
THESIS 

 

 

 

EFFECTS OF HABITAT COMPLEXITY LOSS ON EASTERN SLOPE  

ROCKY MOUNTAIN BROOK TROUT POPULATIONS  

 

 

 

Submitted by  

Adam T. Herdrich 

Graduate Degree Program in Ecology  

 

 

 

In partial fulfillment of the requirements 

For the Degree of Master of Science 

Colorado State University 

Fort Collins, Colorado  

Summer 2016 

 

Master’s Committee: 

 Advisor: Dana L. Winkelman 

 David M. Walters 

 Ellen E. Wohl 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by Adam T. Herdrich 2016 

All Rights Reserved 

 

 

 

 

 

 

 



 

 

ii

ABSTRACT 

 

 

 

EFFECTS OF HABITAT COMPLEXITY LOSS ON EASTERN SLOPE  

ROCKY MOUNTAIN BROOK TROUT POPULATIONS  

 

 

Western U.S. rivers are currently influenced by legacy effects of reduced large wood 

(LW) loading and retention that has led to reduced in-stream habitat complexity. Historical land 

use practices such as tie-driving, snag removal, and beaver trapping have all contributed to 

declines in either input or retention of LW in mountain streams. Effects from these practices 

have persisted over a century after the activities ceased; suggesting streams have entered an 

alternative stable state.  The alternative state is characterized by loss of multi-thread stream 

reaches, reduced sediment and nutrient retention, steeper channel gradient, reduced pool volume 

and altered pool geometry.  The cumulative effects of these changes lead to narrower and 

shallower streams with higher width to depth ratios, and overall decreased stream and valley 

complexity.    

Using a few of the last remaining patches of old-growth forest on the Front Range of 

Colorado (USA), I compared population densities, individual growth rates, diet compositions, 

and annual prey consumption demand of Brook Trout Salvelinus fontinalis in streams across a 

gradient of wood volumes.  Brook Trout population size was sampled via multi-pass 

electrofishing and approximately 30 individuals at each site were sacrificed for growth and diet 

studies.  Individual growth was back-calculated from otolith sections, and diet composition was 

estimated from stomach samples collected at each site.  Average growth rates and diet 
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compositions were then combined in a bioenergetics model that provided an estimate of the 

amount of prey resources needed to support observed growth and population densities. 

Trout population density appears to be positively related to the number of pools, and 

standing stock biomass of aquatic insects.  The scale of measurement was an important 

consideration in predicting trout biomass.  At both the local (square-meter) and landscape (valley 

length) scales, standing stock biomass of aquatic insects was the best predictor of trout biomass.  

However, at the valley scale, the number of pools was important in predicting trout biomass in 

combination with of standing stock biomass of aquatic insects.     

Annual individual prey consumption demand did not differ between two sites with high 

and low wood volume and trout biomass.  Therefore, total prey demand at a site was determined 

by population density, and less so by physical habitat.  Between the two sites, however, diet 

compositions were significantly different during the summer season.  Fish at the high wood site 

were consuming more small aquatic insect larvae (e.g., Family Chironomidae and Simullidae) to 

support growth and fish biomass, whereas diet composition at the low wood site consisted of 

terrestrial insects (ants) and larger aquatic insect larvae.  

Individual growth rates of age-1 Brook Trout were negatively affected by increasing 

density.  However, growth for the largest and smallest individuals at each site was not affected 

by density.  The largest fish at each site are presumably dominant individuals, and can out 

compete all other individuals for optimum foraging positions regardless of density, and are 

therefore not affected by density.  While the smallest fish, presumably the most subordinate 

individuals, are outcompeted for resources at all densities, and are likewise not affected by 

increasing density. 
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 Large wood, in the correct geomorphic context, can drastically alter stream and valley 

habitat complexity.  My results suggest the pool habitat created by LW and available prey 

resources can dramatically increase trout populations.  However, the negative effects of historical 

land uses have persisted >100 years and a loss of aquatic animal production in mountain 

watersheds due to land use changes incurred over a century ago is occurring.   
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INTRODUCTION 

 

 

 

Factors that influence physical attributes of streams, such as the abundance and 

distribution of large wood (LW) and geomorphic features, are important determinants of 

salmonid population density and dynamics (Gowan and Fausch 1996a; Kellerhals and Miles 

1996; White et al. 2011).  In geomorphically unconfined stream valleys with intact old growth 

forests, LW can be recruited and retained in streams, resulting in multi-thread channel reaches 

with increased sediment and nutrient retention, shallower channel gradients, increased numbers 

of pools, and greater habitat complexity (Young et al. 1994; Nowakowski and Wohl 2008; 

Ruffing et al. 2015).  Physical habitat complexity can directly affect stream fish and insect 

communities by increasing species richness as well as increasing population sizes (Wallace et al. 

1995; Gerhard and Reich 2000; Scealy et al. 2007; Mažeika et al. 2008; Roni et al. 2008).  

Richmond and Fausch (1995) demonstrated that stable LW can form nearly 70% of pool habitat 

in streams flowing through undisturbed mountain forest systems.  Additionally, trout population 

density rapidly increased in response to pool habitat created by the addition of LW, and these 

increases persist over time (Gowan and Fausch 1996a; White et al. 2011).  It appears that LW in 

the appropriate geomorphic context creates habitats that stream salmonids prefer. Positive 

attributes of these habitats include lower velocity areas, under cover, that are directly adjacent to 

higher velocity currents that allow salmonids to minimize energy expended on swimming and 

predator avoidance and maximize prey encounter rates (Fausch 1984; Fausch 2014).   

Land use within watersheds has clear linkages to stream geomorphology and in-stream 

habitat characteristics (Keeton et al. 2007) and can exert considerable negative effects on these 

aquatic ecosystems (Allan 2004).  Historical loss of LW from Rocky Mountain streams and 
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reduced recruitment from riparian areas can be attributed to direct (e.g., logging and tie-driving) 

and indirect (e.g., extensive beaver-trapping) land uses (Wohl 2006), which have markedly 

changed mountain streams (Czarnomski et al. 2008; Mellina and Hinch 2009).  Tie-driving, the 

act of floating cut timber for railroad ties down streams during spring runoff, was extensively 

practiced in the Southern Rocky Mountains and directly reduced in-stream habitat complexity 

initially by loggers reducing channel complexity prior to floating logs, and from the logs 

themselves artificially straightening and scouring the channel (Young et al. 1994) further 

homogenizing channel form.  The reduction in recruitment and retention of LW in western U.S. 

streams has resulted in the reduction of multithread channel reaches, changes to stream structure 

and function, and reductions in habitat complexity (Young et al. 1994; Fausch and Young 2004: 

Nowakowski and Wohl 2008; Ruffing et al. 2015).  

Although these detrimental land use practices ceased almost a century ago, it appears that 

mountain streams are suffering from legacy effects of reduced LW-loading and storage that has 

led to an alternative state of reduced stream habitat complexity (Allan 2004; Ruffing et al. 2015).  

This alternative state is typified by the loss of multithread channel reaches, reduced sediment and 

nutrient retention, steeper channel gradient, reduced pool volume and altered pool geometry.  

The cumulative effects of these changes lead to narrower and shallower streams with higher 

width to depth ratios, and overall decreased habitat complexity (Young et al. 1994; Nowakowski 

and Wohl 2008; Ruffing et al. 2015; Livers and Wohl 2016).  In-stream retention of LW has also 

declined due to decreased roughness elements in streams (“debris roughness”; Wohl and 

Beckman 2014).  These features that foster LW entrapment are lost as wood-loading decreases 

(Collins et al. 2012).  Local factors, such as abrupt changes in stream width or depth and 

previously deposited pieces of LW can exert first-order control over whether or not a new piece 
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of LW will be retained in a stream reach (Abbe and Montgomery 1996; Braudrick and Grant 

2001).  As stream habitat is homogenized, logs are more likely to be exported downstream, as 

opposed to being recruited in a local reach, further increasing the resistance of a stream-riparian 

ecosystem to return to the pre-perturbation state. 

Natural loading rates of LW into streams and formation of logjams in mountain streams 

increase pool frequency and positively affect macroinvertebrate production, abundance, and 

community diversity (Wallace et al. 1995; Gerhard and Reich 2000; Lemly and Hilderbrand 

2000; Scealy et al. 2007).  Potential mechanisms that increase macroinvertebrates are increased 

area for colonization and refugia from predation (Everett and Ruiz 1993; Rolauffs et al. 2001; 

Schneider and Winemiller 2008).  Further, slower velocity areas interrupt longitudinal transport 

in streams and serve as localized sinks of carbon and nitrogen by increasing storage of organic 

and inorganic sediment (Ward and Stanford 1983; Arp and Baker 2007), creating 

biogeochemical hotpots in headwater streams that increase stream metabolism and animal 

production (Wallace et al. 1995; Schneider and Winemiller 2008; Hoellein et al. 2009).   These 

changes to prey resources benefit drift-feeding predators, such as trout, at higher trophic levels 

by contributing additional drifting prey resources not found in stream reaches lacking LW (Coe 

et al. 2009).  Therefore, LW may increase prey availability for salmonids as well as increasing 

preferred physical habitat.    

The potential positive effects of LW on trout population density may have detrimental 

effects on individual growth through density-dependent mechanisms.  As population densities 

increase, competition for both physical space and prey resources increases, leading to a potential 

decrease in overall net energy intake and reduced growth rates (Lorenzen and Enberg 2002).  

Thus, density is a strong regulator of fish size in stream-dwelling salmonid populations (Jenkins 
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et al. 1999 and references therein); however, documenting reduced growth due to density 

dependence in observational data can be difficult (Jenkins, et al. 1999).  A complicating factor in 

demonstrating density dependence in salmonids is the occurrence of stable dominance 

hierarchies (Nakano 1995) that can obscure density dependent effects on body size (Abbott and 

Dill 1989).  Larger, dominant individuals in all populations can successfully occupy and control 

profitable foraging positions, reducing the effects of competition for these individuals.  The 

result of these inter- and intra-species interactions is that dominant individuals may show similar 

growth patterns across a wide range of densities.  Alternatively, subordinate individuals have 

access to poorer feeding positions, obtain fewer resources, and may show greater effects of 

density than dominant individuals (Sloman et al. 2000).  If growth is analyzed without 

considering dominance, the resulting variation in growth rates could obscure intra- and inter-

population differences.  Therefore, it is important to consider dominance when comparing 

growth across sites with different LW loading.   

Another important factor controlling individual growth and population density in 

salmonids is stream temperature (Nicola and Almodovar 2004; Warren et al. 2012). Temperature 

can vary across sites due to the effects of LW on stream morphology and water velocity.  

