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ABSTRACT 

 
 

 
UTILIZING NETWORK FEATURES TO DETECT ERRONEOUS INPUTS 

 
 
 

Neural networks are vulnerable to a wide range of erroneous inputs such as corrupted,              

out-of-distribution, misclassified, and adversarial examples. Previously, separate solutions have         

been proposed for each of these faulty data types; however, in this work I show that the                 

collective set of erroneous inputs can be jointly identified with a single model. Specifically, I train                

a linear SVM classifier to detect these four types of erroneous data using the hidden and                

softmax feature vectors of pre-trained neural networks. Results indicate that these faulty data             

types generally exhibit linearly separable activation properties from correctly processed          

examples. I am able to identify erroneous inputs with an AUROC of 0.973 on CIFAR10, 0.957                

on Tiny ImageNet, and 0.941 on ImageNet. I experimentally validate the findings across a              

diverse range of datasets, domains, and pre-trained models. 
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Chapter 1 Introduction 

Humans are capable of adapting to diverse types of data in ways machine learning              

models cannot [16]. While the human visual system is able to generalize across varying image               

representations such as different Instagram filters, deep learning classifiers misbehave when           

presented with image corruptions [11, 21], adversarial examples [48], and previously unseen            

classes [3, 23, 46]. In this work, I automatically detect a broad range of inputs that will be                  

incorrectly processed by a given neural network.  

The timely, preemptive detection of these failures is essential for preventing unreliable AI             

action based on incorrect predictions. An automated technique that broadly identifies when a             

model is in error is critically important for safe AI [1]. This need is particularly relevant now,                 

given the increasingly ubiquitous deployment of deep learning models in real-world applications            

such as autonomous vehicles and medical devices. The main contribution of this work is the               

identification that the collective set of erroneous inputs that cause failure can be jointly identified               

and separated from correctly processed inputs. Figure 1 shows an example of each type of               

erroneous input:  
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Figure 1: ​Modern neural network models have state-of-the-art performance on image tasks like             
object classification. However, these networks are vulnerable to erroneous inputs i.e., images            
that are corrupted, out-of-domain, adversarial, or misclassified. Previous research has focused           
on separate solutions to defending against each type of erroneous input, but I show that all                
erroneous inputs can be jointly identified with a linear SVM trained on a given network’s               
activations. Images from ImageNet [49], SUN [45], and ImageNet-C [21].  
 

 

image corruptions [11, 21], adversarial examples [48], previously unseen classes [3, 23, 46],             

and misclassifications, an inevitable part of any model since no model has perfect performance.  

Given the breadth of erroneous input variations, it is unsurprising that each of these              

inputs has been traditionally tackled as a separate, individual problem requiring a unique,             

specialized solution. For example, out-of-distribution detection identifies when images are          

outside of a model’s training (i.e. unseen classes) [10, 23, 29, 30, 46] (additional related work on                 

erroneous input detection is discussed in Section 2). In the study of these seemingly disparate               

phenomena I noticed a common theme: the network’s internal activation patterns were notably             

distinct when stimuli were correctly processed. I hypothesized that erroneous inputs could be             

collectively separated from correctly processed inputs with a linear SVM trained on these             

features.  

I test my hypothesis with four pre-trained image classification models, each pre-trained            

on a separate dataset, and find erroneous inputs can be broadly detected as a collective group                

and generalize to a multitude of alternative datasets. Further, I find that the detection technique               
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is robust to four types of adversarial attacks. To my knowledge, this work is the first to consider                  

the feasibility of broadly detecting all erroneous inputs. Specifically, I find that the model’s              

internal activations in the softmax layer and final hidden layer are sufficient for automatically              

filtering incorrectly processed inputs, as shown in Figure 2. 

In summary, this paper makes the following contributions: 

● This is the first research showing that the four distinct types of erroneous inputs in Figure                

1, which neural networks will fail to correctly classify, can be jointly separated from              

correctly classified images using the network’s activations in response to the input. 

