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ABSTRACT

The detection of change in a hydrologic variable, particularly in

water quality, is a current problem. A method of formulating this

problem in a mathematical programming context is presented. The method

is based on using weighted linear combinations of water quality

variables from different locations with the weighting factors being

adjusted so that the time required to detect the change is minimized.

The basis of the technique, then, is a trade-off of time by adding

information from other locations. The results of example applications

show that significant savings in time can be achieved by using this

method.

Since the detection method is based on sample statistics developed

from historic data, uncertainty exists as to how accurately the optimal

values of the time required to detect the change and the weighting

factors reflect the true, but unknown, values. A method of evaluating

the reliability of these estimates is presented using an analytical

solution of the optimization problem. Through this approach, expres

sions are obtained relating explicitly the optimization variables to the

random variables of the problem giving a clear picture of the

interrelationships. Simulation is then used to evaluate the behavior of

the optimization variables through these explicit relations.
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INTRODUCTION

The time variation of hydrologic variables such as water discharge

or water quality requires that they be treated as, at the very least,

random variables and possibly as stochastic processes when describing

possible future occurrences. As a result of this characteristic, the

detection of a change in one of these variables requires consideration

of this random nature and the laws of probability must be applied to the

problem. It is the purpose of this study to develop a test for detec

tion of changes in a hydrologic variable, particularly applied to water

quality. Further, since our knowledge of the future is incomplete, such

a test can only be optimal for the sample upon which it is based. These

uncertainties will be investigated in terms of how they affect the

reliability of the test.

Detection of Changes

In general, the ability to detect a change in a hydrologic variable

reduces to a statistical problem depending in major part on the

variability of the variable of interest. In a statistical sense, the

number of observations dictates the level of change that can be detected

and, conversely, the degree to which we would like to be able to detect

a change dictates the number of observations required. In a practical

sense, when related to the hydrologic problem, the number of observation

is translated into time, i.e., days, months or years and often becomes

the major factor constraining the problem.

Planning and management decisions required of an agency or

individual must often be made based on short data records as a result of

economic and political pressures. Thus,it is necessary to find methods

of evaluating hydrologic change within the shortest time horizon to
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respond to these pressures and provide reliable results. This problem

can be illustrated in many cases, particularly when water quality is

concerned. Significant land use changes such as surface mining may have

an effect on the water quality for certain beneficial uses downstream.

It is necessary that any changes which occur be quantified within a

short time period in order to adjust any regulations on future

operations. Similarly, when treatment of municipal pollutants is

considered, the degree to which our past efforts have changed the water

quality should be evaluated before proceeding to newer or higher levels

of treatment facilities. Any practical methodology for evaluating

hydrologic changes could then be applied to many timely planning and

management problems.

Reliability of the Detection Method

Since no definitive statements can be made as to the future

response of hydrologic systems due to the inability to characterize the

inputs deterministically and the wide spatial variability of the

processes, they must be viewed at least in part as random variables.

This introduces a level of uncertainty in the assessment of the future

values of the variable. Any statistical test will be based on certain

characteristics of the past, recorded history of the variable. Thus,

any test will be only as good as the degree to which the sample reflects

the actual level and variation of the variable. In addition, the

applicability of the test will depend on how closely the variable agrees

with any assumptions made in deriving the test such as underlying

distributions and/or time dependent structure. It is then necessary to

evaluate the test in light of these known, but necessary, shortcomings

for an idea of its reliability.
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DETECTION OF CHANGE IN A WATER QUALITY VARIABLE

The methodology to be applied in detecting a change in a hydrologic

variable is one which is adapted from Morel-Seytoux and Saheli (1973).

This approach is a generalization of the more traditional statistical

approaches to the problem but, in theory, works in much the same way.

So, prior to developing this method, a brief review of some of the

simpler methods is presented to introduce the concepts behind the basic

problem of detecting a change in a random variable.

Before presenting the underlying theory, however, it is necessary

to define the detection problem more precisely. There are any number of

characteristics of a hydrologic variable which could change due to

environmental changes. However, in this particular case, attention will

be focused on the most basic statistic, the mean value of the variable.

Also, in general, the annual values will be used.

Traditional Methods for Detection of Change

The problem of detecting a change in the mean of a random variable

is a hypothesis testing problem, the test being whether or not a sample

mean belongs to some particular parent population. Due to its ease of

use and the abundance of theory associated with it, the normal distribu-

tion is applied to these problems whenever possible. Often, for

hydrologic applications, either the original variable or some relatively

simple transformation of it will be approximately normally distributed

and thus this body of theory can be employed.

For a single random variable, X, normally distributed with mean, l.J
x

and standard deviation aX' a test variable for a one-sided test of size

a (or level of significance) for the sample mean, X, is
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z = (1)

where n is the number of observations.

The test proceeds as follows:

1) observe a sample of length n and compute X,

2) compute Z from Equation (1),

3) compare Z with zl-a' the critical value of the test
variable,

4) if Z < zl-a then accept the hypothesis that the sample

mean is from the same population with mean, ~x.

Now, if the value of the test variable Z, is equal to the critical

value and a selected change in the mean, klJX is chosen so that the

sample mean, X is equal to the population mean plus the specified

change, IJX + k~X' then there are two unknowns in the problem, the sample

size n and the fractional change, k. Making these substitutions into

(1) and solving for n gives:

Noting that the coefficient of variation, c
v

(2)

is the ratio of the

standard deviation to the mean, Equation (2) can be written as:

_(Zl-a) 2n - -k- (3)

Thus, the number of observations (years in the context of this study)

required to detect a change in the mean is inversely proportional to the

square of the fraction of change to be detected and directly propor-

tional to the square of both the critical value of the test variable,
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z1 ,an indication of the accuracy of the test, and the coefficient of
-Ci

variation, a measure of the degree of variation of the variable relative

to the mean value. Thus, either a small change (k < < 1) or a large

variation in the variable (C large) will lead to a large sample size
v

required to detect the change. Certain changes are necessary when the

population parameters are not known. However, this is the essence of

the problem. If the coefficient of variation could be decreased, then

the test would perform better, that is fewer observations would be

required to detect a change of a given level.

A sophistication of the univariate case is to use two variables

which are statistically correlated. If this is the case, given some

information about a variable, X, then we have some information about the

other variable, Y, as a result of this correlation. If a linear

relation can be assumed between X and Y and both are normally

distributed then regression theory based on the bivariate normal

distribution can be applied to the problem.

A relation similar to (2) can be developed as:

n = (4)

In this however, the conditional variance, 2 is used. This iscase, °y/X

given by the expression

2 (l-Pir) 2 (5)°Y/X. = 0y

where Pxy is the correlation coefficient between X and y.

Since Pxy varies between -1 and 1, the conditional variance is always

smaller than the marginal variance. Thus, it would be expected that the

number of observations (or years of record) computed from Equation (4)

would be less than that from Equation (2).
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Although it has not been considered to this point and is usually

ignored in simple applications, there is one additional aspect of the

hypothesis testing problem that should be mentioned: the power of the

test. The size of the test, a, indicates the probability of rejecting

the hypothesis that the mean from the new sample is the same as the

population mean when they are equal, called the Type I error. There is,

however, another error which must be considered, the probability of

accepting the mean of the new sample as being equal to the population

mean when it is not: the type II error, usually signified by ~. The

complement of this probability, 1-~, is the power of the test (see

Figure 1). So, as the size is decreased the power also decreases. The

size and power should both be specified before performing the test,

however it is necessary to know the alternate value of the mean in order

to set the power.

The major aspects of the traditional hypothesis testing problem can

be'summarized as follows:

1) For a given level of change in the mean, there is a certain
sample size required to detect this change for a population
with a given coefficient of variation.

2) As the magnitude of the change decreases, a larger sample size
is required to detect it for the same coefficient of
variation.

3) For a given level of change, if the coefficient of variation
is smaller, the number of observations required to detect the
change is smaller.

These principles have been employed in the formulation of the test to be

described below.

Design of a Test for Detection of Change

Using the concepts of traditional hypothesis testing as a starting

point, Morel-Seytoux and Saheli (1973) have developed a test for the



a Size of the Test (Level of significance)

1-{3 Power of the Test, P [Acce pt HI I HI True]

Xc Critical .Value of the Variable x

fLo Mean of the Null Hypothesis, Ho

fLl Mean of the Alternate Hypothesis, HI

"'-J

fLo Xc fL l
x

Figure 1. Graphical Representation of the Statistical Theory.
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detection of a change in annual snowmelt runoff due to weather

modification. This basic approach has been adopted in a slightly

modified manner in this study for the problem of the detection of

changes in water quality variables.

The test considered in the remainder of this discussion is based on

the target-control concept, that is, the regression type approach

discussed above. In addition, a regional approach is taken where

variables are formed as weighted linear combinations of the annual

values at various locations both for a target and a control area. Using

this approach, an attempt is made to take advantage of the information

available from a number of locations. Further, although a large number

of locations (or variables) appear in the original data, they are

reduced to only two, the weighted linear combinations in both the target

and control areas, which allows the use of the well developed body of

theory regarding the bivariate normal distribution. Thus, a multi

variate problem becomes a bivariate problem. It is then reasonable to

assume that a judicious selection of the weighting factors can be made

which would result in a decrease in the coefficient of variation in this

linear combination and provide a better test, that is one which would be

able to detect a given change in a shorter period of time. Selection of

the weighting coefficients then becomes the problem.

Based on the assumptions that the sample is time independent and

normally distributed, the following equation can be derived (see

Appendix A) for the number of observations (years in this case)

necessary to detect a change of 100 k percent in the mean with size a

and power 1-~:
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(
cry/x) 2
kIJy

(6)

where N is the number of years required to detect the change in the
mean

ZI_~ is the standard normal deviate defined by

P[Z ~ zl_~] = I-~

zl-a is the standard normal deviate defined by

P[Z ~ zl-a] = I-a

0Y/X is the conditional variance of the variable Y given X

k is the fractional change in the mean

IJy is the mean of the variable Y.

It is worth noting that this expression, unlike the simple cases

presented earlier, includes the power of the test.

Now, rather than single variables X and y, weighted linear

combinations of variables will be used in the expression as

-'-
y" = NT

l
i=l

w. Y.
1 1

(7)

i~

X =
NT+NC

l w. X.
i=NT+l 1- 1

(8)

where w. is the weighting factor
1

X. is the value of the variable (annual) in the control area
1

Y. is the value of the variable in the target area
1-

NT is the number of stations in the target area, and

NC is the number of stations in the control area.

Recalling the expression for the conditional variance given in

Equation (5), the expression in Equation (6) can be written for the

linear combinations as:



10

(

0 oJ. ) 2
N = ( + )2 (1_p2* *) ~

zl-a zl_~ X Y k~ *y
(9)

Finally, using the expressions for PX*y*, (Jy;~ and fJy* in expanded

form (see Appendix A) results in the equation

N= (ZI-a ZI_~)2 [.~T ~TNT L L W.W. Cov(Y.Y.)
i=1 j=l 1 J 1 J

k I w.~y
i=1 1 i

(10)

where Cov(Y.Y.) is the covariance between Y. and Y..
1 J 1 J

With this expression in terms of the weighting factor and

parameters of the variables (means and covariance), a method of

selecting the weighting factors can be devised. Morel-Seytoux and

Saheli (1973) minimized this expression which effectively minimizes the

number of observations (time in this case) necessary to detect the

selected percent change, k, with respect to the weighting factors, wi'

i = 1, 2, ... NT + NC.