Increasing complexity can influence stream temperatures by slowing flow rates, creating pools, 

creating shade above streams, and increasing hyporheic flow as water is forced under log jams or 

other habitat (Poole and Berman 2001).  Another potential complication is that most sites with 

naturally occurring old growth forest and high wood loading are also at higher elevations where 

logging did not occur (Wohl 2001).  Sites at higher elevation increase the likelihood that 

temperatures in these reaches are consistently lower than lower elevation sites (Isaak and Hubert 

2001).  As with most ectotherms, external temperatures govern physiological processes such as 
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intake, digestion, and assimilation of prey (Railsback and Rose 1999).  Therefore, temperature 

could be a confounding factor and growth could be slower at higher elevation sites, due to lower 

stream temperatures, which is why it is important to also consider temperature differences among 

sites when comparing growth rates.         

  My goals were to explain how reduced physical stream habitat complexity caused by 

historic losses of instream LW affects population densities, individual growth rates, and prey 

consumption in trout populations in Rocky Mountain streams.  I predicted that increased LW 

storage would increase habitat complexity and positively affect overall trout densities.  While 

high standing stock of LW would be associated with lower individual growth rates due to higher 

population densities and lower water temperatures associated with these sites.  Finally, overall 

consumption demand would be positively related to LW storage because of higher trout densities 

at those sites.   
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METHODS 

 

 

 

Study Area 

 

 Study sites were located in or near Rocky Mountain National Park in the Big Thompson, 

Cache la Poudre, and North St. Vrain drainages in northern Colorado.  Two other study sites 

were located in the North Platte River drainage in the Medicine-Bow National Forest in Southern 

Wyoming.  Study sites were chosen based on fish assemblages being dominated by Brook Trout 

Salvelinus fontinalis.  All three Colorado drainages flow east of the continental divide and meet 

the South Platte River at ~1500 m in elevation.  The Wyoming drainage first flows west, then 

north and east before joining the North Platte River in southeastern Wyoming.  Study reaches 

were located between 2713 and 3076 m in elevation, within the subalpine spruce-fir forest 

ecozone, dominated by Engelmann spruce Picea engelmanii, subalpine fir Abies lasiocarpa, and 

lodegpole pine Pinus contorta.  USGS gaging stations located near the study sites indicate mean 

annual peak discharges of approximately 12.3 m3/s (South Brush Creek, Wyoming, ID: 

06622900) to 20 m3/s (North St. Vrain Creek, Colorado, ID: 401226105340100; Wohl and 

Beckman 2014b), and hydrographs at all streams are snowmelt driven.  The North St Vrain 

Creek drainage contains old-growth forest (stand age >350 years), whereas the other drainages 

contain forest stands much younger in age (~120 yrs).   

Two sites, N St Vrain and Glacier Creeks, were intensively sampled in 2013 and 2014 

and are hereafter referred to as intensive sites.  They were chosen based on habitat complexity 

with the N St Vrain representing high habitat complexity (‘high wood’) and Glacier Creek 

representing reduced habitat complexity (‘low wood’) and were sampled multiple times during 

2013 and 2014 to quantify patterns in trout populations (Figure 1; Table 1). Eleven other sites 
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(“extensive Sites”) were sampled to assess patterns in trout abundance across a wider geographic 

range and to assess if the patterns observed at the intensive sites were generally applicable to 

mountain streams (Figure 1; Table 1).  The majority of sampling at intensive and extensive sites 

was in unconfined river reaches.  We also sampled three confined river reaches on streams 

already included in the study (N St Vrain, Mill, and Ouzel Creeks) to explore how fish 

populations respond to these two valley types (Figure 1; Table 1).  Reaches were considered 

laterally unconfined when the floodplain was >2x bankfull width of the stream channel and 

largely disconnected from hillslope processes (including partly confined stream reaches; Livers 

and Wohl 2016).  We considered sites laterally confined when the valley width <2x the bankfull 

width of the stream channel and directly connected to hillslope processes by the geology of the 

valley (Livers and Wohl 2016).  Both stream reach types were chosen to represent a range of 

wood-loading and physical habitat complexity (Table 2).   

 

Sampling Scale and Habitat Surveys 

 

 Sampling efforts were standardized over two scales; square meters and meter of valley 

length.  The square meter scale compares population size or density at a standard area and we 

typically made these comparisons at the hectare scale (e.g., N*ha-1).  Comparing at a standard 

area scale allows direct comparison among sites but does not capture the effects of habitat 

complexity among sites.  Therefore, we standardized the total length of stream in a valley to the 

length of the valley, which standardizes for increased aquatic habitat in stream systems that have 

multiple channels within a valley.  This scale represents a stream network or valley view of the 

aquatic habitat and how stream channel form can affect available aquatic habitat in an ecosystem 

(Figure 2). 
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Physical habitat surveys were conducted at each sampling site to assess differences in the 

aquatic habitat available to fish populations.  Starting at the upper end of the reach, stream width 

was recorded every 3m downstream ending at and including the bottom of the reach.  Stream 

depth was measured every 9m downstream, with five equally spaced depths taken perpendicular 

to the stream channel.  Pool volumes were calculated from three transects taken perpendicular to 

the channel, at the top, middle, and bottom of each pool.  Five equally spaced depth 

measurements were taken at each width transect and the pool length was recorded.  If total pool 

length was < 1.5m, only the top and bottom widths and depths were measured.  Only pools with 

a surface area larger than 1m2 were measured. 

Standing stock biomass of aquatic invertebrates was measured at each of the extensive 

sites, except Jack and S Fk Michigan Creeks, as a way to represent prey resource availability 

across the sites (M. Venarsky, unpublished data).  Aquatic invertebrate production was also 

estimated for the intensive sites (M. Venarksy, unpublished data), and was used when comparing 

patterns at the intensive sites.   

Wood surveys for each experimental reach were conducted following Wohl and Cadol 

(2011), and Livers and Wohl (2016).  Wood volume was estimated by measuring length and end 

diameters of each piece and each logjam (defined as ≥3 pieces of LW touching).  Most wood 

surveys were adapted from Livers and Wohl (2016), however, Jack Creek, S Fk Michigan Creek, 

and Hague Creek were measured following the same protocols. 

 

 

Population Estimation  

 

Fish abundance was estimated using multi-pass removal electrofishing conducted at the 

intensive sites in summer 2013, summer 2014, and fall 2014.  Fish abundance was estimated at 
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the extensive sites in the summer of 2013 or 2014.  Fish captured during electrofishing were 

weighed (to nearest 0.5g) and total length measured (to nearest 1mm).  The Huggins (1991) 

closed population removal estimator was used in ProgramMARK (White and Burnham 1999) to 

estimate population densities at each site for fish >49mm in total length to avoid known 

deficiencies with capturing smaller individuals (Saunders et al. 2011). 

  I used the information-theoretic approach (Burnham and Anderson 2002) to evaluate the 

relative validity of candidate models relating 13 physical and biological predictor variables to 

trout density at each sampling site (Table 2; including standing stock biomass of aquatic insects).  

Prior to constructing the candidate models, the predictor variable set was examined for the 

presence of multicollinearity (Burnham and Anderson 2002).  Variables were removed if R2 > 

0.7.  Variables were removed from inclusion based on how many other predictor variables they 

were correlated with (e.g., variables correlated with multiple variables were removed first), and 

then by informed inference based on previous research on what may directly affect trout 

densities.     

 Akaike’s Information Criterion (AIC; Akaike 1973) was calculated to assess model fit 

using the small-sample bias adjustment (AICc; Hurvich and Tsai 1989), and Akaike weights 

were calculated for each candidate model to assess the relative plausibility of each model 

(following Burnham and Anderson 2002).  Model averaging (Burnham and Anderson 2002) was 

not used to incorporate model selection uncertainty into parameter estimates.  Instead of model 

averaging, I present a set of models to assess model selection uncertainty and relative importance 

of each predictor variable.  Normal probability plots were created for each predictor variable, and 

if found to deviate from expected, the data was natural-log transformed to ensure normality prior 

to model selection.  
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To account for how stream and valley morphology affect available aquatic habitat and to 

investigate the importance of variables affecting fish density at different scales, model selection 

was performed on data transformed to the square-meter scale and meter of valley length scale.   

 

 

Growth Rate Analysis 

 

Approximately 50 individual Brook Trout were collected from each study site during 

population survey events.  Ten individuals were collected from 5 different size classes (0-50mm, 

51-100mm, 101-150mm, 151-200mm, and >200mm) to get a representative sample of brook 

trout from the different populations.  Left sagittal otoliths were removed, mounted in quick-set 

epoxy, sectioned by saw, polished with sand- and lapping paper, and photographed by 

microscope camera.  Otoliths were measured from the nucleus to each successive annuli 

including the otolith edge.  Right sagittal otoliths were used only in cases where the left otolith 

was lost, damaged, or was structurally unusable.  Otoliths are the most dependable aging 

structure on brook trout, especially older trout >2 years of age (Stolarski and Hartman 2008).  

Two separate readers completed two independent estimates of age; if consensus was not met the 

otolith was removed from further study.  Individual trout lengths at previous ages were back-

calculated using the biological intercept method (Campana 1990), from which, average lengths at 

ages were obtained.  

Average individual growth rates at the intensive sites were estimated by fitting von 

Bertalanffy growth curves (Allen 1966) to observed average lengths at ages for each site using 

R-package “FSA” (Ogle 2016), and confidence intervals were predicted for each parameter by 

bootstrapping (n = 1000).  The three parameters estimated include Linf, which is the hypothetical 

size at which growth stops, K, how quickly the growth curve approaches Linf, and t0, the 
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theoretical age-at-length 0.  To identify density-dependent effects on growth at extensive sites, 

back-calculated lengths at a specific age (e.g. age-1, age-2, and age-3) were regressed across 

natural log-transformed site densities using quantile regression (Koenker and Bassett 1978).   

Quantile regression allows observation of response patterns across the entire range of the 

response variable distribution (Cade and Noon 2003).  Salmonids are known to have feeding 

dominance hierarchies based on size and competitive abilities (Nakano 1995) and dominant 

individuals may be less influenced by density than less dominant individuals.  Additionally, 

important body size differences among sites may be obscured by variability associated with 

dominance.  Quantile regression allowed me to explore potential density-dependent effects on 

growth across a wide range of individual fish size across all sites, thereby accounting for 

dominance effects.   

