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ABSTRACT 
 

 

 

A MULTIMETHOD SIMULATION PARADIGM FOR INVESTIGATING COMPLEX 

CELLULAR RESPONSES IN BIOLOGICAL SYSTEMS OF AGING AND DISEASE 

 

 
Classical studies in toxicology and disease research have relied on the use of 

high-dose experiments and often lacked quantitative and comprehensive components 

essential to understanding biological queries. These shortcomings in the research 

community have been the result of modern methodological limitations, however, more 

robust and expansive experimental and computational methods are emerging. In this 

dissertation, I present a novel multimethod computational simulation paradigm that adds 

value to new and existing studies of toxicological and pathological endeavors. First, I 

established the use of this approach for pharmacokinetic and pharmacodynamic 

applications, with published examples in regulatory toxicology and contemporary dose-

response nuances. Following establishing the success of this approach in toxicology, I 

then applied this methodology to degenerative aging, as it has been arduous with 

conventional techniques to understand the various mechanisms that determine cellular 

aging. The foundational simulation created for general cellular aging was then 

expanded in the context of tauopathies and Alzheimer’s disease to better quantify and 

understand the pathways involved in this age-dependent disorder. The final results 

presented here improve experimental translatability, robustness and descriptiveness in 

order to better understand age-related diseases. More broadly, this dissertation 

ultimately minimizes quantitative deficits in toxicological and pharmacological research. 
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CHAPTER 1: INTRODUCTIONS AND METHODOLOGICAL PERSPECTIVES 

 

1.1      An enhanced scientific method and biological testing paradigm 

 

The inner workings of cell and molecular biology have slowly been uncovered 

over the past century through the tried-and-true scientific method: hypothesis 

generation, laborious experimentation, and keen observation. Due to the amazing 

complexity of infinitesimal biological systems, toxicological mechanisms of disease have 

been difficult to pinpoint with precision in this classic process and have become even 

more elusive in the wake of diminished funding. To improve this process, a more 

extensive and meaningful interpretation of quantitative data must be conducted, which 

is possible through the understanding of circuit-based systems biology and the 

employment of innovative in silico simulation technologies. This chapter opens the 

debate for a spectrum of computational cellular dynamic modeling techniques as 

indispensable tools for accelerating the production of important physiological and 

toxicological research. 

As the knowledge of cellular systems becomes more correct and thus more 

complex, the need for accurate and easily understood experimental models becomes 

increasingly paramount. This is primarily because biological scientists are, by nature, 

wired to increase their knowledge-span and discover the elusive causal agent or earliest 

trigger in any given physiological process. For over a century, research in cell biology 

has uncovered a vast array of important processes within the fields of applied 

pharmacology, toxicology and general pathology, but many initiating steps and 

propagating processes of the relevant cellular mechanisms remain unknown. Such is 
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the case with natural biological functions that lead to age-related cellular damage [1, 2] 

and carcinogenesis [3, 4], as well as with many toxicological responses that require 

better etiological and mechanistic explanations [5, 6]. The drive to fully comprehend 

these complex relationships has not weakened, so what methodological obstacles have 

made this research so difficult for so long? 

Traditionally, biologists and toxicologists have been obliged to make broad strokes in 

their experiments—using epidemiological studies, high-dose in vivo models, histological 

techniques and purely qualitative macromolecule measurements—to draw relatively 

loose conclusions about absolute mechanistic pathways underlying homeostatic 

conditions and toxicological disease states [7]. Even well-researched mechanisms lack 

some predictive capability in their experimental models [8], as they are often unable to 

address extensively connected cellular pathways and quantitative dynamic variables, 

such as the ever-changing variable of time. Other notable observations among these 

types of studies include their likelihood of inaccuracy [9] and very low rate of 

reproducibility, which have been thoroughly discussed with concern in several major 

press releases [10–12]. It is speculated that such experiments, especially those 

involving oncological pursuits, can only be replicated 10–25% of the time [10], likely due 

to a poor understanding of molecular targets and predictive biomarkers [12].  

Many studies about diseases and toxicities have innately lacked a genuine 

biological basis in their experimental designs—with regard to intrinsic cellular function 

and xenobiotic-induced dose-response relationships. These specific advances in 

molecular biology have been stunted by a stagnant understanding of complex cellular 

circuitry and a severe deficit of a universal “quantitative language” by which to address 
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mechanistic metrics [13]. This dilemma has been gradually remedied by the advent of 

systems biology, a precise quantitative science that deals with whole biological 

systems, i.e. the network of finite processes involved in particular physiological states 

and pathological outcomes. This relatively young field of computational systems biology 

is now burgeoning, and has initiated several radical reports on the state of the 

necessary experimentation paradigm [14–18]. Most notably, the National Research 

Council issued “a blueprint for change” in 2007 [17] to reevaluate how toxicity testing 

should be conducted, focusing on the necessary inclusion of high-throughput in vitro 

assays, omics technologies, quantitative structure-activity relationships, and, especially, 

computational modeling efforts. This report was followed by a battery of commentary 

articles [7, 19–21] and was lauded by the scientific community for its useful innovations. 

From these ideas spawned the creation of powerful predictive biological models [22–24] 

that employ high-throughput technologies and systemic quantitative analyses, and the 

number of biological researchers employing mathematical models continues to rise [25]. 

The promise of this shift in the scientific community lies within synthetic biological 

simulations, which interpret a massive collection of quantitative data and have 

extraordinary power in their predictive capacity. Historically, computational simulations 

have been underutilized in biological research due to poorly communicated 

methodology and a limited technical capacity within classic modeling software [26]. 

Discussed here are the valuable advancements made in quantitative systems biology 

and a novel function of simulation technology. Together these may promote the use of 

computational biological modeling to ultimately accelerate the generation of important 

physiological and toxicological research.  
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1.2       A quantitative language for cellular biology 

 

In 2002, Yuri Lazebnik wrote about his perspective of traditional experiments in 

biology [13]. To do so, he applied the molecular biologist’s reductionist approaches to a 

problem with a known solution: reverse-engineering a broken transistor radio. He 

described how biologists would dissect such a device and qualitatively assess each 

piece (e.g., by color, size, shape, part-deficient “phenotypes”), thus inciting more 

confusion about the entire system and not achieving the original goal of fixing the radio. 

Engineers, however, are equipped to tackle these problems because 1) they are 

formally trained to recognize and appropriately render the connections within complete 

circuits and 2) there is a commonality among the specific parameters that accompany 

such systems. These concepts, Lazebnik and many others argue [13, 27, 28], are 

directly applicable to molecular biology, where signal transduction pathways and cellular 

response mechanisms can be understood as mathematical circuits. With this mindset, it 

is easier to predict how all the intricate workings of a cell interact with one another in a 

physiological system and to understand how they do so in a very calculable way.  

Lazebnik’s thought experiment exemplifies why there must be more structural 

commonalities driving quantitative biological experimentation and modeling techniques. 

To begin, biologists must elucidate the crucial connections within a biological system 

and the time-dependent biochemical reactions that occur within each individual segment 

at play. In other words, to comprehend the full cellular mechanism of interest, it must be 

broken down into its measurable parts and subsequently reconstructed to make apt 

predictions about physiological effects.  



 

 5 

 

This reconstruction phase requires a bit of targeted data-mining to determine the 

battery of active pathways within a cellular system, through the discovery of critical 

proteins and transcription factors (i.e. via proteomic technologies) as well as the array of 

functional transcripts expressed or repressed in a given response (i.e. via transcriptomic 

technologies). With these data on key proteins and genes, tissue-specific biological 

circuits can be accurately proposed and continually refined with more specific laboratory 

assays to establish all the significant connections within a working model [29, 30]. 

Technological advances are even starting to allow for single-cell analysis of 

transcriptomic landscapes for researchers to more precisely define mechanistic 

machinery at the cellular level [31]. From a practical standpoint, drug discovery and 

product safety are becoming more heavily reliant on transcriptomics and computational 

reconstruction to break out of the reductionist “targephilic” mindset and to provide more 

meaningful multi-pathway assessments for relevant compounds [16, 32, 33].  Such 

omics-driven systemic approaches have also identified biological networks useful for 

studying developmental cardiac pathologies [34], neurodevelopmental and 

neurodegenerative disorders [35], hepatic metabolism in the pathogenesis of type 2 

diabetes mellitus [36], and cellular senescence and concomitant tissue aging [37]. 

Once a cellular network has been closely reconstructed to create the framework 

of a biological model, the distinct reactions and events it consists of should be 

quantitatively evaluated. The two most important factors that define any molecular event 

in cell biology are stimulus magnitude and time, and network connections should be 

evaluated within these dynamic contexts.  
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In toxicology, these variables define chemical dose and response duration, and 

purely endogenous processes can be viewed all the same (e.g. time-dependent 

responses elicited by varying hormone levels). These variables are used as inputs for a 

physiological system to produce dose-response and time-course curves. Such resulting 

datasets provide the basic quantitative knowledge by which to observe cellular 

mechanisms, and these curves are unsurprisingly far from linear [28]. They are the 

product of complex dynamic systems comprised of varying network motifs, whose 

structural mathematics have been successfully derived by select few computational 

biologists [28, 38–44]. With great distinction, James Ferrell Jr. devotes his career to 

creating and understanding the complex equations that explain specific cellular 

behaviors such as biochemical steady-states and irreversibility in cell signaling [40], 

Michaelian enzyme kinetics and cooperative binding [41], oscillatory behavior in 

signaling cascades [42], and ultrasensitivity born out of either positive feedback or 

negative cooperativity [43, 44]. The composite of these network motifs often results in 

ultrasensitive or switch-like functional responses in cell biology. This is certainly true for 

Ferrell’s initial investigation of phosphorylation-induced oocyte maturation [45], and this 

also holds true for classic toxicological mechanisms involving the hepatic aryl 

hydrocarbon receptor, which have been thoroughly probed and analyzed at the single-

cell level [46, 47]. 

It is crucial for life scientists to study biological networks by, at the very least, 

acknowledging the appropriate mechanistic motifs and appreciating the mathematical 

efforts that can closely define them. The next leap in biological and toxicological 

research is to use segmented quantitative data of individual reactions in a universally 
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systematic format that can help explain or predict the behavior of larger systems. 

Systematic interpretations will always be limited as cellular systems appear to approach 

infinite biological connections, but as models are more well designed and eloquently 

assumed, their predictive capacity will reach a very close estimate of the real world.  

 

1.3      Innovative approaches in biological modeling 

 

Several prolific scientists speculate that, with the right tools in place, 

computational systems biology will not only accelerate the production of meaningful 

research, but will eventually become an indispensable component, a requisite, of formal 

biologist training [7, 13, 15, 48]. It is therefore a top priority to find the best tools to do 

so, i.e., the best simulation modeling interface at which to study such systems.  

Systems biologists begin with mental models—abstractions of the real cellular 

world. Mental models are innately used to define perceptions of reality and they allow 

smoother navigation through the learning process [49]. Mental models of living systems, 

assembled based on previous data, have classically been challenged and substantiated 

at the bench through a laborious (and sometimes unfruitful) experimentation process. 

To learn more about a given research project and to design more thoughtful 

experiments going forward, quantitative data must be more carefully analyzed in the 

context of a working mental model. Biological simulation work offers the best initial 

method for visualizing and interrogating these models, as simulations allow for real 

experimentation of ideas in a virtually risk-free environment (Fig. 1.1). Reagents are 

spared, animal use is reduced, and most importantly, valuable time is not squandered. 
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Biological in silico modeling not only integrates more thought into the 

experimentation process, but it also welcomes more unique ideas to be tested in a 

virtual world. When predicting the quantitative circuitry of cells, perhaps it would be wise 

to draw on how other non-biological systems behave over time—in order to hypothesize 

about non-intuitive mathematical relationships seen in cell biology and toxicology. This 

idea is best described by the esteemed Frans Johansson, and what he has coined The 

Medici Effect [50]. Johansson states in his text that “[n]ew discoveries, world-changing 

discoveries, will come from the intersections of disciplines, not from within them.” The 

intersection of computational simulations and systems biology allows scientists to draw 

on concepts from any mathematical discipline—be it fluid dynamics, behavioral 

economics, or quantum mechanics—and employ them in biological models to make 

bizarre and potentially groundbreaking predictions. Lazebnik made an excellent 

connection between signal transduction networks and the electrical circuits that allow 

radios to function; it is likely that other unique intersectional mental models will follow 

suit. After establishing the best mental model of a biological query, it must then be 

simulated appropriately. The two most useful formats in simulation software are agent-

based models and system dynamics models.  
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FIGURE 1.1 

The scientific method and traditional loop of learning for both traditional practices and 
newly developed analytical practices with the use of computational modeling. 
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Agent-based (AB) models are valuable tools for simulating the behavior of 

concrete biological entities (e.g. proteins, organelles, cells, tissues, organisms) that 

have seemingly autonomous or rule-obeying behavior [51]. Agents interact and 

influence one another through discrete events, causing compelling non-linear 

mathematical patterns to emerge that cannot be explicitly programmed into a simulation 

[53]. Additionally, AB models are designed to incorporate stochasticity in systemic 

models, where genetic, environmental or intrinsic factors can be governed by a degree 

of expected randomness [54]. AB paradigms have been used to successfully model a 

number of biological processes [51, 52], and most recently to simulate the time-

dependent lipid raft changes in neuronal tissue as it relates to the progression of 

Alzheimer’s disease [55].  

System dynamics (SD) models are more formal representations of biological 

structures, employing stocks, flow rates and differential equations to simulate the 

behavior of continuously changing entities [56]. These formats are largely useful for 

logically connecting such equations to determine the chemical concentrations within a 

given space, as well as determining the magnitude and direction of feedback loops. SD 

models and similar structures have largely been applied for physiologically-based 

pharmacokinetic modeling [57], however, this particular computational tool has more 

recently been explored for studying the kinetic parameters of cellular networks, which 

has been substantiated by a productive case study of chemotaxis of Escherichia coli 

[58]. 

Some relationships in molecular biology are best represented by AB models (e.g. 

seemingly autonomous mitochondrial behavior and organelle phenotyping), whereas 



 

 11 

others are easily understood at the SD interface (e.g. estimations of cytosolic protein 

concentration). It is not only possible but highly favorable for these continuous- and 

discrete-event approaches to coexist within a biological model in order to reach the 

most appropriate representation of a complex lifeform [59]. For instance, cells, often 

represented by active agents, are filled with macromolecules and chemical 

concentrations that are constantly changing, which are easily defined in a SD space.  

AB–SD hybrid models for system sciences have been proposed for over a 

decade [60], yet this approach is just now garnering significant attention for systems 

biology [61, 62]. As an extensive case study, Krinner et al. (2013) designed a 

multimethod computational framework to emulate a human population of hematopoietic 

stem cells and the corresponding maturation into granulocytes that ensues [63]. For this 

model, the stem cells are each individually modeled as agents, where they have a 

probabilistic propensity to either differentiate or maintain their pluripotency. The 

behavior of these hematopoietic stem cell agents is controlled by the dynamic 

availability of growth factors, other cell counts, and chemotherapeutic agents, which are 

all represented by ordinary differential equations within SD compartments. Another 

example of this modeling approach is the more recent use of hybrid simulations to 

define the chemotactic pathogen-detecting behavior of alveolar macrophages in 

response to a fungal infection [64]. In this study, single cells are represented as rule-

obeying agents that live and operate within a continuously changing space that consists 

of dynamic alveolar epithelial chemokine secretions. These are only a couple of the 

innovative studies that have set the standard for hybrid models in computational 

systems biology. 
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Multimethod simulations and hybrid models are now being explored among the 

scientific community, though very few software packages offer this capability in a 

functional way. AnyLogic (The AnyLogic Company; Chicago, IL) offers a new intuitive 

interface that allows for this multimethod approach, and although its use has not yet 

been fully realized for biologics, its agent-based capabilities have been experimented 

with for a preliminary simulation of antibody production [65]. It is likely that more 

software packages will begin to emulate this multimethod capability.  

Experimentation for biological sciences has made a powerful progression 

towards the use and full integration of computational methods. To augment this 

movement, cellular and molecular networks must be more easily communicated, 

understood and rendered, which is possible at the interface of intuitive multimethod 

simulations. Fusing such techniques as AB and SD modeling while employing an array 

of mathematical concepts is therefore the hallmark of the approach highlighted here. 

These innovative methods in systems biology may very well provide more inclusive and 

well-calculated in silico models, and thus more effective hypothesis generation and 

meaningful results in predictive biology and toxicology. 
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CHAPTER 2: CASE STUDIES OF SIMULATION APPLICATIONS IN BIOLOGY 

 

2.1     Multispecies internal exposure modeling of dietary compounds 

 

To assess the effectiveness of our simulation approach on pharmacokinetic 

predictability, we conducted such an analysis on a relevant toxicological issue involving 

benzoic acid, which is presented here. To view the peer-reviewed research article that 

accompanies this section, see: Hoffman and Hanneman (2017) Physiologically-based 

pharmacokinetic analysis of benzoic acid in rats, guinea pigs and humans: Implications 

for dietary exposures and interspecies uncertainty. Computational Toxicology. 3, 19–32. 

 

2.1.1  The benzoic acid story and why pharmacokinetics matter 
 

Benzoic acid (BA) and benzoate salts have been used as direct food and 

beverage additives for decades. These compounds effectively prevent microbial growth, 

as benzoates exert a high toxicological specificity toward bacteria and other food 

contaminants [66] while maintaining a remarkably high safety margin for humans and 

other mammalian species. Toxicological data for BA and related available experimental 

information date back as far as the 1940s, ‘50s and ‘60s [67]. In the majority of these 

existing studies, liberal dosing of BA or sodium benzoate elicited no toxicological 

responses or any stark physiological changes in rodent models. In a handful of chronic 

feeding studies from this era that have concrete dosing values, little to no toxicological 

responses were observed, where growth impairments had been assessed as a possible 

adverse outcome at exceptionally high doses [68–70]. In these developmental rodent 

models, the no observable adverse effect level (NOAEL) has been determined to be the 
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highest doses used in these studies, which fall within the range of 550–2195 

mg/kg(bw)/day. Regulatory agencies have also placed special emphasis on a multi-

generational reproductive toxicity study that showed no offspring defects after up to 

~500 mg/kg(bw)/day of oral BA administration [70]. This study has been regarded as 

having the pivotal datasets that govern the current worldwide regulations on benzoates 

as food additives, where the maximum acceptable daily intake (ADI) for humans has 

been conservatively set at 5 mg/kg(bw)/day [71] by extrapolating down from the highest 

tested dose in rodents (the NOAEL of 500 mg/kg(bw)/day) by the standard uncertainty 

factor (of 100×). 

  As these preservatives have been undergoing constant reevaluation, many intake 

assessments and estimates have been recently produced [72–76]. A portion of these 

exposure studies, especially those in eastern Asia, have found that the largest probable 

estimations (i.e. those within the 95th percentile) were still substantially lower than the 5 

mg/kg(bw)/day ADI. Among the most heavily benzoate-exposed populations in Taiwan, 

the highest daily dose was determined to be 3.1 mg/kg(bw)/day, or 62% of the ADI [72]. 

A similar study done in Hong Kong found that estimated benzoate exposure due to pre-

packaged beverages was 0.97 mg/kg(bw)/day, or 19.4% of the ADI [73]. In contrast, 

there are a number of conservative assumptions made in the European Food Safety 

Authority (EFSA) 2016 opinion on benzoates that when compounded result in 

unrealistic estimated daily intake of benzoates [74]. Such compounded dietary 

estimates exceed the ADI, especially among European populations. In French 

populations, the highest average daily benzoate dose, based on consumption 

occurrence data, was calculated to be 0.79 mg/kg(bw)/day, with 2% of individuals 
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estimated to have exceeded the ADI [75]. In a study of Flemish populations, the upper 

bound estimated intake was about 5.9 mg/kg(bw)day [76], however, as the authors 

point out, this is based upon the assumption that all the products contain the maximum 

allowable benzoate concentrations. Among a population in Denmark, the median values 

for average BA consumption all fell below the current ADI, yet the maximum high-end 

intake estimate did exceed the limit [77].  

The Joint Expert Committee on Food Additives (JECFA) and the EFSA have both 

reported on these recent intake estimates [71, 74], drawing special attention to the 

purported 95th percentile value of 7 mg/kg(bw)/day in adolescents and the purported 

97.5th percentile value of 10.9 mg/kg(bw)/day in toddlers. The concerns associated with 

these high-end ADI-exceeding exposure estimates relate to the aforementioned 

developmental studies [68–70]; however, the current dietary levels still fall 100× below 

the doses required to elicit any significant response in rats. These estimations have led 

to calls to action for either (a) readjusting the maximum limit used in food and beverage 

products, or (b) reevaluating the safety database and thus the current ADI. With respect 

to the latter, one major area of uncertainty in defining and regulating intake limits is 

interspecies pharmacokinetic variability. 

Following oral intake, BA is rapidly absorbed into the blood stream, metabolized 

into hippuric acid (HA), and readily excreted in many different mammalian species [78]. 

The distribution and elimination of BA in a physiological setting is primarily governed by 

metabolic processes, which are virtually all localized to the liver [79], and more 

specifically, to the mitochondrial matrix of hepatocytes [80]. The pharmacokinetic profile 

of BA, along with the primary metabolite HA, appears to be relatively conserved among 
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mammalian species, as the same principle events have been observed in rats, mice, 

guinea pigs, pigs, monkeys, and humans. However, interspecies variations up until this 

point have only been assessed qualitatively, bearing no weight in the risk assessment 

process and causing regulatory agencies to rely on default uncertainty values. 

We have thoroughly and quantitatively analyzed the pharmacokinetic database 

for benzoate preservatives to reach a more accurate measure of the interspecies 

internal exposure extrapolation. To do so, we have conducted a computational 

simulation study, employing physiologically-based pharmacokinetic (PBPK) models for 

BA, HA, and a variety of precursor compound exposures as they relate to estimated and 

assumed dietary exposures. It is important to note that the EFSA has determined that 

the ADME (i.e. absorption, distribution, metabolism, excretion) profile of BA is virtually 

the same as that of sodium or potassium benzoate [74], allowing full read-across for our 

models which are all based on biochemical characteristics of BA. These models and 

simulated dosing schemes have allowed us to reach a more accurate margin of 

exposure (MOE) ratio when considering pivotal toxicological rodent data for determining 

human safety. 

 

2.1.2   Pharmacokinetic simulation methods 
 

Study design and simulation approach 

For this study, PBPK models were fully developed for three different mammalian 

species in order to assess pharmacokinetic differences from systemic exposures. To do 

so, similar modeling frameworks with established tissues that have been previously 

validated were implemented in Berkeley Madonna software (version 8.3.18; University 
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of California, Berkeley, CA) and translated to a system dynamics format in AnyLogic 

multimethod simulation software (version 7.3.5; The AnyLogic Company, Chicago, IL). 

This adapted modeling interface provided (a) better visual development and formatting 

of the multi-species paradigm, (b) high-throughput parameter calibration tools, (c) useful 

graphing and data-capture tools for parameter variation experiments, and (d) 

computational discrete-event tools for complex dietary exposure scenarios, as 

discussed in subsequent sections of this paper. Simulation constructs are available 

upon request. 

 

Multi-species PBPK development and parameterization 

The models described herein were based upon important organs that have been 

previously compartmentalized (i.e. blood pool, liver, brain, adipose tissue, and gonads) 

with quantifiable properties, and remaining tissues have been categorized as either 

highly-perfused or poorly-perfused tissue conglomerates as described previously [81, 

82]. The models are also based upon the flow rates of blood to and from each of these 

compartments, the chemical-specific partitioning within each tissue, the oral absorption 

rate of the compounds, and chemical-specific metabolic and urinary elimination rates. 

These concepts are all (a) visualized in Fig. 2.1, taking into account the full model 

schematics specifically for BA and HA, and (b) mathematically constructed and 

elucidated by the differential equations listed below (Equation List A). Additional inputs 

for precursor compounds, benzyl acetate, benzyl alcohol and benzaldehyde, are 

schematically visualized in Fig. 2.1 as one aggregate input; however, their more 
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complex bioavailable time-dependent inputs are described mathematically in the 

equation list below (Equation List B). 

 

Equation List A: Differential equations governing BA and HA PBPK models 

Non-Liver Tissue “X” BA conc. over time (mg/L/hr; gonadal tissue as example): 

![#$]&
!' 	= *+∗*∗ #$ -.//01*+∗*∗ #$ &/3+45

#6∗7+8        (A.1) 

![#$]9/:;0<
!' 	= *=∗*∗ #$ -.//01*=∗*∗ #$ 9/:;0</3=45

#6∗7=8       (A.2) 

Liver BA concentration over time (mg/L/hr): 

! #$ .>?@A
!' 	=  

BCDEFGHI'∗3$J∗#6K.MNO *P∗*∗ #$ -.//0)1(*P∗*∗ #$ .>?@A/3P45 1#6K.SN∗	8TUV 45 .>?@A45 .>?@AWXY#6∗7P8  (A.3) 

Plasma BA concentration over time (mg/L/hr): 

![#$]-.//0
!' 	= *+∗*∗ #$ &/3+45 >>K 1 *+∗*∗ #$ -.//0 >>K 1#6∗3ZP#∗[#$]-.//0

#6∗7#P8    (A.4)	
Non-Liver Tissue “X” HA conc. over time (mg/L/hr; gonadal tissue as example): 

![[$]&
!' 	= *+∗*∗ [$ -.//01*+∗*∗ [$ &/3+\5

#6∗7+8        (A.5) 

![[$]9/:;0<
!' 	= *=∗*∗ [$ -.//01*=∗*∗ [$ 9/:;0</3=\5

#6∗7=8       (A.6) 

Liver HA concentration over time (mg/L/hr): 

![[$].>?@A
!' 	= #6K.SN∗8TUV 45 .>?@A45 .>?@AWXY ∗].^_O *P∗*∗ [$ -.//0)1(*P∗*∗ [$ .>?@A/3P\5

#6∗7P8   (A.7) 
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Plasma HA concentration over time (mg/L/hr): 

![[$]-.//0
!' 	= *+∗*∗ [$ &/3+\5 >>K 1 *+∗*∗ [$ -.//0 >>K 1#6∗3ZP[∗[[$]-.//0

#6∗7#P8    (A.8) 

Urinary capture of BA and HA (mg/hr): 

![#$]`A>:@
!' 	= 𝐵𝑊 ∗ 𝐾𝐸𝐿𝐵 ∗ [𝐵𝐴]JgCC!        (A.9) 

![[$]`A>:@
!' 	= 𝐵𝑊 ∗ 𝐾𝐸𝐿𝐻 ∗ [𝐻𝐴]JgCC!        (A.10) 

 

Equation List B: Equations and parameters governing precursor PBPK models 

Liver BAc concentration over time (mg/L/hr): 

! #$i .>?@A
!' 	=  

BCDEFGHI'∗3$J$i∗#6K.MNO *P∗*∗ #$i -.//0)1(*P∗*∗ #$i .>?@A 1 #6K.SN∗8TUV]∗ 45j .>?@AXYkW 45j .>?@A
#6∗7P8  (B.1) 

Plasma BAc concentration over time (mg/L/hr): 

! #$i -.//0
!' 	=  

*P∗*∗ #$i .>?@A O ]1lmn ∗*∗ #$i -/0o 1 *P∗*∗ #$i -.//0 1 ]1lmn ∗*∗	 #$i -.//0
#6∗7#P8    (B.2) 

Body remainder BAc concentration over time (mg/L/hr): 

![#$i]-/0o
!' 	= ]1lmn ∗*∗	 #$i -.//0 1 ]1lmn ∗*∗ #$i -/0o

#6∗(]17P817#P8)      (B.3) 

Liver BAlc concentration over time (mg/L/hr): 

![#$gi].>?@A
!' 	=

+45j45.j∗#6K.SN∗8TUV]∗ 45j .>?@AXYkW 45j .>?@A OBCDEFGHI'∗3$J$gi∗#6K.MNO
*P∗*∗ #$gi -.//0)1(*P∗*∗ #$gi .>?@A 1 #6K.SN∗8TUVp∗ 45.j .>?@AXYMW 45.j .>?@A#6∗7P8   (B.4) 
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Plasma BAlc concentration over time (mg/L/hr): 

! #$gi -.//0
!' =	

*P∗*∗ #$gi .>?@A O ]1lmn ∗*∗ #$gi -/0o 1 *P∗*∗ #$gi -.//0
1 ]1lmn ∗*∗	 #$gi -.//0 1 #6∗3ZP$gi∗ #$gi -.//0

#6∗7#P8    (B.5) 

Body remainder BAlc concentration over time (mg/L/hr): 

![#$gi]-/0o
!' 	= ]1lmn ∗*∗	 #$gi -.//0 1 ]1lmn ∗*∗ #$gi -/0o

#6∗(]17P817#P8)      (B.6) 

Liver BAld concentration over time (mg/L/hr): 

![#$g!].>?@A
!' 	=

+45.j45.0∗#6K.SN∗8TUVp∗ 45.j .>?@AXYMW 45.j .>?@A O
*P∗*∗ #$g! -.//0)1(*P∗*∗ #$g! .>?@A 1 #6K.SN∗8TUV_∗ 45.0 .>?@AXYqW 45.0 .>?@A

#6∗7P8      (B.7) 

Plasma BAld concentration over time (mg/L/hr): 

! #$g! -.//0
!' =

*P∗*∗ #$g! .>?@A O ]1lmn ∗*∗ #$g! -/0o 1 *P∗*∗ #$g! -.//0
1 ]1lmn ∗*∗	 #$g! -.//0 1#6∗3ZP#r$∗[#$g!]-.//0

#6∗7#P8    (B.8) 

Body remainder BAld concentration over time (mg/L/hr): 

![#$g!]-/0o
!' 	= ]1lmn ∗*∗	 #$g! -.//0 1 ]1lmn ∗*∗ #$g! -/0o

#6∗(]17P817#P8)      (B.9) 

Urinary capture of BAlc and benzylmercapturic acid (BMA) (mg/hr): 

![#$gi]`A>:@
!' 	= 𝐵𝑊 ∗ 𝐾𝐸𝐿𝐴𝑙𝑐 ∗ [𝐵𝐴𝑙𝑐]JgCC!       (B.10) 

![#r$]`A>:@
!' 	= 𝑋#$g!#r$ ∗ 𝐵𝑊 ∗ 𝐾𝐸𝐿𝐵𝑀𝐴 ∗ [𝐵𝐴𝑙𝑑]JgCC!     (B.11) 
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Modified liver BA concentration over time including new input (mg/L/hr): 

![#$].>?@A
!' 	=

BCDEFGHI'∗3$J∗#6K.MNO *P∗*∗3P45∗ #$ -.//0)1(*P∗*∗ #$ .>?@A
1#6K.SN∗	8TUV 45 .>?@A45 .>?@AWXY O	 +45.045∗#6K.SN∗8TUV_∗ 45.0 .>?@AXYqW 45.0 .>?@A#6∗7P8    (B.12)  

Precursor segment parameters: 

𝐵𝐴𝑐	𝑡𝑜	𝐵𝐴𝑙𝑐	𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑋#$i#$gi = 0.72T�	C�	#$giT�	C�	#$i   

𝐵𝐴𝑙𝑐	𝑡𝑜	𝐵𝐴𝑙𝑑	𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑋#$gi#$g! = 0.98T�	C�	#$g!T�	C�	#$gi  

𝐵𝐴𝑙𝑑	𝑡𝑜	𝐵𝐴	𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑋#$g!#$ = 1.15 T�	C�	#$
T�	C�	#$g!  

𝐵𝐴𝑙𝑑	𝑡𝑜	𝐵𝑀𝐴	𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑋#$g!#r$ = 2.39 T�	C�	#r$
T�	C�	#$g!  

