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ABSTRACT

ANALYTICAL COST METRICS : DAYS OF FUTURE PAST

Future exascale high-performance computing (HPC) systems are expected to be increasingly

heterogeneous, consisting of several multi-core CPUs and a large number of accelerators, special-

purpose hardware that will increase the computing power of the system in a very energy-efficient

way. Specialized, energy-efficient accelerators are also an important component in many diverse

systems beyond HPC: gaming machines, general purpose workstations, tablets, phones and other

media devices. With Moore’s law driving the evolution of hardware platforms towards exascale, the

dominant performance metric (time efficiency) has now expanded to also incorporate power/energy

efficiency.

This work builds analytical cost models for cost metrics such as time, energy, memory access,

and silicon area. These models are used to predict the performance of applications, for performance

tuning, and chip design. The idea is to work with domain specific accelerators where analytical

cost models can be accurately used for performance optimization. The performance optimization

problems are formulated as mathematical optimization problems. This work explores the analytical

cost modeling and mathematical optimization approach in a few ways. For stencil applications and

GPU architectures, the analytical cost models are developed for execution time as well as energy.

The models are used for performance tuning over existing architectures, and are coupled with

silicon area models of GPU architectures to generate highly efficient architecture configurations.

For matrix chain products, analytical closed form solutions for off-chip data movement are built

and used to minimize the total data movement cost of a minimum op count tree.
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Chapter 1

Introduction

“When you change the way you look at things, the things you look at change.” – Max Planck

As we move towards the exascale era, the new architectures must be capable of running the

massive computational problems efficiently. Scientists and researchers are continuously invest-

ing in tuning the performance of extreme-scale computational problems. These problems arise

in almost all areas of computing, ranging from big data analytics, artificial intelligence, search,

machine learning, virtual/augmented reality, computer vision, image/signal processing to compu-

tational science and bioinformatics.

With Moore’s law driving the evolution of hardware platforms towards exascale, the dominant

performance metric (time efficiency) has now expanded to also incorporate power/energy effi-

ciency. Therefore the major challenge [2, 3, 4, 5, 6] that we face in computing systems research

is: “how to solve massive-scale computational problems in the most time/power/energy efficient

manner?”

The architectures are constantly evolving making the current performance optimizing strate-

gies less applicable and new strategies need to be invented. The solution is for the new architec-

tures, new programming models, and applications to go forward together. Doing this is, however,

extremely hard. There are too many design choices in too many dimensions. The algorithms/ap-

plications may have a wide range of parameters, making them either intensely bandwidth bound

or heavily compute bound, limited only by the hardware’s operational throughput. This signif-

icantly affects the algorithms used to obtain the best solution. At the hardware end, the target

platform affects not only the parallelization methods but also the tool-chains used. To overcome

this complications, cost models and simulators are used.

We propose the following strategy to solve the problem, i.e., “how to solve massive-scale

computational problems in the most time/power/energy efficient manner?”:
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1. Models Develop accurate analytical models (e.g. execution time, energy, silicon area) to

predict the cost of executing a given program.

2. Complete System Design Simultaneously optimize all the cost models for the programs

(computational problems) to obtain the most time/area/power/energy efficient solution. Such

an optimization problem evokes the notion of codesign.

Codesign—the simultaneous design of hardware and software—has two common interpreta-

tions [7, 2]. System codesign [8, 9] is the problem of simultaneously designing hardware, run-time

system, compilers, and programming environments of entire computing systems, typically in the

context of large-scale, high-performance computing (HPC) systems and supercomputers. Appli-

cation codesign, also called hardware-software codesign [10, 11, 12], is the problem of systemat-

ically and simultaneously designing a dedicated hardware platform and the software to execute a

single application (program). The proposed approach is applicable to both contexts.

Solving the problem of System codesign in its full generality is very difficult [8, 5, 2, 3] because

of the wide range of (i) computational problems, (ii) the programming languages and abstractions

used to express them, and (iii) varying target architectures, from data centers and cloud-based plat-

forms, to distributed heterogeneous mobile platforms such as phones, and even “things.” There-

fore, we suggest the following breakdown:

1. Employ Domain-Specificity Choose (i) a (small set/class) of programs, (ii) highly opti-

mized hardware accelerators, and (iii) the optimal compiler transformations.

2. Develop Cost Models Develop accurate analytical cost (Time/Data/Area/Energy) models

for performance prediction and optimization.

3. Mini Sub Prob - Specialize Solve the codesign problem for the specific domain in (1) using

the models in (2) i.e. optimize the program, compiler and hardware parameters simultane-

ously.

4. Large Prob - Generalize Repeat the above process to cover various important classes of

programs, assign a weight to each class of programs and formulate an optimization problem
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for this weighted set of program parameters. Simultaneously, solve for all the parameters

and for all classes of programs.

1.1 Specialization

Application codesign [13] is particularly important for embedded systems. In many uses of

these systems (e.g., self-driving cars, computational fluid dynamics, neural networks, medical

imaging, smart cameras, and cyber-physical systems) general purpose platforms based on standard

CPUs deliver inadequate “performance” on a combination of many cost metrics: speed/through-

put, power/energy, weight, size, and manufacturing/fabrication cost, especially in volumes that the

market can sustain. As a result, specialized hardware is essential.

Hardware platforms for embedded systems are usually heterogeneous, with (instruction-set)

programmable processors (CPUs and micro-controllers), accelerators that are either instruction-

set programmable (e.g., GPUs), or “hardware programmable” ones like FPGAs and reconfigurable

logic, as well as Application Specific Integrated Circuits (ASICs). For HPC systems, ASICs are

usually not a designer option. In either case, the platforms have specialized, highly parallel, often

fine-grain, components like FPGAs, GPUs, or DSPs, called accelerators.

The challenge is exacerbated when we consider the fact that accelerators are not one single

architecture, and moreover, are constantly evolving. For example,

• Google developed the TPU (Tensor-flow Processing Unit), an ASIC to accelerate machine

learning computations. It is completely invisible to end users, who access it via the Tensor-

Flow tool, and whose back end presumably makes direct library calls to TPUs.

• Microsoft released Catapult, an FPGA based fabric for accelerating large-scale data-center

services. It is a custom design, written in Verilog, and accessed via library calls.

• At the other end of the spectrum, Facebook is developing its large scale machine learning

applications using off-the-shelf GPUs and conventional tool chains: CUDA/OpenCL.
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Mapping an application to an accelerator platform, even when the hardware is fixed, is extremely

difficult. Codesign seeks to simultaneously design the hardware itself, and is, therefore, an even

harder problem. Multiple cost metrics must be optimized, while still providing flexibility to the

programmer and end user, and the design space is huge.

The key element of our approach is to exploit multiple forms of domain-specificity [2]. First,

we tackle a specific (family of) computations that are nevertheless very important in many em-

bedded systems. This class of computations, called dense stencils, includes the compute-intensive

parts of many applications such as computational fluid dynamics, neural networks, medical imag-

ing, smart cameras, image processing kernels, simulation of physical systems relevant to realistic

visualization, as well as the solution of partial differential equations (PDEs) that arise in many

cyber-physical systems such as automobile control and avionics.

Second, we target NVIDIA GPUs, which are vector-parallel programmable accelerators. Such

components are now becoming de-facto standard in most embedded platforms and MPSoCs since

they provide lightweight parallelism and energy/power efficiency. We further argue that they will

become ubiquitous for the following reasons. Any device on the market today that has a screen

(essentially, any device, period) has to render images. GPUs are natural platforms for this process-

ing (for speed and efficiency). So all systems will have an accelerator, by default. If the system

now needs any additional dense stencil computations, the natural target for performing it in the

most speed/power/energy efficient manner is on the accelerator.

The third element of domain specificity is that we exploit a formalism called the polyhedral

model as the tool to map dense stencil computations to GPU accelerators. Developed over the

past thirty years [14, 15, 16, 17, 18], it has matured into a powerful technology, now incorpo-

rated into gcc, llvm and in commercial compilers like Rstream. Tools targeting GPUs are also

available [19, 20].

Thus, we formulate the domain-specific optimization problem: simultaneously optimize com-

pilation and hardware/architectural parameters to compile stencil computations to GPUs.

Previously, we presented [21] an approach to solve the above problem as follows:

4



1. Develop Models

(a) Time Model [22] We show that the elements of the domain specificity can be combined

to develop simple, analytical (as well as accurate) models for the execution time of tiled

stencil codes on GPUs and that these model can be used to solve for optimal tile size

selection. Our model was able to predict tile sizes that achieve 30% of theoretical

machine peak on NVIDIA Maxwell GTX 980 and Titan X.

(b) Area Model [21] We develop a simple, analytical model for the silicon area of pro-

grammable accelerator architectures, and calibrate it using the NVIDIA Maxwell class

GPUs. Our model proved to be accurate to within 2% when validated.

(c) Energy Model [23] We also developed energy models, as an explicit analytic function

of a set of compiler and hardware parameters, that predict the energy consumption by

analyzing the source code. We used these energy models to obtain optimal solutions to

tile size selection problem.

2. Codesign [21] We combine the proposed execution time model [22] and the area model [21]

with a workload characterization of stencil codes to formulate a mathematical optimization

problem that minimizes a common objective function of all the hardware and compiler pa-

rameters. We propose a set of Pareto optimal designs that represent optimal combination of

the parameters that would allow up to 126% improvement in performance (GFlops/sec).

Despite domain specificity, the problem remains difficult. Even when done by hand for single

target architecture and an application kernel, it is more art than science. Although smart designers

and implementers have worked for many decades on such problems for the “application/archi-

tecture du jour,” each one was usually a point-solution [24, 25, 26]. Designers invested blood,

sweat and tears to find the best implementation, used it to solve their problem of interest, usu-

ally published a paper explaining the design, and moved on. Their invested effort, particularly the

trade-offs they made, and lessons they learned, are lost: future designers are left to reinvent wheels.
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The high-level objective is to optimize stencil codes while tuning the hardware accelerator

(GPUs) developing a complete ecosystem. The goal is to automatically and provably optimally,

using time and/or energy as the objective function, map stencils to the hardware accelerators.

The idea is to obtain provably optimal mappings through rigorous mathematical optimizations.

The proposed approach can have the following benefits.

• Automation with Optimality: the most time/power/energy efficient implementations can be

derived, reducing programmers’ effort. Compilation tools can be used to guide the optimal

choice of transformations which will, in turn, optimize the performance of the workloads

such as deep learning, image rendering, cyber-physical systems, autonomous vehicle sys-

tems, etc.

• Future proofing: Porting applications to new GPU architectures will require less effort.

Instead of a redesign of each program, our methods can be used to develop new paralleliza-

tion strategies and transformations, refine/redefine objective functions and constraints, and

re-target the compiler. This one-time effort can then be amortized over many application

kernels.

• Codesign: By casting hardware/architectural parameters as variables in the mathematical

optimization framework, we can solve for their optimal values. This will enable us to sys-

tematically explore alternate GPU architectures and simultaneously tune compilation param-

eters. Such a codesign approach will help speed up the research work and the chip design

process. The cost models can be used to quickly recognize the performance sinks and help

identify the design flaws in its early stages saving billions of dollars.

Generalization Future exascale high-performance computing (HPC) systems are expected to be

increasingly heterogeneous, consisting of several multi-core CPUs and a large number of accel-

erators, special-purpose hardware that will increase the computing power of the system in a very

energy-efficient way [6]. Consequently, highly specialized coprocessors will become much more

common in exascale than in the current HPC systems. Such specialized, energy-efficient acceler-
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ators are also an important component in many diverse systems beyond HPC: gaming machines,

general purpose workstations, tablets, phones and other media devices. In order to attain exascale

level performance, accelerators have to become even more energy-efficient, and experts anticipate

that a large part of this must come through increased specialization [2].

Our approach can be used to solve the problem of System codesign by applying proposed

accelerator codesign techniques to all the classes of programs that optimize for all the parameters

simultaneously. We provide a proof of concept of our approach, which is a stepping stone towards

solving the larger problem of transforming the GPUs into accelerators for HPC Systems.

1.2 Breaking Abstractions

Code
Performance 

Data

Optimization 

Strategy

Performance 

Model

run/measure/profile

prediction

analyzetransform

Figure 1.1: HPC application performance improvement cycle. The layers represent different architectures.

Since a long time the HPC developers and tool builders are using certain abstractions to im-

prove the performance of applications. Figure 1.1 shows the performance improvement life cycle

of an HPC application. The layers represent a separate life cycle for every architecture (e.g. GPUs,

CPUs, FPGAs). A different Programming Language and System, each with its own Programming
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Environment & Tools is used based on the underlying hardware architecture. Therefore, there are

different codes for the same application on different hardware. Usually, the scientists who develop

the algorithms/applications are completely isolated from the HPC performance tuning specialists.

For every application, a profiler is used to get performance data which is analyzed to derive a

performance model. The performance models are used to predict the performance and select an

optimization strategy. Optimal transformation strategy is applied to get code. This cycle repeats

until the satisfactory performance is obtained.
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Code 
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Figure 1.2: Polyhedral Compilation

Polyhedral compilers (see Figure 1.2) have a Polyhedral Reduced Dependence Graph (PRDG)

as the intermediate representation of loops. Polyhedral analysis (such as scheduling, parallelizing,

memory allocation, etc.) is performed on this graph. Piecewise Quasi-Affine Functions (PQAFs)

are mathematical functions that transform the PRDG using cost functions. A transformed PRDG

is used to generate codes. Notice the similarities and differences between Figures 1.1 and 1.2

and their performance cycles. The optimization strategies in Figure 1.1 are represent the PQAFs.
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The performance models are subsumed in the polyhedral analysis phase. Our work focuses on

using cost models for polyhedral analysis, in turn, breaking the cycle and reducing the time to find

optimal solutions.

Design Space

1. The main idea of our work comes out as a consequence of some of the exascale chal-

lenges [2]. For exascale system design, various architectures, programs and transformation

strategies are to be explored simultaneously in order to find the optimal. We add cost models

to this design space and provide a unified view of the optimization space. Figure 1.3 shows

this view (more details in Section 2.2).

Programs
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s

Figure 1.3: Unified View of the Design Space.

2. The above design space, however, is very large, has too many parameters and is too com-

plicated to develop precise models. Therefore, we explore domain specificity and identify

regions where optimization across multiple axes become possible.

We show how the analytical cost models can be used to optimize the performance of domain

specific programs using transformation strategies for a given architecture in Chapter 2.
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The rest of this document is organized as follows: Chapter 2 explains our proposed approach

of navigating the design landscape. Chapter 3 discusses the relevant literature. Chapters 4, 5, 6,

and 7 discuss the contributions. Finally, Chapter 8 concludes the document.

10



Chapter 2

The Landscape and Navigation

2.1 Domain Specificity

As we move to address the challenges of exascale computing, one approach that has shown

promise is domain specificity: the adaptation of application, compilation, parallelization, and opti-

mization strategies to narrower classes of domains. An important representative of such a domain

is called Stencil Computations, and includes a class of typically compute bound parts of many

applications such as partial differential equation (PDE) solvers, numerical simulations in domains

like oceanography, aerospace, climate and weather modeling, computational physics, materials

modeling, simulations of fluids, and signal and image-processing algorithms. One of the thirteen

Berkeley dwarfs/motifs [27], is “structured mesh computations,” which are nothing but stencils.

Many dynamic programming algorithms also exhibit a similar dependence pattern. The importance

of stencils has been noted by a number of researchers, indicated by the recent surge of research

projects and publications on this topic, ranging from optimization methods for implementing such

computations on a range of target architectures, to Domain Specific Languages (DSLs) and com-

pilation systems for stencils [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. Workshops and

conferences devoted exclusively to stencil acceleration have recently emerged.

A second aspect of domain specificity is reflected in the emergence of specialized architec-

tures, called accelerators, for executing compute intensive parts of many computations. They

include GPGPU, general purpose computing on graphics processing units (GPUs), and other co-

processors (Intel Xeon Phi, Knight’s Landing, etc.). Initially they were “special purpose,” limited

to highly optimized image rendering libraries occurring in graphics processing. Later, researchers

realized that these processors could be used for more general computations, and, eventually, the

emergence of tools like CUDA and OpenCL enabled general purpose parallel programming on

these platforms.
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Exploiting the specificity of the applications and the specificity of target architectures leads

to domain-specific tools to map very high level program specifications to highly tuned and opti-

mized implementations on the target architecture. Many such tools exist, both academic research

prototypes and productions systems.

As indicated earlier, our domain specificity comes in multiple flavors. First, we investigate

only stencil computations. They belong to a class of programs called uniform dependence com-

putations, which are themselves a proper subset of “affine loop programs.” Such programs can be

analyzed and parallelized using a powerful methodology called the polyhedral model [14, 15, 49,

16, 17, 18, 50, 51], and many tools are widely available, e.g., PPCG, developed by the group at

ENS, Paris [52]. Second, we tackle a specific target platform, namely a single GPU accelerator,

and PPCG includes a module that targets GPUs and incorporates a sophisticated code generator de-

veloped by Grosser et al. [19] that employs a state-of-the-art tiling strategy called hybrid hexagonal

classic tiling. An open source compiler, implementing this strategy is also available, henceforth

called the HHC compiler.

2.1.1 Comparison with Polyhedral Methods

The landscape described (in Figure 1.3) allows us to place our work in context. Although our

methods are for domain specific purposes, an extreme situation with CPUs as the architecture, and

the set of polyhedral programs allows us to compare with conventional compilation.

The optimization problem a compiler “solves” is: pick transformation parameters so as to

optimize the program property of interest, typically execution time. Since it has a single (or a small

handful of) predetermined strategies, it is a limited kind of mathematical optimization problem.

The objective function is a surrogate for execution time.

Now consider PLuTO [51], a state-of-the art polyhedral compiler based on a mathematical

representation of both programs and transformations. By considering only polyhedral programs

and transformations, the optimization problems are rigorous. By default, PLuTO targets multi-

core CPUs, and uses a transformation strategy that combines one level of tiling, loop fusion and
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(loop/wavefront) parallelization of tiles. It solves a mathematical optimization problem where the

schedule parameters (coefficients of tiling and schedule hyperplanes) are the unknown variables,

and the cost function is the number of linearly independent tiling hyperplanes, combined with a

quantitative measure of the length of the inter-tile dependences. This is again, a surrogate for

the total execution time, and leads to solutions that while reasonable, are not provably optimal.

Moreover, parameters like tile sizes, vectorization and inter-tile schedule are chosen using simple

heuristics, and are not part of the optimization.

2.1.2 Limitations of current domain-specific compilation

Consider how polyhedral compilation has recently evolved. Bondhugula et al. [53] proposed

an extension of PLuTO for periodic stencil computations, and Bandishti et al. [54] developed

another extension to allow concurrent starts. Since the objective functions in these strategies are

all surrogates for the execution time, there is no way to compare across the strategies. Authors

leave the choice of strategy to the user, via compiler flags. Recently it was shown (in [55], both

quantitatively and empirically) that while concurrent start may be faster for iteration spaces with

a certain aspect ratio of the program size parameters, the best performance for the same program

with different aspect ratio is provided by the basic PLuTO algorithm.

As another example, Grosser et al. [19] proposed a novel combination of hexagonal and classic

tiling for stencil programs on GPUs. They demonstrated—only empirically—performance gains

compared to previous strategies, but did not quantitatively explore cases where HHC was better.

As a consequence, polyhedral compilation remains difficult. Every time a new strategy is de-

veloped, the authors publish a paper, and empirically show that their results are better than previous

ones. They usually do not provide a quantitative, analytical comparison, thereby preventing a bet-

ter, collective understanding of how to solve the bigger, global problem. Our intention is not to

criticize the field: the problems today are difficult enough that significant effort is needed for even

developing such “point solutions.” Our approach is a step towards addressing these limitations.
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2.2 Design Landscape

To place our work into context, to precisely formulate the problems we address, and to describe

the approach we take to solve them, we show the design landscape of domain-specific optimization

problems. It has six dimensions, organized into three planes (Fig. 2.1 (a), (b) and (c)). Each plane

has two axes: instances, and features. The feature axis may be hierarchical, and parameterized.

Instance
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Parameters
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Iteration	space(s)

Data	Space(s)

Program	Plane

Strategies

Features

Parameters

Num Levels

Tile	Shape

Schedule
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Figure 2.1: The Domain-Specific Design Landscape. We tackle a narrow domain of programs (a) each
one described by a small number of features. Similarly the mappings/transformations (b) we can apply are
drawn form a small set, each one parameterized by a set of features. Architectures (c) are also drawn from a
similarly small set, and are parameterized by their features. In each plane, the features may be hierarchical.
The cost metrics (d) and the games that we can play.
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The program plane (Fig. 2.1(a)) consists of instances of dense stencil computations, such as

Convolutional Neural Net (a machine learning kernel), Heat-3D (a stencil computation from com-

putational science), Clustal-3D (a dynamic programming kernel from bioinformatics). Because of

domain specificity, each program is compactly described with a small set of features, such as: (i) a

set of iteration spaces (ii) a set of data spaces, (iii) a set of dependences, (iv) a set of computational

operators (e.g., loop bodies), and (iv) one or more size parameters.

The transformation plane (Fig. 2.1(b)) defines the space of compiler transformations that can

be applied to the program. Domain specificity again allows us to consider only a few instances,

e.g., time skewing [56, 57], diamond tiling [54], diamond prisms [37, 58], or hybrid hexagonal-

classic (HHC) tiling [59, 60, 19]. Transformation strategies are (potentially) hierarchical, and each

level of the hierarchy represents a partitioning.1 They are also specified by a set of features, each of

which is a mathematical function: (i) tile shape, specified by the so called “tiling hyperplanes,” (ii)

tile schedule, (iii) processor mapping specifying which (virtual/physical) processor in the hardware

hierarchy will execute a tile, and (iv) memory allocation specifying where its inputs and outputs

are stored. Note that the schedule usually also has components to specify when tile inputs are

read and when tile outputs are written. The transformation plane features are also parameterized:

mapping function coefficients, tile sizes, etc., are viewed as parameters.

The architecture plane (Fig. 2.1(c)) captures the accelerator hardware. Examples of architec-

ture instances are ASICs, FPGAs/Reconfigurable Logic, and Instruction Set Architectures (such

as GPGPUs).2 Hardware features include (i) the number of processors at that granularity, (ii) the

memories, and (iii) the interconnects. Parameters of each such feature specify the performance of

that feature: e.g., speed in terms of throughput and latency, capacity, etc. Also included are spe-

cific access/scheduling constraints such as the need for gang scheduling in warps, the constraints

on coalescing and bank conflicts, etc.

1Partitioning denotes a generalization of a crucial transformation called tiling to also include multiple passes.

2 In our taxonomy, an accelerator that is programmable in the conventional, von Neumann sense is an ISA, and
accelerators where the “programming” is at the circuit level are FPGAs or ASICs.
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Figure 2.2: The main novelty of our work! The Domain-Specific Design Landscape that we must navigate
is thus the cross-product of the four planes in Fig. 2.1.

We combine this six-dimensional design space with the cost modeling plane (Fig. 2.1(d))

which gives us a high level picture of various cost metrics and the games that we can play with these

cost models. This unified view of the landscape is the main novelty of our work. Fig. 2.2 shows

the eight dimensional navigation space to be explored. A model can be used for performance

prediction as well as performance improvement like (auto)tuning, bottleneckology (bottleneck

analysis), etc. Multiple models can contribute to multi-criteria optimization (eg. simultaneously

optimize for both, time and energy) as well as HW/SW Co-design.

2.3 Approach

We now describe our overall approach and how it can lead to the benefits mentioned earlier

(i.e., automatic optimal mappings, future proofing and codesign). First, we develop analytical

models for execution time and energy for a given program and a transformation strategy on a fixed

architecture. We also develop silicon area models for GPU architectures and show its use in chip

area prediction. Second, we show how these models can be used for performance optimization.

And finally, we show how to formulate mathematical optimization problems using such cost mod-

els to solve the problem of software-hardware codesign. We show our initial results to justify our

claims, and identify remaining challenges in later chapters.
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2.3.1 Models and Validation

Execution Time Model and Prediction of GPGPU Stencils (Appendix A)

We develop an execution time model that predicts execution time of transformed stencil codes.

Our model is a simple set of analytical functions that predict the execution time of the generated

code. It is deliberately optimistic, since we are targeting modeling and parameter selections yield-

ing highly optimized codes. We experimentally validate the model on a number of 2D and 3D

stencil codes, and show that the root mean square error in the execution time is less than 10% for

the subset of the codes that achieve performance within 20% of the best.

Energy Model and Prediction of GPGPU Stencils (Appendix B)

Like the analytical execution time model, we develop a methodology for modeling the energy

efficiency of tiled nested-loop codes running on a graphics processing unit (GPU) and use it for

prediction of energy consumption. We assume that a highly optimized and parameterized version

of a tiled nested-loop code—either written by an expert programmer or automatically produced by

a polyhedral compilation tool—is given to us as an input. We then model the energy consumption

as an analytical function of a set of parameters characterizing the software and the GPU hardware.

Most previous attempts at GPU energy modeling were based on low-level machine models that

were then used to model whole programs through simulations, or were analytical models that re-

quired low level details. In contrast, our approach develops analytical models based on (i) machine

and architecture parameters, (ii) program size parameters as found in the polyhedral model, and

(iii) tiling parameters. Our model therefore allows prediction of the energy consumption with re-

spect to a set of parameters of interest. We illustrate the framework on three nested-loop codes:

Smith-Waterman, and one-dimensional and two-dimensional Jacobi stencils, and analyze the ac-

curacy of the resulting models. With optimal choice of model parameters the RMS error is less

than 4%. Two factors allow us to attain this high accuracy. The first is domain-specificity: we

focus only on tilable nested-loop codes. The second is that we decouple the energy model from a

model of the execution time, a known hard problem.
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Memory Access Models (Appendix A, B, and D)

We model memory accesses(between global and shared memories of a GPU) for GPGPU sten-

cil computations and tiled codes. We use these memory access models to quantify the contribution

of data transfers in execution time as well as energy consumption. For energy modeling we go a

step further and develop cost models to reflect the data transfers between global memory and regis-

ters. These analytical models are based on (i) architecture parameters, (ii) program size parameters,

and (iii) tile sizes. The tile sizes are constrained by the memory capacities.

We also develop data movement models for tiled matrix multiplication codes on GPUs. These

cost models predict data transfers for different cases such as the one where an input matrix is read

only once from global memory, or the one where output matrix is written only once to the global

memory, etc. These models can be found in the literature of communication avoiding algorithms

or lower bound algorithms. We develop data movement models for tiled and fused two matrix

multiplications codes on GPUs. These data movement models allow us to minimize off-chip data

movement for matrix chain products.

Area Model and Chip Area Prediction of GPUs (Appendix C)

We also develop an analytic model for the total silicon area of a GPU accelerator. We faced

some difficulties in deriving an acceptable analytical model, as silicon data had to be reverse en-

gineered from extremely limited public domain resources. As a general observation, within each

GPU family, there is little diversity in the parameter configurations. For the Maxwell family of

GPUs, the GTX980 and Titan X chips were chosen as two sufficiently distinct points to calibrate

our analytical models. The calibration itself was performed by evaluating die photomicrographs,

publicly available information about the nVidia GTX 980 (Maxwell series) GPU, and other gen-

erally accepted memory architecture models. The model validation was done by comparing the

predictions with known data on the Maxwell series Titan X GPU. We found the model prediction

to be accurate to within, 2%, though this number is not significant3.

3Although a many configurations of any family of GPUs are spaced out, they come from binning only a small
number of distinct dies. We ended up calibrating our model on one die and validating it on only another one.
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Next, we develop mathematical objective functions to illustrate the use of these models in

performance optimization and later we will show the same for software-hardware codesign.

