 1 1 . 0 8 0 1 . 0 1 0 3 . 1 9 0  IS
1 1 1 0 8 1 7 2

1 1 1 1 3
6 1 . 0 0 0 0 1 . 0 0 0 3 1 . 0 0 0 6 1 . 0 0 0 1 . 0 0 0 1 .0 0 5 1 . 0 0 0  2 . 0 3 0  2 . 0 8 4

1 1 1 0 3 7 0 4 0
1 1 1 1 2 2

7 1 . 0 0 0 0 1 .0 0 0 1 1 . 0 0 0 2 1 .0 0 0 1 .0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 4 1 . 0 1 0

1 1 1 0 1 9 0 2 8
1 1 1 1 1 1

8 1 . 0 0 0 0 1 . 0 0 0 0 1 .0 0 0 1 1 .0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0

1 1 1 0 0 0 0 0 1

1 1 1 1 1 1

9 1 . 0 0 0 0 1 . 0 0 0 0 1 . 0 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0

1 1 1 0 0 0 0 0 0
1 1 1 1 1 1

1 0 1 . 0 0 0 0 1 . 0 0 0 0 1 . 0 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0

1 1 1 0 0 0 0 0 0
1 1 1 1 1 1

(a) Value shown * Data Error Variance equals the Objective Function for the 
Designed Monitoring Network

(b) Record Length for Model Fit

(c) IS = Impossible Solution; minimal spatial correlation cannot be achieved

(d) Number of Monitoring Wells in Network
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Table 8.11 Objective Function" ' and Number of Monitoring Wells for Physical
Model Fit to Three Different 9-Well Monitoring Networks Sampled
Monthly;
Minimum Spatial Prediction Error Correlation = 0.8

EXISTING MONITORING NETWORK
YEARS Ibi MN A'" MN B'“’ MN C"
2 1.64347 1 1.5565 IS"’

1 5
3 1.68760 2.64725 5.95210

1 2 3
4 1.24089 1.17654 1.35845

1 1 1
5 1.00064 1.01212 1.00166

1 1 1
6 1.00024 1.00342 1.00058

1 1 1
7 1.00009 1.00112 1.00022

1 1 1
8 1.00001 1.00037 1.00005

1 1 1
9 1.00001 1.00010 1.00002

1 1 1
10 1.00000 1.00004 1.00001

1 1 1

(a) Value shown * Data Error Variance equals the Objective Function for the
Designed Monitoring Network

(b) Record Length for Model Fit

(c) Monitoring Network A Well Locations: X (51 120,240,360 meters; Y @ -
80,0,80 meters

(d) Monitoring Network B Well Locations: X (g) 80,240,400 meters; Y @ -
80,0,80 meters

(e) Monitoring Network C Well Locations: X @ 80,120,240 meters; Y @ -
40,0,40 meters

(f) IS = Impossible Solution: minimal spatial correlation cannot be achieved

network (relative to a source concentration of 1000) for this same one-year 
monitoring period. This graphical means of representing the uncertainty in the 
groundwater quality system is extremely informative to the groundwater manager. 
As discussed earlier, this represent the allowed quantified uncertainty (expressed as
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a)

b)
0 .0 0  4 0 .0 0  8 0 .0 0  1 2 0 .0 0  1 6 0 .0 0  2 0 0 .0 0  2 4 0 .0 0  2 8 0 .0 0  3 2 0 .0 0  3 6 0 .0 0  4 0 0 .0 0

C)

Figure 8.16 Prediction Error Variances for Physical Model Fit to Three 9-Well
Monitoring Networks: a) Monitoring Network A: X = 120,240,360 
meters; Y =-80,0,80 meters; b) Monitoring Network B:
X = 80,240,400 meters; Y =-80,0,80 meters; c) Monitoring
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a)
0 .0 0  4 0 .0 0  8 0 .0 0  1 2 0 .0 0  1 6 0 .0 0  2 0 0 .0 0  2 4 0 .0 0  2 8 0 .0 0  3 2 0 .0 0  3 6 0 .0 0  4 0 0 .0 0

b)
0 .0 0  4 0 .0 0  8 0 .0 0  1 2 0 .0 0  1 6 0 .0 0  2 0 0 .0 0  2 4 0 .0 0  2 8 0 .0 0  3 2 0 .0 0  3 6 0 .0 0  4 0 0 .0 0

8 0 .0 0  ----------------T ---------------- 1----------------- 1-----------------1 I I ^ ^ ^ -----------------1----------— ^  8 0 .0 0

4 0 .0 0  —

0.00  -

- 40.00  —

-8 0 .0 0

4 0 .0 0

0.00

-4 0 .0 0

C ) 0 .0 0  4 0 .0 0  8 0 .0 0  1 2 0 .0 0  1 6 0 .0 0  2 0 0 .0 0  2 4 0 .0 0  2 8 0 .0 0  3 2 0 .0 0  3 6 0 .0 0  4 0 0 .0 0
-8 0 .0 0

0 .0 0  4 0 .0 0  8 0 .0 0  1 2 0 .0 0  1 6 0 .0 0  2 0 0 .0 0  2 4 0 .0 0  2 8 0 .0 0  3 2 0 .0 0  3 6 0 .0 0  4 0 0 .0 0

Figure 8.17 Reduced Prediction Error Variance for Physical Model Fit to Three 
9-Well Monitoring Networks with Optimal Sampling: a) Monitoring 
Network A: X = 1 20,240,360 meters; Y =-80,0,80 meters; b) 
Monitoring Network B: X = 80,240,400 meters; Y =-80,0,80 
meters; c) Monitoring Network C: X = 80,120,240 meters; Y =- 
40,0,40 meters
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Table 8.12 Qbjective Function'*' for Physical Model Fit to Monthly Data from 
50 Wells; Increased Size of Potential Future Monthly Frequency 
Monitoring Network; Minimum Spatial Error Prediction Correlation
= 0.8;

SAMPLING RECORD LENGTH
FREQUENCY 1 YEAR 2 YEARS
Biweekly 20.154"” 1.03889

4  (cl 1
Monthly 19.156 5.606

3 3
Bimonthly 31.923 5.583

3 3
Quarterly 65.379 10.043

4 4
Triannual 203.848 234.690

7 5
Biannual 58.169 12.415

5 4

(a) Sampling Frequency for Model Fit

(b) Value shown * Data Error Variance equals the Qbjective Function for the
Designed Monitoring Network

(c) Number of monitoring wells in network

a minimum spatial correlation) used in the branch and bound optimization of the 
groundwater quality monitoring network.

8.2.2 Optimization Based on a Linear Trend Surface Model.

In addition to evaluation of the optimal monitoring networks for the correct physical 
model, optimal monitoring networks for the incorrect trend surface models and 
single-site polynomial models were evaluated. The optimization of a monitoring 
network based on the linear trend surface model was selected as an example of the 
optimization for an incorrect model. The detailed results for the monitoring network 
optimization for the quadratic and cubic trend surface models and for the single-site 
polynomial models are discussed in Appendix G.

For an existing monitoring network of 50 wells, with a required minimum spatial 
correlation of 0.9, the resulting optimal monitoring networks for the linear trend 
surface model fit to different sampling frequency and record length data subsets are 
reported in Table 8.13. Table 8.14 summarizes the optimal monitoring networks 
for the linear trend surface model fit to monthly data from networks consisting of
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a)

160
0  40  80  120 160 2 0 0  2 40 2 8 0  320 360 400 4 40 4 80 5 2 0  5 6 0

I________I (________L

40 8 0  120 160 2 0 0  2 4 0  2 8 0  3 2 0  3 60 400 4 4 0  480 5 2 0  560

X ( F T )

b)

Figure 8.18 Prediction Error Variance for Increased Potential Monitoring
Network Based on Physical Model Fit to One Year of Monthly Data 
From 50 Wells: a) prediction; b) with optimal monitoring network
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Table 8.13 Objective Function'“’ for Linear Trend Surface Model Fit to 
Monitoring Network of 50 Wells;
Minimum Spatial Error Prediction Correlation = 0.9; 
Future Monthly Sampling Frequency

EXISTING MONITORING NETWORK SAMPLED
YEARSI'“” BIWEEK MONTHLY BIMONTH QUARTER TRIANN BIANN

2 1.0070 1.0134 1.0242 1.0325 1.0480 1.0507
3 1.0045 1.0089 1.0165 1.0233 1.0352 1.0387
4 1.0033 1.0066 1.0125 1.0181 1.0278 1.0312
5 1.0026 1.0052 1.0100 1.0145 1.0230 1.0257
6 1.0021 1.0043 1.0083 1.0146 1.0196 1.0219
7 1.0018 1.0037 1.0071 1.0122 1.0170 1.0192
8 1.0016 1.0032 1.0062 1.0105 1.0151 1.0171
9 1.0014 1.0029 1.0055 1.0093 1.0135 1.0153
10 1.0013 1.0026 1.0050 1.0083 1.0123 1.0139

(a)

(b)

Value shown * Data Error Variance equals the Objective Function 
Designed Monitoring Network

Record Length for Model Fit

Table 8.14 Objective Function'*' for Linear Trend Surface Model Fit to Existing 
Monitoring Network Sampled Monthly;
Minimum Spatial Prediction Error Correlation = 0.9;
Future Monthly Sampling Frequency

EXISTING MONITORING NETWORK
YEARS"=’ 50 WELLS 15 WELLS 9 WELLS
2 1.0134 1.0480 1.0912
3 1.0089 1.0318 1.0605
4 1.0066 1.0232 1.0451
5 1.0052 1.0188 1.0358
6 1.0043 1.0156 1.0297
7 1.0037 1.0133 1.0255
8 1.0032 1.0116 1.0222
9 1.0029 1.0103 1.0197
10 1.0026 1.0093 1.0177

(a) Value shown * Data Error Variance equals the Objective Function for the 
Designed Monitoring Network

(b) Record Length for Model Fit
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50, 15, and 9 wells. Only one monitoring well was required for the linear trend 
surface model fit to all combinations of record lengths, sampling frequencies, and 
sampling densities considered with a minimum spatial correlation of 0.9. As the 
sampling frequency, sampling density or record length increased, the objective 
function value consistently decreased. This is unlike the objective function value 
for the correct model and is due to the prediction error variance function being a 
monotonie increasing function and the correlation function being a monotonie 
decreasing function for the polynomial models. In addition, the objective function 
value increased with an increase in the specified future sampling frequency, as 
summarized in Table 8.15. It is important to note however, that this decrease in 
the objective function value with an increase in sample size for a specific model 
does not mean that the model structure is necessarily correct, but that the 
confidence in the model parameters has increased.

The prediction error variance for the linear trend surface model fit to ten years of 
monthly monitoring data from 50 wells is plotted as Figure 8.20a. The reduction of 
the prediction error variance surface for the optimal sampled network at X = 40,
Y = 0 meters is illustrated by Figure 8.20b. Comparison of these two figures 
illustrates the relatively small reduction in error variance immediately surrounding 
the sampling well. At a distance from the well, no observable decrease in the error 
prediction variance is apparent.

An alternative representation of this uncertainty in the system is illustrated by 
Figures 8.21a and 8.21b which show the upper and lower 95% confidence limit 
concentrations for this same monitoring network. These figures illustrate the low 
confidence associated with the linear trend surface model, such that the model is 
essentially uniform spatially with large relative error bounds on the predicted 
concentration.

8.2.3 Comparison of Optimal Monitoring Networks

A comparison of the monitoring network optimization for the physical and 
statistical models considered in the simulation study was made based on an 
analysis of an existing monitoring network of 50 wells sampled monthly. The 
objective function value for the optimal monitoring networks are summarized in 
Table 8.16.

Using these objective function values and the model error variances calculated for 
the models in Section 8.1, Table 8.17 shows which model provides the minimal 
objective function value, assuming different data error variances. Clearly, as the 
data set increases in size, the validity of the correct model becomes more apparent, 
and will result in significantly less prediction uncertainty.

This behavior is also exhibited in the maximum prediction error variance at a single 
location. Table 8.18 summarizes the maximum error variance at a single location 
for the four multi-site models considered. Table 8.19 summarizes which model 
provides the minimum prediction error variance at a single location under the 
conditions of different data error variances.
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Table 8.15 Objective Function"' for Linear Trend Surface Model Associated 
with Different Future Sampling Frequencies;
Existing Monitoring Network of 50 Wells Sampled Monthly; 
Minimum Spatial Error Prediction Correlation = 0.9

FUTURE SAMPLING FREQUENCY (IN DAYS)

YR?'" 15 30 4^ 60 90 120 180

‘2 1.0131 1.0134 1.0138 1.0141 1.0148 1.0156 1.0171
3 1.0087 1.0089 1.0090 1.0092 1.0095 1.0098 1.0105
4 1.0065 1.0066 1.0067 1.0068 1.0069 1.0071 1.0075
5 1.0052 1.0052 1.0053 1.0053 1.0054 1.0056 1.0056
6 1.0043 1.0043 1.0044 1.0044 1.0045 1.0047 1.0047
7 1.0037 1.0037 1.0037 1.0037 1.0038 1.0039 1.0040
8 1.0032 1.0032 1.0033 1.0033 1.0033 1.0034 1.0034
9 1.0029 1.0029 1.0029 1.0029 1.0029 1.0030 1.0030
10 1.0026 1.0026 1.0026 1.0026 1.0026 1.0027 1.0027

(a) Value shown * Data Error Variance equals the Objective Function
Designed Monitoring Network

Table 8.16 Comparison of Prediction Error Variance'*' for Alternative Multi-site
Models; Existing Network of 50 Wells Sampled Monthly; Future
Monthly Sampling Frequency; Minimum Spatial Error Prediction
Correlation = 0.9

YEAR LINEAR QUADRATIC CUBIC PHYSICAL
TREND TREND TREND

2 1.0134 1.3485 26.351 5.5690
3 1.0089 1.2149 18.571 2.4802
4 1.0066 1.1522 14.128 1.0039
5 1.0052 1.1 184 11.462 1.0004
6 1.0043 1.0965 9.7117 1.0001
7 1.0037 1.0819 8.0107 1.00000
8 1.0032 1.0709 7.8162 1.00000
9 1.0029 1.0624 3.7018 1.00000
10 1.0026 1.0557 3.4077 1.00000

(a) Value shown * (Model Error Variance + Data Error Variance) equals the
sum of prediction variance for the designed monitoring network

(b) Record Length for Model Fit
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a)

b)

X ( F T )

X ( F T )

Figure 8.21 Upper (a) and Lower (b) 95% Confidence Bounds on Predicted
Concentrations for Linear Trend Surface Model Fit to 10 Years of 
Monthly Data
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Table 8.17 Data Error Variance over which Model Provides "Best" Predictor

YEAR *’ LINEAR QUADRATIC CUBIC PHYSICAL
TREND TREND TREND

2 > .0116 < .0016 & 
> .0029

None < .0029

3 > .0356 < .0356 & 
> .0029

None < .0055

4 None None None All
5 None None None All
6 None None None All
7 None None None All
8 None None None All
9 None None None All
10 None None None All

(a) Record Length for Model Fit

These differences in the monitoring network optimization for the correct physical 
model versus incorrect linear trend surface model are illustrated by a comparison of 
the predicted plume, with confidence limits defined based on the prediction error 
variance for the model fit to two years of data with an error coefficient of variation 
equal to .05. Figures 8.22a and 8.22b illustrate the upper and lower 95% 
confidence concentration contour plots for the linear trend surface model. These

Table 8.18 Comparison of Maximum Single Prediction Error Variance'*' at a
Well for Existing and Future Monthly Sampling Frequency; 
Minimum Spatial Error Prediction Correlation = 0.9

YEAR LINEAR QUADRATIC CUBIC PHYSICAL
TREND TREND TREND

2 1.0230 1.8312 30.679 11.528
3 1.0165 1.5511 20.960 3.0257
4 1.0123 1.4080 15.769 1.2698
5 1.0098 1.3230 12.660 1.0566
6 1.0082 1.2670 10.606 1.0157
7 1.0070 1.2280 9.1921 1.0060
8 1.0061 1.1988 8.1234 1.0019
9 1.0054 1.7614 7.2961 1.0007
10 1.0049 1.1580 6.6373 1.0003

(a) Value shown * (model Error Variance + Data Error Variance) equals the
sum of prediction variance for the designed monitoring network

(b) Record Length for Model Fit
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Table 8.19 Data Error Variance over which Model Provides "Best" Minimum
Single Well Location Error Prediction Variance

YEAR'*' LINEAR QUADRATIC CUBIC PHYSICAL
TREND TREND TREND

2 > .00157 None None < .00157
3 > .00961 <.00961 & None < .00798

>.00798
4 > .05642 None None < .05642
5 > .2772 None None < .2772
6 > 1.5343 None None <1.5343
7 None None None All
8 None None None All
9 None None None All
10 None None None All

(a) Record Length for Model Fit

figures can be compared to Figure 8.15 for the physical model fit to the same data 
set. Clearly, the incorrect linear trend surface model has a larger uncertainty 
associated with it then does the physical model and results in a monitoring network 
with a lower confidence level.

Regardless of the model selected to simulate the behavior of the data, the 
optimization technique explicitly incorporates information on the model structure 
and uncertainty in the model into the monitoring network design process. The 
optimization requires that the groundwater quality manager specify a minimum 
desired spatial correlation. The uncertainty in predicted groundwater quality can be 
plotted for the resulting optimal network. This uncertainty surface can be used by 
the manager to adjust the required minimum spatial correlation to achieve the 
desired confidence in the monitoring as required by the information goals.

Clearly, as available data increases, the uncertainty in the model reduces, as does 
the data needs in the monitoring network. Therefore, confidence in the model 
structure can replace monitoring of wells. The uncertainties associated with the 
model can be quantified and incorporated in the monitoring network design process 
by using the techniques described herein. If the uncertainty associated with a 
parameter variance matrix is too high, as represented by a large objective function 
value or a low minimum spatial error correlation, then the optimal monitoring 
network should be designed to minimize Vj rather than the prediction error variance. 
This can be done by sampling where the prediction error variance is a maximum.
The same branch and bound technique can be used where

MAX Z, = ^  VAR(I) 
i = 1

VL(I)
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Figure 8.22 Predicted Upper (a) and Lower (b) 95% Confidence Bounds on 
Concentration Based on Linear Trend Surface Model Fit to Two 
Years of Monthly Data from 50 Wells
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Subject to.

CORR(l,J)  ̂ CORRMIN V I andJ where VL(I) = 1 and VL(J) = 1

Either objective goal can be met by using a form of the prediction error variance and 
some form of spatial correlation in the branch and bound optimization technique. In 
some cases, a combination of these goals may be appropriate.



9. MONITORING NETWORK DESIGN PROTOCOL

The design of a groundwater quality monitoring network includes the definition of 
well locations, sampling frequency, and the designation of analytes. This study has 
focused on the determination of the first two monitoring network design 
components. The determination of these two components is dependent on the 
information objectives of the monitoring network relative to the groundwater quality 
data behavior. The information objectives of a groundwater quality monitoring 
network are generally to either increase the understanding of the system or to 
maintain a specified level of understanding in the system. This "understanding" can 
be expressed as a confidence in the existing system and in future conditions of the 
system.

The simulation study discussed in Chapter 8 reviewed statistical methods used to 
assess the applicability of a model to both describe and predict groundwater quality. 
In addition, the structure of the selected models as well as uncertainty in the 
models were incorporated explicitly into the design of monitoring networks. Based 
on this simulation study, the five principal steps recommended for a monitoring 
network design protocol are;

1) select model(s) and divide record into subsets based on record length, 
sampling density, and sampling frequency,

2) fit model to data subsets,
3) calculate and evaluate model goodness-of-fit,
4) calculate and evaluate model predictions, and
5) design optimal monitoring network.

The interactive nature of these steps is outlined in Figure 9.1. Each of the steps is 
described in more detail below.

9.1 Step 1 - Select Model.

A model of a groundwater system is selected based on the review of available 
information. The ability to select an appropriate model structure is dependent on 
the amount of data available. The simplest structure applicable should be applied 
first to the data. Subsequent refinements to the three-dimensionality of the model 
structure and to the non-homogeneity of the model parameters should be made as 
confidence in the model increases or as the data needs from the monitoring network 
system become more complex. Generally, a class or group of related models may 
be selected which may be appropriate for further consideration.

102



S T E P

( 1 )

R E VI E W A V AI L A B L E I N F O R M A TI O N

I D E N TI F Y A L T E R N A TI V E M O D E L S

DI VI D E D A T A R E C O R D I N T O S U B S E T S

S E L E C T M O D E L

(2 ) FI T M O D E L T O D A T A S U B S E T S

( 3)

( 4)

(5 )

[ C A L C U L A T E P A R A M E T E R E S TI M A T E V A RI A N C E

............T ...........
D O P A R A M E T E R E S TI M A T E S C O N V E R G E T O W A R D S 

A SI N G L E V A L U E W r T H A N I N C R E A S E I N S A M P L E SI Z E ?

■" T"'
Y E S

I
C A L C U L A T E F- T E S T S T A TI S TI C S

II S F- T E S T SI G NI FI C A N T F O R D A T A S U B S E T S ?

..................... I............................
Y E S

.......................... J.
I D O F- TE S T S T A TI S TI C S D E C R E A S E WI T H L E N G T H 

i  O F R E C O R D A N D S A M P U N G F R E Q U E N C Y ?

..................... 1........................
Y E S

,_ _ _ _ _ _ _ _ _ _ _ _̂ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ,
[ c a l c u l a t e  C O R R E L A TI O N O F R E SI D U A L S j

il s C O R R E L A T O N s i g n i f i c a n t ’ ^
"..................... r

N O

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I D O E S C O R R E L A TI O N D E C R E A S E WI T H I N C R E A S E I N 

: L E N G T H O F R E C O R D A N D S A M P U N G F R E Q U E N C Y ?

....................... 1............................
Y E S

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ l _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

[ c a l c u l a t e  p r e d i c t i o n  BI A S a n d  P R E DI C TI O N BI A S V A RI A N C E

[ D O E S BI A S C O N V E R G E T O W A R D S Z E R O WI T H  I 

A N I N C R E A S E I N S A M P L E SI Z E ?  T

.................... [.......................'
Y E S

,_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I
I C A L C U L A T E S K E W O F R E SI D U A L S |

. . . .J. . . . . . . . . . . .
I I S R E SI D U A L S K E W SI G NI FI C A N T

.................. r...................
N O

_ _ _ _ _ _ _ _ _I_ _ _ _ _ _ _ _ _ _ _ _
O P TI MI Z E M O NI T O RI N G N E T W O R K

t

i

- Y E S

- Y E S

Fi g ur e 9. 1 M o nit ori n g N et w or k D e si g n Pr ot o c ol

1 0 3



In evaluating the applicability of a model, it is important to evaluate the fit of the 
model to a number of data subsets. Consistency in the statistics' behavior is more 
important than the significance of a single statistic. This was shown in the 
simulation study (Chapter 8) where a model could be significant based on the 
results of the model applicability analysis for the model fit t o a single data set, but 
be incorrect. However, for these incorrect models, the statistical tests did not 
consistently become more significant as the record length, sampling frequency, or 
sampling density increased. Therefore, the ability to identify that a model is 
incorrect is based on the behavior of the statistic as the sampling frequency, 
sampling density, and record length increase, rather than the significance of the 
numeric value of the statistic itself. Therefore, the first step in designing a 
monitoring network includes the subdivision of the existing data into multiple 
subsets based on sampling frequency, sampling density, and record length.