𝑉𝑚𝑎𝑥	(𝐵𝐴𝑐	𝑡𝑜	𝐵𝐴𝑙𝑐), 𝑉𝑚𝑎𝑥1 = 198.0 T�
��∗��4�K.SN  

𝐾𝑚	 𝐵𝐴𝑐	𝑡𝑜	𝐵𝐴𝑙𝑐 , 𝐾𝑚1 = 15T�P   

𝑉𝑚𝑎𝑥	(𝐵𝐴𝑙𝑐	𝑡𝑜	𝐵𝐴𝑙𝑑), 𝑉𝑚𝑎𝑥2 = 198.0 T�
��∗��4�K.SN  

𝐾𝑚	 𝐵𝐴𝑙𝑐	𝑡𝑜	𝐵𝐴𝑙𝑑 , 𝐾𝑚2 = 10T�P   

𝑉𝑚𝑎𝑥	(𝐵𝐴𝑙𝑑	𝑡𝑜	𝐵𝐴), 𝑉𝑚𝑎𝑥3 = 141.4 T�
��∗��4�K.SN  

𝐾𝑚	 𝐵𝐴𝑙𝑑	𝑡𝑜	𝐵𝐴 , 𝐾𝑚3 = 15T�P   

𝐵𝐴𝑐	𝑜𝑟𝑎𝑙	𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝐾𝐴𝑏𝐴𝑐 = �.���
��4�K.MN∗��  

𝐵𝐴𝑙𝑐	𝑜𝑟𝑎𝑙	𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝐾𝐴𝑏𝐴𝑙𝑐 = �.]�]
��4�K.MN∗��  

𝐵𝐴𝑙𝑐	𝑢𝑟𝑖𝑛𝑎𝑟𝑦	𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝐾𝐸𝐿𝐴𝑙𝑐 = �.�p	P
��4�∗��  

𝐵𝑀𝐴	𝑢𝑟𝑖𝑛𝑎𝑟𝑦	𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝐾𝐸𝐿𝐵𝑀𝐴 = �.��	P
��4�∗��  
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FIGURE 2.1 

Schematic of the PBPK models for benzoic acid and its primary metabolite hippuric 
acid. Dashed lines represent dosing inputs, metabolic processes or urinary excretion. 
Additional dietary exposures were used to determine metabolism-dependent benzoic 
acid equivalency in diet and are represented here by a single input pathway; however, 
the determination of such inputs is based on simpler PBPK inputs, as discussed and 
listed later on in Equation List B. 
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Model parameters have been categorically organized and tabulated for rats, 

guinea pigs, and humans (Table 2.1), where the only assumed and fixed parameter is 

body weight (BW). Rat weight in this model is assumed to be 0.25 kg, guinea pig weight 

is assumed to be 0.50 kg, and human weight is assumed to be 60 kg. Organization of 

parameters pertain to weight-dependent compartment volumes (FXV), chemical- and 

tissue-specific partition coefficients (KX), weight-dependent cardiac outputs (Q), tissue-

specific blood flows as a fraction of total cardiac output (QX), first-order absorption and 

elimination constants (KAb, KELB, KELH), and Michaelian metabolic parameters for the 

critical enzymatic conjugation of BA to form HA (VMAX, KM). Generally, BA tissue 

concentration follows the most basic equation construct seen in the beginning of 

Equation List A (Eq. A.1) and displayed here: 

 

𝑑[𝐵𝐴]+𝑑𝑡 	= 𝑄𝑋 ∗ 𝑄 ∗ 𝐵𝐴 JgCC! − 𝑄𝑋 ∗ 𝑄 ∗ 𝐵𝐴 +𝐾𝑋#$𝐵𝑊 ∗ 𝐹𝑋𝑉  

 

where X denotes the tissue or compartment of interest. In Table 2.1 and in Appendices 

A and B, liver parameters are denoted with the use of L, brain with BR, adipose tissue 

with A, highly-perfused with HP, poorly-perfused with PP, gonads with G, and blood with 

BL. BA concentration in the liver has additional differential components pertaining to 

oral absorption and metabolic elimination, as seen in Eq. A.4.  
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TABLE 2.1 

Table 2.1. Parameters of the PBPK model as they are seen within each species of interest. 

Physiological Parameters Symbol Rat Value Guinea Pig Value Human Value 

Body weight (kg) BW 0.25 0.50 60 
 

Tissue Volumes (fraction of BW) 

Fraction of liver volume FLV 0.034a 0.038d 0.026a 

Fraction of adipose volume FAV 0.07a 0.014d 0.21a 

Fraction of HP tissue volume FHPV 
(0.25 – FBRV – 
FLV)c 

0.054d 
(0.25 – FBRV – 
FLV)c 

Fraction of PP tissue volume FPPV 
1 – Sum of other 

values 
1 – Sum of other 

values 
1 – Sum of other 

values 

Fraction of gonadal volume FGV 0.0063c 0.0063f 0.00048b 

Fraction of brain volume FBRV 0.006a 0.0044e 0.02a 

Fraction of blood volume FBLV 0.074a 0.054d 0.079a 
     

Chemical- and Tissue-Specific Partition Coefficients 

Octanol-water partition coefficient for BA KowBA 74.13 74.13 74.13 

Octanol-water partition coefficient for HA KowHA 2.04 2.04 2.04 

Liver to blood partition coefficient (BA/HA) KL 0.925g / 0.604g 0.925f / 0.604f 0.915g / 0.608g 

Adipose to blood partition coefficient (BA/HA) KA 0.984g / 0.650g 0.984f / 0.650f 0.981g / 0.683g 

HP tissue to blood partition coefficient (BA/HA) KHP 0.500k / 0.650g 0.300k / 0.650f 0.187k / 0.655g 

PP tissue to blood partition coefficient (BA/HA) KPP 0.300k / 0.760g 0.150k / 0.760f 0.095k / 0.763g 

Gonad to blood partition coefficient (BA/HA) KG 0.877g / 0.578g 0.877f / 0.578f 0.862g / 0.582g 

Brain to blood partition coefficient (BA/HA) KBR 1g / 1g 1f / 1f 1g / 1g 
     

Tissue Blood Flows (fraction of Q) 

Cardiac output (L hr-1) Q 6.7c 8.82e 322.8c 

Fraction of liver blood flow QL 0.174c 0.18d 0.25c 

Fraction of adipose blood flow QA 0.07c 0.007d 0.05c 

Fraction of highly perfused blood flow QHP 
1 – Sum of other 

values 
1 – Sum of other 

values 
1 – Sum of other 

values 

Fraction of poorly perfused blood flow QPP 0.19c 0.26d 0.19c 

Fraction of gonadal blood flow QG 0.0005c 0.0005f 0.0012c 

Fraction of brain blood flow QBR 0.02c 0.019e 0.114c 
     

Absorption, Clearance and Metabolic Parameters 

Maximum velocity, BA to HA (mg hr-1 kgBW
-0.75) Vmax 57.24h 8.45i 59.14j 

Michaelian constant for BA to HA (mg L-1) Km 29.04h 54.99 i 2.5j 

BA urinary excretion constant (L hr-1 kgBW
-1) KELB 0.004k 0.0001k 0.0000833k 

HA urinary excretion constant (L hr-1 kgBW
-1) KELH 2.548k 0.1114k 1k 

Oral absorption constant (hr-1 kgBW
-0.25) KAb 0.898k 0.898f 0.898k 

     

a Brown et al. [83]. b ICRP [84]. c Campbell et al. [81]. d Sweeney et al. [85]. e Langenberg et al. [86]. f Set equal to rat 
parameter. g Calculated using data and algorithms derived by Haddad et al. [87] and Schmitt [88]. h Adapted from metabolic 
data from Gregus et al. [92]. i Adapted from metabolic data generated by Macpherson et al. [91]. j Adapted from metabolic data 
generated by Kubota and Ishizaki [89]. k Calibrated to fit experimental data. HP, Highly perfused. PP, Poorly perfused. 
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Parameter sources, calculations and optimizations 

Sources for each of the physiological and biochemical parameters are identified 

in Table 2.1, consisting of previously reported values in the literature, calculated 

estimates, or simulation-based parameter optimizations. Fractional tissue volumes for 

each species have been gathered from previous studies [81, 83–86] and were 

implemented in the analysis described here.  

 Chemical- and tissue-specific partition coefficients have been estimated using the 

octanol-water partition coefficient and physicochemical properties for each chemical, 

along with lipid composition data and algorithms derived by Haddad and colleagues [87] 

and Schmitt [88]. These calculations yielded a tissue-to-blood partitioning value, which 

was then converted to a fractional value (i.e. percentage of chemical transiently 

retained) for the differential equations that represent blood flow from tissue.  

For the parameters of interest that determine absorption rates, metabolic rates, 

and urinary elimination rates, the most functional and usable pharmacokinetic datasets 

available have been taken into account to produce robust and biologically-sound model 

components. Such experimental datasets include quantitative plasma concentrations 

and excreted dose values of BA and HA in each species. Human metabolic constants 

were all systematically optimized to quantitatively match the pharmacokinetic profile 

reported by Kubota and Ishizaki [89] at 3 different oral dosing schemes (40, 80, or 160 

mg/kg(bw) single oral dose); the resulting excretion percentage fell well within the same 

order when compared to radiolabeled human data [90]. Hairless guinea pig metabolic 

constants were all systematically optimized to quantitatively match the pharmacokinetic 

profile reported by Macpherson et al. [91] using a dermal exposure condition previously 
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determined by a single rate equation; these values quantitatively fell well within the 

same range when compared to the unscaled experimental liver homogenate and slice 

data of the same study. Rat metabolic constants were all systematically optimized to 

quantitatively match the pharmacokinetic profile reported by Gregus et al. [92] at an 

intravenous exposure scenario (122 mg/kg(bw)); the resulting excretion percentage fell 

well within the same order when compared to radiolabeled data in rats [93]. The 

resulting model performances of each species after optimizations were validated by 

urinary elimination data collected from Bridges et al. [78]. Each calibration experiment 

within the simulation software consisted of 50,000 iterations to determine the set of 

values that produce the best possible fit of the experimental data, determined by the 

objective of the lowest collective difference. 

To determine the relevant PBPK parameters for the benzoate precursor segment 

of the model, optimization experiments were also performed and were validated by 

measured internal exposure values of the same scenarios [94, 95]. Each precursor 

compound was represented by a 3-compartment model (i.e. blood, liver, and body 

remainder) and were stoichiometrically connected in the appropriate sequence by 

hepatic metabolism flow rates. The parameters that have been systematically optimized 

via the AnyLogic calibration tool (50,000 iterations) and selected for precursor 

pharmacokinetics have been directly inserted into Appendix B, as they are simpler yet 

analogous to the differential structures implemented in the full BA and HA models. 
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Repeated dosing schemes and dietary exposure scenarios 

To evaluate a realistic, albeit liberal, range of dietary exposure scenarios, the 

model was designed to include not only BA intake, but precursor intake as well (Fig. 

2.1). This included the intake of benzyl acetate and benzyl alcohol, as each of these are 

fairly common flavoring agents and food additives that are regulated by the same intake 

limit as BA. In addition, benzaldehyde was implemented here as an intermediate 

metabolite, as it is also approved for use as a food additive. However, due to the 

extremely low internal exposures predicted for benzaldehyde, it was not implemented 

here as a substantial, direct source of dietary BA exposure. To use the model for dietary 

intake assumptions and internal BA exposure estimates, seven different dosing 

schemes have been implemented over a 15-hour daily intake period, consisting of 

different additive combinations and amounts that meet or exceed the set ADI values. 

Specific precursor intake estimates were not readily available, and therefore the 

simulation schemes assumed values both below and above the ADI for these 

compounds. The combinations that comprise these different schemes are displayed in 

Table 2.2. 
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TABLE 2.2 

 

 

Sensitivity analysis 

To determine the quantitative significance of certain parameters within each of 

the species models, a general sensitivity strategy was used as described previously [96, 

97]. Each parameter was individually changed by 1%, and the resulting model outputs, 

also referred to as response variables, were assessed. This was done for all static 

parameters within the model, and the change in several response variables (e.g. 

chemical-specific plasma concentrations, urinary excretion rates) were measured after 

Table 2.2. Combination dosing schemes employed in the simulated dietary exposure assessment. 

Treatment 

group 

5 
mg/kg/day 

BA
†
 

5 
mg/kg/day 

BA
‡
 

10 
mg/kg/day 

BA
‡
 

15 
mg/kg/day 

BA
‡
 

3 
mg/kg/day 

BAc
§
 

3 
mg/kg/day 

BAlc
§
 

10 
mg/kg/day 

BAc
§
 

10 
mg/kg/day 

BAlc
§
 

Diet (1) X    X    

Diet (2) X    X X   

Diet (3) X X       

Diet (4) X  X      

Diet (5) X  X  X X   

Diet (6) X  X    X X 

Diet (7) X   X   X X 

† Administered continuously (150 fractional exposures) over a 15-hour intake period. 

‡ Administered in 10 fractional exposures over a 15-hour intake period. 

§ Administered in 6 fractional exposures over a 15-hour intake period. 

BAc, benzyl acetate. BAlc, benzyl alcohol. 
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steady-state values were reached for 5 mg/kg(bw)/day continuous dosing. Sensitivity 

coefficients for each scenario were calculated as follows: 

𝑆𝐶 = 𝜕𝑂£𝜕𝑃¥ × 𝑃¥𝑂£ = 𝜕𝑂£𝑂£ ×	100 

where SC represents the normalized sensitivity coefficient, Oi is the model output value, 

Pj is the value of the parameter of interest, and ∂ represents the partial derivative of 

either the parameter value or measured PBPK output. When |SC| ≥ 1.0000, i.e. when 

the proportional change in the response variable is greater than the proportional change 

in the parameter, the parameter is deemed sensitive over the respective output.  

 

2.1.3   Pharmacokinetic results 
 

 

Model performance and initial species comparisons  

The PBPK models were curated and optimized to produce predictions that 

closely followed experimental data for all species surveyed. For humans, datasets were 

collected consisting of BA and HA plasma concentrations after single oral BA doses of 

40, 80, and 160 mg/kg(bw) [89]. The resulting predictions and experimental points are 

overlaid in Fig. 2.2 for a 12-hour period. The model constructs were optimized to 

produce the lowest objective difference from the average data points of the 

experimental results after a 160 mg/kg(bw) dosing scheme. While the human PBPK 

model slightly over-predicted the early BA concentrations in plasma following the 

highest dose (160 mg/kg(bw)), the values fell well within the corresponding 

experimental uncertainty.  Predictive time-course plasma concentrations of BA and HA 

for the alternative schemes (40 and 80 mg/kg(bw) doses) were produced post-
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optimization and matched experimental data well. A PBPK model was tailored for 

guinea pigs as well, as existing experimental data were captured over a 24-hour period 

after dermal exposure to BA in hairless guinea pigs [91]. The guinea pig model 

predicted plasma BA and HA concentrations that matched experimental data after a 40 

µg/cm2 (0.0256 mg total dose) skin-patch exposure to BA (Fig. 2.3). A PBPK model was 

also designed for rats and was validated by experimental data after 1 mmol/kg(bw) 

intravenous injection of sodium benzoate, equivalent to 122 mg/kg(bw) of BA [92]. 

Predictive time-course data of BA and HA plasma concentrations were captured over a 

4-hour period and were compared to experimental data points (Fig. 2.4). Simulation 

data produced a very low cumulative difference objective compared to experimental 

data points, which displayed very low uncertainty.  
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FIGURE 2.2 

Simulation data closely matched experimental data for oral dosing of benzoic acid in 
humans. PBPK models were employed to assess plasma concentrations of benzoic 
acid (left panel) and hippuric acid (right panel) after single oral doses of BA: 40, 80, and 
160 mg/kg(bw). Experimental data for the same metrics were collected and converted 
from Kubota and Ishizaki (n = 6) [89]. 
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FIGURE 2.3 

Simulation data closely matched experimental data for dermal exposure to benzoic acid 
in guinea pigs. PBPK models were employed to assess plasma concentrations of 
benzoic acid (left panel) and hippuric acid (right panel) after a 40 µg/cm2 skin-patch 
exposure to benzoic acid. Dermal absorption kinetics used here were adapted from the 
mathematical descriptions elucidated by Macpherson et al. [91], and experimental data 
for benzoic acid plasma concentration were collected and converted from the same 
study. *Experimental time-course data for hippuric acid plasma concentration were not 
available from the guinea pig studies. 
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FIGURE 2.4 

Simulation data closely matched experimental data for intravenous dosing of benzoic 
acid in rats. PBPK models were employed to assess plasma concentrations of benzoic 
acid (left panel) and hippuric acid (right panel) after a single 122 mg/kg(bw) i.v. dose of 
benzoic acid. Experimental data for the same metrics were collected and converted 
from Gregus et al. (n = 5–8) [92]. 
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 After optimizing and validating all species-specific PBPK models, they were used to 

assess excretion rates over a 24-hour period after a single oral BA dose of 5 mg/kg(bw) 

(Fig. 2.5A). As an initial comparison, human and rat excretion profiles presented 

significant similarities, whereas the guinea pig rates of excretion were markedly slower. 

As guinea pigs show the same metabolite profile [78], this slower elimination can most 

likely be ascribed to a lower glycine conjugation capacity. Experimental data generated 

by Bridges et al. [78] were collected, displaying real proportional urinary excretion of BA 

doses after 24 hours; these data were compared to PBPK model predictions (Fig. 2.5B). 

Humans and rats were both capable of excreting the entire dose administered, based 

on their respective recovery percentages in urine after the elapsed time; these results 

were mirrored by the predictive data generated by the PBPK models. Guinea pigs 

showed, on average, much slower excretion experimentally, albeit with large variations, 

and the dose excreted in silico was marginally over-predictive but still within the margin 

of uncertainty.  

The PBPK models were used to produce absorption and elimination curves of BA 

and HA after a single oral dose of 5 mg/kg(bw) in each species (Fig. 2.6A). In 

accordance with excretion comparisons, humans shared an internal exposure profile 

more similar to rats than guinea pigs. As another measure of total internal dose, area 

under the curve (AUC) values were calculated from plasma BA concentrations after a 

variety of single oral BA bolus doses, 0–20 mg/kg(bw), in both the human and rat 

models (Fig. 2.6B). These AUC values were strikingly similar across both species, with 

the lower oral dose scenarios resulting in slightly larger total doses in rats; an opposite 

but marginal relationship was seen with the higher single oral doses. These 
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comparisons relate large single oral bolus doses, which are unrealistic for dietary 

exposure, eliciting the more applicable analysis of fractional daily doses discussed in 

subsequent sections of this paper. 

 

 

 

 

 
 

FIGURE 2.5 

Assessment of urinary excretion rates following single oral doses of BA in the 
simulation. (A) Time-course comparisons following a single oral bolus of 5 mg/kg(bw) 
BA in humans, rats, and guinea pigs. (B) Experimental and simulation data pertaining to 
the amount of a single oral dose recovered in urine 24 hr after administration. In both 
the in vivo and in silico experiments, humans received 1 mg/kg(bw) BA, rats received 50 
mg/kg(bw) BA, and guinea pigs received 49 mg/kg(bw) BA. Experimental data were 
collected from Bridges et al. [78]. 
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FIGURE 2.6 

Use of the PBPK models to perform internal exposure comparisons after a single oral 
dose in rats, guinea pigs and humans. (A) Time-course plasma BA (left panel) and HA 
(right panel) concentration comparisons after a single oral dose of 5 mg/kg(bw) BA in 
rats, guinea pigs and humans. (B) Resulting plasma AUC values of BA for both rats and 
humans with increasing single oral doses. 
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Sensitivity analysis results 

A sensitivity analysis was conducted to identify which parameters heavily 

influenced the specific functional outputs and overall integrity of the model. To do so, 

each parameter was altered by 1% and the observable changes that occurred were 

quantified within a slew of model endpoints. These resulting coefficients, using the 

finite-difference algorithm described previously, were normalized with respect to the 

original parameter and output values, and those that affected at least one response 

variable are displayed in Table 2.3. A parameter was determined to have sensitive 

control over a particular model output if the absolute value of the normalized coefficient 

was ≥ 1.0000. As expected, BA plasma concentration and urinary excretion rate of BA 

were the most affected variables from this analysis, controlled primarily by the hepatic 

metabolic parameters and the corresponding liver partition coefficient that regulates the 

hepatic concentration of the compound. HA plasma concentration was determined to be 

most sensitively controlled by the simulation’s urinary excretion rate constant. This 

finding is biologically sound, as the hallmark of this metabolite is its high capacity for 

renal elimination.   

 

 

 

 

 

 

 



 

 38 

TABLE 2.3 

 

 

Table 2.3. Normalized sensitivity coefficients (SC) for plasma concentrations and urinary excretion rates 
under steady-state exposure conditions after continuous oral dose of 5 mg/kg(bw)/day (parameter is 
sensitive if |SC| ≥ 1). Parameters that elicited significant changes to specific response variables are bolded. 
Parameters that elicited no detectable variable change in the sensitivity analysis are not shown. 

Parameter Response variable 

 Human Rat 

 
Plasma 
concentration 

Urinary excretion 
rate 

Plasma 
concentration 

Urinary excretion 
rate 

 BA HA BA HA BA HA BA HA 

Vmax -1.0316 -0.0020 -1.0459 0.0031 -1.0153 0.0005 -1.0811 0.0000 

Km 1.0058 0.0019 1.0005 0.0000 1.0013 -0.0005 0.9266 0.0000 

KELB 0.0000 0.0000 1.0005 0.0000 -0.0023 -0.0014 0.9266 0.0000 

KELH 0.0000 -1.0160 0.0000 0.0061 0.0000 -1.0114 0.0000 0.0000 

KAb -0.0211 -0.0061 0.0000 0.0061 -0.0031 -0.0005 0.0000 0.0000 

KLBA -1.0293 0.0000 -1.0005 0.0000 -1.0106 0.0014 -1.0039 0.0000 

KABA 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0000 

KHPBA 0.0023 0.0000 0.0000 0.0000 0.0016 0.0000 0.0000 0.0000 

KPPBA 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0000 

KBRBA 0.0023 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

KLHA 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

KHPHA 0.0000 0.0002 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 

KBRHA 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Use of the models to predict biologically relevant internal exposures in rats and humans 

To assess internal exposures of BA after relevant exposure scenarios, the rat 

and human PBPK models were employed in conjunction with repeated and continuous 

BA dosing schemes. Initial repeated scenarios consisted of 1, 5, 10, 50, and 100 

mg/kg(bw)/day (relevant across the ADI range and up to two orders of magnitude 

similar to the point of departure) and the full daily doses were administered fractionally 

over a 12-hour exposure period. These time-course data were generated from dose 

variation experiments within the simulation software and are displayed in Fig. 2.7. Due 

to relatively faster absorption and elimination rates in humans (top panels), BA and HA 

did not tend to accumulate internally when compared to rats (bottom panels). 

Continuous doses were assessed as well for the same daily dosing schemes, assuming 

smaller intake events and a larger number of fractional exposures occurring over a 15-

hour dietary exposure period, surveyed over 3 days (Fig. 2.8). These highly fractional 

continuous exposure analyses were presumptive in nature, as they do not reflect 

realistic dietary regimens that would not allow for such maintained accumulation, and 

they were instead purely employed as a means to determine internal steady-state BA 

concentrations among rats and humans. Such steady state internal exposures were 

markedly lower in humans (top panels) than in rats (bottom panels) for all continuous 

daily doses tested. These steady-state values are enumerated in Table 2.4, and give 

rise to margin of exposure (MOE) ratios, identifying the multipliers required to 

extrapolate from rat to human steady-state values. Steady-state BA plasma 

concentration ranges were 0.0257–2.8002 mg/L and 0.0084–1.2209 mg/L for rats and 

humans, respectively. MOE ratio values ranged from 0.3268 to 0.4360 across the wide 
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variety of continuous dosing schemes tested. As these multipliers all fall below a 1:1 

ratio, it is clear from a steady-state perspective that BA is cleared more quickly in 

humans than in rats, and is thus less bioavailable.  

 

 

 

FIGURE 2.7 

Full oral doses were split into 5 fractional exposures over a liberal 12-hour exposure 
period during each day in the simulation. Dosing regimens were 1, 5, 10, 50, and 100 
mg/kg(bw)/day, which were assessed for 24 hr in both rats (bottom panels) and humans 
(top panels). Both plasma BA concentrations (left panels) and plasma HA 
concentrations (right panels) were captured and assessed for each regimen in each 
species. 

 

 

 



 

 41 

 

 

 

 

 

FIGURE 2.8 

Fractional exposures of the daily BA dose were administered orally every 0.1 hr over a 
liberal 15-hour dietary intake period during each day in the simulation. Dosing regimens 
were 1, 5, 10, 50, and 100 mg/kg(bw)/day, which were assessed for 3 days in both rats 
(bottom panels) and humans (top panels). Both plasma BA concentrations (left panels) 
and plasma HA concentrations (right panels) were captured and assessed for each 
regimen in each species. 
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TABLE 2.4 

 

Table 2.4. Steady-state plasma concentrations of BA and HA after simulated continuous 
oral exposures of BA. 

Simulated continuous 

dietary BA exposure 

Rat BA steady-

state plasma 
conc. (mg/L) 

Human BA steady-

state plasma 
conc. (mg/L) 

Margin of 

exposure  
(MOE) ratio† 

1 mg/kg(bw)/day 0.0257 0.0084 0.3268 

5 mg/kg(bw)/day (Current ADI) 0.1288 0.0426 0.3307 

10 mg/kg(bw)/day 0.2591 0.0866 0.3342 

50 mg/kg(bw)/day 1.3380 0.4962 0.3709 

100 mg/kg(bw)/day (⅕ POD) 2.8002 1.2209 0.4360 

† MOE ratio calculated: predicted human internal dose metric ÷ predicted rat internal dose 
metric. All values calculated were less than 1, which correlate with lesser internal steady-
state exposures in humans. 
ADI = acceptable daily intake 
POD = point of departure 
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Dietary intake assumptions for BA and precursor compounds as they relate to internal 

exposures across rats and humans 

Several other food additive compounds amount to BA bioequivalencies due to 

metabolic processes and thus contribute to the aggregate exposure of BA that humans 

see in their diet. Such compounds were integrated into the PBPK analysis to view their 

aggregate effects on interspecies variation. Of these compounds, benzyl acetate, 

benzyl alcohol and benzaldehyde are some of the most widely used flavoring agents 

and formulation additives [98]. These additives are all precursors of BA, and are quickly 

metabolized predominately by liver enzymes after oral exposure. Benzyl acetate is 

quickly hydrolyzed to produce acetic acid and benzyl alcohol, which is then mainly acted 

on by alcohol dehydrogenases to produce benzaldehyde. Benzaldehyde is then 

oxidized further to yield BA (Fig. 2.9). These compounds have similar safety profiles as 

BA, with benzyl acetate presenting a NOAEL of 550–840 mg/kg(bw)/day [99], benzyl 

alcohol presenting a NOAEL of 143–500 mg/kg(bw)/day [67], and benzaldehyde 

presenting a NOAEL of 400–600 mg/kg(bw)/day [100–102]. Because of their similar 

safety profiles, all of these precursor compounds are governed by the same 

conservative ADI value of 0–5 mg/kg(bw)/day, which was taken into account in our 

analysis. 

 In the development of precursor PBPK inputs, data were collected regarding internal 

BA concentrations following a single 500 mg/kg(bw) oral dose of benzyl acetate [94].  

These data were used to design and optimize the precursor segments of the rat and 

human models, and the resulting simulation-generated predictions were successful in 

matching the experimental data (Fig. 2.10A). The precursor PBPK segments were 
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further validated by urinary excretion analysis, where urinary metabolite data were 

assessed in silico and compared to previous experimental rat data [95] (Fig. 2.10B). 

Both simulation data and experimental data show that the oral dose administered, 500 

mg/kg(bw), was predominately recovered as HA, with small amounts of 

benzylmercapturic acid as well as trace amounts of benzyl alcohol present. 

 

 

FIGURE 2.9 

Metabolism and elimination scheme for benzoic acid and a variety of its precursor 
compounds used as flavoring agents and food additives. ADH, alcohol dehydrogenase. 
ALDH, aldehyde dehydrogenase. 
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FIGURE 2.10 

Internal exposure to BA following various dietary regimens of BA, benzyl acetate (BAc), 
and benzyl alcohol (BAlc). (A) Model prediction of plasma concentrations of BA, HA, 
BAc, BAlc and benzaldehyde (BAld) following a dose of 500 mg/kg(bw) BAc in rats. 
Experimental data from the same scenario have been collected from Yuan et al. [94] 
and overlaid to view model performance. Each experimental data point was captured 
from a different animal in the previous study. (B) Urinary metabolites were assessed, in 
vivo [95] and in silico, 24 hr after administering a single oral dose of 500 mg/kg(bw) BAc 
in rats. BMA, benzylmercapturic acid. LOQ, limit of quantification. (C) Dietary dosing 
schemes were assessed in order to determine internal BA exposures in both rats (left) 
and humans (right). The seven dietary regimens are listed in Table 2.2. 
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FIGURE 2.11 

Plasma BA-based AUC comparisons between rats and humans for different aggregate 
dietary exposure schemes (1–7), as described in the text. AUC values have been 
determined from plasma concentrations over the 24-hr periods of exposure, shown in 
Fig. 2.10C. 
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After validation of both the primary BA PBPK model and the extended precursor 

segments, rat and human simulation experiments were performed for a variety of 

complex repeated dosing schemes. Seven different daily dosing schemes were 

implemented, as discussed in detail previously, and the results of these analyses over a 

24-hour period are displayed in Fig. 2.10C. As with the previous steady-state internal 

exposure analyses, internal exposures generated here were more greatly retained in 

rats (left panel) than in humans (right panel). These complex pharmacokinetic curves 

could not be resolved to a steady-state value due to their sporadic nature, and thus 

AUC values have been calculated for each of the dietary exposure schemes and are 

presented in Fig. 2.11. The AUC-based human:rat MOE ratios were calculated to be, in 

succession for all theoretical diets, 0.325, 0.342, 0.336, 0.345, 0.351, 0.365, and 0.373, 

indicating much lower relevant exposures in humans. 

 

2.1.4.  Discussions and conclusions of pharmacokinetic modeling insights 

Discussions of new pharmacokinetic data and impacts on regulatory toxicology 

In the development of toxicological risk assessments for environmental 

contaminants, pharmaceuticals, food additives or other consumer products, a general 

approach is applied where a point of departure (POD) is determined as the dosage 

value for safety to be based upon. This value is either (a) the experimental dose value 

determined to the lowest dose value reported to elicit an adverse response (i.e. the 

LOAEL value), or (b) the highest possible value reported to elicit no adverse effect at all 

(i.e. the NOAEL value). This pivotal NOAEL-based POD, often ascertained through 

relevant experiments in rodent models, is divided by a default 100× factor to 

conservatively account for uncertainties associated with interspecies extrapolation and 
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human variability. The World Health Organization (WHO) has characterized the initial 

subdivisions of this default factor as intraspecies (10×) and interspecies (10×) 

uncertainty [103]. The standard interspecies uncertainty factor accounts for both 

pharmacokinetic variations (4×) and toxicodynamics variations (2.5×). All of these 

factors, combined to form the default 100× uncertainty factor, have been applied to a 

500 mg/kg(bw)/day POD for oral BA exposure [71], resulting in a health-based guidance 

value for the group of benzoic acid, its salts and precursor compounds of 5 

mg/kg(bw)/day, assuming full read-across. 

 A few recent studies using extremely conservative assumptions estimated that 

certain subpopulations may exceed the allowable ADI for BA [75–77].  In view of these 

studies, an investigation into the appropriateness of the default uncertainty values used 

in establishing safety for BA and related compounds is warranted. As a component of 

this uncertainty reevaluation, we have closely examined the pharmacokinetic landscape 

of BA and related compounds to reach a more accurate extrapolation factor of total 

internal doses. At first glance, the BA pharmacokinetic profile of humans was more 

similar to rats than guinea pigs (Fig. 2.5, Fig. 2.6). This is an important finding 

considering that all pivotal toxicological experiments with BA and sodium benzoate were 

performed in rats [68–70], and therefore this comparison is much more valuable in 

determining interspecies differences with respect to ingredient safety. Upon further 

interrogation of human and rat pharmacokinetic profiles, the model-generated internal 

exposures to BA (after repeated, continuous or complex aggregate dietary 

assumptions) were significantly below the internal exposures seen in rats at the 

assumed intake estimate dose ranges (Fig. 2.7, Fig. 2.8, Fig. 2.10C). The ranges 
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analyzed went as low as 1 mg/kg(bw)/day, to dietary mixtures amassing 20 

mg/kg(bw)/day BA and 20 mg/kg(bw)/day benzoate precursors, to 100 mg/kg(bw)/day 

of repeated or continuous administration of BA. Among all analyses in this study, the 

highest multiplier found to estimate human internal doses from measured rat values was 

0.436 (Table 2.4), implicating that humans require at least double the oral dose in rats 

to see the same magnitude of internal exposure. This higher metabolic clearance seen 

in humans is likely attributed to higher enzymatic activity, which may be heavily 

dependent on slight yet significant species differences in hepatic glycine N-

acyltransferase expression [104] or on glycine co-factor availability [105]. 