● I achieve results comparable to, or better than, state-of-the-art techniques by considering            

the activations of both the softmax and final hidden layer of common pre-trained neural              

networks. 

● Further, I show how this method can be used as an auxiliary technique in existing               

anomaly detection models for enhanced performance. 
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Figure 2: ​Erroneous inputs cause neural network’s to incorrectly classify images. However,            
these inputs can be preemptively identified with a simple linear SVM that is trained on the                
network’s internal activations (i.e. features) that occur in response to the image. Specifically, the              
SVM is trained on features from the hidden activation vector and the softmax vector of the                
network. Using this technique, erroneous inputs are detected with an AUROC of 0.973 on              
CIFAR-10, 0.957 on Tiny ImageNet, and 0.941 on ImageNet. Above is the optimal hyperplane              
for CIFAR10 mapping erroneous examples against correct examples. 
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Chapter 2 Related Work 
A variety of works have studied automatically detecting inputs that will cause neural             

networks to fail. In this section, I discuss the four subfields that compose erroneous inputs and                

previously established connections between inputs. 

2.1 Adversarial Attacks 

Adversarial examples occur when small, meaningful changes to clean data alter a            

network’s prediction. Szegedy et al. [48] highlighted these limitations, giving rise to the field of               

adversarial attacks. Since then, numerous methods have been proposed to generate           

adversarial attacks [6, 18, 37, 41]. Several works have attempted to defend against adversaries              

[32, 35]; however, the field largely conforms to a classic “white hat”/“black hat” paradigm (i.e.               

solutions are often temporary because new attacks are created to overcome the defensive             

solution [5]). To date, only a few defenses have proven effective on smaller input dimensions               

[33, 47]. Researchers have identified the upper bounds of adversarial robustness techniques for             

certain distributions [12, 17,34]. In particular, Fawzi et al. [12] suggested a strong relation              

between adversarial robustness and the linearity of a classifier in latent space. Gilmer et al. [17]                

showed that when a model misclassifies even a fraction of inputs, it can be exposed to                

adversarial perturbations of size O(1/√n), where ‘n’ is the number of input dimensions. My work               

finds that adversarial inputs, generated using a variety of methods (see Section 3.2.4), manifest              

distinct activation patterns that I use to detect when models will fail. I also consider “natural                

adversaries,” which categorically overlap with misclassifications.  
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2.2 Image Corruption 

Neural networks also perform poorly on corrupted examples. While adversarial images           

are typically malicious, image corruption is unintentional: corruptions range from image quality            

degradation to lighting changes. In particular, networks have shown to be susceptible to             

Gaussian noise, blur, pixelation, and JPEG compression [11, 21]. In real-world scenarios, like             

autonomous driving, models need to be robust to corruption from weather and debris [7, 36];               

some research even proposed that networks should be explicitly evaluated on their robustness             

to corruption [42]. 

2.3 Out-of-Distribution Detection  

An OoD example occurs when a model is presented with data outside of its training               

paradigm. In this work, I defined OoD examples as originating from datasets other than the               

dataset the baseline model was trained on, although I controlled for class ambiguity (for              

example, if a dataset was trained on dogs, I controlled for wolves in OoD data -- see section                  

3.2.2 for details). Hendrycks and Dietterich [22] established a benchmark for OoD detection by              

using the Maximum Softmax Probability (MSP). Results were presented on several datasets in             

different neural network models such as computer vision and natural language processing.            

Other works trained neural networks to reject out-of-distribution data with auxiliary branches            

[10], auxiliary datasets [23], GAN examples [29], and other train-time techniques [4, 15]. A              

notable cross-domain technique was proposed by Liang et al. [30], who used adversarial             

perturbations on input data to discriminate in-distribution from OoD examples. Bendale and            

Boult proposed OpenMax [3], a network layer that used Meta Recognition to estimate the              
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probability of an input originating from an unknown class. Specifically, for a given example,              

OpenMax takes the activation vector mean from each correctly predicted class to compute a              

Weibull distribution to determine the probability that a new example is OoD. They successfully              

detect out-of-distribution images and some types of adversarial attacks. Their out-of-distribution           

set contains fooling images labeled with high-confidence in standard softmax models, similar to             

my ImageNet-O set referenced section 3.2.2. Additional work by Rozsa et al. [44] proposed the               

adversarial algorithm LOTS as an attack against the OpenMax algorithm. The algorithm            

modifies an image in order to mimic the features of the penultimate layer of correct examples,                

and was shown to break OpenMax. I would like to note that this algorithm could theoretically                

break the proposed SVM model; however, I do not make any claims that the model is robust to                  

any adversarial attack. 