2.3.2 Compilation and its optimization subspaces

To address the limitations of current domain-specific compilation noted in Section 2.1.2, we

now describe our approach to systematically exploring well defined regions of the design landscape

using exact (not surrogate) objective functions.

1. (Auto) Tuning: Let us consider a three-dimensional subspace in our landscape, of instances

of programs × transformations/strategies × execution time. At each point in this three-

dimensional space, we may define a mathematical optimization problem which has an ob-

jective function, and a feasible space. Both involve analytical functions of parameters from

all three feature dimensions, defined by vectors: ~P for a program, ~S for a strategy, and ~A

for an architecture. The objective function for execution time is MT (~P , ~S, ~A). Similarly, we

have constraints defining the feasible space of the optimization problem, FT (~P , ~S, ~A). The

mathematical optimization problems can be formulated for various performance metrics as

follows:

(a) For execution time, minimize MT (~P , ~S, ~A) subject to FT (~P , ~S, ~A),

(b) For energy, minimize ME(~P , ~S, ~A) subject to FE(~P , ~S, ~A),

(c) For power, minimize MP (~P , ~S, ~A) subject to FP (~P , ~S, ~A), etc.

Each problem instance has an objective function that represents (is not just a surrogate for)

the metric which we seek to optimize: execution time(MT ), power(MP ), energy(ME), etc.

It is a function of all the parameters of this three-dimensional point. Other parameters, e.g.,

the number of processors, the memory capacity, etc., may define a feasible space where this

function is valid.

Our approach is based on the hypothesis that domain-specificity of both the programs and

the architecture allows us to develop such functions. Note that the objective function cannot
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be a surrogate, it must be the actual cost metric of interest. Under this hypothesis, our entire

strategy can be summarized as collective solution of multiple optimization problems with

common objective function(s). For GPGPU stencil codes, we explore two such common

objective functions, MT for execution time, and ME for energy (expressed as GOPs/sec

or GOPs/joule). For matrix multiplication and matrix product chains, we explore MT for

execution time, and MD for data movement.

2. (Auto) Super-Tuning: The next step will be to extend the optimization across multiple

strategies, say S1 and S2. Given two separate optimizations formulated as follows:

(a) Minimize MT1
(~P , ~S1, ~A) subject to FT1

(~P , ~S1, ~A), and

(b) Minimize MT2
(~P , ~S2, ~A) subject to FT2

(~P , ~S2, ~A)

We can formulate the problem of optimizing across strategies in two ways: (i) Take the min-

imum of the two optimizations min(minimize MT1
(~P , ~S1, ~A), minimize MT2

(~P , ~S2, ~A)), or

(ii) solve separate optimization problems, depending on the intersections and differences of

the feasible spaces of each one.

(a) min(MT1
(~P , ~S1, ~A),MT2

(~P , ~S2, ~A)), subject to FT1
(~P , ~S1, ~A) ∩ FT2

(~P , ~S2, ~A),

(b) Minimize MT1
(~P , ~S1, ~A), subject to FT1

(~P , ~S1, ~A)∩ ∼ FT2
(~P , ~S2, ~A), and

(c) Minimize MT2
(~P , ~S2, ~A), subject to ∼ FT1

(~P , ~S1, ~A) ∩ FT2
(~P , ~S2, ~A)

This can be extended to a set of strategies, S = {Si}. Although the second option is not very

scalable—the number of sub-problems grows exponentially with the number of strategies—

it is reasonable for a small number of strategies, e.g., it would let us automatically choose

between time skewing, diamond tiling, diamond prisms, and HHC.

3. Multi-Metric (Auto) Tuning: The above optimizations account for only one performance

metric, which leads to a single objective function for the optimization. One might want to

optimize for more than one metric. Let us consider a multi-metric optimization such as the
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energy-delay product. The optimization problem can be formulated as

Minimize (MT (~P , ~S, ~A) ∗ME(~P , ~S, ~A)), subject to FT (~P , ~S, ~A) ∩ FE(~P , ~S, ~A)

Note, the feasible space consists of the intersection of the feasible space of time and energy.

The program parameters (eg. problem sizes) and the features (eg. tile sizes) of the selected

strategy (eg. Diamond tiling) are the parameters to the multi-metric objective function.

4. Multi-Metric (Auto) Super-Tuning: The above multi-metric objective function can be ex-

tended to multiple strategies, say S1 and S2. Consider, two optimization functions

(a) Minimize (MT1
(~P , ~S1, ~A)∗ME1

(~P , ~S1, ~A)), subject to FT1
(~P , ~S1, ~A)∩FE1

(~P , ~S1, ~A),

and

(b) Minimize (MT2
(~P , ~S2, ~A) ∗ME2

(~P , ~S2, ~A)), subject to FT2
(~P , ~S2, ~A)∩FE2

(~P , ~S2, ~A)

As in (Auto) Super-Tuning, we can formulate the problem of optimizing across strategies in

two ways: (i) Take the minimum of the two optimizations, or (ii) solve separate optimization

problems, depending on the intersections and differences of the feasible spaces of each one.

The methods can be extended to a set of strategies, S = {Si}.

For matrix chain products, we formulate a multi-metric optimization problem where we

minimize the total op-count(i.e., execution time MT ) as well as off-chip communication

(i.e., data movement MD). First, we use two transformation strategies: single matrix mul-

tiplication and two matrix multiplications. Single matrix multiplication(1MM) comprises

of finding an optimal tiling schedule(that minimizes data movement) for data transfers be-

tween global and shared memories. Two matrix multiplication(2MM) objective is to find an

optimal loop fusion transformation that minimizes the data movement. Second, we use the

classic matrix chain ordering algorithm [61] to find the minimum op-count tree(MT ). We

formulate a combined optimization problem for 1MM(MD1
) and 2MM(MD2

) to minimize

the total off-chip data transfers. Details in Appendix D.
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Thus, our approach would allow us to deliver on the promise of automatic and provably optimal

compilation, for any point in the program × transformations/strategies plane for a given perfor-

mance metric.

Polyhedral compilation revisited: As noted before, current polyhedral compilers target a

fairly broad class of programs, and make choices like tiling hyperplanes and shapes, and (inter

and intra) tile schedules. They do this by this using classic scheduling algorithms [51, 17, 18]

that use (integer) linear programming using surrogate objective functions. Tile sizes are chosen

subsequently via auto-tuning.

2.3.3 Codesign and its optimization subspaces

Codesign—the simultaneous design of hardware and software—has two common interpreta-

tions. System codesign is the problem of simultaneously designing hardware, runtime system,

compilers, and programming environments of entire computing systems, typically in the context of

large-scale, high-performance computing (HPC) systems and supercomputers. Application code-

sign, also called hardware-software codesign, is the problem of systematically and simultaneously

designing a dedicated hardware platform and the software to execute a single application (pro-

gram). The proposed approach is applicable in both contexts.

Application Codesign and its optimization subspaces

1. Application Codesign: For Application Codesign, we fix a program, a strategy as well as a

micro-architecture (technology node). In addition to the program parameters and features of

the selected strategy, we now have ~A, the architecture parameters, as unknowns. The archi-

tecture parameters can be number of processors, number of memories, size of memories, etc.

Considering, execution time as the performance metric, the four-dimensional optimization

problem can be formulated as

Minimize MT (~P , ~S, ~A), subject to FT (~P , ~S, ~A)
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The feasible space FT is a combination of (i) all possible program parameters, (ii) all pos-

sible features of the selected strategy, (iii) all possible architecture parameters, and (iv) time

as the performance optimizing criteria. Similar objective functions can be formulated for

different performance metrics.

2. Super Application Codesign: Classic application codesign techniques consider optimiza-

tion for one strategy. Domain specificity allows us to formulate the mathematical optimiza-

tion across a set of strategies, say S = {Si}, as follows

Minimize MT (~P , ~S, ~A), subject to FT (~P , ~S, ~A)

Note that the feasible space for each strategy will vary and not all architectures may be

feasible for every strategy. Such optimization allows for exploration of a larger feasible

space.

3. Multi-Metric Application Codesign: The architecture parameters may include configu-

ration options that trade off energy for performance (as in execution time). One might,

therefore, want to optimize across multiple performance metrics. A multi-metric SW-HW

Codesign optimization can be formulated as

Minimize (MT (~P , ~S, ~A) ∗ME(~P , ~S, ~A)), subject to FT (~P , ~S, ~A) ∩ FE(~P , ~S, ~A)

considering energy-delay product as the performance metric. Note that this four-dimensional

feasible space consists of program parameters, strategy features and architecture parameters

as unknowns.

4. Multi-Metric Super Application Codesign: Again, the multi-metric application codesign

objective function can be extended to multiple strategies, say S = {Si}. Considering energy-

delay product as the optimizing criteria, the objective function will be
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Minimize (MT (~P , ~S, ~A) ∗ME(~P , ~S, ~A)), subject to FT (~P , ~S, ~A) ∩ FE(~P , ~S, ~A)

Note that the feasible space here consists of multiple areas in the design space based on the

strategy and performance metric.

System Codesign and its optimization subspaces

1. System Codesign: Let us now consider a set of program instances P = {Pi}, and recall that

we have common objective functions for all of them. The optimization problem

Minimize M( ~P , ~S, ~A) subject to F( ~P , ~S, ~A)

seeks to optimize a common performance metric (we drop the subscript for the common

metric). The parameters to this function are a set of program instances, features of the

strategy and the architecture features.

2. Super System Codesign: Let us now consider the following optimization problem, which

we call the generalized optimization problem.

Minimize M( ~P , ~S, ~A) subject to F( ~P , ~S, ~A)

This problem seeks to optimize the common performance metric for the set of programs

on the given architecture. We treat ~A, not as parameters, but rather as unknowns, in the

generalized optimization problem, argmin ~AM( ~P , ~S, ~A) gives us the optimal architecture for

the set of program instances. Thus we simultaneously solve for architecture and compilation,

thereby resolving the codesign problem.

3. Multi-Metric System Codesign: The next step would be to extend our generalized opti-

mization problem to a multi-metric optimization.

Minimize (MT ( ~P , ~S, ~A) ∗ME( ~P , ~S, ~A)), subject to FT ( ~P , ~S, ~A) ∩ FE( ~P , ~S, ~A)
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This is particularly useful in large system designs, where the transformation strategy is fixed

and more than one performance metric is critical for system design. Note, that we show

multi-metric optimization for two cost metrics which can be extended to more than two cost

metrics as needed.

4. Multi-Metric Super System Codesign: The above multi-metric system codesign can be

further extended to consider multiple strategies as shown below

Minimize (MT ( ~P , ~S, ~A) ∗ME( ~P , ~S, ~A)), subject to FT ( ~P , ~S, ~A) ∩ FE( ~P , ~S, ~A)

This would be the ultimate goal for system codesign where we can optimize across all the

possible program, transformation and architecture planes for multiple performance metrics.

2.3.4 Bottleneckology

Our approach to system design seems deceptively simple, however, it is a very hard problem.

Exploiting the resources to their full capacity is one of the objectives while optimizing for per-

formance. The bottleneck analysis becomes helpful in studying the performance sinks and design

flaws. There are many ways of utilizing the cost models to perform bottleneck analysis. The cost

models can be used to identify the resources that have been saturated and the ones that have slack.

We refer to this slack and saturation of the resources as Bottleneckology. Chapter 8 discusses this

in three ways: (i) investigate codesign-tradeoffs, (ii) perform overhead analysis, and (iii) explore

the effect of hyperthreading.

2.4 Contributions

The following are the primary contributions of this dissertation:

1. An approach to automatically design an efficient system by navigating the design landscape

2. Analytical Cost Models

(a) Stencil Computations
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i. Execution Time (included in [22])

ii. Energy (included in [23])

iii. Memory Access (included in [22, 23])

(b) Matrix Multiplication

i. Data Movement (included in Appendix D)

(c) Matrix Chain Products

i. Data Movement (included in Appendix D)

(d) Chip Area for GPUs (included in [21])

3. Single Metric Tuning

(a) Tune for Speed (included in [22])

(b) Optimize for Energy (included in [23])

(c) Minimize Off-chip Memory Accesses (included in Appendix D)

i. Minimize Data Movement for a single Matrix Multiplication

ii. Minimize Data Movement for Two Matrix Multiplications

4. Multi-Metric Tuning (included in Appendix D)

(a) Minimize Op Count and off-chip memory accesses for Matrix Chain Products

5. Application and System Codesign (included in [21])
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Chapter 3

Related Work

This work draws upon prior work in the following distinct areas.

3.1 Stencil Computations and Code Generation

At the algorithmic level, most stencil applications are compute bound in the sense that the ratio

of the total number of operations to the total number of memory locations touched can always

be made “sufficiently large” because it is an asymptotically increasing value. We may expect

that such codes can be optimized to achieve very high performance relative to machine peak.

However, naive implementations turn out to be memory-bound. Therefore, many authors seek

to exploit data locality for these programs [62, 63, 54]. One successful technique is called time

tiling [64, 65, 66, 67, 68, 69, 58, 54], an advanced form of loop tiling [70, 64, 71]. Time tiling first

partitions the whole computation space into tiles extending in all dimensions, and then optionally

executes these tiles in a so called “45 degree wavefront” fashion. We assume, like most of the

work in the literature, that dense stencil programs are compute bound after time tiling. However,

due to the intricate structure of time tiled code, writing it by hand is challenging. Automatic code

generation, is an attractive solution, and has been an active research topic.

For iterative stencils a large set of optimizing code generation strategies have been proposed.

Pochoir [39] is a CPU-only code generator for stencil computations that exploits reuse along

the time dimension by recursively dividing the computation in trapezoids. Diamond tiling [72],

Hybrid-hexagonal tiling [19], and Overtile [73] are all tiling strategies that allow to exploit reuse

along the time dimension, while ensuring a balanced amount of coarse-grained parallelism through-

out the computation. While the former has only been evaluated on CPU systems, the last two tiling

schemes have been implemented to target GPUs. Overtile uses redundant computation whereas

hybrid-hexagonal tiling uses the hexagonal tiles to avoid the need for redundant computation and

the increased shared memory that would otherwise be required to store temporary values. Another
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time tiling strategy has been proposed with 3.5D blocking by Nguyen et. al [74], who manually

implemented kernels that use two dimensional space tiling plus streaming along one space dimen-

sion with tiling along the time dimension to target both CPUs and GPUs. A slightly orthogonal

stencil optimization has been proposed by Henretty et. al, who use data-layout transformations to

avoid redundant non-aligned vector loads on CPU platforms.

3.2 Performance Modeling

All of the previously discussed frameworks either come with their own auto-tuning frame-

work or require auto tuning to derive optimal tile sizes. For stencil graphs, which are directed

acyclic graphs (DAGs) of non-iterated stencil kernels, various DSLs compilers have been pro-

posed. Halide [75] and Stella [76] are two DSLs from the context of image processing and weather

modeling that separate the specification of the stencil computation from the execution schedule,

which allows for the specification of platform specific execution strategies derived either by plat-

form experts or automatic tuning. Both DSLs support various hardware targets, including CPUs

and GPUs. Polymage [77] also provides a stencil graph DSL—this time for CPUs only—but pairs

it with an analytical performance model for the automatic computation of optimal tile size and

fusion choices. With MODESTO [78] an analytical performance model has been proposed that

allows to model multiple cache levels and fusion strategies for both GPUs and CPUs as they arise

in the context of Stella.

For stencil GPU code generation strategies that use redundant computations in combination

with ghost zones, an analytical performance model has been proposed [79] that allows to automat-

ically derive “optimal” code generation parameters. Yotov et. al [80] showed already more than ten

years ago that an analytical performance model for matrix multiplication kernels allows to generate

code that is performance-wise competitive to empirically tuned code generated by ATLAS [81],

but at this point no stencil computations have been considered. Shirako et al. [82] use cache mod-

els to derive lower and upper bounds on cache traffic, which they use to bound the search space

of empirical tile-size tuning. Their work does not consider any GPU specific properties, such as
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shared memory sizes and their impact on the available parallelism. In contrast to tools for tuning,

Hong and Kim [83] present a precise GPU performance model which shares many of the GPU

parameters we use. It is highly accurate, low level, and requires analyzing the PTX assembly code.

For stencil GPU code generation strategies that use redundant computations in combination with

ghost zones an analytical performance model has been proposed [79] that allows to automatically

derive “optimal” code generation parameters. Patus [84] provides an auto-tuning environment for

stencil computations which can target CPU and GPU hardware. It does not use software managed

memories and also does not consider any time tiling strategies.

Renganarayana et al. [85] identifies positivity as a common property shared by the parameters

used by tile size selection methods and show that the property can be used to derive efficient and

scalable tile size selection frameworks.

3.3 Chip Reverse Engineering and Area Modeling

Chip area modeling can be formally considered a branch of semiconductor reverse engineering,

which is a well researched subject area. Torrence et. al. [86] gives an overview of the various

techniques used for chip reverse engineering. The packaged chips are usually decapped and the

wafer die within is photographed layer by layer. The layers are exposed in the reverse order after

physical or chemical exfoliation. Degate [87], for example, is a well known open source software

that can help in analyzing die photographs layer by layer. The reverse engineering process can

be coarse-grained to identify just the functional macro-blocks. Sometimes, the process can be

very fine-grained, in order to identify standard-cell interconnections, and hence, actual logic-gate

netlists. Degate is often used in association with catalogs of known standard cell gate layouts,

such as those compiled by Silicon Zoo [88]. Courbon et. al. [89] provides a case study of how a

modern flash memory chip can be reverse engineered using targeted scanning electron microscope

imagery. For chip area modeling, one is only interested in the relatively easier task of demarcating

the interesting functional blocks within the die.
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3.4 Energy Modeling

GPU power/energy model is a very active area: a recent survey article on the topic [90] cites al-

most 150 references. We only discuss the relevant work here. The model we present complements

Mittal and Vetter [90] by enabling us to find the optimal parameters (i.e., tile sizes) for the energy

efficient execution of stencil like programs. Hong and Kim [91] present a GPU power model to

predict the number of optimal GPU cores to achieve the peak memory bandwidth for a kernel.

An analytical model is used to predict the execution time [92] which has enabled prediction of

the power consumption statically. However, they have predicted the minimum number of cores

required for a program to achieve the peak memory bandwidth of GPU. While this approach may

work for memory bandwidth bound programs, it is unlikely to produce better results for compute-

bound programs like tiled stencil computations. Our model is much simpler, because our model

does not depend on warp and thread level parameters and number of PTX instructions.

Nagasaka et al [93] model GPU power of kernels using performance counters. Lim et al. [94],

GPUWattch [95] and GPUSimPow [96] are simulation based power models. McPAT [97] is the

basis for Lim et al [94] and GPUWattch [95] uses GPGPUSim [98] to simulate execution time.

Simulation and performance counters-based models require execution (or simulation) of the pro-

gram to predict the power consumption. Therefore, these models are not feasible solutions when it

requires to take decisions at compile time to determine optimal software parameters. We do need

to run some micro-benchmarks to find the energy parameters that our model use. In contrast, we

run our micro-benchmarks only to determine parameters of a GPU architecture, while the power

consumption can be predicted for a given program statically without running the program.

There are studies [99, 100] focused on reducing the energy for both CPU and GPU by balancing

the load among CPU and GPU. Our study is only focused on modeling the energy consumption of

GPUs. There are studies [99, 100] focused on reducing the energy for both CPU and GPU. The

models are used to determine how to balance the load among CPU and GPU, so that it reduces the

overall energy consumption. Our study is only focused on modeling the energy consumption of

GPUs.
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3.5 Codesign

Application codesign is a well established discipline and has seen active research for well over

two decades [101, 102, 103, 104, 105]. The essential idea is to start with a program (or a program

representation, say in the form of a CFDG—Control Data Flow Graph) and then map it to an

abstract hardware description, often represented as a graph of operators and storage elements. The

challenge that makes codesign significantly harder than compilation is that the hardware is not

fixed, but is also to be synthesized. Most systems involve a search over a design space of feasible

solutions, and various techniques are used to solve this optimization problem: tabu search and

simulated annealing [106, 107], integer linear programming [108].

There is some recent work on accurately modeling the design space, especially for regular, or

affine control programs [24, 25, 26]. However, all current approaches solve the optimization prob-

lem for a single program at a time. To the best of our knowledge, no one has previously considered

the generalized application codesign problem, seeking a solution for a suite of programs.

There are multiple publications on codesign related to exascale computing, but they focus on

different aspects. For instance, Dosanji et al. [109] focus on methodological aspects of exploring

the design space, including architectural testbeds, choice of mini-applications to represent appli-

cations codes, and tools. The ExaSAT framework [110] was developed to automatically extract

parameterized performance models from source code using compiler analysis techniques. Perfor-

mance analysis techniques and tools targeting exascale and codesign are discussed in [7].

Kuck et al. [111, 112] analyze and model program hot-spots. They develop computational ca-

pacity models and propose an approach for the HW/SW codesign of computer systems. The hard-

ware/software measurements of computational capacity (based on bandwidth usage) and power

consumption (based on hardware counters) are used to find optimal solutions to various codesign

problems and to evaluate codesign trade-offs. Their models are theoretical and are illustrated by

numerical examples. They do not validate their models using real hardware.
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Chapter 4

Models and Validation

Model predictions are used for estimating execution time, energy consumption, power con-

sumption, etc. of a program. Cost metrics either appear in the objective function as a factor to be

optimized or in the constraints. We will illustrate the use of a few of the many metrics - (i) exe-

cution time models, and (ii) energy models as cost in the optimizing functions; and (iii) memory

access models, and (iv) silicon area models as the constraints to the objective function.

4.1 Execution Time Model for GPGPU Stencils

We develop an execution time models for GPGPU stencils [22] (Appendix A) that guides the

optimal choice of compiler parameters(tile sizes). Our model is a simple set of analytical functions

that predict the execution time of the generated code. It is deliberately optimistic, since we are

targeting modeling and parameter selections yielding highly optimized codes. We experimentally

validate the model on a number of 2D and 3D stencil codes, and show that the root mean square

error in the execution time is less than 10% for the subset of the codes that achieve performance

within 20% of the best. We show the following.

• We develop a simple analytical model to predict the execution time of a tiled stencil program

and apply it to codes generated by the HHC compiler. The model is an analytic function of

– program, machine, and compiler parameters that are easily available statically, and

– one stencil-specific parameter that is obtained by running a handful of micro-

benchmarks.

It is deliberately optimistic and also ignores the effect of some parameters.

• Although our model may not accurately predict the performance for all tile size combina-

tions, it is very accurate for the ones that matter, i.e., those that give top performance. To

show this, we generated more than than 60,000 programs for
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– two modern target platforms (NVIDIA GTX 980, and Titan X), and

– four 2D stencil codes (Jacobi2D, Heat2D, Laplacian2D, and Gradient2D) and two 3D

stencils (Heat3D and Laplacian3D)

– over a range of ten input/problem sizes, and

– a wide range of tile sizes and thread counts (the HHC compiler inputs) for each

platform-stencil-size combination.

As we expected, the root-mean-square error (RMSE) over the entire data set was “disap-

pointingly” over 100%. However, when we restricted ourselves to the data points that have

an execution time within 20% of the best value for that particular platform-stencil-size com-

bination, the RMSE dropped to less than 10%4, which we consider very good.

Our overall methodology is applicable, with simple extensions, to more general programs, e.g.,

those that fit the polyhedral model. But for achieving high GPU utilization, we need efficient

GPU codes to start with, which are very hard and time consuming to produce manually, especially

in higher dimensions. The highly optimized HHC-generated codes we are using for testing and

validation have a few thousand lines of CUDA code each and we generated tens of thousands such

codes in our experimental analysis. So our methodology is not limited to the HHC compiler (in

fact we have applied it successfully to manually generated 1D stencil codes), but the use of HHC

(or similar compiler) was necessary to produce for our experiments a high number of GPU codes

that are also very efficient.

4.2 Energy Model for Tiled Nested-Loop Codes

Energy efficiency has been recognized as one of the biggest challenges in the roadmap to

higher performance (exascale) systems for a number of reasons including cost, reliability, energy

conservation, and environmental impact. The most powerful computers today consume megawatts

4The restriction to the better performing subset was exactly our motivation. We designed the model to help
predict/explore data points that would give good performance. It is also why we made optimistic assumptions in
developing the model.
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of power, enough to power small towns, and at cost of millions per year. And those estimations do

not include the cost of cooling, which might be almost as high as the cost of computing itself [113].

In addition, the cost of building a power provisioning facility ranges at $10-22 per deployed IT watt

[114] and every 10 ◦C temperature-increase results in a doubling of the system failure rate, thereby

reducing the reliability of HPC systems [115]. Designing accurate models for energy efficiency

can help better predict the power and energy requirements of an application and aid developers

optimize the parameters of their codes for better energy efficiency on HPC systems.

The goal of our work [23] (Appendix B) is to introduce a new approach for modeling the

energy cost as an analytical function of tunable software parameters in a way that is both simple

and accurate. Having such a model will allow the energy efficiency to be optimized with respect to

(a subset of) the tunable parameters by solving the corresponding analytical optimization problem.

We target with our modeling approach tiled nested-loop code segments, which are the most

compute-intensive portions of many application codes and which also allow a high degree of par-

allelism. In order to be more specific, we focus in our analysis on a subclass of the tiled nested-loop

codes called dense stencils, which occur frequently in the numerical solution of PDEs and in many

other contexts such as high-end graphics, signal and image processing, numerical simulation, sci-

entific computing, and bioinformatics. We chose stencils for our case studies since that would

allow us to model the entire class in a hierarchical way with a single generic model representing

the whole class, while model parameters that are stencil-dependent have to be separately specified

for each stencil of interest to complete its model. (However, the approach is applicable to any

other class of nested-loop codes that allows tiling.) We completely develop and validate the de-

tailed models (including the stencil-dependent parameters) of three specific stencils. Models for

other stencils can be developed in a similar way with relatively small amount of extra work.

In order to efficiently optimize stencils on accelerators, we aim to represent the amount of

energy consumed as an analytic function of the software parameters. We assume that the input

codes have been analyzed and optimized with respect to parallelism and data-access efficiency by

appropriate skewing and tiling transformations, say by a polyhedral code generator.
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Our specific contributions are as follows.

• Our energy model predicts energy efficiency by analyzing source code only, unlike other

approaches [93, 95] that rely on parameters computed by running benchmarks for each in-

dividual code. We do use micro-benchmarks, but they are used to characterize hardware,

rather than codes.

• We are not aware of any previous work combining the polyhedral method with energy mod-

eling. Our approach allows optimization of codes that are already very efficient having

been significantly improved by applying the polyhedral method and by using advanced tiling

strategies such as hexagonal and hybrid tilings [19].

• Our model is very accurate (one version with RMS error ≤ 17.14% and another with

RMS error ≤ 4%), with similar or higher precision than alternative existing models, e.g.,

GPUSimPow [116], which are simulation based.

4.3 Memory Access Model for GPGPU Stencils

We develop Memory Access models [22, 23] (Appendix A and B) for GPGPU stencils and use

them for execution time models and energy models. The memory models appear in two specific

contexts. Firstly, the total number of memory accesses made by a tile is used to model the data

transfer time taken by a tile, similarly, the data movement requirement of a wavefront is modeled

using the equations to calculate the data transfer time for wavefronts. Similarly, for the energy

models we use memory access equations to determine the amount of transfer required and combine

it with the energy consumption per data transfer to calculate the total energy consumption of a tile.