 

 

Bioenergetics Modeling  

 

Predictive Stream Temperature Model 

  

Water temperature loggers were deployed in N St Vrain and Glacier Creeks in July 2013 

and August 2014, to capture a range of elevations (from 2557m to 3213m on N St Vrain, and 

2740m to 3146m on Glacier Creek).  Data loggers recorded stream temperatures every 30 

minutes, and those deployed in 2013 were left in stream overwinter, retrieved in August 2014, 

and returned to the stream.  Loggers deployed in August 2014 were retrieved in late fall 2014.  

Data was averaged to get daily average stream temperatures, and mean weekly stream 

temperatures (MWST).  To estimate stream temperatures during the growing season, I used 

temperature data beginning on April 15th or until recorded stream temperature was >0° C, 



 

 

12

whichever occurred later and ending on October 15th of each year to avoid confounding effects 

of annual ice occurrence at our sites.   

Following Fraser (2015) and Isaak et al. (2010), I developed a predictive stream model 

using multiple regression to estimate stream temperature as a function of mean weekly air 

temperature (MWAT), Julian day, and site elevation. Air temperature was obtained from two 

separate SNOTEL (SNOwpack TELemetry sites; USDA Natural Resources Conservation 

Service Snow Survey and Water Supply Forecasting Program) sites located near study streams 

(Table 3).  SNOTEL sites record average daily temperatures, which were downloaded from the 

NRCS website (www.wcc.nrcs.usda.gov), and were averaged to get MWAT.  MWAT from 

2010-2014 were averaged to obtain MWAT for an “average air temperature year” based on 

recent historical observations.  The four-year period was used because it represents the 

temperature history that a 0-3+ year old fish would have experienced, which correlates to my 

aging analyses on age-1, 2, and 3 year old fish.  MWST obtained from five thermal loggers in N 

St Vrain Creek and eight loggers in Glacier Creek were used as the dependent variable, while 

MWATs from two SNOTEL sites (Bear Lake, station ID: 322; and Wild Basin, station ID: 

1042), Julian day, and elevation were used as the independent or predictor variables.  Several 

possible models were created and the best models were selected based on delta AICc values 

(Burnham and Anderson 2002).  Model-averaging (Multimodel Inference; Burnham and 

Anderson 2004) was used to combine the top models (delta <1.05), into one global predictive 

model.   

The global model was used to predict MWST at all of our study sites using local air 

temperature (MWAT from nearest SNOTEL site; Table 3), Julian Day, and sample site 

elevation.  Due to the annual occurrence of ice at our study sites and the breakdown of the linear 
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air/stream temperature relationship at extreme temperatures (Erickson and Heinz 2000), 

predictions were restricted from April 15th to October 15th in each year, and any predicted stream 

temperature less than 0° C was set equal to 0° C.  Two separate data loggers deployed in 2013, 

one in N St Vrain Creek and one in Glacier Creek, were not included in the data used to build the 

model, but were used to test the predictive capabilities of the final model.  Predicted stream 

temperatures from the model were plotted against observed stream temperatures at these sites, 

and regressed to compare agreement.  Estimated MWST predictions were then used to 

parameterize the water temperature requirements in separate bioenergetics models.  

 

 

Fish Diet Analysis 

 

Fish sacrificed for aging were also used to determine diet composition at each study site.  

Gastrointestinal tracts (esophagus to anus) were removed from fish during sampling events and 

stored in individually labeled Whirl-Paks in 180-proof ethanol.  Stomach contents were later 

removed from the anterior portion of the stomach excluding the esophagus and intestine.  

Stomach contents were viewed under a microscope and individual insect taxa were identified to 

family level and life stage (e.g. adult, larvae, or pupae), and body length recorded.  Insect 

biomass was calculated using previously published length-weight regressions (Rogers et al. 

1976; Rogers et al. 1977; Benke et al. 1999; Sabo et al. 2002), and multiplying predicted weights 

by the number of each taxa present.   

Diet composition at the intensive sites were analyzed and compared using analysis of 

similarity (ANOSIM; Clarke 1993) and similarity percentages (SIMPER; Clarke 1993), two 

multivariate procedures, and plotted using non-metric multi-dimensional scaling plots (MDS).  

Diet composition for the intensive sites was compared for samples collected in summer and fall 
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2014.  Following Winkelman and Van Den Avyle (2002), the total number of taxa included in 

diet composition analysis was reduced to include only taxa found at all sites in the analysis.  

Reduced diet compositions from each site and each sampling date were then converted to 

proportions by dividing the mass of individual taxa by the total mass in the stomach.  Bray-

Curtis similarity matrices were computed on these proportions. One-way ANOSIMs were 

computed based on these Bray-Curtis similarity matrices and taxa contributing to differences in 

diet communities were identified using SIMPER analysis. 

ANOSIM analyses compare the differences between predefined groups (e.g. study sites) 

using the test statistic Clarke’s R. Values of R near 0 indicate no differences, while values near 1 

indicate complete separation between groups.  Following Zuellig and Schmidt (2012) when 

interpreting the ANOSIM results, I interpreted significant Clarke’s R-values >0.70 as strong 

differences between sites, 0.70 > R > 0.40 as moderate differences between sites, and R <0.40 

representing weak differences between sites.  Analyses with R-values <0.40 were interpreted as 

not having enough separation between groups to be significantly different on an ecological scale, 

and were treated as non-significant.  This is due to the sensitivity of Clarke’s R to large numbers 

of permutations that can give significantly different results yet with very low real difference 

between groups being compared.  SIMPER analyses were only completed on ANOSIM 

comparisons that were significantly different and had a Clarke’s R ≥0.4.  All Clarke’s R-values 

presented in the Results section are statistically significant, unless otherwise stated.  All 

multivariate community analyses were performed in the Plymouth Routines in Marine 

Environmental Research (PRIMER-E, v 6.0) program (M.R. Carr and K. R. Clarke, Marine 

Biological Laboratory, Plymouth, UK).   
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Invertebrates were grouped by order and life-stage to differentiate between benthic and 

drifting insects (e.g. larvae vs adult Ephemeroptera) then further grouped into aquatic/benthic vs. 

terrestrial/adult insects that have an aquatic larval stage to get estimates of terrestrial and aquatic 

proportions for bioenergetics analyses. 

 

 

Consumption Demand 

 

Annual fish consumption was estimated at the intensive sites from bioenergetics 

simulations using the Wisconsin bioenergetics model of Hanson et al. (1997), populated with 

parameters from the Brook Trout model tested by Hartman and Cox (2008).  Simulations were 

run using Fish Bioenergetics 3.0 Software®. 

Brook Trout energy densities were estimated from percent dry mass using the Lake Trout 

Salvelinus namaycush equation found in Hartman and Brandt (1995).  Four to twelve fish were 

randomly selected from length categories from both intensive sites, based on availability of 

individuals when sampling occurred.  Fish were weighed to the nearest 0.01g, oven-dried at 80C 

to a constant weight, and then weighed again to the nearest 0.01g.  Energy densities were then 

averaged to get a site-specific energy density for both summer and fall seasons.  

Fish at each site were divided into age classes based on otolith aging techniques and by 

constructing an age-length key to age the remaining fish captured at each sampling site (using R-

package “FSA”; Ogle 2016).  Weight at age was then estimated by combining the predicted 

lengths at ages with a separate length-weight regression for each site.  Average weight, along 

with 5th and 95th percentile weights were calculated for each age, to estimate the range of 

consumption when calculating total consumption at each site (Table 4), except for age-0 fish 

which were assumed to be 0.01g at the start of the growing season at all sites. 
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Invertebrate prey was divided into terrestrial and aquatic sources based on diet sampling 

and energy densities were estimated using the terrestrial and aquatic arthropod mean equations in 

Cummins and Wuycheck (1971).  The proportions of diet from terrestrial and aquatic sources 

was then used in the model, only changing during winter when it was assumed that all prey were 

coming from aquatic sources (proportion of terrestrial prey in diet = 0).  Dietary loss due to 

indigestible material was estimated at 10% (Sweka and Hartman 2001), and included by 

multiplying the estimated prey energy densities by 0.9 before entering them into the 

bioenergetics model.  Maintenance temperature in the model (lowest temperature fish growth can 

occur) was set at 4° C to take into account reduced consumption levels found in field scenarios, 

as opposed to ad libitum feeding in laboratory settings (Hartman and Sweka 2003).   

To approximate the sensitivity of the bioenergetics model to diet composition, I ran 

simulations using the average growth of an individual fish from age 1 to 2 at the N St Vrain 

Intensive site and varied the proportion of aquatic insects from 0 to 100%, at 10% intervals.  



 

 

17

RESULTS 

 

 

 

Population Density and Model Selection 

 

Intensive 

 

 Brook Trout population density was approximately 7.5 times higher at N St Vrain (high 

wood) than Glacier Creek (low wood) in summer 2013, and approximately 7 times higher in 

summer 2014 (Figure 3).  Average Brook Trout biomass was approximately 4 times higher at the 

high wood site than the low wood site on a per square meter basis (Figure 4a) and approximately 

9 times higher when estimated at a meter of valley length (Figure 4a).  While fish density was 7 

times higher at the high wood site on the square meter scale (Figure 4c), and approximately 14 

times higher when estimated at the meter of valley length scale (Figure 4d).  Summer density 

estimates for both sites were similar between years, indicating that fish density is relatively 

constant within each site when estimated during similar seasons (Figure 3).  Fish communities at 

both sites were dominated by Brook Trout.  However, the low wood site fish assemblage also 

consisted of Brown Trout Salmo Trutta (approximately 1% in 2013 and 20% in 2014), and 

Rainbow Trout Oncorhynchus mykiss (approximately 14% in 2013 and 20% in 2014).   

 

 

Extensive  

 

 Number of Brook Trout per hectare  (95% confidence intervals) at all intensive and 

extensive unconfined sites ranged from 409.53 (343.48, 937.15) to 7441.998 (7342.27, 7752.19), 

during summer sampling events (Table 5).  While trout biomass per square meter was 1.04g 

(0.98, 1.48) at the lowest site and 16.54g (16.51, 17.25) at the highest site (Table 5).  At the 
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valley scale, trout biomass per meter of valley length showed a much larger range, from 8.81g 

(8.29, 8.81) to 128.43g (127.28, 134.78; Table 5) per meter of valley length.    

I measured 12 physical habitat predictor variables and two were retained for inclusion in 

the model selection analysis, in addition to standing stock biomass of aquatic insects (Table 2).  

Eight variables were removed because they were correlated with other variables included in the 

analyses.  Average pool length, depth, width, surface area, volume, and number of pools per 100 

meters of stream were correlated and I retained the number of pools per 100 meters of stream 

length as a measure of available trout habitat.  My decision was based on previous research that 

indicates the creation of pools creates optimal foraging positions for trout, and could predict trout 

abundance in a local area (Gowan and Fausch 1996a; Torgersen et al. 1999; White et al. 2011).  