2.4 Misclassified Examples and Thresholding 

Misclassified examples occur when a model fails to predict an instance of a class,              

despite being trained to predict that classand the class existing within the training domain. One               

technique to detect this poorly-learned data is thresholding. Thresholding has a rich history of              

research [8, 9]; however, I believe I am the first to consider multiple layers of the network for                  

thresholding. Hendrycks and Dietterich [22] provide thresholding results for misclassified          

examples on contemporary datasets, while [14] presented results of the softmax response from             

a risk perspective. In recent years, thresholding techniques have been applied to detect             

adversarial examples [32, 40] and OoD examples [22]. Lu et al. [32] provide the approach most                

similar to my own. They utilize layers toward the end of deep learning models to detect                

adversarial examples with SVM-RBF classifiers. My work also shows that some adversarial            
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examples can be identified using these features; however, I achieve higher accuracy by             

considering the hidden layers as well as the softmax layer. 

2.5 Connecting Erroneous Inputs 

Some recent research has found similarities in the above areas. Hendrycks and Gimpel             

[22] showed that both misclassified and out-of-distribution examples can be detected by utilizing             

the maximum softmax probability. Ford et al. [13] proposed a similarity between the fields of               

adversarial and corrupted examples, showing empirical and theoretical evidence that these two            

fields are manifestations of the same phenomena. Another notable cross-domain technique was            

proposed by Liang et al. [30], who used adversarial perturbations on input data to discriminate               

in-distribution from OoD examples. Finally, Rozsa and Boult [43] argued that adversarial            

perturbations exist in open space, contrary to popular belief that they exist near training              

samples. The above research highlights the distinct work being done in each of these four               

fields, and previous work that has identified connections between some of these fields. To my               

knowledge, this work is the first to fully explore the link between all of these areas, and the first                   

to detect them with a single approach. 
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Chapter 3 Method 
 

I first formally define the domain of erroneous inputs (Section 3.1) and set up the               

experimental design (Section 3.2), enumerating the pre-trained models and datasets used in the             

experiments. Finally, I define the methods for training and testing erroneous input detectors             

(Section 3.3) and the evaluation metrics used to evaluate the results (Section 3.4). 

3.1 Defining the Domain 

I defined the domain in the context of detecting when input data to a visual classification                

model, f(x), was classified incorrectly. Incorrect classifications in the experiments encompassed           

out-of-distribution classes (D​out​), adversarial examples (A), corrupted examples (C), and          

misclassified in-distribution data (M). M could be considered any input from in-domain dataset             

D​in​ where output Y​predicted​≄ Y​actual​.  

In my experiments, I train a binary classifier, h(X’), to detect erroneous examples {D​out​, A,               

C, M}, where X’ is the activations of the penultimate and final layers of a pre-trained model for                  

image X. In h(X’), I consider D​out​, A, C, and M as belonging to the positive class, which were in                    

turn classified against the correctly predicted in-domain dataset D​in​, where Y​predicted​= Y​actual​.  

To build the training and tests set for the binary classifier I use validation and test sets                 

from the dataset under test. My training set was built such that f(A)≄ Y​actual and f(C)≄ Y​actual ​— I                   

only used samples which the pre-trained neural network classified incorrectly. When an            

adversarial or corrupted example is classified correctly, I do not want to remove the example               

from the baseline models purview. Further, adversarial examples were generated from inputs            

the model originally predicted correctly, i.e. f(X) = Y​actual and f(X→A) = Y​actual​. Finally, it is implied                 
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that f(D​out​) and f(M) would produce invalid results, so each example will be taken from these                

datasets. 