9.2 Step 2 - Fit Model to Data Subsets.

The model parameters for a selected model structure can be estimated using a 
variety of techniques as described in Chapter 4. In this study, a least squares 
regression was used to fit the models to the data. As shown in Chapter 4, this 
least squares regression parameter estimation technique provides efficient, 
consistent, and sufficient parameter estimates for the correct model when the 
errors are zero mean and additive. The parameter estimates can also be made to be 
efficient, sufficient and consistent by using a weighted least square regression 
when the error is data-dependent (non-additive). However, the relationship of the 
dependence must be known so as to properly weight the data.

9.3 Step 3 - Evaluate Model Goodness-of-fit.

The significance of the model needs to be evaluated by goodness-of-fit tests. Three 
classes of model applicability tests are recommended: analysis of variance, model 
parameter behavior, and residual behavior. The F-test statistic, used to evaluate the 
analysis of variance, should be significant and should increase with an increase in 
sampling frequency or number of wells. The parameter estimates should converge 
towards the "true" parameter values within specified confidence limits as defined 
by the parameter variance. Lastly, the residuals should not be significantly 
correlated and should converge towards zero as the data set increases. If these 
conditions are not met, then the selection of model structure should be reevaluated. 
If any of the statistical tests fail the criteria for model goodness-of-fit, then the 
behavior of the failed statistical tests should be carefully evaluated in order to 
identify potential alternative model structures.

9.4 Step 4 - Calculate and Evaluate Prediction Statistics.

As for the goodness-of-fit tests, the important aspect of the prediction test is the 
behavior of the prediction bias. Specifically, the prediction bias should converge 
towards zero, the prediction bias variance should decrease as the data set 
increases, and the prediction bias should not be significant. If any of these 
behaviors are not observed, then the model structure or the assumed error
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distribution should be reevaluated. As for the goodness-of-fit tests, the non- 
systematic behavior of the prediction bias can be used to help identify other more 
appropriate model structures for consideration.

9.5 Step 5 - Monitoring Network Design.

If the model meets both the goodness-of-fit and prediction tests as described 
above, then the data is consistent with the hypothesized model structure and a 
monitoring network can be designed based on the model structure, model 
parameter estimates, parameter uncertainty, and data error uncertainty. The 
information goal of the monitoring network will be to either increase or maintain the 
confidence in the understanding of the groundwater quality system. The certainty 
in the system can be quantified via the model prediction uncertainty. A monitoring 
network can then be designed to meet the required confidence in the groundwater 
quality system.

Prior to optimizing the model network, the skew of the residual should be 
evaluated. If the skew is significant, the behavior of the skew with an increase in 
data should be evaluated to aid in error distribution distinction. This error 
distribution can be incorporated in the optimization, or the model can be refitted to 
the data using a weighted least squares regression to account for the error 
distribution.

The tradeoff between optimization of an existing monitoring network and additional 
modeling or additional data collection is dependent on the required confidence in the 
model to meet the information goals of the monitoring network. If there is 
insufficient certainty in the model as described by either the model error or model 
parameter variance matrix, then a system should be designed to increase the model 
certainty. The limitations of the optimization based on the certainty of the model 
can be realized by evaluating the maximum spatial correlation obtainable for a given 
data set as well as evaluating the prediction error variance function, as described in 
Chapter 8. For instance, a desired minimum spatial correlation may not be realized 
with the existing monitoring network. The branch and bound technique can be 
used to identify additional sampling locations and sampling frequencies to meet a 
desired spatial correlation of errors, or samples.

If the certainty in the model is sufficient to meet the specified information 
objectives, the branch and bound optimization technique can be used to design a 
system which maintains a specified confidence level in the model. Specifically, the 
optimal monitoring networks for different future sampling frequencies can be 
compared and evaluated relative to the prediction error variance surface predicted.

The design of a monitoring network is not a static system, but must always be 
reevaluated for adequacy as new data is collected. The frequency of these 
reevaluations should be considered when designing the monitoring network so as 
to optimize the network for that period of time given the information objective(s) of 
the system.
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10. CASE STUDIES

The monitoring network design protocol, developed based on the results of the 
simulation study, as summarized in Chapter 9, was applied to groundwater quality 
data collected at the IBM facility in East Fishkill, New York. The purpose of this 
case study evaluation was not to necessarily identify the best model for the data, 
but rather to test the general applicability of the monitoring network design 
procedures developed.

IBM's facility in East Fishkill, New York manufactures semiconductors. The facility 
employees over 10,000 people and occupies 750 acres. All the process and 
potable water required on site is obtained from groundwater underlying the site. To 
meet the corporate environmental policy to "...meet or exceed all environmental 
regulations", a site-wide investigation of groundwater was initiated in 1978. This 
investigation identified three principal areas on the site with groundwater quality 
concerns, identified as Areas A, B, and C, on Figure 10.1. In all three areas, the

Figure 10.1 IBM East Fishkill Facility Site Location
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most prevalent of the chlorinated hydrocarbons detected in groundwater is 
perchloroethylene (PCE), with levels ranging from non-detectable to 10 mg/l.

The discovery of chemicals of concern in groundwater instigated a groundwater 
quality monitoring program in 1979 which included periodic groundwater sampling 
and additional hydrogeologic investigations. The investigation of the distribution 
and movement of the chlorinated hydrocarbons in the subsurface at the East Fishkill 
facility has resulted in a groundwater database consisting of ovpr 470 well points. 
Currently, approximately 100 of those well points are sampled on a routine basis for 
water quality.

Two areas, designated as Areas A and C, were selected for application of the 
monitoring network design protocol at the IBM East Fishkill facility. As of January 
1988, eighty-three 183) groundwater wells had been installed in Area A and twenty- 
seven (27) wells had been installed in Area C. These wells have been sampled for 
periods ranging from one to nine years, with frequencies ranging from 
approximately biweekly to biannual. The constituent Perchloroethylene (PCE) was 
selected for analysis since this chemical is the most prevalent at the site.

The model applicability analyses and monitoring network optimization for the PCE 
groundwater quality data are discussed below for Areas A and C on the IBM East 
Fishkill facility. The evaluation is consistent with the protocol summarized in 
Chapter 9, and follows the following five steps;

1) Select Model(s) and Divide Data Record into Subsets
2) Fit Model(s) to Data Subsets
3) Calculate and Evaluate Model Goodness-of-fit
4) Calculate and Evaluate Model Predictions
5) Design Optimal Monitoring Network

The physical and statistical models discussed in the simulation study were selected 
as candidate models for describing the groundwater quality data collected at the 
IBM facility. The models were fit to data subsets consisting of record lengths 
ranging from one (1980) to nine (1980-1988 inclusive) years of data, with sampling 
frequencies consisting of all the available data as well as reduced frequencies of 
bimonthly, quarterly, triannual and biannual. All wells available for a specific record 
length were included in the data subsets. No vertical segregation of the data was 
performed.

It is recognized that the subsurface is characterized by two primary geologic 
units: the fractured bedrock and the overburden. However, rather than dividing 
the data vertically into these two zones, the models were applied to the data 
assuming a vertically homogeneous environment. The purpose of this case 
study evaluation was to evaluate the protocol rather than to identify the best 
model for the data used.
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The statistical models were fit to the data using linear least-squares regressions. 
Two Fortran Computer codes, FDSWT and AWT, were written to calculate the best- 
fit parameter values and goodness-of-fit and predictive test values for the single-site 
polynomial and trend surface models, respectively. These codes are included in 
Appendix D. For a highly variable data set, convergence is often difficult for a non-
linear model. Therefore, limitations on the ranges of the parameter values were 
imposed on the physical model parameter values based on additional site 
information. The computer code FDP (also included in Appendix D) was written to 
fit the physical model to the data.

The models were considered for application in order of most simple (single-site 
polynomial) to most complex (physical). The results of the goodness-of-fit and 
predictive tests were used to select a candidate model. Monitoring networks were 
then designed for all models considered based on error prediction and optimization 
techniques, as developed in Chapters 6 and 7, and as applied to the simulated data 
in Chapter 8. The fortran computer code, PARV, was written to calculate the 
parameter variance matrix for the physical model, as included in Appendix E. A 
series of computer codes were written to perform the optimization procedure for 
the various models considered, as follows:

VARFSS - calculates the parameter variance matrix for the single-site 
polynomial models, field data

VARFTS - calculates the parameter variance matrix for the trend surface 
models, field data

VARFP - calculates the parameter variance matrix for the physical 
model, field data

OPTFSS - calculates the prediction error variance for the single-site 
polynomial models, field data

OPTFTS - calculates the prediction error variance for the trend surface 
models, field data

OPTFP - calculates the prediction error variance for the physical model, 
field data

BBFTS - performs the branch and bound optimization procedure for the 
trend surface models, field data

BBFP - performs the branch and bound optimization procedure for the
physical model, field data

These computer codes are included as Appendix F.

The results of the model goodness-of-fit tests (Protocol - Step 3) and model 
prediction tests (Protocol - Step 4) are discussed for each model applied to the data 
in Area A (Section 10.1.1) and Area C (Section 10.2.1). The design of optimal
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montioring networks (Protocol - Step 5) is then evaluated for each of the models in 
(Area A - Section 10.1.2 and Area C - Section 10.2.2).

10.1 Area A.

Area A is shown on Figure 10.1. The source of PCE in this area is believed to have 
been leaks and spills associated with solvent storage and handling.

10.1.1 Model Selection.

The selection of a model (from among those models used in the simulation study) 
for describing the PCE groundwater quality in Area A is based on the protocol 
outlined in Chapter 9. Specifically, goodness-of-fit is evaluated based on the results 
of F-test analyses, model parameter behavior, and residual behavior. Model 
prediction capabilities are then evaluated using prediction bias, prediction bias 
variance, and the associated t-test statistic.

10.1.1.1 Single-site Polynomial Models. The F-test results for the significant 
single-site polynomial models fit to the data from Area A are summarized in Table 
10.1. For the single-site polynomial models, approximately one-half of the wells in 
Area A did not exhibit any significant linear trend. Those wells that did exhibit 
significant polynomial trends tended to be significant at lower orders. The behavior 
of the estimated parameters was not evaluated for those wells which exhibit 
significant polynomial trends due to the relatively small data sizes.

The residuals were evaluated for the single-site polynomial models fit to all the data 
for each well. Because sampling frequencies were not consistent in time, temporal 
lag-one residual correlations were calculated assuming all samples were equally 
spaced. Table 10.2 summarizes the residual temporal correlations for the 
significant polynomial models significant based on the results of the F-test analysis. 
None of the residual correlations were significant at the a = 0.05 confidence level. 
In addition, as the record length increased, the residual correlations tended to 
decrease, which is consistent with the expected behavior for a correct model. 
However, since the residual correlations were also not significant for data from 
wells with an insignificant polynomial trend, the evaluation of the residual 
correlation did not aid in model discrimination.

The skewness of the residuals for the significant single-site polynomial models is 
summarized in Table 10.3. Those record lengths which exhibited a significant 
model fit based on the results of the F-test and residual behavior are highlighted. 
None of the residual skewness statistics were significant at the a =0.05 confidence 
level. In addition, there was no observable trend to the skewness of the residuals 
with an increase in record length. Therefore, based on the results of the simulation 
study, it is inferred that the error in the data is not non-normally distributed and the 
F-test statistics are valid.

Based on the results of the goodness-of-fit tests, the single-site polynomial model 
appears to be a relatively good model for some wells and record lengths as 
exhibited by a significant F-test value and insignificant residual correlation and 
residual skew.
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Table 10.1 F-test Results for Significant Single-site Polynomial Models Fit to
Data From Area A

Well Number 
No. of Samples

Years of 
Data'“

F Test Results
Period of Significance'“ 

Linear Quadratic'*’' Cubic"“
11 52 1980-87 1980-81 1981 1981
12 32 1980-85 1982 NS (d)
13 26 1980-86 1980-81 NS (d)
15 63 1980-87 1986 NS (d)
16 65 1980-88 1986-87 NS (d)
17 65 1980-88 1980,1985-87 198 1985
18 27 1980-87 1982-83 198 NS
19 49 1980-87 1980-83 1982-83 1982-8
20 51 1980-87 1986 NS (d)
21 51 1980-87 1980,83-84,87 NS (d)
22 62 1980-87 1980-82 1981-82 1982
39 10 1980-87 1985,1987 NS (d)
44 12 1980-83 1984-86 NS (d)
74 15 1982-84 1983 NS (d)
103 35 1981-87 1983-84,1986 1983,1986 f
105 17 1981-87 1983 NS (d)
106 19 1981-87 1982-83 NS (d)
109 19 1981-88 1983-87 1983,1985-87 (e)
117 27 1981-87 1985-87 NS (d)
118 24 1981-87 1985-87 NS (d)
126 9 1981-86 1985,1987 1985 1985
129 8 1982-87 1983 (e) (e)
130 10 1981-87 1983,1986-87 NS (e)
731 4 1987 1987 (e) (e)
734 4 1987 1987 (e) (e)
752 4 1987 1987 (e) (e)
822 7 1982-86 1983 NS NS
823 1 1 1982-87 1987 NS (d)
934 14 1984-87 1987 NS (d)
965 7 1985-87 1986-87 1986-87 1986-8'

NS

a) Record Length for period from 1980 through year noted
b) F-test addition over lower order polynomial
c) NS = not significant
d) lower order model not significant
e) insufficient data record length

110



Table 10.2 Residual Temporal Correlations'*' for Single-Site Polynomial Models 
Fit to Data from Area A

Linear Model

Well No. 1980 80-81
RECORD LENGTH (years) 

80-82 80-83 80-84 80-85
11 0.0364 0
12 0.0249 0
13 0.0107 -0
15 0.0059 -0
16 -0.0596 -0
17 -0.0044 0
18
19 -0.0370 -0
20 -0.0066 0
21 -0.0918 0
22 -0.0183 0 
39 -0.0724 -0 
44
74
103
105
106 
109
117
118 
126
129
130 
716 
731 
734 
752 
822 
823 
934 
965

.0402

.0249

.0163

.0040

.0056

.0329

.0370

.0101

.0350

.0079

.0724

0.0343 0.0253 
0.0258 0.0164 

-0.0130 -0.0003 
-0.0002 -0.0051 
- 0.0021  - 0.0002 
0.0290 0.0234 
-0.1493 -0.0583 
0.0303 0.0052 
0.0117 0.0093 
0.0287 0.0208

80-86 80-87 
0.0145 0.01420.0200 0.0151 

0.0056 0.0048 
-0.0000 -0.0002 -0.0006 
-0.0028 -0.0018 -0.0012 -0.0003 
0.0014 0.0014 0.0012 0.0011 
0.0164 0.0126 0.0107 0.0099 
-0.0064 -0.0043 -0.0033 -0.0029 
0.0182 0.0143 0.0140 0.0137 
0.0024 -0.0028 -0.0017 -0.0008 
0.0116 0.0105 0.0001 -0.0001 

0.0220 -0.0027 -0.0004 -0.0002 -0.0001 -0.0001 
-0.0668 -0.0520 -0.0520 -0.0271 -0.0271 -0.0015 
0.1690 -0.0984 -0.0634 -0.0634 -0.0634 -0.0354 
-0.0671 -0.0108
-0.0195 0.0081 0.0265 0.0323 0.0240 
-0.0460 -0.0264 -0.0327 -0.0203 -0.0166 
-0.0385 -0.0257 -0.0210 -0.0129 -0.0103 
-0.0917 -0.0128 0.0045 0.0079 0.0057 
0.0463 0.0160 0.0046 0.0046 0.0044 

-0.0438 -0.0015 0.0176 0.0158 0.0142 
-0.0040 -0.0408 0.0422 0.0105

-0.0456-0.0501 -0.0107 0.0055 
-0.1734 -0.0401 -0.0169 -0.0151 -0.0174

-0.0990 
-0.0930 
-0.1890 
- 0.2011

-0.1597 -0.0568 -0.0568 -0.0635 
-0.0593 -0.0842 -0.0399 -0.0321 -0.0243 

0.0261 0.0123 
-0.0082 -0.0279

continued
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fable 10.2, continued

Quadratic Model

iA/ell No. 1980 80-81

18
19 -0.0265 
22 -0.0353 

103

126
965

Pubic Model

RECORD LENGTH (years) 
80-82 80-83 80-84 80-85 80-86 80-87

11 0.03933 0.02527 0.02086 0.02529 0.02529 0.01992 0.01437 0.01416 
17 -0.0092 -0.0131 0.02925 0.02057 0.02057 0.01428 0.01063 0.00940

-0.0816 -0.0816 -0.0060 -0.0036 -0.0039 
•0.0265 0.02261 0.00505 0.00505 0.01019 0.00796 0.00781 
•0.01 54 0.00596 -0.0028 -0.0028 -0.001 6 -0.0003 -0.0005 

-0.1808 -0.04 -0.0400 0.00845 0.02713 0.02192 
-0.1831 -0.1831 -0.0205 0.02220 0.01712 

-0.1110 -0.1110 -0.0245 -0.0055 0.00320 
-0.0478 -0.0760

\NeW No. 1980 80-81
RECORD LENGTH (years) 

80-82 80-83 80-84 80-85 80-86 80-87
11 -0.0254 0.0209 0.02384 0.01763 0.01955 0.01500 0.01431 0.01416 
17 -0.0145 -0.0375 0.00462 0.01829 0.01416 0.01173 0.00920 0.00940 
19 -0.0237 -0.0237 -0.0295 0.00451 0.00621 0.00822 0.00775 0.00781 
22 -0.0359 -0.0169 -0.0148 -0.0088 -0.0022 -0.0007 -0.0006 -0.0005 

965 -0.1285 -0.0760

la) correlations significant at the a = 0.05 level are highlighted
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Table 10.3 Residual Skewness'*' for Single-site Polynomial Models Fit to Area
A Data

Linear Model

Well No 1980 80-81
RECORD LENGTH (years) 

80-82 80-83 80-84 80-85 80-86 80-87

17
18
19
20 
21

11 0.0093
12 0.0891
13 -0.0366
15 -0.0161
16 0.1962 

0.0797 
0.1172 
0.0648 
0.0844 
0.0189

22 -0.1150
39 -0.0965
44
74

103
105
106 
109
117
118 
126
129
130 
731 
734 
752 
822 
823 
934 
965

0.0290
0.0891
0.0175
0.1905
0.1746
0.0668
0.0648

0.0686
0.0657
0.0898
0.1726
0.1636
0.0704
0.1038

0.0675 
0.0132 
0.0962 
0.1034 
0.1170 
0.0457 
0.1398

0.0580
0.0185
0.0740
0.0816
0.0631
0.0287
0.1515
0.0156

0.0569 0.0556

0.0533
0.0719
0.0560
0.0258
0.1488
0.0154

0.0636
0.0530
0.0229
0.1480
0.0154

0.0652 
0.0203 
0.0925 
0.0933 
0.0796 
0.0353 
0.1783

0.0952 -0.0660-0.0005 0.0106
0.0932 0.0852 0.1044 0.0484 0.0343 0.0364 

-0.0198 -0.0190-0.0160 0.0015 0.0579 0.1247 0.1073 
0.0111 -0.0031 0.1698 0.1596 0.1400 0.1270 0.1207 
•0.0965 -0.1523 -0.1376 -0.1376 -0.0903 -0.0903 -0.0420 

0.0354 -0.0009 0.0309 0.0309 0.0309 0.1105 
0.1258 0.1091 0.1856
-0.1455 0.0449 -0.0073 0.0500 0.0189 0.0469 
-0.2454 -0.1402 0.1335 0.0847 0.0977 0.0891 
0.0368 0.0223 0.1698 0.1801 0.1852 0.1610 

-0.1283 0.0005 0.0187 0.0844 0.0981 
0.0087 0.0503 -0.0046 -0.0437 -0.0437 -0.0459 

0.2546 0.0851 0.0070 0.0069 0.0000
0.1580 0.1432 0.0194 0.0727
0.2353 -0.0084 0.0930 0.1646 0.1771

0.0145 -0.0058 0.0929 0.0660 0.0812 0.0477
-0.2311 
0.1535 

-0.1839
-0.0197 0.0786 0.0786 0.2571
-0.0747 0.0515 0.0930 0.0730 0.0681

-0.0564 -0.0288 
-0.1207 0.0591
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Well No 1980 80-81

Table 10.3, continued
Quadratic Model

RECORD LENGTH (years) 
80-82 80-83 80-84 80-85 80-86 80-87

11 0.0301 6 .01790 -0.0300 0.06482 0.06482 0.05824 0.05044 0.04927
17 0.08352 0.11558 0.06678 0.04333 0.04333 0.03254 0.02571 0.02144
18 0.06910 -0.1029 -0.1029 0.18603 0.15165 0.14522
19 0.07282 0.07282 -0.0706 0.00176 0.00176 -0.0135 -0.0035 -0.0058
22 -0.1206 0.00902 0.00592 0.16759 0.16759 0314647 0.12143 0.11255 
103 0.19309 -0.1998 -0.1998 -0.0082 -0.0129 0.03402
109 0.16629 0.16629 -0.1236 -0.0460 -0.0380

0.19989 0.19989 -0.0749 0.05864 -0.0174 
65 -0.0665 0.02671

'Cubic Model

Well No. 1980 80-81
RECORD LENGTH (years) 

80-82 80-83 80-84 80-85 80-86 80-87
11 0.06427 0.01261 -0.0022 0.02345 0.05541 0.05018 0.05237 0.04927 
17 -0.0308 0.0959 0.09990 0.06562 0.03005 0.02877 0.02173 0.02144 
19 0.06740 0.0674 -0.0237 -0.0025 -0.0043 -0.0041 -0.0051 -0.0058 

126 -0.1300 -0.1274 -0.0742 -0.0174 -0.0174
965 -0.0945 0.02671

(a) skewness coefficients signficant at the a=  0.05 level are highlighted

For these significant single-site polynomial models based on the goodness-of-fit 
tests, the average one-year prediction bias and associated t-test statistics are 
summarized in Table 10.4. Those biases associated with record lengths which 
exhibited a significant polynomial trend based on the results of the F-test and 
residual behavior are highlighted. T-test statistics significant at the a = 0.05 level 
are also highlighted. Many of the one-year prediction biases were significant for the 
wells and record lengths which exhibited significant polynomial trends. However, 
as the record lengths increased, the significance of the prediction bias for the 
significant models based on the F-test analysis tended to decrease. From these 
predictive tests, it appears that the single-site polynomial models are, in general, 
poor models for describing the observed PCE groundwater behavior in Area A.
Those wells which did exhibit significant polynomial trends based on the goodness- 
of-fit tests generally exhibited significant prediction biases. These results suggest 
that another model would be more appropriate at describing the data.