From these data some conclusions can be drawn with respect to readjusting the 

level of pharmacokinetic interspecies uncertainty, as researchers have similarly noted in 

the past for other compounds [106, 107]. As BA is internally distributed in lower 

quantities in humans than in rats due to significant metabolic and excretion differences, 

the interspecies 4× uncertainty factor for pharmacokinetic differences can either 

become a fractional value or can be reduced to 1×. In keeping with the conservative 

nature of risk assessments, these data support the removal of the interspecies 

pharmacokinetic uncertainty factor, leaving only factors for toxicodynamic interspecies 

uncertainty (2.5×) and intraspecies uncertainty (10×). 

Reevaluation of default uncertainty factors has been addressed in the past, and 

others have made recommendations to provide more accurate measures in making 

regulatory decisions [108]. In particular, pharmacokinetic uncertainties have been 

refined in the past for specific environmental contaminants and consumer chemicals. 

The pharmacokinetic landscape of adicarb, a carbamate pesticide, has been 
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extensively analyzed in the past to view interspecies differences [106]. As a result, 

researchers found that rats internalized far less adicarb and therefore the factors that 

govern regulations needed to be far more stringent, concluding that the 4× factor should 

be replaced with one on the order of 17× or more. This reevaluation approach has been 

applied to the use of 2-phenoxyethanol and phenoxyacetic acid as well [107], where the 

researchers generated proportional MOE values that suggest far less exposure in 

humans, concluding that the 4× factor be eliminated to approach a more accurate 

extrapolation value from rats to humans. 

 

Pharmacokinetic conclusions 

In conclusion, the multimethod simulation approach was extremely successful in 

predicting pharmacokinetic outcomes for a very relevant issue in regulatory toxicology. 

The analyses provided here, as seen with other chemical-specific studies, provide 

support for refinement of default uncertainty factors to reach a more accurate, realistic 

and adequately protective toxicological health-based guidance value in promoting 

consumer safety. These analyses were done for relevant dosing schemes that span and 

exceed the range of intake estimates using liberal dietary assumptions. In addition, the 

final result of eliminating the pharmacokinetic interspecies uncertainty factor remains 

adequately conservative, as these data suggest that this factor could even be fractional 

to generate a more accurate extrapolation. This study adds to the growing body of 

literature that supports an improvement to the uncertainty paradigm, shifting from an 

over-reliance on default values to empirically-based PBPK-refined value.  Refinement of 

uncertainty factors is appropriate when supported by data and affords a more targeted 

risk management approach relative to consumer safety. 
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2.2      Modeling ultrasensitivity nuances in transcription factor activation 

 

To assess the effectiveness of our multimethod simulation approach on 

pharmacodynamic quantifications, we conducted a study of an important toxicological 

and pharmacological query involving the classical aryl hydrocarbon receptor, which is 

presented here. To view the peer-reviewed research article that accompanies this 

section, see: Hoffman et al. (2018) Ultrasensitivity dynamics of diverse aryl hydrocarbon 

receptor modulators in a hepatoma cell line.  Archives of Toxicology. 

 

2.2.1   The aryl hydrocarbon receptor and its dynamic activation nuances 

 

The aryl hydrocarbon receptor (AhR) is a nuclear receptor known classically for 

its dioxin-dependent activation and subsequent toxicological effects [109]. The triggered 

activation of AhR requires the intracellular presence of a high-affinity ligand, many 

signaling events that allow for its translocation into the nucleus, and additional protein 

complexes that enable binding to DNA for a wide transcriptional response of mainly 

drug-metabolizing enzyme genes [110]. Classically-identified ligands for this receptor 

include a variety of polycyclic aromatic hydrocarbons (PAHs) such as: 2,3,7,8-

tetrochlorodibenzo-p-dioxin (TCDD) and other members of the dioxin family [109]; 

3,3′,4,4′,5-pentachlorobiphenyl (PCB-126) and other polychlorinated biphenyls (PCBs) 

[111]; and large nonpolar pyrene derivatives such as benzo[a]pyrene (BaP) [112]. The 

AhR-mediated responses elicited by these ligands are all deleterious in nature and 

primarily result in immunotoxicity, skin lesions known as chloracne, hepatotoxicity, and 

various forms of tumor promotion [113, 114].  
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While early studies focusing on the AhR all provide strong evidence of its 

toxicological responses, recent studies have reoriented our understanding of this 

complex receptor and solidified it as a potential therapeutic target in modulating the 

progression of several inflammatory diseases and cancers [115–118]. As one potential 

benefit, it has been shown that sustained activation of the AhR by TCDD can suppress 

the adaptive immune response and reduce Leishmania major burdens in mice [119]. 

While this parasitic resistance is a therapeutic outcome of TCDD exposure, classical 

toxicological data suggest that exposure to this compound will result in many 

unintended health hazards and render it unsuitable as a treatment for any infection or 

disease.  

In light of these data, current research has turned to the activation of AhR using 

more natural endogenous and exogenous ligands. Indole-3-carbinol (13C) is one such 

exogenous ligand identified in cruciferous vegetables that allows for potent AhR 

activation upon consumption [120]. This receptor activation is mediated through direct 

binding as well as through binding of I3C’s major metabolite 3,3′-diindolylmethane (DIM) 

[120–122]. These compounds fall within a class of substituted indoles that 

predominately originate from dietary sources and all variably activate the AhR [123]. It is 

known that I3C and related indoles can reduce oxidative stress in cell culture models 

[124] in addition to regulating carbohydrate metabolism in mouse models [125]. AhR 

activation by such ligands is critical for preventing the metabolic and genetic dysfunction 

seen in mammalian metabolic syndrome [126]. As perhaps the most impactful 

pharmacological aspect of these indole compounds, their activation of the AhR 

regulates intestinal immune cells and drives a powerfully therapeutic anti-inflammatory 
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response in the rodent gut [127]. Mice treated with I3C displayed a significant increase 

in beneficial intraepithelial lymphocytes and a drastic reduction in intestinal inflammation 

and damage [128]. Several laboratories have further elucidated additional 

gastrointestinal benefits, showing I3C- and DIM-mediated prevention of intestinal 

carcinogenesis in mice [129, 130]. These studies have revealed a compelling AhR-

based reason to advocate for liberal cruciferous vegetable intake and functional nutrition 

[131, 132]. Investigators have also identified an endogenously-sourced indole ligand 

that potently activates the human AhR: 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic 

acid methyl ester (ITE) [133, 134]. Much like the other indole ligands, ITE has been 

shown to upregulate specific regulatory T-cells and reduce the intestinal inflammation 

that drives mammalian colitis in an AhR-dependent manner [135, 136]. 

Non-classical ligands lacking an indole moiety can also trigger AhR activity [137]. 

Cannabidiol, derived as a primary cannabinoid constituent from the Cannabis plant 

genus, can potently induce CYP1A1 through AhR-mediated signaling [138]. Natural 

phenolic compounds such as curcumin have identified AhR activity [139], and many 

plant-derived tetraterpenoids such as apocarotenal, canthaxanthin and astaxanthin 

have been identified as AhR agonists as well mainly by their CYP1A1 and CYP1A2 

induction [140, 141]. These compounds, while less understood for their AhR modulation 

than the aforementioned indole compounds, may also provide insight into the differential 

effects of consumption-based AhR activation.  

The AhR is activated by a structurally-diverse spectrum of compounds [137, 

142]. The variable response profile of the AhR has been thoroughly reviewed [113; 

143], where any given AhR-mediated physiological outcome is highly dependent upon 
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the ligand that stimulates it. Other receptors have different signaling profiles and thus 

dichotomous physiological outcomes for a spectrum of agonists as well, which has been 

extensively documented as “biased agonism” [144]; examples of such receptors are the 

opioid receptors [145], serotonin 5-HT2A receptor [146], glucagon-like-peptide-1 receptor 

[147], and the glucocorticoid receptor [148]. 

While differences in AhR-mediated transcriptional responses have been well-

documented between different cell types [149], there are no documented differences in 

immediate expressional changes within the same cell type by different ligand types 

[150]. While gene expression profile changes appear to be the similar for AhR ligands, 

physiological outcomes between TCDD and ITE are vastly different in biological 

systems like the placenta [151]. Ligand-intrinsic and dose-dependent differences in AhR 

activity have also been well documented for the fate of differentiating CD4+ T-cells, 

where different amounts of different AhR ligands will facilitate the production of different 

sets and quantities of lymphocytic markers [152]. 

It is assumed that there are a variety of complex factors that allow for different 

ligands to activate the same receptor and produce dichotomous responses. Such 

factors may include different direct binding domains on the intracellular receptor, 

dynamic activation nuances (e.g. via direct binding or indirect phosphorylation events), 

alterations in metabolic activity, pharmacokinetics of a given ligand, and different 

intrinsic affinities for the receptor and resulting activation durations. Additionally, 

receptors and signaling proteins are sometimes rapidly stimulated within a narrow 

stimulus window, giving rise to ultrasensitive or “switch-like” behavior [45], and indeed 

we have previously demonstrated that the AhR is activated by the classical ligand PCB-
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126 in a variably ultrasensitive manner [46, 47, 153]. Ultrasensitivity dynamics have 

been unpacked extensively at the molecular level, and the mathematics explaining this 

phenomenon have been keenly approximated for computational modeling studies [41]. 

Ultrasensitive response motifs manifest as a result of a variety of molecular processes 

including cooperative binding, dimerization sequences, and multistep signaling 

processes [154]. For the AhR, the protein modification and translocation that occurs 

after ligand binding appears to form the basis of this switch-like activation; however, the 

rapid activity of this bound complex is highly ligand-dependent. 

Because of these observations and in light of recent non-classical ligand 

experimentation, we hypothesized that the ligand-specific disparity between AhR-

mediated responses can be in part explained by the nuances in each ligand’s ability to 

directly bind and ultrasensitively activate this nuclear receptor. To define these nuances, 

we offer here an experimental approach that integrates a high-throughput single-cell in 

vitro assay and a robust mathematical simulation method to understand the graded and 

switch-like dynamics of this nuclear receptor activation, and predict the impact of 

specific exogenous stimuli on this molecular target. The AhR modulators used in this 

study consist of three classical aryl hydrocarbon ligands and three non-traditional 

exogenous ligands, displayed in Fig. 2.12. 
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FIGURE 2.12 

The chemical structures of the six compounds used in this study that act differentially to 
modulate AhR activity. 
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2.2.2   Materials and methods 

Chemicals and Reagents 

TCDD (≥98% pure) was purchased from Cambridge Isotopes (Andover, MA, 

USA). PCB-126 (≥99% pure) was obtained from Accustandard (New Haven, CT, USA) 

and confirmed by GCMS to be pure and free of other congeners. BaP (≥96% pure), I3C 

(≥96% pure), and DIM (≥98% pure) were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). CBD (≥99% pure) was purchased from Cerilliant Corporation (Round Rock, TX, 

USA). For treatments, all compounds were diluted in sterile-filtered DMSO; treatments 

and vehicle groups contained less than or equal to 0.1% v/v DMSO. Geneticin (G418) 

used for selective media was obtained from Thermo Fisher Scientific (Waltham, MA, 

USA).  

 

Cell Culture Model and Flow Cytometry 

H1G1.1C3-GFP cells, the generous gift of Dr. Michael Denison at University of 

California Davis, were used as an AhR reporter line as described previously [155]. 

Briefly, this is a stably transfected mouse hepatoma (Hepa1c1c7) cell line with an 

enhanced green fluorescent protein (EGFP) reporter gene linked to the aryl 

hydrocarbon response element, referred to here as the xenobiotic response element 

(XRE). Cells were maintained in αMEM containing 10% fetal bovine serum in a 

humidified environment of 5% CO2 at 37 °C. Because it was observed by Nagy et al. 

[155] that these cells require constant selective pressure in order for the EGFP gene to 

be strongly expressed, cells were placed in selective media (αMEM containing 10% 
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fetal bovine serum and 968 mg/L G418) 48 hr prior to treatments. Cells were plated into 

24-well plates and allowed 24 hr to adhere, where they were subsequently treated for 

24 hr with varying doses of each of the 6 treatment compounds. Cells were treated with 

TCDD (7-point scheme, 10-1–105 pM), PCB-126 (9-point scheme, 10-1–107 pM), BaP (8-

point scheme, 10-1–106 pM), I3C (7-point scheme, 103–109 pM), DIM (6-point scheme, 

103–108 pM), or CBD (6-point scheme, 103–108 pM). After each treatment duration, cells 

were trypsinized (0.025% trypsin/EDTA) and resuspended in media at 106 cells/mL for 

flow cytometric analyses. Cells suspensions were read by a Beckman Coulter CyAnADP 

flow cytometer equipped with a 488 nm laser for excitation and FITC channel (530/30 

bandpass filter) for EGFP intensity readouts. FCS files were captured for each 

treatment group using a Summit Software System (v4.3; Cytomation, Fort Collins, CO, 

USA), and files were further analyzed using FlowJo Software (v10.5.0; FlowJo LLC, 

Ashland, OR, USA) for mean fluorescence intensity (MFI) values and bifurcation-gated 

cell percentages. All samples were run in biological triplicate. 

 

Computational Simulation 

The simulation approach employed herein utilizes the AnyLogic multimethod 

simulation software (v8.0; The AnyLogic Company, Chicago, IL, USA), integrating 

agent-based, discrete-event and system-dynamics modeling techniques. Primarily, the 

simulation interface was built with a population of hepatocyte agents (cell number 

adjustable), each with an intrinsic equation network defining AhR activation. This 

equation network uses the tissue-level exposure of each compound of interest 

(assumed first-order diffusion and first-order elimination) within a standard Hill equation 
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that defines a cell’s AhR response fraction. The mathematics and equation sets defining 

biological responses used here have been previously documented [41]. The main 

components of this equation are the Hill coefficient and threshold (EC50) value (as seen 

in Fig. 2.13A), both of which have been systematically optimized to fit to previous 

experimental datasets. Validations and corrections of these simulation optimizations 

were further performed using our own experimental data. The hill coefficient is 

optimized based on histogram readouts generated by the flow cytometer as well as MFI 

values that define activation levels; as cells are activated experimentally, their response 

shape, and thus Hill coefficient, remain the same within a cellular population for each 

given ligand. For the threshold value, however, cellular variance exists as some cells 

will respond to different amounts of ligands; because of this, the threshold is defined as 

a distribution for each cellular population respective to each specific ligand. Upon 

simulation startup, each cell is instructed by the program to pull threshold values from a 

theoretical distribution. Optimization experiments performed within the simulation for 

these value distributions all consist of 50,000 randomly sampled iterations each 

consisting of 1,000-cell populations to reach the most appropriate values and ranges. 

Each treatment scenario was further analyzed by Monte Carlo analyses of 100 sampling 

iterations each to elucidate the level of variance in the stochastic simulation data. All 

other details on simulation builds are elaborated on in the results section and files used 

may be openly accessed via the AnyLogic Cloud online platform. Representative 1,000 

pM TCDD simulation experiment can be run directly in web browser at: 

https://tinyurl.com/y9yzt8dd. Files (.alp format) can be downloaded from this same site. 
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Data Visualization and Further Mathematical Analyses 

Graphical representations and non-linear curve analyses of data were produced 

using both AnyLogic simulation software and GraphPad Prism (v7.0; GraphPad 

Software Inc.; La Jolla, CA, USA). One-phase decay analyses were conducted to 

further characterize Weibull-based threshold distributions and elucidate median values. 

Simulated fluorescence histograms were fitted accordingly using either a smoothed 

fourth order polynomial analysis or Gaussian analysis for biphasic (highly ultrasensitive) 

or monophasic (graded) plots, respectively. Sigmoidal (variable slope; four parameter) 

analyses and concomitant EC50 value generation were conducted for all dose-response 

curves. 
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FIGURE 2.13 

Optimized AhR activation assay using the XRE-EGFP coupled hepatoma cell line. (A) 
Gating scheme for each sample that was used to select hepatoma cell populations for 
analysis. Intact cells were first separated from debris and noise based on appropriate 
size (FS, forward scatter) and granularity (SS, side scatter); single cell events were then 
separated from doublet events. (B) Dose-dependent variation in EGFP-based 
fluorescence intensity (captured via FITC channel) seen in cell populations after 24 hr of 
different TCDD exposures (101–104 pM). (C) 7-point dose-response analysis (10-1–105 

pM TCDD) for response fraction and activated cell counts, measured as corrected mean 
fluorescence intensity (MFI) and bifurcated FITC+ cells, respectively. (D) Fluorescence 
imaging of the transfected hepatoma cells exposed to either DMSO vehicle or 1,000 pM 
TCDD, as seen in the original documentation of these cells by Nagy et al. [155]. 

 

 

 

 



 

 62 

2.2.3   Pharmacodynamic results 

Single-cell AhR Activation Assay 

The flow cytometric assay used here has been optimized by our laboratory and is 

suitable for investigating ultrasensitivity dynamics for functional activation of the AhR. 

This assay directly measures the level of AhR-dependent protein product (EGFP) in 

individual H1G1.1C3-GFP cells. Collecting these single cell and population-based 

metrics were critical for use in the subsequent simulation approach. We first identified 

the hepatocyte population of interest gathered by the cytometer by gating for 

appropriate size and complexity seen in the cells (measured as forward and side 

scatter) as well as by gating out false doublet or triplet events as clumped cells can 

sometimes make their way through the point of observation (Fig. 2.13A). Each 

treatment group’s cell population was excited by the 488 nm laser and their level of 

EGFP-based fluorescence was observed, which for increasing TCDD treatments, 

showed mainly two distinct states: inactive or fully active. This is defined by the bimodal 

distributions in the fluorescence intensity histograms shown (Fig. 2.13B). These mean 

fluorescence intensity (MFI) data were quantified at the population level and plotted 

against the varying doses of TCDD used, resulting in a steep sigmoidal curve (Fig. 

2.13C, left panel). MFI values were corrected for autofluorescence and normalized. A 

bifurcation gating scheme was also employed to divide the percent of cells that exist 

within the inactive state (FITC-) or the fully active state (FITC+), seen in Fig. 2.13C 

(right panel). A visual representation of this TCDD-dependent switch-like response in 

H1G1.1C3-GFP cells was previously gathered by Nagy et al. [155], where the cells 

were treated with DMSO vehicle or 103 pM TCDD (Fig. 2.13D).  
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FIGURE 2.14 

The computational constructs and simulation results for the TCDD-mediated AhR 
response in immortalized hepatocytes. (A) Simplified schematic of the simulation 
interface and primary mathematics. Circles represent cellular agents in the simulation, 
where each is designed to respond probabilistically based on their threshold magnitude 
pulled from an identified distribution. The identified vales and ranges that correspond to 
TCDD are enumerated. (B) Simulation-generated threshold distribution for TCDD, 
sampled from 1,000 cellular agents. (C) Single-cell (left panel, 100 sampled curves from 
runtime) and compounded population (right panel) simulation results following 1,000 pM 
TCDD. Population results were iterated 100 times each in a Monte Carlo analysis; 
resulting Gaussian curves are seen in the subplot for 200 and 1,000 cell agents. (D) 
Levels of activation within the simulation following 1,000 pM TCDD. Cells were 
phenotyped based on their response fraction values. (E) Dose-dependent variation in 
simulated fluorescence intensity seen in cell populations after 24 hr of different TCDD 
exposures (101–104 pM). (F) Experimental and simulated dose-response analyses 
overlaid for response fraction (10-1–105 pM TCDD) and (G) activated cell counts (10-1–
105 pM TCDD). 
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Ultrasensitivity Dynamics Elucidated via Computational Simulation 

We designed a simulation for this study that is consistent with the behavior of 

individual cells as they respond to AhR modulators, in either slowly graded or highly 

ultrasensitive manners. The foundational construct of our simulation is an agent-based 

approach where “cell agents” exist as a population and each contain a stochastic 

equation-based response network that is dependent upon intracellular exposure inputs 

(Fig. 2.14A). TCDD was the prototypical compound used for the initial simulation build, 

and its ligand-specific Hill coefficient of 7 and threshold distribution (also displayed in 

Fig. 2.14A) were systematically optimized and defined by simulation experiments. The 

graphical representation of the threshold distribution elicited by TCDD is displayed in 

Fig. 2.14B. After a simulation run at 103 pM TCDD exposure, the responses of 100 

sampled cells were collected and overlaid, displaying the stochastic nature of the 

simulation interface (Fig. 2.14C, left panel); these datasets were then compounded to 

reveal the population-based response (Fig. 2.14C, right panel). The population-based 

response was collected for experiments containing 200 or 1,000 cell agents where the 

datasets change only marginally, showing that these are enough agents in the 

simulation to display the compounded effects of the distribution metrics. Variance of the 

programmed stochasticity was further quantified by Monte Carlo analysis (100 iterations 

per group), and the results are displayed as Gaussian distribution subplots (Fig. 2.14C, 

right panel). Cells were then phenotyped based on their response fraction values 

(inactive, 25%, 50%, 75%, and ≥90% or fully active), and cell percentages dominated 

either the inactive or fully active states in response to 103 pM TCDD (Fig. 2.14D), 

correlating appropriately to our experimental data. After the 24 hr runtime in the 
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simulation, histograms of response fractions for different TCDD doses were collected 

(Fig. 2.14E), paralleling the experimental histograms seen in Fig. 2.13B. As final 

analyses in the simulation design, dose-response curves were generated for all TCDD 

doses after 24 hr of exposure. Response fractions and activated cell percentages were 

recorded and overlaid on top of experimental data, shown in Fig. 2.14F and Fig. 2.14G, 

respectively. The similarity between the experimental and simulation datasets highlights 

the validity of this approach for studying the ligand-dependent AhR response. 
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FIGURE 2.15 

Quantitative analysis of AhR activation by PCB-126. (A) Dose-dependent variation in 
EGFP-based fluorescence intensity (captured via FITC channel) seen in cell 
populations after 24 hr of different PCB-126 exposures (101–106 pM). The lower panel 
displays historical flow cytometric histogram data from Broccardo et al. [47], of PCB-
126-mediated AhR activation following 24 hr of treatment using CYP1A1 antibodies. (B) 
Hepatocyte population characteristics with respect to PCB-126-mediated AhR 
response. The optimized threshold distribution with mathematical setup is displayed (top 
panel), and single cell simulation results are overlaid for 100 sampled cells following 
1,000 pM PCB-126 (bottom panel). (C) For varying doses of PCB-126 (101–106 pM), 
response fraction histograms are overlaid (top panel), and time-course evaluations for 
the same doses are overlaid (bottom panel). (D) Comparison of PCB-126 dose-
response simulation data to experimental flow data (10-1–106 pM); response fraction 
(top panel) and cell percentages (bottom panel) were evaluated. 
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Dose-Response and Simulation Analyses Performed for Each Test Compound 

Following the preliminary TCDD optimization and analysis, the flow cytometric 

and simulation analyses were performed for all classical and consumption based 

ligands. PCB-126 was exposed to the hepatoma cells at a range of 10-1–107 pM. 

Experimental histograms of fluorescence intensity after 24 hr of PCB-126 treatment are 

displayed in Fig. 2.15A, showing the switch from inactive to fully active states. Current 

flow cytometric data (top panel) and historical data from our laboratory (published as 

Broccardo et al. [47]; bottom panel) are shown for PCB-126 in both the mutated and 

traditional Hepa1c1c7 cells respectively. Historical data was used to further confirm the 

actions of PCB-126 qualitatively, but optimized simulation data for this ligand were 

gathered using newly obtained flow cytometric data for consistency throughout this 

study. Simulation experiments revealed a Hill coefficient of 2 and a threshold distribution 

similar in nature and shape to that of TCDD, but different in magnitude (Fig. 2.15B, top 

panel); additionally, since all compounds were normalized to maximal induction TCDD 

data, it was found experimentally that PCB-126 hit a maximum response fraction of 0.72 

which was included in the simulation makeup. Response fraction simulation data from 

100 sampled cell agents after 103 pM of PCB-126 were collected and overlaid to display 

individual stochastic activations (Fig. 2.15B, bottom panel). Simulated fluorescence 

intensity histograms were overlaid for relevant PCB-126 doses (Fig. 2.15C, top panel), 

and simulation-generated time-course compounded population results were overlaid for 

the same doses (Fig. 2.15C, bottom panel). Full dose-response curves were then 

generated for response fraction values (Fig. 2.15D, top panel) and activated cell 

percentages (Fig. 2.15D, bottom panel), overlaid on top of experimental flow cytometry 
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data. The full experimental and simulation analyses was performed for BaP as well (not 

shown for brevity), resulting in a Hill coefficient of 3, a threshold distribution median of 

1231 pM, and experimental EC50 of 491.4 pM.  

 Consumption-based ligands all underwent the same experimental and simulation 

analyses, and the highlights of these results are displayed for I3C (Fig. 2.16A), DIM 

(Fig. 2.16B), and CBD (Fig. 2.16C). Shown for each of these ligands are (i) the 

generated threshold distribution and equation framework employed in simulation 

experiments, (ii) the overlaid histograms of simulated fluorescence intensity for all 

relevant doses within the experimental curve, and (iii) the overlaid full dose-response 

curves generated experimentally and via simulation. Representative dose-response 

histograms generated via flow cytometry experiments are shown for each compound as 

well. 

 

Comparative Analyses Between AhR Modulators 

The experimental and simulation-generated response activation values were 

finally compared for all the classical AhR ligands and contemporary consumption-based 

ligands. The experimental EC50 and simulated threshold distribution medians were 

markedly higher for the consumption-based ligands than for the classical AhR ligands, 

whereas the simulated Hill coefficients revealed for each of the consumption-based 

ligands were markedly lower. When plotted as Hill coefficients against either threshold 

distribution medians or against experimental EC50 values, the resulting graph can be 

divided into quadrants defining the type of AhR modulation, and thus predicting regions 

with distinct physiological outcomes (Fig. 2.17A). These outcomes of differential AhR 
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activation are summarized in Fig. 2.17B, where small amounts of potent classical 

ligands are required to elicit highly ultrasensitive responses with a propensity for 

deleterious outcomes. In contrast, this summary diagram shows how much larger 

quantities of contemporary AhR-modulating ligands result in much less steepness in 

their activation curves, which may in part be responsible for their mild transcriptional 

conditioning and harmless or even therapeutic outcomes, with respect to AhR activity 

alone. 
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FIGURE 2.16 

Analyses of consumption-based ligands. (A) I3C, (B) DIM, and (C) CBD computational 
analyses and experimental flow data. For each consumption-based ligand, the 
optimized threshold distribution with mathematical setup is displayed (left panels), 
simulated fluorescence histograms are overlaid for all dose points (middle panels), and 
comparative experimental-to-simulation dose-response plot is shown (right panels). 
Representative experimental histograms of measured fluorescence intensity for each 
compound are seen in the dose-response subplots. 
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FIGURE 2.17 

Final comparisons between all AhR modulators of interest. (A) Hill coefficient values 
plotted against respective threshold distribution medians (left axis) and experimentally-
measured EC50 values (right axis). Classical/toxicological and 
contemporary/dietary/therapeutic ligands are clustered in different quadrants outlining 
graphical regions with differential physiological outcomes. (B) Conclusive disparity 
between different ligand-specific ultrasensitivity dynamics and how they correlate with 
cellular and physiological outcomes. 
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2.2.4   Discussions and conclusions of pharmacodynamic modeling insights 

Discussions of new AhR activation data and insights for dietary therapies 

This study is highly innovative because it greatly advances our understanding of 

how different AhR ligands can elicit drastically different and sometimes opposite 

physiological outcomes. While there are many theoretical components accounting for 

the disparity observed in the literature, our results view the kinetic and dynamic 

relationships that exist through an intricate quantitative lens. We have previously 

identified ultrasensitivity dynamics within AhR-mediated responses in liver cell lines and 

primary hepatocytes [46, 47, 153]. These previous analyses of the AhR response have 

utilized population-based mathematics that have been derived for these types of 

substrate-dependent curves and phosphorylation systems [41]. Due to the 

advancement of adaptable agent-based simulation technology, our current study now 

reveals specific nuances to quantifying each individual cell that mounts the response 

and to further characterizing different types of ligands as AhR modulators.  

While we have generated an appropriate quantitative model for cell distribution-

based Hill dynamics relative to the AhR, different ultrasensitivity mathematics born out 

of either positive feedback [40] or negative cooperativity [44] are yet to be fully 

understood for this particular receptor. Our study indicates that potent prototypical 

ligands like TCDD allow for a more bistable system with reinforced signal transduction 

and long-lasting effects. Alternative ligands like DIM or CBD may result in weaker 

cooperativity at the nuclear dimerization point and thus more graded and short-lived 

responses, as it is possible to produce AhR dimers with quantifiably lower affinities for 

DNA binding [156, 157]. 
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The nuances in activating this receptor are also purportedly attributed to differing 

recruitment biomolecules in the cytosol giving rise to varying levels of receptor 

translocation and transcriptional activity. In specific cases with ligands like omeprazole, 

receptor activation is completely dependent upon particular AhR protein residues and 

co-activating kinases, whereas traditional toxicological ligands like TCDD elicit no such 

dependency [158]. Investigators have also noted distinct differences in the binding 

fingerprints of TCDD versus ITE and other indole-based ligands toward murine AhR 

residues [159], finding that particular moieties within contemporary ligands are best for 

targeting the AhR with less stable molecular confirmations for therapy. These limiting 

factors in AhR activation overall show reduced transcriptional magnitudes and 

shortened activity durations [158]. Such factors may be at play with many contemporary 

consumption-based ligands such as those observed in the current study. As a critical 

observation, when the endogenous indole ITE is compared to TCDD exposure in mouse 

lung fibroblasts, immediate expressional changes are seemingly analogous [150]. 

Looking at these data from acute exposures and considering the limiting factors for low 

affinity ligands, it appears that the AhR response disparity is fully observed in a more 

subacute or even chronic fashion when probed with subtler levels of ultrasensitivity. 

In contrast to the intestinal and hepatic differences noted for varying AhR ligand 

types [142], different AhR ligands causing similar physiological responses have also 

been observed for very specific tissues like the placenta. Following treatment with 

TCDD or ITE, a modulation in the angiogenic response of the placenta is seen due to 

differential AhR roles between placental endothelial cells [160, 161]. While TCDD and 

ITE both appear to have suppressive angiogenic responses in the placenta, it has also 
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been reported that the expressional changes and final vascular remodeling elicited by 

both are vastly different [151]. These observations lead to the speculation that AhR 

modulators of any kind may have a more hypervariable physiological response within 

tissues that are highly estrogen-responsive, as there is much signaling crosstalk and 

shared ligands between the AhR and estrogen receptor (ER) family [162]. While the 

AhR may be an emerging therapeutic target for alleviating the progression of intestinal 

diseases and inflammatory responses, it appears that there are estrogen-dependent 

caveats to stimulating this pathway. Known AhR modulators TCDD and ITE can 

potentially harm a growing fetus via stunting placental growth [160, 161]. DIM has been 

shown to allow for the proliferation of breast cancer cells [163]. Because of these 

reports, future work into therapeutic AhR modulators should carefully take into account 

direct and indirect estrogenic potential to eliminate any unintended effects. 

Throughout this study and future experimental analyses, it is important to 

consider experimental dosing schemes and their relevancies to environmental and 

dietary exposures. Because many studies for AhR ligands are performed in vitro and in 

vivo, exposure assessments and physiologically-based pharmacokinetic analyses are 

required to understand the correlation between the two. For the toxicological ligands 

addressed in this study, the dose ranges applied are identified intracellular ranges that 

are known to activate the AhR and were once environmentally relevant, but measured 

internal blood doses for average and at risk populations have since declined far below 

their activation thresholds following years of remediation for TCDD [164, 165] and most 

PCB congeners [166]. Interestingly, lung perfusate doses up to 104 pM BaP can still be 

reached and maintained for cigarette smokers [167]. Internal doses for contemporary 
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consumption-based ligands are user-dependent, and investigators must rely on 

established PBPK studies for internal exposure estimation. Following 100 mg/kg I3C 

prodrug oral dosing in mice, >106 pM serum ranges can be reached for several hours 

[168]. Following 250 mg/kg crystalline DIM oral dosing in mice, >107 pM serum ranges 

can be reached for several hours [169]. Following 10 mg/kg CBD oral dosing in rats, 

>105 pM serum ranges can be reached for several hours [170]. While these 

pharmacokinetic dosing schemes may be relatively high for human supplements (e.g. 