Rather than proceed with an unconstrained problem, however,

Morel-Seytoux and Saheli (1973) introduced the following constraints:

NT NT
I w.fJy = I fJy . = ~ -1,

i=l 1 . i=1 Y
1 1

NT+NC NC
I w.fJX = L IJX. = IJ *

i=NT+l 1 . i=NT+l X
1 1

(11)

(12)
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These constraints force the expected value of the linear combination to

be equal to the expected value of the simple sum of the mean values at

the various locations which specified at least one point on the

distribution of each linear combination. One further complication was

introduced as well; the capability to select a number of stations

n < NT in the target area and m < NC in the control area which would

have nonzero weighting factors. This feature could be represented by

introducing an additional variable, 0, into the constraints giving:

NT
2

i=1
WoO.f.ly11.

1

NT
2

i=1
O.f.ly1 .

1

(13)

NT+NC
2 w.6.f.lXi=NT+l 1 1 i

=
NC
2 oof.lXi=NT+l 1 i

(14)

where O. is a variable with the property
1

Wi ~ 0o}
w.

1

i =1,2, ... NT + NC

These constraints now imply that only those locations with nonzero

weighting factors should be included in the constraint to maintain their

physical significance.

Thus, a method of determining the weighting factors is obtained in

the form of a mathematical programming problem. This problem has a

nonlinear objective function and two equality constraints which are

Noting the form of Equation (11), it can be seen that the

Since a

Thus, thisvalue.constantaEquation (10) hasinW.f.ly1 .
1

reduced to minimizing the square of a variance.

unlinked.
NT

term 2
i=1

problem is

variance is always positive, the objective function, Equation (10) can

be seen to be positive definite and, therefore, a minimum is a global
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minimum. A final note on the problem formulation; the percent change in

the mean, k, has been assumed to be the same at all locations, that is

if k is 0.10, a 10 percent change is assumed at each station.

Mathematical Programming Aspects

The problem formulation as presented above has several features

which prevent the use of the more "standard" mathematical programming

approaches including:

1) The highly nonlinear nature of the obj ective function, and

2) The provision for modification of the constraint equations as
the optimization proceeds.

For large scale problems, the direct methods of optimization where an

initial point is specified and solution proceeds to the minimum (or

maximum) by successive stepwise improvement (Beightler, Phillips and

Wilde, 1979) have proven to be the most efficient. Thus, a method for

solution of this problem has been developed using as its basis these

direct procedures with modifications where necessary to account for the

specific nature of the problem.

The algorithm for solution of this problem is based on the

iterative use of a Quadratic Programming (QP) code, J9Snch-Clausen and

Morel-Seytoux (1978). The nonlinear objective functon is expanded about

a feasible point in a second order Taylor Series approximation. Using

this approximation, the problem is now a QP problem, i.e., a quadratic

objective function with linear constraints (Morel-Seytoux, 1976) and the

optimization proceeds as usual with this sort o~ problem. However, at

each new point in the improvement of the objective function, the

approximation is checked to see if it is still sufficiently close to the
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actual function. If not, it is reapproximated at this new point before

continuing with the optimization. Details of the quadratic expansion of

the objective function are presented in Appendix B.

The aspect of the changing constraints during the optimization

process due to the physical considerations of the problem required

further modifications in the standard QP approach. This feature

influences several phases of the optimization algorithm. First, since

the number of nonzero variables (weighting coefficients in this case) is

selected a priori, when this number is reached in the program, no move

can be made to decrease the obj ective function which increases a zero

valued variable but does not drive a nonzero valued variable to zero.

Thus, movements are considerably more restricted in this case. In

addition, if a move requires a variable to be changed to a zero value,

the constant factor in the constraint equations change. Proceeding with

this move then requires the constraint equations to be reformulated

temporarily to allow for determining the values of the other variable

under the new constraint set. If these new values produce a decrease in

the objective function, the move is accepted and all changes are made

permanent. If not, the variable with the next greatest affect in

decreasing the objective function is selected and the process is

repeated. The fact that the two constraint equations (11) and (12) do

not have any variables in common makes this a relatively easy process.

A detailed description of the optimization program, IITQP, has been

prepared in the form of a Users Manual (Koch and Morel-Seytoux, 1980)

including description of the input data requirements, examples of output

and a listing of the program.
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The mathematical programming problem to determine the weighting

coefficients has thus been formulated pnd is relatively specific to the

problem at hand.

Example Applications

It has been previously demonstrated (Morel-Seytoux and Saheli,

1973) that the technique presented using weighted linear combinations in

a target-control test allows for detection of change in a much shorter

time horizon than would a traditional statistical test. However, to

assess the utility of this approach versus traditional methods in the

analysis of changes in water quality, an example application is

presented. The selection of an area for this application was based on

several criteria. First, an adequate data base was necessary. This

requires a fairly long period of annual stream flow and quality data at

a number of stations within reasonable proximity to each other. This

was the primary requirement. Second, an area which would likely be

subject to future development pressures that could result in changes in

water quality, such as a major change in land use, was sought. Finally

although not a strong criteria, an area with some proximity and

therefore interest to the state of Colorado was given consideration.

After evaluation of several candidate study areas, the upper

Colorado River Basin of Colorado, Utah and Wyoming was chosen. This

area meets all of the requirements, particularly in terms of data

availability. Further, large deposits of coal and oil shale are found

in some tributary basins leading to the possibility of large scale

mining activities in these areas in the near future. In addition, as

the headwaters of the Colorado River, this area provides much of the

water available to the arid southwestern United States.
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Description of the Study Area. The upper Colorado River basin

encompasses most of western Colorado, southwestern Wyoming and eastern

Utah. Major rivers in this area include the San Juan, Dolores,

Gunnison, Colorado, White, Yampa, Green and Duchesne. These streams all

have their headwaters in high mountainous areas and the flow regimes are

dominated by snowmelt runoff in the spring and early summer months. The

lower elevation areas are quite arid and tend to produce little runoff

to the streams except in cases of intense thundershower activity which

are generally very localized.

Selection of Stations. Six stations were selected for the example

application based primarily on the availability of data. These stations

along with their drainage areas, periods of record and mean annual

discharge are presented in Table 1. Each of these stations has a daily

record of stream discharge and conductivity (EC) collected by the u.S.

Geological Survey (USGS) for at least the period 1964 through 1979.

Thus, 16 years of annual data on these two variables are available at

all six of these stations. Finding a longer concurrent data base of

both flow and quality for this many stations in this area was not

possible.

Due to their proximity to the energy resource areas, the Duchesne,

Green and White River stations were chosen as the target area stations

in this example. The remaining three stations, the Colorado, Gunnison

and Dolores Rivers, are the control area stations.

Station Characteristics. The statistical characteristics of the

relatively short samples of annual flow and quality are of interest for

two reasons. First, they are part of the input required for the

optimization code which determines the appropriate weighting factors in

the linear combinations. Second, there were certain assumptions made in



Table 1

USGS Gaging Stations Selected for Use in the Example Application

Station Name USGS Station Period of Record Drainage Mean Annual
Number Chemical Analyses Streamflow Area Discharge

(sq.mi.) (cfs)

Gunnison River near 09152500 10/31-9/79, Concurrent 7928 2590
Grand Junction, CO 4/49-9/79

Dolores River near 09180000 3/51-9/59, Concurrent 4580 688
Cisco, UT 10/64-9/79

Green River near 09261000 6/47-9/52, Concurrent 25400 4940
Jensen, DT 4/62-9/79

Duchensne River near 09302000 12/50-9/51, Concurrent 3920 770 J--l
0'1

Randlett, Dr 11/56-9/79

White River near 09306500 12/50-9/79 Concurrent 4020 655
Watson, ur

Colorado River near 09095500 10/33-9/79 Concurrent 8050 3560
Cameo, CO
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deriving the test including independence of observations, constant

variance and an underlying normal distribution. Certain statistics of

the sample data set can be used to evaluate how well the data meet these

assumptions.

Due to the small sample size, constant variance is assumed for all

stations since not enough data are available to test this assumption.

The assumption of normality was evaluated by two simple procedures:

testing of the coefficient of skewness and plotting the data on normal

and lognormal probability paper. For normally distributed data the

coefficient of skewness should not be statistically different from zero

while for lognormally distributed data the skewness coefficient of the

logs should not be statistically different from zero. Further,

depending on whether the data are normally or lognormally distributed,

they should plot as a straight line on normal or lognormal probability

paper respectively. This is, effectively, another less rigorous test of

the skewness. Independence of the series is tested through the first

autocorrelation coefficient. For independent data, this value should

not be statistically different from zero.

In Table 2 relevant statistics, mean (Q, EC), standard deviation

(SQ' SEC)' coefficient of variation (Cv)' skewness coefficient (gQ' gEC)

and lag one serial correlation coefficient (r1), for the untransformed

data are presented while similar statistics for the log transformed data

are presented in Table 3. As previously stated, the coefficient of

skewness for normally distributed data should not be statistically

different from zero. A test presented by Salas et al. (1980), for

skewness of small samples taken from normal distributions show that a

value in the range of 1.3 to 1.4 would not be unexpected for a sample

size of 16 observations. All of the annual data for both streamflow and



Table 2

Basic Statistics of Streamflow and Conductivity Data!/
for the Stations Used in the Example Application

Station Streamflow (cfs) Conductivity (~mhos/cm)

Q SQ C gQ r 1 EC SEC C gEC r 1v v

Gunnison River 2140 737 0.34 0.35 0.10 1116 216 0.19 0.01 0.52

Dolores River 970 1028 1.06 2.74 -0.12 2939 925 0.31 1.17 0.21

Green River 4191 988 0.24 -1.31 0.48 650 47 0.07 -0.46 0.36

Duchesne River 541 266 0.49 0.50 0.19 1471 455 0.31 -2.05 0.11

White River 621 135 0.22 -0.69 0.03 798 91 0.11 -0.20 0.68
........
0:>

Colorado River 3487 793 0.23 -0.18 0.26 936 97 0.10 0.69 0.48

!/Based on the 16 year period 1964 to 1979.



Table 3

Basic Statistics of the Logarithmic Transformations of Streamflow

and Conductivity Data!/ for the Stations Used in the Example Application

Station Streamflow Conductivity
Q SQ C gQ r 1 EC SEC C gEC r 1v v

Gunnison River 7.61 0.37 0.05 -0.16 0.16 7.00 0.20 0.03 -0.38 0.52

Dolores River 6.54 0.81 0.12 0.43 -0.22 7.94 0.30 0.04 0.34 0.14

Green River 8.30 0.33 0.04 -2.54 0.56 6.48 0.07 0.01 -0.70 0.37

Duchesne River 6.15 0.60 0.10 -1.14 0.32 7.35 0.15 0.02 0.59 0.12

White River 6.42 0.25 0.04 -1.52 0.02 6.68 0.12 0.02 -0.46 0.69
~

\.C

Colorado River 8.13 0.25 0.03 -0.71 0.24 6.84 0.10 0.01 0.64 0.50

!/Based on the 16 year period 1964 through 1979.
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conductivity fall within this range with the exception of annual

streamflow in the Dolores River which is strongly skewed to the right.

No significant overall gain is made by transforming the data

logarithmically, thus, the untransformed data will be used in this

analysis. Appendix C presents plots of the data both on probability and

log probability paper for all of the stations. Visual inspection of

these plots would also support the conclusion of normality.