10.1.1.2 Trend Surface Models. Linear, quadratic and cubic trend surface models 
were fit to the data from Area A. The F-test results for the multi-site models fit to 
the data from Area A are summarized in Table 10.5. The linear trend surface model 
was significant for all record lengths considered when fit to all the available data for 
a specific record length (i.e., no sampling frequency reduction). The quadratic and 
cubic trend surface models were significant for all record lengths considered, 
excluding the five-year period from 1980 through 1985 in which a linear trend
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Table 10.4 One-Year Prediction Bias^®^ and Associated t-tests^*’̂ for Single-site Polynomial Models Fit to 
Area A Data

Linear Model RECORD LENGTH
Well 1980 1980-81 1980-82 1980-83 1980-84 1980-85 1980-86
No. Bias 1-test Bias T-test Bias T-test Bias T-test Bias T-test Bias T-test Bias T-test
11 116.96 6.97 184^7 1.31 106.18 0.71 -84.62 -9.93 -26.41 -3.8 -36.65
12 -4351N -1944 -0.62 -10 -0.03
13 -77696 -1.78 -3E+05 -lE+05 -8.19 -28935 -2E+05 150570
15 44597 1.03 -84288 -2.39 38273 0.36 -42267 -18 -19969 -7.74 998.43 0.43 33281 4.47
16 524.24 5.94 273.01 5.33 -180.8 -5.97 -192.4 -8.2 -82.95 -3.87 -61.38 -47.6 -9.95 -1.27
17 2433 3.13 -747.9 -1.14 -693.2 -4.71 -767.6 -3.54 -446.6 -5.26 400.07 3.85 -274.5 -1.32
18 -71.56 -1;79 -0.12 429.36 0.77 -162.8 -18.2
19 -449.1 -3i68 -188:4 -I -96 -471.4 -5:34 -219.6 -3.8 -314.3 -70.3
20 5.02 4.06 3.14 7.7 1.78 1.71 12.11 1.11 6.14 0.63 3.3 0.49 -9.31 -1.63
21 54.46 10.23 3.5 15.66 -9.39 4.7 1.01 51.65 2.75 242.26 1.08 -100.5 -10.6
22 153.26 3.18 199.01 10.65 2033.5 1.14 -437.4 -169 -149.5 -116 -22.43 -3.48 -3.74 -0.48
39 -6.28 0.46 3.05
44 -1.78 -9.74 0.95 6.73
74 13387 218412 1.42
103 -25.79 -3.65 19.65 161.48 4.97 -291 -8.65
105 -0.48 -1.55 1:73 2.74 -1.82 -12.9 -0.25
106 0.95 0.37 1.95 -5.38 -3.8 -26.9 1.03 1.3
109 42v53 41.66 50.59:22.35 19.1 16.75
117 -2509 -0.11 34670 3.15 912.37 0.04
118 -40306 79841 3.76 S256.7 -0.03 -25159 -0.69
126 -5.71 120.56
129 10.76 -20.9
130 4.06 -0.89 2.01
823 -11837 -2.2 -5000 -3424
934

- 1 . 6 3
(continued)



Table 10.4, continued

Quadratic Model
RECORD LENGTH

Well 1980 1980-81 1980-82 1980-83 1980-84 1980-85 1980-86
No. Bias T-test Bias T-test Bias T-test Bias T-test Bias T-test Bias T-test Bias T-test
11 232.85 5.58 35.57 0.41 -571.9 -2.27 -64.68 -7.59 14.55 2.09 2.7
17 1981.8 2.85 -6559 -2.86 -376.8 -2.29 451.24 1.42 618.72 7.28 995.537.41 -83.74 -0.46
18 -64.4 50.09 3.76 450.83 0.81 -130.6 -11.9
19 313.3 1.78 -715.4 -40.2 -481.2-5.46 318.18 4.21 114.19 5.23
22 -33.64 -1.12 -586.9-3.14 1768.1 0.97 -328.9 -40.3 239.23 8.45 205.59 11.13 164.47 5.64
103 40.52 76.75 84.12 2.69 -399.1 -7.77
109 -17.73 -26.04 -49.85 -11 -23.44 -5.98
126 4.28 2.45

Cubic Model
RECORD LENGTH

Well 1980 1980-81 1980-82 1980-83 1980-84 1980-85 1980-86
No. Bias T-test Bias T-test Bias T-test Bias T-test Bias T-test Bias T-test Bias T-test

11 -1137 -3.13 116.4 0.87 -947.6 -2.72 417.73 3.27 169.79 10.91 35.04
17 -8560 -3.44 130.9 0.17 8243.3 5.02 1781.7 3.28 162.82 1.92 46,52 0.45 -1377 -2.91
19 -6368 -5.82 -1824 -7 -377.7 -4.8 755.42 6.66 61.49 5.2
126 40.19 -172.8

(a) biases associated with wells and record lengths which exhibited a significant trend based on the 
results of F-test analysis and residual behavior are highlighted

(b) t-test values significant at the a = 0.05 level are highlighted



i d u i t :  1U .3 r - t e b L 1 l :> <x 1 -LULLk 1 or n u 1L 1 1 t t ;  nuue 1 :> r 1 t  tu  Udtd

Record FREQUENCY OF SAMPLING
Length Model All Bimonthly Ouarterlv Triannual Biannual t-test
1980 Linear 6.564 4.781 4; 781 3.766 2.148 -0.01878

Quadratic 2.877 2.199 1.529 2.458 1.117 -0.32739
Cubic 5;359 3.905 2.766 3.587 3.709 -1.61468
Physical 5008.8 10,263; 5 1578.1 42335.0 11689.2 -0.08698
Size 135 82 82 51 37

1980-81 Linear 9.831 16.372 4 134 4.533 3.104 -0.21767
Quadratic 9.831 2.875 1.745 1.891 1.305 0.30785
Cubic 8i364 5.118 2.989 3.098 1.792 0.97995
Physical 747; 5 3992.9 3,1800,000 523.88 5892;6 -0.00884
Size 222 141 96 92 68

1980-82 Linear 14.742 10.308 8.226 7.741 5.933 0.06071
Quadratic 6.104 4.386 3.278 3.057 2.386 0.41598
Cubic 9.879 6.787 4.931 4.587 3.478 0.66023
Physical 1488.1 834.9 2152.2 481.22 700.5 -0.00750

Size 324 237 185 169 135

1980-83 Linear 20.760 15.387 12.431 11.386 8:594 0.18654
Quadratic 8.414 6.312 5.013 4.609 3.591 0.07840
Cubic 14.602 10.392 8.366 7.541 5.854 0.11970
Physical 1260.2 717.6 30,015.6 1063.4 551.8 -0.00277

Size 499 521 312 283 215

1980-84 Linear 4 481 3.245 2.502 2.292 1.873 0.07322
Quadratic 1.939 1.544 1.319 1.253 1.056 -0.71679
Cubic 2.948 2.212 1.725 1.643 1.293 0.01145
Physical / i i i i l i 843.1 2705.0 841.6 g i i i i l i i -0.00128

Size 683 626 423 380 302



Table 10.5, continued

FREQUENCY OF SAMPLING
Record Model All Bimonthlv Ouarterlv Tri annual Biannual t-test
Length

1980-85 Linear 6.047 3.851 2.727 2.411 1.853 0.17061
Quadratic 2.300 1.484 1.059 0.941 0.738 0.15171
Cubic 3.412 2.173 1.530 1.297 0.956 0.26766
Physical 47098.9 9352.7 2307.4 2163.4 2613.9 0.02154

Size 842 626 499 446 355

1980-86 Linear 7.782 5.137 3.633 3.190 2.444 0.16797
Quadratic 3.013 2.007 1.414 1.243 0.965 0.15938
Cubic 4.504 2.676 1.894 1.620 1.208 0.23376
Physical 1096840. 1077.1 2735.1 2494.8 732.2 0.01484

Size 965 724 575 514 408

1980-87 Linear 8.794 5.828 3.948 3.451 2.523 0.19497
Quadratic 3.397 2.282 1.554 1.418 1.044 0.16392
Cubic 3.908 2.640 1.888 1.631 1.214 0.20403
Physical 44564.6 2803.2 5272.2 915.6 1217.9 0.01291

Size 1149 869 685 629 491

1980-88 Linear 8.863 5.869 3.972 3.490 2.547 0.19879
Quadratic 3.466 2.341 1.608 1.472 1.097 0.15809
Cubic 3.916 2.623 1.854 1.627 1.202 0.19999
Physical 38X43.5 1877.4 574iiiii 2:6460lii 3911122.3 -0.01732

Size 1162 881 607 641 503

(a) F-tests significant at a=0 .05 level are highlighted



surface model was significant but higher order trend surface models were not 
significant.

As the sampling frequency reduced, the significance of the model reduced for a 
given record length. This is consistent with the expected behavior of a correct 
model. The t-test statistics on the linear trend in the F-test values were not 
significantly different than the theoretical trend for a correct model for either the 
linear, quadratic or cubic trend surface models. Therefore, based on the F-test 
analyses, the trend surface models appear to be good models at describing the 
observed PCE groundwater quality data.

The behavior of selected model parameter estimates are illustrated in Figures 10.2, 
10.3, and 10.4 for linear, quadratic and trend surface models, respectively. These 
figures show that the model parameter estimates converge towards single values 
within the 95% confidence limit bounds. This behavior is consistent with the 
e.xpected behavior for a correct model structure.

The average lag-one temporal and lag-zero spatial residual correlations for the multi-
site models are summarized in Table 10.6. The lag-one temporal correlations were 
calculated as described for the single-site polynomial models. The lag-zero spatial 
correlations between Station 1 and Station 2 were calculated by selecting the 
sample at Station 2 which was the closest in time to the date of the sample

AREA A -  LINEAR TREND SURFACE
PARAMCTtR A

RECOnO LENGTH

AREA A -  LINEAR TREND SURFACE

IC C O IO lfN Q TH

AREA A -  LINEAR TREND SURFACE
PARAMETER B

RECORD LENGTH

AREA A -  LINEAR TREND SURFACE
PARAtCTER 0

Figure 10.2 Upper and Lower Confidence Limits of Parameter Estimates for 
Linear Trend Surface Model Fit to All Data in Area A
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AREA A -  QUADRATIC TREND SURFACE
PARAKTER A

AREA A QUADRATIC TREND SURFACE
PARAACÌER B

AREA A -  QUADRATIC TREND SURFACE 
par aact er  c

AREA A -  QUADRATIC TREND SURFACE
PARAtCTER D

Figure 10.3 Upper and Lower Confidence Limits of Selected Parameter 
Estimates for Quadratic Trend Surface Model Fit to All Data in Area 
A

AREA A -  CUBIC TREND SURFACE
PARAACTER A

A R E A  A  -  CUBIC TREND S U R FA C E
RARMCrO) (

AREA A -  CUBIC TREND SURFACE
PARAKTER C

AREA A -  CUBIC TREND SURFACE
PARAACTCR 0

Figure 10.4 Upper and Lower Confidence Limits of Selected Parameter 
Estimates for Cubic Trend Surface Model Fit to All Data in Area A

120



Table 10.6 Average Residual Temporal and Spatial Correlations'*’ for Multi-Site
Models Fit to Data from Area A

Temooral Residual Correlation

YEAR LINEAR QUADRATIC CUBIC PHYSICAL
1980 .8336 .6028 .5210 .1184
1980-81 .7984 .7626 ,7642 .0864
1980-82 .6097 .7138 .5520 .0263
1980-83 .5901 .6368 .6457 .0425
1980-84 .4666 .5776 .5012 -.0358
1980-85 .3808 .4211 .4995 .0465
1980-86 .3355 .4805 .5233 .0121
1980-87 .5557 .5916 .5548 .0743
1980-88 .5643 .5849 .5251 .1267

Soatial Residual Correlation

YEAR LINEAR QUADRATIC CUBIC PHYSICAL
1980 .5336 .3726 .0736 .0581
1980-81 .5339 .4531 -.0289 .0707
1980-82 .2582 .2721 .4363 .0604
1980-83 .4692 .3845 .1779 .0457
1980-84 .3848 .5483 .4598 .0412
1980-85 .2546 .0817 .1167 .0572
1980-86 .1961 .0101 .0508 .0462
1980-87 .4464 .4188 .1124 .0515
1980-88 .4450 .4507 .0780 .0496

(a) residual correlations significant at the a = 0.05 confidence level are
highlighted

was the closest in time to the date of the sample collected from Station 1. The 
average residual temporal correlations are significant at the a = 0.05 level for all 
trend surface models and record lengths. In addition, the average spatial residual 
correlation is significant for approximately 50% of the trend surface models and 
data sets considered. These significant residual correlations indicate that there is a 
systematic behavior to the residuals which the trend surface models are 
unable to explain. Based on the highly significant correlation of the residuals, 
subsets of the data were not reviewed for trends.

The skewness of the residuals resulting from fitting the multi-site polynomial models 
to the data from Area A is summarized in Table 10.7. The results in Table 10.7

1 2 1



Table 10.7 Residual Skewness'* for Multi-Site Models Fit to Data from Area A

YEARS LINEAR QUADRAT
1£

CUBIC PHYSICAL

1980 -.2529 -.0026 -.1350 1*737
1980-81 .0323 .2028 .0156 1*699
1980-82 -.0477 -.0420 -.0347 . 1*623
1980-83 -.1512 -.0883 -.1866 1.045
1980-84 -.0562 .0503 ’ 4173 1 2442
1980-85 .0498 .0864 -.0576 1,4441
1980-86 .0682 .1164 -.0507 1.5116
1980-87 -.0946 *.1480 .0353 1*4791
1980-88 -.1336 ’ *1593 .0694 1*4934

(a) skewness coefficients significant at the a 
highlighted

= 0.05 confidence level are

show that the data error is not significantly non-normally distributed and therefore 
the F-test statistics are not invalidated.

Based on the results of the goodness-of-fit tests, the trend surface models do not 
pass the test of being good models for describing the PCE groundwater quality data 
in Area A. Specifically, both the temporal and spatial residuals are highly 
correlated indicating a systematic behavior in the data not accounted for by the 
model.

The prediction capabilities of these trend surface models were then evaluated. The 
average one-year prediction biases resulting from the trend surface models applied 
to the Area A data is summarized in Table 10.8. The significance of these 
prediction biases was evaluated using the t-test, as summarized in the same table. 
At the a =0.05 significance level, approximately one-half of the trend surface 
models do not pass the test of a non-biased prediction.

Based on the F-test statistics and the behavior of the parameter estimates, the 
trend surface models are generally good models at
describing the PCE groundwater quality behavior. A significant improvement was 
realized over the single-site models. However, the
significance of the temporal correlation of the residuals as well as the significance 
of the prediction bias for approximately one-half of the models, indicates that 
another model may be more appropriate for describing this data.

10.1.1.3 Physical Model. The last model considered for describing the PCE 
groundwater quality in Area A is the physically-based two-dimensional advection- 
dispersion model, as described in Chapter 3. The range of possible values for the 
model parameters was constrained based on additional information, as summarized 
in Table 10.9.
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Table 10.8 One-Year Prediction Bias and Associated t-test for Multi-Site 
Models Fit to Data from Area A

BIAS
YEAR LINEAR QUADRATIC CUBIC PHYSICAL

1980 5264.0 38,009.6 172,447.9 457,428
1980-81 -28,083.4 39,434.9 112,423.3 500,558
1980-82 -10,277.3 14,086.6 -8,699.7 -76,145
1980-83 21,162.4 40,194.9 8,190.3 355,799
1980-84 -11,962.8 -45,594.9 -136,117.0 158,569
1980-85 -1908.1 -15.7 14,201.4 283,026
1980-86 -778.2 -356.5 1,601.7 73,173
1980-87 -17,626.3 

T-TEST ON BIAS

-275.76 14,441.6 1115

YEAR LINEAR QUADRATIC CUBIC PHYSICAL
1980 .4510 3.2971 ' 7.9929 10,620
1980-81 -2.5851 5.7841 3.9678 15,40
1980-82 -2.2585 3.4924 -2.2727 -.977
1980-83 0.8837 1.6752 0.3456 6.431
1980-84 -2.5450 -9.4567 -23.5195 8.963
1980-85 -0.3828 -0.0318 0.7649 23.658
1980-86 -1.7738 -0.8320 0.4132 7.228
1980-87 -2.7530 -0.5625 1.2393 6,392

(a) t-tests significant at a = 0.05 confidence level are highlighted

Based on site history, the earliest time which a source of PCE could have been 
introduced to the subsurface in Area A was 1964. Given that separate phase 
product is still observed in the source area, a, the source decay constant, was 
set equal to zero, thereby forcing the concentration at the source to be a 
constant.

Values for the retardation coefficient, R, and the decay constant, X, were defined 
based on theoretical values for these parameters. The retardation coefficient, R, 
is defined as:

PbK.
R = 1 + ( 10 . 1)

where.
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Table 10.9 Constraints on Physical Model Parameters for Area A

Parameter Definition Ranoe Information

Co Initial Source 
Concentration

200,000 - 
1,500,000

minimum concentration based 
on observed concentrations in 
source area; maximum 
concentration based on solubility 
of PCE

0̂ initial time of
source
introduction

1964 - on site history

R Retardation
coefficient

2.5 Theoretical (discussion follows)

X decay constant 0.0 Theoretical (discussion follows)

a source decay 
constant

0.0 separate phase source still 
observed in source area;, 
therefore concentration at 
source is a constant

Xo location of source 7400-7800 Identification of Source based 
on historical use information anc 
observed separate phase 
product

Yo location of source 4600-5000

Pb = bulk density

Kb = distribution coefficient

n = porosity

These parameters can be estimated using the following formulas: 

n = 1 - Pb/P.

Kb = f„K „

where,

p, = 2.65 gm/cm^ for an average porous medium

fbc = fraction of organic carbon in soil
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K„ = organic carbon normalized soil/water partition coefficient

For PCE, K„ values ranging from approximately 200 to 370 have been cited in 
the literature [Schwarzenbach and Westall, 1981; Callahan, et al, 19791. 
Assuming the soil has a porosity of 0.3 (n = 0.3) and an organic content of 0.1 % 
(f„ = 0.001), then a retardation coefficient of approximately 2.5 (R»2.5) can be 
calculated using equations 10.1, 10.2, and 10.3. Rather than using R directly in 
the parameter estimation routine, R was set equal to one (no retardation) and the 
non-dimensional approach discussed earlier was used, using the relative velocity 
(v/R) and relative dispersion coefficients (D /̂R and D /̂R).

Based on laboratory studies, PCE is not expected to significantly biodegrade or 
adsorb to sediments [Bouwer and McCarty, 1983; Callahan, et al, 1979]. 
Therefore, the decay constant. A., was set equal to zero.

The F-test statistics for the physical model fit to all available data are 
summarized in Table 10.5 along with the other multi-site models. The physical 
model was significant for all record lengths based on the results of the F-test 
analyses. In addition, the F-test statistics for the physical model were higher 
than the F-test statistics for the statistical trend surface models considered. As 
shown in Table 10.5, the F-test does not necessarily increase with an increase in 
sampling frequency. The trend of these F-test statistics was evaluated relative 
to the theoretical slope for a correct model as discussed in Chapter 8. These 
results do not indicate that the trend in the F-test is different than the trend for a 
correct model. However, with limited data, it is difficult to use this test for 
model discrimination, as discussed in Chapter 8 for the simulation study.

Table 10.10 summarizes the results of the best-fit parameters for record lengths 
ranging from one to nine years of data and frequencies ranging from 
approximately monthly (all data) to biannual. This table shows that the 
parameter estimates do not appear to converge towards a single value. The 
behavior of selected model parameter estimates for the physical model fit to all 
available data for the periods ending 1985 through 1989 are illustrated in Figure 
10.5.'*^ Figure 10.5 illustrates the non-convergent behavior of the model 
dispersion coefficients. The behavior of these parameter estimates is indicative 
of an incorrect model structure.

The average residual temporal and spatial correlations for the data in Area A fit 
to the physical model are summarized in Table 10.6. Unlike the trend surface 
models, none of the correlations were significant, consistent with a correct 
model and parameter estimation procedure.

Due to the sensitivity of the inversion of the nearly singular matrix and due to 
the high variance for the models fit to record lengths of less than five years and 
to data sets w ith reduced sampling frequencies, parameter variances could only 
be calculated with five or more years of data.
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Table 10.10 Best-fit Physical Model Parameter Estimates'*' for Area A

Y E A R S
PARAMETER 

0 F SAMPLING C. D, Dt y A
RECORD

1980

FREQUEN
QL
All 290,000 .02 .003 .33 55
Bimonthly 400,000 .02 .002 .14 55
Quarterly 410,000 .10 .003 .30 55
Triannual 400,000 .10 .003 .30 55
Biannual 340,000 .07 .003 .68 55

80-81 All 320,000 .02 .002 .26 55
Bimonthly 450,000 .02 .003 .20 55
Quarterly 400,000 .04 .003 .29 55
Triannual 560,000 .03 .003 .23 50
Biannual 390,000 .05 .003 .30 55

80-82 All 280,000 .04 .003 .50 55
Bimonthly 320,000 .04 .003 .40 55
Quarterly 330,000 .04 .003 .49 50
Triannual 340,000 .04 .003 .47 50
Biannual 510,000 .03 .003 .46 50

80-83 All 260,000 .04 .003 .45 50
Bimonthly 280,000 .02 .001 .15 50
Quarterly 250,000 .04 .003 .41 50
Triannual 260,000 .04 .003 .42 50
Biannual 250,000 .04 .003 .46 50

80-84 All 250,000 .13 .002 .27 50
Bimonthly 260,000 .14 .001 .21 50
Quarterly 250,000 .04 .003 .46 50
Triannual 260,000 .04 .003 .45 50
Biannual 220,000 .04 .003 .46 50

80-85 All 250,000 .11 .003 .03 50
Bimonthly 250,000 .04 .003 .45 50
Quarterly 240,000 .04 .003 .45 50
Triannual 250,000 .04 .003 .45 50
Biannual 220,000 .04 .003 .45 50

80-86 All 250,000 .08 .003 .06 50
Bimonthly 250,000 .04 .003 .43 50
Quarterly 250,000 .04 .003 .42 50
Triannual 260,000 .04 .003 .42 50
Biannual 230,000 .04 .003 .42 50
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Table 10.10, continued

PARAMETER

(a)

(b)

YEARS OF SAMPLING Qc Qj. Dx y A
RECORD FREQUEN

QY

80-87 All 250,000 .12 .003 ’ .04 50
Bimonthly 250,000 .14 .001 .13 50
Ouarterly 250,000 .03 .001 .29 50
Triannual 250,000 .03 .002 .27 50
Biannual 230,000 .03 .002 .27 50

80-88 All 250,000 .12 .003 .04 50
Bimonthly 250,000 .13 .002 .13 50
Ouarterly 250,000 .03 .002 .28 50
Triannual 260,000 .05 .003 .27 50
Biannual 240,000 .35 .003 .08 50

TOLERANCE(b) ±10,000 ±.01 ±.001 ±.01 ±5

parameter estimates for Xg and Yo were 7690 and 4850 feet.
respectively, for all data subsets

tolerance for each parameter estimate for model fit

The skewness of the residuals are summarized in Table 10.7. The skewness of 
the residuals were significantly different from zero at the a = 0.05 confident 
level. This may indicate a non-additive data error or an incorrect model 
structure.

The physical model exhibited variable model goodness-of-fit characteristics. The 
F-test statistics were significant and the residual were uncorrelated. However, 
the parameter estimate did not converge towards single values and the skew of 
the residuals was significant. The physical model fit is therefore non-ideal.

The physical model with the estimated best-fit model parameters was used to 
evaluate prediction bias. As summarized in Table 10.8, the prediction bias was 
significant using the physical model for the majority of data subsets considered.

Based on the model applicability test considered, the physical model was highly 
significant based on the analysis of variance and residual correlations. However, 
the parameter behavior and significance of the prediction bias indicates the 
model is not appropriate for describing the PCE groundwater data in Area A.