Second, the memory footprint of a tile are used as constraints to the formulated objective

function for optimization. The memory requirements of a tile are not to exceed the shared memory

capacity of a GPU. This in turn constrains the tile sizes and the feasible space.

These memory models are then used for codesign optimization [21]. Again for software-

hardware codesign, the memory models appear both in the objective function as a part of time
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model equations (i.e., to calculate the data transfer time) as well as the constraints where memory

capacity defines the feasible space.

4.4 Silicon Area Model for GPUs

We develop an analytic model for the total silicon area of a GPU accelerator [21](Appendix C).

We faced some difficulties in deriving an acceptable analytical model, as silicon data had to be re-

verse engineered from extremely limited public domain resources. As a general observation, within

each GPU family, there is little diversity in the parameter configurations. For the Maxwell family

of GPUs, the GTX980 and Titan X chips were chosen as two sufficiently distinct points to calibrate

our analytical models. The calibration itself was performed by evaluating die photomicrographs,

publicly available information about the nVidia GTX-980 (Maxwell series) GPU, and other gen-

erally accepted memory architecture models. The model validation was done by comparing the

predictions with known data on the Maxwell series Titan X GPU. We found the model prediction

to be accurate to within, 2%, though this number is not significant.5

4.5 Data Movement Model for Matrix Multiplication

We develop off-chip memory access models for hyper-rectangular tiled single matrix multipli-

cation codes on GPUs (Appendix D). These models take into account the matrix sizes, tile sizes,

and on-chip memory (shared memory) capacity of the architecture. We divide the computation

space into hyper-rectangular tiles and map tiles to threadblocks such that partial results are not

written to off-chip memory. For this mapping, we develop memory access models that compute

the total number of off-chip memory accesses.

We also develop memory access models for hyper-rectangular tiled two matrix multiplications

with 3 matrices to multiply. Conventionally, two matrices are multiplied to produce intermediate

result matrix which is written to the off-chip memory. This intermediate result is then multiplied

5Although a many configurations of any family of GPUs are spaced out, they come from binning only a small
number of distinct dies. We ended up calibrating our model on one die and validating it on only another one.
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with the third matrix to produce the final output. We apply loop permutation and loop fusion

techniques to avoid writing of the intermediate result to the off-chip memory. We develop memory

access models for such fused and tiled loop codes. Section D.2 discusses this in detail.

In the next chapter, we show how to use these cost models for tile size selection that leads to

improved performance.
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Chapter 5

Single-Metric Tuning

An important element of compilation tools is a step called (auto) tuning: empirical evaluation

of the actual performance of a, hopefully small, set of code instances for a range of mapping pa-

rameters. This enables the compilation system to choose these parameters optimally for actual

“production runs” on real data/inputs. Modern architectures are extremely complicated, with so-

phisticated hardware features that interact in unpredictable manners, especially since the latency

of operations is unpredictable because of the deep memory hierarchy. It is widely believed that

because of this, autotuning is unavoidable in order to obtain good performance.

Our work challenges this. In particular, we make the case that domain specificity can have a

third important benefit: it enables us to develop a good analytical model to predict the performance

of specific types of codes on specific types of target architectures. We can then use the model to

optimally choose the mapping parameters (notably tile sizes).

In order to address the challenges of exascale computing, many experts believe that a software-

hardware co-design approach—where the software and the corresponding hardware are jointly

co-developed and co-optimized—will be a “critical necessity” [117]. Since the architectures of ex-

ascale systems are in the flux, it is important to develop rigorous methods to map high level spec-

ifications of computations to diverse target architectures, ranging from multi-core CPUs, many-

core GPUs, and accelerators over heterogeneous nodes of such CPU-GPU combinations to large

distributed systems of many such nodes. In the overwhelming majority of cases, the mismatch

between data communication patterns and hardware architecture prevents the efficient exploitation

of all available computing resources and peak performance is almost impossible to achieve. Worse

still, it is often not clear to the user when the point of diminishing returns is reached.

We address a key step of the optimization, namely mapping the software representation onto

the hardware, and choosing the mapping parameters to optimize an objective function representing

the performance, i.e., the execution time. In its full generality, the optimal mapping problem is
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a discrete non-linear optimization problem, known to be NP-hard [118] and hence very difficult

to solve efficiently. We therefore use a number of simplifying assumptions, as is common in the

literature. A number of parameters can be specified as inputs to a compiler, e.g., the tile sizes.

These parameters have a tremendous influence on the performance of the code. The problem we

tackle here is how to select these parameters optimally.

5.1 Tune for Speed

To test the predictive abilities of our execution time models, we evaluated the model over the

entire feasible space (for each platform-stencil-size combination) and obtained the tile sizes that

were within 10% of the best predicted execution time [22] (Appendix A). There were less than 200

such points. We called the HHC compiler with these tile sizes and were able to observe among

this set a performance improvement of 9% on average with maximum of 17%. Prajapati et al. [22]

illustrates the predictive power of our execution time models in detail.

We have two messages. The main one is that, contrary to widespread belief, it is possible

to construct good analytical cost functions to drive performance tuning for GPGPUs. This can

significantly reduce the space that autotuners need to explore. The second message, is that it may

be necessary to revisit some of the “conventional wisdom,” when choosing tile size parameters.

Our model is very accurate for predicting the times of problem instances whose performance is

within 20% of the optimal and, hence, it can be used to find values for tunable parameters that will

give near optimal performance.

We would like to note that our techniques can be easily extended to other type of stencils.

5.2 Optimize for Energy

Our proposed optimization methods can also be applied to optimize for energy. Our energy

models represents the energy consumption as an explicit analytic function of a set of software and

hardware parameters describing the specifics of the implementation and the hardware.
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In our experiments, we observe that energy optimization has almost always had no loss of

speed, as expected in the folklore. Thus a user could use both optimizations rather than having

to choose one or the other. Finally, we use our energy model to select the optimal tile size for

energy efficiency and report the number of non-optimal tile size selections and hence the error in

energy due to the selection of non-optimal tile sizes. Prajapati et al. [23] (Appendix B) describes

our energy models, the optimization methods, the results and experimental validation in details.

5.3 Minimize Data Movement

We build closed form solutions for tile sizes that minimize the total number of off-chip data

transfers for hyper-rectangular tiled single matrix multiplication codes on a given architecture. We

also develop closed form solutions for fused and tiled two matrix multiplication codes. The total

number of off-chip data transfers for these tile sizes is provably minimum. Appendix D provides

complete description.

40



Chapter 6

Multi-Metric Tuning

One of the challenges of exascale computing is energy consumption. We formulate an opti-

mization problem that seeks to minimize the total energy consumption of matrix chain products.

Energy consumption is related to both, the execution time and off-chip memory accesses. We de-

compose the problem into a two step optimization approach. We first minimize the total number of

computations for matrix chain products and then minimize data movement. There is a well-known

dynamic programming algorithm that minimizes the total number of computations required for

matrix chain products [61]. This algorithm produces an optimal op-count tree. We use our closed

form solutions for fused and tiled two matrix multiplication codes to minimize the total number of

off-chip data transfers for a given optimal op-count tree. We develop a dynamic programming so-

lution to the problem of minimizing the data movement globally over the minimum op-count tree.

This is a clear example of multi-metric tuning where we first tune for performance (i.e., minimize

op-count/execution time) which minimizes the static energy consumption, and then minimize data

movement that will optimize dynamic energy consumption for matrix chain products. The dy-

namic programming solution to minimize op-count as well as off-chip data movement is provably

optimal. This is discussed in more details in Appendix D.
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Chapter 7

Accelerator Codesign

“Design is not just what it looks like and feels like. Design is how it works.” – Steve Jobs

Software-hardware codesign is one of the proposed enabling technologies for exascale com-

puting and beyond [7]. Currently, hardware and software design are done largely separately. Hard-

ware manufacturers design and produce a high-performance computing (HPC) system with great

computing potential and deliver it to customers, who then try to adapt their application codes to

run on the new system. But because of a typically occurring mismatch between hardware and

software structure and parameters, such codes are often only able to run at a small fraction of the

total performance the new hardware can reach. Hence, optimizing both the hardware and software

parameters simultaneously during hardware design is considered as a promising way to achieve

better hardware usage efficiency and thereby enabling leadership-class HPC availability at a more

manageable cost and energy efficiency.

The design of HPC systems and supercomputers is by no means the only scenario where such

optimization problems occur. The execution platforms of typical consumer devices like smart

phones and tablets consist of very heterogeneous Multi-Processor Systems-on-Chip (MPSoCs)

and the design challenges for them are similar.

Despite the appeal of an approach to simultaneously optimize for software and hardware, its

implementation represents a formidable challenge because of the huge search space. Previous

approaches [119, 120, 121], pick a hardware model H from the hardware design space, a software

model S from the software design space, map S onto H, estimate the performance of the mapping,

and iterate until a desirable quality is achieved. But not only each of the software and hardware

design spaces can be huge, each iteration takes a long time since finding a good mapping of S onto

H and estimating the performance of the resulting implementation are themselves challenging

computational problems.
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We propose a new approach(Appendix C) for the software-hardware codesign problem that

avoids these pitfalls by considerably shrinking the design space and making its exploration pos-

sible by formulating the optimization problem in a way that allows the use of existing powerful

optimization solvers. We apply the methodology to programmable accelerators: Graphics Process-

ing Units (GPUs), and for stencil codes. The key elements of our approach are to exploit multiple

forms of domain-specificity. Our main contributions are:

• We propose a new approach to software-hardware codesign that it is computationally feasible

and provides interesting insights.

• We combine our area model with a workload characterization of stencil codes, and our previ-

ously proposed execution time model [22] to formulate a mathematical optimization problem

that maximizes a common objective function of the hardware and software parameters.

• Our analysis provides interesting insights. We produce a set of Pareto optimal designs that

represent the optimal combination of hardware and compiler parameters. They allow for up

to 33% improvement in performance as measured in GFLOPs/sec.

We develop a framework for software-hardware codesign that allows the simultaneous opti-

mization of software and hardware parameters. It assumes having analytical models for perfor-

mance, for which we use execution time, and cost, for which we choose the chip area. We make

use of the execution time model from Prajapati et al [22] that predicts the execution times of a set

of stencil programs. For the chip area, we develop an analytical model that estimates the chip area

of parameterized designs from the Maxwell GPU architecture. Our model is reasonably accurate

for estimating the total die area based on individual components such as the number of SMs, the

number of vector units, the size of memories, etc.

We formulate a codesign optimization problem using the time model and our area model for

optimizing the compiler and architecture parameters simultaneously. We predict an improvement

in the performance of 2D stencils by (104% and 69%) and 3D stencils by (123% and 126%) over

existing Maxwell (GTX980 and Titan X) architectures.
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The main focus is on the methodology; specifically, to develop a software-hardware codesign

framework and to illustrate how models built using it can be used for efficient exploration of the

design space for identifying Pareto-optimal configurations and analyzing for design tradeoffs. The

same framework, possibly with some modifications, could be used for codesign on other type of

hardware platforms (instead of GPU), other type of software kernels (instead of the set of stencils

we chose, or even non-stencil kernels), and other kind of performance and cost criteria (e.g., energy

as cost). Also, with work focused on the individual elements of the framework, the execution time

and the chip area models we used could possibly be replaced by ones with better features in certain

aspects or scenarios.

The analyses from our work indicate the following accelerator design recommendations, for

the chosen performance, cost criteria, and application profile:

• Remove caches completely and

• Use the area (previously devoted to caches) to add more cores on the chip.

• The more precise the workload characterization and the specific area model parameters, the

more useful the conclusions drawn from the study.

Hardware resources such as memories are often expensive and must be utilized wisely. In the

next chapter, we discuss how to use cost models to identify the resources requirements for optimal

performance via bottleneck analysis.
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Chapter 8

Conclusions

Our work contributes to knowledge in following ways:

The unified view of the polyhedral design landscape We put together all the parameters to be

considered for performance optimization in a single unified landscape (Chapter 2). The landscape

(shown in Figure 2.1) considers the program, architecture, and compiler parameters and combines

them with various cost metrics. This view lets us identify the pockets of domain specificity and

allows us to study performance improvement across all cost metrics.

Analytical Models We develop analytical cost models (Chapter 4) for execution time, energy,

and memory access models for stencil computations. We develop silicon area models of a GPU

chip. Our models are reasonably accurate and help predict the associated cost. We also develop

memory access models for a single matrix multiplication and for fused two matrix multiplications.

We argue that these models can be used to break the HPC application performance improvement

cycle.

Mathematical Optimization Approach We formulate mathematical optimization problems to

address some of the challenges of exascale. We show how these optimizations can be used for

single as well as multi-metric tuning (Chapter 5 and 6) and accelerator codesign (Chapter 7). For

GPGPU stencil computations and polyhedral code generator, we illustrate a proof of concept [21]

and present a novel optimization approach to accelerator codesign.

8.1 Future Work

We can explore bottleneckology in three ways: study codesign trade-offs, perform overhead

analysis, and investigate the effect of hyperthreading. Next three sections discuss these in more

details.
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Table 8.1: Workload sensitivity. The optimal architecture configuration for a single benchmark varies
significantly.

Code nSM nV MSM Area GFLOPs/S

Jacobi 2D 32 128 24 438 2059
Heat 2D 22 256 12 447 3017
Gradient 2D 28 160 24 431 4963
Laplacian 2D 28 160 12 426 2549
Heat 3D 18 288 192 447 3600
Laplacian 3D 8 896 96 446 1427

8.1.1 Codesign Trade-offs

Workload Sensitivity Table C.2 illustrates the architectural parameters for the best performing

designs for each of the six benchmarks(2D and 3D stencils), for an area budget between 425–

450 mm2. Observe how the parameters of the best architecture are significantly different. There

are also differences in the achieved performance for each benchmark, but that is to be expected

since the main computation in the stencil loop body has different number of operations across the

benchmarks.

Shared Memory Requirements We can also observe that there are marked differences between

the optimal architecture configurations for 2D and 3D stencils in Table C.2. 3D stencils seem to

require larger shared memory (≥ 96 kB / SM) compared to 2D stencils (≤ 24 kB / SM). Indeed,

for designs with lower than 48kB, the performance was nowhere near the optimal for 3D stencil

programs. Comparing the optimal configurations for Heat 2D stencil with that of Heat 3D stencil

(both have equal total die area of 447mm2), we observe that the amount of shared memory required

for Heat 3D stencil is 16 times more than that for Heat 2D stencil. Also note, 3D stencils require

higher number of vector units per SM for optimal performance. We do not have a clear explanation

but the intuition lies in the dependence patterns. This is a subject of our ongoing investigation.

Resource Allocation Another interesting perspective is seen in Figure C.4 which plots the Pareto

optimal design points in blue and all other non-Pareto configurations in orange. The axes show the

relative percentages of the chip area devoted to memory, and to vector units. We notice that the
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Figure 8.1: Resource Allocation.

optimal designs (blue points) lie in a relative cluster. This phenomenon is even more marked for

3D stencils. At present, we do not have a clear explanation for why the points are clustered in this

manner, and we plan to mine this data to determine patterns, if any.
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8.1.2 Overhead Analysis

As discussed before, a compiler generated code has a number of parameters, such as tile sizes,

that are then tuned via empirical exploration. Our execution time model [22] guides such a choice.

This execution time model is a simple set of analytical functions that predicts the execution time

of the HHC [19] generated code.

The execution time model uses a machine dependent parameter, called Citer, which is the ex-

ecution time of one iteration of the loop body per vector unit provided that all the necessary data

is available in shared memory. To measure Citer, one needs to generate a random set of codes for

a given stencil with different tile sizes, modify these codes to remove global memory accesses and

then take the average of empirically measured execution times to obtain the value of Citer. The

process is very time consuming and requires expertise in Hybrid Hexagonal Tiled code genera-

tor [19]. Also, Citer is dependent on both, the machine as well as the program. Therefore, its value

changes as machine and program parameters vary. It is, therefore, very difficult to model/measure

is Citer. Also note that Citer value is used to evaluate the objective function to find the optimal tile

size. This imposes limitations on the use of execution time model for optimal tile size selection

because the crucial model parameter Citer, is to be empirically measured.

To address this problem, we propose a closed form solution that is completely independent

of the machine and the program parameters. We are able to analytically predict the optimal tile

sizes which are portable across platforms and is valid for all Jacobi-like stencils. We modify the

objective function from Prajapati et al. [22] and develop a cost function which is independent

of Citer. For a 2D stencil, our closed form solution suggests that we maximize the size of the

hexagonal face of a tile subject to some constraints. This allows us to significantly narrow down

the tile size design space.

The mathematical optimization problem in Prajapati et al. [22] for a given 2D stencil is formu-

lated as follows:

minimize Talg(tS1
, tS2

, tT ) (8.1)
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where tS1
, tS2

, and tT are tile sizes and Talg is the model predicted execution time of the code

given by the following formula:

Talg = NwTsync +NwTprism

⌈

1

nSM

⌈w

k

⌉

⌉

. (8.2)

where Nw is the number of wavefronts, Tsync is the time for synchronization for a wavefront,

Tprism is the time to execute a tile, nSM is the number of processors, w is the size of a wavefront

and k is the number of tiles that execute simultaneously. For more details, please refer Prajapati et

al. [22].

In addition to the time for computation, Talg includes time taken by data transfers and the

time for inter-tile and intra-tile synchronizations. We are interested in only those tile sizes that

give optimal performance. Therefore, our tiles will be compute bound. Let us consider an ideal

machine where the performance is given by the following equation:

Tideal =
S1S2T

nSMnV

Citer (8.3)

where S1, and S2 are problem sizes in space dimensions, T is the problem size in time dimen-

sion, and nV is the number of vector units. Such an ideal machine is free of all synchronization

delays and takes no additional time to do data transfers. On a real machine, we would like to obtain

the performance that is close to Tideal. However, there is always an overhead price such that

Toverhead = Talg − Tideal (8.4)

Substituting Talg and Tideal with their respective equations and solving gives us

Toverhead = CiterS1T
1

tS1
+ tT

2

(8.5)

Instead of minimizing the execution time(as in the equation 8.1), we can now minimize the

overhead. To minimize equation 8.5, we need to maximize tS1
+ tT

2
. This suggests that we should
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increase the size of the hexagonal face of the tile as much as possible. Notice, tS2
does not appear

in the equation 8.5.

For the above formulation, we assumed that the tiles are compute bound. We need a mechanism

to first prune the tile size design space and restrict it to only consider compute bound tiles and then

use the above cost functions to further reduce the search space.

8.1.3 The effect of the hyper-threading

Our results in [22] suggest that we should revisit the “conventional wisdom” that says that

an optimal strategy of a tiling is to choose the “largest possible tile size that fits” i.e., its memory

footprint matches the available capacity. First of all, this falls into the trap that it precludes over-

lapping of computation and communication (the “hyperthreading effect”). But this can be avoided

by explicitly accounting for hyperthreading. Indeed, our GPU platforms preclude such large size

by disallowing the data footprint of a thread block to exceed half the shared memory capacity.

Thus, the hyperthreading-adjusted “conventional wisdom” would still seek to maximize tile

volume subject to the half-capacity constraint—the best strategy is the largest tile volume for the

given footprint. Our model and experimental data suggests otherwise—an even higher hyper-

threading factor is turning out to yield the best performance. We still don’t know why, and it is

subject to investigation.

8.1.4 Evaluation of Minimum Data Movement Algorithm for Matrix Chain

Products

The closed form solutions in Chapter D remain to be empirical validated in terms of execution

time performance. The tile sizes that minimize data movement for fused two matrix multiplication

should also have optimal execution time performance. Optimal execution time means reduction

in the static energy consumption. Validation of fused codes requires a code generator that admits

fused schedule and allocates shared memory to the tiles in the intermediate matrix. Such a code

generator is not yet available and hence this empirical evaluation still remains. We will also need to
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measure dynamic energy consumption of such codes and empirically validate that the total energy

consumption is indeed minimized using our methods.

8.2 Limitations of our approach

Our approach is limited to the narrow area of domain specific applications, polyhedral model

and GPU-like programmable hardware accelerators. The approach can, however, be extended to

other set of programs/architectures/transformations by identifying other domain specific regions

in the design landscape. More work is needed in order to extend our approach across different

regions of domain specificity.

8.3 Open Questions

Among the many different uses of the analytical cost models, they can be further explored to

answer important performance related questions. We list some of them below:

• Using analytical execution time and energy models we can find out (i) What happens when

input parameters change? (ii) What happens when different number of processors is used?

(iii) What is the largest possible problem size on a given architecture? (iv) When does the

efficiency drop?

• Silicon area models can be used for the following: (i) Chip area prediction. (ii) Generate all

possible configurations for a give die area. (iii) Calculate the cost of different configurations.

(iv) Study the trade-offs. (v) System tuning.

• Performance tuning related questions such as (i) Sensitivity of problem size to tile size.

(ii) Sensitivity of optimal tile size for different codes. (iii) Reconfirm the folklore : whether

optimizing for time is equal to optimizing for energy? (iv) Reasons for the poor performance.

can be answered using cost models.
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The answer to these questions become helpful in two situations. One, for performance porta-

bility while moving from one architecture to another. Second, obtaining interesting insights to

recognize promising areas for future research.

52



Bibliography

[1] Fritzchens Fritz’s collection of nvidia die photographs. https://www.flickr.com/photos/

130561288@N04, 2017. Accessed: 2017-April-07.

[2] National Research Council, Samuel H. Fuller, and Lynette I. Millett. The Future of Comput-

ing Performance: Game Over or Next Level? The National Academies Press, Washington,

DC, 2011.

[3] David J. Kuck. High Performance Computing: Challenges for Future Systems. Oxford

University Press, Oxford, UK, 1996.

[4] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally, Monty

Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, and many. Exascale com-

puting study: Technology challenges in achieving exascale systems. Defense Advanced

Research Projects Agency Information Processing Techniques Office (DARPA IPTO), Tech.

Rep, 15, 2008.

[5] John Shalf, Sudip Dosanjh, and John Morrison. Exascale computing technology challenges.

In International Conference on High Performance Computing for Computational Science,

pages 1–25. Springer, 2010.

[6] Bill Dally. Power, programmability, and granularity: The challenges of exascale computing.

In Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE International, pages

878–878. IEEE, 2011.

[7] Martin Schulz, Jim Belak, Abhinav Bhatele, Peer Timo Bremer, Greg Bronevetsky, Marc

Casas, Todd Gamblin, Katherine E. Isaacs, Ignacio Laguna, Joshua Levine, Valerio Pas-

cucci, David Richards, and Barry Rountree. Performance analysis techniques for the ex-

ascale co-design process, volume 25 of Advances in Parallel Computing, pages 19–32.

Elsevier, 2014.

53



[8] Steve Ashby and Many. The opportunities and challenges of exascale computing.

http://science.energy.gov/. U.S. Department of Energy, 2010.

[9] Paul Messina. The exascale computing project. Computing in Science & Engineering,

19(3):63–67, 2017.

[10] Donald E Thomas, Jay K Adams, and Herman Schmit. A model and methodology for

hardware-software codesign. IEEE Design & test of computers, 10(3):6–15, 1993.

[11] Wayne H Wolf. Hardware-software co-design of embedded systems. Proceedings of the

IEEE, 82(7):967–989, 1994.

[12] Wayne Wolf. A decade of hardware/software codesign. Computer, 36(4):38–43, 2003.

[13] Massimiliano Chiodo, Paolo Giusto, Attila Jurecska, Harry C Hsieh, Alberto Sangiovanni-

Vincentelli, and Luciano Lavagno. Hardware-software codesign of embedded systems.

IEEE micro, 14(4):26–36, 1994.

[14] S. V. Rajopadhye, S. Purushothaman, and R. M. Fujimoto. On synthesizing systolic arrays

from recurrence equations with linear dependencies. In Proceedings, Sixth Conference on

Foundations of Software Technology and Theoretical Computer Science, pages 488–503,

New Delhi, India, December 1986. Springer Verlag, LNCS 241.

[15] P. Quinton and V. Van Dongen. The mapping of linear recurrence equations on regular

arrays. J. of VLSI Signal Processing, 1(2), 1989.

[16] P. Feautrier. Dataflow analysis of array and scalar references. International Journal of

Parallel Programming, 20(1):23–53, Feb 1991.

[17] Paul Feautrier. Some efficient solutions to the affine scheduling problem. Part I. one-

dimensional time. International Journal of Parallel Programming, 21(5):313–347, 1992.

[18] Paul Feautrier. Some efficient solutions to the affine scheduling problem. Part II. multidi-

mensional time. International Journal of Parallel Programming, 21(6):389–420, 1992.

54



[19] Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and Sven Verdoolaege.

Hybrid hexagonal/classical tiling for GPUs. In CGO, page 66, Orlando, FL, Feb 2014.

[20] C. Chen, J. Chame, and M. Hall. Chill: A framework for composing high-level loop trans-

formations. Technical Report TR-08-897, USC Computer Science Department, June 2008.

[21] Nirmal Prajapati, Sanjay Rajopadhye, Hristo Djidjev, Nandkishore Santhi, Tobias Grosser,

and Rumen Andonov. Optimization approach to accelerator codesign. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, pages 1–1, 2019.

[22] Nirmal Prajapati, Waruna Ranasinghe, Sanjay Rajopadhye, Rumen Andonov, Hristo Djid-

jev, and Tobias Grosser. Simple, accurate, analytical time modeling and optimal tile size

selection for gpgpu stencils. In Proceedings of the 22nd ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP 2017, pages 163–177. ACM,

2017.

[23] Nirmal Prajapati, Waruna Ranasinghe, Vamshi Tandrapati, Rumen Andonov, Hristo Djidjev,

and Sanjay V. Rajopadhye. Energy modeling and optimization for tiled nested-loop codes.

In High Performance, Power-Aware Computing in conjunction with IEEE International Par-

allel and Distributed Processing Symposium, IPDPS 2015, pages 888–895, 2015.

[24] Louis-Noel Pouchet, Peng Zhang, P. Sadayappan, and Jason Cong. Polyhedral-based data

reuse optimization for configurable computing. In Proc. of the ACM/SIGDA Int. Symp. on

Field Programmable Gate Arrays, FPGA ’13, pages 29–38, New York, NY, USA, 2013.

ACM.

[25] Wei Zuo, Warren Kemmerer, Jong Bin Lim, Louis-Noël Pouchet, Andrey Ayupov, Taemin

Kim, Kyungtae Han, and Deming Chen. A polyhedral-based systemc modeling and gen-

eration framework for effective low-power design space exploration. In Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design, ICCAD ’15, pages 357–

364, Piscataway, NJ, USA, 2015. IEEE Press.

55



[26] Wei Zuo, Peng Li, Deming Chen, Louis-Noël Pouchet, Shunan Zhong, and Jason

Cong. Improving polyhedral code generation for high-level synthesis. In Proc. of the

Ninth IEEE/ACM/IFIP Int. Conf. on Hardware/Software Codesign and System Synthesis,

CODES+ISSS ’13, pages 15:1–15:10, Piscataway, NJ, USA, 2013. IEEE Press.

[27] K. Asanovic, R. Bodik, B. C. Catanzaro, P. Gebis, J. J. abd Husbands, K. Keutzer, D. A. Pat-

terson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The landscape of parallel

computing research: A view from berkeley. EECS Tech Report EECE-2006-183, UC Berke-

ley, Decembeer 2006. www.eecs.berkeley.edu/Pubs/TechRpts/2006...

/EECS-2006-183.pdf.

[28] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patter-

son, J. Shalf, and K. Yelick. Stencil computation optimization and auto-tuning

on state-of-the-art multicore architectures. In SC08: Proceedings of the 2008

ACM/IEEE conference on Supercomputing, pages 4:1–4:12, Austin, TX, November 2008.

http://portal.acm.org/citation.cfm?id=1413370.1413375.

