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ABSTRACT 

 

 

MANY HATS: INTRA-TRIAL AND REWARD-LEVEL DEPENDENT BOLD 

ACTIVITY IN THE STRIATUM AND PREMOTOR CORTEX 

 

Lesion, drug, single-cell recording, as well as human fMRI studies, suggest 

dopaminergic projections from VTA/SNc (ventral tagmental area/substantia nigra pars 

compacta) and cortically driven striatal activity plays a key role in associating sensory 

events with rewarding actions both by facilitating reward processing and prediction (i.e. 

reinforcement learning) and biasing and later updating action selection.    We, for the first 

time, isolated BOLD signal changes for stimulus, pre-response, response and feedback 

delivery at three reward levels.  This design allowed us to estimate the degree of 

involvement of individual striatal regions across these trial components, the reward 

sensitivity of each component and allowed for a novel comparison of potential (and 

potentially competing) reinforcement learning computations. 

Striatal and lateral premotor cortex regions of interest (ROIs) significant 

activations were universally observed (excepting the ventral striatum) during stimulus 

presentation, pre-response, response and feedback delivery, confirming these areas 

importance in all aspects of visuomotor learning.  The head of the caudate showed a 

precipitous drop in activity pre-response, while in the body of the caudate showed no 

significant changes in activity.  The putamen peaked in activity during response. 

Activation in the lateral premotor cortex was strongest during stimulus presentation, but 
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the drop off was followed by a trend of increasing activity as feedback approached.  Both 

the head and body of the caudate as well as the putamen displayed reward-level 

sensitivity only during stimulus, while the ventral striatum showed reward sensitivity at 

both stimulus and feedback.  The lack of reward sensitivity surrounding response is 

inconsistent with theories that the head and ventral striatum encode the value of actions. 

Which of the three examined reinforcement learning models correlated best with BOLD 

signal changes varied as a function of trial component and ROI suggesting these regions 

computations vary depending on task demand 
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1. INTRODUCTION 

 

How agents - human or otherwise - learn to associate sensory events with 

arbitrary actions has been extensively studied in the context of stimulus-response (S-R) 

tasks, in which an image becomes associated with a small number of possible responses, 

generally two, based on trial-by-trial feedback.     The input structures of the striatum 

(i.e., the ventral striatum, the head and body of the caudate and the putamen), in 

conjunction with the dopaminergic projections from the ventral tagmental area/substantia 

nigra pars compacta (VTA/SNc) into the striatum, are important in facilitating this 

learning process.  While each of the striatal input structures themselves subserve distinct 

computational roles (reviewed briefly below), direct neuronal recordings in non-human 

animals show they also display distinct intra-trial firing patterns centered around stimulus 

presentation, pre-response, during and after response as well as before and during 

feedback delivery.  These differential patterns suggest that even in the context of a single 

trial, striatal subregions carry out unique computations.  No human work to date has 

analyzed these patterns in the context of whole brain fMRI imaging, nor has any work of 

which the authors are aware considered how these patterns are affected by reward-level.   

Reward-level is relevant as much previous work has implicated the striatum and its 

dopamine efferents as playing a key role in reward valuation and processing (M R 

Delgado, L E Nystrom, Fissell, Noll, & J A Fiez, 2000; John O'Doherty et al., 2004; Bray 

& J P O'Doherty, 2007; Rodriguez, Aron, & R.A Poldrack, 2006). 

The first goal of this study was to examine how the different striatal regions and 

premotor cortex are recruited during stimulus, pre-response, response, feedback and how 
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activity is modulated by different reward values (verbal feedback, low monetary, and 

high monetary) during these periods .   By employing a rapid 1 sec TR and limiting the 

imaging window we were able to isolate BOLD signal changes for each of these periods.   

Combined with anatomically based regions of interest (ROIs) this approach allowed for a 

global quantitative assessment of striatal and premotor involvement throughout 

visuomotor learning.  The putamen peaked in activity during response. Activation in the 

lateral premotor cortex was strongest during stimulus presentation, but the drop off was 

followed by a trend of increasing activity as feedback approached.  Both the head and 

body of the caudate as well as the putamen displayed reward-level sensitivity only during 

stimulus, while the ventral striatum showed reward sensitivity at both stimulus and 

feedback.  The lack of reward sensitivity surrounding response is inconsistent with 

theories that the head and ventral striatum encode the value of actions.  

Secondly, as discussed in detail below, the putamen plays an important role in 

response selection and while the head and body of the caudate are important for the more 

abstract category selection.  However nearly all work to date (however see (Xue, 

Ghahremani, & Russell A Poldrack, 2008)) has treated response and category selection a 

singular events.  As a result, we employed a task design that decoupled category selection 

(i.e. the response labels or names) from the response itself.  Via a reinforcement learning 

model based analysis, for the first time this, allowed us to firectly measure the sensitivity 

of striatal regions both to both stimulus-response and stimulus-category associations, as 

well as to consider a novel alternative model that responses are associated only with 

feedback independent of the initial stimulus.  This last model is simplified theoretical 

interpretation of the action-value tunings in the dorsal striatum that have been previously 
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reported (Lau & Glimcher, 2007).  Surprisingly, we observed that correlations with either 

of the three models was not limited to either intra-trial or specific striatal subregions.  

These results suggest that multiple associations are encoded in the striatum 

simultaneously and that striatal computations shift dynamically based on task demands. 

   

Functional striatal neuroanatomy.   

Striatal regions of interest include the ventral striatum (nucleus accumbens) the 

putamen (dorsolateral striatum) the caudate (dorsomedial striatum).  The latter was 

further subdivided into anterior (head) and posterior (body) regions consistent with 

previous work (Seger & C. M. Cincotta, 2005; Seger, 2007; Seger, E. J. Peterson, 

Corinna M Cincotta, Lopez-Paniagua, & Anderson, 2010).  Our premotor region of 

interest was identified on the basis of studies that observed bilateral (BA6) activity during 

stimulus-response tasks requiring finger responses (Seger & C. M. Cincotta, 2005; Seger 

et al., 2010; Sun, Miller, & D'Esposito, 2005).  This region, we presume, should present 

activity similar to dorsal premotor cortex typically examined in the monkey literature 

(Brasted & Wise, 2004; Buch, Brasted, & Wise, 2006) 

The contributions of each striatal region to S-R learning are distinct, as each is 

thought to belong to independent cortico-strital loops.  The motivational loop connects 

the orbital frontal cortex (OFC) and the antertior cingulate to the ventral striatum.  