It should be noted that I did not classify in-domain versus out-of-domain data because I               

consider the set of everything except D​out to be in-domain: {D​in​, A, C, M} ​∈ D while D​out ​∉ ​D.                    

Further, my initial experiments were set up to classify correct example sets from each of the                

erroneous examples sets, i.e. classifying correct examples against the set of misclassified            

examples. 

3.2. Experimental Setup 

For my experiments I used several common baseline datasets and models for image             

classification. The baseline models were fed various correct data and erroneous data and the              

activations for both the softmax output and the penultimate layer of the model were collected for                

use in the detection models. The baseline models were not altered in any way during               

experiments. 

3.2.1 Baseline Datasets and Models 

Below are the summaries of the pre-trained models used foreach dataset under test. For              

uniformity, all images passed to the pre-trained models were resized and normalized the same              

way. 

CIFAR-10 contains 32 x 32 colored images of 10 different classes of objects [28]. The dataset                

has 50,000training images and 10,000 testing images. The CIFAR-10 model was trained using             

the ResNet50 architecture and open-sourced by [33]. 

Tiny ImageNet is a 200-class subset of the ImageNetdataset where images were cropped and              

resized to a resolution of 64 x 64. Bounding box information was used inthe image cropping                

10 



[25]. The Tiny ImageNet model is a pre-trained WideResNet [50]. The trained model was              

open-sourced by [21]. 

ImageNet consists of 1000 classes of objects [45], with varied dimensions and resolutions. My              

work used the validation dataset to produce examples for the detection model. I utilized the               

default pre-trained ResNet50 model in the Pytorch library for the ImageNet experiments. 

3.2.2 Out-of-Distribution Datasets 

I use several commonly used OoD datasets: 

CIFAR-100 contains 32 x 32 colored images of 100 different classes of objects [28]. I filtered out                 

classes similar to those found in CIFAR-10 to ensure all classes were truly OoD, leaving 74                

classes. ​CIFAR-100 ​Excluded classes: ​Bear, Bus, Camel, Cattle, Dinosaur, Elephant, Fox,           

Hamster, Kangaroo, Leopard, Lion, Lizard, Mouse, Pickup Truck, Possum, Rabbit, Raccoon,           

Shrew, Skunk, Squirrel, Streetcar, Tank, Tiger, Tractor, Train, Wolf 

SVHN I use the test set from the Street View HouseNumbers dataset [38], which contains               

colored numbers with class labels 0 to 9. 

The Scene UNderstanding dataset (SUN) contains images of scenes with varying resolutions            

[49]. 

Places365 contains 365 classes of scenes with varying image resolutions. I use the             

high-resolution validation set for use in my Tiny ImageNet and ImageNet models [51]. 

ImageNet-O ​dataset was constructed from sampled images from ImageNet-22K [24]. First,           

images overlapping with classes in ImageNet-1K were filtered out. Next, they retained images             

that a ResNet50 ImageNet model classified with high softmax probability. Finally, they            

hand-selected a subset of high-quality images. 
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3.2.3 Corruption Datasets 

CIFAR-10-C, Tiny ImageNet-C, ImageNet-C are image corruption datasets for the purpose of            

testing model robustness [21]. Each corrupted dataset included 15 common visual corruptions            

such as Gaussian noise, blur, and digital distortions. Each type of corruption had five levels of                

’severity’ for a total of 75 distinct corruptions per image. I used each corruption and severity type                 

in the models. 

3.2.4 Adversarial Attack Methods 

White-box attack methods are used to generate adversarial examples. White-box methods           

assume the attacker has full access to the learning model. 

Fast Gradient Sign Method (FGSM) was an attack introduced by Goodfellow et al. [18]. It               

adjusts the inputs to maximize the loss based on the back propagated gradients of the predicted                

value: f(A)=X+𝜺sign(∇​x ​J(θ, X, Y)). FGSM examples were generated using=0.01. 