[29] H. Dursun, K. Nomura, L. Peng, R. Seymour, W. Wang, R. K. Kalia, A. Nakano, and

P. Vashishta. A multilevel parallelization framework for high-order stencil computations. In

Euro-Par 09, pages 642–653, Delft, The Netherlands, August 2009.

[30] H. Dursun, K. Nomura, W. Wang, M. Kunaseth, L. Peng, R. Seymour, R. K. Kalia,

A. Nakano, and P. Vashishta. In-core optimization of high-order stencil computations. In

PDPTA, pages 533–538, Las Vegas, NV, July 2009.

[31] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Implicit and explicit

optimizations for stencil computations. In MSPC 2006: Workshop on Memory Systems

Performance and Correctness, pages 51–60, San Jose, CA, October 2006. ACM Sigplan.

56



[32] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Impact of modern mem-

ory subsystems on cache optimizations for stencil computations. In MSPC 2005: Workshop

on Memory Systems Performance, pages 36–43, Chicago, IL, June 2005. ACM Sigplan.

[33] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam, A. Rountev, and P. Sa-

dayappan. Effective automatic parallelization of stencil computations. In PLDI 2007: Pro-

ceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 235–244, San Diego, CA, June 2007. ACM.

[34] P. Liu, R. Seymour, K. Nomura, R. K. Kalia, A. Nakano, P. Vashishta, A. Loddoch, M. Net-

zband, W. R. Volz, and C. C. Wong. High-order stencil computations on multicore clusters.

In IPDPS 2009: IEEE International Parallel abd Distributed Processing Symposium, pages

1–11, Rome, Italy, May 2009.

[35] P. Micikevicius. 3d finite difference computation on GPUs using CUDA. In GPPGPU,

pages 79–84, Washington, DC, March 2009.

[36] A. Nitsure. Implementation and optimization of a cache oblivious lattice boltzmann algo-

rithm. Master’s thesis, Institut für Informatic, Friedrich-Alexander-Universität Erlangen-

Nürnberg, July 2006.

[37] R. Strzodka, M. Shaheen, D. Pajak, and H-P. Seidel. Cache oblivious parallelograms in

iterative stencil computations. In 24th ACM/SIGARCH International Conference on Super-

computing (ICS), pages 49–59, Tsukuba, Japan, June 2010.

[38] Robert Strzodka, Mohammed Shaheen, and Dawid Pajak. Time skewing made simple

(poster). In Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel

Programming, PPoPP ’11, pages 295–296, New York, NY, USA, 2011. ACM.

[39] Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk, and Charles E.

Leiserson. The pochoir stencil compiler. In Proceedings of the Twenty-third Annual ACM

57



Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, pages 117–128, New

York, NY, USA, 2011. ACM.

[40] M. Shaheen and R. Strzodka. Numa aware iterative stencil computations on many-core sys-

tem. In 26th IEEE International Parallel and Distributed Processing Symposium (IPDPS),

Shanghai, China, 2012.

[41] J. F. Epperson. An Introduction to Numerical Methods and Analysis. Wiley-Interscience,

2007.

[42] C. Bleck, R. Rooth, D. Hu, and L. T. Smith. Salinity-driven Thermocline Transients in a

Wind- and Thermohaline-forced Isopycnic Coordinate Model of the North Atlantic. Journal

of Physical Oceanography, 22(12):1486–1505, 1992.

[43] S. M. Griffies, C. Böning, F. O. Bryan, E. P. Chassignet, R. Gerdes, H. Hasumi, A. Hirst, A-

M. Treguier, and D. Webb. Developments in Ocean Climate Modelling. Ocean Modelling,

2:123–192, 2000.

[44] C. John. Options, Futures, and Other Derivatives. Prentice Hall, 2006.

[45] W. Mei, W. Shyy, D. Yu, and L. S. Luo. Lattice Boltzmann Method for 3-D Flows with

Curved Boundary. Journal of Computational Physics, 161(2):680–699, 2000.

[46] A. Nakano, R. K. Kalia, and P. Vashishta. Multiresolution Molecular Dynamics Algorithm

for Realistic Materials Modeling on Parallel Computers. Computer Physics Communica-

tions, 83(2-3):197–214, 1994.

[47] R. A. Chowdhury, H-S. Le, and V. Ramachandran. Cache-oblivious dynamic programming

for bioinformatics. TCBB, 7(3):495–510, July-September 2010.

[48] G. Rizk, D. Lavenier, and S. Rajopadhye. GPU accelerated RNA folding algorithm, chap-

ter 14. Morgan Kauffman, 2010. in GPU Computing Gems 4, editor: W-M. Hwu.

58



[49] C. Mauras, P. Quinton, S. Rajopadhye, and Y. Saouter. Scheduling affine parameterized

recurrences by means of variable dependent timing functions. In S. Y. Kung and E. Swart-

zlander, editors, International Conference on Application Specific Array Processing, pages

100–110, Princeton, New Jersey, Sept 1990. IEEE Computer Society.

[50] Alain Darte, Yves Robert, and Frédéric Vivien. Scheduling and Automatic Parallelization.

Birkhaüser, 2000.

[51] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. Pluto: A practical and

fully automatic polyhedral program optimization system. In ACM Conference on Program-

ming Language Design and Implementation, pages 101–113, Tuscon, AZ, June 2008. ACM

SIGPLAN.

[52] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian Tenl-

lado, and Francky Catthoor. Polyhedral parallel code generation for CUDA. ACM Transac-

tions on Architecture and Code Optimization (TACO), 9(4):54, 2013.

[53] U. Bondhugula, V. Bandishti, A. Cohen, G. Potron, and N Vasilache. Tiling and optimizing

time-iterated computations over periodic domains. In PACT, 2014.

[54] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. Tiling stencil computations

to maximize parallelism. In the International conference on high performance computing,

networking, storage and analysis, SC ’12, pages 40:1–40:11, Los Alamitos, CA, USA,

2012. IEEE Computer Society Press.

[55] Yun Zou. Towards Automatic Compilation for Energy Efficient Iterative Stencil Computa-

tions. PhD thesis, Colorado State University, Ft. Collins CO, July 2016.

[56] D. Wonnacott. Achieving scalable locality with time skewing. IJPP: International Journal

of Parallel Programming, 30(3):181–221, Jun 2002.

[57] R. Andonov, S. Balev, S. Rajopadhye, and N. Yanev. Optimal semi-oblique tiling. IEEE

Transactions on Parallel and Distributed Systems, 14(9):944–960, Sept 2003.

59



[58] Robert Strzodka, Mohammed Shaheen, Dawid Pajak, and Hans-Peter Seidel. Cache ac-

curate time skewing in iterative stencil computations. In Proceedings of the International

Conference on Parallel Processing (ICPP). IEEE Computer Society, September 2011.

[59] Tobias Grosser, Sven Verdoolaege, Albert Cohen, and P. Sadayappan. The relation between

diamond tiling and hexagonal tiling. Parallel Processing Letters, 24(3), 2014.

[60] Tobias Grosser, Sven Verdoolaege, and Albert Cohen. Polyhedral AST generation is more

than scanning polyhedra. ACM Trans. Program. Lang. Syst., 37(4):12:1–12:50, July 2015.

[61] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-

tion to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[62] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An auto-tuning framework for

parallel multicore stencil computations. In Parallel Distributed Processing (IPDPS), 2010

IEEE International Symposium on, pages 1–12, April 2010.

[63] Liu Peng, Richard Seymour, Ken ichi Nomura, Rajiv K. Kalia, Aiichiro Nakano, Priya

Vashishta, Alexander Loddoch, Michael Netzband, William R. Volz, and Chap C. Wong.

High-order stencil computations on multicore clusters. In IPPS, 2009.

[64] Michael E Wolf and Monica S Lam. A data locality optimizing algorithm. In ACM Sigplan

Not., volume 26, pages 30–44. ACM, 1991.

[65] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical au-

tomatic polyhedral program optimization system. In ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI), June 2008.

[66] David Wonnacott. Time skewing for parallel computers. In Languages and Compilers for

Parallel Computing, 12th International Workshop, LCPC’99, La Jolla/San Diego, CA, USA,

August 4-6, 1999, Proceedings, pages 477–480, 1999.

60



[67] David Wonnacott. Achieving scalable locality with time skewing. International Journal of

Parallel Programming, 30(3):1–221, 2002.

[68] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms.

In FOCS: IEEE Symposium on Foundations of Computer Science, pages 285–297, New

York, NY, October 1999.

[69] Matteo Frigo and Volker Strumpen. Cache oblivious stencil computations. In Proc. of the

19th Annual Int. Conf. on Supercomputing, ICS ’05, pages 361–366, New York, NY, USA,

2005. ACM.

[70] M. J. Wolfe. Iteration space tiling for memory hierarchies. Parallel Processing for Scientific

Computing (SIAM), pages 357–361, 1987.

[71] Jingling Xue. Loop Tiling for Parallelism, volume 575 of Kluwer International Series in

Engineering and Computer Science. Kluwer, 2000.

[72] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. Tiling stencil computations

to maximize parallelism. In Proceedings of the International Conference on High Per-

formance Computing, Networking, Storage and Analysis, SC ’12, pages 40:1–40:11, Los

Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[73] Justin Holewinski, Louis-Noël Pouchet, and P. Sadayappan. High-performance code gener-

ation for stencil computations on gpu architectures. In Proc. of the 26th ACM Int. Conf. on

Supercomputing, ICS ’12, pages 311–320, New York, NY, USA, 2012. ACM.

[74] Anthony Nguyen, Nadathur Satish, Jatin Chhugani, Changkyu Kim, and Pradeep Dubey.

3.5d blocking optimization for stencil computations on modern cpus and gpus. In Proceed-

ings of the 2010 ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’10, pages 1–13, Washington, DC, USA, 2010. IEEE

Computer Society.

61



[75] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,

and Saman Amarasinghe. Halide: A language and compiler for optimizing parallelism,

locality, and recomputation in image processing pipelines. In Proceedings of the 34th ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’13,

pages 519–530, New York, NY, USA, 2013. ACM.

[76] Tobias Gysi, Carlos Osuna, Oliver Fuhrer, Mauro Bianco, and Thomas C. Schulthess. Stella:

A domain-specific tool for structured grid methods in weather and climate models. In Proc.

of the Int. Conf. for High Performance Computing, Networking, Storage and Analysis, SC

’15, pages 41:1–41:12, New York, NY, USA, 2015. ACM.

[77] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. Polymage: Automatic op-

timization for image processing pipelines. In Proceedings of the Twentieth International

Conference on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’15, pages 429–443, New York, NY, USA, 2015. ACM.

[78] Tobias Gysi, Tobias Grosser, and Torsten Hoefler. Modesto: Data-centric analytic optimiza-

tion of complex stencil programs on heterogeneous architectures. In Proc. of the 29th ACM

on Int. Conf. on Supercomputing, ICS ’15, pages 177–186, New York, NY, USA, 2015.

ACM.

[79] Jiayuan Meng and Kevin Skadron. Performance modeling and automatic ghost zone opti-

mization for iterative stencil loops on gpus. In Proceedings of the 23rd International Con-

ference on Supercomputing, ICS ’09, pages 256–265, New York, NY, USA, 2009. ACM.

[80] Kamen Yotov, Xiaoming Li, Gang Ren, Michael Cibulskis, Gerald DeJong, Maria Garzaran,

David Padua, Keshav Pingali, Paul Stodghill, and Peng Wu. A comparison of empirical

and model-driven optimization. In Proc. of the ACM SIGPLAN Conf. on Programming

Language Design and Implementation, pages 63–76, New York, NY, USA, 2003. ACM.

62



[81] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical optimizations

of software and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.

[82] Jun Shirako, Kamal Sharma, Naznin Fauzia, Louis-Noël Pouchet, J. Ramanujam, P. Sa-

dayappan, and Vivek Sarkar. Analytical bounds for optimal tile size selection. In Proc.

of the 21st Int. Conf. on Compiler Construction, pages 101–121, Berlin, Heidelberg, 2012.

Springer.

[83] Sunpyo Hong and Hyesoon Kim. An analytical model for a gpu architecture with memory-

level and thread-level parallelism awareness. In Proc. of the 36th Annual Int. Symposium on

Computer Architecture, ISCA ’09, pages 152–163, New York, NY, USA, 2009. ACM.

[84] M. Christen, O. Schenk, and H. Burkhart. Patus: A code generation and autotuning frame-

work for parallel iterative stencil computations on modern microarchitectures. In Parallel

Distributed Processing Symposium (IPDPS), 2011 IEEE Int., pages 676–687, May 2011.

[85] Lakshminarayanan Renganarayana and Sanjay Rajopadhye. Positivity, posynomials and tile

size selection. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC

’08, pages 55:1–55:12, Piscataway, NJ, USA, 2008. IEEE Press.

[86] Randy Torrance and Dick James. The State-of-the-Art in IC Reverse Engineering. In Pro-

ceedings of Cryptographic Hardware and Embedded Systems Conference (CHES), LNCS

Volume 5747, pages 363–381, 2009.

[87] Degate. http://www.degate.org/documentation/.

[88] Silicon Zoo open source standard cell catalog. http://www.siliconzoo.org, 2017. Accessed:

2017-April-07.

[89] Franck Courbon, Sergei Skorobogatov, and Christopher Woods. Reverse engineering flash

eeprom memories using scanning electron microscopy. In Proceedings of International

Conference on Smart Card Research and Advanced Applications, CARDIS 2016: Smart

Card Research and Advanced Applications, LNCS Volume 10146, pages 57–72, 2016.

63



[90] Sparsh Mittal and Jeffrey S. Vetter. A survey of methods for analyzing and improving GPU

energy efficiency. ACM Comput. Surv., 47(2):19:1–19:23, August 2014.

[91] Sunpyo Hong and Hyesoon Kim. An integrated GPU power and performance model. In

Proceedings of the 37th Annual International Symposium on Computer Architecture, ISCA

’10, pages 280–289, New York, NY, USA, 2010. ACM.

[92] Sunpyo Hong and Hyesoon Kim. An analytical model for a GPU architecture with memory-

level and thread-level parallelism awareness. In Proc. of the 36th Annual Int. Symp. on

Computer Architecture, ISCA ’09, pages 152–163, New York, NY, USA, 2009. ACM.

[93] H. Nagasaka, N. Maruyama, A Nukada, T. Endo, and S. Matsuoka. Statistical power mod-

eling of GPU kernels using performance counters. In Green Computing Conference, 2010

International, pages 115–122, Aug 2010.

[94] Jieun Lim, Nagesh B. Lakshminarayana, Hyesoon Kim, William Song, Sudhakar Yalaman-

chili, and Wonyong Sung. Power modeling for GPU architectures using McPAT. ACM

Trans. Des. Autom. Electron. Syst., 19(3):26:1–26:24, June 2014.

[95] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim,

Tor M. Aamodt, and Vijay Janapa Reddi. GPUWattch: Enabling energy optimizations

in GPGPUs. In Proceedings of the 40th Annual International Symposium on Computer

Architecture, ISCA ’13, pages 487–498, New York, NY, USA, 2013. ACM.

[96] J. Lucas, S. Lal, M. Andersch, M. Alvarez-Mesa, and B. Juurlink. How a single chip causes

massive power bills GPUSimPow: A GPGPU power simulator. In Performance Analysis

of Systems and Software (ISPASS), 2013 IEEE International Symposium on, pages 97–106,

Apr 2013.

[97] Sheng Li, Jung-Ho Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, and N.P. Jouppi. Mc-

PAT: An integrated power, area, and timing modeling framework for multicore and many-

64



core architectures. In Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM Inter-

national Symposium on, pages 469–480, Dec 2009.

[98] A Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M. Aamodt. Analyzing CUDA work-

loads using a detailed GPU simulator. In Performance Analysis of Systems and Software,

2009. ISPASS 2009. IEEE International Symposium on, pages 163–174, April 2009.

[99] Da Qi Ren. Algorithm level power efficiency optimization for CPU-GPU processing ele-

ment in data intensive SIMD/SPMD computing. Journal of Parallel and Distributed Com-

puting, 71(2):245 – 253, 2011. Data Intensive Computing.

[100] Da-Qi Ren and Reiji Suda. Global optimization model on power efficiency of GPU and mul-

ticore processing element for SIMD computing with CUDA. Computer Science - Research

and Development, 27(4):319–327, 2012.

[101] S. Prakash and A. C. Parker. Synthesis of application-specific multiprocessor systems in-

cluding memory components. In Proc. of the Int. Conf. on Application Specific Array Pro-

cessors, pages 118–132, Aug 1992.

[102] Wayne Wolf and Jorgen Staunstrup. Hardware/Software CO-Design: Principles and Prac-

tice. Kluwer, Norwell, MA, USA, 1997.

[103] Karam S. Chatha and Ranga Vemuri. MAGELLAN: Multiway hardware-software partition-

ing and scheduling for latency minimization of hierarchical control-dataflow task graphs.

In Proceedings of the Ninth International Symposium on Hardware/Software Codesign,

CODES ’01, pages 42–47, New York, NY, USA, 2001. ACM.

[104] R. P. Dick and N. K. Jha. MOGAC: A multiobjective genetic algorithm for hardware-

software cosynthesis of distributed embedded systems. Trans. Comp.-Aided Des. Integ. Cir.

Sys., 17(10), November 2006.

[105] J. Teich. Hardware/software codesign: The past, the present, and predicting the future. Proc.

of the IEEE, 100:1411–1430, May 2012.

65



[106] Petru Eles, Zebo Peng, Krzysztof Kuchcinski, and Alexa Doboli. System level hardware/-

software partitioning based on simulated annealing and tabu search. Trans. on Design Au-

tomation for Embedded Systems, 2(1):5–32, January 1997.

[107] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel. Multiobjective optimization and evolutionary

algorithms for the application mapping problem in multiprocessor system-on-chip design.

IEEE Transactions on Evolutionary Computation, 10(3):358–374, September 2006.

[108] Ralf Niemann and Peter Marwedel. An algorithm for hardware/software partitioning using

mixed integer linear programming. Design Automation for Embedded Systems, 2(2):165–

193, 1997.

[109] S. S. Dosanjh, R. F. Barrett, D. W. Doerfler, S. D. Hammond, K. S. Hemmert, M. A. Heroux,

P. T. Lin, K. T. Pedretti, A. F. Rodrigues, T. G. Trucano, and J. P. Luitjens. Exascale design

space exploration and co-design. Future Gener. Comput. Syst., 30:46–58, January 2014.

[110] Didem Unat, Cy Chan, Weiqun Zhang, Samuel Williams, John Bachan, John Bell, and John

Shalf. Exasat: An exascale co-design tool for performance modeling. The International

Journal of High Performance Computing Applications, 29(2):209–232, 2015.

[111] David J. Kuck, Michael W. Berry, Kyle A. Gallivan, Efstratios Gallopoulos, Ananth Grama,

Bernard Philippe, Yousef Saad, and Faisal Saied. Computational Capacity-Based Codesign

of Computer Systems, pages 45–73. Springer London, London, 2012.

[112] David Kuck. A comprehensive approach to hw/sw codesign. In Proceedings of the 22Nd

International Conference on Parallel Architectures and Compilation Techniques, PACT ’13,

pages 1–2, Piscataway, NJ, USA, 2013. IEEE Press.

[113] K. Rajamani and C. Lefurgy. On evaluating request-distribution schemes for saving energy

in server clusters. 2003 IEEE International Symposium on Performance Analysis of Systems

and Software. ISPASS 2003., 2003.

66



[114] Luiz André Barroso, J Clidaras, and Urs Hölzle. The Datacenter as a Computer: An Intro-

duction to the Design of Warehouse-Scale Machines. In Synthesis Lectures on Computer

Architecture, volume 4, pages 1–108. Morgan & Claypool Publishers, 2009.

[115] Ivan Rodero and Manish Parashar. Energy Efficiency in HPC Systems, pages 81–108. John

Wiley & Sons, Inc., 2012.

[116] Jan Lucas, Sohan Lal, Michael Andersch, Mauricio Alvarez Mesa, and Ben H. H. Juurlink.

How a single chip causes massive power bills GPUSimPow: A GPGPU power simulator. In

ISPASS, pages 97–106. IEEE, 2013.

[117] Vivek Sarkar, William Harrod, and Allan E. Snavely. Software challenges in extreme scale

systems. Journal of Physics: Conference Series, 180(1):012–045, 2009.

[118] J. D. Ullman. NP-complete scheduling problems. J. Comput. Syst. Sci., 10(3):384–393,

June 1975.

[119] Hristo Djidjev. Codesign mapping and optimization algorithms. Technical Report LA-UR-

11-10169, Los Alamos National Laboratory, 2011.

[120] S. Eidenbenz, K. Davis, A. Voter, H. Djidjev, L. Gurvitz, C. Junghans, S. Mniszewski,

D. Perez, N. Santhi, and S. Thulasidasan. Optimization principles for codesign applied

to molecular dynamics: Design space exploration, performance prediction and optimization

strategies. In Proceedings of the U.S. Department of Energy Exascale Research Conference,

pages 64–65, 2012.

[121] Susan M. Mniszewski, Christoph Junghans, Arthur F. Voter, Danny Perez, and Stephan J. Ei-

denbenz. Tadsim: Discrete event-based performance prediction for temperature-accelerated

dynamics. ACM Trans. Model. Comput. Simul., 25(3):15:1–15:26, April 2015.

[122] R. M. Karp, R. E. Miller, and S. V. Winograd. The organization of computations for uniform

recurrence equations. JACM, 14(3):563–590, July 1967.

67



[123] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A Modelling Language

for Mathematical Programming. Duxbury Press, Brooks/Cole Publishing Company, 2nd

edition, 2002.

[124] Bonmin Project Page. https://projects.coin-or.org/Bonmin, 2015 (accessed March 11, 2016).

[125] R. Andonov and S. Rajopadhye. Optimal orthogonal tiling of 2-D iterations. Journal of

Parallel and Distributed Computing, 45(2):159–165, September 1997.

[126] M. E. Wolf and M. Lam. A data locality optimizing algorithm. In ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI), Totonto, CA, june

1991.

[127] J. McCalpin and D. Wonnacott. Time skewing: A value-based approach to optimizing for

memory locality. Technical Report TR-379, Rutgers University, Department of Computer

Science, March 1999.

[128] CUDA C programming guide v6.0, April 2014.

[129] NVIDIA Corporation. NVIDIA Next Generation CUDA Compute Architecture: Kepler

GK110, 2012. Rev. 1.0.

[130] Jens Lang and Gudula RÃijnger. High-resolution power profiling of GPU functions using

low-resolution measurement. In Felix Wolf, Bernd Mohr, and Dieter an Mey, editors, Euro-

Par 2013 Parallel Processing, volume 8097 of Lecture Notes in Computer Science, pages

801–812. Springer Berlin Heidelberg, 2013.

[131] Cbc home page. https://projects.coin-or.org/Cbc.

[132] Richard H Byrd, Jorge Nocedal, and Richard A Waltz. Knitro : An Integrated Package for

Nonlinear Optimization. Energy, 83:1–25, 2006.

[133] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug

Burger. Dark silicon and the end of multicore scaling. In ISCA ’11 Proceedings of the 38th

68



Annual International Symposium on Computer Architecture, pages 365–376, San Jose, CA,

June 2011. ACM.

[134] K. O’Brien, L. Di Tucci, G. Durelli, and M. Blott. Towards exascale computing with het-

erogeneous architectures. In Design, Automation Test in Europe Conference Exhibition

(DATE), 2017, pages 398–403, March 2017.

[135] K Amunts, A Lindner, and K Zilles. The human brain project: neuroscience perspectives

and german contributions. e-Neuroforum, 5(2):43–50, 2014.

[136] P Chris Broekema, Rob V van Nieuwpoort, and Henri E Bal. The square kilometre array

science data processor. preliminary compute platform design. Journal of Instrumentation,

10(07):C07004, 2015.

[137] Rik Jongerius, Stefan Wijnholds, Ronald Nijboer, and Henk Corporaal. An end-to-end

computing model for the square kilometre array. Computer, 47(9):48–54, 2014.

[138] Gabe Rudy. CUDA-CHiLL: A programming language interface for GPGPU optimizations

and code generation. The University of Utah, 2010.

[139] Robin Lee, Jung-Ping Yang, Chia-En Huang, Chih-Chieh Chiu, Wei-Shuo Kao, Hong-Chen

Cheng, Hong-Jen Liao, and Jonathan Chang. A 28nm high-k metal-gate sram with asyn-

chronous cross-couple read assist (ac2ra) circuitry achieving 3x reduction on speed variation

for single ended arrays. In Proc., IEEE VLSIC 2012, pages 64–65, 2012.

[140] HP Labs Cacti 6.5 sram area and power estimation tool. https://github.com/HewlettPackard/

cacti, 2014. Accessed: 2017-May-31.

[141] NVidia GeForce GTX-980 photomicrograph. http://international.download.nvidia.com/

geforce-com/international/images/geforce-gtx-980-970-feature-article/Maxwell_Die_

FlatShade_colorA.jpg, 2014. Accessed: 2016-April-08.

69



[142] Alexander Grebhahn, Sebastian Kuckuk, Christian Schmitt, Harald Köstler, Norbert Sieg-

mund, Sven Apel, Frank Hannig, and Jürgen Teich. Experiments on optimizing the perfor-

mance of stencil codes with spl conqueror. Parallel Processing Letters, 24(03):1441001,

2014.

[143] Wenlei Bao, Sriram Krishnamoorthy, Louis-Noel Pouchet, and P Sadayappan. Analytical

modeling of cache behavior for affine programs. Proceedings of the ACM on Programming

Languages, 2(POPL):32, 2017.

[144] Louis-Noel Pouchet, Peng Zhang, P. Sadayappan, and Jason Cong. Polyhedral-based data

reuse optimization for configurable computing. In Proc. of the ACM/SIGDA Int. Symp. on

Field Programmable Gate Arrays, FPGA ’13, pages 29–38, New York, NY, USA, 2013.

ACM.

[145] Joo Hwan Lee, Jiayuan Meng, and Hyesoon Kim. Sesh framework: A space exploration

framework for GPU application and hardware codesign. In Stephen A. Jarvis, Steven A.

Wright, and Simon D. Hammond, editors, High Performance Computing Systems. Perfor-

mance Modeling, Benchmarking and Simulation, pages 182–202, Cham, 2014. Springer

International Publishing.

[146] Guanwen Zhong, Vanchinathan Venkataramani, Yun Liang, Tulika Mitra, and Smaïl Niar.

Design space exploration of multiple loops on FPGAs using high level synthesis. 2014 IEEE

32nd International Conference on Computer Design (ICCD), pages 456–463, 2014.

[147] Guanwen Zhong, Alok Prakash, Siqi Wang, Yun Liang, Tulika Mitra, and Smaïl Niar. De-

sign space exploration of FPGA-based accelerators with multi-level parallelism. Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2017, pages 1141–1146,

2017.

[148] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder

Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter perfor-

70



mance analysis of a tensor processing unit. In Proceedings of the 44th Annual International

Symposium on Computer Architecture, pages 1–12. ACM, 2017.

[149] Jason Cong, Vivek Sarkar, Glenn Reinman, and Alex Bui. Customizable domain-specific

computing. IEEE Design & Test of Computers, 28(2):6–15, 2011.

[150] Samuel Steffl and Sherief Reda. Lacore: A supercomputing-like linear algebra accelerator

for soc-based designs. In 2017 IEEE 35th International Conference on Computer Design

(ICCD), pages 137–144. IEEE, 2017.