The assumption of independence is evaluated by testing whether the

lag one autocorrelation coefficient is statistically different from

zero. Using a transform due to Fisher (Yevjevich, 1972 and Haan, 1977),

the 95 percent two sided confidence interval for a sample size of 16 is

(-0.49, 0.49). Inspecting the lag one autocorrelation coefficients

presented in Table 2, most fall well within the 95 percent confidence

limits. Log transformation does not affect these values appreciably in

either direction. Thus, for such a small sample size, the hypothesis of

independence in the data is accepted in general. This assumption will

be further discussed and tested when reliability of the test is

considered.

In addition to the statistical characteristics at each station, the

interrelationships between stations are of interest and are necessary as

input to the optimization problem. The covariance matrix for annual

values of EC are given in Table 4. All of the values in this table

are positive with the exception of the covariance between EC at the

White River and Dolores River Stations. This value is quite small,

however, and indicates very little correlation between these two

stations. In general, then, there is a positive correlation between all

combinations of stations as would be expected. In Table 5, the

covariance matrix between EC and streamflow (Q) in the three target



Table 4

Covariance Matrix for Annual Conductivity in the Study Area

Target Locations Control Locations

Duchense River Green River White River Colorado River, Gunnison River Dolores River

Duchesne 206776 5407 6765 8794 23545 102316
River

Green 5407 2178 2332 1489 6473 25740
River

White 6765 2332 8245 6073 16547 -5406
River

Colorado 8794 1489 6073 9344 16689 5827 N
River """""

Gunnison 23545 6473 16547 16689 46646 41908
River

Dolores 102316 25740 -5406 5827 41908 856035
River



Table 5

Covariance Matrix for Annual Conductivity and Annual Streamflow
for the Target Stations in the Study Area

Conductivity Streamflow

Duchesne River Green River White River Duchesne River Green River White River

Duchesne 206776 5407 6765 -25908 -129064 -29861
:>- River
+.J
'..-1
> Green 5907 2178 2332 -1603 -10342 -3473-..-I
+J RiverCJ
;:l

'"d
P White 6765 2332 8245 5107 -47408 -62470
u River

N
N

Duchesne -25908 -1603 5107 75206 130959 17073
River

~
0,..,

Green -129064 -10342 -47408 130959 1041706 1006504-.l

~ River
<lJ
H
+.J White -29861 -3473 -6247 17073 100650 19393CJ)

River



23

area stations is listed. Here, a negative correlation results between

EC and Q in all cases except one where the computed correlation is

very low while a positive correlation is exhibited for only EC or only

Q. This is as expected since, as discharge is increased, concentration

and therefore conductivity tends to decrease. These data will be the

basis for two applications of the methodology presented.

To provide a better feeling for the interrelationships between

variables, Tables 6 and 7 present the correlation matrices between the

stations.

Table 6

Correlation Matrix for Annual Conductivity in the Study Area

Target Area Control Area

Duchesne Green White Colorado Gunnison Dolores
River River River River River River

Duchesne 1.0 0.25 0.16 0.20 0.76 0.24
River

Green 0.25 1.0 0.55 0.33 0.64 0.60
River

White 0.16 0.55 1.0 0.69 0.84 -0.06
River

Colorado 0.20 0.33 0.69 1.0 0.80 0.07
River

Gunnison 0.76 0.64 0.84 0.80 1.0 0.21
River

Dolores 0.24 0.60 -0.06 0.07 0.21 1.0
River
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Table 7

Correlation Matrix for Annual Conductivity and Annual
Streamflow for Stations in the Target Area

Conductivity Streamflow

Duchesne Green White Duchesne Green White
River River River River River River

Duchesne 1.0 0.25 0.16 -0.21 -0.28 -0.47
River

Green 0.25 1.0 0.55 -0.13 -0.22 -0.53
River

White 0.16 0.55 1.0 0.21 -0.51 -0.49
River

Duchesne -0.21 -0.13 0.21 1.0 0.47 0.45
River

Green -0.28 -0.22 -0.51 0.47 1.0 0.71
River

White -0.47 -0.53 -0.49 0.45 0.71 1.0
River

Application No.1. The first application is a direct analogy to

the original use of this technique by Morel-Seytoux and Saheli (1973)

where it was applied to streamflow data to detect changes resulting from

weather modification. In this case, however, conductivity rather than

streamflow is the variable. Using the six stations described earlier,

partitioned into target and control areas as presented in Table 4, the

optimization routine was applied to determine the values of the

weighting factor which would detect the change of 10 percent (k=0.10) in

the minimum time, with a significance level, a, of 0.05, and a power,

1-~, of 0.50. With equal weights, the objective function indicated
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7 years was required to detect the change. The results of this analysis

are given in Table 8. With these weighting factors (constrained to be

nonnegative) the minimum amount of time required to detect this

10 percent change is 1 year (rounded to the next highest integer value).

Of note in these results are the fact that two of the target stations

have little or no effect on the test as their respective weighting

factors approach zero.

Application No.2. Another approach to this problem of detection

of change is to use alternative variables rather than different areas.

That is, choosing variables that are related such as EC and Q and

assuming that one variable, the target, will change while the other, the

control, will not. In this case, EC was chosen the target variable and

Q the control variable and only the data for the three stations that

were previously defined as the target area were used.

optimization routine to detect a 10 percent change for an

Applying the

a of 0.05

and 1-~ of 0.50, the weighting factors were determined. For equal

weights, the time required to detect the change was 7 years. The

results are presented in Table 9. In this case, the minimum time was

also 1 year. Again several of the weighting factors were very small or

zero values.

Since both of these applications included stations with very low

coefficients of variation, especially the Green River, a third example

application is presented.

Application No.3. The additional example application is given to

illustrate how the method can markedly decrease the time required to

detect a change when there is relatively high variability in the

variables of interest. In this example four stations were selected; two

as target stations and two as controls. These stations are all located
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Table 8

Results of Example Application No. 1 EC in the
Target Area vs. EC in the Control Area

Station

Target Area

Duchesne River

Green River

White River

Control Area

Colorado River

Gunnison River

Dolores River

Weighting Factor

0.02

3.21

0.00

1.00

1.00

1.00

Table 9

Results of Example Application No. 2 EC as the
Target Variable vs. Q as the Control Variable

Station Weighting Factor

Target Variable, EC

Duchesne River 0.097

Green River 3.56

White River 0.58

Control Variable, Q

Colorado River 0.00

Gunnison River 0.00

Dolores River 1.00
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in the White River Basin in western Colorado. The two target stations,

Yellow Creek and Piceance Creek are underlain by large deposits of oil

shale and thus are likely to be subject to intense development pressures

in the future. The two control stations, the north and south forks of

the White River are relatively undeveloped and are likely to provide a

stable control area. Table 10 presents the basic characteristics for

streamflow at these four stations while the interstation relationships

are given in Table 11. Only short concurrent record is available,

however the thrust of this example is to demonstrate the utility of the

detection method. The reliability of the results are addressed in the

following section.

A preliminary inspection of Tables 10 and 11 reveals that the

coefficients of variation of these variables (annual streamflow) are

considerably higher than those used in either Application No. 1 or

No.2. In addition, there is fairly low correlation between stations in

the target area while the control stations are highly correlated.

Further, one control station, the North Fork of the White River is

consistently more highly correlated with the target stations than is the

other control station.

Applying the optimization routine to this example produced a more

marked savings in time for detection of a 10 percent change in the mean

annual flow for the same size and power as the previous two applica

tions. When equally weighted, 22 years were required for detection of

the specified change. Upon selection of the optimal weighting factors,

only 4 years were required. The results of the optimization procedure

are given in Table 12. From these results it is noted that the second

control station, the south fork of the White River was given a zero

weight and thus was not included in the detection scheme.
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Table 10

Statistical Characteristics of Annual Streamflow
at the Four Stations Used in Application No.3

Station Mean Standard Coefficient of
Name USGA No. (cfs) Deviation Variation

(cfs)

Yellow Creek 09306255 1.79 0.50 0.28

Piceance Creek 09306200 22.08 7.28 0.33

North Fork
White River 09303000 282.0 80.59 0.29

South Fork
White River 09304000 242.6 74.72 0.31

Table 11

Correlation Coefficient Matrix for Annual Streamflow at the
Four Stations Used in Application No.3

Yellow Piceance N. Fork White S. Fork White
Creek Creek River River

Yellow Creek 1.00 0.17 0.79 0.61

Piceance Creek 1.00 0.53 0.38

N. Fork White
River 1.00 0.93

S. Fork White
River 1.00
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Table 12

Results of Example Application No. 3 Annual Discharge in the
Target Area vs. Annual Discharge in the Control Area

Station

Target Stations

Yellow Creek

Piceance Creek

Control Stations

N. Fork White River

S. Fork White River

Evaluation of the Method

Weighting Factor

8.75

0.37

1.00

0.00

To evaluate this method against the more traditional approaches,

Table 13 has been prepared. Presented here are the number of observa-

tions, N, that would be required to detect a 10 percent change in EC

if only a single station in the target area were used. This is computed

using Equation (3) with data taken from Table 2. From Table 13, two of

the stations selected have very low coefficients of variation and

therefore require few observations to detect a change. Further

inspection of the results presented in Tables 7 and 8 reveal that those

stations have indeed been assigned the largest weights, particularly in

the second example. In the first example, little change was noted in

the objective function with further changes in the variables. As a

result the process was halted. Similar results are noted for the third

example from Table 13. Also, in each case, the weighted linear combina-

tions do provide a shorter time required for detection of the changes

over any single station using the traditional statistical technique.
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Table 13

Results of Detection of Change Problem Using a Traditional Approach!/
on Target Area Station from Applications No.1, No. 2 and No.3

Station

Duchesne River

Green River

White River

Yellow River

Piceance Creek

Coefficient of Number of Years
Variation Required for Detection

C of Change Nv

0.31 26

0.07 2

0.11 5

0.28 21.22

0.33 29.47

!/
N = (Zl-a k Zl_~)2

k =0.01, zl_~ = 0.00, zl-a = 1.645

(6)

Several of the implications of this approach can be noted. First,

the relative magnitude of the weighting factors, particularly as they

approach zero, indicate the value of any particular station in providing

information for detecting changes. In both examples, certain stations

were given no weight indicating they added nothing additional to the

information contributed by the other stations. The criteria for station

weighting seems to be as follows. In the target area, the stations with

the lowest coefficient of variation are weighted highest unless there is

a high coefficient of correlation between the stations. Then, the

weight is not so high as seen in Example 2 where both the Green and

White Rivers have low coefficients of variation but, with a relatively

high correlation between them, only the smallest C is weighted
v
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heavily. This result agrees with that of Matalas and Langbein (1963)

who showed that little information is added to a single station by

considering another station to which it is highly correlated. In the

control area, the weighting seems to depend on both the correlation

between the control and target stations and on the correlation within

the control area. The station with relatively high correlations with

the target area is weighted heavily, particularly if it is also highly

correlated with the other control stations. This is also borne out in

Example 2 and seems to follow from Matalas and Langbein (1963) as well.

In swmnary, using the time required to detect a change of a

selected magnitude with a given size and power as the criteria, the

method presented can detect the change within a shorter time period than

traditional tests. It can be expected to perform much better than the

traditional methods with more variable data while, if the relative

variation is quite small, the results may not be significantly better.

Thus the method has its greatest application when applied to variables

which are highly variable. In addition, the use of highly correlated

stations between the target and control areas tend to make the results

better while high correlation within the target or control areas result

in the exclusion of some of the stations from the analysis by assigning

them zero weighting factors.