10.1.1.4. Summary of Model Selection. None of the models considered for 
describing the PCE groundwater quality behavior in Area A met all the criteria for
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S O U R C E MT W. C O N C C H m A T C N E S TI M A T E 
S M- A R E A A: A L L O A T A

Tfl A N S V e e e O e P E R S O N E S TI M A T E 
S M' A R E A A: A U O A T A

l O N O m O N M. Ofl P B W O N e S T M A T E 
■ M- A R E A A: MÌ. O A T A

V B J X m r e S T M A T E 
B M < A R E A A: Al Xt M T A

Fi g ur e 1 0. 5 U p p er a n d L o w er C o nfi d e n c e Li mit s of S el e ct e d P ar a m et er 
_ _ _ _ _ _ _ _ _ _ _ _ E sti m at e s f or P h y si c al M o d el Fit t o All D at a i n Ar e a A _ _ _ _ _ _ _ _

m o d el a p pli c a bilit y, a s o utli n e d i n C h a pt er 9 ( Pr ot o c ol - St e p s 4 a n d 5). Cl e arl y, 
t h e m ulti- sit e m o d el s e x hi bit e d s u p eri or b e h a vi or o v er t h e si n gl e- sit e m o d el s i n 
t h eir g e n er al a bilit y t o b ot h c o n si st e ntl y d e s cri b e a n d pr e di ct gr o u n d w at er q u alit y 
b e h a vi or. T h e tr e n d s urf a c e m o d el s e x hi bit e d b ot h si g nifi c a nt m o d el fit b a s e d o n 
a n al y si s of v ari a n c e a n d p ar a m et er b e h a vi or; h o w e v er, t h e r e si d u al s e x hi bit e d 
s y st e m ati c err or a n d t h e pr e di cti o n bi a s e s w er e si g nifi c a nt. T h e p h y si c al m o d el 
w a s m or e hi g hl y si g nifi c a nt t h a n t h e tr e n d s urf a c e m o d el s b a s e d o n t h e a n al y si s 
of v ari a n c e ( A N O V A) a n d e x hi bit e d i n si g nifi c a nt r e si d u al c orr el ati o n. H o w e v er, 
t h e p ar a m et er b e h a vi or w a s i n di c ati v e of a n i n c orr e ct m o d el a n d t h e pr e di cti o n 
bi a s w a s m or e si g nifi c a nt t h a n f or t h e tr e n d s urf a c e m o d el s. O v er all, of t h e 
m o d el s c o n si d er e d, t h e li n e ar tr e n d s urf a c e m o d el e x hi bit e d t h e b e st m o d el 
a p pli c a bilit y c h ar a ct eri sti c s. U n d er f urt h er c o n si d er ati o n, a diff er e nt p h y si c al 
m o d el s h o ul d b e c o n si d er e d. Gi v e n t h e hi g h D /̂ D t  r ati o a n d ot h er g e ol o gi c d at a 
a v ail a bl e f or t h e sit e, a fr a ct ur e d fl o w m o d el m a y b e m or e a p pr o pri at e at 
d e s cri bi n g t hi s d at a, wit h t h e d at a s e gr e g at e d v erti c all y t o a c c o u nt f or t h e 
o v er b ur d e n v er s u s b e dr o c k c h ar a ct eri sti c s.

1 0. 1. 2 M o nit ori n g N et w or k O pti mi z ati o n.

T h e o pti mi z ati o n of m o nit ori n g n et w or k s w a s e v al u at e d f or all t h e m o d el s 
c o n si d er e d, r e g ar dl e s s of t h e r e s ult s of t h e g o o d n e s s- of-fit t e st s, i n or d er t o
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evaluate the behavior of the error prediction variance and the optimal monitoring 
networks for the various models considered relative to the goodness-of-fit and 
prediction tests.

10.1.2.1 Single-Site Polynomial Models. Only the sampling frequency can be 
optimized for the single-site models since no structure exists to describe the spatial 
interdependence of the wells. For a specified frequency, a prediction error variance 
can be calculated for each well (or conversely, for a specified error variance a 
sampling frequency could be calculated). Table 10.11 summarizes the error 
prediction variance at the wells in Area A for a monthly future sampling frequency. 
The error prediction variances generally tended to decrease with an increase in 
record length. In addition, the prediction error variance increased as the model 
order increased. This indicates a higher uncertainty with the higher order models, 
consistent with the F-test analyses which indicated that in general, the higher order 
single-site models are not significant for the data.

The prediction error variance also varied with location. Figure 10.6 illustrates the 
spatial variability of the prediction error variance based on a single-site linear model 
applied to all available data from 1980 through 1988. These results are compared 
to the results for the multi-site models in the following sections.

10.1.2.2 Trend Surface Models. For the trend surface models. Table 10.12 
summarizes the prediction error variances at the individual wells in the multi-site 
network. Comparing Table 10.12 to Table 10.11 illustrates the clear advantage in 
incorporating information on the spatial interdependence of the data in a model. For 
the majority of the wells, the error prediction variance at the individual well based 
on the trend surface model was lower than the prediction error variance at that well 
for the single-site polynomial model. As for the single-site polynomial models, the 
prediction error variance at individual wells was higher with the higher order trend 
surface models.

Figure 10.7 illustrates the prediction error variance surface for the linear trend 
surface model applied to all available data from 1980-88. The difference between 
the prediction error variances at individual wells based on the linear trend surface 
versus single-site linear models is illustrated by comparison of Figure 10.7 to Figure 
10.6. The "uncertainty surface" is clearly more uniform for the linear trend surface 
model than it is for the single-site linear models.

The resulting optimal monitoring networks for the trend surface models are 
summarized in Table 10.13. Due to the high correlation of the model structure, the 
optimal monitoring networks with a specified minimum spatial correlation of 0.9, 
consists of only one well. The sampling at these "optimal" locations results in a 
reduction in the prediction error variance surface. Figure 10.8 illustrates the 
reduction in the prediction error variance for the linear trend surface model applied 
to the data from 1980 through 1988. Comparison of Figure 10.8 to Figure 10.7 
illustrates the reduction in the topographical prediction error highs as wells as the 
reduction at the sampling wells (appearing as "bulls-eyes").

An alterative method of representing the uncertainty in the model is by plotting 
upper and lower confidence limits to desired concentrations of interest. Figure 10.9
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Table 10.11 Error Prediction Variance at Individual Wells for Single 
Site Polynomial Models Fit to Data in Area A with Future 
Monthly Sampling Frequency

LINEAR MODEL 

WELL RECORD LENGTH
NO. 1980 80-81 80-82 80-83 80-84 80-85 80-86 80-87 80-88

7 954.8 57.72 22.27 6.606 5.495 5.2021 3.8385 2.9488 2.9488
11 218.6 136.4 710.9 602.8 383.2 223.12 206.3 199.94 199.94
12 3E+06 6E+06 9E+05 5E+05 6E+05 391825 391825 391825 391825
13 8E+07 4E+08 5E+08 4E+08 3E+08 3.3E+08 3.2E+08 3.2E+08 3.2E+08
14 3E+09 2E+09 8E+08 7E+08 7E+08 7E+08 7E+08 7E+08 7E+08
15 2E+08 7E+08 4E+08 4E+08 2E+08 1.5E+08 l.lE+08 9.1E+07 9.1E+07
16 2E+05 31464 13684 8433 4382 2538 1815.7 1489.1 1443.3
17 lE+05 2E+05 lE+05 82206 45958 27416 20161 17479 16572
18 65.45 100.3 3152 10299 8882.8 8298.8 8298.8
19 4032 2419 6254 3137 4903 3476.5 3345 3212.1 3212.1
20 19.65 3.26 1.255 0.811 2.237 2.823 3.0542 2.9361 2.9361
21 38.65 41.37 19.09 10.17 7.604 24.294 761.55 662.6 662.6
22 1266 1039 660 42249 23713 12953 8708.3 7092.1 7092.1
26 521.3 312.8 208.5 269.1 47.57 47.567 47.567 47.567 47.567
38 42.08 25.25 16.83 16.83 16.83 16.834 16.834 16.834 16.834
39 7.415 4.449 2.252 1.692 1.692 1.4096 1.4096 1.2953 1.2953
43 13.04 3.674 1.525 1.089 1.089 1.0886 1.0886 1.0886 1.0886
44 10.65 3.907 2.043 2.0427 2.0427 2.0582 2.0582
45 145.5 87.27 27.7 52.29 45.8 45.803 45.803 45.803 45.803
74 3E+07 lE+07 3E+09 3.3E+09 3.3E+09 3.3E+09 3.3E+09
103 229.9 132.2 89.75 296.32 2159.1 1474.3 1474.3
104 2E+06 4E+05 419772 419772 363429 363429
105 1.397 0.439 1.685 1.4799 0.9298 0.6226 0.6226
106 0.807 0.858 9.953 8.6384 5.5795 3.4399 3.4399
108 9.157 6.597 4.7573 1.5415 0.7934 0.7099
109 178.5 241.3 222.61 100.67 58.529 53.419
116 lE+08 1.3E+08 1.3E+08 1.5E+08 1.5E+08
117 2E+08 lE+08 1.7E+08 1.7E+08 1.5E+08 1.5E+08
118 2E+09 2E+09 4.1E+08 3.3E+08 2.9E+08 2.9E+08
126 7.49 708.4 849.58 810.43 810.43 810.43
129 271.8 193.89 183 147.12 147.12
130 7.767 19.51 14.721 11.607 9.9128 9.9128
176 69069 2E+05 159107 159107 159107 159107
700 15684 15684
707 152.54 152.54
708 3241.5 3241.5
716 241698 241698
731 3.607 3.607
734 509.79 509.79
737 16747 16747
751 0.7436 0.7436
752 2.8502 2.8502

(continued)
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Table 10.11, continued

LINEAR MODEL

WELL
NO. 1980 80-81 80-82

RECORD LENGTH 
80-83 80-84 80-85 80-86 80-87 80-88

753 0.3328 0.3328
816 3E+05 7E+05 291998 291998 291998 291998
817 lE+08 9.6E+07 8.8E+07 8.8E+07 8.8E+07
818 8E+08 7.6E+08 5.9E+08 5.9E+08 5.9E+08
819 3E+08 2E+08 1.6E+08 1.3E+08 l.lE+08 l.lE+08
820 lE+05 3E+05 265484 434921 541910 541910
821 lE+09 1.3E+09 2.9E+09 2.9E+09 2.9E+09
822 7E+07 6E+11 5.7E+11 6.6E+11 6.6E+11 6.6E+11
823 3E+06 2E+06 1.5E+06 1.4E+06 1.2E+06 1.2E+06
824 7E+05 4E+05 384065 542976 1.2E+06 1.2E+06
825 2E+06 2E+06 1.4E+06 1.4E+06 1.4E+06 1.4E+06
826 71738 2E+07 2.4E+07 2.1E+07 2.1E+07 2.1E+07
827 3E+05 3E+05 209661 158207 123166 123166
865 4E+06 4E+06 4.2E+06 4.2E+06 4.2E+06 4.2E+06
866 21256 11556 11556 11556 11556 11556
934 8.6777 2.9573 2.9573
965 9.7696 14.454 14.454
966 0.0527 0.0407 0.0407
998 3.1959
999 1.7472

QUADRATIC MODEL

WELL RECORD LENGTH
NO. 1980 80-81 80-82 80-83 80-84 80-85 80-86 80-87 80-88

7 lE+05 3517 659 221.7 158 88.403 54.394 34.478 51.717
11 39428 1744 2164 3737 2338 880.79 1020.9 1213.9 1820.9
12 3E+08 lE+09 6E+07 6E+07 2E+07 l.lE+07 1.7E+07 2.6E+07 3.9E+07
13 2E+10 2E+10 7E+09 3E+09 3E+09 3.4E+09 2E+09 3.3E+09 4.9E+09
14 . 0 6E+08 5E+08 4E+08 3E+08 2.7E+08 2.7E+08 2.7E+08 2.7E+08
15 5E+08 lE+09 8E+08 4E+08 lE+08 0 -lE+08 -9E+07 -9E+07
16 39335 8814 6676 4358 2114 1213.1 878.45 735.29 714.57
17 6E+05 2E+05 3E+05 70510 20251 -12972 -20366 -25955 -24364
18 54.3 5079 5368.6 4580.5 4234.4 4234.4
19 17629 6495 9578 4938 1372 -924.3 -1712 -2157 -1078
20 86.66 5.349 1.669 0.3S 1.054 C ( -1.497 0
21 171 84.19 40.36 10.62 3.809 0 -341.9 -321.4 -321.4
22 4447 1030 905.9 65937 11796 0 -8741 -10738 -10738
26 113 649.7 69.19 46.125 46.125 46.125 46.125
38 19.44 39.55 28.25 22.6 22.6 16.948 16.948 16.948 16.948
39 52.51 6.804 6.029 3.902 2.927 1.5435 1.5435 1.2176 1.2176
43 5.657 2.031 1.097 1.097 1.0966 1.0966 1.0966 1.0966
44 35.51 6.678 3.382 2.2546 2.2546 1.875 1.875

(continued)
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Table 10. 11, continued

QUADRATIC MODEL

WELL RECORD LENGTH
NO. 1980 80-81 80-82 80-83 80-84 80-85 80-86 80-87 80-88
45 81.72 75.34 78.26 52.172 52.172 52.172 52.172
74 8E+07 3E+07 3E+09 1.6E+09 3.3E+09 3.3E+09 3.3E+09
103 91.44 153.8 177.58 1855.5 699.89 0
104 2E+06 5E+05 181883 363766 393612 393612105

0.746 1.859 1.0016 0.9868 0.6581 0.6581
106 1.472 13.38 8.4101 6.0023 1.8185 1.8185
108 6.474 3.6817 1.5833 0.819 0.3667
109 25.67 24.642 21.773 19.275 9.2887
116 9E+07 6E+07 6E+07 7.7E+07 7.7E+07
117 3E+08 2E+08 8.6E+07 0 8E+07 8E+07
118 8E+08 3E+09 4.2E+08 1.7E+08 1.5E+08 1.5E+08
126 7.459 544.8 264.89 869.89 869.89 869.89
129 87.36 219.72 192.32 140.66 140.66
130 13.87 20.37 12.937 12.927 10.265 10.265
176 lE+05 2E+05 103333 103333 103333 103333
716 201880 201880
737 12131 12131
816 lE+06 243701 121851 121851 243701
817 8.6E+07
818 lE+09 8.9E+08 7.1E+08 8.6E+07 8.6E+07
819 5E+08 2E+08 1.4E+08 7.1E+08 7.1E+08
820 3E+05 301384 244387 1.3E+08 1.3E+08
821 2E+09 1.6E+09 1.6E+09 170588 170588
822 3E+11 2.3E+11 6.8E+11 1.6E+09 1.6E+09
823 5E+06 4E+06 1.5E+06 1.2E+06 6.8E+11 6.8E+11
824 lE+06 7E+05 359395 283054 l.lE+06 l.lE+06
825 4E+06 4E+06 1.7E+06 1.7E+06 1.2E+06 1.2E+06
826 lE+07 2.8E+07 2E+07 1.7E+06 1.7E+06
827 4E+05 201037 170448 136288 136288
866 20586 13724 13724 13724 13724
934 5.4126 2.7729 1.3864
965 0.3919 3.041 3.041
966 0.0653 0.0448 0.0448

CUBIC MODEL

WELL RECORD LENGTH
NO. 1980 80-81 80-82 80-83 80-84 80-85 80-86 80-87 80-88

7 3E+07 2E+05 2E+05 7271 4636 2956.6 1425.6 848.29 1539.8
11 8E+05 lE+05 lE+05 lE+05 87864 31154 39907 38673 69980
12 5E+10 6E+11 2E+10 lE+09 9E+08 6.1E+08 1.3E+09 2.5E+09 4.6E+09
13 lE+12 lE+12 7E+11 2E+11 lE+11 1.3E+11 5.7E+10 l.lE+11 2E+11
14 7E+10 lE+11 9E+10 8E+10 3E+10 6.9E+10 1.5E+11 3E+11 5.6E+11

(continued)
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Table 10.11, continued

CUBIC MODEL

WELL
NO. 1980 80-81 80-82 80-83

RECORD
80-84

LENGTH
80-85 80-86 80-87 80-88

15 3E+08 2E+09 6E+08 6E+08 2E+08 1.4E+08 9.8E+07 8.3E+07 8.3E+07
16 7E+07 2E+06 2E+06 lE+05 50182 19830 11469 6492.9 11186
17 3E+05 3E+05 3E+05 98052 41214 23771 17457 16826 16001
18 127.5 7304 0 -9342 -4385 -4385
19 lE+05 22075 22075 6827 -3447 -10324 -10340 -7717 -5145
20 336.5 15.97 15.97 1.057 1.064 -2.701 -8.784 -6.76 -5.408
21 575.7 165.5 165.5 27.67 0 -58.4 -1971 -1956 -1630
22 25290 3557 3557 98514 0 -39559 -57325 -53717 -50136 26

505. 9 99.39 49.697 74.546 74.546 74.546
38 182.2 37.56 37.56 15.02 13.15 9.3902 9.3902 9.3902 7.5122
39 37.22 7.596 7.596 7.977 4.986 3.2605 3.2605 2.7787 2.084
43 174.8 18.47 18.47 1.979 1.979 1.9793 1.9793 1.9793 1.4845
44 14.75 6.013 4.8101 4.8101 4.0913 3.0685
45 173.2 121.8 97.447 97.447 97.447 73.086
74 lE+08 6E+07 5E+09 3.5E+09 5.3E+09 7.1E+09 5.3E+09
103 222.4 158 101.6 1929.9 -2303 -5183
104 4E+06 5E+05 364568 546852 488742 488742
105 1.829 3.474 1.6646 1.1554 0.9135 0.609
106 3.56 24.91 13.941 8.5969 3.7051 1.8526
108 8.648 4.5316 1.7181 0.7027 0
109 5.565 3.1726 4.1319 3.1302 0
116 1.2E+08 8.6E+07
117 4E+08 2E+08 -2E+08 -2E+08 -8E+07 0
118 2E+08 4.4E+08 -2E+08 -lE+08 -3E+08
126 255.1 457.08 1267.9 1267.9 950.9
129 328.47 301.57 305.42 229.07
130 16.37 30.992 23.453 21.9 16.425
176 43576 34861 34861 34861 26146
816 2E+06 260989 260989 260989 260989
818 4.9E+08 1.7E+09 1.7E+09 1.3E+09
819 5.1E+08 3.4E+08 2.7E+08 2E+08
820 2E+05 654990 564773 388983 194492
821 7.6E+10 2.3E+09 2.3E+09 1.8E+09
822 9E+10 3.3E+06 6.9E+11 6.9E+11 5.2E+11
823 5E+06 8E+06 837047 2.6E+06 2.1E+06 1.6E+06
824 3E+06 lE+06 4E+06 646632 1.3E+06 982770
825 9E+05 781370 4E+06 4E+06 3E+06
826 lE+06 4.5E+07 4.6E+07 4.6E+07 3.5E+07
827 9E+05 500375 351441 268190 201142
865 35373
866 44216 35373 35373 26530
934 8.8014 3.9386 1.3129
965 0.0441 0.065 0.0433
966 0.1281 0.0829 0.0553
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Table

LINEAR
WELL
NO.

10.12 Error Prediction Variance at Individual Wells for Trend Surface 
Models Fit to Data in Area A with Future Monthly Sampling 
Frequency

MODEL
RECORD LENGTH

1980 80-81 80-82 80-83 80-84 80-85 80-86 80-87 80-88
7 10.225 6.9021 5.1701 3.7665 3.1173 2.8344 2.5683 1.5549 1.549
11 9.9147 6.6881 5.0238 3.6697 3.046 2.7647 2.5066 1.5715 1.5657
12 9.9304 6.6987 5.0314 3.6747 3.0498 2.7681 2.5095 1.5722 1.5664
13 9.8976 6.6782 5.0142 3.6629 3.0399 2.7622 2.5054 1.5568 1.5511
14 9.8961 6.6772 5.0134 3.6624 3.0395 2.7619 2.5051 1.5565 1.5508
15 9.8947 6.6763 5.0127 3.6619 3.0391 2.7616 2.5049 1.5562 1.5505
16 9.7102 6.5544 4.9213 3.6004 2.9906 2.7238 2.4744 1.5223 1.5169
17 9.7095 6.554 4.9209 3.6001 2.9903 2.7237 2.4743 1.5219 1.5165
18 9.6329 6.5015 4.8845 3.5759 2.9723 2.7068 2.4595 1.5228 1.5175
19 9.6348 6.5027 4.8854 3.5765 2.9728 2.7071 2.4598 1.5231 1.5178
20 9.5591 6.453 4.8477 3.5511 2.9526 2.6918 2.4476 1.5074 1.5022
21 9.5558 6.4507 4.8461 3.55 2.9518 2.6911 2.447 1.5072 1.502
22 9.5521 6.4482 4.8443 3.5489 2.9509 2.6903 2.4463 1.5071 1.5019
26 9.5125 6.4148 4.8308 3.541 2.9487 2.6772 2.4313 1.5589 1.5534
38 9.1193 6.1572 4.6341 3.4082 2,.8429 2.5982 2.3688 1.469 1.4643
39 9.1218 6.1589 4.6353 3.409 2.8435 2.5988 2.3693 1.4691 1.4643
43 9.8485 6.6538 4.9832 3.6406 3.0179 2.7576 2.5066 1.4824 1.4772
44 10.097 6.8211 5.1046 3.7219 3.0805 2.8104 2.5508 1.5073 1.5018
45 10.101 6.8235 5.1063 3.723 3.0814 2.8111 2.5514 1.5077 1.5021
74 5.009 3.6594 3.0372 2.7599 2.5034 1.5559 1.5502
103 6.7553 5.0653 3.6965 3.064 2.7876 2.5285 1.5424 1.5367
104 5.0653 3.6965 3.064 2.7876 2.5285 1.5424 1.5367
105 6.7585 5.0675 3.6981 3.0652 2.7886 2.5294 1.5427 1.537
106 6.7585 5.0675 3.6981 3.0652 2.7886 2.5294 1.5427 1.537
108 6.6914 5.0121 3.6601 3.0336 2.7691 2.5155 1.4969 1.4915
109 6.6914 5.0121 3.6601 3.0336 2.7691 2.5155 1.4969 1.4915
115 2.7473 2.4926 1.5539 1.5483
116 4.9778 3.6386 3.0214 2.7459 2.4914 1.5531 1.5474
117 6.6276 4.9782 3.6389 3.0216 2.746 2.4916 1.553 1.5473
118 6.6276 4.9782 3.6389 3.0216 2.746 2.4916 1.553 1.5473
126 6.1658 4.6463 3.4171 2.8519 2.5995 2.3677 1.502 1.4971
128 3.3853 2.8256 2.5827 2.3555 1.4666 1.462
129 4.5982 3.3843 2.8248 2.582 2.3549 1.4665 1.4619
130 6.1064 4.5982 3.3843 2.8248 2.582 2.3549 1.4665 1.4619
176 6.7188 5.0467 3.685 3.058 2.7743 2.5144 1.579 1.5731
700 3.057 2.7855 2.5281 1.5218 1.5162
701 1.522 1.5164
702 1.5308 1.5251
703 1.531 1.5254
704 1.5299 1.5242
705 1.5589 1.553
706 1.5587 1.5528
707 1.5641 1.5582
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Table 10.12, continued