[151] Polyhedral Benchmark suite. http://web.cs.ucla.edu/~pouchet/software/polybench/, 2012

(accessed June 19, 2019).

[152] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu,

Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and

Onur Mutlu. Google workloads for consumer devices: Mitigating data movement bottle-

necks. In Proceedings of the Twenty-Third International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, ASPLOS ’18, pages 316–331,

New York, NY, USA, 2018. ACM.

[153] J. W. Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In Proceedings

of the Thirteenth Annual ACM Symposium on Theory of Computing, STOC ’81, pages 326–

333, New York, NY, USA, 1981. ACM.

[154] Lynn Elliot Cannon. A Cellular Computer to Implement the Kalman Filter Algorithm. PhD

thesis, Bozeman, MT, USA, 1969. AAI7010025.

[155] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. A three-dimensional

approach to parallel matrix multiplication. IBM Journal of Research and Development,

39(5):575–582, September 1995.

71



[156] Dror Irony, Sivan Toledo, and Alexander Tiskin. Communication lower bounds for

distributed-memory matrix multiplication. Journal of Parallel and Distributed Computing,

64(9):1017–1026, September 2004.

[157] Robert A. van de Geijn and Jerrell Watts. Summa: Scalable universal matrix multiplication

algorithm. Technical report, Austin, TX, USA, 1995.

[158] S. Lennart Johnsson. Minimizing the communication time for matrix multiplication on

multiprocessors. Parallel Computing, 19(11):1235–1257, November 1993.

[159] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-

oblivious algorithms. In Proceedings of the 40th Annual Symposium on Foundations of

Computer Science, FOCS ’99, pages 285–, Washington, DC, USA, 1999. IEEE Computer

Society.

[160] Edgar Solomonik and James Demmel. Communication-optimal parallel 2.5D matrix multi-

plication and LU factorization algorithms. In Proceedings of the 17th International Confer-

ence on Parallel Processing - Volume Part II, Euro-Par’11, pages 90–109, Berlin, Heidel-

berg, 2011. Springer-Verlag.

[161] William F McColl and Alexandre Tiskin. Memory-efficient matrix multiplication in the bsp

model. Algorithmica, 24(3-4):287–297, 1999.

[162] James Demmel, David Eliahu, Armando Fox, Shoaib Kamil, Benjamin Lipshitz, Oded

Schwartz, and Omer Spillinger. Communication-optimal parallel recursive rectangular ma-

trix multiplication. In Proceedings of the 2013 IEEE 27th International Symposium on

Parallel and Distributed Processing, IPDPS ’13, pages 261–272, Washington, DC, USA,

2013. IEEE Computer Society.

[163] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz. Communi-

cation lower bounds and optimal algorithms for numerical linear algebra. Acta Numerica,

23:1–155, 2014.

72



[164] Jinsung Kim, Aravind Sukumaran-Rajam, Vineeth Thumma, Sriram Krishnamoorthy, Ajay

Panyala, Louis-Noël Pouchet, Atanas Rountev, and P. Sadayappan. A code generator for

high-performance tensor contractions on gpus. In Proceedings of the 2019 IEEE/ACM In-

ternational Symposium on Code Generation and Optimization, CGO 2019, pages 85–95,

Piscataway, NJ, USA, 2019. IEEE Press.

[165] Ken Kennedy and Kathryn S. McKinley. Maximizing loop parallelism and improving data

locality via loop fusion and distribution. In LCPC, 1993.

[166] Sharad K Singhai and Kathryn S. McKinley. A parametrized loop fusion algorithm for

improving parallelism and cache locality. The Computer Journal, 40(6):340–355, 1997.

[167] Apan Qasem and Ken Kennedy. Profitable loop fusion and tiling using model-driven empir-

ical search. In Proceedings of the 20th annual international conference on Supercomputing,

pages 249–258. ACM, 2006.

[168] Uday Bondhugula, Sanjeeb Dash, Oktay Gunluk, and Lakshminarayanan Renganarayanan.

A model for fusion and code motion in an automatic parallelizing compiler. In 2010 19th

International Conference on Parallel Architectures and Compilation Techniques (PACT),

pages 343–352. IEEE, 2010.

[169] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanujam, and

P. Sadayappan. Combined iterative and model-driven optimization in an automatic par-

allelization framework. In Proceedings of the 2010 ACM/IEEE International Conference

for High Performance Computing, Networking, Storage and Analysis, SC ’10, pages 1–11,

Washington, DC, USA, 2010. IEEE Computer Society.

[170] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanujam,

P. Sadayappan, and Nicolas Vasilache. Loop transformations: Convexity, pruning and op-

timization. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on

73



Principles of Programming Languages, POPL ?11, page 549?562, New York, NY, USA,

2011. Association for Computing Machinery.

[171] Samyam Rajbhandari, Jinsung Kim, Sriram Krishnamoorthy, Louis-Noël Pouchet, Fabrice

Rastello, Robert J. Harrison, and P. Sadayappan. On fusing recursive traversals of k-d trees.

In Proceedings of the 25th International Conference on Compiler Construction, CC 2016,

pages 152–162, New York, NY, USA, 2016. ACM.

[172] Samyam Rajbhandari, Jinsung Kim, Sriram Krishnamoorthy, Louis-Noel Pouchet, Fabrice

Rastello, Robert J. Harrison, and P. Sadayappan. A domain-specific compiler for a parallel

multiresolution adaptive numerical simulation environment. In Proceedings of the Interna-

tional Conference for High Performance Computing, Networking, Storage and Analysis, SC

’16, pages 40:1–40:12, Piscataway, NJ, USA, 2016. IEEE Press.

[173] Samyam Rajbhandari, Fabrice Rastello, Karol Kowalski, Sriram Krishnamoorthy, and P. Sa-

dayappan. Optimizing the four-index integral transform using data movement lower bounds

analysis. In Proceedings of the 22Nd ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP ’17, pages 327–340, New York, NY, USA, 2017. ACM.

[174] Henrik Barthels, Marcin Copik, and Paolo Bientinesi. The generalized matrix chain al-

gorithm. In Proceedings of the 2018 International Symposium on Code Generation and

Optimization, CGO 2018, pages 138–148, New York, NY, USA, 2018. ACM.

74



Appendix A

Simple, Accurate, Analytical Time Modeling and

Optimal Tile Size Selection for GPGPU Stencils

Stencil computations are an important class of compute and data intensive programs that oc-

cur widely in scientific and engineering applications. A number of tools use sophisticated tiling,

parallelization, and memory mapping strategies, and generate code that relies on vendor-supplied

compilers. This code has a number of parameters, such as tile sizes, that are then tuned via empir-

ical exploration (such as auto-tuning).

We develop a model that guides such a choice. Our model is a simple set of analytical functions

that predict the execution time of the generated code. It is deliberately optimistic, since we are

targeting modeling and parameter selections yielding highly optimized codes.

We experimentally validate the model on a number of 2D and 3D stencil codes, and show that

the root mean square error in the execution time is less than 10% for the subset of the codes that

achieve performance within 20% of the best. Furthermore, based on using our model, we are able

to predict tile sizes that achieve a further improvement of 9% on average.

A.1 Introduction

As we move to address the challenges of exascale computing, one approach that has shown

promise is domain specificity: the adaptation of application, compilation, parallelization, and opti-

mization strategies to narrower classes of domains. An important representative of such a domain

is called Stencil Computations, and includes a class of typically compute bound parts of many

applications such as partial differential equation (PDE) solvers, numerical simulations in domains

like oceanography, aerospace, climate and weather modeling, computational physics, materials

modeling, simulations of fluids, and signal and image-processing algorithms. One of the thirteen

Berkeley dwarfs/motifs [27], is “structured mesh computations,” which are nothing but stencils.
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Many dynamic programming algorithms also exhibit a similar dependence pattern. The importance

of stencils has been noted by a number of researchers, indicated by the recent surge of research

projects and publications on this topic, ranging from optimization methods for implementing such

computations on a range of target architectures, to Domain Specific Languages (DSLs) and com-

pilation systems for stencils [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. Workshops and

conferences devoted exclusively to stencil acceleration have recently emerged.

A second aspect of domain specificity is reflected in the emergence of specialized architec-

tures, called accelerators, for executing compute intensive parts of many computations. They

include GPGPU, general purpose computing on graphics processing units (GPUs), and other co-

processors (Intel Xeon Phi, Knight’s Landing, etc.). Initially they were “special purpose,” limited

to highly optimized image rendering libraries occurring in graphics processing. Later, researchers

realized that these processors could be used for more general computations, and, eventually, the

emergence of tools like CUDA and OpenCL enabled general purpose parallel programming on

these platforms.

Exploiting the specificity of the applications and the specificity of target architectures leads

to domain-specific tools to map very high level program specifications to highly tuned and opti-

mized implementations on the target architecture. Many such tools exist, both academic research

prototypes and productions systems.

As indicated earlier, our domain specificity comes in two flavors. First, we investigate only

stencil computations. They belong to a class of programs called uniform dependence computations,

which are themselves a proper subset of “affine loop programs.” Such programs can be analyzed

and parallelized using a powerful methodology called the polyhedral model [14, 15, 49, 16, 17,

18, 50, 51], and many tools are widely available, e.g., PPCG, developed by the group at ENS,

Paris [52].

Second, we tackle a specific target platform, namely a single GPU accelerator, and PPCG

includes a module that targets GPUs and incorporates a sophisticated code generator developed by

Grosser et al. [19] that employs a state-of-the-art tiling strategy called hybrid hexagonal classic
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tiling. An open source compiler, implementing this strategy is also available, henceforth called the

HHC compiler. We show the following.

• We develop a simple analytical model to predict the execution time of a tiled stencil program

and apply it to codes generated by the HHC compiler. The model is an analytic function of

– program, machine, and compiler parameters that are easily available statically, and

– one stencil-specific parameter that is obtained by running a handful of

micro-benchmarks.

It is deliberately optimistic and also ignores the effect of some parameters.

• Although our model is not accurate for all tile size combinations—the root mean square

error(RMSE) is over 100%—it is very accurate for the ones that matter. For codes whose

performance is within 20% of the best, the RMSE is less than 10%6

Although our model may not accurately predict the performance for all tile size combina-

tions, it is very accurate for the ones that matter, i.e., those that give top performance. To

show this, we generated more than than 60,000 programs for

– two modern target platforms (NVIDIA GTX 980, and Titan X), and

– four 2D stencil codes (Jacobi2D, Heat2D, Laplacian2D, and Gradient2D) and two 3D

stencils (Heat3D and Laplacian3D)

– over a range of ten input/problem sizes, and

– a wide range of tile sizes and thread counts (the HHC compiler inputs) for each

platform-stencil-size combination.

As we expected, the root-mean-square error (RMSE) over the entire data set was “disap-

pointingly” over 100%. However, when we restricted ourselves to the data points that have

6The restriction to the better performing subset was exactly our motivation. We designed the model to help
predict/explore data points that would give good performance. It is also why we made optimistic assumptions in
developing the model.
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an execution time within 20% of the best value for that particular platform-stencil-size com-

bination, the RMSE dropped to less than 10% , which we consider very good.

Our overall methodology is applicable, with simple extensions, to more general programs, e.g.,

those that fit the polyhedral model. But for achieving high GPU utilization, we need efficient

GPU codes to start with, which are very hard and time consuming to produce manually, especially

in higher dimensions. The highly optimized HHC-generated codes we are using for testing and

validation have a few thousand lines of CUDA code each and we generated tens of thousands such

codes in our experimental analysis. So our methodology is not limited to the HHC compiler (in

fact we have applied it successfully to manually generated 1D stencil codes), but the use of HHC

(or similar compiler) was necessary to produce for our experiments a high number of GPU codes

that are also very efficient.

The remainder of this section is organized as follows. We describe the domain specific par-

allelization used for stencils, and in particular, the strategies used by the HHC compiler. Then,

Section A.4 develops our analytical execution time model, Section A.5 describes our experimen-

tal results on validating the model on a baseline set of tile sizes. After a discussion of related

work (Section C.5), we discuss our results, describe ongoing and future work, and conclude in

Section C.6.

A.2 Related work

At the algorithmic level, most stencil applications are compute bound in the sense that the ratio

of the total number of operations to the total number of memory locations touched can always

be made “sufficiently large” because it is an asymptotically increasing value. We may expect

that such codes can be optimized to achieve very high performance relative to machine peak.

However, naive implementations turn out to be memory-bound. Therefore, many authors seek

to exploit data locality for these programs [62, 63, 54]. One successful technique is called time

tiling [64, 65, 66, 67, 68, 69, 58, 54], an advanced form of loop tiling [70, 64, 71]. Time tiling first

partitions the whole computation space into tiles extending in all dimensions, and then optionally
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executes these tiles in a so called “45 degree wavefront” fashion. We assume, like most of the

work in the literature, that dense stencil programs are compute bound after time tiling. However,

due to the intricate structure of time tiled code, writing it by hand is challenging. Automatic code

generation, is an attractive solution, and has been an active research topic.

There has been much work on time modeling and performance optimization. For stencil graphs,

which are directed acyclic graphs (DAGs) of non-iterated stencil kernels, various DSLs compilers

have been proposed. Halide [75] and Stella [76] are two DSLs from the context of image pro-

cessing and weather modeling that separate the specification of the stencil computation from the

execution schedule, which allows for the specification of platform specific execution strategies de-

rived either by platform experts or automatic tuning. Both DSLs support various hardware targets,

including CPUs and GPUs. Polymage [77] also provides a stencil graph DSL—this time for CPUs

only—but pairs it with an analytical performance model for the automatic computation of optimal

tile size and fusion choices. With MODESTO [78] an analytical performance model has been pro-

posed that allows to model multiple cache levels and fusion strategies for both GPUs and CPUs as

they arise in the context of Stella.

A.3 Stencils and their parallelization

We now describe the class of computations we tackle, the overall parallelization strategy, and

how the HHC compiler implements it.

We assume, like most of the work in the literature, that dense iterative stencil programs are

compute bound after time tiling. However, due to the intricate structure of time tiled code, writing

it by hand is challenging. Automatic code generation, is an attractive solution, and has been an

active research topic, and polyhedral compilation is one of the most successful technique.

One of the desired, but often loosely defined properties of a good mapping is “locality of

data.” Although it is often difficult to formulate mathematically, it is used as a surrogate measure

of the quality of the mapping. The ultimate metric remains the speed and/or energy, but it is

widely believed that the actual quantitative performance is difficult to model precisely. Modern
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processors be they multicore CPUs or manycore GPUs or other accelerators, have multiple levels

of memory/communication hierarchy that are poorly understood, and very difficult to analyze.

It is well known that they have limited amount of local memory and the time of data transfer

between that memory and the global memory is large compared to the cost of computation or the

cost of local access. Hence, it is important to have a method that maps the operations of a software

code onto the hardware in a way that optimizes for locality and data reuse. This is achieved by a

well known transformation called tiling (of both the computation space and the data sets). Tiling is

usually applied at multiple levels (hierarchical tiling) and used to generate sequential or parallelized

code with multiple levels of parallelism. These transformations must preserve the semantics of the

original code thereby guaranteeing that the mapping will not affect the code correctness.

The architecture targeted in this study is a GPU architecture, illustrated in Figure A.1. There

are NSM parallel units (called streaming multiprocessors, or SMs) that communicate through slow

global memory. Each SM contains a number of fine grain vector units called streaming processors

(SPs) that have access to fast, on-chip memory (called shared memory), as well as to slow, off-

chip main memory (called global memory). Thread blocks of 32 threads with consecutive IDs in

an SM form a so-called warp, which is executed in a Single Instruction Multiple Data (SIMD)

mode. We will consider a number of parameters of such an architecture as variables that can be

optimized. Such parameters include number of SMs, shared and global memory size, and data

transfer bandwidth between different components.

In codes that implement dense iterative stencils, values of array elements are updated iteratively

at every time step using the values of some of their neighbors from previous time steps7 according

to a fixed pattern.

We consider stencil codes of the following kind. Let S = {(i1, . . . , ik) | 1 ≤ ij ≤ Sj, for j =

1, . . . , k} be a k-dimensional space index set and T = {1, . . . , T} be a time index set. Then, given

a set N defining the “neighborhood” of any point in terms of a pattern of relative coordinates and

7Stencils where some updates may use values from the current time step (called Gauss-Seidel stencils) are not
included in the definition, as the HHC compiler does not consider these.
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Figure A.1: The GPU architecture.

a coefficient wa associated with each element a ∈ N a (convolutional) stencil code defines an

iterative evaluation of the following weighted sum.

At(s) =
(

∑

a∈N

wa ∗ At−1(s+ a)
)

+ c (A.1)

s ∈ S , t ∈ T , where we assume that appropriate values are given for the “initial value,” (when

t = 0) and the “boundary values” (when the points s+ a fall outside S).

Furthermore, the elements of the set N must be such that the computation is “explicitly de-

fined” (see [122]). The definition may be extended to (i) allow a computation to depend on values

at more than the previous time step, and (ii) allow the coefficients to be computed values, rather

than compile-time constants, provided the evaluation of these coefficients is also described by a

stencil computation, and (iii) allow generalization where the computation of At(s) involves more

than just a weighted sum. Stencils are usually implemented as nested loops with the loop body

evaluating the rhs of (C.3) and storing it in a data array.

Efficient parallelization of stencils on GPUs requires careful consideration of at least four fac-

tors: parallelism at the fine grain (thread level) and the coarse grain (block level) and data locality

and reuse at the fine grain (shared memory and/or scratchpad) and the coarse grain (global mem-
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ory), and there is significant interplay between them. Tiling is a widely used technique that has

been developed to manage this and is applied at multiple levels and to both data and iterations of

the loop. In a typical implementation, data, initially stored on the CPU, is first transferred to the

GPU, subsequently a sequence of kernel calls is issued on the CPU to perform the computation on

the GPU-resident, and finally the result is moved back to the CPU. For ease of explanation, it is

convenient to view the entire stencil computation as defined by its iteration space: the set of legal

values of the space and time coordinates.

A.3.1 Hybrid hexagonal/classical tiling

The HHC compiler [19], which we are using, implements a hybrid of two strategies: hexagonal

tiling of the outer two loops/dimensions, and the classic time skewing of the remaining (inner/s-

pace) dimensions. A 1D stencil is thus, a special case (the iteration space is 2D, and only hexagonal

tiling is applicable). For more than two nested loops, it tiles the inner loops using the classic time

skewing approach.

Therefore, we first explain hexagonal tiling. The iteration space, a S × T rectangle, is par-

titioned into a set of “staggered” hexagons, as shown in Figure B.4.a, and we view a “row of

hexagons” as those whose (leftmost) corners have the same value of t. Each row is completely

independent, accesses distinct data, and can, hence, be executed in a single kernel call. The main

program is just a sequence of such kernel calls.

Now consider a 3-D iteration space (see Figure A.3) where each hexagon on the outer two

(t-k) dimensions now becomes a “prism” extending along the i dimension. The nature of the

stencil dependences precludes directly blocking this prism. Rather, a classic time-skewing has to

be applied: in the figure this is illustrated by the oblique hexagonal faces. After this, the HHC

compiler generates code that executes the tiles in the prism via a sequential loop—executed within

a single kernel call—whose body is the execution of a tile. The outer structure of the code remains

the same. The idea is extended to higher dimensions, where the prisms become “slabs” and “hyper-

slabs” and the sequential loop iterating over tiles becomes a nested loop.
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are two kinds of “tile rows” colored green and yellow. The tiles in each row are independent, and can
executed in a single GPU kernel call. A single tile (right) and its I/O (red: iterations reading data from
global memory; blue: iterations writing to global memory).

Using hybrid-hexagonal classical tiling [19] we partition such a stencil program in tasks that

can be effectively mapped to a GPU. The specific details of the schedule are beyond the scope

of this paper, but we give a simplified explanation when we develop our model (Section A.4).

As typical for GPGPU, initial data is first stored at the CPU and then transferred to the GPU,

subsequently a sequence of kernel calls is issued on the CPU to perform the actual computation on

the GPU, and finally the result is moved back to the CPU. Further specifics of our execution model

are as follows.

• Each kernel call invoked from the host is called a wavefront and consists of a set of thread-

blocks.

• The iteration space of each threadblock in a kernel is either a single tile or a sequence of

tiles, each one being a bounded polytope with some parameterized size. These we call the

tile size parameters.

• Each tile is executed in parallel by the threads within a threadblock, that collectively

– fetch some data from global to shared memory

– do some computation to update data in shared memory (and registers)
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– write results back from shared to global memory

• Within each tile, some of the dimensions may be parallel (i.e., carry no dependences) in

which case, they may be used as the “thread dimension”, possibly with additional synchro-

nization. Otherwise, it may be necessary to apply a second level of transformation/skewing

to expose such parallel dimensions.

• Independently of this parallelization, each tile may be divided into subtiles, possibly to im-

prove the register access, or to reduce synchronization overheads.

• If subtiling is applied, then the iterations in the subtile are executed sequentially by a thread,

and the parallelization is across subtiles, i.e., subtiles are executed in parallel by multiple

threads. The innermost level always consists of iterations that are executed by a single thread

within the threadblock between successive synchronizations.

A.3.2 Details of the HHC compiler

HHC generates highly tuned code for specific stencil pattern, problem sizes, and tile size pa-

rameters, taking advantage of specific properties of the “hybrid-hexagonal schedule”. The HHC

compiler is one module within a complete polyhedral tool suite, PPCG, developed by the group

at ENS, Paris [52]. Independently of the tiling scheme, PPCG automatically simplifies generated

loop bounds and index expressions, taking into account problem sizes and tile-size parameters.

When generating HHC tiled code, the effectiveness of PPCG’s specialization can be largely

improved by unrolling the global⇔shared memory copy code as well as the per-tile compute code.

When unrolling both, all control flow within a tile is eliminated such that only a sequence of

(possibly predicated) instructions remains to be executed by each thread. When using HHC tiling,

it is also possible to take advantage of data-reuse between two tiles that are run in sequence by

the same threadblock. In this situation, a subset of the data that is loaded by each tile is already

in shared memory and does not need to be loaded again. However, as PPCG derives for each

tile an optimal data-mapping strategy, the reusable data is not always placed such that it can be
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Figure A.3: Hybrid-hexagonal tiling for 2D stencils.

immediately reused between tiles. To still exploit this property, PPCG provides two different

options. Option 1) enforces a shared (commonly less optimal) memory placement strategy. Option

2) moves reusable data within shared memory to account for different data placement between tiles

before loading the remaining data from global memory.

A.4 Execution Time Model

We now develop a model for the execution time of a stencil computation on the GPU as a func-

tion of software, hardware, and problem parameters. These parameters are shown in Table A.1.

Some of these have to be measured or are chosen by the compiler, we call them elementary, while

others, called composite, are functions of elementary and other composite parameters. In addition

to this distinction, we also divide them into three classes, hardware, software, and problem, de-

pending on their origin. Hardware parameters are specific to the machine. Software parameters

such as tile size, number of threads per tile, etc., are determined by the user or the compiler. And

the problem parameters are determined by the type of stencil, the computation in the loop body,

number of variables, nature of memory accesses, etc.
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Table A.1: List of the parameters. E/C stand for elementary/composite, and S/H/P for software/hard-
ware/problem type; Mio is measured in 4-byte words.

Name Type Description

Si EP i-th space dimension
T EP time dimension

tSi
ES tile size along the i-th space dimension

tT ES tile size along time dimension
nthr,i ES number of threads per threadblock in the i-th

dimension/loop

nSM EH number of SMs in the device
nV EH number of vector units per SM
RSM EH number of registers per SM
MSM EH size of shared memory per SM
MTBSM EH max threadblocks per SM
L EH time per word of global memory access
τsync EH time for a single synchronization
Tsync EH time for a host-GPU synchronization

Nw CS number of wavefronts
mi CS input memory footprint of a tile

(amount of data read from global memory)
mo CS output memory footprint of a tile

(amount of data written to global memory)
m′ CS time for global↔shared data transfer for a tile
c CS time to perform the computation in a tile

(collectively by all the threads)
k CS “hyper-threading” factor (threadblocks per SM)
Ttile(k) CS time to compute a tile

(accounting for k-way “hyper-threading”)
w(i) CS width of the i-th wavefront

(number of threadblocks in the i-th kernel call)
Rtile CS number of registers needed per tile
Mtile CS shared memory needed per tile
Mio CS I/O volume per tile (global↔shared)

Citer CSH (optimized) execution time of one iteration

Talg C total execution time of stencil
Texec Observed execution time (not a model parameter)
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A.4.1 Model for hexagonal tiling

We first derive the execution time for an 1D stencil, Jacobi 1D (for which we drop the subscript

on S1, using just S). Later we extend the model to higher dimensions.

The T × S rectangular iteration space (of the outer two loops), is tiled into hexagons with a

base of size tS and a height of size tT (see Figure B.4.a). In the following we suppose that tT is

even, since the HHT compiler only supports this case. Wavefronts are visualized with red dashed

horizontal lines. The dependences allow computing these wavefronts in a sequential manner from

bottom to top. Figure B.4.b shows more details within the tiles.

The total execution time for the tiled code can be evaluated by adding the time spent by the

GPU in each kernel call and the total synchronization time spent between kernel calls

Talg() =

Nw()
∑

i=1

(⌈

1

nSM

⌈

w(i)

k

⌉⌉

Ttile(k) + Tsync

)

. (A.2)

The ith kernel computes the tiles from the ith wavefront. The ith wavefront consists of the tiles

that intersect the ith red dashed horizontal line. Note that they contain either yellow tiles only (for

odd wavefronts indexed from one) or green tiles only (for even wavefront indices). Let us estimate

the number n0 of even-indexed wavefronts (colored in green). Since the height of each tile is tT

and the height of the iteration space is T , then n0 = ⌈T/tT ⌉. For estimating the total number

of wavefronts we note that for any even-indexed wavefront (say j) we can associate exactly one,

possibly partial, odd-indexed wavefront—the one whose index is j − 1. Moreover, depending

on the relative values of T and tT , the last wavefront may be even (green), and numbered 2n0,

or odd (yellow) and numbered 2n0 + 1. Which case holds depends on the relationship between

T − ⌊T/tT ⌋tT and tT/2. More precisely, the total number of wavefronts is equal to

Nw() = 2

⌈

T

tT

⌉

+ ǫ ≈ 2

⌈

T

tT

⌉

(A.3)

where ǫ = 0 if 0 < T − ⌊T/tT ⌋tT ≤ tT/2, otherwise ǫ = 1.
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To estimate the tile width, wtile(), we decompose each hexagon into a rectangle of size tS × tT

and two right isosceles triangles with a hypotenuse tT , each of which spans tT/2 columns (see

Figure B.4.b). Adding these, we get

wtile() = tS + tT − 2. (A.4)

Furthermore, the distance between two consecutive tiles in a wavefront, called pitch, can be

derived as

pitch() = wtile() + tS + 2 (A.5)

Ignoring the fact that there may be one more or less tile in alternate wavefronts, the number of

tiles in a wavefront (i.e., the width of a wavefront) is

w(i) =

⌈

S

pitch()

⌉

+ ǫ′ ≈
⌈

S

2ts + tT

⌉

, (A.6)

where ǫ′ is 1 or 0. Since this is independent of i, the summation in (A.2) can be simplified to yield

Talg() = Nw()Ttile(k)

⌈

1

nSM

⌈

w()

k

⌉⌉

+Nw()Tsync. (A.7)

Execution time of a tile

In the case of hexagonal tiling, the amount of data read from global memory is the sum of

the bottom base (tS) plus the data needed to compute its two adjacent oblique sides. Each of these

oblique sides has tT/2 points, and there are two such lines of points that need data from two oblique

lines (shown in red in Figure B.4.b). Collectively, this data comes from from two other (blue) line

segments in a neighboring south-east or south-west tile. Note also that these data are needed to

compute the line segments situated most closely to the hexagon’s south-east and south-west facets.