Implications of the Method

In addition to the obvious use of this technique for developing new

test variables as weighted linear combinations of other variables which

have the ability to exhibit changes more quickly, other uses may arise.

For example, under certain financial constraints, an agency may need to

cutback on monitoring activities in an area. The weighting factors
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resulting from this analysis provide an objective means of assessing the

relative importance of each station in the overall network at least with

regard to its ability to serve a change detection function.
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ASSESSMENT OF RELIABILITY

Thus far, a test for detecting a change in a hydrologic variable

has been presented and applied to a sample case. It is demonstrated

that this method allows for the detection of a change in a much shorter

time horizon than do the more standard statistical tests. It has also

been noted, however, that the theory underlying this test is developed

with two restrictions: the parameters of the distribution are known and

the random variables have certain characteristics including normal

distributions, time independence and constant variance. However, to

actually apply the test, sample estimates of population parameters are

substituted in all of the equations. The reason for this will be

explained later. Further there is some reason to question the validity

of the assumption of time independence even in annual data. The

validity of the test will then depend upon the effects of these

simplifications.

Specific to the problem at hand, the interest in the affects of the

approximations relates to the reliability of the test in its application

to a real world situation. In solving the optimization problem,

weighting factors are determined which, in fact, are only optimal for

the sample data used to develop the coefficients in the objective

function and constraints. Since, as sample values, these estimates are

random variables the "optimal ft number of years is also a random variable

as are the weighting coefficients and are therefore characterized by

some distribution. It is then necessary to determine at least the first

few moments of these variables to assess, approximately, the reliability

of the resulting estimates of Nand w. In addition, since the

weighting factors are no longer constants but random variables, the
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distribution of the weighted linear combinations is not known.

Therefore the test may not have the purported size and power originally

intended. Any time dependence in the data will only serve to increase

these affects.

The problem of the distribution of an optimized random variable can

also be viewed as being of interest in general terms. The problem being

posed is an optimization problem with random variables appearing as

coefficients in the objective function and constraint equations. In

applications,

many cases, e. g. , Morel-Seytoux (1976) , especially engineering

mathematical programming problems have coefficients or

"constant" values which represent outcomes of various natural processes

such as streamflow or precipitation. These variables are best described

by distributions rather than specific numbers due to their apparent

stochastic nature. This problem can be dealt with by using either the

expected value of the random variable or some quantitative level which

was considered "safe" for the purposes at hand. The technique, however,

ignores the fact that the optimal value of the objective function is a

function of these random variables and is itself a random variable.

Ideally, then, this optimal value should be expressed as a function of

these random coefficients from which, at least theoretically, its

distribution could be derived analytically given that the distribution

of the coefficients are known. It is this technique that is pursued in

the following discussion to assess the reliability of the detection

method, or in more general terms, the reliability of optimized random

variable.
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Method of Analysis

As stated above, the ideal approach is to express the obj ective

function in terms of the random variables of the problem and from this

expression derive its distribution. In certain situations at least the

first step, expressing the obj ective function in terms of the random

variables of the problem, can be accomplished. The method, however,

depends on exactly how the problem is posed. In the case where the

variables of the optimization problem are free to take on both positive

or negative values and the constraints are equalities, the traditional

Lagrange multiplier approach can be applied to develop unique expres

sions for the variables and objective function in terms of the random

coefficients. An additional complication occurs when the optimization

variables are constrained to be non-negative, a case which often occurs

in optimization problems resulting from physical considerations in

engineering, planning or management applications. In these situations,

the possibility exists for piecewise solutions depending on the values

assumed by the random variables. This is due to the form of the

stationarity conditions in this case. Appendix D gives a complete

mathematical description of these two cases. Thus, for the second

situation, where non-negativity is imposed, all of the combinations

which could satisfy the stationarity conditions must be investigated to

establish the range of values of the random variable for which each

combination does produce the minimum. Depending, then, on the number of

optimization variables in the problem, there may be a number of combina

tions to be investigated. A more detailed description of this problem

is presented in Appendix D.
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The merit of this approach is obvious when the alternative method

is evaluated. Rather than solve for explicit expressions, a complete

simulation can be undertaken where those coefficients and "constants" in

the problem which are by nature random, are varied over ranges of their

values and, at each set of values the optimization problem is solved.

This method, however, has several shortcomings. First, a great many

simulations may be required to develop a reliable picture of how the

objective function and optimization variables react to the variation in

the random variables. As a result, the true interactions in the problem

may not be discovered. It has been shown, Morel-Seytoux (1975), that

the objective function may be described by a piecewise rather than a

continuous relationship, the actual form of which may not be evident

from the random selection of values of the random variables. In

addition, this approach may be very costly, requiring the optimization

problem to be solved many - times to achieve a reasonably accurate

indication of the interactions. If analytical expressions can be

derived, they would provide explicit relations defining how the random

variable affects the problem.

A more complex problem is the derivation of the distribution of the

obj ective function and variables once the analytical expressions have

been developed. If the expressions from the analytical solution are

very complex, it may not be possible to derive these distributions

analytically. At this point, simulation could be applied to establish

the approximate distributions of the objective function and variables

knowing, from the explicit relationships previously derived, the inter

actions of the random variables in determining their values. Therefore,

at best, a completely analytical solution can be obtained and, at worst,

a hybrid analytical-simulation approach can be applied.
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Reliability of the Detection Problem

To demonstrate the approach suggested above, an assessment of the

reliability of the detection problem is presented. However, due to the

complexity (see Appendix C) of the original objective function, it was

not deemed suitable for a test of this methodology. Instead, a simpler

problem is posed without the conditional distribution being considered.

In this case, it is assumed that there are several locations where

change is likely to occur and a test is developed by using a weighted
"k N

linear combination, Y = I w.Y., of these locations as the test
i=1 ~ ~

variable. The optimization problem for selection of the weighting

coefficients becomes:

Min I =rl-cr+Zl-~r a~*1N k J.l 1~
w Y-

subject to:

M M
I w.f.Jy = I f.JY. = tJ i~

i=1 ~ .. i=1
Y

~ 1.

(14)

where M is the number of stations and all other variables are as
previously defined.

Noting that, due to the constraint equation, only the variance, a~*, can

vary, the problem reduces to one of minimizing the variance of a

weighted linear combination of variables. This is, then, a standard QP

problem with one equality constraint. If sample estimates of the

parameters are substituted and the expression for the variance is

expanded, the problem is stated as:

Min
w

N N
L I

i=1 j=1
w.w.
~ J

s
Y.Y.
~ J

(15)
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subject to:

M
L W.Y. =

i=l 1 1

M _'.
L Y. =Y"

i=l 1

where S is the sample estimate of covariance between Y. and Y.Y.Y. 1 J
1 J

In this problem, the covariances and means, being estimates based on

sample data, are random variables. Both of the cases, when w is a

free variable and when w is non-negative, are considered below. To

further simplify matters, but without loss of generality, a case with

only two stations is considered.

Free Variable Case. When non-negativity conditions are not placed

on the variables in the problem (the weighting factors), any value can

be assumed. In this case, only one solution results from solving the

optimization problem since only one set of stationarity conditions

applies (see Appendix D) .

expressions are obtained

From this procedure, the following

(16)

(17)
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+ S 2 (Sy~ _ Sy1Y2)2 / is 2 Y1 _ 2 S + S 2 Y2) 2

Y2 Yl Y2 'Y1 Y2 Y1Y2 Y2 Y1

where S 2 is the sample variance for Y1 ,Y1
S 2 is the sample variance for Y2 , andY2

S is the sample covariance between Y1 andY1Y2

(18)

Thus, the variables and objective function are expressed explicitly in

terms of the random variables of the problem. In this case, however,

all of the coefficients are random variables; a more complex situation

than might be expected in a typical mathematical programming formulation

of an engineering problem.

Recalling that it has been assumed that the underlying variables

are normally distributed, an attempt might be made to derive the

distributions of the expressions in Equations (16), (17) and (18).

However, due to their extreme complexity, particularly for (18),

simulation should be entertained as the means of estimating these

distributions.

Non-Negative Variable Case. Imposing non-negativity conditions on

the weighting factors requires that they take on a value no less than

zero. This changes the results of the optimization to the following

(see Appendix D):
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In this case, the same solution results, as it must, when both weighting

factors are positive. The difference exists in that neither weight is

permitted to assume a negative value. The regions where the non

negativity conditions apply are defined in terms of the random variables

of the problem in Equations (19) and (20).

Further Evaluation of the Method. Once the optimization problem

has been solved explicitly, the optimal values of the variables are

expressed in terms of the parameters of the problem which, in many

cases, are best described as random variables. The explicit analytical

relationships such as Equations (16) through (21) in general allow a

much deeper insight into the problem and the interrelationships of the

variables. For the detection of change problem being investigated in

this particular case, an assessment of how the various sample statistics

affect the optimal solution can be undertaken.

The explicit relationships presented in Equations (16) through (21)

can be used in two ways. First, they can be used to evaluate the inter

relationships of the variables and the relative importance of any

particular statistic such as the cross correlation between stations.

This analysis leads to a better understanding of how the detection

method actually works. A second use of the explicit relationships is to

evaluate the variation of the optimal values of the problem (objective

function and weights) with the random variability of the statistics.

This leads to an assessment of the reliability of the detection method.

This second use is discussed in detail later while the use of the

explicit relationships to gain insight into the method is the subject of

the remainder of this section.
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Using Equations (16) and (17) for the weighting coefficients,

further algebraic manipulation results in the following expressions

*

(22)

2ry y )
1 2

*

where c
V.

1

2ry y )
1 2

is the sample coefficient of variation of variable

is the sample correlation coefficient between Y1

(23)

Y. and
1

and Y2

The weighting factors have thus been expressed in terms of the

coefficients of variation, the correlation coefficient between stations

and the mean values.

Many inferences about the behavior of the weighting factors can be

drawn from these expressions. First, the magnitude of the weighting

factors depends on the actual magnitude of the mean value of the

variables being used in the problem through the ratios of the sum of the
.'~

means, in, to the mean, i .. If the mean i. is small relative to the
1 1

sum of the means then the weighting factor, w., corresponding to this
1

variable will be large and conversely if the mean is large relative to

the sum, the weighting factor will be smaller.

The affect of interstation correlation is also of interest in this

problem. Using Equations (22) and (23), the influence of this

characteristic on the weighting factors can also be evaluated. First,



is positive, the occurrence of negative weighting factors depends
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it can be seen that if the cross correlation coefficient, ry y , is
1 2

negative, then no negative weighting factor can result. Further, if

r
Y1Y2

on the relationship between the ratio of the coefficients of variation

and the correlation coefficient. This provides another means of

expressing the conditions imposed by the non-negativity conditions.

Also , it is apparent that only one of the weighting factors can be

negative in the free variable case since r is bounded by one andY1Y2
one coefficient of variation will be greater than the other leading to a

ratio greater than one. This is consistent with the constraint used in

the problem. It is also apparent, that if a negative weight occurs, it

will be associated with the variable that has the largest coefficient of

variation.

Special cases of cross correlation can also be evaluated. In the

case when the correlation coefficient approaches zero, i. e., there is

very little correlation between stations, the weighting factors depend

only on the coefficients of variation and mean values. In this case,

the ratio of the weights is inversely proportional to the ratio of the

square of the coefficients of variation and inversely proportional to

the ratio of the means as given below

(24)

It can also be noted that no negative weights can result from the case

when the stations are uncorrelated. When the stations are very highly

correlated, that is the correlation coefficient approaches 1.0, the

weights are again a function of the coefficients of variation and the

means as:



= -(:::)

44

(25)

In this case it is apparent that one weight is always negative in the

free variable case or one weight is always zero in the non-negative

case. Thus, to summarize, when there is little correlation between the

stations, it is very likely that both weighting factors will be positive

indicating that both are useful in assessing the detection of change.