Streams not historically tie-driven, that currently contain high amounts of LW, are only found at 

high elevations in Colorado, therefore, elevation was correlated to LW abundance and was 

removed from the model selection analyses.  Accumulation of LW was correlated with gradient, 

therefore, gradient was removed from the variable set.  To further reduce the chance of over-

parameterizing the model, average stream width and average stream depth were combined into a 

width to depth ratio, a common stream metric, for each sampling site. Finally, LW was positively 

related to the predicted number of pools at the square meter scale (y = 0.92x + 7.09, R2 = 0.25; 

Figure 5a) and had a stronger positive relationship at the meter of valley scale (y = 0.24x + 1.70, 

R2 = 0.59; Figure 5b).  I chose to retain the number of pools per 100m of stream length over LW 

abundance in the analysis because I felt that trout densities responded directly to pool habitat 

created by LW, as opposed to responding directly to LW.  I also retained the number of pools per 

100m of stream and number of pools per 100m valley because I felt they represented stream 

channel complexity and previous research within the study streams indicated differences in LW 
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abundance were the strongest indicators of channel complexity and were strongly correlated to 

pool formation (Livers and Wohl 2016).  

Model selection was performed based on three predictor variables: 1) standing stock 

biomass of aquatic insects, 2) number of pools, and 3) width to depth ratio at both the square 

meter and valley length scale.  The model set included all combinations of the three predictor 

variables, excluding interaction terms.  Second-order interactions were originally tested; 

however, none were significant in explaining trout densities at our sample sites.  Due to this, and 

concerns of over-parameterizing the model selection, interactions were not included.   

Insect biomass was the most important factor in predicting trout biomass at the square 

meter scale (Table 6).  Insect biomass was also highly correlated with fish biomass at the square 

meter scale (Figure 6a).  The top four models included standing stock insect biomass with beta 

estimates and 95% confidence intervals that did not include 0 and accounted for 94.15% of the 

model weight (Table 6).  The number of pools per 100m of stream and width/depth ratio were 

also in the top four models but had beta estimates and 95% confidence intervals that contained 0, 

and were not highly correlated with fish biomass (Table 6; Figures 7a and 8).  Insect biomass 

was also highly correlated with fish biomass at the valley scale (Figure 6b), and the top four 

models included standing stock insect biomass (Table 7).  Three of those models had beta 

estimates for insect with 95% confidence intervals that did not overlap 0.  The number of pools 

was also an important predictor of fish biomass at the valley scale (Figure 7b).  Two of the top 

four models contained the number of pools per 100 meters and had beta estimates with 

confidence intervals that did not contain 0 (Table 7).  At the valley scale, width to depth ratio 

was contained in the lowest four models and all beta estimates and confidence intervals contain 0 

(Table 7). 
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Process Domains 

 

 Unconfined and confined sites were located adjacent to one another on N St Vrain and 

Mill Creeks and approximately 1.5-2 miles apart on Ouzel Creek.  The confined sites supported 

fewer fish than unconfined sites on streams where they were adjacent to one another (Figure 9).  

The Mill Creek unconfined site supported approximately 2.5x more fish than the Mill Creek 

confined site (Figure 9).  Similarly, the N St Vrain Creek unconfined site supported 

approximately 2x more fish than the N St Vrain confined site (Figure 9).  The Ouzel Creek 

confined site supported similar numbers of fish as the Ouzel Creek unconfined site (Figure 9).  

All three confined sites were similar to their paired unconfined reaches in width to depth ratio, 

and all three confined reaches had lower standing stock biomass of aquatic invertebrates 

compared to their paired unconfined reaches (Table 2; M. Venarsky unpublished data).  The 

largest difference between the confined sites was in number of pools per 100 meters (Table 2). 

The N St Vrain confined site had similar numbers of pools to the unconfined site, the Mill Creek 

confined site had lower number of pools compared to the unconfined site, and the Ouzel Creek 

confined site had more pools compared to the Ouzel Creek unconfined site (Table 2).   

 

 

Growth Rate Analysis 
 

Intensive 

 

 Despite the large differences in population densities between Glacier Creek and N. St. 

Vrain, there were no observable differences in growth rates between the two sites.  Von 

Bertalanffy growth curve parameters K and t0 were similar between the sites; however, Glacier 

Creek fish appear to have a larger Linf than fish from N. St. Vrain Creek (205 vs 183; Figure 10; 

Table 8).  Individual fish condition did not differ between sites (F = 0.329, p-value = 0.567); 
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however, Glacier Creek had a significantly higher intercept (F = 5.0495, p-value = 0.0252) by 

approximately 1.25 grams wet weight.   

 

 

Extensive 

 

 Average lengths at age-1 were similar across extensive sites and annual growth rates 

showed high variability within sites (Figure 11).  Quantile regression showed that fish in the 

highest 5 quantiles (presumably dominant individuals) and fish in the lowest 10 quantiles 

(presumably subordinate individuals) at each site did not appear to be affected by density 

because the estimated confidence intervals of the regression slopes contained zero (Figure 12a).  

The majority of fish exhibited a negative response to increasing density with slopes for 

regression lines for the 10th through the 95th quantiles significantly less than 0 (Figure 12a).  Size 

of age-2 and 3 fish did not show any negative relationship to fish density (Figures 12b and 12c).   

 

 

Predictive Stream Temperature Model 

 

The predictive stream temperature model included 6 predictor variables: air temperature, 

site elevation, Julian day, quadratic-transformed Julian day, air temperature and elevation 

interaction, and air temperature and Julian day interaction (Table 9).  The inclusion of the 

quadratic Julian day term was in response to the nonlinear relationship between Julian day and 

stream temperature. To check the predictive capabilities of the model, I estimated stream 

temperatures at both Glacier Creek and N St Vrain Creek and compared them to independently 

recorded stream temperatures.  Model water temperature estimates were highly correlated with 

the measured temperatures at Glacier Creek (R2 = 0.9102) and N St Vrain Creek (R2 = 0.9273; 

Figure 13).  Predicted mean weekly stream temperatures for an average year did not vary greatly 
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between the two sites, however, N St Vrain Creek was approximately 1° C cooler than Glacier 

Creek during the summer season (Figure 14).    

 

 

Fish Diet Analysis 

 

 Insect biomass in stomachs differed among sites (F = 5.318, p < 0.0001), yet there were 

no clear patterns or predictors of differences between the sites (Figure 15).  The streams with the 

lowest observed average biomass in stomachs were Glacier Creek (fall 2014), Rock Creek and 

Ouzel Creek, with N St Vrain Creek (summer 2014) having the highest observed average prey 

biomass in stomachs (Figure 15).  Average biomass in stomachs did not appear to be correlated 

with diet source, whether aquatic or terrestrial, as Order Hymenoptera made up the largest 

percentage of diets at all four of these sites (Table 10).   

 

 

Intensive 

 

Of the 81 total taxa identified in the summer diet samples, only 21 taxa were common 

between the two sites.  Of the 60 removed, 58 were only identified at N St Vrain while two were 

solely consumed at Glacier Creek, representing 41.5% and 0.01% of the average prey biomass in 

stomachs, respectively.  During fall sampling, 61 total taxa were identified, with 34 taxa being 

represented in diet samples at both sites; 25 taxa were only found at Glacier Creek, while two 

were removed from the N St Vrain Creek samples.  The 25 taxa removed from the Glacier Creek 

diet samples represented 34.6% of average prey biomass, while the two taxa removed from the N 

St Vrain samples represented 56.6% of average prey biomass (this number is skewed by one 

taxa, Family Cantharidae, representing 51.2% of average prey biomass in being removed from 

the analyses).  
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Diet composition differed significantly between the sites sampled in summer 2014 

(Clarke’s R = 0.434; Figure 16).  Brook Trout consumed a high proportion of ants (Formicidae) 

at both sites, although fish at the low wood site consumed more ants than did fish at the high 

wood site, and ants accounted for 21.67% of the dissimilarity in fish diets (Table 11).  Brook 

Trout at the high wood site consumed more Chironomidae larvae than those at the low wood site 

and this difference accounted for an additional 20.62% in the dissimilarity in diets (Table 11).  

Brook Trout at the low wood site consumed more stone fly nymphs (Family Perlidae), water 

mites (Order Acari), and assorted wasps (Order Hymenoptera) than those at the high wood site 

(Table 11).  The differences in these four taxa accounted for over 70% of the dissimilarity in 

diets (Table 11).  Diet composition during the fall sampling period was not different between the 

two sites (R = 0.056; Figure 17), as Clarke’s R-value is close to zero, suggesting no real 

differences between the sites.   

Because of the large number of taxa removed prior to ANOSIM analyses, the diet 

samples were re-analyzed with all taxa to check for any differences in results when comparing 

the summer and fall diet samples across the two sites.  The summer diet samples were still 

significantly different (Clarke’s R = 0.495), and the fall samples were still not significantly 

different (Clarke’s R = 0.068).   

Comparing diet composition at the two intensive across seasons led to seasonal changes 

in prey at the high wood site but not the low wood site.  The low wood site was not statistically 

different from summer 2014 to fall 2014 (Clarke’s R = -0.167), however, the high wood site was 

weakly statistically different between this same time frame (Clarke’s R = 0.319), showing a 

potential change in diets across seasons. 



 

 

24

  Average insect biomass in stomachs were not different between sites during the summer 

sampling period in 2014, stomachs at the low wood site contained an average of 1.39 (SD = 

1.29) mg insect biomass per gram of fish, while stomachs at the high wood site contained an 

average of 2.42g (SD = 2.18) mg insect biomass per gram of fish (t-value = -0.30147, p-value = 

0.764).  Average biomass in stomachs was significantly higher during fall at the high wood site 

1.78 (SD = 3.46) mg insect biomass per gram of fish compared to the low wood site, 0.35 (SD = 

0.65) mg insect biomass per gram of fish (t-value = -2.4447, p-value = 0.0174).  

 

 

Extensive 

 

 Benthic/aquatic invertebrate sources contributed approximately 11% to 97% of biomass 

to diet composition among the sites, and do not appear to be related to LW volume or fish 

biomass (R2 = 0.00356 and 0.03124, respectively).  The top three contributing taxa to diet 

composition at each site were dominated by Order Hymenoptera (terrestrial).  Hymenoptera was 

the number one represented taxa at ten sites, and the number two taxa at three sites (Table 11).  

Only 3 sampling sites/dates (of 17) did not have terrestrial hymenoptera in the top three taxa 

consumed. 