Carlini and Wagner l​2 Attack (C & Wl2) searches for low distortion in the l​2 metric [6]. Notable                  

in the Carlini and Wagner attacks is κ, which allows a confidence level for the adversarial                

example to be calibrated. This means examples can be generated that the neural network              

predicts incorrectly with high probability. Examples in my main experiments were generated with             

κ=0 — I did not search for a perturbed input which satisfied a specific confidence. 

Carlini and Wagner l​∞ Attack (C & W l​∞​) was a modified version of the C&W l​2 attack. It                   

controls the l​∞​ norm, i.e. the maximum perturbation applied to any pixel [6]. 

Projected Gradient Descent (PGD) finds the perturbation that maximizes the loss of a model              

on an input, and, after each iteration, it projects the perturbation onto an L​P ball of radius while                  

also clipping values so they fall within a permitted range [33]. Carlini and Wagner l​2 , l​∞ ​attacks                  
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and PGD attack examples were generated using the adversarial-robustness-toolbox with default           

parameters [39]. I used the PyTorch implementation of the FGSM attack. 

ImageNet-A is a dataset of ’natural adversaries’. ImageNet-A was created by taking examples             

from the ImageNet dataset and removing examples the model predicted correctly. Then, a             

subset of high-quality images were hand-selected [24]. I included this dataset as an extension to               

the misclassified experiments. 

Special considerations for adversarial examples: 

● While I test the method on four different adversarial attacks, I do not claim this method to                 

be robust to any attack. Section 5.2 looks at this further. 

● I looked at the first 20 generated examples of each adversarial dataset to verify the               

perturbed image was realistic. 

 

3.3. Detection Model  

I employed a linear Support Vector Machine (SVM) classifier for my experiments, where             

examples ({x1}, y1),..., ({xn}, yn) were trained to maximize the hyperplane between the groups              

y=0 and y=1. Correct examples were the base class (y=0).While MSP and OE use a model-less                

ROC during their evaluation, I instead evaluate my detection model using five-fold cross             

validation. I found that linear SVMs were able to generalize better in high dimensions than other                

SVM kernels. To generate features {x1}...{xn} for my model, I take all values from the softmax                

output vector and sort them from smallest to largest. I then take the activations from the                

penultimate layer of the baseline model, which is a fully-connected layer. For ResNet50             

pretrained models (CIFAR10 and ImageNet), the penultimate layer is 2048 values, while Tiny             
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ImageNet has a penultimate layer of size128. I present results in this paper with a balanced                

dataset: each model contains the same number of correct and erroneous examples. 

 

Figure 3: End-to-end algorithm for the linear SVM algorithm trained on the hidden and softmax               
features of a pretrained neural network.  

3.4. Testing and Evaluation Metrics  

I evaluate binary detection tasks using three metrics: area under the receiver operating             

characteristic curve (AUROC) and area under the precision-recall curve (AUPR), and false            

positive rate at N% true positive rate (FPRN). AUROC plots the true positive rate (TPR) against                

the false positive rate (FPR). Random classifiers score 50% while perfect classifiers achieve             

100%. AUPR is another cumulative distribution function which plots the precision(True           

Positive)/(True Positive + False Positive) versus the recall (True Positive)/(True Positive + False             

Negative). For my ImageNet model I also present FPRN scores, also used by [23, 30, 31]. The                 

FPRN calculates the false positive rate at a set True Positive Rate. I use TPR of 95%, similar to                   

past papers. 
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3.5. Other Experiment Details 

Dataset sizes Sizes generally ranged from 3,500 examples up to 50,000 examples. There were              

two exceptions to this rule: the CIFAR10 pretrained model only misclassified 475 images on the               

test set, and TinyImageNet FGSM attacks rendered only 1,764 bad examples. ​The number of              

correct examples generated were ​9,525 for CIFAR10, 6,366 for Tiny ImageNet, and 23,350 for              

ImageNet. Further details in Table 1.  