LINEAR MODEL 
WELL
NO. 1980

RECORD LENGTH
80-81 80-82 80-83 80-84 80-85 80-86 80-87 80-88

708 1.5644 1.5585
710 1.5693 1.5634
716 1.5812 1.5754
731 1.532 1.5267
732 1.5323 1.5269
734 1.5125 1.5074
735 1.5003 1.4954
737 1.5001 1.4952
744 1.5771 1.5709
745 1.5773 1.5711
746 1.5655 1.5594
751 1.4965 1.4915
752 1.5066 1.5015
753 1.4967 1.4916
816 5.0591 3.6931 3.0635 2.7811 2.5208 1.5709 1.5651
817 5.043 3.6822 3.0549 2.7744 2.5155 1.5648 1.559
818 5.0287 3.6727 3.0477 2.768 2.5099 1.564 1.5582
819 4.9901 3.647 3.0282 2.7506 2.495 1.5605 1.5548
820 5.0594 3.6933 3.0638 2.7808 2.5205 1.5736 1.5677
821 4.9989 3.6527 3.032 2.7555 2.4997 1.5542 1.5486
822 5.014 3.6628 3.0397 2.7623 2.5056 1.5555 1.5498
823 5.0211 3.6674 3.0428 2.7661 2.5093 1.5509 1.5452
824 5.0094 3.6596 3.0369 2.7609 2.5047 1.5499 1.5442
825 5.0025 3.6549 3.0332 2.7581 2.5025 1.5467 1.541
826 5.0153 3.6639 3.0414 2.7612 2.5037 1.5682 1.5624
827 5.0279 3.6724 3.048 2.7665 2.5081 1.572 1.5661
864 3.6817 3.0548 2.7735 2.5144 1.5688 1.5629
865 5.0395 3.6796 3.0518 2.7748 2.5169 1.5495 1.5438
866 5.066 3.6973 3.0652 2.7868 2.5271 1.5518 1.5461
934 2.9048 2.6503 2.4124 1.494 1.489
965 2.6684 2.431 1.4544 1.4496
966 2.6705 2.4327 1.4549 1.4501
972 2.7639 2.5072 1.5523 1.5466
978 2.4502 1.5142 1.5089
980 2.4828 1.5328 1.5273
994 1.5303 1.5251
996 1.535 1.5297
997 1.5635 1.5575
998 1.5693 1.5633
999 1.9663 1.8637
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Table 10.12, continued

QUADRATIC MODEL 
WELL
NO. 1980 80-81 80-82

RECORD LENGTH 
80-83 80-84 80-85 80-86 80-87 80-88

7 9130.5 5555.2 3857.1 2512.4 1905.4 1589.7 1310.0 810.6 688.87
11 8406.1 5186.6 3609.0 2366.1 1797.5 1495.3 1232.9 857.2 696.94
12 8441.0 5208.0 3624.0 2375.7 1804.7 1501.3 1237.7 859.2 699.11
13 8378.6 5136.6 3569.0 2335.1 1773.6 1477.4 1218.8 696.0 672.58
14 8375.4 5134.2 3567.2 2333.9 1772.6 1476.7 1218.2 695.5 672.04
15 8372.5 5131.9 3565.5 2332.7 1771.8 1475.9 1217.7 694.9 671.52
16 7987.8 4839.7 3352.0 2186.2 1660.2 1386.5 1146.0 628.8 607.52
17 7986.7 4838.0 3350.7 2185.2 1659.5 1385.9 1145.5 628.0 606.74
18 7815.9 4744.1 3286.3 2145.9 1630.3 1360.9 1125.3 625.1 604
19 7819.7 4747.0 3288.4 2147.3 1631.3 1361.8 1126.0 625.7 604.61
20 7668.2 4627.6 3200.7 2086.4 1584.9 1324.6 1096.1 596.2 576.03
21 7661.1 4623.4 3197.7 2084.5 1583.4 1323.4 1095.1 595.8 575.65
22 7653.0 4618.5 3194.3 2082.4 1581.8 1322.1 1094.1 595.4 575.23
26 7518.2 4661.3 3243.0 2133.9 1622.9 1349.1 1114.9 675.7 653.06
38 6762.2 4038.1 2781.5 1811.9 1377.9 1154.1 958.2 512.5 495.12
39 6767.3 4041.2 2783.6 1813.2 1378.9 1154.9 958.9 512.7 495.37
43 8336.3 4954.6 3418.8 2209.7 1672.8 1402.9 1160.1 571.2 551.83
44 8877.5 5311.1 3673.0 2377.3 1799.7 1507.3 1244.4 625.8 604.57
45 8885.2 5316.2 3676.6 2379.7 1801.5 1508.8 1245.6 626.5 605.27
74 3558.1 2328.0 1768.2 1473.0 1215.3 693.9 670.53
103 5251.4 3642.9 2374.6 1801.9 1503.8 1240.7 679.0 656.07
104 3642.9 2374.6 1801.9 1503.8 1240.7 679.0 656.07
105 5258.0 3647.6 2377.6 1804.2 1505.7 1242.2 679.8 656.81
106 5258.0 3647.6 2377.6 1804.2 1505.7 1242.2 679.8 656.81
108 5048.4 3488.0 2258.8 1711.0 1433.4 1184.6 598.1 577.75
109 5048.4 3488.0 2258.8 1711.0 1433.4 1184.6 598.1 577.75
115 1451.6 1198.0 687.2 664
116 3497.1 2289.0 1739.0 1448.6 1195.6 685.3 662.26
117 5035.0 3497.6 2289.3 1739.1 1448.8 1195.7 685.2 662.12
118 5035.0 3497.6 2289.3 1739.1 1448.8 1195.7 685.2 662.12
126 4109.3 2841.9 1862.7 1417.9 1183.6 982.0 564.6 545.56
128 1773.1 1349.0 1129.8 938.6 505.3 488.19
129 2717.3 1771.3 1347.6 1128.7 937.7 504.9 487.81
130 3946.2 2717.3 1771.3 1347.6 1128.7 937.7 504.9 487.81
176 5260.6 3662.8 2402.6 1825.1 1517.5 1250.6 736.5 711.8
700 1771.8 1481.4 1223.0 643.8 621.99
701 644.3 622.44
702 662.2 639.8
703 662.7 640.26
704 660.6 638.23
705 711.9 687.88
706 711.4 687.43
707 722.8 698.47
708 723.6 699.19
710 727.5 702.98
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Table 10.12, continued

QUADRATIC MODEL 
WELL
NO. 1980 80-81 80-82

RECORD LENGTH 
80-83 80-84 80-85 80-86 80-87 80-88

716 735.1 710.44
731 632.9 611.55
732 633.5 612.1
734 596.6 576.44735

560. 9 541.99
737 560.4 541.48
744 767.9 741.98
745 768.4 742.45
746 744.6 719.43
751 566.0 546.91
752 588.2 568.28
753 577.3 557.79
816 3673.1 2405.6 1827.0 1520.5 1253.3 725.0 700.62
817 3633.9 2378.7 1806.6 1504.1 1240.3 712.8 688.79
818 3606.4 2361.4 1793.6 1493.2 1231.5 709.6 685.75
819 3530.6 2312.9 1757.2 1462.9 1207.0 699.0 675.44
820 3677.5 2409.5 1830.0 1522.6 1254.9 729.4 704.82
821 3537.3 2314.4 1758.0 1464.6 1208.5 689.9 666.67
822 3566.8 2333.2 1772.0 1476.3 1218.0 693.9 670.48
823 3573.2 2335.2 1773.2 1478.1 1219.6 687.3 664.12
824 3550.2 2320.5 1762.3 1468.9 1212.2 684.1 661.07
825 3533.0 2308.5 1753.1 1461.6 1206.3 678.1 655.22
826 3588.2 2351.8 1786.7 1486.7 1226.0 714.7 690.64
827 3617.3 2371.4 1801.5 1498.6 1235.6 722.6 698.26
864 2383.1 1810.1 1506.5 1242.0 719.2 694.99
865 3605.1 2354.3 1787.4 1490.3 1229.5 687.3 664.16
866 3657.5 2387.7 1812.5 1511.2 1246.4 694.6 671.14
934 1496.1 1251.1 1036.7 564.4 545.32
965 1244.7 1031.8 505.2 488.06
966 1248.2 1034.6 506.5 489.27
972 1475.9 1217.8 689.1 665.85
978 1105.2 608.1 587.58
980 1166.4 648.7 626.79
994 617.5 596.67
996 633.2 611.87
997 627.6 704.12
998 639.7 715.34
999 640.4
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Table 10.12, continued

CUBIC MODEL

WELL
NO. 1980 80-81 80-82

RECORD LENGTH 
80-83 80-84 80-85 80-86 80-87 80-88

7 2.3E+09 3.9E+07 1.3E+07 6.5E+06 4.7E+06 3.5E+06 2.7E+06 9E+05 9E+05
11 1.8E+09 3.4E+07 1.2E+07 5.8E+06 4.2E+06 3.1E+06 2.5E+06 9E+05 9E+05
12 1.8E+09 3.4E+07 1.2E+07 5.8E+06 4.2E+06 3.1E+06 2.5E+06 9E+05 9E+05
13 1.9E+09 3.4E+07 1.2E+07 5.7E+06 4.1E+06 3.1E+06 2.4E+06 8E+05 8E+05
14 1.9E+09 3.4E+07 1.2E+07 5.7E+06 4.1E+06 3.1E+06 2.4E+06 8E+05 8E+05
15 1.9E+09 3.4E+07 1.2E+07 5.7E+06 4.1E+06 3.1E+06 2.4E+06 8E+05 8E+05
16 1.8E+09 3.1E+07 l.lE+07 5.3E+06 3.8E+06 2.8E+06 2.2E+06 7E+05 7E+05
17 1.8E+09 3.1E+07 l.lE+07 5.3E+06 3.8E+06 2.8E+06 2.2E+06 7E+05 7E+05
18 1.7E+09 3E+07 lE+07 5.1E+06 3.7E+06 2.7E+06 2.1E+06 7E+05 7E+05
19 l;7E+09 3E+07 lE+07 5.1E+06 3.7E+06 2.7E+06 2.1E+06 7E+05 7E+05
20 1.7E+09 2.9E+07 9.8E+06 4.9E+06 3.6E+06 2.7E+06 2.1E+06 7E+05 6E+05
21 1.7E+09 2.9E+07 9.8E+06 4.9E+06 3.6E+06 2.6E+06 2.1E+06 7E+05 6E+05
22 1.7E+09 2.9E+07 9.8E+06 4.9E+06 3.6E+06 2.6E+06 2.1E+06 7E+05 6E+05
26 1.4E+09 2.8E+07 9.9E+06 4.8E+06 3.5E+06 2.6E+06 2.1E+06 8E+05 8E+05
38 1.4E+09 2.3E+07 8E+06 4E+06 2.9E+06 2.2E+06 1.7E+06 5E+05 5E+05
39 1.4E+09 2.3E+07 8E+06 4E+06 2.9E+06 2.2E+06 1.7E+06 5E+05 5E+05
43 2.2E+09 3.4E+07 l.lE+07 5.5E+06 4E+06 3E+06 2.3E+06 6E+05 6E+05
44 2.4E+09 3.7E+07 1.2E+07 6.1E+06 4.4E+06 3.3E+06 2.5E+06 7E+05 7E+05
45 2.4E+09 3.7E+07 1.2E+07 6.1E+06 4.5E+06 3.3E+06 2.5E+06 7E+05 7E+05
74 l.lE+07 5.7E+06 4.1E+06 3.1E+06 2.4E+06 8E+05 8E+05
103 3.5E+07 1.2E+07 6E+06 4.3E+06 3.2E+06 2.5E+06 8E+05 8E+05
104 1.2E+07 6E+06 4.3E+06 3.2E+06 2.5E+06 8E+05 8E+05
105 3.6E+07 1.2E+07 6E+06 4.3E+06 3.2E+06 2.5E+06 8E+05 8E+05
106 3.6E+07 1.2E+07 6E+06 4.3E+06 3.2E+06 2.5E+06 8E+05 8E+05
108 3.4E+07 l.lE+07 5.7E+06 4.1E+06 3E+06 2.3E+06 7E+05 7E+05
109 3.4E+07 l.lE+07 5.7E+06 4.1E+06 3E+06 2.3E+06 7E+05 7E+05
115 3E+06 2.4E+06 8E+05 8E+05
116 l.lE+07 5.5E+06 4E+06 3E+06 2.3E+06 8E+05 8E+05
117 3.2E+07 l.lE+07 5.5E+06 4E+06 3E+06 2.3E+06 8E+05 8E+05
118 3.2E+07 l.lE+07 5.5E+06 4E+06 3E+06 2.3E+06 8E+05 8E+05
126 2.3E+07 8.1E+06 4.1E+06 2.9E+06 2.2E+06 1.7E+06 6E+05 6E+05
128 3.9E+06 2.8E+06 2.1E+06 1.6E+06 5E+05 5E+05
129 7.7E+06 3.9E+06 2.8E+06 2.1E+06 1.6E+06 5E+05 5E+05
130 2.3E+07 7.7E+06 3.9E+06 2.8E+06 2.1E+06 1.6E+06 5E+05 5E+05
176 3.4E+07 1.2E+07 5.9E+06 4.2E+06 3.2E+06 2.5E+06 9E+05 9E+05
700 4.3E+06 3.2E+06 2.5E+06 8E+05 7E+05
701 8E+05 7E+05
702 8E+05 8E+05
703 8E+05 8E+05
704 8E+05 8E+05
705 9E+05 8E+05
706 9E+05 8E+05
707 9E+05 9E+05
708 9E+05 9E+05
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Table

CUBIC

WELL
NO.

10.12, continued 

MODEL

1980 80-81 80-82
RECORD LENGTH 

80-83 80-84 80-85 80-86 80-87 80-88
710 9E+05 9E+05
716 9E+05 9E+05
731 7E+05 7E+05
732 7E+05 7E+05
734 7E+05 6E+05
735 6E+05 6E+05
737 6E+05 6E+05744

lE+06 lE+06
745 lE+06 lE+06
746 9E+05 9E+05
751 6E+05 6E+05
752 7E+05 6E+05
753 6E+05 6E+05
816 1.2E+07 5.9E+06 4.3E+06 3.2E+06 2.5E+06 9E+05 9E+05
817 1.2E+07 5.9E+06 4.2E+06 3.2E+06 2.5E+06 9E+05 8E+05
818 1.2E+07 5.8E+06 4.2E+06 3.1E+06 2.5E+06 9E+05 8E+05
819 l.lE+07 5.6E+06 4E+06 3E+06 2.4E+06 8E+05 8E+05
820 1.2E+07 5.9E+06 4.3E+06 3.2E+06 2.5E+06 9E+05 9E+05
821 l.lE+07 5.6E+06 4.1E+06 3E+06 2.4E+06 8E+05 8E+05
822 1.2E+07 5.7E+06 4.1E+06 3.1E+06 2.4E+06 8E+05 8E+05
823 1.2E+07 5.7E+06 4.2E+06 3.1E+06 2.4E+06 8E+05 8E+05
824 l.lE+07 5.7E+06 4.1E+06 3.1E+06 2.4E+06 8E+05 8E+05
825 l.lE+07 5.7E+06 4.1E+06 3E+06 2.4E+06 8E+05 8E+05
826 1.2E+07 5.7E+06 4.1E+06 3.1E+06 2.4E+06 9E+05 8E+05
827 1.2E+07 5.8E+06 4.2E+06 3.1E+06 2.5E+06 9E+05 9E+05
864 5.8E+06 4.2E+06 3.2E+06 2.5E+06 9E+05 9E+05
865 1.2E+07 5.8E+06 4.2E+06 3.1E+06 2.5E+06 8E+05 8E+05
866 1.2E+07 6E+06 4.3E+06 3.2E+06 2.5E+06 8E+05 8E+05
934 3.3E+06 2.4E+06 1.9E+06 6E+05 6E+05
965 2.5E+06 1.9E+06 5E+05 5E+05
966 2.5E+06 1.9E+06 5E+05 5E+05
972 3.1E+06 2.4E+06 8E+05 8E+05
978 2.1E+06 7E+05 7E+05
980 2.3E+06 8E+05 7E+05
994 7E+05 7E+05
996 7E+05 7E+05
997 9E+05 9E+05
998 9E+05 9E+05
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Table 10.13 Optimal Monitoring Networks for Trend Surface Models Fit to Area
A Data with Minimum Correlation of 0.9, Future Monthly Sampling
Frequency

Linear Trend Surface Model

Record Lenath Wells in Network Obiective Function
1980 38 9.19935
1980-81 129 6.10638
1980-82 129 4.5982
1980-83 129 3.3843
1980-84 129 2.8248
1980-85 129 2.5820
1980-86 129 2.3549
1980-87 965 1.4544
1980-88 965 1.4496

Quadratic Trend Surface Model

Record Lenath Wells in Network Obiective Function
1980 38 6762.16
1980-81 129 3946.17
1980-82 129 2717.33
1980-83 129 1771.32
1980-84 129 1347.64
1980-85 129 1128.71
1980-86 129 937.68
1980-87 129 504.91
1980-88 129 487.81

Cubic Trend Surface Model

Record Lenath Wells in Network Obiective Function
1980 26 1.368 X 10*
1980-81 38 2.347 X 10'
1980-82 129 7.678 X 10®
1980-83 129 3.864 X 10®
1980-84 129 2.801 X 10®
1980-85 129 2.089 X 10®
1980-86 129 1.627 X 10®
1980-87 129 5.191 X 10®
1980-88 129 4.999 X 10®
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Figure 10.6 Prediction Error Variance at Individual Wells for Single-site Linear 
Model Fit to All Available Data in Area A

illustrates this uncertainty for contour intervals of 0 ppb, 20,000 ppb, 40,000 ppb, 
and 60,000 ppb. Both the location of these contours and the uncertainty in the 
contours can be used by the water quality manager to evaluate the confidence in 
the model and in the optimally designed monitoring network.

Due to the highly correlated prediction error variances, the optimization of the 
network using the branch and bound technique resulted in a minimum number of 
sampling locations.®’ The optimization clearly indicated that the objective function 
was reduced with an increase in record length for the linear, quadratic, and cubic 
trend surface models. In addition, use of the multi-site polynomial models over the 
single-site polynomial models greatly reduces the monitoring network by replacing 
sampling at all individual well locations with the correlation implied by the multi-site 
model structure.

® A different spatial correlation constraint may be more appropriate for this data
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Figure 10.7 Prediction Error Variance at Individual Wells for Linear Trend 
Surface Model Fit to all Available Data in Area A

10.1.2.3 Physical Model. The error prediction variances at individual wells 
resulting from the physical model fit to the data from Area A are summarized in 
Table 10.14 and are plotted in Figure 10.10 for the physical model fit to all 
available data. Comparison of Figure 10.10 to Figure 10.8 illustrates that the 
uncertainty for the physical model is more highly variable than for the linear trend 
surface model. However, the majority of the wells had lower prediction variances 
based on the use of the physical model, as represented by the larger area contoured 
between 1.0 and 1.5 for the physical model.
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Figure 10.8 Prediction Error Variance Based on Optimal Monitoring Network for 
Linear Trend Surface Model Fit to All Available Data in Area A

The optimization of the monitoring network based on the physical model for Area A 
is summarized in Table 10.15.®^ With the existing wells, a maximum spatial 
correlation of the prediction error variance of 0.3 could only be obtained. Inclusion 
of additional wells in the network was not considered in this work but would 
increase the maximum spatial correlation obtainable. Figure 10.11 illustrates the 
reduction in the prediction error variance surface using the optimal sampling 
networks for the physical model fit to the data from 1980-88. Comparison of Figure 
10.11 to Figure 10.10 illustrates the reduction in the prediction error variance 
surface after sampling from the optimal monitoring network. Due to the uncertainty

As discussed for the parameter estimate behavior, the solution of the parameter 
variance matrix, V^, was not obtainable for less than five year of data due to 
the near singularity of the matrix to be inverted.
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Table

WELL
NO.

10.14 Error Prediction Variances at Individual Wells for 
Physical Model Fit to Data from Area A

RECORD LENGTH
1980-86 1980-86 1980-87 1980-88

1 28.3147976 9528.1025040 10.2826628 10.5326919
7 5.7732193 3.3532012 59.4745750 59.4667749
11 1.0000000 1.0000000 1.0000000 1.0000000
12 1.0000000 1.0000000 1.0000000 1.0000000
13 57.3753953 4.2333113 196.5267858 196.5275193
14 15.6611168 1.4167402 36.3838967 36.3839792
15 4.1074190 1.0199918 5.9318956 5.9319009
16 1.0000000 1.0000000 1.0000000 1.0000000
17 1.0000000 1.0000000 1.0000000 1.0000000
18 1.0000000 1.0002389 1.0000099 1.0000100
19 1.0000000 1.0001158 1.0000380 1.0000380
20 1.0000000 2.4905597 1.0000000 1.0000000
21 1.0000000 7.4820374 1.0000000 1.0000000
22 1.0000000 4.5477047 1.0000000 1.0000000
26 1.0020691 1.0000041 1.0058085 1.0058099
38 1.0000000 1.0000000 1.0000000 1.0000000
39 1.0000000 1.0000000 1.0000000 1.0000000
43 1.0000000 5.6493893 1.0000000 1.0000000
44 1.0000000 8.7689E+30 1.0000000 1.0000000
45 1.0000000 4.2459E+30 1.0000000 1.0000000
74 244.2130500 6552.1949175 1262.7927450 1262.9379197
103 1.1352807 2.6154992 1.0521954 1.0520993
104 1.0490475 2.6127660 1.0513665 1.0512712
105 1.0496531 3.0089049 1.0735255 1.0734070
106 1.0496531 3.0089049 1.0735799 1.0735612
108 1.0000000 8.84829E+31 1.0000000 1.0000000
109 1.0000000 8.84829E+31 1.0000000 1.0000000
115 27.5619734 18256.6414145 11.5788392 11.8007328
116 27.2904504 22888.0052680 12.3214480 12.5312830
117 27.6172427 23577.9455525 12.4613241 12.6699348
118 27.6480397 23577.9455525 12.4613209 12.6699316
126 1.0000000 2.380E+31 1.0000000 1.0000000
128 1.0000000 1.0000000 1.0000000 1.0000000
129 1.0000000 1.0000000 1.0000000 1.0000000
130 1.0000000 1.0000000 1.0000000 1.0000000
176 1.0000000 1.0000000 1.0000000 1,0000000
700 1.0000000 1.9188190 1.1269741 1.1269620
701 1.3923232 1.3923054
702 1.0000260 1.0000353
703 1.0000434 1.0000576
704 1.0000089 1.0000110
705 19.6310984 19.6289475
706 23.7446039 23.7419315
707 1.0000000 1.0000000
708 1.0000000 1.0000000

(continued)
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Table 10.14, continued

WELL RECORD LENGTH 
NO. 1980-86 1980-86 1980-87 1980-88
710 1.0000000 1.0000000
716 1.0000000 1.0000000
731 1.0000000 1.0000000
732 1.0000000 1.0000000 •
734 1.0000000 1.0000000
735 1.0000000 1.0000000
737 1.0000000 1.0000000
744 1.0000000 1.0000000
745 1.0000000 1.0000000
746 1.0000000 1.0000000
751 1.0000000 1.0000000
752 1.0000000 1.0000000
753 1.0000000 1.0000000
816 1.0000000 1.0000000 1.0000000 1.0000000
817 1.0000000 1.0000000 1.0000000 1.0000000
818 1.0000000 1.0000000 1.0000000 1.0000000
819 1.2071539 2.5783953 2.3796683 2.3804162
820 1.0000000 1.0000000 1.0000000 1.0000000
821 27.5377304 17212.2550000 11.4250242 11.6502032
822 1.0000000 1.0000000 1.0000000 1.0000000
823 1.0000000 1.0000002 1.0000000 1.0000000
824 1.0000000 1.0000000 1.0000000 1.0000000
825 1.0000000 1.0000000 1.0000000 1.0000000
826 1.0000000 1.0000000 1.0000000 1.0000000
827 1.0000000 1.0000000 1.0000000 1.0000000
864 1.0000000 1.0000000 1.0000000 1.0000000
865 1.0000000 1.0034251 1.0000319 1.0000319
866 1.0003488 2.0640601 1.0692998 1.0692907
934 1.0000000 1.668E+34 1.0000000 1.0000000
965 1.0000000 1.0000000 1.0000000 1.0000000
966 1.0000000 1.0000000 1.0000000 1.0000000
972 1.0000000 1.0000000 1.0000000 1.0000000
978 1.0000000 1.0000000 1.0000000
980 1.0000000 1.0000000 1.0000000
994 1.0021430 1.0036620
996 1.0053163 1.0053053
997 1.0000000 1.0000000
998 1.0000000 1.0000000
999 1.0000000 1.0000000
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10.1.2.4 Summary of Monitoring Network Optimization. The individual sampling 
frequencies required at individual wells based on the prediction error variances 
(Tables 10.11, 10.12, and 10.14) are reduced by the use of a multi-site model. 
Based on the model applicability analyses, the linear trend surface model provided 
the best description and prediction of PCE groundwater quality behavior of the 
multi-site models evaluated. Comparison of the optimal monitoring networks and 
associated objective functions for the multi-site models considered indicates that 
the objective function is minimized by use of a linear trend surface model. Figure 
10.9 illustrates the uncertainty in model predictions using the optimally designed 
monitoring network based on the linear trend surface applied to all available data in 
Area A. Given that this uncertainty is acceptable to the groundwater manager, the 
monitoring network in Area A can be reduced to one well (965) sampled monthly 
without a loss of information from the monitoring network system.