 

 

Consumption Demand 

 

Intensive 

 

Seasonal differences in Brook Trout energy densities were observed at both the low and 

high wood sites, with fall energy densities being approximately 7% and 13% lower than summer, 

respectively (Table 12).  Most likely, these losses are due to spawning activity, reduced energy 
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intake as reduced stream temperatures reduce gastric evacuation rates (Cunjak et al. 1987), 

and/or reduced prey availability. 

Biomass of invertebrates consumed per individual Brook Trout per year did not differ 

between sites when comparing consumption of individual Brook Trout at specific ages (Figure 

18).  However, overall consumption demand (milligrams wet mass of invertebrate biomass 

consumed/square meter/per day) was approximately 7 times higher due to higher population 

densities at the high wood site on the square meter scale (43.80 mg/square meter/day vs 6.75 

mg/square meter/day; Figure 19).  On the valley scale, consumption demand of invertebrates 

rose to approximately 13 times higher at the high wood site (614.33 mg/valley meter/day vs 

47.42 mg/valley meter/day; Figure 19).  When comparing only consumption of aquatic 

invertebrates, demand was approximately 10 times higher at the high wood site on the square 

meter scale (31.58 mg/sq meter/day vs 2.96 mg/sq meter/day; Figure 19), and approximately 21 

times higher at the high wood site on the valley scale (443.00 mg/valley meter/day vs 20.78 

mg/valley meter/day; Figure 19).  

The bioenergetics model is sensitive to diet composition, especially when only two diet 

sources are input that differ in energy content.  As the percentage of aquatic prey in diets 

increased, the amount of insect biomass consumed per year and proportion of estimated 

maximum consumption (Bioenergetics p-value) also increased to maintain observed growth rates 

(Figure 20).  These response variables increased slightly exponentially, suggesting the 

bioenergetics model is sensitive to the energy content of different prey types. 
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DISCUSSION 

 

 

 

  My study indicates that prey resources and habitat availability control Brook Trout 

densities in high elevation Rocky Mountain streams.  Specifically, Brook Trout densities were 

positively influenced by the standing stock biomass of aquatic macroinvertebrates at both the 

local and landscape scale.  Brook Trout density was also positively related to number of pools in 

a valley (i.e. habitat availability).  In turn, Brook Trout density had important influences on total 

prey consumption and subtle effects on growth.  Prey consumption demand of individual trout 

did not appear to differ among sites and Brook Trout density determines the total prey 

consumption demand at a given site.  Increased Brook Trout density resulted in negative density-

dependent effects on individual growth for those age-1 individuals that were not dominant or 

extremely subordinate.  Diet composition can be substantially different when comparing fish 

from streams across a gradient of LW.  Lastly, geomorphology can drive population density in 

trout. 

Across the intensive and extensive sites, prey resources were important in predicting trout 

biomass.  At the intensive sites, estimated trout biomass was four times higher on the square 

meter scale and nine times higher on the valley meter scale at the high wood site; aquatic 

macroinvertebrate biomass and production is likely a factor in maintaining this difference.  

Standing stock biomass of aquatic insects was approximately the same between the two sites at 

the local scale, yet three times higher at the high wood site on the valley scale.  Aquatic insect 

production was approximately two times higher on the local scale, at the high wood site, while 

almost five times higher on the valley scale.  Increased standing stock insect biomass and aquatic 

insect production indicate prey resources respond positively to increased physical habitat 
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complexity suggesting increased prey availability to fish in physically complex stream reaches.  

Higher abundance and community richness of aquatic insects due to physical habitat complexity 

have been previously noted (Schneider and Winemiller 2008), along with higher rates of 

macroinvertebrate drift related to LW (Coe et al. 2009).  Further, Ensign et al. (1990) and 

Shannon et al. (1996) found a positive relationship between prey abundance and trout in lotic 

environments.    

The importance of prey resources at the extensive sites was similar to my inferences 

made from comparing the intensive sites and strengthens the argument that Brook Trout are 

responding to prey resources across both the local and landscape scale.  For instance, N Mullen 

and Rock Creeks had the highest fish biomass per square meter, yet very different amounts of 

LW (235.6 vs. 7.8 cubic meters per ha, respectively).  Most likely, trout populations were 

responding to availability of prey resources at these sites, as they had two of the highest amounts 

of standing stock biomass of aquatic insects sampled during this study.  Conversely, Hague 

Creek had very low trout biomass per square meter, lower number of individual pools compared 

to the other unconfined sites, and the lowest measured amount of standing stock biomass of 

aquatic invertebrates.  High standing stock biomass of aquatic insects at Rock Creek may be due 

to an open riparian canopy at the study reach with minimal overhanging cover.  Reduced riparian 

canopies can increase local primary productivity in streams through increased insolation and 

stream temperatures (Kiffney et al. 2004); which can lead to increased invertebrate production 

(Murphy 1998). 

The large difference in trout density between the intensive sites was also driven in part by 

differences in the pool habitat present at each site.  Estimated valley scale trout densities at the 

intensive sites were nine times higher at the high wood site.  The high wood site had 
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approximately 54 to 60 times the volume of LW stored in the stream channel and floodplain, 

which created a multi-thread stream reach with almost two times the amount of stream length 

when compared to the low wood site.  Due to larger average pool sizes, the low wood site had 

approximately four times more pool volume at the local scale; yet, the high wood site had 

approximately twice the number of individual pools at the same scale.  Increased pool formation 

at the high wood site is likely driven by LW and trout populations responded to increased pool 

habitat (Gowan and Fausch 1996a; Korsu et al. 2010) and physical habitat complexity 

(Smokorowski and Pratt 2007; Kozarek et al. 2010). Trout populations are likely responding to 

an increased number of favorable holding positions created by these numerous smaller pools 

(Fausch 1984; Fausch and Northcote 1992; Richmond and Fausch 1995; Fausch 2014).   

Across the extensive sites, Brook Trout densities ranged over an order of magnitude from 

the lowest to highest density sites and number of pools became more important in predicting 

density at the landscape scale.  Previous research confirms my results that trout abundance in 

mountain streams is positively related to pool habitat (Gowan and Fausch 1996a; White et al. 

2011) and highlights the importance of this variable in governing trout densities.  However, scale 

is clearly important in evaluating trout abundance.   

Annual prey consumption demand was similar for individual Brook Trout at each age at 

both intensive sites.  The similarity in consumption could indicate that differences in physical 

habitat complexity and density do not affect individuals enough to significantly change prey 

demand.  Most likely, the similarity in estimated stream temperatures at both intensive sites was 

responsible for the similarity in individual consumption demand as bioenergetics models have 

been shown to be sensitive to temperature inputs (Railsback and Rose 1999).  Average lengths at 

age from each site were similar and were used to calculate average weight at age as an input to 
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the bioenergetics model.  Similar average weight at age along with similar temperatures at each 

site were likely responsible for the similarities in annual individual prey consumption demand.   

Despite similarities in individual consumption demand, total prey consumption demand 

was quite different between the sites.  In 2014, the overall annual prey demand was seven times 

higher at the high wood site and demand for aquatic prey was approximately 10 times higher.  

The higher total consumption demand is due to much higher trout population densities at the 

high wood site.  The higher demand for aquatic prey could be related to a higher availability of 

aquatic prey due to increased production at the high wood site.  

My data suggest that a large portion of the aquatic invertebrate production at the high 

wood site is being consumed by fish.  At the valley scale, aquatic invertebrate production was 

five times higher at the high wood site; yet the standing stock of aquatic insect biomass was only 

two times higher at the same scale.  Combining estimated prey demand per day and total stream 

area per valley at both sites leads to estimates of total insects consumed by fish for the entire 

valley per day.  At the high wood site, approximately 500g of invertebrates are consumed by fish 

per day, while at the low wood site, fish consume 30g of insects in the same time frame.  This 

represents approximately 25% and 28%, respectively, of the aquatic invertebrate production of 

the entire valley per day at both sites.  Major differences in diet composition between the two 

sites point to fish at the high wood site consuming more small aquatic invertebrates such as 

chironomid and black fly larvae, as well as small mayfly larvae during the summer months. In 

the fall at the high wood site, diet composition shifts to primarily terrestrial Coleoptera that 

represents 65% of the average diet.  

The importance of pool habitat at the valley scale is intuitive because pool habitat could 

easily be missed when measuring at smaller scales.  Taking a local view (e.g., square meter 
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scale) can easily overlook important patterns and characteristics in physical habitat (Fausch et al. 

2002) leading to improper conclusions regarding population drivers.  Research on stream-

dwelling Brook Trout has shown that individuals can be highly mobile (Gowan et al. 1994; 

Gowan and Fausch 1996b), with fish-habitat relationships at multiple scales (Deschênes and 

Rodríguez 2007).  Inoue et al. (1997) showed how patterns and drivers of Masu Salmon 

Oncorhynchus masou abundance at local scales could change when measured at larger scales 

(e.g., salmon density related to cover).  While Baxter and Hauer (2000) found large-scale 

environmental factors (e.g., bounded alluvial valley segments/stream geomorphology) influence 

Bull Trout Salvelinus confluentus spawning redd construction location; easily missed at local 

scale sampling.   

Average annual prey demand for individual fish from age-1 to age-2 fish at both intensive 

sites (48.97and 76.08 grams/year for high and low wood sites, respectively) was up to two times 

greater than consumption estimates by Sweka and Hartman (2008) for Appalachian Brook Trout.  

The differences in prey demand could be explained by the low percentages of maximum 

consumption by the Appalachian Brook Trout (4.3-8.0%), which are much lower than the 

estimated percentage of maximum consumption fish in my study  (25.3 – 31.8% and 25.8 – 

27.2% at the high and low wood sites, respectively).  Also, the average size of fish at my study 

sites was smaller than those used by Sweka and Hartman (2008) and that may affect estimated 

consumption estimates.  For instance, age-1 fish at my low wood site were approximately 31-

39% and fish at my high wood site were approximately 21-26% the size of age-1 Brook Trout 

used by Sweka and Hartman (2008).  Other studies have also estimated lower annual prey 

consumption rates of Brook Trout (e.g., Elwood and Waters 1969, Utz and Hartman 2005). 

However, these studies occur in Appalachian streams and results may not translate directly to 
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brook trout in Rocky Mountain streams.  Previously mentioned differences in size at age as well 

as differences in life histories (e.g., population dynamics and oldest age attained; Kennedy et al. 

2003) could affect model outputs.  To my knowledge, this is the first application of the Brook 

Trout bioenergetics model (Hartman and Cox 2008) to brook trout in Rocky Mountain streams. 