Table 1:​ Erroneous dataset sizes. Correct example set sizes described in Section 3.5.  
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Baseline detection models I test my erroneous datasets on two baselines: MSP [22] and              

Outlier Exposure [23]. For MSP, I use the pre-trained models described in Section 3.2.1. I use                

the same pre-trained models for my main experiments, the columns labeled “Linear SVM” in              

Tables 1 and 2. As an additional measure, I test the datasets on Outlier Exposure by using                 

pre-trained models open sourced by the researchers on GitHub. The models were trained with a               

modified loss function which encourages out-of-distribution examples to fit a uniform distribution.            

An important note is that they expose the pretrained model to OoD examples. Further, the               

choice of OoD exposure was important, for instance, corrupting in-distribution examples with            

noise did not perform well. As a result, their models were trained with realistic OoD data from 80                  

Million Tiny Images dataset and ImageNet22k. 
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Chapter 4 Results 
 

In this section, I present my findings: First, Section 4.1 breaks down the results by               

pretrained models and datasets, then, Section 4.2 presents the combined results across            

erroneous inputs. 

4.1 Single Erroneous Dataset Results 

In Table 2, I directly compared the applicability of the detection model with Maximum              

Softmax Probability (MSP) [22], as well as Outlier Exposure (OE) [23]. Additionally, I applied the               

method to existing OE models for CIFAR10 and Tiny ImageNet. Results show that the method               

helps both Outlier Exposure models as well as standard pretrained models. By applying the              

method to pre-trained models, I am able to outperform OE and MSP on 15 of 17 datasets.                 

These results show evidence that the linear kernel of the SVM is able to generalize to new                 

examples across validation sets. In Table 3, I look at the method for ImageNet examples in a                 

pretrained ResNet model with weights loaded from PyTorch. My linear SVM is again trained with               

five-fold cross validation and compared to the baseline AUROC curve of the MSP. All of the                

models were tested on the same examples.  
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Table 2: CIFAR-10 and Tiny ImageNet experiments for MSP, Outlier Exposure, Outlier            
Exposure + Linear SVM (Mine), and Linear SVM (Mine). Results are presented using five-fold              
cross validation for each model. All error rates are near zero (less than 0.01). Best results for                 
each row are bolded. 

 

 

4.2. Joint Erroneous Example Detection 

Erroneous inputs were randomly sampled from the set of all erroneous datasets to             

create a balanced dataset, i.e. {D​out​, A, C, M}. In Tables 1 and 2 I add these results in the                    

’Combined’ row. I found that, across all of the models, erroneous inputs could be detected with                

reasonably high performance (AUROCs between 0.941 and 0.973). A manual analysis of model             

failures found that examples from PGD attacks were consistently not detected by the model              

because their maximum softmax probabilities tended to be higher (PGD inputs had nearly 100%              

probability on average) than for correctly classified examples (80% MSP average for ImageNet,             

86% MSP average for Tiny ImageNet). All other erroneous example sets were lower (between              
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25% and 93% average). Table 4 details this further. As a result, I exclude PGD examples from                 

the combined results. Since PGD examples are easily separable from correct examples for each              

of the models, a PGD detector can be implemented as a separate model.  

Table 3. ImageNet experiments for MSP as well as the Linear SVM model. Up arrows indicate                
when a higher score is better, while down arrows indicate when a lower score is better. 
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Table 4:​ The mean and variance of the maximum softmax probability for each correct 
and erroneous datasets under test.  
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Figures 4/5: Two graphs showing the linear separability of erroneous datasets from correctly             
classified examples. “0” on the y-axis represents the optimal hyperplane in a linear SVM              
classifier. Left: Erroneous examples from Tiny ImageNet are separated from correctly classified            
images using the hidden activations plus the sorted softmax features. Right: Erroneous            
examples from ImageNet are separated from correctly classified examples. To improve           
readability, I only include a subset of the correct and erroneous example sets. 
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Chapter 5 Further Investigation 

I examined four additional scenarios in the following section: linear separation among            

erroneous example sets, high-softmax erroneous examples, left-out erroneous datasets, and          

finally corrupted examples with correct predictions. Each of the experiments show evidence of             

the beneficial properties of high-dimensional data, otherwise known as the ’Blessing of            

Dimensionality’ [26]. See discussion in Section 7 for more details. 