Studies in both animal models (direct neuronal recordings) and in human subjects (fMRI 

and PET) have implicated the ventral striatum in both the processing and expectation of 

feedback as well as perhaps encoding the value of actions (M R Delgado, Locke, Stenger, 

& J A Fiez, 2003; Roesch, T. Singh, Brown, Mullins, & Schoenbaum, 2009; John P 
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O'Doherty, Peter Dayan, Karl Friston, Critchley, & Raymond J Dolan, 2003; Seger & C. 

M. Cincotta, 2005).  This role is subserved through connections to the orbital frontal 

cortex (OFC) and anterior cingulate (ACC), which encode the absolute value of sensory 

information and error or conflict monitoring respectively (J. O'Doherty, Kringelbach, 

Rolls, Hornak, & Andrews, 2001; Seger, 2008; Quilodran, Rothé, & Procyk, 2008; 

Grafton, Schmitt, Horn, & Diedrichsen, 2008; Rudebeck et al., 2008). 

The head of the caudate participates in executive associative loop, where it is 

thought to play role both feedback anticipation and processing, especially of the cognitive 

type (e.g. money as opposed to food rewards), given its connections to dorsolateral 

prefrontal cortex (Shohamy et al., 2004; Seger & C. M. Cincotta, 2005). It and may also 

play a role in gating working memory contents (Randall C O'Reilly, 2006; Mars & Grol, 

2007) and in causal inference (Tanaka, Balleine, & John P O'Doherty, 2008).   Unlike the 

head, the body of the caudate acts in the context of the visual loop, connecting the ventral 

visual path to both the visual and pre-motor cortices where it thought to play a role in 

both linking visual information to motor actions as well as in visual categorization and 

visual learning tasks (Ashby & Maddox, 2005; Seger & C. M. Cincotta, 2005). 

The putamen, as part of the motor loop, interacts with premotor cortex, the SMA 

(supplementary motor area) and portions of the parietal cortex to select both motor plans 

and/or specific actions (Shohamy et al., 2004; Seger, 2008).  In this circuit the pre-motor 

cortex acts (in another network with both frontal and parietal regions) to represent 

potential movements as well as to prepare motor plans (Toni, Thoenissen, & Zilles, 2001; 

Ueda & Kimura, 2003). 
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Striatal recruitment across trial phases and reward levels. 

Single-unit recordings of phasically active neurons (PANs) in non-human animals 

as well as human neuroimaging suggest that striatal activity increases at several distinct 

times inside single trials.  Activity changes are generally observed following stimulus 

presentation, pre-response, at and after response and during feedback delivery.  It is 

thought these bursts subserve distinct (often controversial) functional roles which may be 

subserved by semi-independent neuronal populations (Seger, 2008; Houk et al., 2007; 

Barnes, Kubota, Hu, Jin, & Graybiel, 2005; Bar-Gad, Morris, & Bergman, 2003).  For 

example, reward sensitive neurons were shown by Lau and Glimcher (2008) to be distinct 

from the pre and post-response neurons.  While Schmitzer-Torbert et al (2004) reported 

both spatial feature and stimulus-response mappings and Xue et al (2008) reported 

stimulus-label mappings along side stimulus-response mapping, though the former 

elicited greater activation. 

During stimulus presentation bilateral burst firing has been consistently reported 

across all regions of the striatum (both dorsal and ventral), as well as in dorsal pre-motor 

cortex, (Brasted & Wise, 2004; Hadj-Bouziane, Meunier, & Boussaoud, 2003; Buch et 

al., 2006) but not without exception;  Buch et al (2006) observed no stimulus related 

putamen activity.  The degree of activity during stimulus presentation in these same 

regions has been positively correlated with prior reward history in some, but not all, 

laboratories (Lau & Glimcher, 2008; Hollerman, Tremblay, & W. Schultz, 1998; Brasted 

& Wise, 2004; Buch et al., 2006).  Human fMRI experiments have additionally shown 

that stimulus-related BOLD changes in both ventral and dorsal striatum correlate with 

prior reward history as well as reward valence or event salience or both (Knutson, C M 
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Adams, G W Fong, & D. Hommer, 2001; M R Delgado et al., 2003; Zink, Pagnoni, 

Martin, Dhamala, & Berns, 2003; Zink, Pagnoni, Martin-Skurski, Chappelow, & Berns, 

2004; Cooper & Knutson, 2008).  Activity at stimulus has also been associated with 

novelty or in other studies increasing behavioral performance (Wittmann, Nathaniel D 

Daw, Seymour, & Raymond J Dolan, 2008; Toni et al., 2001).   However dorsal activity, 

as opposed to ventral, is contingent on the presented stimuli having behavioral relevance 

(Tanaka et al., 2008; John O'Doherty et al., 2004; Yin, Ostlund, & Balleine, 2008). 

In the pre-response period -- after stimulus onset leading up to responding 

sometimes including presentation of a pre-response cue and/or a “go” signal -- activity in 

the dorsal caudate is tightly clustered around response, much more so than either putamen 

or premotor (Buch et al., 2006). Others have reported that caudate activity is correlated 

with the reward history of the selected action (Lau & Glimcher, 2008), but again this is 

not always observed (Hadj-Bouziane & Boussaoud, 2003; Brasted & Wise, 2004).  

Putamen activity reached its maximum value following response, and showed a much 

broader overall tuning than the dorsal premotor cortex which increased throughout this 

period as well, reaching its maximum just prior to response followed by a rapid decline. 