Stream salmonids can experience high variability in overall net energy intake that 

increases the variability in average individual growth rates.  This could be due to periodic 

resource scarcity (Utz and Hartman 2009), competition for resources (Metcalfe 1986), natural 

disasters (Elwood and Waters 1969), or environmental conditions (Magoulick and Wilzbach 

1998; Sweka and Hartman 2001) that reduce foraging success.  To account for variability in my 

overall estimate of annual prey consumption, I ran bioenergetics models using the mean, 5th, and 

95th percentile of weight at age at each site.  Estimating consumption at the 5th and 95th 

percentiles of fish growth may give an inflated estimate of error on total prey consumption; 

however, it does help capture the high variability in prey consumption.  This is especially 

important in natural stream systems where trout are consistently feeding below maintenance 

rations (Ensign et al. 1990; Utz 2005).  However, by fitting the bioenergetics model to observed 

growth rates, a technique much less sensitive to error than estimating growth from consumption 

rates (Railsback and Rose 1999), I can be confident of my annual consumption estimates.   

Growth rates of most size classes of age-one fish were negatively affected by density and 

this is likely due to competition for resources. Utz and Hartman (2009) demonstrated negative 

density-dependent growth in Brook Trout populations due to increased competition for prey 

resources during periods of prey resource scarcity.  Negative density-dependent effects on 

individual growth are common in lotic salmonids.  Elliot (1994) examined these traits in juvenile 
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Brown Trout as young of year trout competed for both food and space, and as a result, growth 

and survival was reduced. 

Despite the evidence for density effects on individual growth rates, negative effects can 

be difficult to detect.  Stable dominance hierarchies can obscure trends in individual growth as 

larger individuals are less affected by increasing densities leading to similar average growth rates 

across sites with varying densities (Nakano 1995; Jenkins et al. 1999).  Across my sites, the 

largest and presumably dominant individuals, and the smallest, and presumably most subordinate 

individuals, were not affected by density.  Dominant individuals are likely able to compete for 

and retain optimal foraging positions at any density and will therefore grow well at any density.  

The smallest subordinate fish are likely outcompeted for resources at any density and will grow 

slowly regardless of density.  The lack of negative density dependent effects in older year classes 

of Brook Trout could suggest they are able to outcompete younger individuals for optimal 

foraging positions and are released from competition for resources.  Conversely, this pattern 

could also suggest Brook Trout in Rocky Mountain streams experience size-selective mortality 

as individual trout are recruited to older age classes (Xu et al. 2010), leading to similar growth 

rates across densities in older age classes.  

Across the intensive and extensive summer diet composition samples, terrestrial insects 

were heavily represented.  Terrestrial insects were the top invertebrate taxa consumed at 11 of 17 

sampling dates/sites, which supports previous research on the importance of terrestrial subsidies 

to trout populations (Baxter et al. 2005; Utz and Hartman 2007; Sweka and Hartman 2008).  My 

research shows that ants and chalcid wasps (Family Formicidae and Superfamily Chalcidoidea) 

are important components of brook trout diets during the summer season.  Previous research has 

shown other terrestrial taxa, such as terrestrial beetles (Order Coleoptera), are important 
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components of Brook Trout diets (Allan 1981; Utz and Hartman 2007), such as those found at 

the high wood site during fall sampling.  Preference for terrestrial prey has been found numerous 

times in stream salmonids (Hilderbrand and Kershner 2004), with trout actively selecting 

terrestrial prey over aquatic prey, especially in summer seasons (Nakano et al. 1999).  While 

availability and selectivity of prey organisms was not assessed in the current study, the 

dominance of Hymenoptera in diets at almost all sites suggests that trout will readily consume 

them when available, and a lack of Hymenoptera in diets at certain sites could indicate a lack of 

availability.   

Bioenergetics modeling can allow investigators to see how consumption of varying 

proportions of aquatic and terrestrial invertebrates in diets can alter total predatory consumption 

demand (e.g., Sweka and Hartman 2008).  The results from my research show that brook Trout 

populations in Rocky Mountain streams are likely supported by a seasonal flux of terrestrial 

insects entering the stream from the riparian area.  The sensitivity analysis of the bioenergetics 

model suggests that elevated consumption of aquatic prey would elevate percent of maximum 

consumption rates (Bioenergetics 3.0, P-value) higher than what is thought reasonable for a 

stream-dwelling brook trout (Hartman and Cox 2008).  Sites such as Hague Creek (96.5% 

aquatic prey, from diet sample) and N St Vrain Highest (86.9% aquatic prey) most likely 

experience a seasonal shift to terrestrial prey (similar to the terrestrial Coleoptera consumed at 

the high wood intensive site in the fall season) to support population densities.  These results are 

supported by Kawaguchi and Nakano (2001) and Baxter et al. (2005 and references therein) who 

experimentally showed stream trout populations are supported by terrestrial prey fluxes. Without 

the prey subsidy, local trout populations would likely decrease (Kawaguchi et al. 2003). 
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Finally, population estimates from the paired confined and unconfined reaches suggest 

geomorphic context can play a role in trout population regulation.  At the Mill and N St Vrain 

Creek sites, population densities were 2.5 and 2 times less, respectively, in the confined reaches 

compared to the unconfined reaches.  However, population estimates from Ouzel Creek showed 

similar numbers of fish at both types of reaches.  The similar numbers of fish in Ouzel Creek at 

both sites could be due to slight differences in physical habitat between the two stream reach 

types.  The Ouzel Creek confined reach had more pools per 100 meters than the unconfined site 

(26.49 vs 19.29, respectively), and was located just upstream of a waterfall that was impassable 

to upstream movement from downstream reaches.  The combination of these two factors could 

be limiting downstream fish movement out of the reach (waterfall; Northcote 1981), while 

providing pool habitat for adult trout to use.  The Mill and N St Vrain streams follow a pattern 

previously found by Bellmore and Baxter (2014) that confined reaches can have large inputs of 

allocthonous energy, yet that energy and organic material is processed in the unconfined reaches 

leading to higher aquatic animal production.  The Ouzel Creek sites suggest other geomorphic 

controls (e.g., reduced longitudinal connectivity due to the waterfall and number of pools) 

outside of stream confinement can exert larger effects on local fish populations than what would 

be expected.   

Large wood in the correct geomorphic context can alter physical habitat and prey 

resources in stream ecosystems.  Elevated rates of wood loading and retention create additional 

aquatic habitat by forcing multiple parallel channels that increase aquatic animal production.  

Further, increased LW forces the creation of pool habitat with complex overhead cover that 

allows adult trout to maximize net energy intake while minimizing risk of predation (Fausch 

1984; Fausch 2014).  Loss of these low gradient, multi-thread stream reaches, due to historic 
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land management practices, has dramatically reduced aquatic animal production by creating an 

alternative stable state of reduced and homogenized stream habitat.  This reduced habitat 

complexity has persisted over 100 years after the cessation of detrimental land use practices 

(Ruffing et al. 2015), suggesting a resilience of these reaches to return to pre-disturbance 

conditions.  Due to this, large amounts of annual fish production are lost in mountain watersheds 

due to reduced habitat complexity.    
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TABLES 

 

 

 

TABLE 1−List of sites sampled in summer 2013 and summer and fall 2014.  Table indicates 

whether the sites were included in the intensive (Int) or extensive (Ext) data sets. What season 

and year each site was sampled. Valley confinement (unconfined, party confined, or confined; 

following Livers and Wohl in press), elevation, and UTMs are also presented. Superscript 

numbers on site list separate the Glacier Creek and N St Vrain Creek intensive site samples.  

 

Site Data set Season Year 

Valley 

type 

Elev 

(m) UTM 

Glacier1 Int Summer 2013 Unc 2713 13T  446245E 4462944N 

Glacier2 Int Summer 2014 Unc 2713 13T  446245E 4462944N 

Glacier3 Int Fall 2014 Unc 2713 13T  446245E 4462944N 

Glacier Up Ext Summer 2014 Unc 2983 13T  445297E 4460885N 

Hague Ext Summer 2014 Unc 2952 13T  438047E 4485482N 

Jack Ext Summer 2013 Unc 2911 13T  415312E 4475670N 

Mill Ext Summer 2014 Unc 2800 13T  446223E 4464910N 

N Mullen Ext Summer 2014 Unc 2749 13T  384105E 4565541N 

N St Vrain1 Int Summer 2013 Unc 3024 13T  446715E 4451263N 

N St Vrain2 Int Summer 2014 Unc 3024 13T  446715E 4451263N 

N St Vrain3 Int Fall 2014 Unc 3024 13T  446715E 4451263N 

N St Vrain Down Ext Summer 2013 Unc 2903 13T  447918E 4450842N 

N St. Vrain Highest Ext Summer 2014 Unc 3076 13T  445747E 4451737N 

N St Vrain Lowest Ext Summer 2014 Unc 2770 13T  449394E 4449881N 

Ouzel Ext Summer 2014 Unc 3045 13T  446681E 4450195N 

Rock  Ext Summer 2014 Unc 2911 13T  400696E 4588590N 

S Fk Michigan Ext Summer 2013 Unc 2814 13T  414663E 4481684N 

Mill Confined Ext Summer 2014 Conf 2733 13T  446726E 4465105N 

N St Vrain Confined Ext Summer 2014 Conf 2953 13T  447241E 4451066N 

Ouzel Confined Ext Summer 2014 Conf 2910 13T  448807E 4450045N 
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TABLE 2−Physical habitat characteristics of confined and unconfined stream reaches sampled during study. Values are reported in 

meters, except for average pool surface area (m2), average pool volume (m3), and wood volume (m3/ha). Wood volumes are adapted 

from Bridget and Livers (2016) and from this study (Jack, Hague, and S Fk Michigan Creeks). Superscript values separate sampling 

dates at the intensive sites, summer 2013 (1), summer 2014 (2), and fall 2014 (3).  