5.1. Discriminability of Erroneous Sets 

Figure 3, which visualizes the separability of erroneous inputs and correctly processed            

inputs, indicates that the set of erroneous inputs occupy the same feature space. I investigated               

with an SVM, trained to separate erroneous inputs. Results, shown in Table 5, indicated that               

each erroneous input pair generally occupied a unique feature space, indicating that the             

strength of the method is the model’s ability to separate correctly processed inputs from other               

inputs. This finding implies that the method will be robust against additional or future types of                

erroneous inputs. 
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Table 5: I test the separability of erroneous inputs on the CIFAR10 model with Maximum               
Softmax Probability and a Linear SVM. The linear SVM model is trained on the penultimate               
layer as well as the sorted softmax output, and contains 2058 features. The results indicate that                
each type of erroneous input manifests largely in it’s own feature space. The experiments are               
performed with 5-fold cross validation, with error rates all below 0.015. 

 

 

5.2. High Softmax Erroneous Examples 

I explored if the method was susceptible to high softmax erroneous examples.            

Specifically, I filter the CIFAR10 datasets to retrieve examples where the maximum softmax             

probability is greater than 0.99999. The filtering yields 342 erroneous examples from each type              

excluding PGD, which generally has a softmax closer to one than correctly classified examples.              

I filter out correctly predicted examples with the same method and perform an ROC measure on                

the MSP as well as a five-fold cross validation using a linear SVM. When tested, MSP has an                  

AUROC of 0.513 and an AUPR of 0.532, or slightly better than random. Performing five-fold               

cross validation using the method, I achieve an AUROC of 0.922 and an AUPR of 0.935, with                 

error rates of 0.026 and 0.014 respectively. 
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5.3. Leave One Erroneous Set Out 

To verify robustness of the method, I use leave-one-out modeling, where I train a linear               

SVM on each erroneous set minus a single left out dataset, and then test the model on the left                   

out dataset. I hypothesized that if the data occupies the same feature space, the model's               

hyperplane would be able to discriminate new erroneous sets. In the experiments, I use one               

dataset from each erroneous group from the CIFAR10 model: the misclassification dataset,            

FGSM attacks, SVHN dataset, and theCIFAR10-C dataset. Specifically, I train a linear SVM to              

classify correct inputs against three out of the four erroneous datasets. Then, I test the model on                 

the fourth erroneous set. Results in Table show evidence that the model will be able to                

generalize to new types of bad data: the model with SVHN left out did the best, with an AUROC                   

of .987 and AUPR of 0.988. FGSM struggled more, with an AUROC of .822 andAUPR of .817.                 

Corrupted scored 0.952 AUROC 0.958 while incorrect examples scored 0.863/0.855.  

5.4. Corrupted Examples 

A last experiment I performed was separating corrupted examples with correct           

predictions -- f(C)=Y​actual from erroneous examples. I used five-fold cross validation on the             

CIFAR10 dataset. Experiments illicit strong results, with AUROCs between 0.956 and 1 and             

AUPRs from 0.955 to 1. Interestingly, the dataset that performed the worst was incorrect              

corrupted images, with AUROC 0.956, indicating the model had most trouble discriminating            

similarly corrupted images. 
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Chapter 6 Real-World Use Case 

To promote potential use of this model, I describe a simple production scenario where              

this algorithm could be used. An autonomous vehicle relies on a legacy machine learning              

algorithm f(x) to determine its course of action, where x is the video input from the vehicle's                 

camera system. Specifically, f(x) outputs a vehicle's next course of action (e.g. turning the              

wheel, stopping, etc.) based on visual cues from the road ahead. The model was originally been                

trained to be robust against erroneous inputs by a method such as Outlier Exposure [23];               

however, the model still fails in certain scenarios such as:  

1) Ambiguous, fooling images that the model misclassified, such as the dog behind a bush               

pictured in Figure 1. A realistic example could be a child in the road ahead, obstructed by                 

another vehicle.  