The single neuroimaging (fMRI) study of which are aware which attempted to isolated 

pre-response and response-related activity found no significant striatal activity, however 

increases in dorsal premotor cortex (pre-response) and motor cortex (at response) were 

observed (Toni, Schluter, Josephs, K. Friston, & Passingham, 1999).  The lack of 

observed striatal activity was likely due to inadequate (repetition time = 6 sec).  All 

reports show activity leading up to response is tightly correlated with correct responding 

with incorrect responses showing no significant, above baseline, activity (Buch et al., 
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2006; Hadj-Bouziane & Boussaoud, 2003; Brasted & Wise, 2004; Lau & Glimcher, 

2008).  There are however conflicting reports on how activity changes with learning 

during this period.  Hadj-Bouziane et al (2003), reported no significant striatal or 

premotor activity until behavioral responses had plateaued, unlike Lau and Glimcher 

(2008) who showed the opposite pattern.   

In the post-response phase (defined as the time from approximately half a second 

after response execution to reward delivery, also known as pre-reward) dorsal putamen 

and caudate activity steadily increase, likely due to reward anticipation, whereas dorsal 

premotor cortex typically shows no activity (Buch et al., 2006; Hadj-Bouziane & 

Boussaoud, 2003; Brasted & Wise, 2004).     

Cellular recordings of reward delivery and the subsequent period are 

characterized by sharp spiking activity throughout premotor cortex and the striatum, 

followed by an rapid decline in dorsal premotor, and a comparatively extended decline in 

the putamen and caudate (Buch et al., 2006; Hadj-Bouziane & Boussaoud, 2003; Brasted 

& Wise, 2004; Barnes et al., 2005).  Human imaging experiments have confirmed both 

dorsal and ventral striatal response for a variety of rewards: verbal, monetary, and social 

(Seger & C. M. Cincotta, 2005; Rodriguez et al., 2006; Cooper & Knutson, 2008; Izuma, 

Saito, & Sadato, 2008; Montague, King-Casas, & J. D. Cohen, 2006).    Additionally 

head of the caudate activity has been shown to be modulated by reward valence and 

magnitude (M R Delgado et al., 2003) with activity in only that striatal region increasing 

in the presence of feedback when compared to observational learning (Corinna M 

Cincotta & Seger, 2007).  The bulk of studies on feedback delivery have been focused on 

how reward is processed, with the dominate model being the reward “prediction error 
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hypothesis”.  Consistent with human fMRI work on reward processing (Haruno & 

Kawato, 2006), all reports show a (sometimes weak) correlation in firing rates with either 

subjective value, or the difference between subjective value and the actual reward, known 

as a reward prediction error (RPE). 

 

Reinforcement learning and the striatum.   

The second goal of this study is to further refine our understanding of the type and 

nature of the computations carried out in the striatum and lateral premotor cortex through 

the use of reinforcement learning models.  We fit these models to the subjects behavioral 

data and then regressed them onto the BOLD data.  Previous research has found that two 

reinforcement learning measures, prediction error and reward prediction, describe activity 

in the ventral and dorsal striatum, respectively (Seger et al., 2010). The current design 

allows for two extensions of previous work.  First, we constructed separate models that 

could, for the first time, distinguish response selection from category selection.  Model 

SO (stimulus-outcome) estimated the value (“Q”) of the two category label options 

associated with each of the eight stimuli.  Model SR (stimulus-response) provided an 

estimate of the relative value of the two possible motor responses (right hand button press 

vs left hand button press) associated with each of the stimuli.  Model RF (response-

feedback) estimated the value of the two responses independent of the stimuli.  Second 

by examining these models within the stimulus, pre-response, response and feedback 

periods we can gain novel insight into the dynamic computations performed within  

striatal and premotor regions. 
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As discussed in above PANs in striatum are active intermittently throughout 

stimulus presentation, before after and during response as well as before during and after 

feedback.  During feedback presentation, and under some circumstances during stimulus 

presentation, the dopamenergic projections from the substantial nigra pars compacta 

(SNc) and ventral tagmental area (VTA) lead to widespread but rapid (phasic) changes in 

dopamine concentration in both the ventral and dorsal striatum.    Schultz (1992) initially 

observed that these phasic firing patterns were similar to the scalar reward prediction 

errors (RPE) produced in models of reinforcement learning. In the intervening years 

many of these similarities were confirmed in both animal models and human fMRI: an 

expected reward that met expectation was met with no change to the base firing rate, 

while a greater than expected reward lead to burst of activity, while a less the expected 

reward lead to depression in activity (Mirenowicz & W. Schultz, 1994; Mirenowicz & 

Wolfram Schultz, 1996; Montague, P. Dayan, & Sejnowski, 1996).  Additionally, 

SNc/VTA phasic activity back-propagates from reward delivery to stimulus presentation 

-- a key feature of the RPE in temporal difference (TD) reinforcement learning 

algorithms (D'Ardenne, McClure, Leigh E Nystrom, & Jonathan D Cohen, 2008; Roesch, 

Calu, & Schoenbaum, 2007).  There is also limited data suggesting RL models are 

predictive of non-human animals’ choice behavior (Hampton & John P O'Doherty, 2007). 

The RPE hypothesis has also been extended to incorporate SNc/VTA phasic 

activity observed following presentation of novel stimuli (Kakade & P. Dayan, 2002; 

Guitart-Masip, Bunzeck, Stephan, R. J. Dolan, & Duzel, 2010; Wittmann et al., 2008) as 

well as to explain reward anticipatory firing  via an average reward prediction error 

(Knutson, Charles Adams, Grace Fong, & Daniel Hommer, 2001; Knutson & Wimmer, 
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2007). Another variation allowed for the observation of simultaneous neural 

implementation of model-free and model-based reinforcement learning (Gläscher, Daw, 

Peter Dayan, & John P O'Doherty, 2010).  Alternative but reconcilable accounts have 

also been offered that allow for dissociation of first and second order conditioning as well 

as pavlovian to instrumental transfer (R. O'Reilly, Frank, Hazy, & Watz, 2007). The RPE 

hypothesis has also been incorporated into theoretical accounts of motivation (Peter 

Dayan, 2007) and addiction (Redish, 2004).  However observed phasic changes in 

SNc/VTA related to reward uncertainty (Christopher D Fiorillo, Tobler, & Wolfram 

Schultz, 2003) and optimistic firing, where the best choice not the selected choice is 

signaled (Roesch et al., 2007) have yet to be theoretically incorporated.  The classical 

definition of reward also seems inadequate to describe the observed responses during 

goal achievement in humans (Tricomi & Julie A Fiez, 2008) and the phasic response 

when rats view action movies (Blatter & Wolfram Schultz, 2006).   