 

Site 

Avg 

Width  

Avg 

Depth 

Wood 

Volume 

(m3/ha) 

Avg 

Pool 

Depth 

Avg 

Pool 

Width 

Avg 

Pool 

Length 

Avg 

Pool 

Vol 

(m3) 

Avg 

Pool 

Surface 

Area 

(m2) Grad 

# 

Pools 

per 

100m 

# Pools 

per 

100m/ 

Valley 

Width/ 

Depth 

Ratio 

Glacier1 6.71 0.26 26.8 0.61 4.60 6.03 16.90 27.74 0.03 4.92 5.15 26.13 

Glacier2 8.06 0.31 22.3 0.35 2.89 3.75 3.81 10.83 0.03 11.54 10.06 26.07 

Glacier3 7.29 0.30 24.7 0.37 2.21 2.78 2.24 6.13 0.03 6.80 ---- 24.20 

Glacier Up 6.12 0.26 351.0 0.34 6.66 8.90 19.92 59.27 0.05 6.61 10.61 23.73 

Hague 10.76 0.33 0.0 0.45 2.82 5.58 7.16 15.74 0.02 6.58 7.23 33.09 

Jack 6.87 0.21 846.8 0.36 1.69 4.05 2.45 6.86 0.04 12.00 ---- 27.08 

Mill 2.98 0.31 181.3 0.33 2.11 3.60 2.49 7.60 0.01 10.87 12.89 9.50 

N Mullen 4.29 0.15 235.6 0.14 1.44 2.30 0.47 3.32 0.03 11.90 28.13 28.13 

N St Vrain1 4.05 0.21 1610.5 0.46 2.18 3.76 3.77 8.21 0.06 13.89 48.14 19.36 

N St Vrain2 5.51 0.26 1182.3 0.23 1.71 2.64 1.06 4.53 0.06 17.54 44.65 21.58 

N St Vrain3 4.59 0.24 1419.3 0.27 1.76 2.22 0.95 3.91 0.06 10.22 ---- 18.89 

N St Vrain Down 4.89 0.18 622.2 0.25 1.44 3.05 1.10 4.39 0.03 10.39 18.89 26.87 

N St. Vrain Highest 5.39 0.29 1596.8 0.36 4.40 7.25 11.51 31.90 0.08 10.87 29.03 18.68 

N St Vrain Lowest 7.7 0.31 129.7 0.40 2.98 4.03 4.81 12.01 0.07 14.63 17.29 24.63 

Ouzel 3.79 0.22 640.1 0.21 1.23 1.80 0.48 2.22 0.05 19.29 58.5 17.33 

Rock  6.1 0.17 7.8 0.23 1.97 3.36 1.55 6.62 0.02 12.17 17.69 36.97 

S Fk Michigan 5.05 0.33 9.7 0.57 3.92 5.95 13.28 23.30 0.01 2.67 ---- 15.35 

Mill Confined 3.44 0.24 174.5 0.29 2.86 7.4 6.14 21.16 0.11 5.25 ---- 14.33 

N St Vrain Confined 6.43 0.36 82.7 0.32 3.45 4.2 4.64 14.49 0.07 15.56 ---- 17.86 

Ouzel Confined 4.62 0.27 331.5 0.31 2.61 2.75 2.22 7.18 0.07 26.49 ---- 17.11 
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TABLE 3−SNOTEL sites (SNOwpack TELemtry; USDA Natural Resources Conservation 

Service Snow Survey and Water Supply Forecasting Program) used to obtain air temperature 

data to model stream temperatures for use in bioenergetics models. 

 

SNOTEL 

Site 

Site 

ID 

Site 

Elevation 

(m) Latitude Longitude 

Stream 

Temperatures 

Predicted 

Wild Basin 1042 2913.9 40 deg; 12 min N 105 deg; 36 min W N St Vrain 

Bear Lake 322 2895.6 40 deg; 19 min N 105 deg; 39 min W Glacier 

 

 



 

 

39

TABLE 4−Estimated mean, 5th, and 95th percentile weights (wet weight, grams) at ages used as beginning and end growth points in the 

bioenergetic analyses at the intensive sites, Glacier and N St Vrain (NSV) Creeks. Older age classes were combined if <3 individuals 

were in the next older age class, or negative growth would have occurred by not combining the age classes. Age classes are considered 

age+ (e.g., age 1 = age 1+) for these analyses.  

  

 

                                   

  Age 1   Age 2   Age 3   Age 4   Final Group 

Site 5% Avg 95%   5% Avg 95%   5% Avg 95%   5% Avg 95%   Ages  5% Avg 95% 

Glacier 1.8 5.2 9.3   7.4 21.7 39.4   17.2 42.3 70.1   ---- ---- ----   4-6 29.2 54.7 83.8 

NSV 0.7 3.5 6.6   5.5 13.3 22.2   12.4 25.3 39.6   16.6 32.7 50.9   5-11 22.6 48.7 73.7 
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TABLE 5−Estimated number of fish per hectare, fish biomass per square meter and fish biomass 

per meter of valley length. Biomass per valley meter was estimated from density estimates 

transformed by wetted area in the valley. Superscript values separate sampling dates at the 

intensive sites, summer 2013 (1), summer 2014 (2), and fall 2014 (3). 

 

Site N per ha 

Fish Biomass 

(g/meter2) 

Fish Biomass (g/valley 

meter) 

Glacier1 421 (404, 501) 1.55 (1.49, 1.84) 12.32 (11.83, 14.68) 

Glacier2 410 (343, 937) 2.35 (1.97, 5.38) 18.72 (15.70, 42.84) 

Glacier3 1990 (1876, 2273) 8.24 (7.77, 9.41) 65.57 (61.81, 74.89) 

Glacier Up 1653 (1581, 1855) 7.13 (6.82, 8.00) 54.75 (52.34, 61.43) 

Hague 878 (810, 1110) 2.26 (2.09, 2.86) 25.17 (23.23, 31.83) 

Jack 1203 (1137, 1484) 2.20 (2.08, 2.72) 17.19 (16.25, 21.20) 

Mill 7442 (7342, 7752) 9.94 (9.80, 10.35) 39.70 (39.17, 41.36) 

N Mullen 5099 (5088, 5317) 16.54 (16.51, 17.25) 86.60 (86.41, 90.30) 

N St Vrain1 3157 (3022, 3477) 6.33 (6.06, 6.98) 87.41 (83.65, 96.27) 

N St Vrain2 2864 (2619, 3946) 8.56 (7.83, 11.79) 118.08 (107.98, 162.71) 

N St Vrain3 1524 (1428, 1953) 3.24 (3.03, 4.15) 44.65 (41.82, 57.20) 

N St Vrain Down 2016 (1976, 2211) 5.75 (5.63, 6.30) 53.29 (52.22, 58.43) 

N St. Vrain Highest 2890 (2809, 3287) 9.27 (9.01, 10.55) 39.44 (38.32, 44.85) 

N St Vrain Lowest 1322 (1273, 1750) 8.31 (8.01, 11.00) 90.09 (86.77, 119.25) 

Ouzel 2880 (2811, 3390) 6.28 (6.12, 7.39) 59.71 (58.27, 70.29) 

Rock  4476 (4436, 4698) 15.81 (15.67, 16.56) 128.43 (127.28, 134.78) 

S Fk Michigan 564 (530, 807) 1.04 (0.98, 1.48) 8.81 (8.29, 8.81) 

Mill Confined 2683 (2569, 3165) 4.99 (4.78, 5.89) 24.97 (23.91, 29.45) 

N St Vrain Confined 1523 (1346, 2607) 3.74 (3.31, 6.41) 24.91 (22.01, 42.64) 

Ouzel Confined 3012 (3010, 3132) 7.88 (7.87, 8.19) 68.51 (68.47, 71.25) 
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TABLE 6−Candidate models for predicting trout density at the local (square meter) scale. Asterisks indicate 95% confidence intervals 

that do not include 0. Range of beta estimates is in parentheses below candidate models. 

 

Intercept 

Ln Standing 

Stock Insect 

Biomass 

Number of 

Pools per 

100m 

Width/ Depth 

Ratio LogL AICc delta weight 

-42.729 X*     -33.168 75.002 0.000 0.695 

-43.259 X* X   -32.575 78.151 3.148 0.144 

-44.186 X*   X -33.053 79.106 4.104 0.089 

7.698       -37.832 80.864 5.862 0.037 

-46.232 X* X X -32.144 82.860 7.858 0.014 

3.685   X   -37.177 83.020 8.018 0.013 

6.248     X -37.777 84.220 9.218 0.007 

-0.597   X X -36.873 86.746 11.744 0.002 

  (6.57, 6.95) (0.23, 0.42) (0.06, 0.14)         
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TABLE 7−Model selection results based on predictor variables measured at the landscape (valley length) scale. Asterisks indicate 95% 

confidence intervals that do not contain 0. Ranges of beta estimates are located in parentheses below predictor variables. 

 

Intercept 

Ln Standing 

Stock Insect 

Biomass 

Number of 

Pools per 

100m 

Width/Depth 

Ratio LogL AICc delta weight 

-446.579   X*     -60.929 130.524 0.000 0.595 

-373.252   X* X   -59.904 132.809 2.285 0.190 

-36.423     X*   -63.043 134.753 4.229 0.072 

-445.342   X*   X -60.925 134.850 4.326 0.068 

-119.593     X* X -61.394 135.789 5.265 0.043 

-354.869 X X X -59.426 137.424 6.900 0.019 

70.679       -66.679 138.558 8.034 0.011 

62.267     X -66.657 141.981 11.457 0.002 

  (34.31, 54.80) (17.50, 46.64) (-0.09, 2.37)         
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TABLE 8−Von Bertalanffy growth curve parameter estimates for Glacier and N St Vrain Creeks (intensive Sites) from back-calculated 

lengths at ages. Averages and 95% confidence intervals (in parentheses) are reported. 

            

  Linf (mm) K t0 

Glacier  205 (196, 216)   0.463 (0.373, 0.56)   -0.052 (-0.278, 0.129) 

N St Vrain  183 (179, 187)   0.408 (0.349, 0.463)   -0.193 (-0.462, 0.029) 
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TABLE 9−Summary statistics for candidate multiple regression models used to predict stream temperatures across our study sites. Two 

years of stream temperature data were used to construct the regressions (2013-2014). Predictor variables air temperature (ATemp), site 

elevation (Elev), Julian date (JDay), and the quadratic transformation of Julian date (JDay2) were evaluated for inclusion. Interactions 

are indicated by a colon symbol (“:”).   

                  

No. of 

Variables Adj R2 AICc delta Weight Variables in the Model 

6 0.8383 412.780 0 0.349 ATemp* Elev* JDay* JDay2* ATemp:Elev* ATemp:JDay 

5 0.8355 413.547 0.767 0.238 ATemp* Elev* JDay* JDay2* ATemp:JDay 

7 0.8387 413.819 1.040 0.207 ATemp* Elev* JDay* JDay2* ATemp:Elev* ATemp:Jday* Elev:JDay 

6 0.8369 413.824 1.045 0.207 ATemp* Elev* JDay* JDay2* ATemp:JDay* Elev:JDay 

4 0.7971 436.461 23.682 0.000 ATemp* Elev* JDay* ATemp:JDay 
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TABLE 10−Diet compositions collected from Brook Trout Salvelinus fontinalis during summer 2013 and summer and fall 2014. 