Table 10.15 Optimal Monitoring Networks for Physical Model Fit to Area A
Data; Spatial Correlation = 0.3

RECORD LENGTH WELLS 0 B J E C T 1 V E
FUNCTION

1980-1985 15; 818 5.31457
1980-1986 14; 700 3.33556
1980-1987 1; 15; 104 17.26592
1980-88 1; 15; 104 17.51586



N 4eee 4ZEe -4Eee 47Ee eeee Ezee B760

vN

Figure 10.12 Upper and Lower 95% Confidence Bounds on Predicted 
Concentrations Based on Physical Model Fit to All Available Data

10.1.3 Summary of Model Selection and Network Design for Area A.
The model selection process indicated that the multi-site models were superior to 
the single-site models in model applicability. This superiority of the multi-site 
models was also evidenced by the significantly reduced average prediction error 
variances at individual wells. Of the multi-site models considered, none exhibited 
"ideal" behavior based on a combination of test statistics. However, based on both 
model applicability and monitoring network design considerations, the linear trend 
surface model was superior for the PCE groundwater quality data in Area A. It is 
highly recommended that a fractured flow type model be considered for further 
evaluation given the statistical characteristics of the data, the results from the 
physical porous media model goodness-of fit evaluation, and other site information. -
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Area C is defined by the limits shown in Figure 10.1. The suspected source for PCE 
in Area C is a construction debris landfill which was used beginning in the early 
1970s. Groundwater flow is principally to the south.

10.2.1 Model Selection.
The selection of a model for describing the PCE groundwater quality data in Area C 
is based on the protocol outlined in Chapter 9. Specifically, goodness-of-fit of the 
candidate models is evaluated based on an evaluation of F-test statistics, model 
parameter behavior, and residual behavior. Model prediction capabilities are then 
evaluated using prediction bias, prediction bias variance, and the associated t-test, 
as discussed below.

10.2.1.1 Single-site Polynomial Models. Single-site polynomial models were fit to 
the data from Area C using least-squares regression. The results of the F-test 
statistics for those wells exhibiting significant polynomial trends are summarized in 
Table 10.1 6. Approximately one-third of the wells did not exhibit any significant 
linear trend. Only two of the ten wells which exhibited significant linear trends, 
exhibited any significant higher order trends. Lastly, those wells that did show a 
significant polynomial trend did so only over limited time periods. Parameter 
behavior was not evaluated due to the limited data length.

Table 10.17 summarizes the residual temporal correlations observed for the 
significant single-site models based on the results of the F-test analyses. Those 
correlations associated with record lengths which exhibited significant trends are

10.2 Area C

Table 10.16 F-test Statistics for Single-site Polynomial Models Fit to Data From 
Area C

WELL RECORD 
No. LENGTH

Available F Test Results - Period of Significance 
Data______Linear______Quadratic(a) Cubic'*'

51 18 1980-82 1980'"’ NS'"’ (c)
53 77 1980-88 1983,1987,1988 NS (0
54 73 1980-88 1981,1982 1982 1982
69 41 1980-87 1981 NS (c)
1 1 1 16 1981-87 1981 NS (c)
835 8 1982-87 1983 NS (c)
836 8 1982-87 1983 NS (0
837 23 1982-88 1982 NS (c)
922 9 1984-87 1987 1987 NS
923 9 1984-87 1986,1987 NS (c)

a)
b)
c)
d)

F-test addition over lower order polynomial
NS = not significant
lower order model not significant
years indicating period for 1980 through year designated
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Table 10.17 Residual Temporal Correlation^®^ for Single-Site Polynomial Models Fit to Data from Area C 

Linear Model

Well
No. 1980 1980-81 1980-82 1980-83 1980-84 1980-85 1980-86 1980-87 1980-88
51
53
54 
69

111
835
836
837
922
923

0.0242 0.02930.0351 
-0.0050 -0.0030 -0.0063 
-0.0214

0.0293
-0.0040

0.0293
-0.0016

0.0093 «0.0014 -0.0033 -0.0017 
-0.0940 «0.0263 -0.0067 -0.0056 -0.0044 

(a) -0.1102 -0.0036 -0.0018
(a) -0.0756
(a) -0.0756

-0.0441 -0.0214

0.0293
- 0.0010
-0.0013
-0.0037
0.0187
-0.0437
-0.0437
-0.0157

0.0293
-0.0008
- 0.0010
-0.0035
0.0225
-0.0360
-0.0360
-0.0114
-0.0499
- 0.0712

0.0293 
-0.0007 
-0.0009 -.0009 
-0.0034 -.0034 
0.0254 
-0.0205 
-0.0205
-0.0081 -.0073
-0.0534
-0.0608

Quadratic Model 

Well
No. 1980 1980-81 1980-82 1980-83 1980-84 1980-85 1980-86 1980-87 1980-88
54 -0.0164 -0.0088 iOl 

922

Cubic Model

-0.0047 -0.0029 -0.0016 -0.0012 -0.0009 -.0009
•0.0773 ioioeii

We11
No. 1980 1980-81 1980-82 1980-83 1980-84 1980-85 1980-86 1980-87 1980-88
54 -0.0350 -0.0089 «0.0059 -0.0099 -0.0030 -0.0019 -0.0015 -0.0012 -.0012

(a) correlations for models which were significant based on the F-test statistics are highlighted



highlighted. None of the residual correlations were significant. In addition, the 
residual correlations generally decreased with an increase in record length.
However, since there was no difference in the residual temporal correlations 
between the wells which did have significant polynomial trends and those which did 
not, the evaluation of residuals did not aid in model discrimination.

The skewness of the residuals from the significant polynomial models based on the 
results of the F-test and residual correlation analyses are summarized in Table 
10.18. Those skewness coefficients associated with record lengths which 
exhibited significant trends based on the results of the F-test and residual 
correlation analyses are highlighted on Table 10.18. As for the residual correlation, 
no significant skew was detected. In addition, there was no observable pattern to 
the residual skew as the record length increased.

Based on these goodness-of-fit statistics, the linear single-site models appears to be 
good models for describing the PCE groundwater quality at select wells and record 
lengths. However, the single-site models were not significant for the vast majority 
of wells and record lengths.

For the single-site models, the average prediction bias and associated t-test 
statistics for the wells exhibiting significant linear, quadratic, or cubic trends are 
summarized in Table 10.19. Biases associated with significant single-site models 
based on the results of the F-test and the residual behavior analyses are highlighted.

In addition, biases which were significant based on the t-test analysis are denoted 
by highlighted t-test values. As shown by Table 10.19, most of the models 
significant based on the goodness-of-fit tests, exhibited significant prediction bias. 
Only the predictions made from a linear model fit to the data from MW-54 did not 
exhibit a significant bias over the period from 1980-81, as indicated by a 
highlighted bias and a non-highlighted t-test value.

In summary, the single site polynomial models are not good models for describing 
the PCE groundwater quality data in Area C. The goodness-of-fit tests only indicate 
a few wells over limited record lengths which exhibited significant polynomial 
trends. The statistical behavior was not consistent and does not necessarily 
improve with record length. In addition, prediction bias is generally significant using 
these single-site polynomial models.

10.2.1.2 Trend Surface Models. The F-test results for the trend surface models fit 
to the data are summarized in Table 10.20. For the trend surface models applied to 
all available data, a linear model was significant for 1980 and 1980-81 (one and 
two years of data) and periods of 1980-1985 (six years) through 1980 -1988 (nine 
years). For those periods which the linear model was significant, the quadratic and 
cubic order models were also significant at the a = 0.05 significance level.

As for Area A, a reduction in data was evaluated to assess the behavior of the F- 
test statistics. The F-test statistics did not consistently decrease with a decrease in 
sampling frequency as did the statistics for Area A. However, the only t-test 
statistic which indicated that the trend in the F-test statistics was significantly
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Table 10.18 Residual Skewness(a) for Single-Site Polynomial Models Fit to Data From Area C 

Linear Model 

Well

cn
CO

No. 1980 1980-81 1980-82 1980-83 1980-84 1980-85 1980-86 1980-87 1980-88
51 0.0070  ̂0.0314 0.0332 0.0332 0.0332 0.0332 0.0332 0.0332
53 0.0956 0.0598 0.0405 0.0311 0.1122 0.1015 0.0915 0.0856 0.0851
54 -0.1178 0.0606 0.1056 0,1734 0.1545 0.1299 0.1165 0.1072 0.1064
69 0.0835 0.0960 0.0941 0.0897 0.0888 0.0850 0.0818 0.0807 0.0807
111 (a) 0.2825 0.1689 0.1567 0.1070 0.0907 0.0702
835 ( a ) 0.0085 0.0678 0.1481 0.1654
836 ( a ) 0.0085 0.0679 0.1481 0.1654
837 (a) 0.1774 0.1650 0.1460 0.1338 0.1255 0.1231
922 0.2114 0.0240
923 0.0545 0.0956

Quadratic Model 

Well
No. 1980 1980-81 1980-82 1980-83 1980-84 1980-85 1980-86 1980-87 1980-88
54 -0.1433 0.0598 -O.OH

922

Cubic Model

0.1575 0.1393 0.1231 0.1133 0.1060 
0.1700 D.1081

0.1053

Well
No. 1980 1980-81 1980-82 1980-83 1980-84 1980-85 1980-86 1980-87 
54 -0.0522 0.0754 -0.0676 0.1231 0.1394 0.1191 0.1071 0.0999

(a) skewness for models which were significant based on the F-test statistics ajre_high1_i^h^^



Table 10.19 One-Year Prediction Bias^®^ and Associated T-test Statistics^^^ for Single-site Polynomial Models 
Fit to Data from Area C

Linear Model
RECORD LENGTH

WELL 1980 1980-81 1980-82 1980-83 1980 -84 1980-85 1980-86
NO. BIAS T-TEST BIAS T-TEST BIAS T-TEST BIAS T-TEST BIAS T-TEST BIAS T-TEST BIAS T-TEST
51 -50.6 -5.211 
53 14.736 1.3145 -3.684 -0.057 -22.72 -0.827 -15.7 -5.68 -29.47 -3.718 -11.38 -2.322 -10.93 -6.676
54 -10.06 -1.317 2.447 0.5257 1244.9 -18.07 -45.17 -27.31 5.328 0.3486 -5.61 -19.43 1.941 1.7422
69 1.812 4.1353 2.556 3.3678 3.912 0.977 -1.643 -116.2 -0.692 -37.9 -0.08 -2.53
111 -244.1 -12.5 279.89 3.9236
835 8.596 6.23
836 8.596 6.23
837 -25.37 -9.732 -0.28 -8.858 1.302 1.55 6.9318 1.512

Quadratic Model
RECORD LENGTH

WELL 1980 1980-81 1980-82 1980-83 1980-84 1980-85 1980-86
NO. BIAS T-TEST BIAS T-TEST BIAS T-TEST BIAS T-TEST BIAS T-TEST BIAS T-TEST BIAS T-TEST
54 -1.776 -0.232 5.753 1.0184 -664.2 -6.533 12.432 1.6267 62,752 3 6719 22.56 12.205 18.52 -6.686

Cubic Model
RECORD LENGTH

WELL 1980 1980-81 1980-82 1980-83 1980-84 1980-85 1980-86
NO. BIAS T-TEST BIAS T-TEST BIAS T-TEST BIAS T-TEST BIAS T-TEST BIAS T-TEST BIAS T-TEST
54 -155.1 -3.769 28.42 -2.147 -1446 -3.785 198.32 S16625 68.672 4.0184 -11.09 -6.307 -17.46 -8.5051

(a) biases highlighted indicate those models and record lengths which exhibit a significant model fit based 
on F-test and residual analyses

(b) t-test statistics significant at the o= 0,05 confidence level are highlighted
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Table 10 20 F-test Results^®’ and Associated t-tests for Multi-site Models Fit to Data from Area C

Record Frequency of Sampling
J-enqth Node! All Bimonthly Quarterly Triannual Biannual t-test
1980 Linear 4.10$ 5.019 111666 2.946 3.770 -.04571

Quadratic 3.209 7.332 18.625 11.152 (b) (b)
Cubic 1.920 3.360 (b) (b) (b) (b)
Physical 1801958 I53i976iiii 199.475 25.376 -2.11282
Size 38 22 14 13 9

1980-81 Linear 3.397 2.882 2.552 3.101 3.421 -.10144
Quadratic 30.271 22.210 17.775 15.550 12.951 ^4.87063
Cubic 39.910 43.611 32.929 27.192 22.945 -1.35043
Physical 1233.793 622.157 2029.275 1435.467 111.935 -0.00928
Size 79 49 33 30 21

1980-82 Linear 2.481 1.724 1.332 0.923 0.403 .08201
Quadratic 16.820 12.138 8.560 7.685 7.365 -1.08114
Cubic 14,392 12.098 8.956 8.593 11.919 -1.60613
Physical 54341.38 1330.915 523.84 6322.542 455.859 0.53841
Size 99 68 49 46 31

1980-83 Linear 1.158 1.005 0.723 0.507 0.105 .05941
Quadratic 15.217 13.384 9.816 9.001 5.798 -.15988

Cubic 11.833 8.834 6. SSI............................. 5.951 3.836 .22847

Physical 1027.948 803.96 485.638 1553.328 2544.249 -.86586
Size 134 95 71 66 47

1980-84 Linear 1.502 1.729 1.168 1.290 0.403 .04151
Quadratic 13,769 16.061 12.255 11.473 7.306 -.21771

Cubic 9.819 12.175 9.048 8.710 S.458 - .21625

Physical 4082.297 827.887 1189.488 1707.659 519.046 .26382
Size 181 130 97 94 67



Table 10.20, continued

Record Frequency of Sampling
Lenoth Model All Bimonthly Quarterly Triannual Biannual t-test

1980-85 Linear J.578 3.081 2.459 2.628 1.381 .03069
Quadratic 23*928 23.920 16.838 15*536 10.491 -.08189
Cubic 13.274 14.234 10,067 9.547 6.4001 -.12344
Physical 6076.29 908.058 3563.029 1140.936 911.281 .11611
Size 231 165 124 119 89

1980-86 Linear 8,476 6.536 4.781 4.604 2.570 .03521
Quadratic 31.406 28,954 21,227 19.226 13.286 -.07002
Cubic 19.282 18.691 13.004 12.259 8.317 -.06453
Physical 1145.618 1468.996 1296.66 5333.695 1040.775 -.07606

tn
cn Size 326 235 178 167 123

1980-87 Linear 11.180 7.770 6.687 5.421 3.070 .02245
Quadratic 28.285 23.917 17.471 17.292 11.276 -.01760
Cubic 18.524 16.210 11.647 10*724 7*150 .00930
Physical 3112.268 4701*232 9290.391 2244.329 1394*134 -.01913
Size 392 283 220 203 155

1980-88 Linear 11.209 7.861 5.805 S.547 3.197 .02361
Quadratic 28*558 24.219 17.753 17.635 11*533 -.01626
Cubic 18.754 16*484 11*911 10.989 7.392 .01112
Physical 9671.102 1758.162 2318*713 885*414 4110.417 -.00421
Size 396 287 224 207 159

(a) F-test values significant at the a= 0.05 level are highlighted

(b) insufficient data to calculate



different than for a correct model was for a quadratic trend surface model fit to 
data from 1980 through 1981 as indicated by a significant t-test value.
The behavior of selected model parameter estimates is illustrated in Figures 10.13, 
10.14, and 10.15 for the linear, quadratic and cubic trend surface models, 
respectively. The parameter estimates do not converge towards a single value 
within the specified 95% confidence limits. This is indicative of an incorrect model 
structure. The average temporal and spatial residual correlations for the multi-site 
models are summarized in Table 10.21. All correlations significant at the a = 0.05 
significant level are highlighted. As for Area A, the temporal correlations were more 
significant than the spatial correlations. In general, the correlations increased with 
an increase in record length, consistent with an incorrect model structure.

The skewness of the residuals resulting from the trend surface models fit to all 
available data are summarized in Table 10.22. The skewness coefficients were 
significant for a majority of the models and record length considered, particularly for 
the longer record lengths. This could be indicative of either an incorrect model 
structure or non-additive non-normal data errors.

Based on the F-test analysis, parameter behavior, and residual behavior, the trend 
surface models do not appear to adequately describe the PCE groundwater quality 
data in Area C. This is indicated by the inconsistent F-test behavior with an 
increase in record length, parameter estimates which vary outside specified 
confidence limits and do not converge towards single values, and significant 
residual correlations which increase with an increase in data size.

AREA C -  LINEAR TREND SURFACE
PARAMETER A

AREA C -  LINEAR TREND SURFACE
PARAkCTER B

AREA C -  LINEAR TREND SURFACE AREA C -  LINEAR TREND SURFACE
PARAtCTER 0

RBOOItOLBM m i

Figure 10.13 Upper and Lower 95% Confidence Limits of Parameter Estimates 
for Linear Trend Surface Model Fit to All Data in Area C
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AREA C -  QUADRATIC TREND SURFACE
PARAtCTCR A

AREA C QUADRATIC TREND SURFACE
PARAKTER B

RECXIRD LENGTH RECORD LENGTH

AREA C -  QUADRATIC TREND SURFACE
PARAMETER C

Figure 10.14

AREA C -  QUADRATIC TREND SURFACE
PARAMETER 0

Upper and Lower 95% Confidence Limits of Selected Parameter 
Estimates for Quadratic Trend Surface Model Fit to All Data in 
Area C

AREA C -  CUBIC TREND SURFACE
PARAMETER A

AREA C -  CUBIC TREND SURFACE
PARAACTER B

AREA C -  CUBIC TREND SURFACE
PARAMETER C

AREA C -  CUBIC TREND SURFACE
PARAACTER D

Figure 10.15 Upper and Lower 95% Confidence Limits of Selected Parameter 
Estimates for Cubic Trend Surface Model Fit to All Data in Area C
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Table 10.21 Average Residual Temporal and Spatial Correlation Ranges for
Multi-Site Models Fit to Data from Area C

Temporal Residual Correlation

YEAR LINEAR QUADRATIC CUBIC PHYSICAL
1980 -.0612 .2128 .1586 .00168
1980-81 l e i i i i i i i .3485 .1948 .13789
1980-82 .1767 .1835 .1980 -.00326
1980-83 -.0028 .2628 .1460 .04646
1980-84 -.0018 .4433 .2085 .3371
1980-85 -.0428 .4697 .4770 .3650
1980-86 .4002 .6041 .5237 .4433
1980-87 .4103 .5586 .5363 .5382
1980-88 .4312 .5553 .5378 .5378

Soatial Residual Correlation

YEAR LINEAR QUADRATIC CUBIC PHYSICAL
1980 -.0405 -.0017 .0506 -.0341
1980-81 .4251 .0832 -.0401 .05933
1980-82 .1657 .0571 .0542 .01731
1980-83 .0611 .0244 .0457 .14635
1980-84 .1444 .2332 .1155 .1969
1980-85 .1788 .1594 .0182 .0650
1980-86 .4063 .1769 .1010 .01016
1980-87 .3772 .5014 .1946 -.0092
1980-88 .3735 .4686 .1982 -.0083

(a) correlations significant at the o = 0.05 level are highlighted

The average prediction biases resulting from the trend surface models are 
summarized in Table 10.23. The t-test statistics associated with 
these prediction biases are also summarized in this table. T-test values significant 
at the o = 0.05 significance level are highlighted. The t-test indicates the 
prediction biases resulting from fitting the linear model to the data are generally not 
significant (except for the period of 1980-82 which did not exhibit a significant 
linear trend based on the F-test analysis). The t-test associated with the prediction 
biases resulting from fitting the quadratic and cubic models to the data are 
significant for approximately one-half of the record lengths considered.

The trend surface models appear to offer a significant improvement over the single-
site models, with the F-test statistic indicating a significant model fit. However, 
based on the results from the evaluation of parameter behavior, residual behavior.
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Table 10.22 Residual Skewness *' for Multi-Site Models Fit to Data from Area C

YEARS LINEAR QUADRATIC CUBIC PHYSICAL
I960 .1117 .1092 -.1699 1.01616
1980-81 -.3488 .2194 .7131 0.85078
1980-82 *7942 .4583 .5476 1.13935
1980-83 .9236 1.3876 1.3161 • 1.11119
1980-84 .9588 2.0664 1.4839 1.24422
1980-85 1.0813 1 -8409 1.7418 1.31739
1980-86 .1470 .4604 .1812 0.6235
1980-87 .3780 .8525 .6535 0.4801
1980-88 .3777 .8418 ,6541 O iiS G iiii:

(a) skewness coefficient significant at the a = 0.05 level are highlighted

Table 10.23 One-Year Prediction Bias and Associated T-test Statistics'*’ for 
Multi-Site Models Fit to Data from Area C

BIAS

YEAR LINEAR QUADRATIC CUBIC PHYSICAL
1980 -3.963 77.352 476.001 100.596
1980-81 1.399 -47.375 -230.266 525.0116
1980-82 -78.452 -230.772 -116.834 125.745
1980-83 -15.442 63.615 172.640 283.672
1980-84 13.742 21.495 24.343 50.71144
1980-85 -13.898 21.007 32.635 -110.247
1980-86 3.799 13.163 -20.275 -28.6885
1980-87 -30.505 

T-TEST STATISTICS

24.886 6.294 -121.885

YEAR LINEAR QUADRATIC CUBIC PHYSICAL
1980 -0.8156 7.5957 6 4679 .52161
1980-81 0.0329 -1.1138 -1.9010 NA
1980-82 -5.7492 -10.3752 -1.4314 .29017
1980-83 -0.8362 3.6727 7,5416 .86539
1980-84 0.9462 3.3420 0.9096 .3025
1980-85 -1.5346 2.7603 2.5608 -.2579
1980-86 0.2548 1.4228 »2.6526 -.0654
1980-87 -1.8165 2.2804111 1.0571

(a) t-test statistics significant at the a = 0.05 level are highlighted

-.9213
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and predication bias, the trend surface models are inappropriate for describing the 
behavior observed in the PCE groundwater quality data from Area C.

10.2.1.3 Physical Model. As for Area A, the range of potential physical model 
parameter values was constrained by both historical site use information and 
theoretical chemical behavior. The range of potential parameter values for the 
physically-based two-dimensional model fit to the PCE groundwater quality data 
from Area C are summarized in Table 10.24.

Table 10.24 Constraints on Physical Model Parameters for Area C

Parameter Ranoe Information

Co >600 minimum based on observed concentration in 
source area

0̂ 1970-1982 site history; 1970 was earliest use of area as 
construction landfill; in 1982 the source area was 
removed

R 2.5 Theoretical (see p. 184)

X 0.0 Theoretical (see p. 184)

a > 0.0 no separate phase source detected; therefore 
modeled as decaying source

Xo 4600-5000 Identification of source location based on 
historical use

Yo 7400-7800

The suspected source area in Area C was a construction landfill which was used 
since the early 1970s. In 1982, the source area was removed. No separate 
phase product has been detected in Area C; therefore, it is assumed that there 
was a decaying source from the early 1970s to 1982 (a>0). The 
chemical/physical retardation (R) and decay properties {X) were assumed to be 
equivalent to those for Area A, as discussed in Section 10.1.1.3.

