Ve

® Why do we need program analysis ?

Effective program analysis is essential for program optimization and program
understanding. It is needed for software engineering tasks such as program
verification and error detection.

® What is bit-vector analysis ?

Bit-vector analysis is an analysis that uses bits to store information at each program
point. Dataflow information can be encoded with sets having true or false values
with a bit-vector. Examples of bit-vector analysis are reaching definitions, liveness

and available expressions.

® What are problems with classic bit-vector analyses ?

Classic bit-vector analyses techniques assume only scalar variables within a
program. However, real programs consist of pointer usage, structures and arrays.
® Why do we need automatic generation ?

Bit-vector analyses are generally hand-written for a particular language. If

we are able to generate a bit-vector analysis by providing a specification, it
would be of great help to software engineers.

® What is OpenAnalysis(OA) ?
OA is an open source analysis toolkit that separates program analysis from
program representation. OA can be coupled with any imperative or

imperative-based object-oriented programming language, by implementing
various abstract interfaces.

OpenAnalysis ]

SagelR
Interface

ROSE Compiler

Ma‘%‘rsls
IRInte ace 1 Infrastructure

ANALYSIS

Analysis

Source
IRInterface 2

Program

Opené4 Compiler
Infrastructure

Opent4
ENGINE IRinterface

e
Z° Automatic Generation of Bit-vector Analysis Using OpenAnalysis

AFEQ.”.J?E:

Shweta Behere, Dr. Michelle Strout, Dr. Paul Hovland

Approach:

One approach is to lower the higher-level semantics involving structures and arrays to a representation that has only
scalar temporaries and accesses to memory. A conservative analysis assumption would be that all accesses to memory
possibly overlap. Language-specific transformations must be performed on higher-level representations; therefore the
lowering approach is not always applicable.

Our aim is to effectively analyze programs containing aliases, arrays and other complex structures at a higher semantic
level, while still using data-flow analysis specifications for scalars. In our approach, we describe the data-flow analysis
specification in a set-based specification language, and automatically generate an analysis implementation that uses
aliasing information to obtain precise dataflow analysis results.

| Automatic bit-vector analysis generation process]

Analysis Bit-vector | Provide to_
Specifigation =——— Analysis OpenAnalysis
File Generator
Analyses
Managers,
Analyses
IRInterfaces
Specification for Liveness: Example for Liveness: Solution:

meet: union a=5; Use the upper bound or lower bound based on the
direction: backward *p=4 may/must information.
type: may

Liveness is a may analysis. We will take the upper
bound for the gen set (*p could be everything) and the
lower bound for the kill set (*p could be nothing).

gen[s]: {uses[s]}

As Liveness is a may
kill[s]: {defs[s]}

analysis, a is still live after
the last statement.

Future Work:
® Provide options for the user to generate context sensitive/insensitive analysis

® Extend implementation generation technique to any domain specific data-flow analysis

Related Work:
A generalized theory of bit vector data flow analysis - Uday P. Khedker, Dhananjay M. Dhamdhere

They present a theory for bit-vector data flow analysis and characteristics of bit-vector frameworks.