2) The model receives corrupted input data, such as when the weather is poor, and the camera                 

system has a distorted view.  

3) The model receives an input which it has never seen before, such as an exotic animal.  

4) New adversarial attacks on the camera software meant to fool the model. 

During testing and use of the autonomous driving software, engineers have flagged            

various erroneous inputs where f(x) fails. These inputs are compiled into a dataset, and the               

engineers follow our methods to train an SVM to delineate bad examples from inputs where f(x)                

performs well. The resulting model can be quickly deployed to alert drivers when new erroneous               

inputs are present and the driver needs to take control of the vehicle. This quick corrective                

mechanism adds safety measures to an existing production software. 
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Chapter 7 ​ ​Discussion 

Erroneous inputs have been largely studied as distinct phenomena, with the detection of             

different faulty inputs requiring their own methods. My results show that these faulty inputs can               

be broadly detected by considering a model’s internal behavior. I propose a new internal              

activation combination that allows for the broad detection of erroneous inputs, and establish             

standards for the detection of faulty data including adversarial, corrupted, out-of-distribution, and            

misclassified examples. A substantial benefit to this approach is that it requires no modification              

to the baseline model. Apart from Hendrycks and Gimpel [22], most work in the area requires                

some sort of network modification during training or test time. There are limitations to this               

approach that future research will need to address; first, the current research focuses on the               

image domain. It remains to be seen how well this technique will generalize to other domains                

(like natural language processing), but initial work by Hendrycks and Gimpel [22] found MSP,              

which my method directly builds on, was useful in several other domains, indicating the              

techniques will likely generalize. Second, the method requires erroneous detection models to be             

trained for individual neural models, with activation data from those models, which can be              

cumbersome, albeit arguably trivial when compared with the cost of a neural architecture search              

[27]. Third, my erroneous detection models are linear SVMs, which do fail under some              

conditions – for example, adversarial PGD inputs had higher maximum softmax probabilities,            

while other adversarial inputs had lower maximum softmax probability. Still, my models were             

highly successful at detecting erroneous inputs, and the simplicity of the model has important              

implications for real-time usage.  

I believe that the positive outcomes in this paper result from the beneficial properties of               

high-dimensional data. Contrary to the popular ’Curse of Dimensionality’ [2], which argues that             
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problems become more difficult in high-dimensions, Kainen coined the term ’Blessing of            

Dimensionality’ describing scenarios in which complex data is more beneficial [26]. Stochastic            

separation theorems, recently introduced by Gorban and Tyukina [20], formally established this            

phenomena, showing that in moderately high-dimensions we can achieve linear separability of            

sets with probability close to 1. Further work by the researchers presented a similar experiment               

to our own [19] by using LDA to discriminate anomalies from correct data on a simple dataset.                 

These results are consistent with our experiments in the preceding sections. 

A model capable of interpreting the breadth of all inputs is at best years away, and thus                 

detection of ’bad’ data, which will cause models to fail, is essential for the safe use of any real                   

world system. I argue that by moving towards detection of bad data in the broader application of                 

a learning based system, we can advance the reliability of machine learning models in real               

world applications.  
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CIFAR10 Visualizations ​Hyperplane visualizations for the CIFAR10 dataset. Each image 
represents the hyperplane separating a single erroneous example set, denoted with orange “+” 
signs, from the correct example set, denoted with blue “x” signs.  
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Tiny ImageNet Visualizations ​Hyperplane visualizations for the Tiny ImageNet dataset. 
Each image represents the hyperplane separating a single erroneous example set, denoted with 
orange “+” signs, from the correct example set, denoted with blue “x” signs.  
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ImageNet Visualizations ​Hyperplane visualizations for the ImageNet dataset.​ ​Each image 
represents the hyperplane separating a single erroneous example set, denoted with orange “+” 
signs, from the correct example set, denoted with blue “x” signs.  
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