10 mg/kg CBD in an average human would be a 600 mg CBD oral dose), the internal 

doses reached are all relevant to the activation ranges elucidated. 

AhR activation by the appropriate amount of a particular ligand can elicit 

therapeutic responses, as it has been seen for carbohydrate metabolism in mice [125], 

gastric cancer reduction [129, 130], and alleviated intestinal inflammation [128]. The 

current study greatly aids in the understanding of why a potent AhR ligand can result in 

hepatic oxidative stress and hepatocellular carcinoma while a weak activator like I3C 

can result in enhanced hepatic and metabolic processes. The growing body of literature 

on therapeutic effects, however, warrants more differential ultrasensitivity quantification 

for other cell types such as intestinal lymphocytes and endothelial cells. 

 

Conclusions 

In conclusion, we have provided a novel integrated experimental simulation 

approach that allows us to understand and visualize the dynamics of the AhR response 

for a variety of classical toxicological ligands as well as consumption-based 

constituents. Using these newly developed tools, we have been able to quantify 
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important constants respective to each ligand that affords us the opportunity to draw a 

correlation to the phenotypic AhR-dependent response each ligand will mount. This 

analysis along with future studies will greatly aid in quantifying and targeting ligand-

specific AhR responses as a therapeutic modality. 
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CHAPTER 3: NETWORK SYSTEMS IN CELLULAR AGING 

 

3.1     Leveraging the simulation techniques in fundamental biology 

 

After establishing the scientific value of multimethod computational simulation for 

biological queries, we began to employ this methodology toward larger more vexing 

questions: What molecular events cause complex organisms to age? What drives the 

degenerative aging process and facilities cellular dysfunction? How does the aging 

process contribute to disease? This chapter opens the discussion for how we may 

theoretically address these questions. To view the peer-reviewed research article that 

accompanies this section, see: Hoffman et al. (2018) Mitochondrial avatars for 

quantitative aging research.  Aging (Albany NY). 

 

3.1.1   Seeking molecular determinants of the aging process 

 

As the search for determinants of degenerative aging continues, research efforts 

are becoming more focused on molecular targets and pathways that converge on the 

mitochondrion. The genesis of mitochondrial aging research stems from the original free 

radical theory of aging, where reactive oxygen species produced spontaneously within 

each cell’s mitochondria go on to damage the cell in a deleterious feedback loop [171]. 

This classical theory, albeit rooted in fine physicochemical logic, neglects to include the 

profoundly robust interconnectivity of living systems, and in doing so, assumes that cells 

are not built with some level of resilience against this spontaneous oxidative damage.  

It is now well understood that cells have many defense mechanisms in place to 

respond to oxidative damage, especially that of the age-dependent mitochondrial variety 
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[2], but the slew of pathways involved in producing and mitigating damage continues to 

become more abundant and more highly connected as we reveal more experimental 

information. One such connection at the forefront of aging research is the relationship 

between broad spectrum mitochondrial stress and the activation of the mitochondrial 

unfolded protein response, a story about the complex maintenance of mitochondrial 

integrity and cellular proteostasis [2]. Intertwined further into these cellular networks are 

the activities of sirtuins, a type of deacetylases with a multitude of beneficial functions 

that preserve mitochondrial efficiency and curb age-dependent oxidative signaling [172]. 

While it is difficult to identify all the relevant mechanistic details that account for 

mitochondrial aging, investigators are beginning to approach a realistic comprehensive 

understanding of the fundamental circuitry at play. The difficulty in this work then rises 

exponentially as we attempt to quantify the individual cellular circuit components under 

a variety of environmental conditions and over relevant lengths of time. The purpose in 

doing so is to quantitatively evaluate these connections and to see their net response 

when compounded (Fig. 3.1). In this process, a legitimate set of numbers with useful 

units will surface, and if correct computational methods are employed, you will reveal a 

focal point that the system depends upon: a node of interest or even a particular set of 

connections. 

In this perspective, we emphasize that the degenerative aging response is not a 

consequence of a single concrete cellular pathway, but is a phenomenon driven by 

multifarious events in concert. This can be interpreted at the computational simulation 

interface as the specific magnitude of selected mitochondrion-oriented interactions, 

often represented by sets of differential equations or discrete numerical events. While 
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simulation techniques robustly complement experimental data and offer us the most 

hope for interpreting this biogerontological system, scientists continue to search for (i) 

the most appropriate and insightful computational formats, and (ii) the key cellular 

network connections and molecular convergences that truly matter [173]. A prime 

example of this ambitious undertaking is a recent study carried out by Tam et al. [174] 

that presents a unique computational approach to understanding a relevant link 

explaining age-associated damage and dysfunction: the accumulation of faulty 

mitochondrial contents as a result of organelle fusion-fission dynamics. These 

computational biochemists successfully constructed a chemical master equation 

framework to quantitatively demonstrate how mitochondrial dynamics may influence the 

clonal expansion of aberrant mitochondrial DNA, while implementing expected cellular 

stochasticity. This study highlights not only how age-dependent damage can occur by 

simulating a substantial set of mitochondrial processes; it also draws attention to the 

most significant processes that dictate a cell’s age-dependent outcome. 

There is no doubt that it is immensely valuable to quantitate the net effects of 

molecular pathways to determine age-dependent behavior of a cell; however, the 

usefulness of this approach is amplified further when it is applied to populations of cells 

in order to determine the response of whole tissues. The chapter following this one 

describes a similar expansive hierarchical computational landscape we created, (i) by 

drawing upon many previous computational models of mitochondrial aging [173, 174] 

and (ii) by building new integrated simulation constructs for significant pathway-driven 

concepts as they have been identified in the model organism Caenorhabditis elegans 

[2, 172]. What our group illuminated was a large-scale simulation approach capable of 
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teasing out significant relationships and network motifs responsible for producing purely 

age-driven degenerative phenotypes. Such relationships notably include positive and 

negative feedback loops, ultrasensitive or switch-like transcriptional responses, and 

linearity between molecular determinants of aging and pathological cellular phenotypes. 

More applicably for all biologists (computational or empirical), we discovered that this 

intuitive simulation construct is capable of making apt predictions in the context of the 

genetic targets involved. Important genes implicated within this network include skn-1, 

daf-16, and sod-2, all exceptionally important for controlling the redox state of cells and 

the integrity of mitochondrial populations.  

Many labs continually contribute to the growing body of literature on 

computational systems biology for mitochondrial aging research. These studies mark 

the progression toward more simulation-based methods in the field. Although these 

studies exist at all conceptual scales and levels of abstraction, they all uniquely provide 

a degree of fruitful quantitative insight, no matter how small [175]. Our group and others 

have demonstrated the impact of simulation studies for mitochondrial dysfunction on 

degenerative aging [173, 174], drawing upon oxidative signaling as a focal point. As 

simulations continue to build on one another and expand in their capabilities, we may 

very well approach a computational tool that the field can consider a realistic 

representation of mitochondria to unravel the mysteries of biological aging. 
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FIGURE 3.1 

Quantitative responses compounded to produce the net effects of aging. The 
experimental simulation paradigm defined in this perspective describes a computational 
landscape that quantifies individual cellular responses (top panel), makes use of them in 
large multifaceted circuits to calculate net responses over time (middle panel), and 
ultimately determines the phenotypic viability outcomes for both mitochondrial and cell 
populations. 
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CHAPTER 4. MODELING MITOCHONDRIAL DYSFUNCTION IN AGING 

 

4.1      Designing an appropriate multimethod simulation approach 

 

In order to comprehensively assess the significant and non-intuitive observations 

seen in mitochondrial aging, we have conducted a study using a novel simulation 

network approach, which is presented in this chapter. The results reported herein 

provide new insights into molecular determinants of aging as well as cytoprotective 

strategies that may improve neurological or muscular healthspan. To view the peer-

reviewed research article that accompanies this section, see: Hoffman et al. (2017) A 

multimethod computational simulation approach for investigating mitochondrial 

dynamics and dysfunction in degenerative aging.  Aging Cell. 

 

4.1.1   Introduction of mitochondrial aging 

 

Loss of mitochondrial function is one of the most well-established characteristics 

of aging cells. Because of this, many researchers speculate that the decline in 

mitochondrial function is not only a complex consequence of biological aging, but may 

provide the earliest trigger in time-dependent cellular senescence and degeneration [2, 

176]. The first viable theory explaining this relationship is the mitochondrial free radical 

theory of aging (MFRTA), which suggests that increasing levels of mitochondrial 

reactive oxygen species (mtROS) produced by cellular respiration and the electron 

transport chain (ETC) are responsible for age-dependent damage, especially toward 

copies of mitochondrial DNA (mtDNA) [171, 177]. According to this theory, when mtDNA 

and matrix proteins exist in an oxidatively damaged state, ETC function may be reduced 
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and proteostasis may be lost, resulting in a deleterious cyclic propagation of mtROS 

generation and a decrease in cellular respiratory function. The MFRTA has been 

adapted and strengthened over the years to address many of the complexities and 

nuances associated with mitochondrial dysfunction in aging cells [178, 179]. For 

example, more recent findings suggest that the accumulation of loss-of-function 

mutations are not entirely mtROS-dependent [180, 181] and have demonstrated that 

minimal increases in endogenous mtROS may be fairly benign or, controversially, 

cytoprotective in nature [182, 183]. These contrasting data warrant further investigation 

of this theory as a pertinent and highly multifaceted system in aging organisms. 

One additional dimension that adds much value to the MFRTA involves the 

general response pathway by which the mitochondrion adapts to stress: the 

mitochondrial unfolded protein response (UPRmt). This response is conserved across an 

array of species, and presumably all eukaryotes, and may largely account for the 

interplay that dulls the downstream oxidative effects of mitochondrial damage during 

aging [184]. The UPRmt is activated directly or indirectly by a variety of stress signals 

originating from the ETC and the intramitochondrial environment [185–187]. This 

activated response has been extensively studied within the nematode Caenorhabditis 

elegans, where the UPRmt is mediated by nuclear import of an important protein known 

as activating transcription factor associated with stress-1 (ATFS-1) [187]. This 

transcription factor is regulated in such a way that allows the cell to globally monitor 

mitochondrial stress and damage, and it effectively produces a widely protective 

transcriptional response when present in the nucleus. Among the several hundred 

transcripts upregulated by nuclear ATFS-1 accumulation include those encoding for 
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important mitochondrial proteins necessary for antioxidant defense and proteostasis, 

e.g. sod-2/3, hsp-60, hsp-70, ymel-1, timm-23 [187, 188]. Additionally, this response 

negatively regulates the nuclear and mitochondrial expression of oxidative 

phosphorylation (OXPHOS) subunits to avoid the accumulation of superfluous proteins 

when mitochondria are already experiencing severe metabolic stress [189]. All of these 

functional changes promote mitochondrial health, which may in turn allow cells to live 

longer at a heightened state of performance. 

Though widely beneficial for proteostasis and respiratory maintenance within 

cells, the UPRmt has also been noted as a process that can sustain damage within the 

mitochondrial genome [190]. It has been suggested that the UPRmt can be 

overprotective by sustaining the numbers of both functional and severely defective 

mitochondria within a given cell, though the mechanism by which this occurs is far from 

clear. The activation of this stress response may allow for high respiratory function for 

the majority of a lifespan, but once enough mtDNA copies hold deletions or mutations 

within their sequences, it is possible that the balance may shift toward a deleterious 

cellular mechanism caused in part by sustained UPRmt activation. This complete 

relationship has yet to be fully investigated.  

Mitochondrial autophagy, or mitophagy, is another process that appears to play a 

critical role in biological aging. Poor regulation of this process allows for the 

accumulation of aberrant mitochondrial content, which has been postulated as a driving 

force for deleterious senescence states, particularly for age-associated 

neurodegenerative diseases such as dementia, Alzheimer’s disease (AD), and 

Parkinson’s disease (PD) [191, 192]. Drastic manipulation of mitochondrial biogenesis 
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and mitophagy flux in C. elegans stress models has been shown to cause decreases in 

ATP production, increased oxidative burdens, and ultimately shortened lifespans [193], 

demonstrating how important it is for these processes to be tightly regulated to allow for 

healthy aging. These regulatory dynamics are also well conserved across a variety of 

animal species.  

The causal role of dysfunctional mitochondrial dynamics in the process of 

biological aging remains fairly nebulous. Each of the aforementioned mitochondrial 

processes have been hypothesized as important factors that determine the rate and 

results of biological aging, yet it has been rather difficult to investigate all of these 

processes simultaneously and to quantitate their ultimate effects when compounded. 

Computational models have been able to provide an additional means to investigate 

such complex systems and have gained a great deal of interest specifically for the field 

of biogerontology [173]. The aim of using such an approach is to not only gain insights 

about the molecular determinants of tissue aging but to also gain quantitative insights 

about how such determinants can be targeted therapeutically.   

Here we emphasize that the degenerative aging response is not a result of a 

single concrete cellular pathway, but is dependent upon specific magnitudes of multiple 

key mitochondrial pathways that allow for cellular senescence states and pathological 

phenotypes. To illuminate these theories in a more nuanced manner, we took an 

approach that highlights existing data and integrates them into a systemic 

computational modeling approach. Our theoretical model addresses vital cellular 

components and time-dependent macromolecule quantities that account for biological 

aging within the model organism C. elegans—including bioenergetic functions of the 
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mitochondrion, fundamental observations of the MFRTA, known elements of the UPRmt, 

and mitophagy-dependent quality control processes (Fig. 4.1A). This framework was 

modeled using multimethod simulation software, allowing us to employ system-

dynamics elements (e.g. stocks and flows) as well as agent-based functions (i.e. those 

that define discrete events, stochasticity, and seemingly autonomous cellular behavior). 

Additionally, our in silico approach included a hierarchical modeling scheme to control 

mitochondrial-level dynamics within a population of energetically-demanding cells, 

allowing us to generate predictive and probabilistic data at the single-cell level (Fig. 

4.1B). This theoretical model aims to provide a better understanding of all the significant 

cellular components that may account for mitochondrial function and dysfunction in 

biological aging with a quantitative backing that may aid in making experimental 

predictions for age-related diseases, toxicological endpoints, and potential 

pharmacological or dietary anti-aging therapies. 

 

4.1.2   Experimental procedures in the complete simulation design 

Hierarchical cell simulation design and agent-based modeling 

In order to simulate intramitochondrial system dynamics and global cellular 

reactions, we formulated our model using AnyLogic® multimethod simulation software 

(The AnyLogic Company; Chicago, IL), which allowed us to develop a hierarchical 

agent-based simulation scheme. This allowed us to simulate a population of cell agents, 

with each individual cell agent containing its own population of mitochondrion agents 

(Fig. 4.1B). Each agent contained discrete event statements and system-dynamics 

reaction networks, both of which were programmed to deal with natural biological 
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stochasticity. As a critical agent-based element employed in our model, cells harboring 

a high percentage of faulty mitochondria were forced into a compromised state via a 

discrete event. These types of events can be activated once a particular condition is 

met, and in this case, the event was triggered once enough mitochondria were severely 

damaged and defective. As this percentage trigger is presumably different for each cell, 

we incorporated a stochastic transition statement that allowed each cell to pull from a 

triangular probability:  

 

Condition: (Defective_Mitochondria/TotalMitoCount) > triangular 

(0.6,0.65,0.8) 

 

The range is denoted by the outer bounds and the most probable value is denoted by 

the middle value of 65%. Similar agent-based principles were utilized for mitochondrial 

stress-state transitions and all agent-based methods are unpacked in the subsequent 

method subsections.  



 

 88 

 

FIGURE 4.1 

The integrated aging mechanism of interest and computational simulation approach. (A) 
Respiratory machinery produces both ATP and superoxide, which elicits different types 
of intramitochondrial damage (noted above as changes in mitochondrial stress states) 
and activation of various cellular stress response pathways. Such pathways focused on 
here are the UPRmt, dictated by nuclear accumulation of transcription factor ATFS-1, 
mitochondrial biogenesis and selective mitophagy, and activation of transcription factors 
DAF-16 and SKN-1. This integrated mechanism was also virtually probed by 
pharmacological agents that either modulate mitophagy, oxidative metabolism, or 
antioxidant defenses. Rapamycin induces mitophagy, bafilomycin hinders mitophagy, 
paraquat causes additional superoxide production and can activate the UPRmt, and 
pterostilbene directly and indirectly boosts cellular antioxidant capacity. UPRmt, 
mitochondrial unfolded protein response; NLS, nuclear localization signal; MTS, 
mitochondria targeting sequence; Rapa, rapamycin; Baf, bafilomycin; PQ, paraquat; PT, 
pterostilbene. (B) The simulation approach has been characterized as having two 
dimensions of complexity integrated over time: hierarchical or leveled complexity, and 
scalar complexity (i.e. magnitude of segments). These constructs were employed to 
produce large scale predictive datasets over time on the single-cell level (denoted by 
black dots) which were distilled down into tissue-level averages (denoted by red line). 
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Deterministic modeling components 

Many biological events have been proposed as crucial elements in regulating 

cellular and organismal lifespan. We manually selected and organized several such 

elements from the literature and implemented them in complement to our agent-based 

work as a deterministic modeling framework, i.e., an intricate web of molecule-

dependent ODEs. Such elements included (1) mitochondrial reaction networks that 

govern oxidative metabolism, proteostasis, and genomic alterations, and (2) global 

cellular reaction networks pertaining to ATFS-1 movement in the cell, protein synthesis, 

and mitochondrial import. The majority of these curated reactions are detailed in (Fig. 

4.1A), and all of the equations and corresponding parameters used are organized and 

tabulated in the subsequent subsections. 

 

Sensitivity analysis 

To determine the quantitative significance of certain parameters and functions 

within the system, a similar global sensitivity strategy was used that has been described 

previously [174]. Briefly, each parameter was individually reduced by 5%, and the 

resulting model outputs, referred to in the text as response variables, were assessed. 

This was done for all static parameters within the model, and the changes in several 

response variables (e.g. ROS output) were measured at particular time points 

determined for young age, midlife, and old age. Sensitivity coefficients for each scenario 

were calculated: 

𝑆𝐶 = 𝜕𝑂£𝜕𝑃¥ × 𝑃¥𝑂£ = 𝜕𝑂£𝑂£ ×	20 
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where SC represents the normalized sensitivity coefficient, Oi is the model output value, 

Pj is the value of the parameter of interest, and ∂ represents the partial derivative of 

either the parameter value or model output. When |SC| ≥ 1.0000, i.e. when the 

proportional change in the response variable is greater than the proportional change in 

the parameter, the parameter is deemed to have significant sensitive control over the 

respective output at the specified age.  

 

Statistical analysis 

Statistical significance was determined by using GraphPad Prism 7.0 software, 

and P values were calculated by a one-way analysis of variance (ANOVA). Significance 

was considered to be a P value of 0.05.  

 

General model units and organism-specific cellular organization parameters 

The model is designed to survey a population of 65 neuron-like cells, each with 

its own population of functioning mitochondria. This cell number was chosen to produce 

a large enough population to observe without exceeding the limitations of the simulation 

software, as the methodology is computationally very intensive. The mitochondrial count 

within each cell varies between 5–35 organelles as determined by literature-based 

calculations (Table 4.1; Box 4.1). Since the cells will attempt to emulate the energy 

demand of neurons or myocytes within C. elegans, we chose a mean mitochondrial 

count of 15 with a Poisson distribution to introduce truer cellular stochasticity. 
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Mitochondrion-level system-dynamics and discrete-event computational methods 

The intramitochondrial equation networks are displayed in Box 4.2, mitochondrial 

agent-based methods are displayed in Box 4.3, and all corresponding mitochondrial 

parameters are displayed in Table 4.2. Corresponding schematics in of the 

mitochondrial simulation build are displayed for the ODE-based network (Fig. 4.2A) and 

the agent state chart (Fig. 4.2B). 

 

 

TABLE 4.1  

 

Table 4.1. Cellular and anatomical parameters of interest for 3-day-old C. elegans (N2); 
ranged/averaged literature values. 

Parameter Symbol Value Range Units Source 

Average body volume Bv 3.5  10-9 L/worm [194] 

Average body density 
(young adult) 

Bd 1081 ± 3 mg/L [195] 

mtDNA per mitochondria MmtDNA 2 – 10 (rat) mtDNA-count/mito [196] 

Average mtDNA per worm WmtDNA 250,000 – 320,000  mtDNA-count/worm [182] 

Estimated mtDNA copies 
per cell 

CmtDNA 45 – 70 mtDNA-count/cell [197] 

Mitochondria range per 
worm 

wMito 25,000 – 160,000 mito-count/worm calculated 

Mitochondrial range per 

cell 
cMito 5 – 35 mito-count/cell calculated 

Average ATP per worm wATP 30 – 40 pmol/worm [182] 

Cellular ATP concentration cATP 2.86 – 8.57 mM calculated 
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EQUATION BOX 4.1 

 

 

 

TABLE 4.2 

Table 4.2. Parameters of interest for the proposed intramitochondrial biochemical system. 

Parameter Symbol Value / Range Units Source 

second-order rate constant for MnSOD-mediated 

superoxide transformation 
k1 1.0 ´ 10-2 nM-1 min-1 [182]A,C 

average MnSOD conc. in mitochondria (WT) [MnSOD]o 3.0 – 6.0 ´ 103 nM [182,198]C 

aggregate first-order rate constant for other reactions 

yielding peroxide 
k2 5.0 min-1 [182]A,C 

aggregate first-order rate constant for reactions not 

yielding peroxide 
k3 30.0 min-1 [182]A,C 

zero-order superoxide generation rate v4 4.0 – 24.0 ´ 104 nM min-1 [182,199]A,C 

constant for feedback inhibition by superoxide Ki 7.8 ´ 10-2 nM [182]C 

first-order rate constant for peroxide disposition k5 0.38 min-1 [200]SS 

initial total concentration of functional ETC proteins oEPfunctional 100 % 
fixed 

assumption 

initial total concentration of faulty ETC proteins oEPfaulty 1 % 
fixed 

assumption 

initial total concentration of unused ETC subunits oEPusable 100 % 
fixed 

assumption 

 

Box 4.1: Equations pertaining to the estimation of nematode-specific cellular parameters. 
 

Mitochondria range per worm:     𝑤𝑀𝑖𝑡𝑜 = 6T'B¨$
rT'B¨$ 

 

Mitochondria range per cell:     𝑐𝑀𝑖𝑡𝑜 = ©T'B¨$
rT'B¨$ 

 

ATP concentration range:     𝑐𝐴𝑇𝑃 = «$¬­
#®  

 

Average protein mass per worm:   𝑊𝑜𝑟𝑚𝑃𝑀𝑎𝑠𝑠 = 𝐵𝑑 ∗ 𝐵𝑣 ∗ 18% ° H�C'E£G
'C'Ug	TUDD± 

 

            	= 	0.681 ± 0.002	 ´�µA/¶@>:«C�T  
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TABLE 4.2 (CONTINUED) 

 

Table 4.2 (continued). Parameters of interest for the proposed intramitochondrial biochemical system. 

Parameter Symbol Value / Range Units Source 

pseudo zero-order ADP production rate v6 15.8 – 21.0 mM min-1 [201]SS,C 

pseudo first-order complete elimination rate 
constant for ATP 

k7 1.87 min-1 [201]C 

pseudo zero-order rate of total mitochondrial ETC 
subunit protein synthesis 

v8 9.0 – 36. ´ 10-4 % min-1 copy-1 [202]C 

second-order rate constant (with Kc) governing the 
protection/recovery of total mt-ETC proteins 

k9 k10 (1/15) min-1 [203-205]A 

second-order rate constant (with Kros) for 
oxidation of usable ETC proteins 

k10 0.1 min-1 [206]A 

ROS-neutralizing component of the corresponding 
second-order rate constant for oxidative activity of 

[O2
-.
] and [H2O2] 

Kros 0.094 nM-1 [182, 200]O 

second-order rate constant (with Kc) for the 
elimination of usable proteins via ETC 

incorporation 

k11 k14 (¼) min-1 [207]A 

second-order rate constant (with Kp) for the 
elimination of functional ETC complexes via 

protein turnover 

k12 3.5 – 10.5 ´ 10-5 min-1 [208]C 

protein-neutralizing component of the 
corresponding second-order rate constant for 

chaperone activity 

Kc 0.001 %-1 [182]O 

protein-neutralizing component of the 
corresponding second-order rate constant for 

protease activity 

Kp 0.094 %-1 [182]O 

pseudo zero-order rate of total faulty mitochondrial 
protein synthesis from damaged mtDNA 

v13 9.0 – 36.0 ´ 10-4 % min-1 copy-1 [202]C 

second-order degradation constant (with specific 

protease activity, Kp) for the elimination of 
deleteriously oxidized proteins 

k14 1.7 ´ 10-2 min-1 [199]C 

rate variable governing oxidative damage to 
mtDNA 

damageRate 0.070 events mM 
week-1 [182, 181]O 

rate variable governing removal of DmtDNA destroyRate 5.148 events month-1 [182, 190]O 

SS 

O 

A 

C 

Optimized in the simulation to achieve the reported unstressed physiological steady-state value, percentage or range. 
Individually optimized value, generated using AnyLogic calibration experiments to best fit/emulate reported curves. 
Quantitated assumption based on qualitative evidence. 
Units converted to adhere to model standards. 
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EQUATION BOX 4.2 

 

Box 4.2: Equations and event statements pertaining to mitochondrion-level biochemical kinetics. 
 
Differential equations governing the time-dependent amounts of key players (PQROS represents a 

function of paraquat-induced increases in ROS production rate, and PT represents a function of 

pterostilbene-mediated ROS mitigation, as outlined in the last section; when unperturbed by either 

compound, functions PT and PQROS = 1): 

 
 𝑑[𝑂p∙1]𝑑𝑡 = 𝑷𝑸𝑹𝑶𝑺 ∗ 𝑣4

½1 + [𝑂p∙1]𝐾𝑖 ¿ ∗ À
𝐸𝑃�UIg'Á𝐸𝑃�UIg'Á + 𝐸𝑃�IGi'£CGUgÂ − (𝑘1[𝑀𝑛𝑆𝑂𝐷] + 𝑘2 + 𝑘3 ∗ 𝑷𝑻)[𝑂p

∙1] 
 𝑑[𝐻p𝑂p]𝑑𝑡 = ½12 𝑘1[𝑀𝑛𝑆𝑂𝐷] + 𝑘2¿ [𝑂p∙1] − 𝑘5[𝐻p𝑂p] ∗ 𝑆𝐾𝑁1_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦	(𝐺𝑆𝑇) 

 
![Z­`<;-.@]

!' = 𝑣8(𝒎𝒕𝑫𝑵𝑨) °1 − Î [T$¬7Ï]]:
3-:O[T$¬7Ï]]:Ð± + 𝑘9Ñ𝐸𝑃�UIg'ÁÒ ∗ 𝐾𝑐([𝐻𝑆𝑃60] + [𝐻𝑆𝑃70]) − 𝑘10[𝐸𝑃IDUJgE] ∗𝐾𝑟𝑜𝑠Ñ[𝑂p∙1] + [𝐻p𝑂p]Ò 	− 𝑘11[𝐸𝑃IDUJgE] ∗ 𝐾𝑐([𝐻𝑆𝑃60] + [𝐻𝑆𝑃70])  

 
!ÑZ­Ó`:j¶>/:;.Ò

!' = 𝑘11[𝐸𝑃IDUJgE] ∗ 𝐾𝑐([𝐻𝑆𝑃60] + [𝐻𝑆𝑃70]) − 𝑘12Ñ𝐸𝑃�IGi'£CGUgÒ ∗ 𝐾𝑝([𝑚𝐴𝐴𝐴] + [𝑖𝐴𝐴𝐴])  
 

!ÑZ­Ó;`.¶o Ò
!' = 𝑣13(∆𝒎𝒕𝑫𝑵𝑨) °1 − Î [T$¬7Ï]]:

3-:O[T$¬7Ï]]:Ð± + 𝑘10[𝐸𝑃IDUJgE] ∗ 𝐾𝑟𝑜𝑠Ñ[𝑂p∙1] + [𝐻p𝑂p]Ò 		− 	𝑘9Ñ𝐸𝑃�UIg'ÁÒ ∗
𝐾𝑐([𝐻𝑆𝑃60] + [𝐻𝑆𝑃70]) − 𝑘14Ñ𝐸𝑃�UIg'ÁÒ ∗ 𝐾𝑝([𝑚𝐴𝐴𝐴] + [𝑖𝐴𝐴𝐴])  

 
 

*Rate-dependent discrete events for changes in mtDNA copies: 

 
Damage to mitochondrial DNA is assessed here in totality. All perturbations (mainly point mutations and 
deletions) are regarded as a change in mitochondria DNA that will lead to dysfunctional protein synthesis and 
deleterious faulty protein aggregation. Copy numbers vary from mitochondrion to mitochondrion (2–10 copies), 
but it is assumed here that the mean copy number is 6, and the distribution falls rapidly in either direction. It is 
also assumed here that all mitochondria begin with ~15% perturbed mitochondrial DNA (~1 copy per 
mitochondrion), and that all subsequent DNA damage is both rate-dependent and ROS-dependent [181]. The 
damage rate is also not always the same for every mitochondrion, and therefore is represented by a stochastic 
ROS-dependent rate equation (Eq. 1) with a mean number of events per week and a corresponding exponential 
distribution for the initial trigger and recurrence time. Additionally, once mtDNA has been altered, it is apparent 
that the cell works to remove it when unstressed [182]; however, following the stressor-mediated nuclear 

activation of ATFS-1, DmtDNA is more easily sustained [190] (Eq. 2). 

 
(𝟏. )	𝑀𝑒𝑎𝑛	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑡𝐷𝑁𝐴	𝑎𝑙𝑡𝑒𝑟𝑖𝑛𝑔	𝑒𝑣𝑒𝑛𝑡𝑠	𝑝𝑒𝑟	𝑤𝑒𝑒𝑘 = 𝑑𝑎𝑚𝑎𝑔𝑒𝑅𝑎𝑡𝑒 ∗ ([𝑂p∙1] + [𝐻p𝑂p]) 

 

(𝟐. )	𝑀𝑒𝑎𝑛	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	∆𝑚𝑡𝐷𝑁𝐴	𝑟𝑒𝑚𝑜𝑣𝑎𝑙	𝑒𝑣𝑒𝑛𝑡𝑠	𝑝𝑒𝑟	𝑚𝑜𝑛𝑡ℎ = 𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑅𝑎𝑡𝑒 ∗ À1 − Û [𝑛𝐴𝑇𝐹𝑆1]G
𝐾JG + [𝑛𝐴𝑇𝐹𝑆1]GÜÂ 

 
*Dynamic expressions displayed in blue: 

 

Concentrations of proteases, chaperone proteins, ETC assembly factors, and superoxide dismutase are determined 
by total cellular concentrations following nuclear synthesis (as outlined in the cell-level system-dynamics methods). 
Additionally, the inhibitory factor governing the repression of mtDNA-mediated OXPHOS protein production is 
determined by the total mitochondrial concentration of ATFS-1 (all mitochondria presumably contain the same 
concentration at any given time due to the nature of the global response over a cell). 
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Box 4.2 (continued): Equations and event statements pertaining to mitochondrion-level biochemical 
kinetics. 