The RPE hypothesis has been directly challenged.  Tracer studies in non-human 

animals suggest limited direct input from visual areas prevents the VTA/SNC from 

rapidly receiving the detailed visual information necessary for reward processing; for a 

RPE to be calculated precise timing is required (Dommett et al., 2005).  On the basis of 

this data critics have argued for a saliency interpretation of dopamine phasic activity (P. 

Redgrave, Gurney, & Reynolds, 2007).  A saliency detection system (how relevant is 

current sense information relevant to behavior) it is argued requires less detailed visual 

information.  This saliency interpretation is supported by a phasic response in SNc/VTA 

and the ventral striatum in response to salient but non-rewarding visual stimuli (Zink et 

al., 2003; Zink et al., 2004; Zink, Pagnoni, Chappelow, Martin-Skurski, & Berns, 2006).  
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However saliency fails to account for activity in these same regions when either positive 

or negative rewards are omitted, equally salient events that lead to opposite neural 

responses (D'Ardenne et al., 2008; John P O'Doherty, Buchanan, Seymour, & Raymond J 

Dolan, 2006).  The concept of saliency itself requires further refinement.  How to define 

and objectively measure the saliency of events remains unclear.  Additionally, recent 

work has shown that while there is indeed a tight time window in which individual 

SNc/VTA cells fire, these windows are distributed across a temporal spectrum which 

may alleviate the theoretical need for a precise singular temporal response (C. Fiorillo, 

Newsome, & W. Schultz, 2008).    

Besides the RPE the other output from a reinforcement learning model is an 

estimate of total future reward (denoted here as Q) for a given action given the current 

context (known in the RL literature as a state).  Q or subjective value correlated activity 

has been reported in putamen, the head of the caudate, and the ventral striatum during 

stimulus presentation as opposed to feedback delivery when this region displays RPE like 

activity (Haruno & Kawato, 2006; Seger et al., 2010; Knutson, Taylor, Kaufman, R. 

Peterson, & Glover, 2005; Kable & Glimcher, 2007; Yacubian et al., 2006),  Dorsolateral 

prefrontal cortex activity has also been correlated with (diminishing) value in a delayed 

reward task (Kim & Fukuda, 2008).  
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2. METHODS 

 

10 subjects (6 female, 4 male, all right handed, 23-41 years old) were scanned.  

Subject prescreening included those fluent in English, and excluded those with any 

history of psychiatric or neurological conditions, magnet-incompatible implants, 

claustrophobia, brain injury, or knowledge of written Japanese.   

 

Task   
Trials were divided into 4 parts: stimulus (stimulus/category-label presentation), 

pre-response, response (which included the post-response period) and feedback (see Fig 

1). Stimuli were black and white Japanese kanji characters presented in white on a black 

background (see Fig 1 for an example).  Stimulus presentation was followed by the 

category labels - an image of yellow and blue cartoon fish resting in the bottom corners.  

Participants were instructed to learn to associate each of the eight kanji images with one 

of the two category labels.  Category label presentation was followed by two response 

screens.  The first, a pre-response cue consisting of two yellow lines in the center of the 

screen, served to isolate response preparation/planning from responding and post-

response processing and/or reward anticipation. Responding took place during the 

response cue (two green arrows presented at the same location as the pre-response cue).  

Responses were made by a single button press using the response pads resting on the 

participants thighs placed under each hand.  For example, if the yellow fish was thought 

to be correct and it appeared on the right-hand side the subject would press the button 

with their right index finger on the pad held under their right hand. However, the location 

of the category labels would switch randomly from one trial to the next to prevent the 
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subject from learning the motor response (e.g., left or right hand) rather than the abstract 

category label (blue or yellow).  Response was followed by feedback then a fixation cross 

and the start of the next trial.  Image presentation times and a task diagram can be found 

in Fig 1. 

On each trial subjects were given one of four possible forms of feedback or 

reward: three positive reward levels and one negative.  Positive reward was either verbal 

with no monetary reward (“correct”), a small ($0.10) or a large ($0.50) monetary reward. 

Negative feedback was always verbal (“incorrect”); there were no monetary penalties. 

The feedback type depended on the stimulus:  for each subject, of the 8 stimuli, 2 were 

associated with the high monetary reward, 2 with the low monetary reward, and 4 with 

verbal feedback. Previous work, in another related task, has demonstrated these levels 

lead to detectable graded changes in the striatal BOLD response with higher activity for 

larger monetary rewards (Knutson et al., 2001; M R Delgado et al., 2000). 

In order to achieve adequate separation of the trial into its components the 

sluggish BOLD response requires a much longer acquisition window than the cellular 

recordings that inspired this work.  Post-pilot study interviews suggested that when the 

task featured only long (4-12 sec) delays between each trial components the task 

appeared subjectively artificial, as well as was boring to the point of frustration, leading 

to day dreaming and/or disinterest.  To counter this trials were divided into two temporal 

types - long and short.   Short trials were designed to follow a rapid time course (2.5-3 

sec), fast enough to require continuous attention.  The randomly interspersed long trials 

allowed for temporal separation of the BOLD signal into discrete trial components by 

introduction of variable delays, or “jitter”, between components. Long trials contained a 
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total intra-trial jitter (the variable time between each component of the trial) of longer that 

1500 ms, while short have an intra-trial jitter totaling less than 1500 ms.  Long trials 

comprised 45%  of all trials. The remaining 55% were short.  Both long and short trials 

were evenly distributed over the three reward levels for a total 80 trials per subject for 

low and high money conditions and 160 trials for verbal-only trials.  The duration of 

intra-trial (long and short) and inter-trial jitter (the length of the fixation cross) was 

sampled from three separate exponential distributions.  Mean jitter times were 3.6 s (ITI), 

2.6 s (long) and 0.3 s (short).  While the short condition was too short to allow for 

separation of trial components its inclusion prevented participants from developing  

confounding precise temporal expectation.  The distributions decay constants were 

chosen so that the resulting distribution’s closely resembled the ideal exponential 

distributions (Serences, 2004).  Only trials in which the participant responded correctly 

were included in the univariate fMRI analyses. 