This is visualized in Figure B.4.b where the points in red require the points in blue. The blue points

thus depict the input footprint of the tile, mi, which can be shown to be tS + 4tT/2 = tS + 2tT .

In the case of Jacobi 1D, this amount also equals the output tile memory footprint mo. The later is
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depicted in blue (north-oriented tile’s facets) in Figure B.4.b. Therefore, for the total input/output

tile memory footprint we obtain

mio() = mi() +mo() = 2(tS + 2tT ). (A.8)

To obtain m′() we multiply mio() by L and add twice the synchronization time. Hence

m′() = mio()L+ 2τsync = 2(tS + 2tT )L+ 2τsync. (A.9)

Finally, for these hexagonal tiles, Mtile = 2(wtile() + 2) = 2(tS + tT ). To determine Ttile we

consider two cases: a single tile per SM (no hyperthreading) and multiple tiles per SM (hyper-

threading).

No Hyperthreading

In this case k = 1 and only one tile is executed on each SM at a time. To compute a tile, a read

operation, a compute operation, and a write operation are performed in sequence with synchro-

nizations in between them. We assume that both read and write operations take an equal amount

of time.

The iteration space dependences indicate that the computations in a tile can be done in parallel

in each row, and in a sequential manner between rows from bottom to top. Since Citer denotes

the computation time per iteration and, considering the shape of each hexagon, we find that the

computation time of a tile is given by

c() = 2

wtile()
∑

x=tS ,step=2

(⌈

x

nV

⌉

Citer + τsync

)

= 2Citer

wtile()
∑

x=tS ,step=2

⌈

x

nV

⌉

+ tT τsync.

(A.10)

Combining (A.9) and (A.10), the total time to process a tile is
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Ttile() = m′() + c(). (A.11)

When nV ≥ wtile(), each tile row can be computed in Citer time and the computation time c()

of a tile is just c() = tT (Citer + τsync). However, note that this is a very inefficient use of the fine

grain resources of the SMs, and we expect that for the optimal solution, nV ≪ wtile().

Hyperthreading

Consider the case k > 1, where more than one tile is executed on each SM at a time. The value

of k, the number of tiles per SM, depends on the available resources, shared memory and registers

in a SM as well as the resources consumed by a tile (thread block), and is bounded as follows:

1 < k ≤ min

{⌊

RSM

Rtile

⌋

,

⌊

MSM

Mtile

⌋}

. (A.12)

Read/write operations can now overlap with computations. Therefore, reading of the second

tile input data can be synchronized and overlapped with the first tile computation. However, the

very first read and the very last write cannot overlap with anything. Thus the execution time is the

sum of this and the dominant one between (k− 1) read-writes and computes. The time to compute

k tiles is then

Ttile(k) = m′() + c() + (k − 1)max{m′(), c()}. (A.13)

A.4.2 Hybrid hexagonal-classic tiling for 2D stencils

Here, the outer two loops are tiled with hexagons, and the inner dimension(s) are tiled using

classic time skewing techniques. We illustrate this for the Jacobi2D stencil.

Total execution time of Jacobi 2D

As illustrated in Figure A.3, each hexagon from Figure B.4 now becomes a “prism” with a

hexagonal cross section, whose length is S2 along the S2-axis. Its data footprint may be too large
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for the entire prism to be executed as a single tile, so it needs to be tiled. To respect the depen-

dences, time skewing is applied to each prism (notice how the front face is oblique in the S1-T

plane), and then each prism is partitioned using vertical cuts (other than the front face, all the inter-

tile faces are vertical). A threadblock executes the entire sequence of tiles in a single kernel call.

Let Tprism denote the time that this takes, and postpone its derivation for now.

The formulæ for the number of wavefronts (Nw), the tile width (wtile), the width of a wavefront

in respect to the S1-axis (w), as well as the total execution time (Talg), are identical to the Jacobi

1D case, and are given by equations A.3, A.4, A.6 and A.7 respectively, where the parameters S, tS

are replaced by S1 and tS1
while the term Ttile is substituted by Tprism.

Execution time of a Tile

Since tiles chosen as above could be very large and inconvenient for the shared memory size,

we need to further partition them into smaller chunks. In the Jacobi 2D hybrid approach these are

hexagonal (non-orthogonal) sub-prisms with a length tS2
and bases defined by the normal vector

(1, 0, 1) where time is the first dimension (vertical axis in Figure A.3). The number of these sub-

prisms in an entire prism is
⌈

S2+tT
tS2

⌉

and the dependencies allow to compute them sequentially

from bottom to top (right to left in Figure A.3). We therefore assume from now on that one tile

is computed by a single SM which iterates
⌈

S2+tT
tS2

⌉

times for a given prism, and at each iteration

computes one of the above sub-prism.

Since the data belonging to the oblique hexagonal faces are allocated in the local SM memory,

the amount of data to be transferred from global to shared memory is simply the amount of data as

for Jacobi 1D case (A.8) multiplied by the tile’s length tS2
. Hence

mi() = mo() = tS2
(tS1

+ 2tT ). (A.14)

For the corresponding time we obtain respectively

m
′

() = (mi() +mo())L+ 2τsync (A.15)
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The iteration space dependences indicate that the computations in a tile can be done in parallel in

each row, and in a sequential manner between rows from bottom to top. We therefore find that the

computation time for a non-boundary/steady state tile is given by

c() = 2

wtile()
∑

x=tS1
,step=2

(⌈

xtS2

nv

⌉

Citer + τsync

)

= 2Citer

wtile()
∑

x=tS1
,step=2

⌈

xtS2

nv

⌉

+ tT τsync.

(A.16)

Now, the execution time of an entire prism depends on whether or not hyper-threading is per-

formed. If we have a single tile on each SM, Ttile(k) = m
′

() + c(). On the other hand, with

hyper-threading enabled, Ttile(k) is dominated by ζ() = max{m′

(), c()}, and so,

Tprism(k) =











k = 1 :
(

m
′

() + c()
)

⌈

S2+tT
tS2

⌉

k > 1 : m
′

() + kζ()
⌈

S2+tT
tS2

⌉

.
(A.17)

Plugging this into (A.2) and simplifying we get

Talg() = NwTsync +NwTprism

⌈

1

nSM

⌈

w()

k

⌉⌉

. (A.18)

Finally, we extend the analysis for the 1D case to determine mi() = mo() and Mtile as

mi() = tS2
(tS1

+ 2tT ) (A.19)

Mtile() = 2(tS1
+ tT + 1)(tS2

+ tT + 1) (A.20)

A.4.3 Hybrid hexagonal-classic tiling for 3D stencils

Here, the outer two loops are tiled with hexagons, and the inner dimension(s) are tiled using

classic time skewing techniques. We illustrate this for the Jacobi 3D stencil.
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Total execution time of Jacobi 3D

Each hexagon from Figure B.4 now becomes an S2×S3 “slab” with a hexagonal cross section.

Its data footprint is surely too large for the entire slab to be executed as a single tile, so it needs

to be further tiled in the two inner dimensions. Indeed, even a single dimensional slice out of

this slab, i.e., a 3-dimensional prism, will most likely have too large a data footprint. To respect

the dependences, time skewing is applied to each slab (notice how the front face is oblique in the

S1-T plane (see Figure A.3 that illustrates the 2D case) and then each slice is partitioned using

vertical cuts (other than the front face , all the inter-tile faces are vertical). A threadblock executes

the entire sequence of tiles in a single kernel call. Let Tslab denote the time that this takes, and

postpone its derivation for now.

The formulæ for the number of wave-fronts (Nw), the tile width (wtile), the width of a wave-

front in respect to the tS1
-axis (w), are identical to the Jacobi 1D case, and respectively are

Nw() ≈ 2

⌈

T

tT

⌉

, (A.21)

wtile() = tS1
+ tT − 2, (A.22)

and

w() ≈
⌈

Ss1

tS1
+ tT

⌉

. (A.23)

The total execution time is hence similar to the one of Jacobi 1D A.7 with the unique difference

that the term Ttile is substitute now by Tslab.

Execution time of a Slab

Since slabs chosen as above could be very large and inconvenient for the shared memory size,

we need to further partition them into smaller chunks. In the Jacobi 2D hybrid approach (see

Figure A.3) these are hexagonal (non-orthogonal) sub-slabs with a length tS2
and bases defined by
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the normal vector (1, 0, 1), where time is the first dimension (vertical axis). In case of Jacobi 3D

the number of these sub-slabs in an entire slab is

Nsslabs =

⌈(

S2 + tT
tS2

)(

S3 + tT
tS3

)⌉

(A.24)

and we assume from now on that one slab is computed by a single SM, which iterates Nsslabs times

for a given slab, and at each iteration computes one of the above sub-slab.

Since data belonging to the oblique hexagonal faces are allocated in the local SM memory, the

amount of data to be transferred from global to shared memory is simply the amount of data as for

Jacobi 1D case (A.8) multiplied by the tile’s length in the S2 and S3 axes. Hence

mi() = mo() = tS2
tS3

(tS1
+ 2tT ). (A.25)

For the corresponding time we obtain respectively

m
′

() = (mi() +mo())L+ 2τsync. (A.26)

To obtain the volume of a sub-slab, we multiply the hexagon area by its length in the S2 and S3

axes and we obtain

Vtile() = tS2
tS3

tT (wtile() + tS1
)

2
. (A.27)

The iteration space dependences indicate that the computations in a tile can be done in parallel

in each row, and in a sequential manner between rows from bottom to top. We therefore find that

the computation time for a non-boundary/steady state tile is given by

c() = 2

wtile()
∑

x=tS1
,step=2

(⌈

xtS2
tS3

nV

⌉

Citer + τsync

)

= 2Citer

wtile()
∑

x=tS1
,step=2

⌈

xtS2
tS3

nV

⌉

+ tT τsync.

(A.28)
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Now, the execution time of an entire slab depends on whether or not hyper-threading is per-

formed. If we have a single tile on each SM (i.e. k = 1) we obtain

Tslab(1) = (m
′

() + c())Nsslabs. (A.29)

On the other hand, with hyper-threading enabled (i.e. k > 1), Ttile(k) is dominated by

max(m
′

(), c()), and so,

Tslab(k) = m
′

() + kmax(m′(), c())Nsslabs. (A.30)

Plugging this into (A.2) and simplifying yields

Talg() = NwTsync +NwTslab(k)

⌈

1

nSM

⌈

w()

k

⌉⌉

. (A.31)

All the equations developed here hold true for all stencil codes generated by HHC compiler.

However, the parameter„ Citer, that corresponds to computation time of the loop body varies with

number and type of computations. Again, the model is not restricted to HHC style codes. It can

be applied to other parallelization strategies. Consider, wavefront parallel Jacobi1D stencil. The

total execution time is the sum of the times for each wavefront. The time for each kernel call (or

wavefront) is the sum of the time needed for the SM with maximum number of tiles assigned to it

to finish. Hence, equation A.7 holds for wavefront parallel codes.

A.5 Experimental Validation

To validate the model, we perform a number of experiments on two NVIDIA platforms: GTX

980 and Titan X. Our benchmarks include four 2D stencils: Jacobi, Heat, Laplacian and Gradient,

all first order stencils. The benchmarks also include two 3D stencils: Heat and Laplacian. All 2D

stencils have two space dimensions and one time dimension. The two space dimension sizes we

explore are 40962 and 81922. For each such size, we explore five problem sizes in time dimension
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(T ): 1024, 2048, 4096, 8192 and 16384. In total, we explore 10 different combinations of problem

size parameters. With 4 benchmarks, 10 size combinations, and 2 machines, we have a total of

80 combinations, which we refer to as 2D stencil experiments. Similarly, all 3D stencils have

three space dimensions and one time dimension. The three space dimension sizes are 3843, 5123

and 6403. For each such size, we explore five problem sizes in time dimension (T ): 128, 256,

384, 512 and 640 where T ≤ S. In total, we explore 12 different combinations of the problem

size parameters. With 2 benchmarks, 12 size combinations, and 2 machines, we have a total of 48

combinations, which we refer to as 3D stencil experiments.

A.5.1 Baseline Experiments

We maximize the memory footprint of the tile subject to capacity constraints. Hence, we obtain

tile sizes which are as large as shared memory capacity MSM. This means we execute only one

tile per SM at a time. However, both GPUs allow 48K shared memory per thread block. This

constraint is enforced such that we experience the benefit of hyperthreading factor of two. In

HHT paper, the authors suggests tile sizes that maximize the compute to IO ratio. We use similar

strategies to construct what we call the baseline experiments that enable a good exploration of the

feasible space.

The shared memory requirements of a tile is given by Mtile which is a function of tile size

parameters. Shared memory constraints limit the feasible number of tile sizes. We take data points

that maximize Mtile over MSM per thread block. To explore hyperthreading, we add data points

that allow multiple thread blocks to execute concurrently on one SM. Using this approach, for each

experiment we select a set of tile sizes tT , tS1 and tS2 for 2D stencils. In addition to these tile sizes,

we select tS3 for 3D stencils. We generate 85 unique tile size combinations per experiment and, for

each of them, we explore 10 different values of nthr,i. Each unique combination of an experiment

with the parameters tT, tS1 , tS2 and nthr,i is called a data point. Hence, our baseline-experiment set

contains 850 data points for each experiment.
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Table A.2: GPU configuration

Architecture Parameters Type GTX 980 Titan X

nSM EH 16 24
nv EH 128 128
MSM [KB] EH 96 96
RSM EH 65536 65536
shared memory banks EH 32 32
max threadblocks per SM EH 32 32

Table A.3: Parameter values for the micro-benchmarks

Parameter [unit] GTX 980 Titan X

L [s/GB] 7.36×10−3 5.42×10−3

τsync [s] 7.96×10−10 6.74×10−10

Tsync [s] 9.24×10−7 9.00×10−7

The HHC compiler generates a separate program (code) for every data point (it cannot produce

codes with parametric tile sizes), a total of 850 ∗ (80 + 48) = 108, 800 data points. We measure

execution time of each data point over five runs, and select the smallest of the five measurements.

We made this choice of the minimum (rather than the average) as this is a common strategy in per-

formance tuning/optimization and, also, since our model makes optimistic assumptions regarding

run time behavior, choosing the smallest time is consistent with our modeling objective.

In order to complete the time model, additional hardware parameters need to be specified.

Some of the needed values can be taken from vendor-provided hardware specifications. Table A.2

shows such parameters for our two platforms. We also need values of the remaining parameters

L, τsync, Tsync and Citer, that are not available. We conduct the following microbenchmark experi-

ments to gather these values.

Microbenchmarks

For L, τsync and Tsync, the micro-benchmarks are implemented such that the execution time is

dominated by the operation of interest. The experimental parameter values that we empirically

determined are listed in Table A.3.
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Table A.4: Values of Citer in seconds

Benchmark GTX 980 Titan X

Jacobi2D 3.39×10−8 3.83×10−8

Heat2D 3.68×10−8 4.23×10−8

Laplacian2D 3.11×10−8 3.81×10−8

Gradient2D 6.09×10−8 7.60×10−8

Heat3D 1.55×10−7 1.64×10−7

Laplacian3D 1.36×10−7 1.44×10−7

Another crucial component in our model is Citer. The parameter Citer denotes the execution

time of one iteration of the loop body per vector unit provided that all the necessary data is available

in shared memory. Its value depends on the types and number of operations in the loop body and

on the platform. Since we have 6 benchmarks and 2 platforms, we need to determine 12 values for

Citer, one per combination. This is because Citer is independent of the problem size parameters.

Notice that Citer is not a simple function of the number of arithmetic operations of each type, but

is quite complex, depending also on the instruction fetch/issue/execution latency, instruction issue

pipeline, control flow, shared memory bank conflicts, data dependency, and many other factors.

Analytically determining the execution time of a single iteration considering all these factors is a

difficult problem. Thus, we estimate the value of Citer empirically. For this purpose, we remove

all global⇔shared memory data transfers, while making sure that the computations we want to

measure do not get optimized away. The execution time is measured for 70 randomly picked

problem size and tile size parameters and is determined by dividing the execution time per vector

unit by the number of iterations of the particular instance. Finally, we take the average over all 70

runs to compute the value for Citer for a benchmark-machine combination. The resulting values

are given in Table A.4.

Now that we have all the required values for all of the model parameters, we can use them to

validate the model.
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Figure A.4: Observed execution time vs. model predicted time on GTX 980 and on Titan X, where Talg_base

denotes the model predicted time and Texec_base denotes the measured execution time for the baseline ex-
periments.

A.5.2 Validation results

Using the parameter values from the previous subsection, we compute the predicted execution

time Talg for each data point. For each benchmark-machine combination we have 10 problem sizes

and 850 data points, which results in 8500 points. We compute the root mean square error (RMSE)

and observe that the RMSE ranges within 45%–200% over this whole set. However, the model is

designed such that it makes optimistic prediction of execution time. Hence, the inaccuracies were

expected and inevitable given the fact that our model is not designed to predict the performance of

inefficient codes.

However, restricting to the top performing (in terms of GFLOPS per second) data points, our

model turns out to be very accurate. Out of the 850 points for each benchmark-platform combi-

nation, we observe that for all the data points that are within 20% of the top performing one, the

RMSE in model prediction is less than 10% for all stencils on both GPUs. Figure A.4 shows the

correlation between the predicted and the measured time over the top performing points.
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A.6 Tile size optimization

The model we developed in Section A.4 can be used to predict the efficiency of a code for

given values of size parameters, such as S and T , but more importantly, it can be used to select

the compiler parameters, in our case, the tile sizes, that lead to the best performance. We first

formulate the optimization problem mathematically, describe the limitations that prevent a standard

non-linear solver from finding an optimal solution, and then describe how we solved the problem

via a simple exhaustive enumeration. Finally, we present our experimental results.

A.6.1 The optimization problem

We formulate the problem of finding optimal tile sizes as a mathematical optimization problem

of the following type:

minimize
tS1 ,tS2 ,tT

Talg(tS1 , tS2 , tT)

subject to Mtile ≤ MSM/threadblock

k ≤ MTBSM

k ∗Mtile ≤ MSM

tS1–integer, tS2–multiple of 32, tT–even

(A.32)

where Mtile and k are functions of the tile sizes. We require tT to be even, as necessary for hybrid-

hexagonal tiling [19], and tS2 to be a multiple of 32 to ensure that neighboring threads in S2 fill

complete warps (groups of 32 threads).

The optimization problem at hand is of a type that does not allow very efficient solution meth-

ods as it is non-linear and non-convex and has integer variables. On the other hand, it has a small

number of variables (only three). Also, despite the problem being non-continuous due to the ceil-

ing and floor functions, it can be made continuous by replacing these functions with new variables

and inequality constraints, e.g., the ceiling in ⌈x⌉ can be eliminated by introducing a new integer

variable xc to replace ⌈x⌉ and adding the inequality x ≤ xc, assuming Talg is a non-decreasing
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Figure A.5: Talg for Heat2D and GTX 980 as a function of tT and tS2 and with tS1 fixed at 8. The red dot
shows Talg_min, the point of minimum over all Talg.

function with respect to ⌈x⌉. Figure A.5 illustrates the shape of Talg as a 2D function (the 3D plot

is sliced at tS1 = 8) and shows that Talg varies significantly with the tile sizes, so careful tile size

selection is indeed important for getting good performance,

We encoded the optimization problem in the modeling language AMPL [123] and solved it

using several non-linear solvers, including commercial ones. The best results were obtained using

the open-source solver Bonmin [124]. All those solvers use heuristics that allow relatively good

(but sub-optimal) solution to be found for large problems, but for small problems like ours they

don’t offer an option to do an exhaustive search that would find the optimal solution.

One of the main reasons for the somewhat disappointing performance is that the feasible space

of the optimization problem A.32 does not capture an important pragmatic aspect of the GPU

code, as we are unable to model it, namely the number of physical registers that the generated

code uses: this information is only available after the generated code is compiled. It is well known

that if the number of registers exceeds the number of physical registers in the SM, namely the
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hardware parameter RSM, the additional registers are implemented as “virtual registers” and get

spilled and restored from global memory. This is known to be extremely inefficient and slows

down the generated code.

In our model, we do not have a function for Rtile, since this is very difficult to model analyti-

cally. Because of this, we used the following approach.

• We evaluate our objective function within the entire feasible space of of Eqn A.32

• We keep all points that yield execution times within 10% of model predicted minimum value

of Talg. Many of these were not in our set of 850 baseline experiments

• We generated codes for the new tile sizes in this set and evaluated their performance.

A.6.2 Validation of the results

For each combination of an algorithm (Jacobi2D, Heat2D, Lapacian2D, or Gradient2D), hard-

ware (GTX 980 or TitanX), and values of S ∈ {4096, 8192} and T ∈ {1024, 2048, 4096, 8192,

16384} we solved the problem (A.32) for these values in order to find tile sizes that minimize the

running times, solving in total 80 optimization problems. We then measured the running times for

these best predicted parameters and compared them with the best running times that we have found

using manual (but not exhaustive) exploitation of the search space by running almost 60, 000 in-

stances of the codes in total. For the i-th optimization problem we define the optimization error as

opt_eri = Texec(opti)− Texec(expi), where opti and expi refer to the running times corresponding

to the optimal tile sizes as predicted by the model and to the best known tile combination found

using experiments, respectively. We then define two values for the total error,

Errmax =
∑

i

max{0, opt_eri}

and

Errsign =
∑

i

opt_eri.
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A.6.3 Model Predicted tile sizes

The search space for model prediction experiments consists of 18,000 data points each for a

benchmark-GPU combination. This search space is build such that it subsumes all the 850 points

in the baseline experiments.

Our analytical model is implemented in a script for tile size selection. Input to this script

includes machine parameters (table 1 and 2), Citer value of the benchmark and problem size pa-

rameters S and T . The equations (equation numbers) are implemented to give Talg value for a

data point. Using these input values, the script first finds the predicted optimal data point in the

search space. Precisely, we keep track of the minimum of Talg possible over all the points in the

search space, call this Talg_min. The script then searches for more data points in the vicinity of pre-

dicted optimal using Talg_min. This gives us a set of predicted optimal tile sizes and their respective

run-time predictions, Talg_pred.

A.6.4 Experimental results

We observe that the set of new tile sizes perform better than those obtained in baseline. Fig-

ure A.6 shows execution and model predicted times for Gradient-2D stencil with a problem size

of S1 = 8192, S2 = 8192 and T = 8192. Clearly, the model predicts optimal tile sizes that

outperform the best of baseline. As we search within the 10% vicinity of Talg_min, we find multi-

ple near-optimal points. Baseline observed best is at 19.8 seconds, whereas our model predicted

optimal gives us a tile size that takes 16.5 seconds, which is 17% improvement in performance.

This model predicted tile size was not explored in our set of baseline tile sizes. Moreover, we ob-

serve multiple near optimal points in the range of 16.5-19.8 seconds. We get similar performance

improvements for all 2D stencils on both platforms over all different problem sizes.

We compare the performance of different tile sizes obtained from HHC, Talg_min, Exhaustive

search and best within 10% of Talg_min. Figure A.7 shows the average GFlops per second achieved

by different tile size selection strategies for 2D stencils over ten different problem sizes. It is clear

that tile sizes corresponding to Talg_min have poor performance in all cases. Another important
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Figure A.6: Predicted tile size performance of Gradient-2D for S1 = 8192, S2 = 8192 and T = 8192 on
GTX 980.

conclusion is that the conventional wisdom of using large tile sizes does not yield best performance.

The tile sizes that are within 10% of Talg_min give the best performance with improvement of 60%

over HHC and 9% over Baseline.

A.7 Conclusion

We developed a model for the execution time of stencil codes on the GPU platform and used

it for tile size selection for stencil codes generated by the HHC polyhedral compiler. Our model

is very accurate for predicting the times of problem instances whose performance is within 20%

of the optimal and, hence, it can be used to find values for tunable parameters that will give near

optimal performance.

Our results also suggest that we should revisit the “conventional wisdom” that says that an

optimal strategy of a tiling is to choose the “largest possible tile size that fits” i.e., its memory

footprint matches the available capacity. First of all, this falls into the trap that it precludes over-

lapping of computation and communication (the “hyperthreading effect”). But this can be avoided
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Figure A.7: Average (over 10 problem sizes) GFlops/Sec achieved by different tile size selection strategies
for 2D stencils.
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by modifying explicitly accounting for hyperthreading. Indeed, our GPU platforms preclude such

large size by disallowing the data footprint of a thread block to exceed half the shared memory

capacity.

Thus the hyperthreading-adjusted “conventional wisdom” would still seek to maximize tile vol-

ume subject to the half-capacity constraint—the best strategy is the largest tile volume for the given

footprint. Our model and experimental data suggests otherwise—an even higher hyperthreading

factor is turning out to yield the best performance. We still don’t know why, and it is the subject of

our ongoing investigation.

A.7.1 More Analysis/ Open Questions

Some of the questions that can be answered using such analytical models are:

• What happens when input parameters change?

• What happens when different number of processors is used?

• What is the largest possible problem size on a given architecture?

• When does efficiency drop?
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Appendix B

Energy Modeling and Optimization for Tiled

Nested-Loop Codes

We develop a methodology for modeling the energy efficiency of tiled nested-loop codes run-

ning on a graphics processing unit (GPU) and use it for energy efficiency optimization. We assume

that a highly optimized and parametrized version of a tiled nested-loop code—either written by an

expert programmer or automatically produced by a polyhedral compilation tool—is given to us

as an input. We then model the energy consumption as an analytical function of a set of param-

eters characterizing the software and the GPU hardware. Most previous attempts at GPU energy

modeling were based on low-level machine models that were then used to model whole programs

through simulations, or were analytical models that required low level details. In contrast, our

approach develops analytical models based on (i) machine and architecture parameters, (ii) pro-

gram size parameters as found in the polyhedral model and (iii) tiling parameters, such as those

that are chosen by auto- or manual tuners. Our model therefore allows efficient optimization of

the energy efficiency with respect to a set of parameters of interest. We illustrate the framework

on three nested-loop codes: Smith-Waterman, and one-dimensional and two-dimensional Jacobi

stencils, and analyze the accuracy of the resulting models. With optimal choice of model parame-

ters the RMS error is less than 4%. Two factors allow us to attain this high accuracy. The first is

domain-specificity: we focus only on tile-able nested-loop codes. The second is that we decouple

the energy model from a model of the execution time, a known hard problem.

B.1 Introduction

Energy efficiency has been recognized as one of the biggest challenges in the roadmap to

higher performance (exascale) systems for a number of reasons including cost, reliability, energy

conservation, and environmental impact. The most powerful computers today consume megawatts
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of power, enough to power small towns, and at cost of millions per year. And those estimations do

not include the cost of cooling, which might be almost as high as the cost of computing itself [113].

In addition, the cost of building a power provisioning facility ranges at $10-22 per deployed IT watt

[114] and every 10 ◦C temperature-increase results in a doubling of the system failure rate, thereby

reducing the reliability of HPC systems [115]. Designing accurate models for energy efficiency

can help better predict the power and energy requirements of an application and aid developers

optimize the parameters of their codes for better energy efficiency on HPC systems.

The goal of this paper is to introduce a new approach for modeling the energy cost as an analyt-

ical function of tunable software parameters in a way that is both simple and accurate. Having such

a model will allow the energy efficiency to be optimized with respect to (a subset of) the tunable

parameters by solving the corresponding analytical optimization problem.