 
Differential equations governing the time-dependent amounts of key substrates and variables involved in 

energy metabolism, condensed from simplified models of mitochondrial ATP production [209, 210] and 

expanded to include synthesis and breakdown of NAD
+
 as well as NAD

+
-dependent deacetylase (sirtuin) 

activity [188, 211–213]. The mathematics employed here were developed using some logistical 

expressions, converted parameters and relative substrate abundances from Saa and Siqueira [210], 

however, our current model breaks free from previous constructs that assume constant total adenine and 

adenosine nucleotide availabilities. The current adaptations of the model relate to the age-dependent 

OXPHOS complex integrity as well as dynamically changing nicotinamide/adenine nucleotide and ADP 

substrate availabilities. Expressions were best translated to be used in our system dynamics interface, 

with the critical flux rates outlined below: 

 
𝑑[𝑁𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑃𝑜𝑜𝑙]

𝑑𝑡 = 5.0𝑚𝑀𝑚𝑖𝑛 − 20.0𝑚𝑀𝑚𝑖𝑛 À
[𝑁𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑃𝑜𝑜𝑙]

[𝑁𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑃𝑜𝑜𝑙] + 50	𝑚𝑀Â +
0.5
𝑚𝑖𝑛 [𝑁𝑀𝑁 + 𝐴𝑀𝑁] − 0.0075[𝑁𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑃𝑜𝑜𝑙] 

 
𝑑[𝑁𝐴𝐷O]

𝑑𝑡 = 20.0𝑚𝑀𝑚𝑖𝑛 À
[𝑁𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑃𝑜𝑜𝑙]

[𝑁𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑃𝑜𝑜𝑙] + 50	𝑚𝑀Â −
3.0
𝑚𝑖𝑛 [𝑁𝐴𝐷O] + Û𝐾¨$B[ ∗ [𝑁𝐴𝐷𝐻] ∗ 	À 𝐸𝑃�IGi'£CGUg𝐸𝑃�IGi'£CGUg + 𝐸𝑃�UIg'ÁÂÜ

− Ý6.2𝑚𝑀𝑚𝑖𝑛 À
[𝑁𝐴𝐷O]

[𝑁𝐴𝐷O] + 𝐾¨$BOÂÞ 
 

𝑑[𝑁𝐴𝐷𝐻]
𝑑𝑡 = 3.0

𝑚𝑖𝑛 [𝑁𝐴𝐷O] − Û𝐾¨$B[ ∗ [𝑁𝐴𝐷𝐻] ∗ À 𝐸𝑃�IGi'£CGUg𝐸𝑃�IGi'£CGUg + 𝐸𝑃�UIg'ÁÂÜ −
0.5
𝑚𝑖𝑛 [𝑁𝐴𝐷𝐻] 

 
𝑑[𝑁𝑀𝑁 + 𝐴𝑀𝑁]

𝑑𝑡 = 2	𝑀𝑜𝑛𝑜𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑠
1	𝐷𝑖𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒 Ý6.2𝑚𝑀𝑚𝑖𝑛 À

[𝑁𝐴𝐷O]
[𝑁𝐴𝐷O] + 𝐾¨$BOÂÞ − ß½

0.5
𝑚𝑖𝑛 +

2.0
𝑚𝑖𝑛¿ [𝑁𝑀𝑁 + 𝐴𝑀𝑁]à 

 
𝑑[𝜓]
𝑑𝑡 = 8.6	𝑚𝑉

𝑚𝑀 Û𝐾¨$B[ ∗ [𝑁𝐴𝐷𝐻] ∗ À 𝐸𝑃�IGi'£CGUg𝐸𝑃�IGi'£CGUg + 𝐸𝑃�UIg'ÁÂÜ 
 𝑑[𝑃£]𝑑𝑡 ≈ 0 ≈ 𝑆𝑆	 ∴ 		 [𝑃£ ] = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(20, 25)	𝑚𝑀 

 

![$B­]
!' = 𝑣6 − �.]

T£G [𝐴𝐷𝑃] −	 _.pT£G [𝐴𝐷𝑃] ½ Z­Ó`:j¶>/:;.
Z­Ó`:j¶>/:;.OZ­Ó;`.¶o¿ ∗ °

[𝑃𝑖][𝑃𝑖]+10	𝑚𝑀± ∗ 𝜓2.5
𝜓2.5+𝐾𝜓

+ 2.0TrT£G ∗ ° [$¬­]
[$¬­]O^.�	Tr±  

 

![$¬­]
!' = _.p

T£G [𝐴𝐷𝑃] ½ Z­Ó`:j¶>/:;.
Z­Ó`:j¶>/:;.OZ­Ó;`.¶o¿ ∗ °

[­>][­>]O]�	Tr± ∗ 𝜓2.5
𝜓2.5+𝐾𝜓 − 2.0

Tr
T£G ∗ ° [$¬­]

[$¬­]O^.�	Tr± − 𝑘7[𝐴𝑇𝑃]  
 

𝐾¨$B[ = 7.0
𝑚𝑖𝑛 		; 		𝐾¨$BO = 0.01	𝑚𝑀		; 		𝐾å = 131	𝑚𝑉 

 
Oxygen consumption (JO), as dictated by both OXPHOS activity and ROS production (pmol/min/worm): 

 

 

![æç]
!' = _.è	P	∗	HTCg

«C�T	∗	TTCg Àé]�𝐾𝑁𝐴𝐷𝐻 ∗ [𝑁𝐴𝐷𝐻] ∗ ½ Z­Ó`:j¶>/:;.
Z­Ó`:j¶>/:;.OZ­Ó;`.¶o¿ê + ]	Tr

]������	Gr Û𝑷𝑸𝑹𝑶𝑺 ∗ ®�
°]O[çM∙ë]X> ± ∗ ½

Z­Ó;`.¶o
Z­Ó`:j¶>/:;.OZ­Ó;`.¶o¿ÜÂ  

 
Sirtuin activity, as dictated by both NAD

+
 breakdown and stilbenoid polyphenol exposure: 

 

𝑑[𝑆𝑖𝑟𝑡𝑢𝑖𝑛_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦]
𝑑𝑡 = 𝑷𝑻 ∗ À [𝑁𝐴𝐷O]

[𝑁𝐴𝐷O] + 𝐾¨$BOÂ 
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EQUATION BOX 4.3 

 

Box 4.3: Conditional and rate-dependent statements governing the rule-based categorization of 
mitochondrial stress, via the agent-based paradigm. 
 
 

It is assumed that all mitochondria in the early stages of life are initially fully functioning and unstressed [187, 178]. As life 
progresses, the mitochondria undergo various levels of stress [178, 214], which have been roughly phenotyped and 
categorized for the purposes of the agent-based model. In our model, a mitochondrion can be (A.) functioning and optimal 
capacity (maximal ATP production), with little to no available stressors (ROS, accumulated proteins, damaged DNA), (B.) 
functioning below maximum capacity but still within the optimal range, in the presence of increased stressor concentrations, 
(C.) significantly stressed and malfunctioning with respect to energy production, or (D.) severely stressed with high amount 
of damaged genetic material, thus producing very little ATP and large amounts of superoxide. The transitions between 
these states are rate-dependent and governed by the corresponding stressors that account for these pathological micro-
phenotypes [178, 214], as seen in the equations below. The constants involved in facilitating these stress and recovery 
transitions have been optimized (StressConstant = 0.850 events %EPfaulty

-1
 nMROS

-1
 hr

-1
; RecoveryConstant = 1.775 events 

%EPfaulty nMROS hr
-1) so that the stress-state results relate closely to true biological stressor levels in WT C. elegans [182, 

190]. Relative to these stress-states, the model accounts for mitochondrial autophagy (mitophagy), where the cell will 
recognize the existence of damaged mitochondria and effectively destroy such organelles in a rate-dependent manner 
following retrieval of such stress signals [174, 193].  The stress signals emitted from the mitochondria vary in magnitude 
from state to state, as defined by the model—where insignificantly-stressed mitochondria will weakly activate the 
mitophagic mechanisms, significantly stressed mitochondria will most effectively activate mitophagy, and severely stressed 
mitochondria will suffer from hypothesized UPRmt-mediated overprotection and compromised stress signaling. Mitophagy 
here is assumed to be initiated by ineffective mitochondrial protein transport as well as SKN-1 or DAF-16 activation [193, 
191, 215, 216, 217], and is therefore inversely correlated with these corresponding activities (outlined in the cell-level 
system-dynamics methods). Mitochondrial recycling/biogenesis is also a concomitant event that occurs within mitochondrial 
stress and quality control in the aging C. elegans [193], and it is here accounted for by (1.) the movement from high stress 
states to low stress states, and (2.) a timeout-triggered (every 1000-3000 min) agent-addition event. Such agent addition 
events occur more rapidly upon SKN-1 activation [193, 216], where biogenesis is increased by 7–20% at maximum activity. 
 

 Stochastic	rates	for	movement	of	increasing	stress	states,	based	on	protein	accumulation: 
 

Transition	1	:	𝑀𝑒𝑎𝑛	𝑒𝑣𝑒𝑛𝑡𝑠	𝑝𝑒𝑟	ℎ𝑜𝑢𝑟 = 𝑆𝑡𝑟𝑒𝑠𝑠𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ Ñ𝐸𝑃�UIg'ÁÒ ∗ ([𝑂p ∙1] + [𝐻p𝑂p]) 
Transition	2	:	𝑀𝑒𝑎𝑛	𝑒𝑣𝑒𝑛𝑡𝑠	𝑝𝑒𝑟	ℎ𝑜𝑢𝑟 = 𝑆𝑡𝑟𝑒𝑠𝑠𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ Ñ𝐸𝑃�UIg'ÁÒ ∗ ([𝑂p ∙1] + [𝐻p𝑂p])	
Transition	3	:	𝑀𝑒𝑎𝑛	𝑒𝑣𝑒𝑛𝑡𝑠	𝑝𝑒𝑟	ℎ𝑜𝑢𝑟 = 𝑆𝑡𝑟𝑒𝑠𝑠𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ Ñ𝐸𝑃�UIg'ÁÒ ∗ ([𝑂p ∙1] + [𝐻p𝑂p]) 

 Stochastic	rates	for	movement	of	decreasing	stress	states,	based	on	recovery	of	mitochondrial	quality: 
 

Transition	4	:	𝑀𝑒𝑎𝑛	𝑒𝑣𝑒𝑛𝑡𝑠	𝑝𝑒𝑟	ℎ𝑜𝑢𝑟 = 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 1
Ñ𝐸𝑃�UIg'ÁÒ ∗ ([𝑂p ∙1] + [𝐻p𝑂p]) 

Transition	5	:	𝑀𝑒𝑎𝑛	𝑒𝑣𝑒𝑛𝑡𝑠	𝑝𝑒𝑟	ℎ𝑜𝑢𝑟 = 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 1
Ñ𝐸𝑃�UIg'ÁÒ ∗ ([𝑂p ∙1] + [𝐻p𝑂p])	

Transition	6	:	𝑀𝑒𝑎𝑛	𝑒𝑣𝑒𝑛𝑡𝑠	𝑝𝑒𝑟	ℎ𝑜𝑢𝑟 = 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 1
Ñ𝐸𝑃�UIg'ÁÒ ∗ ([𝑂p ∙1] + [𝐻p𝑂p])	

 Mito-transport-,	SKN-1-,	and	DAF-16-dependent	[215]	rates	of	mitochondrial	loss	via	mitophagy	(Segments	"R"	and	"B"	represent	 xenobiotic-induced	perturbations	of	mitophagy	rate,	outlined	in	the	last	section.	When	unperturbed,	R	=	1	and	B	=	1): 
 

Transition	7	:	𝑀𝑒𝑎𝑛	𝑒𝑣𝑒𝑛𝑡𝑠	𝑝𝑒𝑟	𝑑𝑎𝑦 = 10% 11 − À [𝑇𝐼𝑀𝑀23]
[𝑇𝐼𝑀𝑀23] + 𝐾𝑡Â3 ∗ 𝐑 ∗ 𝐁 ∗ DAF16_activity	 ∗ 	SKN1_activity	

Transition	8	:	𝑀𝑒𝑎𝑛	𝑒𝑣𝑒𝑛𝑡𝑠	𝑝𝑒𝑟	𝑑𝑎𝑦 = 95% 11 − À [𝑇𝐼𝑀𝑀23]
[𝑇𝐼𝑀𝑀23] + 𝐾𝑡Â3 ∗ 𝐑 ∗ 𝐁 ∗ DAF16_activity	 ∗ 	SKN1_activity	

Transition	9	:	𝑀𝑒𝑎𝑛	𝑒𝑣𝑒𝑛𝑡𝑠	𝑝𝑒𝑟	𝑑𝑎𝑦 = 30% 11 − À [𝑇𝐼𝑀𝑀23]
[𝑇𝐼𝑀𝑀23] + 𝐾𝑡Â3 ∗ 𝐑 ∗ 𝐁 ∗ DAF16_activity	 ∗ 	SKN1_activity	
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FIGURE 4.2A 

Schematics of mitochondrion-level modeling dynamics: mitochondrion-level 
biochemical SD network in AnyLogic. 

 

 

A 
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FIGURE 4.2B 

Schematics of mitochondrion-level modeling dynamics: state-chart delineating the 
categorization of mitochondrial stress within the agent-based aging paradigm. 

 

 

 

 

 

 

B 
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TABLE 4.3 

 

Table 4.3. Parameters of interest for the proposed intracellular biochemical system. 

Parameter Symbol Value Range Units Source 

Zero-order production constant for ATFS-1 v15 8 ´ 10-2 % min-1 100%SS 

Maximum UPR
mt

-mediated production of  
ATFS-1 

v15max v15 (1.5) % min-1 [187,189]A 

Hill coefficient for graded UPR
mt

-mediated 
response 

n 1 – 2  unitless [187]A 

ATFS-1 DNA-binding affinity constant  Kb 38.03 % [182, 187]O 

Rate constant for mitochondrial import of  
ATFS-1 

Kmt 95.01 min-1 [187]O 

EC50 for ATP-dependent mitochondrial transport 
efficacy, presumably governed by Michaelian 

kinetics 
Ka 11.95 mM [182, 187]O 

Rate constant for nuclear import of ATFS-1 Kni 5.00 min-1 [187]O 

Elimination constant for ATFS-1 Ke15 8.0 ´ 10-4 min-1 [208, 187]A 

Zero-order production constant for TIMM23 Ko16 1.4 ´ 10-3 % min-1 100%SS 

Maximum UPR
mt

-mediated production of 

TIMM23 
Kmax16 Ko16 (0.7 – 1.5) % [187]A 

Elimination constant for TIMM23 Ke16 3.5 ´ 10-5 min-1 [208]C 

EC50 for TIMM23-dependent mitochondrial 
transport efficacy, presumably governed by 

Michaelian kinetics 
Kt 34.843 % [182, 218]O 

Zero-order production constant for HSP60 Ko17 1.9 ´ 10-2 % min-1 100%SS 

Maximum UPR
mt

-mediated production of HSP60 Kmax17 Ko17 (1.0) % [187,189]A 

Elimination constant for HSP60 Ke17 1.9 ´ 10-4 min-1 [208]C 

Zero-order production constant for HSP70 Ko18 1.9 ´ 10-2 % min-1 100%SS 
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TABLE 4.3 (CONTINUED) 

 

Table 4.3 (continued). Parameters of interest for the proposed intracellular biochemical system. 

Parameter Symbol Value Range Units Source 

Maximum UPR
mt

-mediated production of HSP70 Kmax18 Ko18 (1.7 – 3.0) % [187,189]A 

Elimination constant for HSP70 Ke18 1.9 ´ 10-4 min-1 [208]C 

Zero-order production constant for i-AAA Ko19 2.6 ´ 10-2 % min-1 100%SS 

Maximum UPR
mt

-mediated production of i-AAA Kmax19 Ko19 (1.0) % [189]A 

Elimination constant for i-AAA Ke19 2.6 ´ 10-4 min-1 [208]C 

Zero-order production constant for m-AAA Ko20 2.6 ´ 10-2 % min-1 100%SS 

Maximum UPR
mt

-mediated production of m-AAA Kmax20 Ko20 (0) % [189]A 

Elimination constant for m-AAA Ke20 2.6 ´ 10-4 min-1 [208]C 

Zero-order production constant for MnSOD Ko21 3.0 ´ 10-6 mM min-1 [182,198]SS 

Maximum UPR
mt

-mediated production of 

MnSOD (Indirect) 
Kmax21 Ko21 (0.5 – 1.5) mM min-1 [188]A 

Elimination constant for MnSOD Ke21 6.0 – 12.0 ´ 10-4 min-1 [219]A 

Zero-order constant for glycolysis-mediated ATP 
production  

v22 0 – 0.18 mM min-1 [220]A 

Maximum UPR
mt

-mediated production of 
glycolysis factors 

v22max v22 (0.5 – 3.0) mM min-1 [187,189,221]A 

Cytosolic ATP turnover  k23 2.1 min-1 [201]C 

SS 

O 

A 

C 

Optimized in the simulation to achieve the reported unstressed physiological steady-state value, percentage or range. 
Individually optimized value, generated using AnyLogic calibration experiments to best fit/emulate reported curves. 
Quantitated assumption based on qualitative evidence. 
Units converted to adhere to model standards. 
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EQUATION BOX 4.4 

 

 

Box 4.4: Equations pertaining to cell-level biochemical kinetics. 
 
 

Dynamics of ATFS-1 concentrations within the cytosolic, mitochondrial, and nuclear 

compartments (PQUPRmt is a function of paraquat exposure, outlined in the last section): 

 

 
𝑑[𝐴𝑇𝐹𝑆1]

𝑑𝑡 = 𝑣]è + 𝑣15TUV À [𝑛𝐴𝑇𝐹𝑆1]G
𝐾JG + [𝑛𝐴𝑇𝐹𝑆1]GÂ − 𝐾T£ À [𝐴𝑇𝑃]U®�[𝐴𝑇𝑃]U®� + 𝐾𝑎ÂÀ

[𝑇𝐼𝑀𝑀23]
[𝑇𝐼𝑀𝑀23] + 𝐾𝑡Â [𝐴𝑇𝐹𝑆1] − 𝐾G£[𝐴𝑇𝐹𝑆1] 

 
𝑑[𝑚𝐴𝑇𝐹𝑆1]

𝑑𝑡 = 𝑷𝑸𝑼𝑷𝑹𝒎𝒕 ∗ 𝐾T£ À [𝐴𝑇𝑃]U®�[𝐴𝑇𝑃]U®� + 𝐾𝑎Â À
[𝑇𝐼𝑀𝑀23]

[𝑇𝐼𝑀𝑀23] + 𝐾𝑡Â [𝐴𝑇𝐹𝑆1] − 𝐾E]è[𝑚𝐴𝑇𝐹𝑆1] 
 𝑑[𝑛𝐴𝑇𝐹𝑆1]

𝑑𝑡 = 𝐾G£[𝐴𝑇𝐹𝑆1] ∗ (𝑆𝑖𝑟𝑡𝑢𝑖𝑛_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦) 	− 𝐾E]è[𝑛𝐴𝑇𝐹𝑆1] 
 𝑑[𝐴𝑇𝐹𝑆1_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦]

𝑑𝑡 = Û [𝑛𝐴𝑇𝐹𝑆1]G
𝐾JG + [𝑛𝐴𝑇𝐹𝑆1]GÜ 

 

*where [ATP]avg represents the average ATP 
concentration surveyed over a population of 

mitochondria for a given cell. 
 
 

Dynamics and normalized activity of DAF-16 and SKN-1 transcription factors, controlled 

by oxidative stress signaling (and to a degree sirtuin-mediated deacetylation), which 

leads to accumulation in the nuclear compartment: 

 
 

𝑑[𝑛𝐷𝐴𝐹_16]
𝑑𝑡 = 𝐾!G£ ∗ À [𝑅𝑂𝑆]U®�[𝑅𝑂𝑆]U®� + 𝐾!78ÏUi'Â ∗ (𝐾!ÏF7Ui' ∗ 𝑆𝑖𝑟𝑡𝑢𝑖𝑛_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦) − 𝐾!E [𝑛𝐷𝐴𝐹_16] 

 

𝐾!G£ = 1.0 %
𝑚𝑖𝑛 			∧ 			𝐾!E =

0.01
𝑚𝑖𝑛 			∧ 			𝐾!78ÏUi' = 100	𝑛𝑀			 ∧ 			𝐾!ÏF7Ui' = 75%	 

 
𝑑[𝐷𝐴𝐹16_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦]

𝑑𝑡 = 1.0 + À [𝑛𝐷𝐴𝐹_16]p
50%p + [𝑛𝐷𝐴𝐹_16]pÂ 

 
𝑑[𝑛𝑆𝐾𝑁_1]

𝑑𝑡 = 𝐾DG£ ∗ À [𝑅𝑂𝑆]U®�[𝑅𝑂𝑆]U®� + 𝐾D78ÏUi'Â ∗ (𝐾DÏF7Ui' ∗ 𝑆𝑖𝑟𝑡𝑢𝑖𝑛_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦) − 𝐾DE[𝑛𝑆𝐾𝑁_1] 
 

𝐾DG£ = 1.0 %
𝑚𝑖𝑛 			∧ 			𝐾DE =

0.01
𝑚𝑖𝑛 		∧ 			𝐾D78ÏUi' = 75	𝑛𝑀			 ∧ 			𝐾DÏF7Ui' = 25% 

 
𝑑[𝑆𝐾𝑁1_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦]

𝑑𝑡 = 1.0 + À [𝑛𝑆𝐾𝑁_1]p
50%p + [𝑛𝑆𝐾𝑁_1]pÂ 

 

*where [ROS]avg represents the average ROS 
concentration surveyed over a population of 

mitochondria for a given cell. 
 

 
 



 

 102 

EQUATION BOX 4.4 (CONTINUED) 

 

 

Box 4.4 (continued): Equations pertaining to cell-level biochemical kinetics. 
 
 

Simplified differential equations for time-dependent protein synthesis 

and degradation of key mito-proteins controlled primarily by the UPR
mt

: 

 
 

𝑑[𝑇𝐼𝑀𝑀23]
𝑑𝑡 = 𝐾C]^ + 𝐾TUV]^ À [𝑛𝐴𝑇𝐹𝑆1]G

𝐾JG + [𝑛𝐴𝑇𝐹𝑆1]GÂ − 𝐾E]^[𝑇𝐼𝑀23] 
 
 

𝑑[𝐻𝑆𝑃60]
𝑑𝑡 = 𝐾C]� + À [𝑇𝐼𝑀𝑀23]

[𝑇𝐼𝑀𝑀23] + 𝐾𝑡Â1𝐾TUV]� À
[𝑛𝐴𝑇𝐹𝑆1]G

𝐾JG + [𝑛𝐴𝑇𝐹𝑆1]GÂ3 − 𝐾E]�[𝐻𝑆𝑃60] 
 
 

𝑑[𝐻𝑆𝑃70]
𝑑𝑡 = 𝐾C]: + À [𝑇𝐼𝑀𝑀23]

[𝑇𝐼𝑀𝑀23] + 𝐾𝑡Â 1𝐾TUV]: À
[𝑛𝐴𝑇𝐹𝑆1]G

𝐾JG + [𝑛𝐴𝑇𝐹𝑆1]GÂ3 − 𝐾E]:[𝐻𝑆𝑃70] 
 
 

𝑑[𝑖𝐴𝐴𝐴]
𝑑𝑡 = 𝐾Cp� + À [𝑇𝐼𝑀𝑀23]

[𝑇𝐼𝑀𝑀23] + 𝐾𝑡Â1𝐾TUVp� À
[𝑛𝐴𝑇𝐹𝑆1]G

𝐾JG + [𝑛𝐴𝑇𝐹𝑆1]GÂ3 − 𝐾Ep�[𝑖𝐴𝐴𝐴] 
 
 

𝑑[𝑚𝐴𝐴𝐴]
𝑑𝑡 = 𝐾Cp] + À [𝑇𝐼𝑀𝑀23]

[𝑇𝐼𝑀𝑀23] + 𝐾𝑡Â1𝐾TUVp] À
[𝑛𝐴𝑇𝐹𝑆1]G

𝐾JG + [𝑛𝐴𝑇𝐹𝑆1]GÂ3 − 𝐾Ep][𝑚𝐴𝐴𝐴] 
 
 

𝑑[𝑀𝑛𝑆𝑂𝐷]
𝑑𝑡 = 𝐾Cpp + À [𝑇𝐼𝑀𝑀23]

[𝑇𝐼𝑀𝑀23] + 𝐾𝑡Â 1𝐾TUVpp À
[𝑛𝐴𝑇𝐹𝑆1]G

𝐾JG + [𝑛𝐴𝑇𝐹𝑆1]GÂ ∗ (𝐷𝐴𝐹16_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦)3 − 𝐾Epp[𝑀𝑛𝑆𝑂𝐷] 
 
 

*DAF16_activity is coupled with MnSOD production as a known 
antioxidant response element for this transcription factor. All 
mitochondrial proteins are also reliant on the efficacy of their 
transport systems, as delineated by the mathematical expression 
that utilizes the translocase abundance. 

 
 

Glycolysis-mediated ATP production, upregulated upon UPR
mt

 activation: 

 

 𝑑[𝐴𝑇𝑃]
𝑑𝑡 = 𝑣24 + 𝑣24𝑚𝑎𝑥 À [𝑛𝐴𝑇𝐹𝑆1]G

𝐾JG + [𝑛𝐴𝑇𝐹𝑆1]GÂ − 𝑘25[𝐴𝑇𝑃] 
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EQUATION BOX 4.5 

 

 

 

 

 

 

Box 4.5: Conditional and rate-dependent statements governing the rule-based categorization of cell 
integrity, dependent upon the mitochondrial agent population within each cell agent. 
 
 

Respiratory capacity is reportedly lost when deleterious mtDNA mutations hit a threshold value between 
60% and 90% [190, 174, 221]. It is assumed that this threshold value can be translated directly as 
general loss of mitochondrial function, which have been outlined by the conditional eustress and 
distress states of the model. This distribution of threshold values (triangular distribution used in the 
model: 60%-62.5%-75%) is used to govern the loss of cellular integrity and the increased probability in 
cell death. Recovery of such cells in the model is possible, if their mitochondria can restore enough 
function to return below the lowest possible threshold value of 60%. This strict assumption is made to 
uphold the standards of true biological systems, which face a great deal of difficulty restoring 
homeostasis when mitochondrial populations are largely compromised [222]. It has been reported that 
humans begin to lose brain volume around the age of 40, at a rate of 5% every decade, mainly due to 
spontaneous neuronal degeneration [223]. If we assume the average human life expectancy at birth is 
70 years and if we assume these degradation checkpoints are similarly conserved among eukaryotes 
like C. elegans (average N2 lifespan @ 25 OC: 20 days [224]), then neuronal death will begin to occur 
within the nematode around day 11.5 at a rate of 5% every 2.8 days, with a more rapid decline 
immediately before death. That being said, it has been reported that C. elegans do not lose substantial 
neuronal integrity [225], yet vacuolated compromised neuronal cells and neurodegenerative responses 
have been observed in these organisms [226]. In light of these findings, the model was designed to 
primarily determine the dynamics of the age-compromised state for energetically-demanding cells, while 
attempting to shed light on potential tissue degeneration thereafter. Once mitochondrial conditions force 
the cell into a compromised state, they have a limited time to recover or they are destroyed. This rate is 
defined in the model by an exponential distribution that has been characterized meet expected 
physiological neuronal lifespan. 

 
 

Stochastic Condition defining loss of general mitochondrial integrity: 

 

½𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑀𝑖𝑡𝑜𝑐ℎ𝑜𝑛𝑑𝑟𝑖𝑎𝑇𝑜𝑡𝑎𝑙𝑀𝑖𝑡𝑜𝐶𝑜𝑢𝑛𝑡 ¿ 		> 	 <𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(60%, 62.5%, 75%)= 
 
 

Static condition defining cell recovery based on restoration of general mitochondrial quality: 

 

½𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑀𝑖𝑡𝑜𝑐ℎ𝑜𝑛𝑑𝑟𝑖𝑎𝑇𝑜𝑡𝑎𝑙𝑀𝑖𝑡𝑜𝐶𝑜𝑢𝑛𝑡 ¿ 	< 	60% 

 
 

Stochastic rate of cell death subsequent to loss of mitochondrial function: 

 
𝑀𝑒𝑎𝑛	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑	𝑐𝑒𝑙𝑙	𝑑𝑒𝑎𝑡ℎ	𝑒𝑣𝑒𝑛𝑡𝑠	𝑝𝑒𝑟	𝑑𝑎𝑦 = 8.25	´	101p 
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FIGURE 4.3 

 Schematics of cell-level modeling dynamics. (A) Cell-level biochemical SD network in 
AnyLogic. (B) State-chart for the conditional categorization of each cell’s mitochondrial 
integrity. 
 
 

 A 

B 
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Cell-level system-dynamics and discrete-event computational methods 

The intracellular equation networks are displayed in Box 4.4, cellular agent-

based methods are displayed in Box 4.5, and all corresponding parameters are 

displayed in Table 4.3. Schematics of the intracellular simulation build are displayed for 

the ODE-based network (Fig. 4.3A) and the agent state chart (Fig. 4.3B). 

 

Computational methods for organism-level biomarker and endpoint capture 

 Equations used to capture agent counts and tissue concentrations of parameters of 

interest are displayed in Box 4.6. 

 

EQUATION BOX 4.6 

 

Box 4.6: Equations used to capture tissue concentrations of parameters of interest, where “i" is the 
current number of total mitochondria in the system and “n” is the current number of neurons. The 
system initially contains 65 neurons for simplicity. 
 

𝑀𝑖𝑡𝑜𝑐ℎ𝑜𝑛𝑑𝑟𝑖𝑎𝑙	𝑐𝑜𝑢𝑛𝑡	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡 = 𝑖(𝑡) 
 𝐼𝑛𝑖𝑡𝑖𝑎𝑙	𝑐𝑒𝑙𝑙	𝑐𝑜𝑢𝑛𝑡 = 	𝑛C 			; 			𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝑐𝑒𝑙𝑙	𝑐𝑜𝑢𝑛𝑡	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡 = 𝑛(𝑡) 
 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡	𝑐𝑒𝑙𝑙	𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 = 100% ½𝑛C − 𝑛(𝑡)
𝑛C ¿	 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑡𝑖𝑠𝑠𝑢𝑒	𝑚𝑡𝑅𝑂𝑆	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = À∑ [𝑃𝑒𝑟𝑜𝑥𝑖𝑑𝑒 + 𝑆𝑢𝑝𝑒𝑟𝑜𝑥𝑖𝑑𝑒]£� 𝑖(𝑡) Â 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑡𝑖𝑠𝑠𝑢𝑒	𝐴𝑇𝑃	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = À∑ [𝐴𝑇𝑃]£�𝑖(𝑡) + ∑ Ñ𝐴𝑇𝑃=gÁiCgÁD£DÒG� 𝑛(𝑡) Â 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡	𝑚𝑡𝐷𝑁𝐴	𝑐𝑜𝑝𝑖𝑒𝑠	𝑑𝑎𝑚𝑎𝑔𝑒𝑑 = À ∑ [∆𝑚𝑡𝐷𝑁𝐴]£�∑ [𝑚𝑡𝐷𝑁𝐴]£� +	∑ [∆𝑚𝑡𝐷𝑁𝐴]£�
Â ∗ 100% 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑡𝑖𝑠𝑠𝑢𝑒	𝑁𝐴𝐷O	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = ½∑ Ñ	¨$BWÒ>K
£(') ¿ à Normalized to earliest time point (relative) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑡𝑖𝑠𝑠𝑢𝑒	𝑜𝑥𝑦𝑔𝑒𝑛	𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒 = À∑ [𝐽8]£�𝑖(𝑡) Â 
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Modeling alterations for virtual pharmacological and genetic perturbations 

Use of Rapamycin and Bafilomycin. One virtual pharmacological perturbation 

mode within the model addresses mitophagy flux. One perturbation deals with the 

established role of the mechanistic target of rapamycin (mTOR), which normally acts to 

inhibit selective mitophagy and reduce the rate of mitochondrial degradation. It has 

been identified that this protein is well conserved among eukaryotes, and such a 

homolog of this protein has been identified in C. elegans [227] which is indeed, as it is in 

mammals, inhibited upon rapamycin administration [215]. It has been well established 

that rapamycin acts through this mechanism to decrease heteroplasmic mtDNA 

accumulation in immortalized neurons [228] and to alleviate general mitochondrial 

dysfunction in whole rat brains (as assessed by oxidative damage biomarkers and ATP 

levels) [229]. Assuming this therapeutic effect is mechanistically conserved among 

eukaryotes, rapamycin is used here as a virtual xenobiotic to increase the rate of 

mitophagy. It is administered virtually within different dosing schemes at a concentration 

of 15 nM (which equates to 18.3 µg/L, within the therapeutic range for serum levels of 5-

20 µg/L [228]). Once administered instantaneously, it virtually affects the cells by a 

maximal fraction (XR) of 1.5 in relation to its EC50 (estimated at ~10 nM [228]), and it 

begins to decrease in concentration with an aqueous half-life of about 10 h [230]. 

Bafilomycin A1, in contrast, facilitates an inhibition of autophagy in C. elegans by 

preventing the maturation and accumulation of autophagic vesicles [231]. Bafilomycin 

A1 is virtually administered here within different dosing schemes in a similar fashion at 

10 nM, with a maximal fraction (XB) of 0.5, an EC50 of ~7 nM [231], and a low-end 

estimate of the culture half-life at 40 h (adapted from in vivo pharmacokinetic data for 
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the structurally similar azithromycin [232]). The pharmacodynamic equations outlined 

below (Box 4.7) for rapamycin or bafilomycin administration are multiplied by the 

stochastic mitophagy transitions 7, 8 and 9 within the mitochondrial agent-based 

paradigm (Box 4.3), and subsequently integrated over time for different dosing schemes 

(note: there is no direct effect when concentrations of either chemical are zero).  