Average prey biomass (mg dry mass of insects/g wet weight of fish) in stomachs, with standard deviations in parentheses. Average 

contributions of aquatic and terrestrial sources and top three taxa represented (percent contribution in parentheses) in diets. Insect taxa 

are represented by numbers: 4 = Coleoptera (terrestrial), 18 = Diptera, non-Chiro (Adult), 21 = Hymenoptera, 23 = Diptera, Chiro 

(Larvae), 35 = Ephemeroptera (Larvae), 36 = Ephemeroptera (Adult), 46 = Hemiptera, 57 = Lepidoptera, 60 = Oligochaeta, 63 = 

Plecoptera (Larvae), 67 = Plecoptera (Adult), 73 = Trichoptera (Larvae). Superscript values separate sampling dates at the intensive 

sites, summer 2013 (1), summer 2014 (2), and fall 2014 (3).  

                

Site  Year Biomass 

Percent 

Aquatic 

Percent 

Terrestrial 1st 2nd  3rd 

Glacier1 2013 1.61 (2.02) 84.9 15.1 60 (73) 4 (7) 63 (6) 

Glacier2 2014 1.39 (1.29) 39.2 60.8 21 (58) 63 (29) 35 (7) 

Glacier3 2014 0.35 (0.65) 20.5 79.5 21 (45) 18 (17) 63 (10) 

Glacier Up 2014 1.18 (0.98) 10.8 89.2 21 (70) 4 (9) 67 (6) 

Hague 2014 0.40 (0.61) 96.5 3.5 60 (43) 35 (27) 23 (14) 

Jack 2013 0.54 (0.72) 53.5 46.5 35 (30) 21 (26) 73 (10) 

Mill 2014 1.48 (1.31) 14.2 85.8 21 (58) 4 (8) 57 (7) 

N Mullen  2014 0.81 (0.64) 29.9 70.1 21 (39) 67 (13) 35 (10) 

N St Vrain1 2013 1.04 (1.00) 49.0 51.0 21 (42) 23 (13) 35 (12) 

N St Vrain2 2014 2.42 (2.18) 37.5 62.5 21 (34) 23 (17) 18 (10) 

N St Vrain3 2014 1.78 (3.46) 20.4 79.6 4 (65) 21 (13) 73 (8) 

NSV Down 2013 0.62 (0.93) 63.5 36.5 63 (34) 21 (32) 73 (16) 

NSV Highest 2014 1.65 (1.98) 86.9 13.1 73 (25) 60 (21) 35 (17) 

NSV Lowest 2014 1.56 (0.73) 41.1 58.9 35 (31) 36 (25) 21 (20) 

Ouzel 2014 0.30 (0.34) 42.8 57.2 21 (19) 67 (19) 35 (16) 

Rock 2014 0.37 (0.31) 64.5 35.5 21 (21) 23 (20) 35 (19) 

S Fk Michigan 2013 0.92 (0.73) 30.5 69.5 21 (51) 73 (13) 46 (8) 
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TABLE 11−Results from similarity percentages (SIMPER) procedure comparing the Glacier (GC) and N St Vrain (NSV) Creeks diet 

compositions during summer 2014 (dissimilarity = 81.09). Average abundances at each site for each taxa is indicated (GC and NSV 

Abundance) and contributions to overall dissimilarity by each taxa (Contrib %) and cumulative percentage (Cumulative %) are also 

given. 

            

Taxa Common Name 

GC 

Abundance 

NSV 

Abundance 

Contrib 

% 

Cumulative 

% 

Formicidae Ants 38.16 22.4 21.67 21.67 

Chironimidae Midge Larvae 0.35 33.77 20.62 42.29 

Perlidae Stonefly Nymph 19.18 5.89 12.74 55.03 

Acari Water Mites 14.29 0 8.81 63.84 

Hymenoptera  Wasps and Bees 10.09 2.6 7.35 71.19 

Heptageniidae  Mayfly Nymph 4.86 5.28 5.2 76.39 

Chalcidoidea  Chalcid Wasps 0.5 7.33 4.58 80.96 

Ephemerellidae  Mayfly Nymph 0.92 5.91 3.88 84.84 

Baetidae Mayfly Nymph 3.96 4.89 3.6 88.44 

Simuliidae Black Fly Larvae 0.13 4.12 2.55 90.99 
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TABLE 12−Estimated energy densities (J/g wet weight) for Brook Trout Salvelinus fontinalis at 

both intensive sites. Energy densities were calculated using the lake trout energy density 

equation in Hartman and Brandt (1995). Seasonal averages, as well as standard deviations (in 

parentheses) are reported. 

Energy Density 

Site Summer Fall 

Glacier 5532.51 (356.72) 5144.46 (534.52) 

N St Vrain 5791.69 (511.88) 5053.57 (474.98) 
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FIGURES 

 

 

 

 
 

 

FIGURE 1−Map of study sites in northern Colorado and southern Wyoming. Intensive unconfined 

reaches are denoted by open pentagrams, extensive unconfined sites are denoted by filled 

pentagrams, and confined reaches are denoted by gray stars. 
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FIGURE 2−Representation of the difference in stream habitat sampled at both sampling scales 

used at the unconfined sites during this study. The black areas represent the stream habitat 

included when measuring at both scales. At the square meter scale, stream reaches are treated 

individually, while at the meter of valley scale, all stream reaches are treated together. 
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FIGURE 3−Population Densities (N * ha-1) of trout (>49mm) sampled at the “Intensive” sites, N 

St Vrain (dark gray) and Glacier (light gray) Creeks, in summer 2013 and 2014. 
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FIGURE 4−Estimated trout biomass and density at Glacier (light gray) and N St Vrain (dark gray) 

Creeks during the summer season. Biomass and density was estimated at the square meter scale 

(A and C), and at the meter of valley scale (B and D) in summer 2013.  
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FIGURE 5−Relationship of number of individual pools and volume of large wood at the square 

meter scale (A) and valley scale (B) across the extensive sites.   
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FIGURE 6−Relationship between fish biomass and standing stock biomass of aquatic insects at 

the square meter (A) and meter of valley length (B) scales.   
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FIGURE 7−Relationship between number of individual pools and fish biomass across extensive 

sites at the square meter (A) and valley meter (B) scales.  
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FIGURE 8−Relationship between width/depth ratio and fish biomass across the extensive sites at 

the square meter scale.   
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FIGURE 9−Population Densities (N * ha-1) of trout sampled in adjacent unconfined (solid) and 

confined (hatched) stream reaches on Mill, N. St. Vrain, and Ouzel Creeks in Summer 2014.   
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FIGURE 10−Average back-calculated length at age (± SD) for Brook Trout Salvelinus fontinalis 

at Glacier (light gray circles) and N St Vrain (dark gray squares) Creeks from otolith sections.  
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FIGURE 11−Length of age-1 Brook Trout Salvelinus fontinalis at intensive (Glacier and N St Vrain) and extensive unconfined sites. 

Lengths were back-calculated from otolith sections. In each box and whisker plot, the thick, horizontal black line represents the 

median of that distribution, while the two thinner horizontal lines represent the first and third quartiles of the data. The whiskers 

represent values within 1.5 times the interquartile range (the distance between the first and third quartiles), while the open circles 

represent suspected outliers.  
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FIGURE 12−Estimated slope coefficients from quantile regression (n=99) for age 1 (A), age 2 (B), 

and age 3 (C) fish over increasing density at unconfined extensive sites. The black dots represent 

the estimate at each quantile, while the gray shaded area represents the 95% confidence interval. 

The 99th percentile is not shown for age-2 and age-3 fish as the 95% confidence interval could 

not be calculated. 
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FIGURE 13−Comparison of predicted water temperatures from the stream temperature model 

developed in this study and observed water temperatures recorded by water temperature loggers 

placed at both intensive sites. The slope of regressions (thin lines) and a slope of 1 (thick line) 

are plotted for comparison.   
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FIGURE 14−Estimated stream temperatures from the stream temperature model developed in this 

study. Estimated stream temperatures represent the weekly average of four years of temperature 

data (2011-2014).  

0

2

4

6

8

10

12

14
E

st
im

at
ed

 W
at

er
 T

em
p

er
at

u
re

 (
C

)

Date

Glacier

N St Vrain



 

 

62

 

 
 

FIGURE 15−Invertebrate biomass (mg dry mass/g wet weight fish) found in stomachs at all sites. Invertebrate biomass was estimated 

from published length-weight regressions. Superscript values separate sampling dates at the intensive sites, summer 2013 (1), summer 

2014 (2), and fall 2014 (3). In each box and whisker plot, the thick, horizontal black line represents the median of that distribution, 

while the two thinner horizontal lines represent the first and third quartiles of the data. The whiskers represent values within 1.5 times 

the interquartile range (the distance between the first and third quartiles), while the open circles represent suspected outliers. 
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FIGURE 16−Non-metric multidimensional scaling ordination plot of the macroinvertebrate 

communities found in diet samples from Glacier and N St Vrain Creeks during the summer 

season. Data points are based on transformed data representing the proportion each taxa 

contributed to diet composition, and represent the diet community of an individual Brook trout 

Salvelinus fontinalis. ANOSIM analysis indicated diets were significantly different between the 

two sites (Clarke’s R = 0.495). 
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FIGURE 17−Non-metric multidimensional scaling ordination plot of the macroinvertebrate 

communities found in diet samples from Glacier and N St Vrain Creeks during the fall season. 

Data points are based on transformed data representing the proportion each taxa contributed to 

diet composition, and represent the diet community of an individual Brook trout Salvelinus 

fontinalis. Diets were not significantly different during the fall season (Clarke’s R = 0.056).  
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FIGURE 18− Estimated annual consumption of invertebrates by individual Brook Trout Salvelinus 

fontinalis at Glacier (black diamonds) and N St Vrain (grey squares) Creeks. Error bars represent 

estimated consumption of the observed 5th and 95th percentiles. 
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FIGURE 19−Total invertebrate consumption demand at Glacier and N. St. Vrain Creeks. Hatched 

areas indicate terrestrial invertebrates and solid areas represent aquatic invertebrates. 

Consumption is expressed as milligrams wet weight of invertebrate prey per square meter or per 

meter of valley length. Error bars represent estimated consumption at the 5th and 95th percentile. 
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FIGURE 20−Sensitvity analysis of bioenergetics model to diet source using an individual fish 

(observed growth from age 1 to 2) from N St Vrain Creek. Grams of prey consumed (solid line) 

and proportion of estimated maximum consumption (dashed line) both increase exponentially as 

percent of aquatic prey in diets increases. 
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