However, when the stations are highly correlated one of the weights is

always negative or zero depending on whether non-negativity conditions

are imposed.

Simulation Study

Due to the complexity of the explicit expressions for the objective

function and weighting factors in terms of the sample estimates of the

parameters, an analytical derivation of their distributions would be, at

best, very difficult, and may not be possible. As a result, a simula-

tion (data generation) study was undertaken at this point to evaluate

certain characteristics of the test including:

1)
"l,

the distribution of N ,

2) the distributions of WI and w2 '

3) the actual size and power of the test.

The first two evaluations, the distributions of the objective function

and variables, are of general interest to any stochastic optimization

problem whereas the last analysis is specific to the detection of change

methodology under investigation in this study.

Extrapolating from the results of the example applications and,

knowing the assumptions used to derive the test, several aspects of the

problem can be identified as being of interest in terms of how they
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affect the properties presented above. First, the length of record used

to develop the sample statistics (means and covariances) which are in

turn used to determine the optimal value of the objective function and

the weighting factors has an effect. It is well known that, as the

sample size increases, the parameter estimates are more reliable, that

is they have a smaller variation, and hence the results of the optimiza-

tion problem would also have a smaller variation and be more reliable.

It might also be postulated that the actual size and power of the test

would be affected by the sample size of the original data. Finally, it

is of interest to investigate whether imposing non-negativity conditions

on the variables affects the results in any way.

Simulation Approach. For analyzing the affects of sample size and

the non-negativity conditions on the variables and characteristics of

the test required data generation from a multivariate normal (MVN)

distribution.

The simulation procedure had the following steps:

I Generation of data sets, computation of statistics and optimal
variables.

1) Generate a set of data of length N for each site by a
MVN (in this case only a bivariate normal was required)
with a selected mean vector, ~ and covariance matrix, L.

2) From this data set, compute sample estimates of the

parameters, (Q, L).

3) Using these statistics, compute the optimal value of the
-,'\

objective function, N , and weighting factors, w
1

and
w2 ·

4) Compute the critical value of the weighted linear

combination as
~,~

y"
cr

_i'(
= z S-"k + Y

I-a Y

In the case of an application of the detection of change methodology, no

further steps would be required. To test the reliability of the method,

however, additional steps are necessary.



46

II. Evaluation of the size of the test.

1) Since the testis based on detection of change in mean
~t.

values within N~ years and the weights are now
determined, generate L1 means from the MVN
distribution. The distribution of these means is MVN

1
(l:!., * L)

N

2) Using the weights and critical value determined from the
J~

original set of data compute y" from the generated data
and perform the test as:

a)

b)

~.~

If f' < Y ,accept the hypothesis that the means
~ cr

are the same
~.~

If y" > Y ,reject this hypothesiscr

3) Count the number of rej ections and divide them by the
number of tests, Ll, to estimate the size, &.

III Evaluation of the power of the test.

1)

2)

3)

1
Generate L2 means from a MVN (H + kl:!., * 1), that is

N
from a distribution with the mean lOOk percent larger but
with the same covariance matrix.

Using the same weights, optimal number of years and
critical value perform the same test as in the evaluation
of the size.

Co~nt the number of rej ections and estimate the power,

1-~, by dividing this number by the number of tests, L2.

This procedure then gives an estimate of all of the characteristics

based on one set of generated data of length N. To determine the
.'.

behavior of these estimates, that is N", WI' w2 ' & and 1-~, many sets

must be generated and evaluated in the same fashion.

The behavior of these estimates can then be evaluated in a relative

frequency context. This is accomplished by computing the mean, variance

and skewness of each of the estimates as well as plotting histograms

based on the many sets of data generated. The affect of record length
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is evaluated by performing simulation runs for various sample sizes, N.

In this analysis, samples of length 10, 25 and 50 observations were

generated. The effect of imposing non-negativity constraints is

evaluated by direct comparison of simulations where each approach was

used to determine the weighting coefficients. For each case, a change

of 10 percent was considered with a size, a, of 5 percent and a power,

1-~, of 50 percent.

Since data generation can be very costly, it is necessary to

estimate the number of samples required for the analysis and this number

should be as small as possible without affecting the accuracy of the

results. It is then de~irable to estimate the number of data necessary

to determine whether the given characteristic falls within some

specified limit with some fairly large probability. In this case, a

sample length of 500 is necessary to say that the size of the test is

0.05 ± 0.02 while a sample size of 100 is required to determine where

the power is 0.50 ± 0.10. The details of these computations are

presented in Appendix E. For the simulation study, then, for each set

of generated data of length N, 500 means were generated to test the size

while 100 were generated to test the power. In all, 500 sets were
.'4

generated to assess the average characteristics of N
A

, WI' w2 ' & and

1-~.

To summarize the data generation study, Table 14 has been prepared.

All of the simulation runs are presented along with a description of the

purpose of each one.

Selection of Stations. To assess the behavior of the obj ective

function, variables and characteristics of the test, two stations were

selected from those used in the example application of the complete

detection problem presented earlier. The two stations selected were the
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Table 14

Summary of Data Generation Runs for Reliability Study

Run No. Sample Size Comments
(years)

1 25 Free Variable Case

2 10 Non-negativity Case

3 25 Non-negativity Case

4 50 Non-negativity Case
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White River and the Duchesne River. Annual EC at these two stations has

a relatively low sample cross correlation coefficient (r =0.16) and the

coefficients of variation are quite different; 0.11 for the White River

and 0.31 for the Duchesne River. The sample statistics from 16 years of

data at these two locations served as the basis for the simulation, that

is, they were assumed to be the population values and used as the

parameters in the distributions used for data generation.

Simulation Results. Four simulation runs were made as detailed in

Table 14. From these runs, a great deal of insight is gained regarding

the behavior of the objective function and variables of the problem as

well as the characteristics of the statistical test.

The effects of the original sample size on the value of the

objective function and variables of the problem are summarized in

Table 15. As the number of observations used to compute the sample

statistics (means and covariances), and thus the weighting factors

increased, little change was noted in the overall mean value of the

objective function or any other variables. This is shown graphically in

Figures 2, 3 and 4. There was, however, a marked affect on the

variation of the optimal value of the objective function and weighting

factors as shown in Figures 5, 6 and 7. The standard deviation of all

three variables decreases markedly as the sample size used to compute

the statistics increases. This points to considerably more reliable

estimates of the variables with a larger sample size as would be
,',

expected. The decrease of standard deviation of N with sample size

is approximately proportional to 1/~. The standard deviation of the

weighting factors, wI and also decrease with increasing sample

size but the decrease is much slower after a period of from 25 to

30 years.



Table 15

Comparison of Objective Function and Optimization Variables Based on Sample Size

Run No. Sample Size Variable Mean Standard Skewness
(years) Deviation

,'.
2

1\

3.396 1.582 0.77410 N

wI 2.717 0.274 -1.061

w2 0.070 0.124 2.585
1,

0.5613 25 N 3.478 0.932

wI 2.696 0.173 -0.439 V1
0

w2 0.075 0.085 1.035
.'~

4 N" 0.667 0.38450 3.335

wI 2.680 0.144 0.008

w2 0.087 0.073 0.456
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The distribution of the optimal value of the objective function,
~t~

N", is also related to the sample size used to compute the statistics.

As noted from Table 15, all of the parameter estimates used to

characterize the distribution with the exception of the mean, depend on

the sample size. In particular, the standard deviation and skewness

estimated from the 500 sets of generated data decrease as the sample

size increases. Still, in each case, the skewness is sufficiently high

to prevent assuming the objective function is normally distributed even
.'~

for larger samples. The shape of the distribution of N" can be seen

in Figure 8, which represents a histogram of generated values for a

sample size of 2S years. This distribution is, by both physical and

mathematical considerations, bounded by zero and is skewed to the right

thus it may be approximated by a lognormal or gamma distribution both of

which have these properties and are relative easily applied.

Of particular note in this case, however, is the fact that the
.'4

value of N" is given by a piecewise function (Equation 21) due to the

non-negativity conditions. Thus, depending on the values assumed by the
~t_

weighting factors which are dictated by the sample statistics, N"

should be characterized by a piecewise rather than a single

distribution. This would not be evident from the histogram plot and

only comes to light from the analytical solution of the problem.

The distributions of the weighting factors, wI and are also

bounded by zero due to the non-negativity conditions imposed in the

problem. The larger weight, wI' never assumes a zero value and thus has

a continuous distribution. However, the smaller weight, w2 , frequently

is given a zero value and thus, its distribution has a concentration of

mass at the point w = 02
and is therefore a mixed distribution as
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described by Yevjevich (1972). Figure 9 and 10 show histograms of wI

and w2 respectively corresponding to a sample size of 25 values used

to compute the weights.

The size and power of the test as estimated from the data

generation study were also dependent on the sample size used to compute

the weighting factors.

which cause the linear

This is due to the variability in the weights

combinations to be random variable with a

distribution other than Gaussian. As a result, the test does not always

have the originally prescribed size and power. Table 16 presents a

summary of the behavior of the size and power as sample size is

increased. The change in the mean value of these variables is shown in

Figures 11 and 12. For the small samples, the size of the test was far

from the 0.05 value selected initially. With larger sample size,

however, the size falls within the selected limits of 0.05 ± 0.02 with

probability 95 percent. Thus, as would be expected, the actual size

approaches the selected size but only for large sample sizes and so the

probability of rejecting the null hypothesis when it is in fact true is

much greater for small samples. The power is within the prescribed

limits, 0.50 ± 0.05, in all cases and is not very sensitive to sample

size, at least for a 10 percent change in the mean.

Imposing non-negativity conditions on the weighting factors in this

problem was not necessary from either a physical or mathematical point

of view. As such, it only removes the complete freedom of the variables

to minimize the objective function. A simulation run was made to

compare the effects of the non-negativity conditions on the problem and

the results are summarized in Table 17. From this it is apparent that

the mean value of the objective function is somewhat smaller in the free
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Table 16

Summary of the Size and Power of the Test as a Function of Original Sample Size

Run No. Sample Size Variable Mean Standard Skewness
(years) Deviation

2 10 & 0.101 0.101 1.898
A

1-~ 0.531 0.225 0.020

3 25 & 0.068 0.057 1.441
A

1-~ 0.545 0.165 0.004

0"

'"4 50 & 0.060 0.038 1.000
A

1-~ 0.542 0.125 -0.021
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Table 17

Comparison of the Effects of Non-Negativity on the Objective Function and Optimization Variables

Run No. Sample Size Variable Mean Standard Skewness
(years) Deviation

_t~

1
1\

3.268 0.954 0.49925 N

WI 2.623 0.235 -0.264

w2 0.118 0.122 0.043
1\

0.5613 25 N 3.478 0.932

WI '2.696 0.173 -0.439 0\
(J1

w2 0.075 0.085 1.035
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variable case (Run No.1) than in the more restrictive non-negative case

(Run No.3). In addition, in the free variable case, all of the

variables have continuous, single function distributions rather than the

piecewise and mixed distributions. Plots of the histograms for this

and are presented in Figures 13, 14 and 15 for
-J(

comparison. The distribution of N is somewhat skewed to the right

whereas and are nearly symmetrically distributed as evidenced

both by the histograms (Figures 14 and 15) and the skewness coefficients

in Table 17.