 Subjects were pre-trained in order to familiarize them with the task and limited 

response window.  This task was identical to the task employed during fMRI imaging 

with the following modifications:  a single, non-monetary, reward level 

(correct/incorrect) was used.  If subject responded outside the response window (the 

green arrows) the trial immediately ceased.  Prior to beginning the training subjects were 

told any interruption in the trial sequence was the result of a response outside the 

assigned window.   During training, subjects completed only 10 trials of eight different 

stimuli.  The stimuli were kanji characters and didn’t reappear during fMRI acquisition. 
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Data acquisition and fMRI preprocessing.  

fMRI data collection was performed on a GE 3T magnet, with the following 

functional acquisition parameters: TE of 26 ms, a whole brain BOLD sampling rate (TR) 

of 1000 ms, resulting in a slice thickness of 4mm using a standard pulse sequence 

(gradient-recalled echo-planar imaging, abbreviated SPR-EPI).  In addition, whole brain 

high-resolution anatomical data was acquired at a resolution of 1.2 mm3, again using a 

standard pulse sequence (spoiled gradient recalled - SPGR).  Due to the memory 

limitations of the scanner the experiment was divided into 4 sections or scans (of about 

80 trials each) ranging in length from 12 to 14 minutes.  E-prime (Psychology Software 

Tools, Pittsburgh, PA, version 2) was used to control both stimulus presentation and 

behavioral recording, using rear-projection inside the scanner and an LCD monitor 

outside. In scanner responding occurred via two magnet compatible responses boxes.  

Responses during pre-training were made using the arrow keys on a standard QWERTY 

keyboard. 

In order to achieve the fast 1 sec TR, only partial brain functional data was 

collected, encompassing ventral striatum and extending dorsally to dorsal lateral 

premotor cortex (Fig. 2).   

fMRI data was preprocessed using standard methods, including rigid body and 

elastic (12) sub-volume motion correction, slice time normalization (spline fit), and 

temporal and spatial data smoothing using a high pass filter of 4 Hz an a Gaussian kernel 

full width at half maximum of 4.0 mm, respectively.   Finally, each participant’s high 

resolution anatomical image and functional data was normalized into Tailarach space 

(Talairach & Tournoux, 1988).  The hemodynamic response model (i.e. the “design 
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matrix”) was subjected to the same low-pass filtering as the functional data.  The BOLD 

data was subjected to auto-regressive (AR(1)) smoothing prior to GLM calculation to 

minimize false positives due to non-white noise (Smith, K. D. Singh, & Balsters, 2007). 

 

 Region of interest (ROI) analysis.   

Two hand drawn sets of ROIs covering the ventral striatum (“ventral str”), the 

head of the caudate (“head”), the body of the caudate (“body”), the putamen, and the 

lateral pre-motorcortex (“lat PreMotor”) were created based on the subjects combined 

Tailarach normalized high-resolution anatomical data.  Due to the imperfect nature of the 

alignment process ROI definitions were conservative, including only voxels that clearly 

overlapped across subjects. To ensure adequate separation of the head and body of the 

caudate they were separated by two voxels. Initially unilateral ROIs were created but 

early analyses showed strong consistency between the two hemispheres, as a result all 

analyses were carried out bilateral ROIs combining homologous regions in both right and 

left hemispheres.  Changes in activity across trial components were statistically assessed 

with pair-wise Bonferroni-corrected t-tests, unequal variance assumed. 

 

Reinforcement learning model construction.  

Using the behavioral and fMRI data we constructed three distinct temporal 

difference (SARSA - (Sutton & Barto, 1998)) reinforcement learning models that 

considered the distinct associative relationships.   Each model is identical in overall 

mathematical form (Eq. 1 and 2 discussed below) and differed only in which theoretical 

associations were reinforced.  Said another way, the behavioral data input into each 
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model is constant but the data was differentially factored based on the proposed 

associative relation (i.e. the state-space). Model 1 (denoted as SO) proposed that the 

relationship between the abstract stimulus and the category label is reinforced.  Model 2 

(denoted as SR) proposed that the relationship between the abstract stimulus and the 

response is reinforced.  Model 3 (denoted as RO) proposed that only the value of the two 

possible responses are reinforced independent of proceeding abstract stimuli (i.e. 

independent of the state or context).   Each model was constructed using trials from all 

three feedback levels but treating the received rewards as equivalent (i.e. binary).  

Equivalency among rewards is a common assumption in all reinforcement learning 

models (Sutton & Barto, 1998).  An control analysis incorporating only verbal feedback 

trials lead to a nearly identical pattern of results.  Two of the regression constants in this 

control analysis trended towards significance (p=0.11) and became significant when all 

trials were used, suggesting incorporating all trials in this fashion lead only to increased 

power. 

 

 

 

In Eq 1 Qt1 represents the current estimate, Qt0 is the estimate from the previous 

time-step, rt is the reward (either 0 or 1) and δ is the difference between the previous and 

current expectations plus the current reward.  Eq 2. the old value estimate is updated at 

the end of the current trial by adding current estimate to the δ multiplied by the learning 

constant (α).  Alpha was set, on subject-by-subject and model-by-model basis, using log-



 

   18 

likelihood parameter optimization where choice probability was estimated using the 

sigmoidal “soft-max” function (Pessiglione, Seymour, Flandin, R J Dolan, & Frith, 2006; 

Sutton & Barto, 1998).  The soft-max function has a single free parameter (β). Average 

and standard deviation of parameters for each model:  SO - α=0.17 (0.08), β=4.48 (0.40); 

SR: α=0.32 (0.17), β=4.33 (1.15); RO: α=0.34 (0.07) , β=4.47 (.26).   As the average 

parameters varied between models, and fits varied between subjects, it is possible that 

differences between models described below were the result of parameter selection.   To 

control for this, each model was rerun for each subject using the model average α value, 

which controlled for inter-subject variability, and the average α for all models and 

subjects.  Neither altered the significant findings, however both did decrease the value of 

several regression constants suggesting the individual fit approach lead to increased 

power.  For typical model output see Fig 7. 