The F-test results for the physical model fit to the data from Area C are 
summarized in Table 10.20 along with the results from the other multi-site 
models. As shown in Table 10.20, the physically-based model is significant 
based on the F-test for all data subsets considered. In addition, the significance 
of the fit is an improvement over the results for the multi-site statistical models 
considered as evidenced by the significantly higher F-test values. Lastly, the 
trend in the F-test statistics were not significantly different than the theoretical 
slope of the F-test values for a correct model, as discussed in Chapter 8. 
Therefore, the F-test results are consistent with a correct model structure.

161



The parameter values resulting from fitting the physical model to all available 
data over different record lengths and sampling frequencies are summarized in 
Table 10.25 for Area C. In addition. Figures 10.16 through 10.20 illustrate the 
behavior of these estimated parameters for different sampling frequencies. As 
illustrated by these figures and Table 10.25, the behavior of the parameter 
estimates is consistent with parameter behavior for a correct model in that the 
convergence of parameters is maintained within the confidence limits calculated 
and the parameter estimates converge towards single values as the data set 
increases in size.

The correlation of the residuals is summarized in Table 10.21 for the physical 
model fit to all available data over different record lengths. The temporal 
correlation was significant for longer record lengths, although the spatial 
correlation was not significant over any record lengths. The effect of data 
reduction on the residual temporal correlation is summarized in Table 10.26. The 
increase of these residual temporal correlations with an increase in the data set is 
consistent with a significant residual correlation. The residual skewness for the 
physical model fit to the data is summarized in Table 10.22 with the results for 
the other multi-site models. The skewness coefficients are significant for the 
physical model fit to all data record lengths. The results from the residual 
analysis could indicate either an incorrect model structure or a non-additive, non-
normal data error.

The goodness-of-fit tests performed for the physical model fit to Area C data 
indicate that the physical model is relatively good at describing the PCE 
groundwater quality data. The significance of the residual temporal correlations 
and residual skew indicates a more complex physical model with consideration of 
non-normal data my be appropriate for further consideration.

The one-year prediction bias and associated t-test statistics are summarized in 
Table 10.27 for the physical model fit to the data from Area C. None of the one- 
year prediction biases based on the model fit to all available data were 
significant. Some of the prediction biases for the physical model fit to reduced 
data sets were significant based on the t-test results. However, the prediction 
biases generally reduced as the frequency of sampling increased. This is 
indicative of a correct model structure.

The results of the prediction tests for the physical model fit to the data from 
Area C indicate a significant model. These results strengthen the confidence in 
the physical model based on the goodness-of-fit tests.

10.2.1.4 Summary of Model Selection
Of the models considered, the trend surface models were a significant 
improvement over the single-site statistical models in that the F-tests were 
consistently significant. In addition, the physical model was a significant 
improvement over the multi-site statistical models in that the parameter behavior 
and prediction bias behavior was consistent with the expected behavior for a 
correct model structure. Clearly, of the models considered, the physical model 
was the best model at describing and predicting the groundwater quality 
behavior observed. The only non-ideal behavior exhibited by the statistics was
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Table 10.25 Best-fit Physical Model Parameter Estimates'*’ for Area C

PARAMETER
Y-RS OF SAMPLING Dt y a
RECORD FREQUENCY

1980 All 1600 10 1.5 .15 .0010
Bimonthly 1675 10 1.5 .15 .0048
Quarterly 1575 10 1.5 .15 .0058
Triannual 1575 10 1.5 .15 .0041
Biannual 1500 10 1.5 .15 .0053

80-81 All 1600 10 1.5 .15 .0010
Bimonthly 1550 10 1.4 .15 .0011
Quarterly 1575 10 1.5 .15 .0009
Triannual 1575 10 1.5 .15 .0041
Biannual 1650 10 1.5 .15 .0008

80-82 All 1550 10 1.5 .16 .0011
Bimonthly 1625 10 1.4 .15 .0010
Quarterly 1575 10 1.4 .15 .0008
Triannual 1600 10 1.5 .15 .0008
Biannual 1625 10 1.4 .15 .0007

80-83 All 1600 10 1.5 .15 .0011
Bimonthly 1550 10 1.4 .15 .0010
Quarterly 1625 10 1.5 .15 .0009
Triannual 1650 10 1.5 .15 .0009
Biannual 1525 10 1.5 .15 .0007

80-84 All 1675 10 1.5 .15 .0012
Bimonthly 1600 10 1.5 .15 .0011
Quarterly 1675 10 1.5 .15 .0010
Triannual 1550 10 1.4 .15 .0009
Biannual 1575 10 1.5 .15 .0008

80-85 All 1600 10 1.5 .15 .0012
Bimonthly 1600 10 1.5 .15 .0011
Quarterly 1600 10 1.4 .15 .0010
Triannual 1625 10 1.5 .15 .0010
Biannual 1625 10 1.5 .15 .0009

80-86 All 1575 10 1.5 .15 .0011
Bimonthly 1600 10 1.5 .16 .0011
Quarterly 1600 10 1.5 .15 .0009
Triannual 1625 10 1.5 .15 .0009
Biannual 1525 10 1.5 .16 .0008

(continued)
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Table 10.25, continued

PARAMETER
Y R S O F  
RECORD

SAMPLING
FREQUENCY

Co D, Dr V a

80-87 All 1550 10 1.5 .15 .0013
Bimonthly 1650 10 1.4 .15 .0010
Quarterly 1650 10 1.4 .15 .0009
Triannual 1550 10 1.5 .15 .0008
Biannual 1525 10 1.5 .15 .0007

80-88 All 1675 10 1.5 .15 .0010
Bimonthly 1650 10 1.5 .15 .0010
Quarterly 1650 10 1.5 .15 .0009
Triannual 1525 10 1.5 .15 .0008
Biannual 1675 10 1.5 .15 .0008

TOLERANCE'*” ±25 ±1 ±0.1 ±.01 ±.0001

(a) parameter estimates for Xq, Y,, and a were 4800, 6200, and 200 
feet,respectively, for all data subsets

that of the significant temporal correlation of the residuals and the skewness of 
the residuals. None of the models exhibited a temporal residual correlation which 
was not significant. This information, along with the significant skewness of the 
residual for the physical model fit to the data could indicate a non-additive, non-
normal error rather than an incorrect model structure. Lastly, further refinement 
of the physical model to address the vertical non-homogeneity of the system 
should be considered in further model refinement evaluations.

10.2.2 Monitoring Network Optimization.

Optimal monitoring networks were evaluated for all the models considered, 
regardless of the results of model applicability analyses in order to compare the 
networks.

10.2.2.1 Single-Site Polynomial Models. As discussed earlier, only sampling 
frequency can be optimized for single-site polynomial models since there is no 
spatial correlation implied by the models. Table 10.28 summarizes the error 
prediction variance at each well in Area C for a specified future monthly sampling 
frequency. The error prediction variances vary dramatically for the different 
wells and different record lengths considered. The error prediction variances 
associated with models significant based on the F-test evaluation (highlighted in
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SOURCE INmAL CONCENTRA7XX4 ESTIMATE
IBM -AREAC; A U .DATA

LONOnUOMAL 06PERSCN ESTIMATE
BM -AREAC ; AUO ATA

TRANSVERSE OSPERSON ESTIMATE 
IBM-AREAC; ALLOATA

VELOCITY ESTIMATE 
BM-AREAC: ALLOATA

HALf-LENQTH OF SOURCE AREA ESTIMATE 
BM-AREAC: ALLOATA

SOURCE DECAY CONSTANT ESTIMATE 
BM-AREAC; ALLOATA

Figure 10.16 Upper and Lower 95% Confidence Limits of Selected 
Parameter Estimates for Physical Model Fit to All Data in 
Area C
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N T W . SOURCE CONCENTRATION ESTIMATE
IBM-AREA C: BIMONTHLY DATA

UONOmiONAL 08P B «K 3N  ESTWATE
BM -AREAC ; BRtCNTHLY DATA

S
8:

TRANSVERSE DISPERSION ESTIMATE 
IBM-AREA C; BIMONTHLY DATA

VELOCITY ESTIMATE 
BM-AREAC; BIMONTHLY DATA

HALF-LENGTH SOURCE AREA ESTIMATE 
IBM-AREA C; BIMONTHLY DATA

SOURCE DECAY CONSTANT ESTIMATE 
BM-AREAC: BMONTHLYDATA

Figure 10.17 Upper and Lower 95% Confidence Limits of Selected 
Parameter Estimates for Physical Model Fit to Bimonthly 
Data in Area C
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MmAL SOURCE CONCENTTVk-nON

$ i 
5 I

LONGrrUONAL OBPBeON ESTIMATE 
iBM-AflEAC; QUARTBV.YO^TA

t r a n s v e r s e  DSPERSION ESTIMATE 
BM • AREA C; CXIARTERLY DATA

VELOOTY ESTIMATE 
BM-AREAC: QUARTERLY DATA

HAL/.IB«3TH SOURCE AREA ESTMATE 
BM.AREAC; QUARTERLY DATA

SOURCE DECAY CONSTANT ESTMATE 
BM>AREAC; QUARTERLY DATA

Figure 10.18 Upper and Lower 95% Confidence Limits of Selected 
Parameter Estimates for Physical Model Fit to Quarterly 
Data in Area C
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w m A L S C X J B C E C O N C O r m A T KI N E S TI M A T E
I B M - A R E A C; T n A N N U A L O A T A

U O N Grr u O M A L O B P E n a O N E S TI M A T E
S M - A R E A C : T TI A N N U A L O A T A

■ mA N S V E B S E O S P E B SI O N E S TI M A T E 
I B M- A R E A Cl T U A N N U A L O A T A

V E L O O T Y E S TI M A T E 
B M- A R E A C: T RI A N N U A L D A T A

H A L F- L E N G T H S O U R C E A R E A E S TI M A T E 
I B M- A R E A C: T R M N N U A L O A T A

S O U R C E D E C A Y C O N S T A N T E S TI M A T E 
I B M- A R E A C; T R M N N U A L D A T A

Fi g ur e 1 0. 1 9 U p p er a n d L o w er 9 5 % C o nfi d e n c e Li mit s of S el e ct e d 
P ar a m et er E sti m at e s f or P h y si c al M o d el Fit t o Tri a n n u al 
D at a i n Ar e a C
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MTIAL SOURCE CONCENTRATION 
IBM-AREAC: BIANNUALQATA

LONOnXJONAL O e P e e O N  ESTIMATE
BM -AREAC ; SANNUALOATA

TRANSVERSE DSPERSION ESTIMATE 
rBM-AREAC BtANNUALOATA

VELOCITY ESTIMATE 
BM-AREAC: BtANNUALOATA

HALF-L&IQTH SOURCE AREA ESTIMATE 
IBM-AREAC; BtANNUALOATA

SOURCE O ^ Y  CONSTANT QTIMATE 
BM-AREAC: BtANNUALOATA

RECORD LM )TH

Figure 10.20 Upper and Lower 95% Confidence Limits of Selected 
Parameter Estimates for Physical Model Fit to Biannual Data in 
Area C
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Table 10.26 Residual Temporal Correlation for Physical Model Fit to Reduced
Data Sets from Area C

RECORD SAMPLING FREQUENCY
LENGTH ALL BIMONTHLY QUARTERLY TRIANNUALBIANNUAL
1980 .00168 -.3660 (a) (a) (a)
1980-81 .13789 .2663 .2913 -.0115 .1627
1980-82 -.00326 .0246 .0515 -.0460 .1264
1980-83 .04646 .0179 .0595 -.0711 -.0910
1980-84 .3371 .2641 .2640 .2269 .2898
1980-85 .3650 .2882 .2898 .2363 .3221
1980-86 4433 ,4610 ,4603 .3812 .4136
1980-87 ,5382 ,6576 ,5437 L6288 .5145
1980-88 ,5378 .5656 ,5406 .5380 .5700

(a) insufficient data to calculate

Table 10.27 One-Year Prediction Bias and Associated t-test’*' for Physical Model
Fit to Reduced Data Sets from Area C

PREDICTION BIAS
RECORD SAMPLING FREQUENCY
LENGTH ALL BIMONTHLY QUARTERLY TRIANNUALBIANNUAL
1980 100.596 105,068 -406,661 135,825 211 622
1980-81 525.012 111.223 -124.89 -102,382 -206.401
1980-82 125.745 -177,766 -565.065 -561.197 -934,044
1980-83 283.672 -46.14 -194,131 -214.831 -523,417
1980-84 50.711 -189.26 -551.605 -711.849 -951.888
1980-85 -110.247 -162,613 -301,313 -343,176 -570,217
1980-86 -28.689 -80.947 -330,691 -389.141 -296,914
1980-87 -121.885 -127.899 -148.229 -161.550 -192,293

T-TEST OF PREDICTION BIAS
RECORD SAMPLING FREQUENCY
LENGTH ALL BIMONTHLY QUARTERLY TRIANNUALBIANNUAL
1980 .5216 3,5938 i i l 4 3 2,7342 4.4214
1980-81 NA 1.1617 -1.0900 -.8107 -1.3808
1980-82 .2902 -2 56482 -7,5263 -7,8484 -4.8218
1980-83 .8654 -.6037 -2,3595 -2,3849 -11.5233
1980-84 .3025 -1.6986 -5,3693 -12,1498 -7,5085
1980-85 -.2579 -2.7020 -4,2433 -.4353 -6.8021
1980-86 -.0654 -.9394 -3,9599 -4,2267 -2.4917
1980-87 -.9213 -1.8592 -2,0641 -2.3600 -2.9560

(a) significant t-test values and associated prediction biases are highlighted
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Table 10.28 Error Prediction Variance at Individual Wells for Single- 
Site Models Fit to Data in Area C with Monthly Sampling 
Frequency

Linear Model 
WELL RECORD LENGTH FOR MODEL FIT
NO. 1980 80-81 80-82 80-83 80-84 80-85 80-86 80-87 80-88
51 m i m m 56.68 71.46 106.69 141.91 177.14 229.99 300.44 370.9
53 389.63 134.79 119.58 65.73 226.45 133.76 90.63 70.7 68.89
54 64.89 35.84 1368.3 906.68 488.98 284.37 183.19 131.5 127.94
69 6.14 1.68 1.34 1.54 1.45 1.36 1.31 1.29 1.29
110 3540.8 2063 1409.7 1201 2171.2 2171.2
111 21389 7581.4 5689.8 4767.4 8440.9 7353.1 7353.1
835 8.76 7.33 6.7 5.65 5.65
836 8.76 7.33 6.7 5.65 5.65
837 7.38 3.36 2.56 2.12 1.85 1.78
921 1.52 1.42 1.42
922 1.24 1.33 1.33
923 470.76 397.27 397.27
924 3.09 58.17 58.17
932 7.69 7.15 7.15
943 2.59 1.53 1.49

Quadratic Model
WELL RECORD LENGTH FOR MODEL FIT
NO. 1980 80-81 80-82 80-83 80-84 80-85 80-86 80-87 80-88
51 61792 3197 5352.4 12302 24352 43513 72102 112758 168427
53 60293 5388.8 1932.1 387.17 1138.8 542.01 365.04 142.28 276.18
54 15.764 13.43 402.82 453.23 241.3 143.36 92.909 67.024 65.233
69 23.104 1.884 1.2914 1.2565 1.4667 1.1856 1.1582 1.1504 1.1504
n o 4816.9 3604.4 1453.4 1318.8 1784 1784
111 1176.3 8668.3 8017.7 4492.3 4174.1 4458.8 4458.8
835 5.1355 3.8047 4.5385 3.9954 3.9954
836 5.1355 3.8047 4.5385 3.9954 3.9954
837 11.933 4.8454 1.832 1.5775 1.4247 1.3872
921 1.3431 1.3629 1.3629
922 1.2626 1.2041 1.2041
923 481.69 381.28 381.28
924 2.8252 11.025 11.025
932 8.682 6.8876 6.8876
943 2.7291 1.2713 1.256

(continued)
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Table 10.28, continued

Cubic Model 
WELL RECORD LENGTH FOR MODEL FIT
NO. 1980 80-81 80-82 80-83 80-84 80-85 80-86 80-87 80-88
53 1.3E+07 439195 146495 27463 43600 17770 9983 142.28 11714
54 33021 3579.5 iisoai 14526 6678.4 2155.8 917.59 67.024 766.54
69 16.444 2.1681 1.4329 1.7096 1.4052 1.3544 1.1573 1.1504 1.153
110 11123 4538.7 1938.7 2156.4 1784 1759.4
111 1511.9 3038.5 3369.8 4694.1 4458.8 4882
835 2.6701 3.7863 3.9954 3.5124
836 2.6701 3.7863 3.9954 3.5124
837 26.324 6.4483 2.7388 1.6095 1.4247 1.4065
921 1.8481 1.3629 1.3326
922 1.4693 1.2041 1.2319
923 744.86 381.28 400.83
924 3.4194 11.025 5.349
932 10.998 6.8876 7.3912
943 3.7548 1.2713 -0.866

(a) error prediction variance associated with significant models bas
on F-test analysis are highlighted
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Table 10.28) are not necessarily less than for insignificant models. Lastly, the 
prediction error variance tended to increase with the model order.

Figure 10.21 illustrates the spatial distribution of the prediction error variance at 
individual wells based on a single-site linear model applied to all available data. 
This figure illustrates the extreme spatial variability of the prediction error 
variances for individual wells.

E 4 ^ .  00 4550.00 4700.00 4eS0.00 5000.00 5150. 00 5300.00 5450.00 5600.00 5750.00

Figure 10.21 Prediction Error Variance at Individuals Wells for Single Site 
Linear Model Fit to All Available Data in Area C

10.2.2.2 Trend Surface Models. Table 10.29 summarizes the error prediction 
variances at individual wells based on fitting the trend surface models to Area C 
data. The error prediction variances at individual wells varied depending on the 
well location with some variances being significantly less based on the trend 
surface models and others being significantly more than for the single-site 
polynomial models. Figure 10.22 illustrates this prediction error variance surface 
for the linear trend surface model applied to the entire data set. This prediction 
error variance surface is much more uniform than the prediction error variance 
surface based on the single-site models as shown in Figure 10.21. As for Area 
A, this clearly illustrates the advantage of utilizing multi-site models over single-
site models.

Table 10.30 summarizes the optimal monitoring networks for linear, quadratic, 
and cubic trend surface models fit to Area C data. This table illustrates the 
dramatic increase in prediction error variances with the higher order models. 
However, despite the higher variance at individual wells for the higher order
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Table 10.29 Error Prediction Variances at Individual Wells for 
Trend Surface Models Fit to Data From Area C with 
Future Monthly Sampling Frequency

LINEAR MODEL

WELL
NO. 1980
51 595.81
52 581.22
53 575.05
54 563.88 
69 573.99

110
111
558
559
560
561
562
563
835
836
837
921
922
923
924 
932
943
944
954
955
956
957

RECORD LENGTH
80-81
278.94
272.01
269.08
263.77
268.53
277.82
277.82

80-■82 80 -83 801-84 801-85 80-86 80-87 80-88
227.,46 166 .01 69.967 41.625 19.809 15 .154 15.029
221.,84 161 .84 68. 218 40. 614 19.379 14 .828 14. 707
219.,47 160 .05 67.446 40. 163 19. 188 14 .682 14.562
215.,16 156 .85 66.096 39.381 18.856 14 .430 14.312
219.,07 159 .69 67. 236 40.032 19. 132 14 .634 14.515
226.,57 165 .33 69. 662 41.446 19. 732 15 .094 14.971
226.,57 165 .33 69.662 41. 446 19. 732 15 .094 14.971

15 .071 14.947
15 .064 14 .94
15 .064 14 .94
15.139 15.015
15.290 15. 164
15 .290 15. 164

230.,31 168 .14 70.877 42. 154 20.033 15 .325 15. 199
230.,31 168 .14 70.877 42. 154 20.033 15 .325 15. 199
228,,79 167 .00 70.399 41.878 19.916 15.236 15. 111

65. 788 39. 218 18.788 14.387 14.269
65.905 39. 286 18.816 14.408 14 .29
65.666 39. 148 18. 758 14.364 14. 246
65. 566 39.091 18.733 14.346 14. 229
67. 496 40. 192 19.200 14 .691 14. 570

40. 167 19. 189 14 .677 14. 557
40. 124 19. 171 14 .664 14. 544
39.006 18.698 14 .322 14. 205
39.047 18.715 14.335 14. 218
39.096 18.736 14.351 14. 234

8.754 14.365 14. 247

QUADRATIC MODEL

WELL
NO. 1980 80-81 80-82
51 2.6E+14 2.2E-̂ 8 1.8E■̂8
52 2.4E■̂14 2.1E-I-8 l J i + 8
53 2.4E+14 2.0E+8 l J i + 8
54 2.3E+14 2.0E+8 1.6E+8
69 2.4E+14 2.0E+8 1.7E+8
n o 2.2E+8 1.8E+8
111 Z.Zi+8 1.8E■̂8
558

RECORD LENGTH
80-83 80-84 80-85 80-86 80-87 80-88 
1.5E+8 3.1E+6 2.2E+6 1.7E+6 1.2E+6 1.2E+6 
1.5E+8 3.0E+6 2.1E+6 1.6E+6 l.lE+6 l.lE+6 
1.4E+8 3.0E+6 2.1E+6 1.6E+6 l.lE+6 l.lE+6 
1.4E+8 2.9E+6 2.0E+6 1.5E+6 l.lE+6 l.lE+6 
1.4E+8 3.0E+6 2.1E+6 1.6E+6 l.lE+6 l.lE+6 
1.5E+8 3.1E+6 2.2E+6 1.7E+6 1.2E+6 l.lE+6 
1.5E+8 3.1E+6 2.2E+6 1.7E+6 1.2E+6 l.lE+6

1.2E+6 l.lE+6

(continued)
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Table 10.29, continued

QUADRATIC MODEL

WELL RECORD LENGTH
NO. 1980 80-81 80-82 80-83 80-84 80-85 80-86 80-87 80-88
559 1.2E+6 l.lE+6
560 1.2E+6 l.lE+6
561 1.2E+6 1.2E+6
562 1.2E+6 1.2E+6
563 1.2E+6 1.2E+6
835 1.9E+8 1.6E+8 3.2E+6 2.3E+6 1.7E+6 1.2E+6 1.2E+6
836 1.9E+8 1.6E+8 3.2E+6 2.3E+6 1.7E+6 1.2E+6 1.2E+6
837 1.9E+8 1.5E+8 3.2E+6 2.2E+6 1.7E+6 1.2E+6 1.2E+6
921 2.8E+6 2.0E+6 1.5E+6 l.OE+6 l.OE+6
922 2.8E+6 2.0E+6 1.5E+6 l.OE+6 l.OE+6
923 2.8E+6 2.0E+6 1.5E+6 l.OE+6 l.OE+6
924 2.8E+6 2.0E+6 1.5E+6 l.OE+6 l.OE+6
932 3.0E+6 2.1E+6 1.6E+6 l.lE+6 l.lE+6
943 2.1E+6 1.6E+6 l.lE+6 l.lE+6
944 2.1E+6 1.6E+6 l.lE+6 l.lE+6
954 1.9E+6 1.5E+6 l.OE+6 l.OE+6
955 2.0E+6 1.5E+6 l.OE+6 l.OE+6
956 2.0E+6 1.5E+6 l.OE+6 l.OE+6
957 1.5E+6 l.OE+6 l.OE+6