Given the nature of the solutions as single functions in the free

variable case, it is appropriate to explore the traditinal approach of

fitting distributions to the objective function and weighting factors

and evaluating the fit by the Chi-Square goodness-of-fit test. This

will provide a basis for estimating confidence intervals on these
.1.

variables to further quantify the reliability of the results. Since N"

is rather obviously skewed to the right and is bounded by zero, appro-

priate distributions to test are the log normal and gamma distribution.

These both have the required properties, are well known and fairly

easy to use. The weighting factors, wI and w2 , however, are not

markedly shewed and it is appropriate to test the normal distribution

for these variables. The results of the distribution fitting are

summarized in Table 18. The gamma distribution was selected as the best
.f.

fit for N" while both weighting factors were best fit with the normal

distribution. Knowing the distribution, it is then possible to compute

confidence intervals of the variables. Of particular interest is the
~I.

optimal value of the objective function, N" which can be estimated

using a gamma distribution with parameters taken from the results of
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Table 18

Results of the Chi-Squared Goodness-of-Fit Tests11

Variable Distribution Computed 2 Critical X2 ResultX
(a =0.05)

,t,
N Gamma 9.80 14.07 Accept

Log normal 45.40 14.07 Reject

WI Normal 9.56 14.07 Accept

Log normal 46.2 14.07 Reject
"'-J
0

Wz Normal 9.80 14.07 Accept

l/All tests based on 7 degrees of freedom with ex =0.05.
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simulation Run No.1. In this Case, the 95 percent equal tail area
_t..

confidence interval is given by (1.73 < N
A

< 5.52). The width of the

interval is then 3.79 years. If a conservative estimate of the sample

size is desired, the upper confidence limit could be used rather than

the value obtained from solving the optimization problem.

The size of the test also seems to be affected by the lack of

non-negativity conditions while the power is relatively unaffected. A

summary of the results of the data generation study regarding the

affects of non-negativity condition on the size and power is presented

in Table 19. The mean value of the size for the 500 simulated tests

with the weights as free variables was somewhat greater than that

resulting from the non-negative case. In fact, it can be said with some

certainty that the size of the test based on a 25 year sample size is

not within the O. as ± 0.02 limits. The power of the test was hardly

affected in either case.



Table 19

Summary of the Size and Power of the Test in Relation to Non-Negativity

Run No. Sample Size Variable Mean Standard Deviation Skewness
(years)

1 25
x

0.077 0.060 1.196ex
A

1-~ 0.550 0.159 -0.025

3 25 a
1-~

0.068

0.545

0.057

0.165

1.441

0.004

-.J
N
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SUMMARY AND CONCLUSIONS

Detection Method

A method for detecting a change in a hydrologic variable originally

proposed by Morel-Seytoux and Saheli (1973) has been adapted to water

quali ty. The basis of the approach is the use of weighted linear

combinations of variables together with a target-control (regression)

test to decrease the time required to detect a specified level of

change. The weights are selected using a mathematical programming

approach which minimizes the time required for detection. The optimiza

tion routine developed for use in this study uses an iterative quadratic

programming (QP) approach to solve the problem because of the highly

nonlinear nature of the objective function. Tests of the approach on

example problems indicated that the procedure reduces significantly the

time required to detect a change especially when the data being

considered was highly variable.

The behavior of the method depends on the variability of the water

quality variables and their interrelationships. Within the target area,

those variables with the lowest coefficients of variation receive the

largest weights. High correlation between variables in the target area

tends to give further weight to the variables having the lower coeffi

cients of variation. Variables within the control area are weighted

more highly if they have a low coefficient of variation, high correla

tion with stations in the target area and low correlation with other

control stations. These rules can be used in the initial selection of

stations for an application of the method.

Although unexplored in this study, the usefulness of this technique

in problems other than a strict detection of change application can be
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envisioned. In particular, this approach may be used in evaluating the

effectiveness of various stations in a gaging network for use in

detecting changes. Those stations with very low weights could be

immediately seen to be ineffective for such a purpose. Further, the

method is suitable for analyzing which variable or interrelationships of

variables would be most useful for rapid detection of changes.

Reliability

If a complete knowledge of the behavior of the system were

possible, the detection method would provide the complete answer to the

problem. However, the information employed in deriving the optimal

values of the objective function (number of years) and the weighting

factors are sample estimates. Therefore the results of the optimization

problem, being functions of these sample statistics, are also random

variables. For a complete resolution of the problem, an assessment of

the reliability, that is how the results can be expected to vary due to

uncertainty in the sample statistics, is necessary.

A method has been presented for evaluation of the distributions of

these optimized random variables based on an analytical solution of the

optimization problem. From this approach, explicit expressions relating

the objective function and variables of the optimization problem to the

random coefficients and "constants" can be obtained. These relations

can then be used to evaluate how the random variables combine to produce

uncertainty in the optimization problem. The imposition of non

negativity conditions complicates this procedure by producing piecewise

solutions depending on the values assumed by the random variables.

This, however, is the case most often encountered in engineering and

management applications. In theory, the explicit expressions are then
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used to derive analytically the distributions of the optimized random

variables. However, when there are many random variables in the expres

sions or if they are combined in a complicated manner, simulation may be

required to estimate the uncertainty.

A simpler formulation of the detection problem is used to

demonstrate this approach. Even in the simplest case, for two stations,

the resulting analytical expressions become mathematically intractable.

At that point, a few simulation runs for the free variable case are done

to demonstrate, in this case, what information can be gained on the

variability of the objective function and weighting factors. Only the

free variable case was used in the simulation study since piecewise and

mixed distributions resulted in the non-negative case.

An important result of the simulation study was the dependence of

the number of observations (sample size) on the actual size and power of

the test. For small samples, say 10 observations, the actual size of

the test was significantly larger than that specified ~ priori. This is

due to the use of sample statistics rather than population parameters to

derive the weighting factors and results in a much larger Type I error

than anticipated. To adjust for this problem, a smaller level of

significance than actually required can be used in the analysis and the

resulting test will very likely have a size closer to the desired value.

For example, if a 0.05 level of significance is thought appropriate, the

weights could be determined using a 0.03 value and the resulting test

would have closer to the desired property. This will also effectively

increase the sample size required to detect the specified change.

The maj or advantage of the method is in the analytical

relationships produced between the variable of the optimization problem

and the random variables used as coefficients and constants. At the
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very least, these expressions allow a qualitative assessment of how the

uncertainty in estimating these values affects the problem. For less

complex formulations, these expressions can lead to analytical solution

for the distribution of the optimized random variables and thus general

conclusions can be drawn. For more complicated situations, simulation

using these explicit expressions can be used to produce conclusions

specific to the problem at hand. Further study is required to explore

what formulations produce mathematically tractable solutions. In

addition, dealing with the piecewise and mixed distributions resulting

from the non-negativity conditions must be addressed.
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MATHEMATICAL DEVELOPMENT OF EQUATIONS USED TO
DETERMINE WEIGHTING COEFFICIENTS

The basic equation used as the objective function for the

optimization problem is:

(A-I)

where N is the number of years required to detect the change in
the mean

ZI_~ is the standard normal variate corresponding to the power
of the test

ZI-a is the standard normal variate corresponding to the size
of the test (level of significance)

lJo is the mean of the variable specified in the null
hypothesis

is the mean of the variable specified in the alternate
hypothesis

This equation applies to the detection of a given change in the mean

value of a variable which is normally distributed, independent in time

and whose variance does not change.

The derivation of this equation for a one sided test such as

is as follows. First, define the level of significance of the test to

be a; the probability of committing a Type I error (rejecting H
o

when

it should be accepted). Also define l-~ as the power of the test; the

probability of accepting HI given that it is true. We can now proceed

to derive the Equation (A-I) given the properties of the normal

distribution.

Referring to Figure A-I for a graphical representation of the

following mathematics, let us first define the critical value x as:c



a Size of the Test (Level of significance)

1-{3 Power of the Test, P [Acce pt H, I H I True] .

Xc Critical Value of the Variable x

P,o Mean of the Null Hypothesi s, Ho

P". Mean of the Alternate Hypothesis J H,

00
a

fLo Xc fL l
X

Figure A-I. Graphical Representation of the Statistical Theory.
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(A-2)

Further, the power of the test is simply the area under the normal

p.d.f. (centered at ~1) to the right of x
c

or the probability that

x > Xc given that ~ = ~1' This can be written as:

00

[- iC-~l ) dX]1 - ~
1 I= exp

.J2IT. a/~n x (J/.Jllc

[ Cr ]1 x 1 x-~l
or 1 - ~ = 1- I C

exp - 2 a/~ dx
~2T( a/~n -00

(X -~)= 1 - 4> c 1 (A-3)

a/.Jll

where <p(.) represents the normal cumulative distribution function.

Given the expression for

Equation (A-3) to obtain:

xc' Equation (A-2) , we can replace x
c

in

(
~ + zl a/.,[ll- ~1)1 - ~ = 1 - <p _o -_a _

a/fll

which simplifies to:

(
~o-~1 )

1 - ~ = 1 - 4> ------ + zI-a
a/,Jn

(A-4)

Now, due to the symmetry of the normal distribution, 4>(z) = 1-4>(-z) so

we can rewrite Equation (A-4) as:

( ~l-~O)1 - ~ =$ -z + ------I-a
a/5
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and since

(A-5)

If we view ~ a linear operator (with reference to Figure A-I), we

see that operating on both sides of Equation (5) with
-1

~ will

transform 1-~ from a probability to a standard normal variate, zl_~'

Likewise, the right side will be transformed to give

(A-6)

a/~n

or, rearranging we can obtain

n = (A-7)

This expression allows us to determine the number of observations, n,

necessary to detect a change in the mean from ~o to ~1' with a level

of significance, a, and a power, 1-~.

make a final substitution to obtain

Noting that Z = -zl ,we canex -ex

n =

Note that and

(A-B)

are both positive for ex and ~ < 0.50.

One further change of Equations (A-B) is useful. If we define the

difference between

write

k =

and as a change relative to IJ , we can
o



(A-I)
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Substituting this expression into Equation (A-B) yields Equation (A-I)

n =(Zl-e::1-a)2 02

This relation expresses the number of observations necessary" to detect a

change in ~o of klJo
for the selected power and size of the test. As

an example, a value of k = O. 10 indicates an increase in IIt"o of

10 percent so the test is one which will detect a 10 percent increase in

the mean.

A similar relation can be derived for a composite test (two tailed)

with one minor assumption, to give

(A-9)

with the understanding that

equation must be used

k~o

a/~
requiring

> 0.5. Otherwise a much more complex

iterative solution techniques to

determine "n".

In both Equations (A-I) and (A-9) , the number of observations

required to detect a given change in the mean is directly proportional

to the variance of the random variable. Therefore a decrease in this

parameter will lead to lesser number of required observations. One

means of decreasing the variance is to find another variable which is

(linearly) related to the first variable and is also normally

distributed. This relationship can be exploited through the theory of

the bivariate normal distribution to accomplish this objective.