   

Parametric regression.   

The Q and RPE (i.e., δ) values from the SO, SR, and RO were mapped into 

separate HRF models of the BOLD response inside BrainVoyager (v2.1.3).  Each HRF 

estimate for each of the three models included regressors for the Q value matching 

stimulus, pre-response, and post-response, while the RPE was regressed against the 

feedback period.  Like the univariate models described in analysis 1 these models were 

the subjected to a 4 Hz high-pass filter to match preprocessed BOLD data.  These HRF 

estimates for each model and component (e.g. Q(SO), Q(SR) and Q(RO)) were 

orthgonalized with respect to each other and the univariate HRF estimates described in 

above (Matlab R2007a using BVQXtools v0.8c).  All general linear model (GLM) 
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analysis was done using a fixed effects (FFX) model as opposed to the random effects 

(RFX) model employed in the univariate analysis.  The RFX model, with its reduced 

sensitivity but capacity for generalization beyond the subject pool, showed no significant 

effects in these analysis.  Additionally due to the rapid learning observed in this task, 

only BOLD data from scan 1 was analyzed as once learning has plateaued the Q and RPE 

values approach one (which is identical to the univariate analysis regressors) and zero 

respectively.     
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3. RESULTS 

 
The results section is comprised of three subsections.  The behavioral results, the 

univariate fMRI analyses which examined both the BOLD response for whole brain and 

the striatal and cortical regions of interest (ROI) across intra-trial components and 

reward-levels and the reinforcement learning model based (i.e., multivariate) analyses. 

 

Behavioral results   

Behavioral data was divided into 4 blocks, matching the fMRI data acquisition 

periods (scans).  Response accuracy was averaged across subjects and stimulus images 

for each scan (Fig 3, right).  Above chance learning was observed during scan 1 (78.8 %).  

By scan 3 learning had plateaued at 96%. Each individual's performance was consistent 

with the group mean, except for a single subject who showed somewhat delayed learning 

(48% accuracy in scan 1, but reaching 97% by scan 4).  Overall reaction times were 

nearly constant across scans (Fig. 3,  left).  This was expected, as the 700 ms response 

window was near the approximately 370 ms floor observed during pilot studies.  A 4.4%  

response miss-rate (i.e. when a subject failed to respond during the response window) 

was observed. Missed response trials were excluded from both behavioral and fMRI 

analyses. 

 

Univariate fMRI: whole brain.   

A whole-brain analysis controlling for inter-subject variability (i.e. random 

effects, “RFX”) over both reward-levels and trial components (denoted as all>base) 

revealed activation across  bilateral striatum, lateral premotor cortex, posterior cingulate 
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cortex (PCC), anterior cingulate cortex (ACC), insula, lateral dorsal prefrontal cortex 

(PFC), insula, among others (all contrasts employed a threshold of p < 0.01, FDR 

corrected).  Reward-level independent activations (HLV>base) for the individual trial 

components was similarly broad.  The stimulus, pre- and post response periods showed 

significant activation of the dorsal striatum, PPC, insula, lateral premotor cortex, 

posterior and anterior parietal cortex, and deactivation in dorsomedial PFC; Activity did 

appear to decrease pre-response in the head and posterior parietal.  Post-response 

activation in the lateral PFC was observed in addition to the  areas listed above.  During 

feedback delivery ACC, dorsolateral PFC, ventral as well as dorsal striatal activity was 

observed. Reward level dependent contrasts for stimulus presentation were nearly 

identical to the reward-independent contrast for this period while no reward sensitivity 

was displayed pre- or post-response.   Reward-level sensitivity was displayed during 

feedback robustly in the ventral striatum, with small clusters (<10 voxels) also appearing 

the head of the caudate and putamen.  Overall, the observed patterns of activity are highly 

consistent with previous fMRI studies (Seger & C. M. Cincotta, 2005; Knutson et al., 

2001) suggesting the task and fMRI data are sound. 

 

Univariate regions of interest analysis.   

ROI analyses consisted of two parts - (1) reward-level independent (all the reward 

levels compared to the baseline condition) and (2) reward-level dependent (the two 

monetary reward levels contrasted to verbal-only). 
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Univariate reward-level independent activity (ROI).   

Significant activation across trial components was observed within all ROIs (Fig. 

4, left), excepting the ventral striatum (which however did show reward-level dependent 

activity, see below).  Across the trial components several of the ROIs showed distinct 

patterns of recruitment (Fig. 4, right).  The head of the caudate (“head”) showed a 

significant (t(4) = 3.26, p < .05) drop in activity in the response period as compared to the 

other component.  The body of the caudate was recruited to a consistent degree across all 

trial components.  The putamen was significantly elevated in activity post-response (t(4) 

= 5.77, p < .05).  Lateral premotor cortex was most significantly more active during 

stimulus onset compared to pre-response ((t(4) = 4.23, p < .05) or response (t(4) = 2.81, p 

< .05).   

To examine any learning related changes, reward-level independent activity was 

examined separately for each of the four scans.  The overall pattern across ROIs was that 

activity tended to decrease with learning stimulus, pre-response and feedback periods, 

whereas activity in the post response periods was relatively constant (Fig 5).  

Additionally, the rate of decline appeared to vary by region, especially during stimulus 

presentation, with a stronger decline in the striatal regions than in the premotor ROI. 

 

Univariate reward-level dependent activity (ROI).   

Across trial components, all ROIs showed significant reward level dependent 

activity, with greater activity for monetary than verbal rewards (Fig 6, left).  Analysis of 

the individual trail components across ROIs (Fig 6, right) revealed that reward level only 

affected activity at some points during the trial. No ROIs showed reward-level dependent 
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activity in either the pre or post-response periods.  All striatal ROIs showed significant 

activity at stimulus onset.  In addition, the ventral striatum was also recruited during 

feedback.  Although the premotor cortex showed an overall reward level activity effect, 

when examined across trial components none of the effects reached significance.  