We target with our modeling approach tiled nested-loop code segments, which are the most

compute-intensive portions of many application codes and which also allow a high degree of par-

allelism. In order to be more specific, we focus in our analysis on a subclass of the tiled nested-loop

codes called dense stencils, which occur frequently in the numerical solution of PDEs and in many

other contexts such as high-end graphics, signal and image processing, numerical simulation, sci-

entific computing, and bioinformatics. We chose stencils for our case studies since that would

allow us to model the entire class in a hierarchical way with a single generic model representing

the whole class, while model parameters that are stencil-dependent have to be separately specified

for each stencil of interest to complete its model. (However, the approach is applicable to any other

class of nested-loop codes that allows tiling.) We will completely develop and validate the detailed

models (including the stencil-dependent parameters) of three specific stencils. Models for other

stencils can be developed in a similar way with relatively small amount of extra work.

In order to efficiently optimize stencils on accelerators, we aim to represent the amount of

energy consumed as an analytic function of the software parameters. We assume that the input

codes have been analyzed and optimized with respect to parallelism and data-access efficiency by

appropriate skewing and tiling transformations, say by a polyhedral code generator.
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Our specific contributions are as follows.

• Our energy model predicts energy efficiency by analyzing source code only, unlike other

approaches [93, 95] that rely on parameters computed by running benchmarks for each in-

dividual code. We do use micro-benchmarks, but they are used to characterize hardware,

rather than codes.

• We are not aware of any previous work combining the polyhedral method with energy mod-

eling. Our approach allows optimization of codes that are already very efficient having

been significantly improved by applying the polyhedral method and by using advanced tiling

strategies such as hexagonal and hybrid tilings [19].

• Our model is very accurate (one version with RMS error ≤ 17.14% and another with

RMS error ≤ 4%), with similar or higher precision than alternative existing models, e.g.,

GPUSimPow [116], which are simulation based.

The paper is organized as follows. Section C.5 reviews relevant previous work. Section B.3,

provides an overview of the approach. The GPU implementations of tiled nested-loop codes are

described in Section B.5. Section B.6 introduces our energy model, and Section B.7 validates it.

We conclude with a discussion of future work in Section B.9.

B.2 Related work

GPU power/energy model is a very active area: a recent survey article on the topic [90] cites

almost 150 references. We only discuss the relvant work here. The model we present complements

Mittal and Vetter [90] by enabling us to find the optimal parameters (i.e., tile sizes) for the energy

efficient execution of stencil like programs.

Hong and Kim [91] present a GPU power model to predict the number of optimal GPU cores

to achieve the peak memory bandwidth for a kernel. An analytical model is used to predict the exe-

cution time [92] which has enabled prediction of the power consumption statically. However, they

have predicted the minimum number of cores required for a program to achieve the peak memory
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bandwidth of GPU. While this approach may work for memory bandwidth bound programs, it is

unlikely to produce better results for compute-bound programs like tiled stencil computations. Our

model is much simpler, because our model does not depend on warp and thread level parameters

and number of ptx instructions.

Nagasaka et al [93] model GPU power of kernels using performance counters. Lim et al. [94],

GPUWattch [95] and GPUSimPow [96] are simulation based power models. McPAT [97] is the

basis for Lim et al [94] and GPUWattch [95] uses GPGPUSim [98] to simulate execution time.

Simulation and performance counters-based models require execution (or simulation) of the pro-

gram to predict the power consumption. In contrast, we run our micro-benchmarks only to deter-

mine parameters of a GPU architecture, while the power consumption can be predicted for a given

program statically without running the program.

There are studies [99, 100] focused on reducing the energy for both CPU and GPU by balancing

the load among CPU and GPU. Our study is only focused on modeling the energy consumption of

GPUs.

B.3 Stencil Computations

In this section, we describe stencil computations and illustrate them with a couple of simple

examples.

In stencil codes, values of array elements are updated iteratively using the values of some of

their neighbors according to a fixed pattern. More formally, we will consider stencil codes of the

following kind. Let S = {(i1, . . . , ik) | sj ≤ ij ≤ Sj, ij ∈ N for j = 1, . . . , k} is a k-dimensional

space index set and T = {t, . . . , T} is a time index set. Then, given two sets N and N ′ defining

the “neighborhood” of any point in terms of a pattern of relative coordinates and a coefficient wa

associated each element a ∈ N ∪N ′, a stencil code defines an iterative evaluation of the following

weighted sums
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At(s) =
(

∑

a∈N

wa ⊗ At(s+ a)
)

⊕
(

∑

a∈N ′

wa ⊗ At−1(s+ a)
)

⊕ c, if t > 0, (B.1)

s ∈ S , t ∈ T , where the summation is with respect to an associative commutative operation ⊕,

which forms a semiring together with the multiplicative operation ⊗, e.g., (⊕,⊗) can be (+,×)

or (max,+), and c is an optional constant. It is further assumed that appropriate values are given

for the “initial value,” (when t = 0) and the “boundary values” (when the points s + a in either

of the summations above fall outside S). Furthermore, the elements of the set N must be such

that the computation is “explicitly defined” (see [122]). The definition may be extended to (i)

allow a computation to depend on values at more than the previous time step, and (ii) allow the

coefficients to be computed values, rather than compile-time constants, provided the evaluation of

these coefficients is also described by a stencil computation. Such stencils are usually implemented

as nested loops with the loop body evaluating the rhs of (C.3) and storing it in a data array. We call

equation (C.3) kernel of the stencil.

In this paper we consider two speical cases: the Smith-Waterman stencil (where N = {−1}

and N ′ = {−1, 0}). and one dimensional and two dimensional Jacobi stencils (where N is empty

and the elements of N ′ are vectors with components in {−1, 0, 1}), as described later in this

section.

B.3.1 Smith-Waterman Algorithm (SW)

Given two molecular sequences A = a1a2 . . . aN and B = b1b2 . . . bM , the Smith-Waterman

algorithm (SW) solves the problem of finding an optimal alignment of A and B with respect to a

given similarity measure s(ai, bt). Using the dynamic programming methodology, SW constructs

an N ×M table H that identifies the optimum alignment. Since the alignment problem does not

have an explicit time dimension, we have considered one of the two dimensions of the dynamic

programming table, say M , as a time dimension. Then, 0 ≤ i ≤ N , 0 ≤ t ≤ M and a kernel
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H t(i) = max
{

0, H t−1(i− 1) + s(ai, bt), H
t−1(i) +W,

H t(i− 1) +W
}

,

where W provides a score which depend on whether it’s a new gap or extension of an existing gap.

SW is tiled using a simple strategy called orthogonal tiling [125].

B.3.2 Jacobi 1D Stencil (J1D)

Our next example is of Jacobi 1-dimensional 3-point stencil, referred to as J1D, which is de-

fined by a recurrence where the value at each point at a given time instance is evaluated by taking

the average of its neighboring elements along with itself from the previous time step. Specifically,

the space index set is S = {1, . . . , S}, the time index set is T = {1, . . . , T}, and the kernel is

At(i) =
1

3
×

(

At−1(i− 1) + At−1(i) + At−1(i+ 1)
)

.

There are number of ways to tile J1D. We tile J1D using time skewing [126, 127, 56, 57]

B.3.3 Jacobi 2D Stencil (J2D)

The J2D stencil we consider is a 2D equivalent of J1D. It is a 5-point stencil with a space index

set S = {(i, j) | 1 ≤ i ≤ Sx, 1 ≤ j ≤ Sy}, a time index set T = {1, . . . , T}, and a kernel

At(i, j) = 0.2× (At−1(i, j) + At−1(i− 1, j)+

At−1(i+ 1, j) + At−1(i, j − 1) + At−1(i, j + 1)).

The iteration space is a cuboid where a plane of values is computed using the values from

the previous plane. J2D can be tiled using various techniques, we use the state of the art hybrid

hexagonal-classical tiling (HHC) [19].
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Figure B.1: Orthogonal tiling for SW stencil. Small dark red squares represent tiles. Data flow of the tiles
are shown in blue arrows. Red lines along the northwest-southeast diagonals represent wavefronts. The tiles
that belong to the same wavefront can be processed in parallel. Wavefronts are executed sequentially from
southwest to northeast corner.

B.4 Tiling of Stencils

We now describe the standard parallelization strategies for stencil programs, illustrating them

on the three common dependence patterns in our examples: SW, J1D and J2D. Some of these

strategies have been implemented in sophisticated olyhedral compilers [51, 19] and possibly in

other automated tools. However, our goal is in modeling the energy costs of such strategies, not in

generating codes.

In order to increase the amount of parallelism and improve the locality of memory accesses,

it is often useful to divide the set of all computations of a code into groups called tiles. Tiles

are considered atomic, i.e., all the data needed to perform the computations in a tile can be made

available before the computation begins and there are no cyclic data dependencies between tiles

(tiling is legal). We also note that in order to obtain the best performance, tiling is often applied

hierarchically at multiple levels.

Next we describe tiling strategies for SW, J1D, and J2D.

B.4.1 Orthogonal tiling of the SW stencil

A cell in the dynamic programming table H of SW is data-dependent on the west, south and

southwest cells. Hence, orthogonal tiling (one with tiles shaped as rectangles, and whose bound-

aries are orthogonal to the canonic axes) is legal and will be used for this dependence pattern. All

the tiles along a northwest-southeast wavefront, see Figure B.1, can be computed in parallel. A

tile depends on the neighboring tiles to the west, south, and southwest. The wavefronts are ex-
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ecuted sequentially from southwest to northeast. This execution order of wavefronts may suffer

from pipeline fill-flush stages, especially if tiling is applied at multiple levels. This is inherent to

SW due to the nature of the dependences (the tile or iteration point at the southwest corner must be

computed before computing any other tile). Therefore, more sophisticated strategies like diamond

tiling [72] and hexagonal tiling [19] cannot be used for SW.

B.4.2 Tiling and parallelization of the J1D stencil

To implement Jacobi 1D efficiently, we cannot use orthogonal tiling, but there are several, well-

known strategies. The first of these is the common strategy of tiling only the space dimensions,

and performing a “halo exchange” at every iteration of the time loop. Although widely used,

it is bit slow—it makes the code memory bound, although the original program does Θ(NT )

operations that touch Θ(N) memory locations, which is clearly compute bound. Indeed, there

is a common misconception even among many “experts” that stencil computations are inherently

memory bound. Many strategies are available for making stencil computations compute bound:

time skewing, diamond tiling, hexagonal tiling, or even more recent extensions to this called hybrid

hexagonal-classical (HHC) tiling [126, 127, 56, 57, 51, 72, 19]. We describe these below.

Time skewing

Time skewing is a special case of parallelpiped tiling [126] proposed by Wonnacott [127, 56]

and studied by Andonov et al. [57]. It is now implemented as an automatic transformation in

PLUTO [51].

The original iteration space (Figure B.2, left) does not allow tiling into orthogonal tiles, because

each tile would need some elements from the tile above it and some from the tile below it, leading

to a cyclic dependence, thereby violating the legality condition.

Using a skewing transformation (i, t) → (i + t, t), one can transform the iteration space (see

Figure B.2, right) in order to make it tileable. As a result of this transformation, each tile is

dependent only on the tile to its left and on the tile below it, breaking the cyclic dependency. Now,

all the tiles along the 45o northwest-southeast wavefront can be computed simultaneously, i.e., each
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Figure B.2: The original computation space (left) and the same space after the chosen transformation (right).

kernel call launches a set of tiles that are along the wave-front, thus reducing the number of kernel

calls.

There are many transformations that can result in tilable codes, and they can be further dis-

tinguished by the amount of data communication and the amount of parallelism they offer. One

can find an optimal transformation using the polyhedral method and some of the publicly available

tools based on it. We used PLUTO [51], a polyhedral compiler, to find the optimal transformation

that minimizes the communication between the tiles for J1D and which transforms the iteration

space shape from rectangle to parallelogram.

Hexagonal

Time skewing suffers from potentially large pipeline fill-flush latency, and in order to overcome

this, some authors proposed an alternate strategy called diamond tiling [72]. However, we will not

discuss it here since it is a special case of the more sophisticated HHC tiling [19].

In this approach, the original iteration space (Figure B.2, left) is directly tiled into hexagonal

tiles (Figure B.4). The wavefronts are horizontal rows of hexagons and the ith kernel computes the

tiles from the ith such wavefront (shown as red dashed lines). Parallelization is again by wavefronts

where the ith wavefront consists of the tiles that intersect the ith horizontal (dashed red) line. The

dependencies between the iteration points are visualized by black arrows, while the dependencies

between tiles are illustrated by thick arrows. These dependencies allow to compute the wavefronts

in a sequential manner from bottom to top. Note the alternation–in odd indexed wavefronts only

yellow colored tiles are executed, while in even indexed wavefronts only green colored tiles are

executed. Although the special shape may indicate that there is a high control overhead, the authors

show that this is currently the best approach for GPU parallelization of stencils.

115



wtile wtile wtileT

S

T

tT

StStT/2 tT/2

wtile

Figure B.3: The computational space in hexagonal tiling is partinionned in hexagons (left). On the right
side we zoom on and visualize the input/output data for a given tile. The data read from the global memory
is blue colored, while the data written to the global memory is red colored.

B.4.3 Tiling and parallelization of the J2D stencil

When a Jacobi stencil has additional dimensions, we have two choices, based on what is done to

the outer two loops—the time and the first space dimension. The first option is to tile the outer two

dimensions using time skewing, and the second is to use hexagonal tiling for the two outer loops.

The tiling this yields “prisms” whose “cross-section” is either the rectangular tile of Figure B.2 or

the hexagonal tiles of Figure B.4. The third dimension (inner space loop) comes out of the plane,

and broken into smaller tiles. Because of the nature of the dependences, it is necessary to use time

skewing of the inner space dimension. To visualize this, imagine either Figure B.2 or Figure B.4

as the cross section of a grid of prisms coming out of the paper. We then skew the hexagonal faces

of the prism “out of the plane” at an angle dictated by the dependences. Grosser et al [19] present a

very convincing argument that HHC tiling outperforms the simple time skewing applied to all the

three loops. For this reason, we only analyze this strategy for J2D.

B.5 GPU implementation of tiled stencils

We now describe how the above stencils are implemented on GPUs.

B.5.1 Overview of GPU architecture

A GPU has an array of Streaming Multiprocessors (SMs) each one with a set of SIMD Vector

Processors (CUDA cores). The number of CUDA cores can vary from 8 to 192 depending on
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the GPU. All SMs share an off-chip global memory and have a private memory (ironically called

“shared” memory) and a register file. The programming model consists of a grid of thread blocks.

The threads of a thread block execute concurrently on one SM and multiple thread blocks may

execute concurrently on one SM (depending on available shared memory and register resources).

As thread blocks terminate, new thread blocks are launched [128]. The computations in a thread

block are expected to be independent of those in other thread blocks. Hence, the execution order of

the thread blocks in a grid can be arbitrary. Within a thread block, all the threads can access shared

memory collaboratively and explicitly synchronize to have a uniform view of shared memory data

among threads.

B.5.2 GPU implementation

We have seen above that diverse strategies for parallelization are available for different stencil

computations, and this topic is the subject of active research. Regardless of the specific tiling and

parallelization strategy chosen, the GPU implementation has some common structure. (Note that

the scope of this paper is restricted to a single-GPU implementation.)

The iteration space tiles may have many possible shapes: rectangles (as in orthogonal tiling),

parallelograms (time skewing), rhombi (diamond tiling), or hexagons, or higher dimensional ex-

tensions of these shapes. Regardless, legality condition for tiling ensures that a parallel wavefront

schedule can be chosen. Sometimes the wavefronts are perpendicular to one of the canonic di-

mensions, at others, the tiles need to be skewed (oblique wavefronts). We set l as the number of

wavefronts and let wi denote the set of tiles in the i-th wavefront. Its cardinality |wi| is the number

of tiles in the i-th wavefront.

The code, as described in Algorithm 1, may be written manually or generated automatically,

and consists primarily of a sequential loop with exactly l iterations executing on the host. Outside

this loop there is, of course, a copy of the input data to the GPU and of the output data from the

GPU.

117



Algorithm 1: GPU Execution of a tiled stencil computation

The iteration space is tiled, the tiles are partitioned into l wavefronts w1, . . . , wl such that all
tiles in a wavefront can be executed independently in parallel.

1. The host copies the input data from the CPU to GPU’s global memory.

2. The host executes a loop with l iterations, the i-th iteration making a kernel call to
execute |wi| tiles. The GPU runtime system schedules these for execution on the
physical GPU resources. Computing one tile involves three steps:

(a) transferring data from global to shared memory,

(b) computation, and

(c) writing the result back from shared to global memory.

If multiple tiles are executing “simultaneously” on the same SM, then computation (b)
of one tile can overlap with data transfers (a) and (c) for another. Our cost model
accounts for this.

3. At the end of the l-the kernel call, the result is copied from the GPU’s global memory
to the CPU.

In the i-th iteration, a GPU kernel is launched to execute the wi tiles of that wavefront. The

code that executes each tile (Step 2.b) will have fine grain, thread-level parallelism, corresponding

to the fine-grain SPs units within each SM. This parallelization can be done in one of three ways.

First, one or more of the loops iterating over the points in a tile may be parallel, and can be directly

mapped to the threads. Second, a skewing transformation may make one or more loops parallel.

Third, we could use hierarchical tiling (subtiling).

Subtiles (if any) are executed in a similar fashion as tiles, except that data transfers are be-

tween shared memory and registers, for subtiles, compared to transfers between global and shared

memory, for tiles.

A note about HHC tiling

For this strategy, we use a slightly different interpretation of the terminology of Algorithm 1.

Here, the “tiles” in each of the l kernel do not have a bounded size—their memory footprint is

a function of the size of the iteration space, and may be larger than the available shared memory
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resources of the GPU. As described by the authors, these tiles are actually executed with a special

form of subtiling. The tile is partitioned into subtiles, each of which has a small enough footprint,

and these subtiles are executed through a set of sequential loops executed by each thread, in an

“outer-sequential, inner parallel manner.” In order to retain consistent terminology, we refer to

these “subtiles” as “tiles” in the remainder of this paper.

B.6 Energy model

Our energy model uses parameters of several types as shown in Table B.1. We first describe

a generic model applicable to all stencil computations, and then show how to specialize it for

the three instances analyzed here. Note that we model the total energy consumed by the co-CPU

accelerator itself, accounting neither for the energy to transfer data to/from the host, nor the energy

on the host. We assume that the decision to use an accelerator has already been made, and in most

uses of our model, these costs are invariant.

B.6.1 Generic model

The total energy consumed by the accelerator in executing a kernel consists of static energy,

which is the energy consumed even when the device is on but idle, and dynamic energy, which

is the energy needed to actually do the computation, including data transfers. Clearly the static

energy is proportional to the static power and the execution time, hence, Estat = PstatTalg.

The dynamic energy is the product of the number of tiles, Ntiles, and the amount of energy con-

sumed per tile Etile, i.e., Edyn = NtilesEtile, which itself can be subdivided into energy for memory

transfers between global and shared memory, between shared memory and registers, energy for do-

ing arithmetic, and energy consumed for synchronization, hence, Etile = Egs +Esr +Ear +Esync.

Parameters Egs, Esr, and Ear are problem dependent and calculated separately for each stencil

kernel. During validation of the model, we noticed that Esync is negligible and dropped from the

formula. Using the parameters defined in Table B.1,
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Table B.1: List of the parameters. S/H/P stand for software/hardware/problem type, D/I stand for problem
dependent/independent, and E/C—for elementary/composite; MA stands for multiply-add operation. Mio

is measured in 4-byte words. Also, for 1-dimensional problems, the subscript on the space dimension may
be dropped.

Name Type Description

Si EP i-th space dimension
T EP time dimension
opj EP # of operations of type j in loop body

tSi
ES tile size along the i-th space dimension

tT ES tile size along time dimension
sSi

ES subtile size along the i-th space dimension

Pstat EH static power of device
egr EH Energy per word of global↔register transfer
esr EH Energy per word of shared↔register transfer
egs EH Energy per word of global↔shared transfer
esync EH energy for a single synchronization
ej EH energy per operation of type j

Eiter CD energy for a single iteration computation
Egs CD Energy per tile for global↔shared transfers
Esr CD Energy per tile for shared↔register transfers
Ear CD Energy per tile for arithmetic
Esync CD Energy per tile for synchronizations

Mio CSD I/O volume per tile (global↔shared)
Vtile CSI volume of a tile (# of iteration points)
Ntiles CSI total number of tiles

Talg CI total execution time of stencil
Eobs CI total observed/experimental energy consumption
Estat CI total static energy
Edyn CI total dynamic energy
Ealg CI total energy
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Etile ≈ Egs + Esr + Ear = egsMio + Esr + EiterVtile (B.2)

and the total energy is just the sum of Estat and Edyn, Ealg = PstatTalg +NtilesEtile.

For the number of tiles we could use a simple approximation that Ntiles =
Valg

Vtile
, where Valg is

the volume of the entire iteration space. In some cases, e.g., in the case of orthogonal tiling as

applied to SW, this is exact. In other cases, it may not be, and we use a more kernel specific model

that accounts for the dependences, the shape of the iteration domain, etc.8

B.6.2 Energy model for the 1D kernels

We now specialize the generic model described above for SW and J1D.

SW model

As noted earlier, SW uses orthogonal tiling, and also subtiling and Vtile = tStT . The number of

global-to-shared transfers per tile is proportional to its perimeter. Specifically, Mio = 4.25(tS+tT ).

The number of shared-to-register transfers per subtile is proportional to one of its sides—note that

the other side of the subtile remains in registers because the same thread executes the next subtile

in a row of subtiles. We multiply the latter by the number of subtiles in a tile, tStT
sSsT

to get Esr. The

loop body perfroms five add-compare operations. Putting this all together and simplifying, we get

Etile = Egs + Esr + Ear = 4.25 (tS + tT ) egs

+

(

Vtile + 5tT
tS
sS

)

esr + 5Vtile (eadd + emax)

J1D model

By a similar reasoning as for SW, and accounting for the specificities of J1D we get

Etile = 2egs(2tT + tS) + 4esr

(

2tS + 4tT
tS
sS

)

+ EiterVtile,

8Exact formulas available in spreadsheets at http://www.cs.colostate.edu/~waruna/energy_paper/
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where Vtile is tStT , as in SW, and Eiter can be modeled as the product of the number of multiply-add

operations in the loop body and the energy required to do one multiply-add, i.e.,

Eiter =
∑

j∈add,mul

opjej

B.6.3 Energy model for the 2D kernels

wtile wtile wtileT

S

T

tT

StStT/2 tT/2

wtile

Figure B.4: The computational space is partitioned in hexagons (left). On the right side we zoom in and
visualize the I/O data for a given tile. Blue - data read from global memory. Red - data written to global
memory.

J2D uses HHC tiling, see Figure B.4. The “area” of a hexagon is tT
2
(2tS1

+ tT − 2) and its “I/O

perimeter” is 2(tS1
+ 2tT ). (These formulas assume that tT is even. They change slightly when it

is odd.) We can obtain the number of hexagons by multiplying the number of rows or wavefronts,

which is simply 2 T
tT

—accounting for both colors, by the number of hexagons per row. Since the

pitch between successive hexagons on a row is tS + wtile, where wtile is the width of the tile, see

Fig. B.4, this latter term is S
tS+wtile

. Note that it needs to be adjusted to account for the fact that the

first and last tiles on alternate rows are partial, even if we assume that the pitch evenly divides S.

To model the energy of J2D, we first add a sub-subscript to the terms involving the first spatial

dimension, and make the following observations. After time-skewing the s2 dimension and break-

ing the prisms up into tiles of size tS2
, the total number of tiles in a prism is S2+tT

tS2

. Of these, the

first (resp. last) one is a “partial tile,” and has an oblique upper bound (resp. lower bound), but we

ignore this and assume that all tiles are “full.” Hence we can get Vtile (respectively, Mio) by simply
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multiplying the above computed area (resp. “I/O perimeter”) by tS2
. Similarly, we can obtain Ntile

by multiplying the total number of hexagons, by S2+tT
tS2

. This yields

Mio = 2tS2
(tS1

+ 2tT ) (B.3)

Vtile =
tS2

tT (2tS1
+ tT − 2)

2
(B.4)

Ntile =
2TS1(S2 + tT )

tT tS2
(tS1

+ wtile)
(B.5)

We can now rewrite the general formula (B.2) as follows

Etile = egsMio + µsresrVtile + EiterVtile (B.6)

where Mio and Vtile are given respectively by (B.3) and (B.4), while µsr is a stencil dependent

coefficient related to the corresponding shared↔register transfers and equals 6 in the case of J2D.

B.7 Model validation

We first determine values for the missing elementary hardware (EH) parameters from Ta-

ble B.1, denoted by X , and then compare energy values predicted by the model with ones found

through measurement.

B.7.1 Computing energy parameters

We use NVIDIA K20c GPU to experimentally validate our model. We will use two methods:

benchmarking and regression.

Benchmarking Approach

NVIDIA has not disclosed energy or power data for memory and compute operations for

K20c [129]. We used micro-benchmarks—short pieces of code each of which stresses an oper-

ation of interest—and the NVIDIA NVML library to measure instantaneous power at any time of
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the execution of a micro-benchmark. The total consumed energy is then the product of the average

measured power and the execution time of the micro-benchmark.

We designed micro-benchmarks for each parameter in X to determine the value of that param-

eter experimentally. The micro-benchmarks were implemented in such a way that the execution

time and total energy consumption is dominated by the operation of interest.

We obtain instantaneous power readings at different points of time during the micro-benchmark

execution. The average of power readings taken during the steady state temperature is considered

as the average power of the micro-benchmark. Then, the total consumed energy is computed by

multiplying the average power by the length of the time period for which the average power is

computed. Finally, the energy ej for operation j can be calculated as follows

ej =
Edyn

opj

=
Ealg − Estat

opj

=
Ealg − PstatTalg

opj

where the parameters in the formula are as defined in Table B.1.

The NVIDIA NVML library was used to obtain power readings of the GPU. The library reads

power once every 16ms interval for NVIDIA Kepler GPUs. We used the approach proposed by

Lang et al. [130] to determine the interval.

The static power (Pstat) is measured while the GPU is idling but operating in its highest per-

formance state. We carefully implemented the micro-benchmarks in such a way that there are no

shared memory bank conflicts, and all global memory accesses are coalesced. The body of the

benchmark is repeated to make the operation of interest the dominant in both execution time and

total energy consumption. The resulting parameter values are given and discussed in Section B.7.2.

Regression Approach

We describe here an alternative method to benchmarking based on nonlinear regression, which

we can use to estimate the values of the model parameters. We create a set of combinations of

elementary program (EP) and elementary software dependent (ES) parameters (Table B.1) and, for

each such combination, experimentally measure the energy consumed by the corresponding sten-
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cil. We then plug in the values of the known parameters into the formula for the energy derived

in the previous section and get, for each experiment, an equation with the values of the elemen-

tary hardware parameters as unknowns. The left-hand side of the resulting system of equations

will contain the energy values predicted by the model and the right-hand side will contain the

corresponding measured values.

We can then use an optimization method to find values of the unknown parameters that min-

imize the error defined as a norm of the difference between the left and right-hand sides of the

equations. In other words, we are finding values of the parameters that result in a best fit of the

model to the observed energy values. The observed error in the new method will be due to the

model accuracy and inaccuracy in measuring the total energy only and will exclude errors result-

ing from parameter measurements.

Specifically, let Ei
alg(X ) and Ei

meas denote the energy predicted by the model (as a function of

the parameters in X ) and the measured energy for the i-th experiment (combination of parameter

values), respectively. Then, in our implementation, we minimize the objective function

Err(X ) =
∑

i

|Ei
alg(X )− Ei

meas(X )|,

which, while being nonlinear, can be implemented as a linear program using known techniques.