Use of Paraquat. As an additional and different type of mechanistic perturbation, 

paraquat is virtually used here for its aging-related pro-oxidant properties within the 

mitochondria [233–235] and for its ability to induce the UPRmt [187]. Paraquat is virtually 

administered here in a similar fashion to rapamycin and bafilomycin, at a concentration 

of 100 µM (high) or 5 µM (low), with an environmental half-life that far exceeds the 

normal nematode lifespan [236], and so paraquat concentrations will simply be clamped 

within different dosing schemes. Paraquat perturbs the system using the same types of 

equations, however, since paraquat perturbs the system in two different areas 

(superoxide production rate and mitochondrial import of ATFS-1) in two distinctly 

different and opposing ways, the functions for each are separately categorized, as 

outlined below (Box 4.7). For the function pertaining to its pro-oxidant properties: the 

constant for maximal rate increase, XPQR, is set at 0.4, and the EC50 for this effect is set 

at 25 µM [estimations; 237, 238]. For the function pertaining to its UPRmt activation 

(presumably due to lack of ATFS-1 mitochondrial import efficiency): the constant for 

maximal impedance effect, XPQU, is set at 0.75, and the EC50 for this effect is set at 50 

µM [estimations; 187]. These functions PQROS and PQUPRmt (Box 4.7) are integrated 

over time for various dosing schemes and are then multiplied to the rates of 

mitochondrial superoxide production (Box 4.2) and mitochondrial ATFS-1 import (Box 
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4.4), respectively (note: there is no direct effect when exposure concentration of 

paraquat is zero). 

Use of Pterostilbene. Plant-derived stilbenes have been extensively studied as 

anti-aging therapies, with special emphasis on resveratrol and pterostilbene (prominent 

constituents of blueberries, red grapes and red wine products). Pterostilbene has been 

recorded as a more potent neuromodulator than resveratrol in aging, even when 

administered at low doses [239], and therefore is used as the stilbene in this simulation 

study. Pterostilbene has direct radical scavenging properties and mitigates ROS 

through highly conserved oxidative stress response pathways as well, via sirtuin activity 

that acts upon transcription factors such as SKN-1 and DAF-16 in worms [240, 211]. 

These effects ultimately manifest as reduced ROS content and increased bioenergetic 

efficiency in aging organisms, and specifically has reduced the levels of ROS in C. 

elegans by about 26% when constantly administered at a concentration of 100 µM 

[240]. Because of these observations, the pterostilbene function used in this model 

(same format as rapamycin) utilizes an EC50 of 20–60 µM (conservative estimate) and a 

maximal ROS-mitigating (XPTR) and sirtuin-activating effect (XPTS) of 0.26 and 0.5, 

respectively, which are applied to the non-peroxide-forming superoxide elimination rate 

and the Sirtuin_activity dynamic variable. Pterostilbene is administered here at a dose 

of 100 µM and assumes a culture half-life of 12 h due to its poor aqueous stability [241] 

and rapid pharmacokinetic clearance [242]. All of these factors are incorporated into the 

function PT (Box 4.7), which is applied to the rates (seen in Box 4.2) of mitochondrial 

superoxide elimination and peroxide elimination (note: there is no direct effect when 

exposure concentration of pterostilbene is zero). 
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Varied Dosing Schemes. Dosing schemes for rapamycin, bafilomycin, 

pterostilbene and paraquat were altered and/or combined to produce an array of 

exposure scenarios. For rapamycin, bafilomycin and pterostilbene, doses were 

administered at 0 min and every 2500 min thereafter; the resulting cellular exposure at 

any given time point was determined by their culture half-life kinetics. For paraquat, high 

or low doses were clamped to maintain a constant exposure value. For all of these 

xenobiotics, their administration was performed constantly, early (0–10000 min), mid-life 

(10000–15000 min), or late (15000–30000 min).  

Genetic Perturbations. To identify the role of key genes as they relate to this 

system, several were virtually knocked down and the endpoints of interest were 

observed and compared to the control group. Such genes were those encoding for 

MnSOD, SKN-1, and DAF-16. To make these virtual perturbations, the rate of 

productive expression for these functional proteins were fractionalized for the duration 

of the simulation, to simulate such reduced genetic activity for the corresponding genes.  

 

Accessibility of simulation files 

The complete simulation along with the corresponding file packages can be 

accessed online through the RunTheModel platform and AnyLogic Cloud platform 

(https://cloud.anylogic.com/#/model/c5ab331e-20aa-42ce-9ce6-39e80fe44983). Full file 

packages are openly accessible (.alp format) via both platforms as well as upon direct 

request to the corresponding author. A free version of the AnyLogic software for all 

operating systems is available from the distributer as a Personal Learning Edition (PLE), 

and a trial package of the University Researcher license is available. 
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EQUATION BOX 4.7 

 

 

 

 

4.1.3   Simulation results for mitochondrial aging 

Multimethod simulation development 

The pathways of interest for the model were selected based on their broadly 

protective or damaging mitochondrial effects and their conserved significance toward 

the aging process observed over recent years. Such pathways were then compiled into 

a fully integrated system of mitochondrial health (Fig. 4.1A). This network was 

constructed within our simulation interface predominately by using deterministic 

frameworks to model both intramitochondrial reactions (Fig. 4.2, panel A) and cytosolic 

and nuclear activities (Fig. 4.3, panel A). To extend our investigation beyond traditional 

single-method deterministic modeling, we overlaid an agent-based framework for 

Box 4.7: Functions used to define virtual pharmacological perturbations within the model. 

 
 

Function	of	pharmacological	perturbation	by	rapamycin:		𝑹 = 1 + 𝑋7 À [𝑅𝑎𝑝𝑎𝑚𝑦𝑐𝑖𝑛]
[𝑅𝑎𝑝𝑎𝑚𝑦𝑐𝑖𝑛] + 𝐸𝐶è�Â 

 

Function	of	pharmacological	perturbation	by	bafilomycin:		𝑩 = 1 − 𝑋# À [𝐵𝑎𝑓𝑖𝑙𝑜𝑚𝑦𝑐𝑖𝑛]
[𝐵𝑎𝑓𝑖𝑙𝑜𝑚𝑦𝑐𝑖𝑛] + 𝐸𝐶è�Â 

 

Function	of	increased	ROS	production	by	paraquat:		𝑷𝑸𝑹𝑶𝑺 = 1 + 𝑋­*7 À [𝑃𝑎𝑟𝑎𝑞𝑢𝑎𝑡]
[𝑃𝑎𝑟𝑎𝑞𝑢𝑎𝑡] + 𝐸𝐶è�Â 

 

Function	of	ATFS-1-mito-import	inhibition	by	paraquat:		𝑷𝑸𝑼𝑷𝑹𝒎𝒕 = 1 − 𝑋­*D À [𝑃𝑎𝑟𝑎𝑞𝑢𝑎𝑡]
[𝑃𝑎𝑟𝑎𝑞𝑢𝑎𝑡] + 𝐸𝐶è�Â 

 

Function	of	mito-sirtuin	activation	by	pterostilbene:		𝑷𝑻 = 1 + 𝑋­¬Ï À [𝑃𝑡𝑒𝑟𝑜𝑠𝑡𝑖𝑙𝑏𝑒𝑛𝑒]
[𝑃𝑡𝑒𝑟𝑜𝑠𝑡𝑖𝑙𝑏𝑒𝑛𝑒] + 𝐸𝐶è�Â 

 

Function	of	radical-scavenging	capacity	by	pterostilbene:		𝑷𝑻 = 1 + 𝑋­¬7 À [𝑃𝑡𝑒𝑟𝑜𝑠𝑡𝑖𝑙𝑏𝑒𝑛𝑒]
[𝑃𝑡𝑒𝑟𝑜𝑠𝑡𝑖𝑙𝑏𝑒𝑛𝑒] + 𝐸𝐶è�Â 
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multiple events that have classically been difficult to model with differential equations 

and flow rates. This framework was primarily added to observe the aging kinetics of 

mitochondrial stress-state phenotyping (Fig. 4.2, panel B) and mito-compromised cell 

states that eventually result in apoptotic cell death (Fig. 4.3, panel B). Such agent-based 

events occur discretely within the model and are bound by conditions or stochastic 

damage-dependent frequencies.  

It is important to note that this multimethod framework was built expansively and 

hierarchically (Fig. 4.1B), where the model simulated a population of cells each with its 

own functioning reaction network and with its own population of mitochondria that were 

constantly undergoing biogenesis, stress-dependent mitophagy, and mitochondrial 

recycling. Each mitochondrion within a cell’s population also contained its own 

stochastic reaction network that controlled not only its own phenotypic stress state, but 

the state of the cell and thus the states of other mitochondria. 

To fill this network with realistic parameters and relevant reaction schemes for 

the aging nematode, we gathered a vast set of information from the literature to 

determine: mitochondria counts and mtDNA counts (Table 4.1 and Equation Box 4.1); 

mitochondrion-level system-dynamics and discrete-event computational methods for 

oxidative metabolism, proteostasis, and heteroplasmic mtDNA analysis (Table 4.2 and 

Equation Box 4.2); damage-dependent agent-based progression and recovery through 

mitochondrial stress states that lead to mitophagy (Equation Box 4.3); cell-level system-

dynamics computational methods surrounding the UPRmt and mitochondrial protein 

import (Table 4.3 and Equation Box 4.4); and agent-based principles that govern stress-

dependent cellular degeneration (Equation Box 4.5). These modeled reaction schemes 
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consist of logically-derived ordinary differential equations (ODEs) or discrete-event 

statements, which simulate reactions such as ATP production, superoxide production, 

peroxide formation, mtROS elimination, baseline protein production and 

transcriptionally-activated protein synthesis, protein import, and damage to and clonal 

expansion of mtDNA copies. The parameters used to fill these reaction schemes were 

(1) directly obtained and/or converted from previous models, (2) assumed based on 

qualitative evidence, or (3) individually optimized over 5,000 parameter iterations to 

reach appropriate curves for the separate model components. All values and 

corresponding sources are reported as such in the methods.  

We have drawn upon previous deterministic computational models of aging, 

including a deterministic mathematical analysis of superoxide production and disposition 

to complement C. elegans data [182] and a compartmentalized dynamic model of 

oxidative metabolism carried out to predict endpoints seen in PD development [243]. 

We have also gained insights from a sophisticated stochastic modeling analysis of 

damaged mtDNA in aging mitochondria [174], where an OXPHOS defect threshold 

between 60–90% determined a deleterious senescence state with poor mitochondrial 

quality control. We built upon these original constructs and greatly expanded the focus 

to create a more complete view of the conserved cellular mechanisms implicated in 

biological aging. In doing so, we made a variety of assumptions and simplifications in 

our theoretical model to preserve the significance of the pathways involved and to arrive 

at a network that is mathematically logical. Importantly, the simulation assumes an 

isothermal environment (20°C) for the duration of each virtual experiment, as C. elegans 

are poikilotherms and thus cannot properly adapt to drastic changes in temperature.  
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Additional simplifications involve the condensed inclusion of conserved 

transcription factors DAF-16 (FOXO family C. elegans ortholog) and SKN-1 

(orthologous to mammalian NRF family proteins), both of which have had profound 

implications in regulating longevity. When activated, DAF-16 and SKN-1 are largely 

responsible for mediating metabolic signals and antioxidant activities, and they have 

also been closely linked to the UPRmt and mitophagy regulation [188, 193, 215, 234]. 

Since the focus of this study is on mitochondrial function, these two transcription factors 

were explicitly embedded into the biological network to account mainly for the 

responses they elicit that significantly affect mitochondrial populations.  

To make functional use of our cellular simulation, we have designed equations to 

capture key endpoints that have been observed quantitatively or qualitatively in aging C. 

elegans. Said endpoints include relative NAD+ levels, oxygen consumption rates, ATP 

content, tissue-level and single-cell mtROS content, tissue-level and single-cell 

mtDNA/∆mtDNA copy numbers, mitochondrial stress states and mitophagy flux, 

mitochondria count, and age-dependent cellular senescence states and cell death 

(Equation Box 4.6). The time frame simulated was between 0 and 30,000 min, to 

assess a window of time surrounding the average nematode lifespan of 2–3 weeks. 

 

Model performance and predictions for spontaneous functional declines 

Cellular characteristics of aging are all directly associated with a general 

decrease in cellular performance and are predominately regulated by OXPHOS 

functionality and overall mitochondrial health—especially in tissues with high energy 

demands. These functional declines ultimately manifest as decreases in ATP 
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production, which have been ascribed to a variety of factors but the most significant of 

which include faulty matrix proteins and decreased metabolic substrate availabilities 

[211]. As a key substrate needed for respiration and other metabolic functions, NAD+ 

has been closely studied as an important molecule in healthy aging, and has shown to 

decline in whole organisms over time [188, 244]. As such, nucleotide dynamics have 

been incorporated into our simulation constructs as a critical mediator of bioenergetic 

function, and we have with reasonable uncertainty predicted the relative declines that 

have been observed in C. elegans experimentally (Fig. 4.4A). As an additional 

measurable parameter of mitochondrial health and bioenergetic efficiency, oxygen 

consumption rates were calculated by the simulation over the course of a nematode 

lifespan and were compared to experimental datasets of the same decline generated by 

Gruber et al. [182], Moroz et al. [245] and Mouchiroud et al. [188] (Fig. 4.4B). Some 

experimental oxygen consumption values were converted to units of pmol min-1 worm-1 

assuming an average protein mass per worm of 0.681 ± 0.002 µg (Table 4.1). As an 

ultimate output of the bioenergetic simulation component, cellular ATP levels were 

assessed and compared to values quantified in whole worms by Gruber et al. [182] (Fig. 

4.4C). The concentration values generated by Gruber et al. [182] have been converted 

to units of mM assuming an average worm body volume of 3.5 x 10-9 L (Table 4.1). In 

the model, a sharp decline in tissue ATP presents itself after NAD+ levels have begun to 

decline (around 7500 min). ATP reduction then saturates around 20,000 min and 

becomes erratic toward the end of life due to the battery of activated stress responses 

in age-compromised cells. 
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FIGURE 4.4 

Experimental and predictive biomarkers of bioenergetic function for normal and 
pharmacologically-altered aging in C. elegans. (A) Predicted NAD+ values over time 
relative to initial time point values, compared to C. elegans experimental data from Fang 
et al. [244] and Mouchiroud et al. [188]. (B) Simulated oxygen consumption decline with 
age, compared to C. elegans experimental data from Mouchiroud et al. [188], Gruber et 
al. [182] and Moroz et al. [245]. Some experimental oxygen consumption values were 
converted assuming an average protein mass per worm of 0.681 ± 0.002 µg. (C) 
Simulation ATP data for normal aging, compared to ATP levels shown experimentally in 
aging C. elegans by Gruber et al. [182]. Experimental ATP values were converted 
assuming an average worm body volume of 3.5 x 10-9 L. (D) Simulation ATP data was 
collected for the duration of natural aging as well as a variety of dosing schemes, 
including those that increased ATP production (rapamycin, pterostilbene, low-dose 
paraquat) and those that decreased ATP production (bafilomycin, high-dose paraquat). 
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Because of the hierarchical modeling scheme employed here, we were able to 

analyze markers of aging at both the tissue-level and in single cells. Specifically, we 

produced quantitative predictions of single-cell mtROS and heteroplasmic mtDNA 

content. The model was also designed to phenotypically categorize each individual 

mitochondrion based on its intramitochondrial OXPHOS defects. Displayed here are 

three representative cells from the simulated population (Fig. 4.5), each displaying 

unique characteristics—due to the stochastic modeling techniques used to emulate a 

real-world degree of expected randomness. Mitochondrial phenotyping (Fig. 4.5, row A), 

referred to hereafter as mito-phenotyping, allowed us to visualize the totality of the cells’ 

mitochondrial stress states over time: healthy, fully-functioning (green); slightly stressed, 

unable to greatly activate stress response mechanisms (yellow); significantly stressed, 

fully capable of stress response activation (orange); and severely damaged, little to no 

proper respiratory function (red). Some cells saw a steady functional decline with 

respect to this mito-phenotyping (Fig. 4.5, Cell 1), whereas others saw modest recovery 

toward late stages in life (Fig. 4.5, Cells 2 & 3). These stress states correspond well with 

the levels of mtROS seen in each modeled cell (Fig. 4.5, row B). Of these 

representative cells, the third (Cell 3) experienced the highest level of oxidative 

stressors early on, but also experienced the highest level of recovery. This corresponds 

with the hypothesis that superoxide or other free radical species may not be inherently 

damaging and may actually provide a signal that promotes longevity [183]. Single-cell 

mtDNA and significantly-damaged mtDNA (∆mtDNA) copy numbers were also 

assessed in the simulation (Fig. 4.5, row C), displaying the age-dependent 

accumulation of heteroplasmic mtDNA. As expected, the cells that accumulated higher 
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copy numbers of ∆mtDNA faster—especially when far exceeding unperturbed mtDNA 

copy numbers—experienced the greatest deal of mitochondrial stress. 

 

 

 

 

FIGURE 4.5 

Stochastic single-cell mitochondrial health data from three representative cells in the 
model. (Row A) Mitochondrial stress-state phenotyping was performed to view the 
accumulation of stressed or damaged mitochondria over time. Different states of stress 
are based on metrics of mitochondrial dysfunction, including low respiratory capacity, 
oxidative burden and poor proteostasis. Some cells saw a steady decline in 
mitochondrial function (represented by Cell 1), whereas others were able to successfully 
recover significant portions of their mitochondrial populations (represented by Cells 2 & 
3). (Row B) Single-cell mtROS content was captured, which inversely correlated with 
the corresponding phenotypic trends in mitochondrial health. (Row C) Single-cell 
mtDNA and damaged mtDNA (∆mtDNA) copies were analyzed, where high mutation 
and damage accumulation corresponded with highly dysfunctional phenotypes. 
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Mitochondrial dynamics, including biogenesis and selective mitophagy, were 

simulated, and organelle counts were tracked for an entire population of cells (Fig. 

4.6A). Natural aging (control) allowed for a modest increase in mitochondrial content 

until a midlife stage, and counts significantly declined until the end of life. This is 

consistent with previously published trends seen in C. elegans [193], concerning both 

general cellular activity as well as neuron-specific mitochondrial tracking. In the 

simulated cell population, mtDNA and ∆mtDNA content were tracked and presented as 

a deleterious heteroplasmic mtDNA percentage (Fig. 4.6B). As with other makers of 

age-related damage, mtDNA copies experienced steady and significant damage with 

normal aging (control), and the damage percentage saw a slight, yet erratic, decline in 

late stages of life due to natural defense mechanisms. Oxidative stress levels were 

measured in silico as well (Fig. 4.7A), and closely matched spontaneous increases seen 

previously in C. elegans [188]. Experimental and simulation values were both 

normalized to the respective oxidative stress levels immediately preceding the 

simulated age-compromised state (day 7). 

While the network motifs employed in our simulation allow us to reproduce the 

levels of certain age-dependent respiratory function markers, a sensitivity analysis was 

also conducted to determine which model functions and constants provide the strongest 

control over the system. The results of this analysis are tabulated in Table 4.4, where 

ROS outputs and macromolecule damage levels were sensitively controlled by many 

different parameters at various ages. Perhaps most notably, mitophagy activity and 

mitochondrial content at a late age time point were deemed to be the most sensitively 

controlled by many parameters of the model. 
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FIGURE 4.6 

Model-generated mitochondrial counts and heteroplasmic mtDNA content in normal and 
pharmacologically-altered aging. (A) Mitochondrial counts were assessed in our control 
simulation and also in the same treatment groups as Fig. 4.4D, displaying results that 
give rise to changes in aging mitochondrial dynamics, i.e., mitophagy and mitochondrial 
recycling. (B) Percent of mtDNA damage was calculated in each simulation experiment 
as an important metric of age-related mitochondrial dysfunction. Different perturbation 
schemes modulated the accumulation of mtDNA modifications, which when reduced 
has been implicated as a relevant intervention in combatting age-related disease. 
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FIGURE 4.7 

Simulation analysis of normal and pharmacologically-modified oxidative burden in aging 
cells. (A) The simulation was able to reproduce age-related increases in oxidative 
species as compared to C. elegans data from Gruber and colleagues [188] (ns: p>0.05). 
Increases within simulation or experimental data were normalized to their respective 
levels seen at the time point immediately preceding a fully aged state determined by the 
model (~day 7). (B) Average oxidative stressor levels, superoxide and peroxide, were 
determined in a variety of experiments (same treatments as Fig. 4.4D) for the 
population of cells simulated over the timeframe of interest. (C) Single-cell reactive 
oxygen species (ROS) data were model-generated for each individual cell in natural 
aging, in rapamycin-exposed cells (top panel, overlaid with control), and in 
pterostilbene-exposed cells (bottom panel, overlaid with control). These data signify 
probabilistic, rather than deterministic, mitochondrial activities within each cell giving 
rise to the natural stochasticity that determines composite ROS values for aging tissues. 
(D) Simulation time required for cells to switch to the age-compromised state, 
characterized by a 10-fold increase in ROS. 
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TABLE 4.4 

Table 4.4. Normalized sensitivity coefficients (SC) reported for age-dependent mitochondrial population numbers, ROS 
accumulation, and percent mtDNA heteroplasmy at early (3000 min), midlife (10,000 min) and late (22,000 min) time points 
throughout the simulation (parameter deemed to have sensitive control when |SC| ≥ 1). Parameters that elicited significant 
changes to specific response variables are bolded. The normalized sensitivity coefficients also represent positive or negative 
changes to response variables, as indicated by the sign that precedes each value. 

Parameter Response variable 

 Mitochondrial population count Steady-state ROS concentration mtDNA heteroplasmy percentage 

 Early Midlife Late Early Midlife Late Early Midlife Late 

k1 +0.0326 +0.3922 +1.7021 -0.1884 -0.0622 +0.0749 -0.6544 -0.5552 -0.1316 

k2 +0.0978 +0.4392 +0.7092 -0.4384 -1.0074 -1.0789 -0.3135 -1.0288 -0.1741 

k3 +0.0815 +0.2824 +1.0402 +0.7218 +0.3029 +0.3872 -0.2911 +0.0716 +0.0752 

v4 +0.0978 +0.1412 +1.4894 -0.3051 -0.6650 -1.0557 -0.5524 -0.7417 -0.4431 

k5 +0.0326 +0.1725 -0.2364 +1.4054 +0.9251 -0.1180 -0.2090 +0.8689 -0.2198 

v6 +0.0489 -0.0157 -0.8511 +0.0167 -0.6347 -0.5773 +0.2252 -0.9644 -0.6175 

k7 -0.2445 +0.0000 +1.3239 +0.0867 -0.3880 -0.6227 -0.3421 -0.3237 -0.1929 

KNADH -0.0326 +0.1098 +1.1584 -0.0483 -0.2734 -0.9642 -0.1879 +0.0211 -0.3222 

KY +0.0326 -0.0627 +1.0875 +0.1417 -0.0431 -1.0619 -0.5574 +0.0694 -0.4438 

KNAD+ +0.0489 +0.4863 +1.7730 +0.0167 -0.1214 +0.2700 -1.1173 -0.7256 +0.8263 

v8 -0.0326 +0.4549 +0.0236 -0.0633 +0.0264 -0.4707 -0.6271 -0.0416 -0.3666 

k9 +0.0815 +0.1412 +2.2695 -0.0167 -0.4031 -0.5208 -0.3546 -0.2848 -0.4914 

k10 -0.1630 +0.1412 -1.5603 +0.1250 -0.3349 -0.8619 -0.3036 -0.6079 -0.9190 

Kros -0.1630 +0.1412 +0.1182 +0.1250 -0.3349 -0.7398 -0.3036 -0.6079 -0.3637 

k11 -0.0326 +0.4549 +0.0236 -0.0633 +0.0264 -0.4707 -0.6271 -0.0416 -0.3666 

k12 -0.0326 +0.4549 +0.0236 -0.0633 +0.0264 -0.4707 -0.6271 -0.0416 -0.3666 

Kc -0.0489 +0.2353 +0.7565 +0.0750 -0.1488 -0.9302 -1.1285 +0.4009 -0.8623 

Kp +0.0000 +0.2667 +2.2695 -0.4468 -1.8395 -0.8127 -0.0697 -1.3180 +0.1621 

v13 -0.0326 +0.4549 +0.0236 -0.0633 +0.0264 -0.4707 -0.6271 -0.0416 -0.3666 

k14 -0.2282 -0.2980 +0.1891 +0.3501 -0.5980 -0.5832 -0.4852 -0.5774 -0.2580 

damageRate -0.0163 +0.1569 +0.1418 +0.2217 -0.4593 -0.4791 -1.3910 -1.0532 -0.4794 

destroyRate +0.0652 +0.2667 +0.1891 +0.0583 +0.0370 -0.6627 +0.0361 +0.6651 -0.4668 

stressConstant -0.0326 +0.1098 -0.0946 +0.0550 -0.6159 -1.0147 -0.5375 -1.0504 -0.5832 

recovConstant +0.0000 +0.1412 +1.3712 -0.0367 -0.1571 -0.6270 +0.0012 +0.0233 -0.2532 

Kb +0.0163 +0.0784 +0.3310 -0.2884 -0.1350 -0.8480 +0.1294 -0.0816 -0.2509 

Kmt +0.0815 -0.0941 +0.7092 +0.0117 -0.2027 -0.5101 +0.2774 +0.0539 +0.0451 

Ka -0.0489 +0.0000 +0.8747 +0.1634 +0.1755 -0.7183 -0.5860 -0.2854 -0.2989 

Kni +0.0163 +0.1098 +0.2364 +0.1617 -0.2800 -0.5324 -0.0921 -0.1588 -0.0104 

Kt -0.0163 -0.0627 +1.5603 -0.0767 -0.4973 -0.2604 -0.1008 -0.7479 -0.1942 

KdROSact +0.0652 +0.0157 -0.3546 +0.4168 -0.1309 -1.5124 -0.1605 -0.1643 -1.1647 

KdSIRact +0.0652 +0.2667 +0.8511 +0.2534 -0.3006 -0.1683 +0.0946 -0.7751 -0.4593 

KsROSact -0.1304 -0.2353 +1.0402 +0.0967 -0.7151 -0.5198 +0.0547 +0.1560 -0.3485 

KsSIRact +0.0652 -0.3608 -0.1891 +0.2767 -0.2410 -0.1924 +0.0299 -0.3476 +0.2198 
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Endpoint changes after control of selective mitophagy 

To perturb the computational model, we determined mathematical methods for 

introducing rapamycin or bafilomycin as regulators of mitophagy (Equation Box 4.7). 

Such methods included the estimated dose-response curve for autophagy 

activation/inhibition as well as the culture pharmacokinetics for determining the 

presence of each agent. Rapamycin is a well-known inhibitor of the mechanistic target 

of rapamycin (mTOR) complex [215], which ultimately allows for increased autophagic 

activity (Fig. 4.1A, see Rapa). Bafilomycin, on the other hand, inhibits the formation of 

autophagosomes, and therefore inhibits general autophagy and selective mitophagy 

[246] (Fig. 4.1A, see Baf). In our simulation, constant low-level dosing of each of these 

compounds (15 nM rapamycin or 10 nM bafilomycin, refreshed every 2,500 min) was 

used in these comparative perturbations. As expected, rapamycin (pink line) curbed the 

decline of ATP production in aging cells within the simulation experiments, whereas 

bafilomycin (red line) exacerbated this specific decline in energy production (Fig. 4.4D). 

Demonstrating that our mathematical perturbations were successful in emulating the 

function of pharmacological mitophagy-modulators, rapamycin and bafilomycin elicited 

drastic decreases and increases in mitochondrial count compared to the control, 

respectively (Fig. 4.6A). In addition, accumulation of deleterious heteroplasmic mtDNA 

was initiated sooner by bafilomycin exposure and was stunted by exposure to 

rapamycin (Fig. 4.6B). Rapamycin was used previously to investigate this exact effect, 

where it was shown to attenuate the accumulation of mtDNA harboring a specific 

pathogenic mutation [228]. As a result of harboring defective mitochondria, simulated 

mtROS levels were perturbed by these mitophagy modulators as well, where 
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rapamycin-exposed cells saw less oxidative stress with age and bafilomycin-exposed 

cells saw much more (Fig. 4.7B). 

 

Direct and indirect modulation of age-dependent oxidative stress levels 

To target alternative pathways involved in our in silico cellular mechanism, we 

chose two particular agents known to modulate mitochondrial processes associated 

with age-dependent oxidative damage: paraquat and pterostilbene (Equation Box 4.7).  

Paraquat is a well-established potent ETC uncoupling agent [234] that causes profound 

increases in oxidative stress (Fig. 4.1A, see PQ). Pterostilbene is best known as a 

constituent of certain berries and red wine and as a relative of resveratrol, a more 

commonly known stilbenoid compound. In contrast to paraquat, exposure to 

pterostilbene or synthetic relatives has shown to indirectly decrease oxidative stress in 

C. elegans, in part by contributing to the activation of DAF-16 and SKN-1 [240] (Fig. 

4.1A, see PT). In our simulation, constant dosing of 100 µM pterostilbene and 5 or 100 

µM paraquat was used in these comparative perturbations. Interestingly, ATP content 

was considerably reduced by high-dose paraquat but slightly improved by low-dose 

paraquat and pterostilbene treatments (Fig. 4.4D). Compared to the control, low-dose 

(light green line) and high-dose (dark green line) paraquat caused increases and 

decreases in mitochondrial counts, respectively (Fig. 4.6A), and only high dose 

paraquat enabled a greater accumulation of ∆mtDNA (Fig. 4.6B). A similar mtROS-

dependent effect has been shown experimentally for mtDNA double strand breaks 

causing accelerated aging in mice [247]. Virtual pterostilbene exposure (blue line) 

elicited marginally less mitochondrial turnover toward late age (Fig. 4.6A). This finding is 
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surprising as stilbene compounds have been suggested as agents that promote 

autophagy [248], but perhaps not with selective and non-selective mitophagy. 

Pterostilbene was the only compound that prolonged the accumulation of ∆mtDNA even 

though it eventually reached the same percentage as the control (Fig. 4.6B). This 

highlights the interesting aging response phenomena associated with stilbene 

compounds, especially with those that potently affect intramitochondrial reaction 

networks.  

Indicating our mathematics were successful in emulating the toxicological 

uncoupling effect at the ETC, low-dose paraquat resulted in very slight increases in 

oxidative stress, whereas the higher dosing scheme prompted a drastic surge in both 

superoxide and peroxide production (Fig. 4.7B). It is important to note that although low-

dose paraquat initially causes increases in mtROS, it also at times caused reductions 

compared to control at late time points. A similar reduction in mtROS was also observed 

in our simulation after ablating sod-2 (MnSOD) at increasing levels (Fig. 4.8A & 4.8B). 

Consistent with previously published nematode data [240], pterostilbene administration 

in our analysis allowed for around a 20–25% reduction (slowly reversible) in oxidative 

stress at the maximal response time points in the model after reaching fully aged states 

(Fig. 4.7B). Since pterostilbene and rapamycin showed the most promising results for 

slowing the damaging effects of aging mitochondria, we analyzed their oxidative stress 

modulation at the single-cell level. Our computational model allowed us to visualize 

mtROS levels over time overlaid with control data for a population of cells (n = 65; 500 

time points), demonstrating both the highly stochastic nature of the model and the 

protective effects of rapamycin (Fig. 4.7C, top panel) and pterostilbene (Fig. 4.7C, 
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bottom panel). To distill this information, we determined that 100 nM combined 

superoxide and peroxide allowed for a deleteriously-aged cellular phenotype and 

assessed how many cells crossed this threshold at various time points for natural aging 

(control), rapamycin, and pterostilbene (Fig. 4.7D). Pterostilbene and rapamycin greatly 

extended the time required for the majority of cells to cross this threshold; however, 

rapamycin further reduced the number of total cells that experienced this aged 

phenotype.  