Overall reward-level dependent effects were weaker for each ROI when compared 

to the reward-level independent effects.   However, the limited amount of detectable 

reward-level dependent activity is likely not due to insufficient power. In the reward level 

independent condition stimulus related activity in both the head and body of the caudate 

was as strong as that observed pre-response.  Additionally activity in the was strongest in 

the putamen post-response and during feedback in lateral premotor region, therefore these 

time periods should be most sensitive to reward-level dependent changes.  There was 

insufficient power to examine possible learning (i.e. by scan activity) and reward level 

interactions. 

 

Model–based regions of interest (ROI) analysis. 

During stimulus presentation only model SO positively correlated with BOLD 

changes in any striatal region; SO correlated with activity in both the body of the caudate 

and the lateral premotor area.  Pre-response,  model SR and RF positively correlated with 

activity in the lateral premotor cortex, while model SO displayed a negative correlation 

with activity in the head and body of the caudate, the putamen and the lateral premotor 

ROI. Pre-response there was also a trend (p=0.073) towards a positive relation between 

model SR and the activity in the body of the caudate.  Post-response,  both models SO 

and RF correlated positively with putamen activity (each accounting for approximately 
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equal variance).  Both the body and lateral premotor were negatively correlated with 

model SR (Fig 8.).  

During feedback delivery, the RPE from model SO significantly explained 

variance in the ventral striatum and lateral premotor cortex (Fig 9.).  No other region or 

model reached or approached the significance threshold. 
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                                              4. DISCUSSION 

 

We scanned subjects while they learned to associate 8 abstract images with two 

category labels (blue fish or yellow fish) via the feedback received at the end of each 

trial.  By employing a jittered spacing between putative trial components (stimulus, pre-

response, post-response, feedback) and a rapid 1 sec sampling time (TR) we were able to 

separately model, and thus isolate, the BOLD response for each trial component and 

measure the change in that response across three reward levels.   We then estimated the 

average activity for several regions of interest (ROIs) known to be important in 

visuomotor learning in order to assess how involved that brain region is (on average) at 

during each trial component and how that activity changes with learning.  We also 

performed a model-based GLM analysis comparing the output of three reinforcement 

learning models to the BOLD data for each of the intra-trial components. 

 

Head of the Caudate 

When all reward levels (“correct”, $0.10 and $0.50 abbreviated as HLV>base) 

were compared to the implicit baseline, activity in the head of the caudate dropped 

significantly at response, rising again during feedback delivery suggesting that perhaps 

reward anticipation (Knutson et al., 2001) or response working memory (Hadj-Bouziane 

& Boussaoud, 2003; Brasted & Wise, 2004) plays a more limited role in overall head 

function, or at least requires less neural activity to implement.  The observed reward-level 

dependent (“HL>V”) response during stimulus is consistent with the value prediction 

account (Hollerman et al., 1998; Lau & Glimcher, 2007) as well as reports of 
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motivational modulation (Mauricio R Delgado, Li, Schiller, & Phelps, 2008).  However 

the lack of reward sensitivity pre-response is inconsistent with action value accounts as is 

the lack of a significant correlations between any of the reinforcement learning models 

and BOLD signal changes (Lau & Glimcher, 2007, 2008; Seger et al., 2010) .  However 

as correct responses changed on a trial by trial basis while the category responses 

remained constant, these data raise the possibility that action value tuned PANs require 

direct and differential reinforcement to discriminate among competing actions.  The lack 

of reward-level sensitivity in the post-response/pre-feedback period in both the head of 

the caudate and the ventral striatum as well as the reward-level sensitivity observed 

during feedback delivery is the inconsistent with a reward anticipation account striatal 

function (Knutson et al., 2001; Knutson, G W Fong, C M Adams, Varner, & D. Hommer, 

2001), but is consistent with previous reports of an interaction between reward magnitude 

and feedback delivery (M R Delgado et al., 2000). The lack or reward sensitivity pre and 

post response is consistent with a salience account of head function (Zink et al., 2003; 

2004; 2006).  The reward level sensitivity at stimulus throughout the striatum and at 

feedback presentation in the ventral striatum does not necessarily contradict a saliency 

account as responding to both saliency and reward-level during feedback delivery has 

been previously observed (Cooper & Knutson, 2008). 

 

Body of the caudate 

Unlike the head the body of the caudate exhibited a nearly constant level of 

activity in reward-level independent contrasts, suggesting perhaps a consistent 

computational role. Like the head of the caudate, this region exhibited a reward-level 
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sensitivity only at stimulus onset (for a discussion of this finding see the head of the 

caudate section above).  The body was however sensitive to model SO at stimulus -- 

consistent with previous research in our lab indicating that body of the caudate in the 

visual loop links stimuli with appropriate category based responses (Seger & C. M. 

Cincotta, 2005; Seger et al., 2010).    A trend towards pre-response activity for model SR 

in the body is intriguing as it hints that the body might associate stimuli directly with 

responses and not only with the abstract level category labels. 

 

Putamen 

Reward independent contrasts in the putamen show a strong increase in pre-

response compared to all other trial components highlighting this region’s role in action 

selection.  However no reward-level response was observed in this pre-response period. 

The putamen positively correlated pre-response with both model SO and model RF 

indicating both a context dependent response selection and context independent overall 

biasing towards a particular response. Note that Haruno and Kawato (2006) and Seger et 

al (2010) found putamen associated with Q also. However due to inadequate temporal 

resolution in these studies they could not localize the temporal origin of the BOLD signal 

changes.  The lack of reward-level response combined with the significant model derived 

correlation paint a more nuanced view of putamen function.  In this view the overall 

value of the response is not signaled, but the relative value of the category and the 

context-independent response are. 