The linear regression between two variables is based on the

conditional, bivariate normal distribution, that is, the distribution of

a random variable, Y, is a function of the value taken by the variable,
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X. In this case Y is the dependent and X is the independent

variable. The crux of this approach, is that, given a value of X, the

variation in Y is reduced in proportion to the (linear) dependence

between the two variables.

distribution is

The variance of this conditional

2
(1 -

2 2
a Y/X = P xy)cr Y

where 2 is the variance of Y given X,a Y/X

Pxy is the correlation coefficient between X and Y,

2 is the variance of Ycry

So, if the degree of (linear) correlation as represented by Pxy is

high, the conditional variance can be considerably smaller than the

marginal variance.

This conditional variance was substituted for the variance of the

origina~ variable to give

(A-10)

This can be easily justified theoretically if the denominator is viewed

as rather than klJ.
o

In this case klJoY also represents the

change in the value of the conditional mean of Y given X. Equation

(A-IO) provides us with an expression for the number of observations

required to detect a change of lOOk percent in the mean of the random

variable Y, given that it is correlated to another random variable, X,

which does not change. This number of observations is obviously less

than the number computed without using the conditional variance.

Thus far, the development of the methodology has been restricted to

two variables. It was hypothesized and shown rather conclusively by

Morel-Seytoux and Saheli (1973), that a weighted linear combination of
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variables could be used effectively in further reducing the time

required to detect a change in the random variable of interest. Thus,

rather than a variable from a single location, a weighted linear

combination of variables from several locations can be used as the
_,_

random variable in the problem. We could define new variables X" and
-'-

y" to be linear combinations of the values of X and Y at various

locations by:

*
NT

Y = l: w.Y. (A-II)
i=1 1 1

*
NC

X = l: w.X. (A-12)
i=NT+l 1 1

where w. is the respective weighting factor,
1

NT is the number of stations in the target area, and

NC is the number of stations in the control area.

Then, writing Equation (A-I) for the linear combinations gives:

(
.t.)2(J .-

k~y* (A-13)

Now, the terms P .'..'.
X"y'" and can be expanded as follows.

For the correlation coefficient, P * * the definition is:X Y ,

(A-14)

Mood, Graybill and Boes (1974) give expressions for the covariance and

variance and mean of linear combinations as:



,'\ -!~

Cov[Y ,X ]
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NT NC
= Cov[ L w.Y., L w.X.]

i=1 1 1 j=NT+l J J

NT NT+NC
= a L

i=1 j=NT+l
W.W. Cov[Y.,X.]

1 J 1 J
(A-IS)

NT
a:y"'~ =Var[ L w.Y.] =

i=1 1 J

NT NT
L L

i=1 j=1
W.W.

1 J
Cov [Y. Y.]

1 J
(A-16)

NT
aX* =Var[ L w.X.]

i=NT+l 1 J

NT+NC NT+NC
= L L w.w. Cov[X.X.]

i=NT+l j=NT+l 1 J 1 J
(A-17)

NT
I.l i'\ =E[ L
Y i=1

n
w.Y.] = L

1 1 i=1
W.lJy1 .

1

(A-18)

Substituting these expressions into (A-13) gives

_(ZI_~ + zl-a )2 [NT NT
N - NT .L .L w.w. Cov[Y.Y.]

k L 1=1 J=l 1 J 1 J
W.l.ly

i=1 1 i

(

NT NT+NC )2 NT+NC NT+NC .
- L L w.w. Cov[Y.Xk] / L L wkwt Cov(XkXt )

i=1 k=NT+l 1 J 1 k=NT+l t=NT+l
CA-19l]

The original function, (A-I) is now expressed explicitly in terms of the

weighting factors and the parameters of the variables.
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QUADRATIC EXPANSION OF THE OBJECTIVE FUNCTION

Objective Function Expansion

The quadratic programming (QP) problem is generally posed in the

following form

Min { c'x + 1 x' Q } (B-1)2" x-x

subject to: x > 0

A x > r-

Thus, a quadratic function is being minimized subject to a set of linear

constraints. Non-negativity conditions may also be placed on the

variables. Equation (B-1) can also be written in summation form as:

N
1

N N
Min I c.x. + 2" I I x.x. q .. (B-2)

i=l 1. 1. i=l j=l 1. J 1.Jx

where N is the number of variables.

The method selected to solve the nonlinear programming problem is to

successively approximate the objective function at each feasible point

by a quadratic function thus allowing the iterative use of a QP

algorithm to solve the problem.

The objective function is approximated by expanding it in a Taylor

series which is then truncated after the second order term. The

multivariate form of the Taylor series expansion about the point XO is

given by

1
+ 2: (B-3)



where y
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is the dependent variable

x is the vector of independent variable

O(x3) represents the remaining terms of order 3
x and greater

The derivatives are also evaluated at the point, xo. If the terms of

3O(x ) are truncated, a quadratic approximation of the original function

remains; the accuracy of the approximation depends on the magnitude of

the truncated terms. Thus if the objective function, Equation (10) is

approximated in this fashion, the following expression results:

where

1 N N
(w.-w~)(w.-w~) (~2Na )0+ L L (B-4)"2

i=1 j=l 1 1 J J w. w.
1 J

w is the vector of unknown weighting coefficients, and-

WO is the value of w at the feasible point.

Inspecting this expression reveals that further simplification produces

an equation with constant, linear and quadratic terms. Identifying the

coefficients for this terms yields for the constant term

N
B = l

i=l
(-w~) (0 N )0 + !

lOW. 2
1

N N
l L

i=l j=l
(B-5)

for the linear term

( )

0

oN
c = -i oW

i
(B-6)

and, for the quadratic term

(B-7)
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Combining these terms produces the complete expression for the

approximation of the objective function as:

N
N:: B + L

i=l
c.w. +

1. 1.

N N
L L

i=l j=l
w.w. q ..

1. J 1.J
(B-8)

It should be noted that the constant term, B, does not affect the

optimization problem. However, it is necessary to check the accuracy of

the approximation vs. the actual objective function.

Evaluation of Derivatives

From Equations (B-5), (B-6) and (B-7), it is apparent that both the

first and second derivatives of the objective function are necessary to

obtain the quadratic approximation.

function is given by

Recalling that the objective

w.w. Cov(Y.Y.) -
1. J 1. J

N=(Zl_~ + zl_~ )2
k L ~

i=l Yi

(

NT NT+NC ) 2 NT+NC NT+NC ~
L I w.wk Cov(Y.Xk) / L L ckcQ Cov(XkXQ) (B-9)

i=l k=NT+l 1. 1. k=NT+l Q=NT+l

The form of the derivations will depend on whether the particular

variable being considered, w , is in the target area, 1 ~ P ~ NT, or thep

control area, NT + 1 ~ P ~ NT + NC. For the first derivatives there are

two possible cases:

aN
aw NT + 1 ~ P ~ NT + NC.

p
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However, for the second derivatives there are four combinations given

as:

a (aN ) 1 ~p < NT & 1 ~ q~ NT (B-10)aw awq p

a (aN ) 1 ~ P ~ NT & NT+1 ~ q ~ NT+NC (B-11)aw awq p

a (aN ) N+1 ~ P ~ NT+NC & 1 ~ q ~ NT (B-12)aw awq p

a (aN ) NT+1 ~ P < NT+NC & NT+1 ~ q ~ NT+NC (B-13)aw aw
q p

Noting that (B-11) and (B-12) produce the same result, there are five

derivations that must be computed. The results of these computations

are presented below:

NT ( NT NT+NM ~ (NT+NM )~N = A 2 L w. Cov(Y Y.)-2 L L w.wk Cov(y.xk) L wk Cov(y xk)
wp j=l J P J i=l k=NT+1 1

1 k=NT+1 P

1 ~ p < NT (B-14)

aN =A
aw

p [ (
NT NT+NC ~(NT+NC )

2 L L. w.wk Cov(Y.Xk) L wQ Cov(X XQ)
i=l k=NT+l 1 1 Q=NT+1 P

(

NT+NM NT+NM ~
- 2 L L wkwQ Cov(XkXQ)

k=NT+1 Q=NT+1

(
NT NT+NC )( NT )~L L w.wk Cov(Y.Xk) L w. Cov(YiXp )

i=l k=NT+1 11 i=l 1

(B-15)
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1 2 p 2 NT, 1 2 q 2 NT (B-16)

(
NT NT+NM ) ~ ~~+ ~ ~ w.wk Cov(Y.Xk) Cov(Y X )

i=l k=NT+l 1 1 P q

1 2 p 2 NT & NT + 1 2 q 2 NT+NC (B-17)



93

(
NT+NM ~ ( NT NT+NC ~ ( NT ~+ 2 L wnCov(X Xn ) L L w.wkCov(Y.Xk) L w.Cov(Y.X)
Jl=NT+l~ p ~ i=l k=NT+l~ 1 i=l 1 ~ q

(
NT ~ (NT 1(NT+NC NT+NC )- L w.Cov(Y.X ) L w.Cov(Y.X) L L wkWnCov(XkX n )

i=l 1 ~ P i=l ~ ~ q k=NT+l Jl=NT+l ~ ~

NT+l ~ p ~ NT+NC & NT+l ~ q ~ NT+NC (B-18)
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APPENDIX C

PROBABILITY PLOTS FOR EXAMPLE APPLICATION
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UNDERLYING THEORY AND DERIVATIONS RELATED
TO THE EVALUATION OF RELIABILITY

Stationarity Conditions

In any optimization problem, either constrained or unconstrained,

location of a minimum (or maximum) is defined by the stationarity

conditions. In the case of a univariate, unconstrained problem this is

simply the point where the first derivative (or the slope of the curve)

is zero. An analogous situation exists in the constrained case but,·

rather than the partial derivatives, the "constrained derivatives" are

used to define the optimal solution (minimum or maximum). The

constrained derivative (e.g., Beightler et al., 1979, or Morel-Seytoux,

1978) is defined as the partial derivative of the objective function

while assuring that the constraints are always satisfied.

For a problem with N+K variables and K constraints, then K of

the variables can be expressed in terms of the other N variable.

These K variables are termed state or solution

variables while the remaining N variables d
1

, . ., d are called
n

decision variables. At least in principle, then, these K state

variables can be eliminated from the objective function and it can be

expressed only in terms of the N decision variables. The constrained

derivative, also called the decision derivative, is then defined as

QL =ad.
J

oy +
ad.

J

K
L

i=1

oy
as.

1.

as.
1.

ad.
J

j=I,2, ... ,N (D-l)

where
oy
ad.

J

ay
ad.

J

is the constrained derivative of the objective function,
y, with respect to the decision variable, d.;

J

is the usual partial derivative of the objective function
with respect to the decision variable;



~
as.

1
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is the usual partial derivative of the objective function
with respect to the state variable, s., and

1

as.
1

ad.
J

is the partial derivative of the state variable
respect to the decision variable, d ..

J

s.
1

with

The stationarity conditions are defined in terms of this constrained

derivative.

The form of the stationarity conditions depends on whether the

variables in the problem are confined to be greater than or equal to

zero (non-negative variables) or whether they are allowed to assume any

value (free variables).

conditions are:

In the free variable case, the stationarity

~=
ad.

J

o , j = 1, 2, ... , N (D-2)

This can be seen to be completely analogous to the classical calculus

situation. When non-negativity is imposed, however, the conditions

become a bit more complex and are given by:

~ d. = 0 j = 1, 2, Nad. J
. ,

J

and ~ > 0 d. > 0 j = 1, 2, N (D-3)
ad. J

, . ,
J

Rather than merely requiring the constrained derivative to vanish at the

stationary point, the product of the decision variable and constrained

derivative must equal zero and both must also be non-negative.