 

Cell death predictions and implications for age-related neurodegeneration 

Given that aging and senescence are implicated in various cognitive deficits and 

neurodegenerative diseases, we used our computational methods to ultimately simulate 

an age-compromised cell state and subsequent probabilistic death for post-mitotic 

energetically-demanding cells (Fig. 4.9A). The rate of spontaneous degeneration 

simulated here corresponds well with wide speculations made about the slow loss of 

neuronal mass that accompanies old age in mammals [223]. This degenerative 

response has been more complex to quantitate in nematodes, as the neuronal network 

appears to be conserved with age [225] yet vacuolization and cellular damage certainly 

occur [226]. Cells within the model began to enter the compromised state around 

10,000 min, shortly after cells began crossing the model-determined mtROS threshold 

(10-fold increase) as mentioned in the previous section and shown in Fig. 4.7D. Viable 

cell and cell survival curves, associated with age-compromised cell states and 

degenerative aging, were generated for a battery of in silico mechanistic perturbations, 
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including the pharmacological treatments of interest as well as reductions in sod-2, daf-

16 and skn-1 expressions (Fig. 4.9B & 4.9C).  

Pterostilbene exposure (blue lines) rapamycin exposure (pink lines), low-dose 

paraquat exposure (light greens) and 90% sod-2 ablation (yellow lines) all delayed 

immersion into compromised states and extended cellular longevity, with rapamycin and 

pterostilbene eliciting the strongest effects. The remaining treatment groups, bafilomycin 

(red lines) high-dose paraquat (dark green lines), 90% daf-16 ablation (orange lines) 

and skn-1 ablation (purple lines), all resulted in rapid aging and severely decreased 

survival rates. While sod-2 ablation resulted in a marginally beneficial response, our 

simulation results indicate that its expression must be fully reduced to see any 

increases in longevity-promoting effects (Fig. 4.8C & 4.8D), due to the stress responses 

that the increased endogenous mtROS activate. This aging delay brought on by the 

mathematical model substantiates previous studies that have linked increases in 

oxidative species to extended lifespans [183, 188], however, the timing and duration of 

genetically- or pharmacologically-induced mtROS must play a critical role in regulating 

these mechanisms as well. 

 

 

 

 

 

 

 



 

 127 

 

 

 

FIGURE 4.8 

Varied expressional magnitude of mitochondrial manganese-dependent superoxide 
dismutase (MnSOD). (A) Complete survey of ROS accumulation over time after varying 
levels of MnSOD ablation. (B) Analysis of late life ROS output (24,000 min time point) 
against varying levels of MnSOD expression. (C) Viable cell survey over time after 
varying levels of simulated knockout. (D) Cell survival survey over time after varying 
levels of simulated knockout. 
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FIGURE 4.9 

Age-dependent total cellular damage and degeneration analysis. (A) Natural aging, 
presumably as a result of faulty mitochondrial dynamics, forced healthy cells (blue) into 
a compromised state (red) in our simulation, where they were required to overcome 
mitochondrial defects in order to recover. If recovery was insufficient, they died off 
(gray). (B) The dynamics of natural age-compromised cell accumulation (control) was 
compared to those virtually altered by pharmacological (rapamycin, bafilomycin, 
paraquat, or pterostilbene exposure) and genetic (daf-16, skn-1, or sod-1 ablation) 
simulation schemes. (C) Natural cell survival rates were compared to the same 
perturbation schemes of interest. Many schemes caused cells to age faster in the 
simulation, resulting in more death early on. Some simulation perturbations, however, 
were able to slow the rate of aging and natural degeneration, either slightly or robustly.  
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4.1.4   Discussions and conclusions 

Biological aging is the primary phenomenon governing organismal fitness and 

has often been deemed the most important risk factor in debilitating and fatal diseases. 

Age-dependent diseases that are degenerative or senescence-controlled in nature are 

generally confined to tissues with high energy demands, such as skeletal and cardiac 

muscle and nervous tissue [249]. These incidences suggest that severe mitochondrial 

dysfunction and aging are not mutually exclusive processes. The fundamental 

causalities between the two, however, are considerably complex and challenging to 

investigate, denoting the ongoing need for innovative and powerful methods in aging 

research. To provide an additional and systematic means of investigation, we have 

designed a computational network that integrates many of the sophisticated 

experiments completed in recent years. By balancing spontaneous free radical damage 

as well as corresponding mitochondrial stress responses, we have been able to make 

apt predictions about the aging process in a well-studied model organism. Several of 

our large-dataset predictions have been validated quantitatively (Fig. 4.4A, 4.4B & 4.4C, 

Fig. 4.7A) or qualitatively, while several have yet to be experimentally examined, leaving 

well-designed hypotheses for future work. 

 As part of our modeling study, we sought to understand how crucial the UPRmt and 

mitophagy are in balancing the oxidative stress and macromolecule damage that 

accompany normal, healthy aging. It was revealed in our experiments and global 

sensitivity analysis that mitochondrial turnover and quality control levels were the most 

important processes in either softening or exacerbating the deleterious effects of 

mitochondrial dysfunction in aging. This is substantiated by previous experiments done 
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in C. elegans, which suggest the UPRmt is not a potent regulator of longevity pathways 

[224], whereas mitophagy likely is [192]. The UPRmt, although not apparently important 

in regulating the lifespan of a full organism, may play a critical role in the cellular aging 

mechanisms that regulate tissue-specific healthspans. This is especially true for 

sensitive tissues with high mitochondrial counts, as they have a direr need to quickly 

regulate their antioxidant defenses and mitochondrial protein environments. Adding to 

this complexity, activation of this response must be done carefully, and likely on a low-

frequency basis, as the UPRmt has been implicated as a mechanism that can protect 

aberrant mitochondrial contents [190]. In particular, over-activation of this response has 

been linked to a higher persistence of mtDNA heteroplasmy. The mechanisms by which 

this occurs are poorly understood, although they are not entirely dependent upon 

mitophagy. However, mitophagy may certainly play a small role in the UPRmt ’s ability to 

maintain defective mitochondria, as TIMM-23 expression is upregulated by the UPRmt 

and is responsible for the import and degradation of pro-mitophagy proteins such as 

PINK-1 [191]. Therefore, an overexpression of TIMM-23 may limit, for a short duration 

of time, the amount of mitophagy activity. In contrast to this theory, it has been shown 

that the complete absence of TIMM-23 isoforms constitutively induces the UPRmt
 and 

leads to decreases in lifespan [224]. These observations exemplify the physiological 

need for an incredibly tight regulation of TIMM-23-dependent transport processes and 

mitophagic activities that may be programmed to vary with age in an attempt to 

maximize mitochondrial healthspans. 

In addition to gaining mechanistic insights, we used our multimethod simulation 

to predict the cellular effects brought on by different pharmacological agents that have 
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been widely studied as modulators of aging, especially in neuronal tissue. Most agents 

that have been discovered as longevity-promoters have also been known to promote 

mitochondrial health. Rapamycin exposure has led to stark increases in stress 

resistance to age-dependent damage in a wide variety of organisms [215, 250, 251], 

presumably due to its regulatory role in metabolic processes and non-selective 

autophagy. In our simulation experiments, we applied it as a mitophagy inducer and 

observed remarkable decreases in heteroplasmic mtDNA content and increases in 

antioxidant capacity. Both of these rapamycin-induced effects have been observed 

experimentally [215, 228]. Previous experiments and our simulation work draw attention 

to rapamycin as not only an agent that can extend the lifespan of an organism, but as a 

compound that does so by preserving the quality of mitochondria. Plant-derived 

polyphenols, such as resveratrol and pterostilbene, have also been studied for their 

potential ability to stunt the aging process through antioxidant activities and 

mitochondrial pathways. In C. elegans, resveratrol has been shown to alleviate 

oxidative stress and resulting mitochondrial damage associated with respiratory chain 

deficiencies, resulting in extended lifespan [252]. Although a significant portion of the 

literature has documented the longevity-promoting effects of resveratrol, much of the 

recent focus has fallen on pterostilbene and synthetic derivatives, as they have been 

observed as more potent compounds capable of modulating cellular processes in aging 

and age-related neurodegeneration [239, 240], in part through the DAF-16 and SKN-1 

axes. For this reason, we chose pterostilbene as the virtual stilbene compound to be 

used in our simulation work. Based on dose-response data that allowed us to calculate 

its mtROS remediation [240], pterostilbene prolonged mitochondrial damage 
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accumulation and age-dependent cellular degeneration in our simulations, albeit to a 

lesser extent than rapamycin. Notably, pterostilbene acts by increasing the activity of 

NAD+-dependent deacylases known as sirtuins [211], which promote well-balanced 

oxidative metabolism within mitochondria, and particular isoforms are involved in 

activating the UPRmt [188, 253]. If the UPRmt and mild antioxidant defenses are not as 

powerful anti-aging contributors as mitophagy and mitochondrial biogenesis, this 

explains the more favorable simulation results returned for rapamycin. Pterostilbene, 

however, has been known to induce autophagy on some level [248], and NAD+-

dependent sirtuin activities are important in regulating not only bioenergetic functions 

and antioxidant capacity but mitochondrial dynamics as well [244]; therefore, it must be 

investigated whether this compound can effectively stimulate the process of selective 

mitophagy in relevant cell types to promote significant increases in mitochondrial 

quality.  

Computational modeling has recently become a more commonplace technique in 

gerontological research, with many different types of developed models surfacing over 

the past decade [173]. Such models include purely deterministic analyses of oxidative 

metabolism [243], well-developed Boolean approaches for understanding molecular 

aging networks [254], discrete-event modeling of mtDNA dynamics [174], and high-

precision statistical modeling of lifespan determinants [255].  

Here we have contributed a new multimethod computational modeling technique 

for studying the cellular mechanisms of aging as they relate to mitochondrial function 

and dysfunction. We have built the groundwork for a comprehensive computational 

model that can reproduce levels of mitochondrial and cellular biomarkers implicated in 
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aging, with respect to C. elegans. In particular, our model has highlighted the potent 

effects of (1) mitophagy induction or inhibition and (2) the critical stress response genes, 

such as daf-16 and skn-1, required to maintain healthy aging and to further promote 

longevity through oxidative mechanisms. After further mechanism integration and 

experimental interrogation, this computationally intensive tool may be able to accurately 

predict aging phenotypes and neurodegenerative disease markers—first in nematodes 

and eventually in larger, more complex organisms. In addition, future in silico 

interrogations will provide a powerful, quick, high-throughput, and cost-effective means 

by which to test experimental drugs and dietary supplements that may very well slow 

the deleterious effects of aging and the pathogenesis of age-related diseases. 
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CHAPTER 5: MODELING MOLECULAR SIGNATURES IN AGING AND DISEASE 

 
5.1    Integrating the established simulation approach in disease contexts 
 

After designing a foundational model that can effectively ascribe triggering events 

to the general cellular aging process, which we have determined to be primarily 

mitochondrial in origin, we then found it valuable to apply this experimental approach to 

a specific disease state. As deleterious aging primarily impacts energetically-demanding 

cells, it is no surprise that a majority of age-dependent diseases are neurodegenerative 

ones. Of the highest occurrence in this category of diseases is Alzheimer’s disease 

(AD), and the general events that cause this pathology are yet to be fully understood. In 

this chapter we attempt to unpack the cellular conditions that render neurons vulnerable 

to stressors of aging and result in tau-mediated dysfunction, as it is observed in the 

progression of AD. This is done by utilizing the foundational computational simulation of 

mitochondrial and oxidative aging from the previous chapter. The resulting 

computational design was intended to improve on the shortcomings of the previous 

work, as discussed in detail. The results of this chapter convey important computational 

improvements in translatability, robustness, and the inclusion of critical molecular 

details. Part of the information in this chapter has been submitted for peer review to the 

scientific journal Frontiers in Molecular Biosciences as: Hoffman et al. (2019) Network 

simulations reveal molecular signatures of vulnerability to age-dependent stress and tau 

accumulation. 
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5.1.1   Aging, Alzheimer’s disease, and the need for simulation studies 

 
Alzheimer’s disease (AD) has become the most prevalent age-dependent 

neurodegenerative disorder, with over 46.8 million reported cases of AD worldwide 

[256]. If disease diagnostics and treatments remain in their current ineffective state, this 

metric is expected to at least triple by 2050, meaning 1 in 85 individuals worldwide will 

be living with the disease [257]. The United States alone is expected to see >60% 

increases in AD cases by 2025 [258]. AD and similar age-dependent neurodegenerative 

diseases are characterized by severe memory impairment and widespread loss of brain 

function, with AD predominantly affecting neurons of the hippocampus [259, 260]. At the 

cellular level, neurodegeneration is the cumulative result of oxidative stress, tau 

accumulation and misfolded protein stress, inflammation, loss of mitochondrial function, 

impaired autophagy processes, and more [2, 178, 191, 261]. While many cellular 

pathways and processes contribute to this neuronal damage, age is the strongest and 

most ubiquitous risk factor [249, 262], warranting AD researchers to continually revisit 

the fundamentals of biological aging. 

It is well understood that mitochondria play a critical role in the aging process [2, 

178, 263]. Because of this, energetically-demanding cells (e.g., myocytes, neurons) that 

rely heavily on the integrity of their abundant mitochondrial populations are most 

affected by age. Age-dependent declines in mitochondrial function are heavily 

implicated in the pathogenesis of AD [264], leading researchers to target mitochondrial 

health through a variety of strategies in combatting AD onset and progression [265]. 

The exacerbated mitochondrial dysfunction that ensues in symptomatic AD outcomes in 

humans can theoretically be ameliorated through (i) direct tau binding and reduced tau 
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oligomerization, (ii) direct radical scavenging to curb mitochondrial ROS production, and 

(iii) targeting bioenergetic efficiency directly in an attempt to rescue failing neurons [262, 

265, 266]. While these approaches are rooted in sound theory and have promising pre-

clinical results, human studies have seen negligible efficacy [265]. One particular 

pathway that has been gaining considerable attention for diseases of aging is the 

mitochondrial unfolded protein response (UPRmt), a response that is intended to protect 

mitochondria and is activated by a wide spectrum of stressors [187]. Analysis of the 

frontal cortex of human AD brains has shown significant increases in UPRmt genes, 

demonstrating that this stress response is spontaneously activated in an attempt to 

improve mitochondrial content and combat the disease [267]. Further pharmacological 

activation of the UPRmt has been shown to enhance mitochondrial proteostasis and 

alleviate neurological dysfunction in nematode and mouse AD models [268, 269]. 

Spontaneous mitochondrial dysfunction remains a target of investigation for 

neurodegeneration, but it is far from the only significant condition that render neurons 

vulnerable to stress. Factors that impair neuronal proteostasis over time play an equally 

important role [270]. It is well understood that AD rapidly affects the brain through the 

aggregation of aberrant β-amyloid (Aβ) peptides and tau proteins [271–273], and 

properly balanced proteostasis pathways are essential to hinder the activity of these 

aggregates. Specifically, targeting and controlling the ER-based unfolded protein 

response (UPRER) has resulted in substantial neurological protection and recovery in 

mammalian models of tauopathy [274, 275] and similar neurodegenerative models of 

aberrant prion protein propagation [276–278]. The UPRER, when dysregulated by Aβ 

and tau overexpressions, is also linked to deleterious mitochondrial deficits [279]; in the 
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same regard, therapeutic pharmacological targeting of the UPRER has shown 

concomitant activation of the UPRmt and overall improvement in AD phenotypes [268]. 

These observations highlight the complex interconnectivity between cellular 

proteostasis mechanisms and mitochondrial dynamics. 

The adjacent pathways by which cells adapt to these mitochondrial, oxidative 

and proteotoxic insults are also paramount to their survival. Particular stress responses 

that appear to curb AD pathogenesis under the appropriate circumstances are 

macroautophagy, mitophagy [191], and the Nrf2/SKN-1- and FoxO/DAF-16-mediated 

oxidative stress responses [280, 281]. Autophagy processes, especially those 

concerning the mitochondria, have shown to have a critical impact on the way 

organisms age, with significant neurological deficits resulting from autophagic 

dysregulation [192, 193]. Alzheimer’s brains often display this level of dysregulation 

naturally, and many molecular and cognitive improvements have been achieved in 

mammalian AD models upon both autophagy and mitophagy hyperactivation [282, 283]. 

With regard to the Nrf2/SKN-1 and FoxO/DAF-16 oxidative stress responses, probing 

the elements of these pathways have shown remarkable decreases in age-dependent 

stress in a number of experimental models [215, 284]. Furthermore, tau-challenged 

neuronal models have naturally elicited these oxidative stress responses [285], and 

further pharmacological upregulation of either Nrf2/SKN-1 or FoxO/DAF-16 has 

ameliorated neurodegenerative disease phenotypes [280, 286]. 
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While all of these cellular events and responses are involved in the aging 

process and in neurodegenerative results, elucidating the finite relationships within this 

complex network is imperative. Examples of these relationships are the definitive links 

between autophagy and ER stress [287] and the links between mitochondrial integrity 

and proteostasis [263, 269]. In addition to understanding the pathways involved and 

their connected relationships, it is also important to consider the temporal nuances of 

such cellular activities. Neuronal integrity at various life stages is rooted in specific 

quality control processes. Early-life maintenance requires functional oxidative stress 

responses to sustain an appropriate redox balance [178]. Early-life maintenance also 

requires reliable mitochondrial stress responses to perpetually weed out faulty 

mitochondrial materials before they have the ability to propagate [2]. Later in life, 

neurons have already accumulated the oxidative stressors and protein aggregates that 

cause damage; this is when the cell relies heavily on robust autophagy processes [191] 

and potent stress responses [261, 275] intended to remove damaging materials and 

absorb the impacts of damaging biomolecules. These temporally-nuanced cellular 

mechanisms highlight the complex nature of pharmacologically altering all of these 

processes to optimize neuronal function at all stages of life. These time- and magnitude-

based systems biology obstacles underscore the critical need for more comprehensive 

experimental and therapeutic approaches for AD research. 

The idea that neuron subpopulations have selective vulnerability has been 

postulated to explain degeneration patterns within the brain [288–290]. More generally, 

types of response-based vulnerabilities have been theorized for any neuronal 

subpopulation, with emphasized examples involving UPRER functionality [291]. The vast 
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network of general molecular conditions (e.g., conserved stress responses, redox 

environments) that precipitate and define vulnerability phenotypes within cellular 

populations are difficult to characterize with the limitations of conventional experimental 

approaches. An increasing number of researchers posit that integrative computational 

methods will provide more complete information for such queries [173]. Techniques that 

integrate in silico methods with in vitro and in vivo experiments are now frequently 

emerging for neurodegenerative research [292]. Previous in silico approaches of this 

nature have been successful in theorizing oxidative characteristics of aging and disease 

[243], lipid raft characteristics in AD development [55], and metabolic shifts in normal 

aging [293]. 

We have previously established a multimethod computational simulation 

approach that has demonstrated the ability to characterize relationships between aging 

and mitochondrial pathways. We have integrated new computational networks into the 

preexisting work. The resulting computational design of this chapter was intended to 

improve on the shortcomings of the previous simulation, as discussed in detail in the 

subsequent subsections. The results of this chapter convey important computational 

improvements in disease-specific translatability, experimental translatability, robustness, 

and the inclusion of critical molecular details. In this study, we have built upon our 

foundational studies to construct a computational simulation tool that integrates all of 

the aforementioned molecular mechanisms characterizing neuronal conditions of 

neuronal vulnerability, as they relate to experimental observations in the model 

organism Caenorhabditis elegans.  
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Such conditions are recognized here as the measured set of pathways and 

responses that drive and accompany the aging process. This set of measurements 

produced by the simulation can be considered a time- and magnitude-based molecular 

signature, similar to signatures previously developed and used for toxicological 

screening assays [16] and cancer cell prognostic studies [294]. The signature outputs 

presented here vary within the cellular population and defines phenotypic outcomes of 

resilience or vulnerability, based on the experimentally-determined pathway 

relationships. Analyzing this molecular signature over the lifespan of an organism is the 

hallmark of this approach. To prevent neuronal vulnerability to aging and protein 

misfolding, our previous work suggests that appropriate cellular activities of the UPRmt 

and UPRER stress responses are critical, which is also in accordance with literature 

[275]. Here the simulation outputs fall in line with these hypotheses and predict temporal 

trajectories that result in neuronal populations most vulnerable to oxidative and 

proteotoxic stressors. Overall, this approach provides the community with a means to 

more accurately grasp (i) the timing of multiple stress events in AD development, and 

(ii) the neuroprotective effects of stress response mechanisms in AD prevention and 

treatment.  
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5.1.2   Experimental procedures in the adapted simulation 

 

Hierarchical cell simulation design and agent-based modeling 

In order to simulate the mitochondrial and cellular relationships of interest, we 

formulated our model using AnyLogic® multimethod simulation software (version 8.3; 

The AnyLogic Company; Chicago, IL), which allowed us to develop a hierarchical agent-

based simulation scheme, as we have described in the previous chapter. Access to the 

simulation is described in the subsequent section regarding data availability. To briefly 

describe the methodology, this simulation was constructed with a population of cell 

agents, with each individual cell agent containing its own population of mitochondrion 

agents. Each agent contained discrete event statements and system-dynamics reaction 

networks, both of which were programmed to deal with natural biological stochasticity. 

Cellular agents contained their own continuous genetic and biochemical networks, 

which produced an array of intracellular conditions, referred to here as the molecular 

signature. These conditions were analyzed for sensitivity and determining control over 

the system to reveal phenotypes of response deficiencies and ultimately vulnerability, 

which are highlighted in the results section. These bifurcating transitions that allow 

agents to move through different states are written as java-based expressions, and are 

all unpacked in the corresponding subsequent sections. 

 

Deterministic modeling components 

As Boolean approaches have been successful in representing mathematical 

relationships between biomolecules and genes, especially for systems of aging [173, 

254, 295], this discrete binary concept was converted to Hill-based deterministic (ODE-
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based) relationships of gene expressions and response activities to produce a 

continuous computational simulation that could be easily managed temporally alongside 

biochemical equation frameworks and the aforementioned agent-based phenotyping 

methods. The manually-selected and organized network is hinged primarily upon age-

dependent oxidative signaling and many adjacent stress responses, as depicted in the 

results section. These curated molecular relationships are detailed in the results, and all 

of the equations and corresponding parameters used are organized and tabulated in the 

corresponding subsequent sections. 

 

Sensitivity analysis 

To determine the quantitative significance of certain parameters and functions 

within the system, a similar global sensitivity strategy was used that has been described 

previously [174]. Briefly, each parameter was individually reduced by 5%, and the 

resulting model output of cellular ROS levels was assessed. This was done for all static 

parameters within the model, and the response variable changes were measured at 

particular time points determined for young age (day 5), midlife (day 10), and old age 

(day 19). Sensitivity coefficients were calculated as: 

 

𝑆𝐶 = 𝜕𝑂£𝜕𝑃¥ × 𝑃¥𝑂£ = 𝜕𝑂£𝑂£ ×	20 

 

where SC represents the normalized sensitivity coefficient, Oi is the model output value, 

Pj is the value of the parameter of interest, and ∂ represents the partial derivative of 

either the parameter value or model output. When |SC| ≥ 1.0000, i.e. when the 
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proportional change in the response variable is greater than the proportional change in 

the parameter, the parameter is deemed to have significant sensitive control over the 

respective output at the specified age. SC absolute values falling between 0.1000 and 

0.9999 were also considered for further analyses of system control.  

 

Mathematical analyses and graphical visualizations 

Statistical analyses of Gaussian distributions, sigmoidal curve-fitting, and survival 

analyses were performed using GraphPad Prism software (version 8). Illustrations and 

vector drawings were created using ChemDraw Professional (version 15.1). 

 

General model setup and time units for lifespan analyses 

Upon model setup, the C. elegans lifespan amount was assumed to be 20 days 

(higher end of C. elegans age probability at 20 °C as per [255], and for temporal 

extrapolation calculations, human lifespan amount was assumed at 100 years or 29,200 

days for simulation compatibility (approaching the maximum human lifespan, per [296]. 

Mitochondrial counts within each cell were taken from the Poisson distributions 

determined in our previous simulation. In each of the simulation experiments, 200 

neurons were simulated to achieve robustness in the distributions of node output and 

resulting phenotype analyses. This agent number was determined by Monte-Carlo 

analyses that resulted in the lowest possible variance between runs. While variance 

was tested in populations of up to 10,000 cell agents, any number of cell agents above 

200 caused stochastic changes to saturate, leading us to reach 200 as the proper level 

of robustness without creating a design that was too computationally intense. 
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Mitochondrial system-dynamics and discrete computational methods for normal aging 

The framework for mitochondrial ROS generation, a pivotal player in the 

degenerative aging process, was simplified from our previous simulation design to focus 

more on the cellular genetic network of interest and more nuanced states of neuronal 

vulnerability for cellular phenotyping. A simplification down to this level did not 

significantly alter the behavior of the cellular environment, as the hierarchical modeling 

structure from the previous simulation remains intact here, but instead this reduced the 

ability to simulate the same nuances in mitochondrial stress states as before. Since 

mitochondrial characterizations were outside the scope of this study, this simplification 

was appropriate for producing a more applicable and easily understood tool that was 

less computationally intense for the community. The stochastic equations, agent 

transitions, and event statements pertaining to mitochondrion-level biochemical kinetics 

are displayed in Equation Box 5.1, with corresponding descriptions and references of 

the logical derivations. The AnyLogic simulation schematics of the mitochondrial 

framework are also displayed for both the agent-based methods (Figure 5.1A) and 

deterministic ODE methods (Figure 5.1B). 
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EQUATION BOX 5.1 

 

 
 
 
 
 
 
 

Box 5.1: Equations, agent transitions, and event statements pertaining to mitochondrion-level biochemical 

kinetics. 
 

Differential equations governing time-dependent mitochondrial ROS accumulation and 

elimination, comprised of general production and elimination constant distributions that 

resulted from our previous work as well as logically-derived expressions for tau-mediated 

ROS accumulation and UPR
mt

-mediated elimination [297–301]. Expressions shown in purple 

are dictated from the cell-level environment: 
 

 𝑑[𝑅𝑂𝑆T']𝑑𝑡 = 𝑛𝑀	𝑅𝑂𝑆T'𝑑𝑎𝑦 = 𝐾2 ∗ 𝑇𝑎𝑢$��𝑇𝑎𝑢$�� + 𝑇𝑀 − 𝑘𝑀𝑅𝐸[𝑅𝑂𝑆T'] ∗ 𝑈𝑃𝑅𝑚𝑡_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦	 
 
 

Discrete events governing (i) movement through mitochondrial health and stress states and 

(ii) mitochondrial biogenesis and mitophagy events dictated by cellular activities of 

mitochondria-altering proteins: 

 

Stochastic condition defining gain of mitochondrial ROS triggering a defective organelle phenotype: 

 [𝑅𝑂𝑆T'] > (𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(30	𝑛𝑀, 40	𝑛𝑀, 50	𝑛𝑀))	 
 

Static condition defining remediation of mitochondrial ROS restoring a healthy organelle phenotype: 

 [𝑅𝑂𝑆T'] < 𝑐𝑒𝑙𝑙F𝑠𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	𝑣𝑎𝑙𝑢𝑒	𝑓𝑟𝑜𝑚	𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	 
 

PINK-1-dependent rate of mitochondrial loss via mitophagy (agent removal): 

 𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑_𝑚𝑖𝑡𝑜	𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑
𝑑𝑎𝑦 = 1

𝑝𝑖𝑛𝑘1_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦			 
 

Basal and SKN-1-dependent rate of mitochondrial biogenesis (new agent addition): 
 

𝑑𝑎𝑦𝑠	𝑢𝑛𝑡𝑖𝑙	𝑎𝑔𝑒𝑛𝑡	𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1,2) − 14 𝑠𝑘𝑛1_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦	 
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FIGURE 5.1 

Simulation schematic displaying mitochondrial framework in the simulation software. (A) 
Agent state chart delineating stress-response-based conditional mitochondrial integrity. 
Final state denotes mitochondrial removal via mitophagy. (B) Simplified mitochondrial 
equation-based dynamics based primarily off of mitochondrial ROS production and 
content. 
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Cell-level system-dynamics and discrete-event computational methods for normal aging 

Since the primary focus of this simulation study was to garner more nuanced 

information about neuronal vulnerability that arises in the aging process, the cellular 

dynamics were more intricate than those that make up the mitochondrial framework. 

The gene network of interest that is driven in part by age-dependent oxidative signalling 

is connected by deterministic nodes of activity as well as some biochemical reaction 

schemes describing protein accumulation and phosphorylation events. The nodes of 

activity for the genes and responses of the network were given deterministic ODE-

based expressions of primarily Hill functions, in order to draw some similarities to the 

binary nature of Boolean gene networks that have been successful in previous studies 

[254, 295]. This conversion allowed for (i) more graded activity to be seen within 

individual nodes for more detailed analyses, (ii) better implication of stochasticity within 

the cell agent population, and (iii) easier integration with other ODE-based frameworks 

and agent-based frameworks within the complete hierarchical model. The parameters 

and corresponding equations delineating this curated network are displayed in Table 5.1 

and Box 5.2, respectively; the corresponding schematic of this equation network is 

shown in Figure 5.2A. The agent-based transitional events that allow cell agents in the 

simulation to possess different conditionally-bound phenotypes are expressed in Box 

5.3; the corresponding schematic of this agent state chart is shown in Figure 5.2B. 
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TABLE 5.1 
 

Table 5.1. Parameters of interest for the proposed intramitochondrial-intracellular functional genomic system. 

Parameter function Symbol Value Range Source 

Cellular ROS generation constant K1 25–50 (nM day-1) 100%SS 

Mitochondrial ROS generation K2 120–240 (nM day-1) [182]C 

ROS remediation constant K3 0.1–0.5 (day-1) [200]SS 

skn-1 ROS-dependent activity coefficient K4 60 (nM) [Chapter 4]C 

daf-16 ROS-dependent activity coefficient K5 75 (nM) [Chapter 4]C 

sod-2 production constant K6 1 [182]O 

UPRmt activity coefficient (ROSmt-based) K7 40–60 nM [208]C 

UPRER activity coefficient (BiP-based total) K8 triangular(0.5,0.75,1) 100%SS 

PERK phosphorylation coefficient K9 0.015 (day-1) [275]A 

skn-1-controlled mTOR activity coefficient K10 2.0 [215]A 

bec-1 production constant K11 0.25 (% day-1) 100%SS 

pink-1 activity constant K12 1.0 [307]A 

PERK protein production constant PP 1 (% day-1) 100%SS 

Total PERK degradation constant PE 0.1 (day-1) 100%SS 

Mitochondrial ROS elimination constant kMRE 0.2–2.0 (day-1) [182]C 

Mitochondrial tau activity coefficient TM 200 (%) [297]O 

Cellular tau activity coefficient TC 300–400 (%) [302]A 

Mutation fraction related to tau production  mF 0.5–1.5 [266]A 

ROS-dependent tau conversion constant RT 50 (nM) [199]A,C 

mTOR-driven bec-1 inhibition constant MB 1.5 [303]A 

UPRER-mediated bec-1 increase constant UB 1.5 [304]A 

Max. ROS-based increase in UPRmt activity KMT 1.0 [301]A 

SS 

O 

A 

C 

Optimized in the simulation to achieve the reported unstressed physiological steady-state percentage or range. 
Individually optimized value, generated using AnyLogic calibration to best emulate reported kinetic curves. 
Quantitated assumption based on qualitative evidence. 
Units converted to adhere to model standards. 
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EQUATION BOX 5.2 

 

Box 5.2: Equations pertaining to cell-level biochemical kinetics and activity nodes. 