.  
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Ventral striatum 

The reward-level dependent activity in the ventral striatum at both stimulus and 

feedback  is consistent with previous reports of this regions importance in pavlovian and 

affective valuation (M R Delgado, Stenger, & J A Fiez, 2004), reward anticipation 

(Hollerman et al., 1998; Knutson et al., 2001) and feedback processing (Shohamy et al., 

2004; John P O'Doherty et al., 2003).  The ventral striatum was sensitive the Q value if 

model RF at response, and the RPE of model SO during feedback.  This indicates that 

ventral striatum is sensitive to reward value of particular actions (Lau & Glimcher, 2008; 

Roesch et al., 2009) as well as confirming previous research stating that it is sensitive to 

RPE integrating stimulus and outcome (Montague et al., 1996; D'Ardenne et al., 2008; 

Seger et al., 2010). 

 

Lateral premotor 

The significant increase in reward-level independent activity observed as stimulus 

onset where the abstract categories must be mapped onto the variable is consistent with 

the lateral pre-motor cortex’s established role in motor planning.  However following the 

drop off pre-response there was a trend toward increasing activity as the trial progressed, 

implying this region may play an unappreciated role in responding, feedback anticipation 

and processing. However while it is unclear the function of this activity, it is likely not 

involved in estimating or processing relative monetary value as no reward-level 

dependent responses were observed.  Lateral premotor cortex’s correlations to the 

learning models was complex.  Model SO correlated positively at Stimulus -- indicating 

need to integrate stimulus / whole context information into response selection and the SO 
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RPE at feedback, indicating possible updating of values. The other two models (SR and 

RF) correlated in the pre-response period, indicating that as the response is closer to 

being selected, other considerations come into play in place of the high level context. 

 

Significant negative correlations in the multivariate analyses. 

In addition to the positive correlations model SO at stimulus and model SR at 

response were negatively correlated with bold signal changes.  It difficult to interpret a 

negative correlation in a parametric regression model. That several ROIs, many of which 

showed otherwise different patterns of activity, demonstrated this negative correlation 

suggest a common computational may occur in each.   Though the nature of this 

computation is unclear. 
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5. CONCLUSIONS 

   

The patterns of activity across the two analysis approaches deepen our 

understanding of the contributions of each striatal region and the premotor cortex to 

visuomotor learning. Ventral striatal activity was characterized by reward-level 

sensitivity at stimulus and feedback, and by its sensitivity to reward prediction error in 

the stimulus category (SO) model.  These patterns of activity are consistent with the 

putative role of the ventral striatum in reward (value) prediction, affect, and reward 

processing.  Activity in the ventral striatum decreased across time faster than in any other 

region suggesting its importance diminishes with learning.   

 Activity in the dorsal caudate (head and body) extended across all phases of 

stimulus-response learning.  Reward level modulated activity in both of these caudate 

regions at  stimulus onset, suggesting a common role in predicting the immediate value of 

a stimulus.  However the body, but not the head, correlated with SO model’s category 

contingent value estimate during stimulus presentation, implying a role in category 

selection or visual categorization for the body not shared with that of the head.   In 

addition, reward independent activity in the head was significantly decreased during the 

pre-response time period, unlike the body’s sustained activation. 

The putamen was active across all phases of the stimulus-response trial, but 

peaked in activation in the response phase.  This suggests that the putamen plays a 

stronger role in response selection or response processing then category selection or 

feedback processing. This response related activity displayed no sensitivity to reward 

magnitude, though the putamen was sensitive to reward magnitude at the time of stimulus 
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presentation.  Activity in the response phase in the putamen had a positive correlation 

with both model SO and RF suggesting that the putamen tracks both the value of the 

current category and the average value of the two responses independent of previous 

context. 

Lateral premotor cortex displayed the greatest range of activities; its functional 

role may be rather complex.  Lateral premotor cortex was significantly active across all 

phases of the trial.  Activity was greatest at the time of stimulus presentation: in addition 

activity at this time was correlated with the SO model suggesting either the value of the 

selected category is incorporated into this regions motor planning capabilities or this 

region plays a previously unappreciated role in category selection.  However , pre-

response activity was best described by two the models of response value (SR and RF), 

and was negatively related to the category model (SO), while activity at feedback was 

well modeled by the SO model’s RPE.   Whether this reflects reward or response-

outcome processing is unclear. 

In total these results are consistent with the notion that the both the striatum and 

lateral premotor cortex contribute separate, context dependent, calculations throughout 

visuomotor learning.   As such the competing views of striatal function may be 

reconcilable. What you find depends on when you look.   
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Fig 1.  Diagram of the behavioral task. 

 

 



 

   33 

 

 

Fig 2. Functional acquisition window.  Example data taken from Subject 1, scan, 

contrast: stim>base. 
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Fig 3.  Average accuracy (left) and reaction times (right) across fMRI scanning blocks 

(80/each) for all subjects (error bar: SE). 
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Fig 4: Reward-level independent ROI activation patterns abbreviated as “HLV>base”.  

Left. Overall activity, that is all components combined (error bars: SE).  Right.  Intra-

trial component activity (error bars: SE).  Units are the absolute arbitrary regression 

constants (i.e. Beta values) that reflect the degree of linear relation between the BOLD 

data and the HRF convolved model. Significance in figure legends is for the regression 

constants (Beta value). 
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Fig 5.  Time-course of BOLD signal changes for select ROIs at stimulus, pre and post-

response, and feedback. Activity patterns in body of the caudate were identical to those 

observed in the head (B. above).  Significance in figure legends is for the regression 

constants (Beta value). 
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Fig 6: Reward-level dependent ROI activation patterns abbreviated as “HL>V”.  Let. 

Overall activity, that is all components combined (error bars: SE).  Right.  Intra-trial 

component activity (error bars: SE).  Units are the absolute arbitrary regression constants 

(i.e. Beta values) that reflect the degree of linear relation between the BOLD data and the 

HRF convolved model. Significance in figure legends is for the regression constants 

(Beta value). 
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Fig 7. Typical out from the three reinforcement learning model (Subject 2) prior to HRF 

(hemodynamic response function) convolution and orthgonalization. 
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Fig. 8.  Regression analysis of Q values (the three reinforcement learning models (SO, 

SR, and RF) estimate of total future rewards) for stimulus, pre-response and post-

response BOLD data (scan 1).   
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Fig 9.  Regression analysis of the reward prediction error (RPE) for each of the three 

reinforcement learning models (SO, SR, and RF) for feedback related BOLD changes in 

scan 1. 
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