CUBIC MODEL^®^

WELL RECORD LENGTH
NO. 1980 80-81 80-82 80-83 80-84 80-85 80-86 80-87 80-88
51 1.4E+5 8.5E+2 2.7E+4 1.9E+2 3.7E+1 9.7E+0 4.1E+0 1.9E+0 1.9E+0
52 1.3E+5 7.1E+2 2.4E+4 1.7E+2 3.4E+1 9.1E+0 3.8E+0 1.8E+0 1.8E+0
53 1.3E+5 5.6E+2 2.3E+4 1.5E+2 3.3E+1 8.8E+0 3.7E+0 1.7E+0 1.7E+0
54 1.2E+5 4.4E+2 2.1E+4 1.3E+2 3.1E+1 8.3E+0 3.5E+0 1.7E+0 1.6E+0
69 1.3E+5 3.3E+2 2.2E+4 1.3E+2 3.2E+1 8.7E+0 3.7E+0 1.7E+0 1.7E+0
110 7.4E+2 2.6E+4 1.8E+2 3.6E+1 9.6E+0 4.1E+0 1.9E+0 1.9E+0
111 7.4E+2 2.6E+4 1.8E+2 3.6E+1 9.6E+0 4.1E+0 1.9E+0 1.9E+0
558 1.9E+0 1.9E+0
559 1.9E+0 1.9E+0
560 1.9E+0 1.9E+0
561 1.9E+0 1.9E+0
562 2E+0 1.9E+0
563 2E+0 1.9E+0
835 2.8E+4 2.2E+2 3.8E+1 lE+1 4.2E+0 2E+0 2E+0
836 2.8E+4 2.2E+2 3.8E+1 lE+1 4.2E+0 2E+0 2E+0
837 2.8E+4 2.1E+2 3.8E+1 9.9E+0 4.2E+0 2E+0 1.9E+0
921 3.2E+1 8.3E+0 3.5E+0 1.6E+0 1.6E+0
922 3.2E+1 8.3E+0 3.5E+0 1.6E+0 1.6E+0

(continued)
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Table 10.29, continued 

QUADRATIC MODEL

WELL RECORD LENGTH
NO. 1980 80-81 80-82 80-83 80-84 80-85 80-86 80-87 80-88
559 1.2E+6 l.lE+6
560 1.2E+6 l.lE+6
561 1.2E+6 1.2E+6
562 1.2E+6 1.2E+6
563 1.2E+6 1.2E+6
835 1.9E+8 1.6E+8 3.2E+6 2.3E+6 1.7E+6 1.2E+6 1.2E+6
836 1.9E+8 1.6E+8 3.2E+6 2.3E+6 1.7E+6 1.2E+6 1.2E+6
837 1.9E+8 1.5E+8 3.2E+6 2.2E+6 1.7E+6 1.2E+6 1.2E+6
921 2.8E+6 2.0E+6 1.5E+6 l.OE+6 l.OE+6
922 2.8E+6 2.0E+6 1.5E+6 l.OE+6 l.OE+6
923 2.8E+6 2.0E+6 1.5E+6 l.OE+6 l.OE+6
924 2.8E+6 2.0E+6 1.5E+6 l.OE+6 l.OE+6
932 3.0E+6 2.1E+6 1.6E+6 l.lE+6 l.lE+6
943 2.1E+6 1.6E+6 l.lE+6 l.lE+6
944 2.1E+6 1.6E+6 l.lE+6 l.lE+6
954 1.9E+6 1.5E+6 l.OE+6 l.OE+6
955 2.0E+6 1.5E+6 l.OE+6 l.OE+6
956 2.0E+6 1.5E+6 l.OE+6 l.OE+6
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Figure 10.22 Prediction Error Variance for Linear Trend Surface 
Model Fit to All Available Data in Area C_________
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Table 10.30 Monitoring Networks for Trend Surface Models Fit to Area C
Data with Minimum Spatial Correlation of 0.9, Future Monthly 
Sampling Frequency

Linear Trend Surface Model

Record Length Wells Obiective
Fyngtipn

1980 54 563.875
1980-81 54 263.767
1980-82 54 215.159
1980-83 54 156.849
1980-84 924 65.565
1980-85 954 39.006
1980-86 954 18.698
1980-87 954 14.322
1980-88 954 14.205

Quadratic Trend Surface Model

Record Lenoth 

1980

Wells Obiective
Function

1980-81 54 1.96 X 10®
1980-82 54 1.63 X 10®
1980-83 54 1.36 X 10®
1980-84 924 2.79 X 10®
1980-85 954 1.95 X 10®
1980-86 954 1.49 X 10®
1980-87 954 1.03 X 10®
1980-88 954 1.01 X 10®

Cubic Trend Surface Model

Record Lenoth Wells Obiective
Fungtipn

1980 53 & 69 2.54 X  10’®
1980-81 51 & 111 1 . 5 9 x 1 0 ’®
1980-82 836 & 837 5.42 X  10’“
1980-83 836 & 837 4.22 X  10’®
1980-84 54 3.12 X 10”
1980-85 954 8.16 X 10*
1980-86 954 3.45 X 10®
1980-87 954 1.61 X 10*
1980-88 954 1.57 X 10*
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models, significant reduction in monitoring networks may still be realized by 
utilizing the high spatial correlation of the data in the multi-site networks.

Figure 10.23 illustrates the reduction in prediction error variance based on the 
optimal monitoring network for a linear trend surface model applied to all 
available data. Comparison of the shaded region of prediction error variances 
less than 14.5 in Figure 10.23 to Figure 10.22 illustrates the reduction in the 
prediction error variance surface based on the optimal sampling for a linear trend 
surface model. The most dramatic difference in the surfaces is at the monitoring 
wells with an overall reduction to all other sampling locations.

4400.00 4550.00 4700.00 4850.00 5000.00 5 150 . ee 5300. ee B'iee. ee 5600. ee 5750.00
T T T T T T

-  6250

-  6100

5950

g 0 0 0  0 0  1 I I [ I 1 I M  L !  I i L̂ i I I i/i I 1 I I I I I i \ i  i\i i- i i i  i . V i ' y i  i j 4- L j  r t s i

W  *4400.00 4 5 5 0 .0 0  4 7 0 0 .0 0  4 8 5 0 .0 0  5 0 0 0 .0 0  5 1 5 0 .0 0  5 3 0 0 .0 0  5 4 5 0 .0 0  5 6 0 0 .0 0  6 7 5 0 .0 0

X ( FT)

Figure 10.23 Prediction Error Variance Based on Optimal Monitoring 
Network for Linear Trend Surface Model Fit to All Available 
Data in Area C

An alternative means of representing this uncertainty in the model and in the 
optimal monitoring network can be shown by plotting the upper and lower 
confidence limits on concentrations of interest for the linear trend surface model 
fit to all available data in Area C, as shown in Figure 10.24. This representation 
of the linear trend surface model and monitoring network uncertainty can be 
used by the monitoring network manager to evaluate whether the specified 
minimum spatial correlation and future sampling frequency arrive at a monitoring 
network and prediction certainty which will meet the needs of the monitoring 
network information goals.

10.2.2.3 Physical Model. Table 10.31 summarizes the error prediction 
variances at individual wells based on the physical model fit to the data in Area 
C. Comparison of Table 10.31 to Table 10.29 illustrates the improvement in the 
physical model over the trend surface models at describing and predicting the
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Figure 10.24 Upper and Lower 95% Confidence Limits on Predicted 
Concentrations Based on Linear Trend Surface Model Fit to All

PCE groundwater quality in Area C. These prediction error variances for the 
physical model based network are more variable, but on the average, are less 
than for the linear trend surface models. This is illustrated by comparison of th e : 
area with prediction error variances less than 14.5 for the linear trend surface 
model, as shown on Figure 10.22, to the area with prediction error variance less 
than 14.5 for the physical model, as shown on Figure 10.25. The shaded area on 
Figure 10.25 is substantially larger than the shaded area shown on Figure 10.22.

4 4 0 0 .0 0  45S 0 . ee  4 7 0 0 .0 0  4 6 5 0 .0 0  5 0 0 0 .0 0  5 1 5 0 . ee 5 3 0 0 . ee & 4 6 e . 0 0  5 6 e e . ee  5 7 5 0 .0 0

6250.00  -

... . ^  'i i l

56005000.00
\ f j  '4400.00  4550.00  4700.00  4650.00  5000.00  5150.00  5300.00  5450.00  5600.00  5750.00

s  X ( F T )  N

Figure 10.25 Prediction Error Variance for Physical Model Fit to All 
Available Data in Area C
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Table 10.31 Error Prediction Variances for Individual Wells for Data from
Area C Fit to Physical Model

WELL RECORD LENGTH
NO. 1980 80-81 80-82 80-83 80-84 80-85 80-86 80-87 80-88
51 3.9E5 11365.1 920.78 1216.15 680.79 584.59 554.35 180.69 94.64
52 3.6E5 120274 2386.7 1920.48 708.40 618.32 529.96 135.27 140.4
53 7178 1329.6 53.663 14.0839 2.9702 2.3283 1.4819 1.1814 1.1715
54 72.17 16.191 1.5135 1.16461 1.0186 1.0147 1.0044 1.0008 1.0005
69 20.28 1.9815 1.0590 1.03212 1.0037 1.0030 1.0008 1.0001 1.0001
110 36431.1 396.03 260.878 34.502 54.627 15.996 7.0829 14.437
111 36431.1 396.03 260.878 103.04 54.628 1 5.996 7.0829 14.437
558 3.1500 5.4274
559 3.0396 4.8588
560 3.0396 4.8588
561 4.8145 16.287
562 10.443 34.69
563 10.443 34.69
835 124.64 129.678 23.653 52.475 19.515 10.706 42.259
836 124.64 129.678 23.653 52.475 19.515 10.706 42.259
837 213.758 232.04 31.39 35.558 27.149 8.4800 27.925
921 5.988 5.5622 2.3868 1.6027 1.9188
922 4.297 6.4214 2.5581 1.6540 2.0237 -

923 3.885 4.3900 2.0551 1.4663 1.6572
924 3.040 3.9268 1.9644 1.4396 1.6108
932 2.9945 1.4705 1.1735 1.1822
943 1.0036 1.0008 1.0001 1.0001
944 1.0040 1.0009 1.0001 1.0001
954 3.2882 2.2434 1.6387 2.1175
955 3.6267 2.406 1.7171 2.2976
956 4.1162 2.6199 1.8196 2.5433
957 2.8274 1.9184 2.7905

Figure 10.26 illustrates the reduction in the prediction error variance based on 
the optimal sampling net\«ork for a physical model applied to ten years of data. 
Sampling at the wells identified in the optimization results in a significant 
reduction in the prediction error variance surface for the physical model. The 
optimal prediction error variance surface is both more uniform and significantly 
smaller in magnitude.

This reduced uncertainty in the model and in the model predictions can be 
realized by plotting the upper and lower confidence limits on concentrations of 
interest, as shown in Figure 10.27 for the physical model fit to all available data. 
Due to the low error prediction variance, no appreciable observable uncertainty in 
the predicted concentrations is apparent in Figure 10.27. In addition, 
comparison of Figure 10.27 to Figure 10.24 illustrates a dramatically different 
expected distribution of the PCE groundwater quality in Area C.
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The improvement in the physical model over the trend surface models can also 
be realized by comparing the optimal monitoring networks. The optimal 
monitoring networks based on the physical model are summarized in Table 
10.32. The maximum spatial correlation achieved ranged from approximately

X ( FT) N

Figure 10.27 Upper and Lower 95% Confidence Limits on Predicted 
Concentrations Based on Physical Model Fit to All Available 
Data in Area C
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0.4 to 0.7 depending on the record length. These results illustrate that, in 
general, the objective function is minimized by an increase in record length. In 
comparison to Table 10.30, for the trend surface models, the physical model is 
superior in minimizing the objective function for record lengths of two years and 
longer compared to the linear trend surface model and for all record lengths 
compared to the quadratic and cubic trend surface models.

10.2.2.4 Summary of Monitoring Network Optimization. The monitoring 
network optimization for Area C allowed for the evaluation of error prediction 
propagation and data correlation based on both the physical and statistical data 
evaluation (for multi-site models). The objective function was minimized by use 
of a physically-based model. Based on the physical model fit to all available 
data, the Area C monitoring network could be reduced to a network of two wells 
(69 and 955) sampled monthly, maintaining a spatial correlation of 0.7. The 
uncertainty in this optimal monitoring network is illustrated by Figure 10.27. 
Given that this uncertainty is acceptable to the groundwater manager, the use of 
a physically-based model to explain the groundwater quality behavior could 
greatly reduce the current monitoring in Area C.

Table 10.32

RECORD

Monitoring Network Optimization for Physical Model Fit to All 
Data in Area C with Future Monthly Sampling Frequency

MINIMUM CORRELATION BETWEEN ALL WELLS
LENGTH QJ. QA QA
1980 Objective Function (a) 7198.46 7198.46 7198.46

Wells 53,69 53,69 53,69
1980-81 Objective Function (a) (a) (a) 1345.85

Wells 53,54
1980-82 Objective Function (a) (a) (a) 126.16

Wells 54,835
1980-83 Objective Function (a) (a) (a) 15.116

Wells 53,69
1980-84 Objective Function (a) 6.9918 3.885 3.885

Wells 69,922 924 924
1980-85 Objective Function (a) 4.291 3.288 2.995

Wells 69,954 954 932
1980-86 Objective Function (a) 16.997 16.997 1.964

Wells 110,943 110,943 924
1980-87 Objective Function 8.083 5.815 5.815 1.717

Wells 69,110 69,561 69,561 955
1980-88 Objective Function 3.298 1.919 1.611 1.611

Wells 69,955 921 924 924

(a) minimum correlation required cannot be met with existing data base
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10.2.3 Summary of Model Selection and Network Design for Area C.

The results of the monitoring network optimization for Area C confirm the results 
of the model applicability analysis which indicated the superiority of the physical 
model over the statistical models for describing and predicting the observed PCE 
groundwater quality behavior in Area C. The optimization allowed for a 
minimization of error variance with a specified minimum spatial correlation.

Therefore, both the model applicability and network optimization resulted in the 
selection of the physical model for describing the observed PCE groundwater 
quality behavior in Area C. Use of the physical model greatly reduced the 
number of wells required to be monitored to achieve a 0.7 spatial correlation 
between the sampled and non-sampled well locations.

For future refinement, a reevaluation of the model fit using weighted least 
squares is recommended to evaluate the systematic residual behavior. In 
addition, a correlation structure dependent on the predicted PCE concentrations 
is recommended to constrain the monitoring network spatially.. Lastly, 
refinement of the physical model structure to evaluate the vertical non-
homogeneity of the system should be considered.
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11. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

11.1 Summary.

The objective of this research was to develop a method for optimally designing 
groundwater monitoring networks. The design of an optimal network must 
incorporate all available information including any physical processes affecting 
groundwater conditions and any information on natural, sampling, and laboratory 
error which affects data quality. Therefore, the development of a method for 
designing groundwater monitoring networks must first evaluate the deterministic 
processes affecting the variable of interest and the uncertainty in the processes and 
in the data. This information can than be incorporated into a monitoring network 
system design. The contribution of this research is the development of a protocol 
for evaluating the adequacy of a model structure, for quantifying data error, and for 
explicitly incorporating the system deterministic and random structure into a 
monitoring network optimization which allows for a wide variety of information goal 
objectives.

This research was divided into three main components as follows:

1) performance of a simulation study to evaluate model applicability and 
monitoring network design methods (Chapter 8),

2) development of a monitoring network design protocol based on the 
results of the simulation study (Chapter 9), and

3) application of the protocol to field data (Chapter 10).

The simulation study was used as a tool to evaluate methods for assessing both 
model applicability and the design of monitoring networks. The simulation study 
provided a method of evaluating the performance of various tests against a known 
correct model (the model used to generate the simulated data). The performance of 
these tests could therefore be evaluated for correct models with different 
magnitudes and types of error (additive and multiplicative normal and lognormal 
errors were considered), as well as for incorrect models with different types of 
errors. The behavior of the statistical tests considered was evaluated based on the 
use of expectations rather than using Monte Carlo simulations.

The most important results from the simulation study regarding the evaluation of 
model applicability were:
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1) any single statistical test applied to a single data set may be 
misleading as a basis for evaluating model applicability,

2> comparison of the behavior in statistical tests to the theoretical
expected behavior for a correct model under conditions of varying 
sampling frequency, record length, and sampling density is a good 
means of evaluating model applicability, and

3) evaluation of more than one type of statistic provides a means of 
evaluating consistency in model behavior.

Groundwater monitoring networks were optimized based on the model structure, 
model parameter uncertainty, and data uncertainty quantified in the model 
applicability analyses. A branch and bound optimization technique was used which 
incorporates both the deterministic and random components of the data explicitly 
into the network design process using prediction error analysis. Knowledge of the 
degree of uncertainty in the groundwater system is useful for all groundwater 
monitoring applications. This uncertainty analysis can be applied to either 
optimizing an existing network (when system uncertainty is less than the maximum 
uncertainty allowable to meet the information objective) or in identifying information 
gaps. For either groundwater monitoring objective, the optimization technique 
allows for a concurrent determination of sampling frequency and well locations to 
meet specified information goals.

Use of the simulation study to evaluate groundwater monitoring network 
optimization procedures illustrated the importance of the network density relative to 
the evaluation of the variable of interest and the design of the monitoring network. 
The optimal network was highly sensitive to both the sampling locations used to fit 
the model and to the monitoring locations identified to be considered for inclusion in 
the optimal monitoring network.

The results of the simulation study were incorporated into a monitoring network 
design protocol which focuses on the use of a variety of statistical techniques 
applied over a number of data subsets to evaluated model applicability. The 
monitoring network optimization allows for designing a network based on the 
selected model structure and confidence in that model. The maximum spatial 
correlation obtainable is dependent on the locations identified as potential sampling 
points as well as the model structure and confidence in that model.

The principle steps in the monitoring network design protocol are as follows:

1 ) identify alternative models based on the review of available data,

2) divide available data into subsets based on record length, sampling 
frequency, and sampling density,

3) fit model to data subsets.
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4) calculate goodness-of-fit and predictive test statistics for "best-fit" 
models,

5> evaluate significance of statistical tests and trends in the tests 
relative to expected behavior for a correct model structure

6) optimize monitoring network including information of model structure 
and model uncertainty to meet specific information goals for the 
network.

To evaluate the applicability of the protocol, the protocol was applied to the 
evaluation of PCE groundwater quality data collected at the IBM East Fishkill facility 
in New York. Two areas on the facility were selected for evaluation - Areas A and 
C. Both statistical and physical models were fit to subsets of the PCE data from 
these two areas and were used to evaluate the applicability of the models. No one 
model met all the conditions of a "correct model" based on the model applicability 
tests considered. Evaluation of the field data illustrated the problems in selecting 
an "ideal model" for a specific data set based on the model applicability analyses. 
Given unlimited resources, it would always be desirable to collect more data to 
reduce the uncertainty in the understanding of a groundwater system. However, 
there is no such thing as unlimited resources. Once a model is identified which 
adequately explains the deterministic and random nature of a system, then 
optimization of the monitoring network system should be performed where the 
deterministic nature of the model can be substituted for monitoring, thereby 
reducing long-term costs without losing needed information.

For the IBM data, a linear trend surface model was the best model for Area A and a 
physically-based advection-dispersion model was best for Area C. Based on these 
models and the level of uncertainty associated with them, the monitoring networks 
in both areas could be dramatically reduced. The network in Area A could be 
reduced from 83 wells to one well sampled monthly and the monitoring network in 
Area C could be reduced from 27 wells to two wells sampled monthly. These 
results indicate that the use of a model can have tremendous impact on the ability 
to predict groundwater quality behavior and can result in the ability to significantly 
reduce a monitoring network. The extensive data analysis required to develop a 
model and quantitatively evaluate the uncertainty associated with it can be a 
substantial level of effort. Therefore, a tradeoff is realized between monitoring 
without extensive data analysis and modeling with extensive data analysis.

These potential reductions to the monitoring networks are based purely on a 
quantitative evaluation of the available data. The additional factor which is 
incorporated in the design of monitoring networks is a subjective "comfort level" 
factor. This includes the comfort of the groundwater manager as well as regulators 
who often oversee the groundwater monitoring at facilities. These subjective 
factors often have an overriding influence on the design of monitoring networks.
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11.2 Conclusions.

The results of this research strengthen the importance of a detailed statistical 
evaluation of model applicability prior to the use of a model as a tool for 
understanding groundwater quality behavior or prior to the design of monitoring 
networks based on a specified model. Frequently, a specific model fitting 
technique is utilized with existing data and if the model is significant based on some 
single test applied to all available data, that model is utilized to make critical 
decisions on the monitoring network design. This research shows that no one 
statistical test applied to a single set of data is significant or should be relied on as 
a basis of model evaluation. Statistical tests which evaluate the fit of a model, 
consistency in the model fit, residual behavior, and model predictions should all be 
used to evaluate the applicability of a model. Based on the results of the field data, 
it is anticipated that frequently no one model will meet the conditions of an "ideal" 
model. These non-ideal behaviors must be critically evaluated by the groundwater 
manager in order to determine whether these uncertainties are acceptable in order 
to meet the information goals of the groundwater monitoring system.

The model structure, as well as the uncertainty in the model, should then be used 
to design a monitoring network. The model structure should generally be 
physically-based in order to accommodate changing conditions in the environment. 
In this manner, the monitoring network optimization protocol can be used to 
evaluate confidence in the model under these changing conditions and identify the 
optimal monitoring network under conditions of uncertainty. Depending on the 
confidence in the model and in the monitoring network information goals, the 
application of this protocol can result in significant reductions in monitoring 
networks. The applicability of the methodology developed is dependent on the 
available data and on the information needs of the monitoring network. Application 
of the protocol developed herein will however quantify the uncertainty in a system 
and allow for predictions of uncertainty. These uncertainty predication can be used 
to evaluate whether the information goals can be obtained given the uncertainty in 
the system understanding. If the information goals can not be met, then the 
predicted error uncertainty can be used to focus where information should be 
optimally collected to reduce uncertainty in the system.

11.3 Recommendations.

As in most research, for every question that is answered, another is raised. These 
additional questions form the basis for recommendations resulting from this 
research. Recommendations are made relative to the principle steps in the 
monitoring network design protocol. These recommendations derive from both the 
simulation study and from application of the protocol to the field data.

1) Fitting Model to Data Subsets

A more detailed consideration of the effect of different model 
fitting techniques on the evaluation of model applicability 
under different model parameter and model error distributions 
is warranted. This research selected least-squares regression
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as a fitting technique rather than focusing on the affect of the 
selected model fitting technique on the model applicability 
evaluation.

2) Calculation of Model Applicability Statistics

•  Consideration should be given to alternative tests to evaluate 
the power of various test for model discrimination

3) Optimization of Monitoring Network

•  The error prediction correlation structure used to constrain the 
well locations was restrictive in its application. For future 
research, it is recommended that a different expression for 
spatial interdependence such as the correlation of the expected 
data values be utilized for this constraint.

•  The branch and bound optimization technique is limited to 
integer type problems in which all the possible well locations 
have been pre-specified. Significant additional research is 
necessary in the unconstrained optimization process to 
incorporate new sampling locations efficiently into the 
monitoring network design.

•  A combination of information objectives to both increase the 
confidence in the model and maintain a specific understanding 
in the system should be addressed.. This could be applied to 
cases where the uncertainty in a model is acceptable in some 
regions , but not others.

It is this author's belief that the pursuit of these topics will result in advancing this 
research and the field of groundwater quality data evaluation and monitoring 
network design.
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