The logic in these conditions can be outlined rather simply to

provide an intuitive feeling for their meaning. If the constrained

derivative were negative, an increase in the decision variable, d. ,
J

would lead to a further decrease in the objective function so that the

constrained derivative must be non-negative. Further, the decision
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variable must be non-negative as required by the conditions originally

imposed on the problem. If the constrained derivative has a zero value

then either an increase or decrease in the variable, d., would cause an
J

increase in the objective function (considering a minimization problem).

So, if d.
J

is positive (not zero), oy/od. must be zero.
J

Finally, if

the constrained derivative were positive and the variable, d., were
J

positive, d. could be decreased as far as zero which would decrease the
J

objective function. Therefore, if the constrained derivative is

positive, the decision variable must be at a zero value leading to the

conditions that their product must be zero at the optimum.

These conditions, then, are necessary for a minimum to be achieved.

It should be noted, however, that they are not sufficient for a global

minimum. In addition to these conditions being fulfilled, the function

must be positive definite for a minimum to always be the global minimum.

As a final note, using the differential viewpoint to describe the

stationarity conditions is not the only way this can be accomplished.

The same results can be obtained by following through the generalized

Kuhn-Tucker conditions using the classical Lagrange Multiplier technique

(Beightler et al., 1978). However", it is felt that the approach

presented above is a bit more intuitive by drawing an analogy to

minimization as it is applied in classical calculus.

Solution for the Stationarity Conditions

To obtain the optimal solution in a minimization (or maximization)

problem two approaches, the indirect and direct methods, are available.

The indirect method, is based on the solution of a system of simulta-

neous equations to obtain the optimum while the direct method is based

on successive improvement of the objective function through moving
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progressively from one solution to a better one. It is the direct

method that is the basis for mathematical programming as this is more

efficient for large problems.

In the case when coefficients in the objective function and

constraint equations are random in nature, however, the direct method

may not provide the best method since the optimum will depend on the

values assumed by these coefficients. To explore the variation of the

"optimal" value of the objective function would require executing the

mathematical programming problem a great number of times with different

possible values for these coefficients. Another approach to the problem

is to successively solve the stationarity conditions, (D-2) or (D-3)

depending on the problem, for all possible combinations and finding

those sets of conditions which are feasible in the context of the

problem. This is a combinatorial problem which becomes larger as the

number of variables in the problem increases. However, once the problem

has been solved, explicit equations result relating the objective

function and variables of the problem to the random coefficients. This

technique will be demonstrated using the detection of change problem.

Direct Solution of Stationarity Conditions

For the general problem posed in the form of minimizing the

conditional variance of a linear combination of stations, the objective

function is highly nonlinear as are the derivatives presented in

Appendix B. Thus, the constrained derivative, Equation (D-1), is also

highly nonlinear making this a very difficult, possibly an impossible

problem to solve analytically. Due to this and the fact that many

engineering problems are posed as a simpler linear or quadratic objec

tive function, a less complex problem is developed to demonstrate the
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technique. The new problem is to minimize the number of years required

Aw.Y., with a specified power, 1-~, and size, a, of test.
1 1

to detect a change of lOOk percent in a linear combination of stations,
.t~ N

y" = 1
i=l

constraint that the mean of the weighted linear combination must equal

the mean of the unweighted sum of the stations is also imposed. This

problem is written mathematically as:

(Zl:~y: zHr N N
Min N = 1 L w.w. S

i=l j=l 1 J Y.Y.w 1 J

subject to:

N N .t~

L W. Y. = 1 Y. = y"
i=l 1 1

i=l 1
(D-4)

Non-negativity of the weights could also be imposed as a further

condition.

This is a quadratic programming (QP) problem with one, linear

equality constraint. The solution of this problem by direct application

of the stationarity conditions will depend on whether non-negativity

conditions are imposed. Both situations will be investigated with only

two stations (N=2) being used for illustration.

Free Variable Case. In this situation, the only stationarity

condition is:

cy = 0
cd.

J

j = 1, 2, ... , N

where N is the number of decision variables; the total number of
variables in the problem minus the number of constraints
(1 in this case).

From CD-I) the constrained derivative of (D-4) selecting WI as the

decision variable is:
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(D-S)

In this specific case, where w2 is expressed in terms of wI through

the constraint:

(D-6)

(D-7)

(D-B)

So, the constrained derivative is

Now, applying the stationarity condition, D-I and gathering coefficients

of wI and w2 gives

(D-IO)

Along with the constraint equation there are now two linear equations

and two unknowns, wI and Simultaneous solution of these two

equations gives the following results:

(D-II)
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(D-12)

The optimal value of the objective function, N*, can then be obtained by

substituting wI and to give:

(D-I3)

Equations D-ll, D-12 and D-I3 express the optimal values of the

variables (weighting factors in this case) and objective function as

explicit functions of the statistics of the variables being investigated

in the detection of change problem. The same expressions are obtained

if is chosen as the decision variable. So, although the expres-

sions are complex, they show how uncertainty in the estimation of the

statistical parameters affects the results of the optimization.

Non-negative Variable Case. In this situation, the stationarity

conditions are given by (D-3). Thus, there are 4 possible combinations

which could result in this case. These are:

A)

1)

2)

is the decision variable

oN > 0, wI = 0ow -
1

QL - 0, wI > 0oWl -
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B) Wz is the decision variable

1) oN > 0, 0
owZ

Wz =

Z) oN
0, w2 > 0

owz =

From the previous case the selection of the decision variable gave no

difference in the value of and wz ' thus it can be seen that case

AZ and B2 will produce results identical to the free variable case as

long as and are non-negative. The non-negativity conditions

require that both wI and in Equations CD-II) and (D-I2) be

non-negative. Inspection of these equations shows that the denominator

is, if the population parameters are used, the variance of the weighted

difference between Y1 and YZ. That is

z z= a cry
1

CD-14)

Now, let a =4~y /~Y
Z 1

and b =4~y /~Y
1 Z

then

var[O ~y - p;-; y] =
J~ 1 J~ z

1 Z

~YZ 2 ~Y
-0 -2 + 1
~Y YI cry Y ~Y
lIZ 2

CD-IS)

Replacing the population values by the sample values given the

denominator in CD-II) and CD-IZ). And, since variances are always

positive, only the non-negativity of the numerator need be considered.

Thus, the non-negativity conditions are given by

> 0 ' for wI > 0 (D-16)
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C2 S )
-"i'\ YZ YIYZ > 0 for Wz > 0 (D-17)Y ----

YI YZ

These conditions can be written as

YI
S

>
YIYZ for wI > 0 (D-I8)-

0Yz Yz

YI
SyZ

< 1 for w
2

> 0 (D-19)-
YZ

S
YIYZ

It remains to investigate cases Al and BI to complete the

evaluation of the non-negative case. In AI, WI equals zero and the

following equations result from applying the stationarity conditions

WI = 0

~1..-I, -
Wz = Y /YZ

it, (Zl-e + Zl-aY G:2)2N =

Similar results are obtained from BI as

~1..

WI = y"/Y
I

Wz = 0

j'\ (Zl-e + Zl-aY G:IYN =

(D-ZO)

(D-2I)

(D-ZZ)

(D-Z3)

(D-Z4)

(D-25)

To summarize the non-negative variable case, three different

results are possible depending on the values of the statistics. These

are



I) if

II) if
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w =01
~...

w
2

= y"/Y
2

N* = (Z1_£ + Z1_a)Z SYZ2
Y2

Y
1

8y2

> 1 then
Y2

- -8- ,
YIY2

~...
wI = y"/Y

1

w
2

= 0

N* = (Z1-e + Z1-aY G:1)2

III) if , then

(

8 2
_'"k Y1
Y - -

Y1
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Thus, although in a more complicated manner, the variables and objective

function are again expressed explicitly as functions of the statistics

(random variables) in the problem allowing direct evaluation of their

affect. In this case, the additional feature is the regions in which

various solutions apply. These are also expressed in terms of the

statistics of the problem.

A final observations can be made in relation to the non-negativity

criteria for determining the domain of each solution, Equations (D-I8)

and (D-19). These can further be rearranged to give the following:

8y

Y1 - Y 1
r 8y2 Y1Y2

2

Sy

Y2 - Y 2r --
I Y1Y2 Sy

1

> 0

> 0

(D-26)

(D-27)

where is the sample correlation coefficient between
Y

1
and -Y

2
.

These equations could be viewed as sample estimates of the regression

constants in the linear regression between the two variables (Mood et

al., 1974). For example, for the relation

(D-28)
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The constant, aI' can be estimated by the left side of (D-26).

Similarly for the equation

(D-29)

then, a2 , can be estimated by the left side of (D-27). Thus, if the

intercept of the regression line is above the origin, the variables are

greater than zero. Otherwise, they are assigned a zero value.
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ESTIMATION OF SAMPLE SIZES REQUIRED FOR DETERMINATION OF SIZE AND POWER

Since data generation is an expensive proposition requiring much

computer time, it is necessary to estimate the amount of data required

for the purposes of the proj ect. In this case, the interest is in

estimating the actual size and power of the statistical test since all

of the computations are based on sample estimates rather than population

parameters. Viewing the size of the test as estimated from each

simulation, as the outcome of an independent, Bernoulli trial, (i. e. ,

rej ection is a success) then the estimate of the size, a, or the

parameter, p, in the Bernoulli distribution (Mood et al., 1974) is

E [a] =p

In addition, the variance of the variable is given as:

Var [a] =pq

(E-1)

(E-2)

where q = 1 - P

Now, the expression for the variance of the sample mean of a random

sample is known to be (Mood et al., 1974)

Var [xl =var[x]
n

(E-3)

In this case, the variance of the sample estimate of a is:

Var[a] =~
n

(E-4)

Of interest in this analysis, is the ability to say, with some

relatively high probability, that the estimate of Ci is, in fact, equal

to the originally prescribed value within some small interval.

Mathematically this is:
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P [a-0.5 < c] = 0.95
r

c is some small quantity

(E-5)

This can also be'written as

P [O.05-c < a < 0.05 + £] = 0.95
r

(E-6)

Now, if it is assumed that this distribution can be approximated by the

normal distribution since the parameter of interest is a mean, then

(E-6) can be written as

= 0.95 (E-7)

where <p( • ) is the cumulative normal distribution

p is the success probability

q is the failute probability

JP! is the standard deviation of the sample estimate of the
parameter.

Setting p = 0.05, q = 0.95 and realizing that the value of the

standard normal deviate for a two tailed, having a 95 percent

confidence level is 1.96, the following equation results

c--- = 1.96
j 0.~475

(E-8)

Then, to solve for the sample size, n, the increment, c, must be chosen.

Table E-l shows sample sizes for various values of c. For this study,

a sample size of 500 was selected which should provide a 95 percent

assurance of the evaluation that the size is 0.05 ± 0.02.

A similar analysis can be done for the power. Using E-7 with

p = q = 0.50, the following expression is obtained relating sample size

and error



E--- = 1.96
j O~25
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(E-9)

Using this equation, Table E-2 was constructed. A sample size of 100 was

selected which allows evaluation of the power as 0.50 ± 0.10 with

95 percent assurance.

Table E-l

Sample Size, n, Required to Estimate Whether the Size of the
Test, a, is within the Stated Increment, £

a =0.05

Sample Size
n

7,299

1,824

456

73

Table E-2

Error
E

0.005

0.010

0.020

0.050

Sample Size, n, Required to Estimate Whether the Power of the
Test, 1-~, is within the Stated Increment, ~

1-~ =0.50

Sample Size
n

384

96

24

Error
£

0.05

0.10

0.20


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