 

Differential equations governing (i) time-dependent cellular ROS accumulation and 

elimination [182], (ii) PERK phosphorylation events [275], (iii) tau protein production, 

aggregation and elimination, (iv) bec-1 protein content, and (v) UPR
mt

-controlled hsp-60 

content [187]: 

 

𝑑[𝑅𝑂𝑆iEgg]𝑑𝑡 = 𝑅𝑂𝑆T' + 	𝐾111 − À 𝑠𝑘𝑛1_
𝑠𝑘𝑛1_ + 1.5_Â3À

𝑇𝑎𝑢$��è
𝑇𝑎𝑢$��è + 𝑇𝐶èÂ − 𝐾3 ∗ 𝑅𝑂𝑆iEgg ½

𝑠𝑜𝑑2
𝑠𝑜𝑑2 + 1.5¿	 

 

𝑃𝐸𝑅𝐾
𝑑𝑡 = 𝑃𝑃 − 𝑃𝐸𝑅𝐾 ∗ 𝐾9 À 𝑇𝑎𝑢$��_

𝑇𝑎𝑢$��_ + 1/2	 ∗ 𝑇𝐶_Â 

 

𝑝𝑃𝐸𝑅𝐾
𝑑𝑡 = 𝑃𝐸𝑅𝐾 ∗ 𝐾9À 𝑇𝑎𝑢$��_

𝑇𝑎𝑢$��_ + 1/2 ∗ 𝑇𝐶_Â − 𝑃𝐸 ∗ 𝑝𝑃𝐸𝑅𝐾 

 

𝑇𝑎𝑢
𝑑𝑡 = 100% ∗ 𝑚𝐹 ∗ ½2 − 𝑝𝑃𝐸𝑅𝐾

𝑝𝑃𝐸𝑅𝐾 + 1.5¿ − À	𝑇𝑎𝑢	 é
𝑈𝑃𝑅𝑈𝑃𝑅 + 1.5ê ∗ 	ℎ𝑠𝑝60 ∗

1
%�DH^� 	𝑑𝑎𝑦Â − 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(15,30) ∗ 𝑇𝑎𝑢 À

𝑅𝑂𝑆iEgg_
𝑅𝑂𝑆iEgg_ + 𝑅𝑇_Â 

 

𝑇𝑎𝑢$��𝑑𝑡 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(15,30) ∗ 𝑇𝑎𝑢 À 𝑅𝑂𝑆iEgg_
𝑅𝑂𝑆iEgg_ + 𝑅𝑇_Â − ½ 𝑏𝑒𝑐1

𝑏𝑒𝑐1 + 50¿ 	∗ 	𝑇𝑎𝑢_𝐴𝑔𝑔 

 

𝑏𝑒𝑐1
𝑑𝑡 = 0.5	 + 	𝑘11 ∗ À 𝑈𝑃𝑅è𝑈𝑃𝑅è + 𝑈𝐵èÂ − 𝑏𝑒𝑐1 À 𝑚𝑇𝑂𝑅].è

𝑚𝑇𝑂𝑅].è +𝑀𝐵Â 

 ℎ𝑠𝑝60
𝑑𝑡 = 1 + 𝑈𝑃𝑅𝑚𝑡𝑈𝑃𝑅𝑚𝑡 + 1 ∗ 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(1, 1.5, 2) − 1

	𝑑𝑎𝑦 ∗ ℎ𝑠𝑝60 

 

Dynamics and normalized activity of reporter genes and responses involved in the molecular 

signature, dictated by Hill dynamics as opposed to Boolean functions. Hill dynamics 

theorized here and elsewhere have been mathematically optimized (as previously described 

in this dissertation) based on each node’s corresponding literature information seen in Table 

S1. All corresponding assumptions are stated as well. KD and KS are fractional parameters 

that can be altered for genetic ablation experiments (basal = 1): 

 

𝑑[𝑈𝑃𝑅T']
𝑑𝑡 = 1	 + 	𝐾𝑀𝑇 ∗ À 𝑅𝑂𝑆T'�𝑅𝑂𝑆T'� + 𝐾7�Â − À

𝑇𝑎𝑢$��p
𝑇𝑎𝑢$��p + 𝑇𝐶pÂ	

 

𝑑[𝐵𝑖𝑃]
𝑑𝑡 = 𝑑[𝑈𝑃𝑅]

𝑑𝑡 = 1 − 𝐾8À 𝑇𝑎𝑢$���
𝑇𝑎𝑢$��� + 2 ∗ 𝑇𝐶�Â 

 𝑑[𝑠𝑜𝑑2]
𝑑𝑡 = 𝐾6 ∗ 𝑈𝑃𝑅𝑚𝑡 ∗ 𝑑𝑎𝑓16 

 

𝑑[𝑑𝑎𝑓16]
𝑑𝑡 = 𝐾𝐷 Û1 + À 𝑅𝑂𝑆iEgg�

𝑅𝑂𝑆iEgg� + 𝐾5�ÂÜ 
 

𝑑[𝑠𝑘𝑛1]
𝑑𝑡 = 𝐾𝑆 Û1 + À 𝑅𝑂𝑆iEggp

𝑅𝑂𝑆iEggp + 𝐾4pÂÜ 
 𝑑[𝑝𝑖𝑛𝑘1]

𝑑𝑡 = 2 −𝑚𝑇𝑂𝑅 ∗ 𝐾12 

 

𝑑[𝑚𝑇𝑂𝑅]
𝑑𝑡 = 1.5 − À 𝑠𝑘𝑛1p

𝑠𝑘𝑛1p + 𝐾10pÂ 
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EQUATION BOX 5.3 

 

 
 

Box 5.3: Agent-based methods applied for cellular vulnerability phenotyping. 

 

As the ultimate outputs of the model, age-dependent cellular phenotype percentages are captured 

based on each cell’s conditions of the dynamic response network. These conditionally-bound 

phenotypes are created using agent-based “state chart” functions, and are based on characteristically 

bifurcated conditions that arose from the bistability analyses performed.   Transitions indicate the 

movement through several phenotypes, as depicted in Figure 5.2B. Cells first move through either 

possessing UPR
ER

 or UPR
mt

 deficiencies, and then both; once both deficiencies have been achieved 

from the aging process, neurons can then be rendered vulnerable to the effects of high ROS levels 

and tau protein aggregates. Once this final conditionally-bound vulnerability state is achieved, they 

then have a stochastic time requirement to activate stress responses and rescue from these deleterious 

conditions or they will be removed from the simulation to emulate cell death. These model 

developments are substantiated by the findings that UPR
mt

 activation promotes longevity and 

phenotypic resilience to ROS- and aggregation-mediated neurodegenerative outcomes [305, 306]. 

These model developments are also substantiated by the fact that total UPR
ER

 activation is beneficial 

in preserving resilient cell phenotypes due to autophagic control and proteostatic measures, while the 

PERK translational branch upon aggregate-dependent overactivation leads to vulnerability [275]. 

 

Transitions of increasing stress states within the agent-based framework (T1-T5), including the final 

optimized rate-dependent irreversible transition of full vulnerability to cell death (T6): 

 

𝑻𝟏 ∶ 𝑈𝑃𝑇T'_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 < 50%	 
 

𝑻𝟐 ∶ 𝑈𝑃𝑅_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 < 50%		 
 

𝑻𝟑 ∶ 	𝑈𝑃𝑅_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 < 50%,𝑈𝑃𝑇T'_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 < 50% 

 

𝑻𝟒 ∶ 𝑈𝑃𝑇T'_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 < 50%,𝑈𝑃𝑅_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 < 50%,	 
 

𝑻𝟓 ∶ 	𝑈𝑃𝑇Ui'£®£'ÁT' < 50%,𝑈𝑃𝑅Ui'£®£'Á < 50%, 𝑝𝑃𝐸𝑅𝐾 > 150%,𝑅𝑂𝑆iEgg > 100	 
 

𝑻𝟔 ∶ 	𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙	𝑟𝑎𝑡𝑒 = 𝑐𝑒𝑙𝑙	𝑑𝑒𝑎𝑡ℎ	𝑒𝑣𝑒𝑛𝑡𝑠	𝑝𝑒𝑟	𝑑𝑎𝑦 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1, 2) 
 

Transitions of reversible recovery from stress states within the agent-based framework (R1-R5): 

 

𝑹𝟏 ∶ 	𝑈𝑃𝑇Ui'£®£'ÁT' < 50%,𝑈𝑃𝑅Ui'£®£'Á < 50%, 𝑝𝑃𝐸𝑅𝐾 ≤ 150%, 𝑅𝑂𝑆iEgg ≤ 100	 
 

𝑹𝟐 ∶ 	𝑈𝑃𝑇T'_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 < 50%,𝑈𝑃𝑅_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ≥ 50% 

 

𝑹𝟑 ∶ 	𝑈𝑃𝑇T'_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ≥ 50%,𝑈𝑃𝑅_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 < 50% 

 

𝑹𝟒 ∶ 𝑈𝑃𝑇T'_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ≥ 50%,𝑈𝑃𝑅_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ≥ 50%	 
 

𝑹𝟓 ∶ 	𝑈𝑃𝑇T'_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ≥ 50%,𝑈𝑃𝑅_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ≥ 50% 
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FIGURE 5.2 

Simulation schematic displaying cell-level framework in the simulation software. 
(A) Deterministic equation-based network of defining cluster reporters and 
activators. (B) Agent state chart with condition-based transitions leading to 
phenotypic agent states of vulnerability. Final state denotes cell death. 
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Global sensitivity analysis 

Parameters were tested for sensitivity within the network using a 5% value 

perturbation, as we have previously performed and as it is described in the method 

section of the main article. The results are shown in Table 5.2. 

 

TABLE 5.2 
 

Table 5.2. Sensitivity analysis of cellular process parameters and stress response parameters within the 
molecular simulation network. Sensitivity coefficients (SC) with an absolute value greater than or equal to 
1.0000 were deemed to have sensitive control over the system. SC values with an absolute value 
between 0.1000 and 0.9999 were considered for further analyses of system control. The response 
variable assessed for change in the analysis was cellular ROS, as this drives many aging processes. 

Parameter function Symbol Early-life SC Mid-life SC Late-life SC 

Cellular ROS generation constant K1 0.0422 0.2236 -0.1032 

Mitochondrial ROS generation K2 1.2348 0.4279 0.3418 

ROS remediation constant K3 -1.8216 -1.7145 -1.4484 

skn-1 ROS-dependent activity coefficient K4 0.0310 -0.1275 -0.2192 

daf-16 ROS-dependent activity coefficient K5 0.0000 0.0000 0.0000 

sod-2 production constant K6 0.0000 0.0000 0.0000 

UPRmt activity coefficient (ROSmt-based) K7 0.1112 -0.0740 -0.3841 

UPRER activity coefficient (BiP-based total) K8 0.0077 -0.0435 -0.4232 

PERK phosphorylation coefficient K9 0.0141 -0.0638 -0.6431 

skn-1-controlled mTOR activity coefficient K10 0.0021 -0.0638 -0.1759 

bec-1 production constant K11 0.0113 -0.3318 -0.2969 

pink-1 activity constant K12 0.0443 -0.0314 0.4873 

PERK protein production constant PP 0.0310 -0.1106 -0.6459 

Total PERK degradation constant PE 0.0471 -0.1151 -0.0226 

Mitochondrial ROS elimination constant kMRE -0.6424 -0.4813 -0.5626 

Mitochondrial tau activity coefficient TM -0.9069 -0.5100 -0.5084 

Cellular tau activity coefficient TC -0.1949 -0.3889 -0.1930 

ROS-dependent tau conversion constant RT -1.9560 -1.3090 -0.4021 

mTOR-driven bec-1 inhibition constant MB -0.0134 -0.0595 -0.4529 

UPRER-mediated bec-1 increase constant UB 0.0303 -0.0595 -0.1095 

Max. ROS-based increase in UPRmt activity KMT 0.0091 -0.3336 -0.0322 
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Inclusions of aberrant tau accumulation 

To emulate tau-expressing anti-aggregating and pro-aggregating models within 

C. elegans [266] so that this simulation can be easily translatable in future nematode-

based tau experiments, expressions governing tau production, accumulation and 

degradation have been made computationally malleable. For the simulation 

experiments of this study, the mutation fraction within the anti-aggregating cell 

populations (tau control) was set at 0.4, whereas the value for the pro-aggregating 

group was given a 100% increase at 1.4. The processes within the simulation controlled 

by tau content are primarily rooted in cellular and mitochondrial oxidative stress 

signaling and also notably involve the UPRER activities of the BiP and p-PERK branches 

(expressions included in Equation Box 5.1 and Equation Box 5.2). 

 

Data availability 

The simulation tool is available as both a java applet and downloadable file (.alp) 

via the AnyLogic Cloud (https://cloud.anylogic.com/model/ec37d0d4-fcbf-4158-9f31-

d0a2e213dcb0). For use of the original file, users may download a free version 

(Personal Learning Edition) of the AnyLogic software from the company’s website. 

Other datasets upon which the results presented in the paper are based can be 

requested by sending an email to the corresponding author. 
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5.1.3   Results and discussions of normal and tau-altered neuronal aging 

Simulation design and the molecular signature 

The simulation constructs used in this study centered around age-dependent 

cellular and mitochondrial oxidative signaling, similar to our previous work, however the 

model presented here was designed with a wider array of stress responses 

experimentally determined to be significant to neuronal vulnerability phenotypes. The 

nodes producing the normalized expressions of critical markers and stress response 

activities are shown as functional clusters in Figure 5.1A. This network was constructed 

within our simulation interface in part by integrating the on-off behavior of Boolean 

network modeling, however, the nodes were designed using system-dynamics 

techniques (ODE-based) of primarily saturable Hill functions, which we have previously 

modeled for nuclear receptors. This allowed us to produce normalized response 

fractions for each of the molecular markers involved in the full signature of interest. This 

conversion to an equation-based network also allowed us to integrate the response 

nodes with an agent-based system of (i) varying cellular behavior within a cell 

population (ii) varying mitochondrial populations within each cell, (iii) crosstalk between 

the molecular network and cellular and mitochondrial behaviors, and (iv) nuanced 

relationships between the molecular network and cellular agent phenotypic outcomes. 

Expressions concerning mitochondrial conditions and behavior are delineated in Box 

5.1 and Figure 5.1, whereas the expressions concerning the cellular biomolecular 

network and agent population behaviors are delineated in Box 5.2, Box 5.3 and Figure 

5.2; all corresponding model parameters are tabulated in Table 5.1. 
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FIGURE 5.3 

Simulation design and initial outputs. (A) Molecular network analyzed in the multimethod 
simulation paradigm. (B) Temporal trajectory of the molecular signature in normal aging 
neurons 
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The initial simulation output was determined to be the molecular signature of 9 

nodes of interest as they correspond to markers within C. elegans: hsp-60 (UPRmt 

activity), BiP (total UPRER activity), p-PERK (translational branch of the UPRER), skn-1 

activity, daf-16 activity, sod-2 (mitochondrial superoxide dismutase activity), bec-1 

(general macroautophagy machinery), mTOR (anti-autophagic activity), and pink-1 (pro-

mitophagy activity). The patterns of response fractions for each of these functional 

pathways were measured in the simulation over a 20-day period (the higher end of 

lifespan probability for a wild-type nematode; [255]). This temporal trajectory is shown in 

Figure 5.3B, with distinct patterns of stress response dysregulation upon normal aging.  

Of note, the simulation predicts an age-dependent dysregulation of autophagic 

processes, which has manifested experimentally in aging nematodes as an 

accumulation of autophagosome content in neuronal tissue with variable changes in 

autophagic flux [308, 309]. Also in accordance with preliminary simulation results, the 

spontaneous nuclear localization of daf-16 along with skn-1 expression have been 

shown to increase in normal aging nematodes [310]. It is important to note that skn-

1/Nrf2 activity across nematode and mammalian lifespans has been measured in 

variable expression patterns [311], and even when increased, skn-1/Nrf2 activation 

alone has not demonstrated enough compensatory effects to combat the oxidative 

stressors of aging. The simulation results also mirror observed impairments in UPRER, 

UPRmt and mitochondrial maintenance with neuronal age, allowing permissive oxidative 

damage and vulnerability to proteotoxic insults [312–316]. 
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Nodes triggering the genesis of vulnerability phenotypes 

To determine sensitive controllers of the simulated network, a standard global 

sensitivity analysis was performed for all static parameters. The resulting sensitivity 

coefficients are displayed in Table 5.2, with expected significant sensitivity found at all 

stages of life for the parameters defining age-dependent ROS production and 

elimination. While falling slightly below strongly sensitive values, the coefficients 

returned for UPRmt- UPRER- and skn-1-based activities suggested that they also play a 

critical role in determining changes within the molecular system at both mid- and late-life 

stages. Due to these formal observations, both UPRmt and UPRER activities were 

analyzed with respect to the model’s natural age-dependent increase in ROS levels. 

The temporal movement through these dose-response plots are displayed in Figure 

5.4A and Figure 5.4B (left panels) for normalized UPRmt and UPRER activities, 

respectively. The temporal movement displayed impairments in both these responses, 

and removal of ROS content at late-life stages did not recover these impairments; 

instead, the model predicted that these cells would continue a trajectory within the dose-

response that approaches 50% activity levels for both responses. Because of these 

data, these activity values were chosen as triggering conditions for cellular vulnerability 

within the simulated cell population. The population distribution of UPRmt and UPRER 

activities at the end of life (day 20) are displayed in Figure 5.4A and Figure 5.4B (right 

panels), with over a quarter of the cells satisfying these impaired conditions. These data 

are consistent with findings about defective proteostasis mechanisms triggering cellular 

vulnerability phenotypes in neurodegenerative disorders [291].  
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FIGURE 5.4 

Cellular vulnerability characterizations of UPRmt and UPRER activities with respect to 
increasing age-dependent oxidative insults. (A) Dose-response curve denoting bistable 
UPRmt activity in response to age-dependent ROS increases, with the UPRmt activity of 
late-life cell aggregates approaching 0.5 (left panel). Also shown is the UPRmt activity 
distribution of simulated cells at the 20-day mark, with the lower end (26%) satisfying 
the < 0.50 condition. (B) Dose-response curve denoting bistable UPRER activity in 
response to age-dependent ROS increases, with the UPRER activity of late-life cell 
aggregates approaching 0.5 (left panel). Also shown is the UPRER activity distribution of 
simulated cells at the 20-day mark, with the lower end (32%) satisfying the < 0.50 
condition. 
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The age-dependent cellular conditions defined in the computational network were 

then used to produce bifurcations through phenotypic states of vulnerability that were 

quantified for the simulated cell population (Figure 5.5A). At simulation startup, all cell 

agents exist with the fully resilient phenotype and no deviations from the normalized 

response activities. Cells then conditionally transition to states of UPRmt and/or UPRER 

compromised activities, and when both mitochondrial and ER deficiencies are satisfied, 

the cells are then rendered vulnerable to age-dependent increases in oxidative and 

proteotoxic stressors. Once cells enter into the final vulnerability state, they then move 

through a rate-dependent transition into cell death, where they are finally removed from 

the simulation. After designing this bifurcation landscape, the phenotype percentages 

for normal aging were quantified (Figure 5.5B). As we have predicted and discussed in 

our previous work, compromised mitochondrial processes set in early on in aging, with 

an ER-compromised setting in later in life. Ultimately, a steady increase in full 

vulnerability was observed shortly after day 12, with a gradual decline in cell survival 

seen after day 14. In a direct extrapolation of these values to a human lifespan of 100 

years, vulnerable neurons would surface around 60 years with the onset of 

neurodegeneration occurring at 70 years.  
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FIGURE 5.5 

Bifurcated phenotypic characterizations and simulation results for normal aging neurons. 
(A) States of increasing cellular vulnerability with respect to the UPRmt and UPRER 
analyses, which result in an ultimate vulnerability state conditionally bound by age-
dependent oxidative and proteotoxic insults. (B) Simulation results of cellular phenotype 
percentages over time for normal aging neurons, including theorized rate-dependent 
cell survival with respect to vulnerability increases. 
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FIGURE 5.6 

Bifurcated phenotypic characterizations and simulation results for tau-exacerbated aging 
neurons. Simulation results of cellular phenotype percentages over time for tau-insulted 
(100% increase) aging neurons, including theorized rate-dependent cell survival with 
respect to vulnerability increases. 
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FIGURE 5.7 

Molecular signatures in normal and tau-exacerbated aging neurons sustaining variable 
activities of the skn-1-mediated oxidative stress response. (A) Changes in the temporal 
trajectory of the simulation-generated molecular signature are shown for normal aging 
neurons (top panels) and for tau-exacerbated neurons (bottom panels) after skn-1 
ablation and skn-1 overexpression. (B) Varying time-course phenotype measurements 
for each of the six genetically-altered groups. The age-dependent genesis of the 
vulnerability phenotype with corresponding cell percentages are shown (top panel) as 
well as the maintenance of the resilient phenotype and its corresponding cell 
percentages (bottom panel).   
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Vulnerability is enhanced with increased tau aggregation and oxidative signaling 

After characterizing the molecular signature in the trajectory of normal aging, we 

then applied a 100% increase in tau aggregation within the simulation interface to 

quantitate its effects on the predicted outputs. The bifurcated phenotypic 

characterizations that resulted after integrating this tau insult are displayed in Figure 

5.6. The maintenance of the resilient neuronal phenotype is markedly decreased, with 

absolutely no cell agents remaining in this state after 9 days of age (directly 

extrapolated to a human lifespan to theorize the loss of neuronal resilience at age 45 for 

outstanding tau-insulted individuals). As expected, ER stress is substantially heightened 

in the tau-exacerbated simulation and UPRER dysregulation precedes or coincides with 

mitochondrial deficits, in contrast to the normal aging results. Cell survival was markedly 

decreased in the tau-exacerbated network, emulating the neuronal dysfunction and 

neurodegenerative outcomes seen in tau-expressing pro-aggregating nematodes [266].  

Following the neuronal phenotyping analyses for normal and tau-exacerbated 

aging, the molecular signatures for both scenarios were generated by the simulation to 

observe differences in the response trajectories of both models (Figure 5.7A, left 

panels). In addition, because of skn-1 sensitive system control revealed during the 

development of the computational network, the expression of this node was altered for 

additional experiments to gain insight about loss (Figure 5.7A, middle panels) or gain 

(Figure 5.7A, right panels) of function in skn-1-mediated activities for both normal and 

tau-exacerbated aging. This genetic alteration was also chosen as many therapeutic 

approaches have been successful in targeting and modulating the skn-1/Nrf2 

antioxidant response pathway [280]. Simulation results indicate that skn-1 alterations 
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resulted in slight alterations in maintaining ER and mitochondrial functionality within the 

molecular signature, particularly in autophagy and mitophagy activities. The changes in 

skn-1 led to more substantial benefits or consequences in mitigating oxidative damage, 

especially in the tau-exacerbated worms. These skn-1-dependent changes in the 

molecular signature trajectories corresponded with changes in age-dependent 

vulnerability phenotyping, displayed in Figure 5.7B. Simulation results indicate that skn-

1 was not required for the maintenance of the most resilient phenotype in either natural 

or tau-exacerbated aging (bottom panel), however, it was exceptionally important in 

mitigating chronic oxidative stress required for simulated cell agents to enter into the 

final vulnerability phenotype (top panel) that is proportional with poor cell survival. 

These simulation data are consistent with experimentally-observed relationships 

regarding skn-1/Nrf2-mediated cytoprotection in the context of antioxidant functions. 

autophagic maintenance and tauopathy amelioration in worms, mice and humans [285, 

317, 318].  

 

Neuronal survival during aging depends on multiple stress response pathways  

As a final output of the simulation, neuronal survival was assessed over the full 

20-day lifespan analysis for normal and tau-exacerbated cell populations and for 

response deficiencies. The results displayed here compare cell survival rates between 

the fully functional response network and groups lacking skn-1, daf-16, UPRmt or UPRER 

activities (Figure 5.8). For normal aging (left panel), all simulated deficiencies except for 

the UPRmt caused a decrease in cell survival. This is consistent with finding that UPRmt 

modifications in normal aging nematodes without stress led to no stark changes in 
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longevity [187, 224].  For tau-exacerbated aging (right panel), all simulated deficiencies 

including the UPRmt caused a decrease in cell survival, suggesting all of these pathways 

are critical in mitigating tau-dependent damage in aging nervous systems. This is 

especially consistent with findings that display the profound ameliorative effects of daf-

16/FOXO activation, specific UPRER activation and regulation, UPRmt activation and 

mitophagy on proteotoxic AD models of neurodegeneration [269, 286, 319, 320]. It is 

speculated here that all of these responses must act in concert to maintain resilient 

neuronal phenotypes, but the age-dependent deterioration of these quality control 

processes is yet to be fully understood. 

 

 

FIGURE 5.8 

Analysis of cell survival in normal aging (left panel) and tau-exacerbated aging (right 
panel) neurons with respect to different node deficiencies. Time-course plots display no 
change in genetic nodes (denoted WT), and reduced levels of several nodes and 
response activities. Nodes of interest that were altered include skn-1, daf-16, UPRmt, 
and UPRER activities, as these were selected as having strong determining potential 
against the phenotypic outputs and ultimate neuronal vulnerability. 
 
 
 
 
 
 



 

 166 

Insights into investigating comprehensive pathway maintenance during aging  

Because developing AD appears to be an inevitable event in the aging process 

and due to the refractory nature of the associated pathophysiology, actions taken 

toward preventing the triggers of AD are currently the most suitable options [262, 321]. 

Such actions are typically environmental interventions intended to reduce AD risk 

factors. Environmental enhancements include cognitive training, stress management, 

social engagement, physical activity, lipoprotein control for vascular health, nutritional 

approaches and phytochemical supplementation [322]. Certain stilbenoid 

phytochemicals such as resveratrol and pterostilbene have gained growing interest for 

their ability to prime cells to mount beneficial responses and combat age-dependent 

damage [2, 265]. All of these preventative measures appear to have selective cellular 

benefits against neuronal dysfunction that appears to silently progress for many years 

before pathological AD onset [323]. Any neurodegenerative disease, as we have 

quantitatively unpacked in this simulation study for AD pathogenesis, is born out of a 

multitude of intrinsic and environmental factors [323–325], and thus it is likely it will take 

multiple environmentally-based interventions to have a fully protective or even 

restorative effect on all neuronal populations. 

Investigating all of these critical conditions that render neuron populations 

vulnerable to the triggers of AD and similar neurodegenerative diseases is difficult to 

perform in vivo. Computational models of aging have provided many insights into the 

systems biology obstacles of researching AD [173], and our previous simulation 

approach has offered value to the field of age-related diseases. However, this previous 

model was not without its limitations. Primarily, the previous simulation (i) lacked 
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nuanced details in the phenotypes describing age-dependent vulnerability, (ii) could 

have benefitted from more translational power in experimental biomarkers specific to 

genetic declines in disease states, (iii) and warranted more robustness and usability in 

computationally-intensive models. In the current study, we aimed to remedy these 

shortcomings of the previous model. The simulation presented here relies on a defined 

network capable of revealing heavily nuanced vulnerability phenotypes in aging 

organisms. The simulation was also constructed in a manner that allows AD 

researchers to follow up on defined reporter genes and biomolecules of stress 

responses highly relevant to aging and to the disease progression; such genes have 

been well-defined for a simple model organism. Finally, the simulation was 

mathematically simplified in areas that did not change critical network motifs for this 

study, and it was also expanded upon in areas that required more detail for aging and 

AD specifics; this ultimately allowed for a less computationally-intense model to 

increase agent-based population robustness and user friendliness. These 

improvements will bring us to better investigative tools for integrative experimental and 

computational neurodegenerative research. 

In conclusion, the simulation results generated here highlight the importance of 

response pathway maintenance in degenerative aging and AD development, as 

evidenced by the temporal molecular signatures predicted. Of importance, this study 

quantitatively corroborates the growing understanding that mitochondrial and ER 

maintenance through specific UPRmt and UPRER programming play a critical role in 

mitigating age-dependent vulnerability to proteotoxic and oxidative stressors. 

Additionally, this work confirms the importance oxidative stress responses mediated by 
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skn-1 and daf-16 in prolonging age-dependent triggers of cell damage. As 

comprehensive studies integrating these responses continue to surface, we will 

continue to approach more detailed prognostic tools for age-related diseases and for 

AD prevention and treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 169 

CHAPTER 6: FUTURE WORK 

 

The simulation experiments have established new quantitative values for 

responses that are theoretically critical to toxicological, pharmacological and 

pathological research. The datasets generated for intraspecies food additive uncertainty 

can be applied to more compounds used as ingredients and may require future 

validation in toxicological research for regulatory purposes. The datasets generated for 

AhR-mediated effects through the use of several dietary ligands require additional 

single-cell validations and more high resolution time-course information about the 

ligand-dependent response for both toxicological and therapeutic purposes related to 

the AhR. Finally, the final datasets generated are critical to understanding the 

progression of degenerative aging and the tau-mediated progression of AD, however, 

some more descriptive experimental validations are now required to continue forward. 

As the computational simulations have been developed as translational tools for C. 

elegans research, the next progression of experiments involve testing the 

aforementioned scenarios of interest in nematode strains that have been established for 

wild-type and tau-mediated results. Such experiments will involve the inclusion of 

behavioral assays to test neurological function as well as molecular assays for stress 

response maintenance over individual lifespans as it corresponds to the molecular 

signatures predicted. This work is already underway, and will assist in validating the 

computational tools while presenting novel experimental information about the 

pathogenesis of age-dependent degenerative outcomes. The collective and iterative 

results will aid in producing more accurate and precise strategies for preventing and 

treating AD and similar diseases of aging. 
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CHAPTER 7: CONCLUSIONS 

 

In conclusion, the experimental information elucidated here has shown the 

success of a new multimethod computational simulation paradigm for toxicological, 

pharmacological and pathological research. This experimental platform has especially 

been valuable in quickly theorizing critical cellular changes over organism lifespans, and 

the temporal datasets that have been produced are both expansive and sizably complex 

in their ability to measure many events simultaneously. In addition, simulation studies 

have been able to predictively tease out molecular determinants triggering cellular 

states of vulnerability in aging and disease. In all, the data presented in this dissertation 

define new modes of experimentation that have been useful in adding value to 

experimental data and in developing theories involving cellular responses. This work as 

a whole will aid in paving the path to a more quantitative future in scientific research. 
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Center for Environmental Medicine 2017 Symposium (45-minute Platform Presentation): 

The Role of Mitochondrial Dysfunction in Cellular Aging: Insights from Computational 

Modeling and Simulation. 

 

8.5     Conference poster and simulation presentations 

 

Hoffman TE, Wallis LE, Hanneman WH (2016) A Predictive Simulation of Subacute 

PCB-induced Oxidative Stress in the Liver Using a Combination of Techniques. Society 

of Toxicology 2016 Annual Meeting (New Orleans, LA). 
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Hoffman TE, Hanneman WH (2016) Multimethod Computational Modeling Analysis of 

Mitochondrial Dysfunction Underlying Degenerative Senescence. Colorado State 

University 2016 Graduate Student Showcase (Fort Collins, CO). 

 

Hoffman TE, Hanneman WH. (2016) Multimethod Computational Modeling Analysis of 

Spontaneous and Xenobiotic-Modulated Mitochondrial Dysfunction Underlying 

Degenerative Senescence. International Society of Computational Biology 2016 Rocky 

Meeting (Aspen/Snowmass, CO). 

 

Hoffman TE, Hanneman WH. (2017) Physiologically-Based Pharmacokinetic Analysis of 

Benzoic Acid in Rats, Guinea Pigs and Humans: Implications for Dietary Exposures and 

Interspecies Uncertainty. Center for Environmental Medicine 2017 Symposium (Fort 

Collins, CO). 

 

Hoffman TE, Hanneman WH. (2017) Multimethod Computational Modeling Analysis of 

Spontaneous and Xenobiotic-Modulated Mitochondrial Dysfunction Underlying 

Degenerative Senescence. Center for Environmental Medicine 2017 Symposium (Fort 

Collins, CO). 

 

Hoffman TE, Hanneman WH (2018) Emerging Multimethod Computational Simulation 

Approaches for Investigating Cellular Network Dynamics and Cellular Damage. Winter 

Q-BIO 2018 (Maui, HI). 
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Hanneman WH, Secor TR, Hoffman TE (2018) Understanding Ultrasensitivity in Liver 

Hepatocytes Exposed to Exogenous Environmental Compounds. Winter Q-BIO 2018 

(Maui, HI). 

 

Vick ZD, Hoffman TE, Hanneman WH (2018) Computational Simulation Analysis of 

Metronidazole Pharmacokinetics and Potential Neurotoxicity Correlations. Colorado 

State University 2018 Graduate Student Showcase (Fort Collins, CO). CVMBS Top 

Scholar Winner. 

 

Kamal F, Hoffman TE, Hanneman WH (2018) Benzalkonium Chloride Induces Ocular 

Inflammation: Understanding the Response Through Computational Modeling. Colorado 

State University 2018 Graduate Student Showcase (Fort Collins, CO). 

 

Hoffman TE, Acerbo ER, Carranza KF, Gilberto VS, Wallis LE, Hanneman WH (2019) 

Ultrasensitivity Dynamics of Diverse Aryl Hydrocarbon Receptor Modulators in a 

Hepatoma Cell Line. Winter Q-BIO 2019 (Kapolei, HI). 

 

Hoffman TE, Moreno JA, Legare ME, Hanneman WH (2019) Network Simulations 

Reveal Molecular Signatures of Resilience to Age-Dependent Stress and Tau 

Accumulation. Winter Q-BIO 2019 (Kapolei, HI). 
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