We encoded the resulting linear program in the modeling language AMPL [123] and solved it using

the open source solver Cbc [131].

B.7.2 Energy parameter values and error analysis

Table B.2 contains the values of the energy parameters as evaluated by the two methods. We

measured the time and energy for 298 instances of SW with different values of the space and time

dimensions and the tile sizes, 265 instances of J1D, and 125 of J2D. For the micro-benchmark

approach, we used the values of the parameters found through micro-benchmarking, which are

listed in the second column of Table B.2, to build an energy model, which we refer to as Model A.

Then we compared the energy values predicted by Model A with the measured ones and computed
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Table B.2: Table of the energy parameter values from the micro-benchmark approach and the regression
approach as described in Section B.7.2.

Parameter Micro-
Name [unit] benchmarks Regression

Pstat [W] 48 53
egs [J] 2.2×10−9 3.17×10−09

esr [J] 2.23×10−10 1.84×10−10

efadd [J] 5.3×10−11 5.02×10−11

efmultiply [J] 3.7×10−11 3.51×10−11

eiadd [J] 7.2×10−11 0
eimax [J] 4.8×10−11 0
error SW [RMSE] 12.77% 2.59%
error J1D [RMSE] 17.14% 2.35%
error J2D [RMSE] 8.30% 3.95%

the root-mean-square error (RMSE) for the SW set and the J1D set. The errors, as shown in

Table B.2, are 12.77% for SW, 16.35% for J1D, and 8.30% for J2D9.

For the regression method, we used the same experimental data, which we divided into two sets.

The first “training” set, containing a sample of 10% of all data points, was used for computing

optimal (with respect to the sample) values for the parameters. Those values were used in an

energy model, referred to as Model B, which was applied to predict the values of the energy for

the remaining 90% of the instances, i.e., the ones not in the training set. The resulting RMSEs are

2.59% for SW, 2.35% for J1D, and 3.95% for J2D. The optimal parameter values are quite close

to the ones found through benchmarking, except for the values of eiadd and eimax. Note that those

values are used in SW only. Since those values are clearly positive in reality, the fact that they

were estimated to be zeros implies that it may be possible to make the formulas in the SW model

even more accurate. But even the errors reported in Table B.2 are quite low. The main factor which

allows us to attain such high accuracy is domain-specificity: we focus only on stencils.

Clearly, model B is more accurate than model A, and that is to be expected since model B is

based on optimization. However, model A has the advantage that its parameters are determined

9More details on validation are available at http://www.cs.colostate.edu/AlphaZ/HPPAC15/
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in a stencil-independent way, while for model B they are more tightly coupled with the stencils

studied.

Another observation is that, in Model A, J2D is more accurate than SW and J1D, while it is

less accurate in Model B. The reason for the former is probably that SW and J1D use subtiling and

a more complex register reuse strategy, hence being more difficult to model, while J2D doesn’t.

In Model B, optimization is done with respect to the sum of the errors for all experimental points,

and SW and J1D, each having more points and, hence, larger contribution to the objective function

than J2D, come out better optimized.

B.8 Optimizing energy efficiency

In Section B.6 we developed a model for energy consumption that expresses the amount of

consumed energy as an analytical function of software and hardware parameters. In the previous

section we discussed how regression analysis leads to an optimization problem that can be used to

determine some unknown hardware parameters. In this section we use the model for a more typical

task—finding a combination of software parameters that minimizes the energy consumption.

B.8.1 The optimization problem

Let the space of all elementary program (EP) input parameters be Γ and the space of all tunable

elementary software (ES) parameters be ∆. Let Ealg(γ, δ) and Emeas(γ, δ) be the energy predicted

by the model and the measured energy as functions of γ ∈ Γ and δ ∈ ∆, respectively. Then we

have to solve an optimization problem of the type:

Find min
δ∈∆

Ealg(γ, δ) for a given γ ∈ Γ, (B.7)

subject to feasibility constraints. The objective function Ealg(γ, δ) is nonlinear with respect to

δ, but unlike the one from the optimization problem from Section B.7.1, it cannot be linearized.

But the optimization problem is of small size and we could solve it efficiently using the nonlinear

solver Knitro [132].

127



Table B.3: Energy optimization error

Stencil # Experim. # Wrong RMSE Max error

SW 298 2 0.05% 0.75%
J1D 265 1 0.02% 0.4%
J2D 125 0 0.00% 0.0%

B.8.2 Validation of the results

Although relatively small, there is some accuracy error in our energy model. Hence we wanted

to measure its effect on the optimization results. Let Γ′ be the subset of Γ corresponding to the

experiments discussed in Section B.7.2. Let δmin
alg (γ) be the value of δ that minimizes (B.7) and let

δmin
meas(γ) minimizes Emeas(γ, δ) over all δ ∈ ∆ such that (γ, δ) ∈ X . If δmin

alg (γ) = δmin
meas(γ), then

our model is accurately predicting tile sizes that consume minimum energy. We define the error in

energy when we use the values of δ found by solving (B.7) compared to the optimal values as

Eerr(γ) = Emeas(γ, δ
min
alg (γ))− Emeas(γ, δ

min
meas(γ)), γ ∈ Γ′.

Table B.3 reports the number of input parameter combinations (experiments), optimal param-

eter mismatches, RMSE and max error for SW, J1D, and J2D. We used values of the hardware

parameters determined by the benchmarking method. There are very few miss-predictions and the

RMSE is negligible. The maximum percentage error out of all the experiments is less than 1%.

The accuracy of our model in predicting optimal software parameters for SW, J1D and J2D is a

positive indication of efficacy of our energy model in solving practical problems.

B.9 Conclusion

We developed an energy model for tiled nested-loop codes on a GPU and illustrated its ap-

plication to optimizing software parameters for energy efficiency. Our validation analysis shows

that the model is quite accurate with respect both to predicting the consumed energy and to the

optimization accuracy. We believe that the approach we developed can be adapted and applied

to other related problems. One extension is to combine the energy model with an execution-time
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model (we have already developed such a time model, but its description and analysis would have

almost doubled the size of this paper). We can also apply the approach to a wider class of nested-

loop codes that includes but is not restricted to stencil codes and to platforms other than GPU. We

can also model and optimize with respect to the maximum power instead of energy, or extend the

model to allow dynamic voltage and frequency scaling optimization. We will study these and other

applications of our approach in our future work.
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Appendix C

Optimization Approach to Accelerator Codesign

We propose an optimization approach for determining both hardware and software parameters

for the efficient implementation of a (family of) applications called dense stencil computations on

programmable GPGPUs. We first introduce a simple, analytical model for the silicon area usage

of accelerator architectures and a workload characterization of stencil computations. We com-

bine this characterization with a parametric execution-time model and formulate a mathematical

optimization problem that seeks to maximize a common objective function of all the hardware

and software parameters. The solution to this problem, therefore, “solves” the codesign problem:

simultaneously choosing software-hardware parameters to optimize total performance.

We validate this approach by proposing architectural variants of the NVIDIA Maxwell GTX-

980 (respectively, Titan X) specifically tuned to a predetermined workload of four common 2D

stencils (Heat, Jacobi, Laplacian, and Gradient) and two 3D ones (Heat and Laplacian). Our

model predicts that performance would potentially improve by 28% (respectively, 33%) with sim-

ple tweaks to the hardware parameters such as tuning the number of streaming multiprocessors,

the number of compute cores each contains, and the size of shared memory. We also develop a

number of insights about the optimal regions of the design landscape.

C.1 Introduction

Energy constraints are the driving force behind exascale systems [2]. Despite exponential

transistor density growth driven by Moore’s Law, these constraints impose the specter of “dark

silicon,” where an exponentially increasing fraction of exascale chips will need to be powered

down or in low power mode [133], thus limiting the “performance delivered to the consumer.”

Consequently, highly specialized coprocessors will become common in the exascale era. Such

specialized, energy-efficient accelerators are important for a diverse range of systems, from HPC

through general-purpose workstations, gaming machines, tablets, other media devices, to phones,
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things, and sensors. In order to attain exascale-level performance, accelerators have to become

even more energy-efficient, and experts anticipate that a large part of this must come through even

more specialization [134, 2].

Future high-performance computing (HPC) systems are expected to be increasingly heteroge-

neous, consisting of several multi-core CPUs and a large number of accelerators, special-purpose

hardware that will increase the computing power of the system in a very energy-efficient way [134].

Consequently, highly specialized coprocessors are already becoming common in exascale [135,

136, 137].

Software-hardware codesign is one of the proposed enabling technologies for exascale com-

puting and beyond [7], yet hardware and software are currently designed largely separately. For

example, HPC hardware manufacturers design and produce a system with great computing poten-

tial and deliver it to customers, who then try to adapt their application codes to run on the new

system. But because of the typical mismatch between hardware and software structure and param-

eters, such codes are often only able to run at a small fraction of the total performance the new

hardware can reach. Hence, optimizing both the hardware and software parameters simultaneously

during hardware design is a promising way to achieve better hardware usage efficiency and thereby

enable leadership-class HPC availability at more manageable cost and energy efficiency.

Codesign is particularly important for embedded systems. In many uses of these systems (e.g.,

medical imaging, smart cameras, self-driving cars, and cyber-physical systems) general purpose

platforms based on standard CPUs deliver inadequate “performance” on a combination of many

cost metrics: speed/throughput, power/energy, weight, size, and manufacturing/fabrication cost,

especially in volumes that the market can sustain. As a result, specialized hardware is essential.

Hardware platforms for embedded systems are usually heterogeneous, with (instruction-set)

programmable processors (CPUs and microcontrollers), accelerators that are either instruction-set

programmable (e.g., GPUs), or “hardware programmable” ones like FPGAs and reconfigurable

logic, as well as Application Specific Integrated Circuits (ASICs). For HPC systems, ASICs are

usually not a designer option.
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In both HPC and embedded systems design, the platforms have specialized, highly parallel,

often fine-grain, components like FPGAs, GPUs, or DSPs, called accelerators. They are typi-

cally used as targets for the (parts of) applications that are well suited to exploit their fine-grain

parallelism, typically programs with regular, repetitive computations.

Despite the appeal of such an approach to simultaneously optimize software and hardware,

its implementation represents a formidable challenge because of the huge search space. Previous

approaches [119, 120, 121], pick a hardware model H from the hardware design space, a software

model S from the software design space, map S onto H, estimate the performance of the map-

ping, and iterate until a desirable quality is achieved. However, not only can each of the software

and hardware design spaces be huge, but each iteration also takes a long time, since finding a

good mapping of S onto H and estimating the performance of the resulting implementation are

themselves challenging computational problems.

In the context of embedded systems, software-hardware codesign refer to the problem of deter-

mining both the optimal software, S and the hardware, H for a single application or program. The

problem we tackle in this paper generalizes this classic codesign problem to a precisely defined set

of programs, drawn from a relatively narrow range of programs that are expected to execute on the

accelerator (sub) system.

C.1.1 Overall approach

We simultaneously optimize compilation and hardware/architectural parameters for compil-

ing stencil computations to GPU-like vector-parallel accelerators by formulating an optimization

problem as follows. A given class of programs, with some problem parameters, −→p ∈ P (e.g., size

of the iteration space, number of array variables) is compiled to an accelerator with some hardware

parameters
−→
h ∈ H (e.g., number of cores, number of vector units, cache size, etc.) The compiler

itself may use some well-defined optimization strategies (e.g., tiling, skewing, parallelization, etc.),

and may have some software parameters, notably tile sizes (−→s ).
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We develop an analytical function, T (−→p ,−→h ,−→s ) that predicts the execution time of the target

program as a function of these parameters. The values of the parameters must satisfy a set of

feasibility constraints (e.g., tile sizes must be such that the data footprint of a tile must fit in the

available scratchpad memory) denoted by F(−→p ,−→h ,−→s ).

With such a model, a classic compilation problem like optimal tile size selection [125] can be

formulated as solving the following problem:

minimize
−→s

T (−→p ,−→h ,−→s ) (C.1)

subject to: −→s ∈ F(−→p ,−→h ,−→s )

Here, the unknown variables are −→s . The hardware and program parameters are considered as

constants—compiling a different program and/or compiling to a different target machine entails

solving a new optimization problem. Extending this to codesign requires the following steps.

• Workload characterization We first pick a set W of representative program instances, called

benchmarks. For each one, we use profiling to pick the probability/frequency with which

it occurs in the workload. Each benchmark may be executed with a range of program pa-

rameters, and we also have a frequency with which of these appear in the workload. So,

−→pi,j are the program parameters of the i-th instance of the j-th benchmark, and the set

{−→pi,j | i ∈ Instances, j ∈ Benchmarks} is P , the range of program parameters.

• Codesign Optimization Now we formulate a simple extension of (C.2). Instead of leaving

the hardware parameters as constants, we allow them to be unknown variables of the opti-

mization problem, which now becomes

minimize
〈−→s ,

−→
h 〉

T (−→p ,−→h ,−→s ) (C.2)

subject to: −→s ∈ F(−→p ,−→h ,−→s )
−→
h ∈ Fh(

−→
h )
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• Area Model Since
−→
h is now an unknown, we must formulate its feasible space, Fh(

−→
h )

precisely. For this, we develop an analytical model of the area of the accelerator. We as-

sume that we are given an area budget within which the accelerator must fit, and solve the

optimization problems over the resulting feasible space.

This seems (deceptively) simple, but the devil is in the detail. The resulting optimization problem

has many hundreds of variables, and has non-convex constraints and objective functions, making

it computationally intractable. We tackle this by exploiting domain specificity, as explained below.

C.1.2 Domain Specificity

There are three ways in which we use domain specificity: in the program, in the architecture,

and in the compiler.

First of all, we tackle a specific (family of) computations that are nevertheless very impor-

tant in many embedded systems. This class of computations, called dense stencils, includes the

compute-intensive parts of many image processing kernels, simulation of physical systems rele-

vant to realistic visualization, as well as the solution of partial differential equations (PDEs) that

arise in many cyber-physical systems such as automobile control and avionics.

In codes that implement dense iterative stencils, values of array elements are updated iteratively

at every time step using the values of some of their neighbors from previous time steps10 according

to a fixed pattern. We consider stencil codes of the following kind. Let S = {(i1, . . . , ik) | 1 ≤

ij ≤ Sj, for j = 1, . . . , k} be a k-dimensional space index set and T = {1, . . . , T} be a time

index set. Then, given a set N defining the “neighborhood” of any point in terms of a pattern of

relative coordinates and a coefficient wa associated with each element a ∈ N a (convolutional)

stencil code defines an iterative evaluation of the following weighted sum.

At(s) =
(

∑

a∈N

wa ∗ At−1(s+ a)
)

+ c (C.3)

10Stencils where some updates may use values from the current time step are not included in the definition.
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s ∈ S , t ∈ T , where we assume that appropriate values are given for the “initial value,” (when

t = 0) and the “boundary values” (when the points s + a fall outside S). Stencils are usually

implemented as nested loops with the loop body evaluating the rhs of (C.3) and storing it in a data

array.

Second, we target GPU-like vector-parallel programmable accelerators. Such components are

now becoming a de-facto standard in most embedded platforms and MPSoCs since they provide

lightweight parallelism and energy/power efficiency. We further argue that they will become ubiq-

uitous for the following reasons. Any device on the market today that has a screen (essentially, any

device, period) has to render images. GPUs are natural platforms for this processing (for speed

and efficiency). So all systems will have an accelerator, by default. If the system now needs any

additional dense stencil computations, the natural target for performing it in the most speed/pow-

er/energy efficient manner is on the accelerator.

The third element of domain specificity that we exploit is a formalism called the polyhedral

model as the tool to map dense stencil computations to GPU accelerators. Developed over the

past thirty years [14, 15, 16, 17, 18], it has matured into a powerful technology, now incorporated

into gcc, llvm and in commercial compilers such as Rstream. Tools targeting GPUs are also

available [19, 138].

Such domain specificity was combined by Prajapati et al. [22] who developed a simple analyt-

ical model for the execution time of tiled stencil codes on GPUs. They showed that for a set of

stencils, the model is very accurate over the range of interest (highly tuned codes): the reported

error is below 10%. As a result, they also showed how the model could be used to solve for opti-

mal tile size selection, leading to a further 9% improvement in total performance. Because of these

properties, we build off their results.

C.1.3 Contributions

The main focus of the paper is not on making specific design recommendations, but rather on

the methodology. Our specific contributions are:
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• We propose a new approach (outlined in Section C.1.1) to software-hardware codesign.

• We develop a simple, analytical model for the silicon area (Section C.2) of programmable

accelerator architectures, and calibrate it using the platform that was used by Prajapati et

al. [22], namely NVIDIA Maxwell class GPUs.

• We combine this area model with a workload characterization of stencil codes, and the Pra-

japati et al. time model [22] to formulate a mathematical optimization problem that max-

imizes a common objective function of the hardware and software parameters (see Sec-

tion C.3).

• Our analysis (Section C.4) provides several interesting insights:

– We produce a Pareto set of designs that represent the optimal combination of hardware

and compiler parameters. The cardinality of the Pareto set is two orders of magnitude

smaller than that of the feasible space of possible architectures. Our analysis also

predicts that for say, a die area comparable to that of the NVIDIA Maxwell Titan, our

specialized design could provide more than 120% improvement in the GFLOPs/sec

attained by the accelerator.

– The optimal design is very sensitive to the benchmark.

– In general, the optimal architectures for 3D stencils need more shared memory than

those for 2D stencils.

– We see specific patterns in how resources should be shared between memory and com-

pute units for 2D vs 3D stencils.

Designers, with access to more accurate area models and more extensive and precise work-

loads, could use our methodology to rapidly explore the design space, before expensive investment

into hardware design, simulation and fabrication need to be made.
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C.2 Area Model

We now develop an analytic model for the total silicon area of a GPU accelerator. We faced

some difficulties in deriving an acceptable analytical model, as silicon data had to be reverse en-

gineered from extremely limited public domain resources. As a general observation, within each

GPU family, there is little diversity in the parameter configurations. For the Maxwell family of

GPUs, the GTX980 and Titan X chips were chosen as two sufficiently distinct points to calibrate

our analytical models. The calibration itself was performed by evaluating die photomicrographs,

publicly available information about the NVIDIA GTX-980 (Maxwell series) GPU, and other gen-

erally accepted memory architecture models. The model validation was done by comparing the

predictions with known data on the Maxwell series Titan X GPU. We found the model prediction

to be accurate to within, 2%, though this number is not significant.11

C.2.1 Analytical Model for GPU Area

The area model is a function of the main parameters that we want to select optimally in the

codesign problem: the number of SMs, nSM, the number of vector units or cores in each SM, nV,

and the respective sizes of the register file and shared memory size of the SM, RSM, and MSM.

Table C.1 shows a summary of the various parameters used in developing the area model.

Atot() = nSMASM +Acache +Aoh (C.4)

where ASM is the cost of each SM, Acache is the total area of the on-chip L1 and L2 caches and

Aoh is the overall overhead area cost. The term Aoh accounts for several components which are of

only peripheral interest to us, such as metal-layer routing overheads, I/O pads, buffers, and clock-

signal global distribution trees, gigathread scheduler, PCI express interface, raster engine, and

memory controller. Based on our current understanding of the NVIDIA architecture, a best effort

annotation of various functional blocks is shown overlaid on a die photomicrograph of GTX980

11Although many configurations of any family of GPUs is spaced out, they come from binning only a small number
of distinct dies. We ended up calibrating our model on one die and validating it on only another one.
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Table C.1: Area model parameters. The top two groups are elementary parameters, and the third one
is composite (some function of the elementary parameters). Of the elementary ones, the second one are
treated as variables in our optimization formulation.

Name Description

αR overhead area per kB of register-memory per vector-unit
αM overhead area per kB of shared memory per SM
αL1 L1 cache overhead area per SM-pair
αL2 L2 cache overhead area
αoh common overhead area (I/O, global routing etc) per SM
βR area per register-file-bank per kB per vector-unit
βM area per shared memory bank per kB per SM
βL1 L1 cache area per kB per SM-pair
βL2 L2 cache area per kB
βV U core-logic area within a vector-unit

nSM total number of SM on the GPU chip
nV number of vector-units per SM
RVU kB of register files per vector-unit
MSM kB of shared memory per SM
L1SMpair kB of L1 cache per SM-pair
L2SM kB of L2 cache

Atot total GPU chip die area
ASM total die area per SM
Acache total cache die area
Aoh total on-chip overhead die area
ALSU total load-store unit die area
ASFU total special-function unit die area
AFDU total fetch-decode unit die area
AIcache total instruction-cache die area

ALSUperSM load-store unit die area per SM
ALSUperV load-store unit die area per vector-unit
AMperSM memory die area per SM
ASFUperV special-function unit die area per vector-unit
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chip in Figure C.1. The term ASM denotes the area of a single SM, and we develop it next. These

micro-architectural elements form an SM:

• Individual vector units: The area cost of this is nVβV U .

• Load-store unit (LSUs): Every core may issue independent memory requests, to either the

shared memory or to global memory. Therefore the LSU has a component that is repli-

cated per core, and also a shared component that (eventually) collects together all requests

from a single warp and interfaces to the (global) memory hierarchy. Therefore ALSU =

nVALSUperV +ALSUperSM.

• Special function units (SFUs): These are dedicated functional units that are used for common

graphics functions, transcendentals, etc. Their number is not always exactly equal to nV,

(e.g., in the NVIDIA GTX-980, there is one SFU every 8 cores) but we model it as a linear

function of nV, i.e., ASFU = nVASFUperV.

• Instruction fetch-decode unit (FDU): Like the I-cache, there is a single FDU per SM, so its

cost is simply a constant AFDU

• Various specialized “memories:” the shared memory used as scratchpad, the register file,

the instruction cache, the texture, and other special caches. We call this term AMperSM and

develop it separately.

Of these, the memories other than register files and the FDU are shared by the entire SM, while

the register files, SFU and LSU are accounted for on a per vector unit basis. Hence,

ASM() = (AFDU +AIcache +ALSUperSM) +AMperSM

+nV(ASFUperV +Acore +ALSUperV)

= α′ +AMperSM + βnV (C.5)

where α′ = AFDU + AIcache + ALSUperSM, and AMperSM depends on the capacity of each of the

individual memories. Of these, we are interested in modeling the area costs for the register file,
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shared (scratchpad) memory, L1 cache and L2 cache; so the others are treated as constants absorbed

in α′. The L1 cache is shared by a pair of SM units, while the L2 cache is shared by all the SM units

on the chip. The register files are organized so that a few registers (512 registers each 32 bits wide

in GTX980) are exclusively accessible by each vector-unit. The shared memory is accessible by

all vector-units in an SM. Assuming independent linear cost models for each of these four memory

types, therefore, AMperSM() = nV (βRRVU + αR)+(βMMSM + αM)+
nSM

2
(βL1L1SMpair + αL1)+

(βL2L2SM + αL2). Here, we have subscribed to a design philosophy where the size of the L2 cache

is not proportional to the number of SM units, it is a constant. This choice seems to be the norm, in

that the GTX980 chip with 16 SMs has an L2 cache of 2MB, whereas the Titan X with 24 SMs has

an L2 cache of 3MB. Another design choice we make is the following – the common area overhead

Aoh, comprising the I/O pads, buffers, routing, gigathread engine, PCI and memory controllers, is

also assumed to be proportional to the number of SMs12, that is, Aoh = nSMαoh. Substituting this

result in the above equations, collecting all common overhead area contributions including α′ into

αoh, and further simplifying, we get,

Atot() = nSMnVβV U + nSMnV (βRRVU + αR)

+nSM (βMMSM + αM) +
nSM

2
(βL1L1SMpair + αL1)

+ (βL2L2SM + αL2) + nSMαoh (C.6)

C.2.2 Calibrating the Model

Since the overall area model involves non-linear terms, we used an incremental fitting approach

to calibrate our model. We first developed linear regression models for the area contribution due to

the memory elements. We then incorporated the memory element area model into a measurement

based linear model for the area due to the SM core vector units.

12This design choice is by no means the only possible one – another possibility is also to have an additional constant
term, though one would need more than two GPUs in the Maxwell family with different die areas to calibrate such a
model.
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Figure C.1: Best effort annotation of functional blocks in a GTX980 die photograph [1] based on current
understanding of the NVIDIA Maxwell architecture and chip layout.

The Maxwell family was fabricated using the TSMC 28nm process. For this process, the typical

SRAM bit cell has an area of only 0.127 to 0.155 µm2 [139]. The total area used by memory banks,

be it the register files, shared memory, or the caches, involve the much more substantial additional

area used for routing, addressing, read, write and bit-sense amplification logic. The register file,

shared memory, and cache area models should take this overhead into account, by accounting for

the bit width, number of addresses, and number of read and write ports. We used the open source

Cacti 6.5 RAM and cache estimation tool from HP labs [140] to optimize and calibrate all our

memory models:

• Register files: We modeled the register file at the vector unit level with a data bus of 32 bits.

For example, the GTX980 chip has 512 such registers per vector unit. For configuring the

register file in Cacti, we assumed a ‘RAM’ model which is direct-mapped, with 2 exclusive

single-ended read ports and 1 exclusive write port per vector unit. Our Cacti design objective

was to aggressively minimize area, as register files are placed physically close to the logic

core where space is at an extra premium.
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• Shared memory units: The shared memory bank is organized per SM. The GTX980 chip has

96kB of shared memory per SM. The user is allowed to optionally dynamically configure a

part of the shared memory in an SM as cache. We assumed, for the purpose of Cacti tool

configuration, that it is a direct mapped ‘RAM’ type memory with 32 bit wide data bus, on

each of its 8 read-write ports per SM. Our design objective was to minimize area, with a

secondary objective of minimizing propagation delays.

• L1 cache: The L1 cache is shared by two adjacent SM units. The GTX980 has 48kB of

L1 cache per SM. Our Cacti model for L1 cache is a ‘cache’ type memory with a line-

size of 128 bytes, and a data width of 32 bits. We also chose a conservative setting of full

associativity for this cache level. There are 8 exclusive read ports for downstream access

from the logic cores, and 8 exclusive write ports for upstream access from the L2 cache.

The design was tailored for speed and the optimization objective was primarily propagation

delay and secondarily power dissipation.

• L2 cache: For the NVIDIA Maxwell architecture, the L2 cache is shared by all the SM

units on the chip. For this GPU family, the L2 cache is on average 128kB per SM. Our

Cacti configuration assumes a ‘cache’ type memory with a line-size of 128 bytes, and a data

width of 256 bits on each of its 8 exclusive read ports feeding into every L1 cache on the

chip downstream. There is also an exclusive read-write port for upstream interface with the

memory controllers. The design objective was a weighted mix of delay and area.

Using these Cacti models, we obtained area estimates for per vector unit register file banks of

512, 1024, 2048, 4096, and 8192 bytes each. We then derived a linear fit model for the area given

the bank size. The coefficients of this model were βR = 0.004305 and αR = 0.001947.

Similarly, we obtained area estimates for per SM shared memory banks of 24, 48, 96, 192, and

384 kilobytes size each, and derived a linear fit model. The coefficients of this linear model were

βM = 0.01565 and αM = 0.09281.

The L1 and L2 cache models were similarly calibrated by performing optimizations using our

Cacti models as described earlier. The L1 linear fit model was obtained with per SM-pair sizes
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of 3, 6, 12, 24, 48, and 96 kilobytes each. The model parameters obtained were βL1 = 0.1604 and

αL1 = 0.08204. The L2 linear fit model was obtained with per SM sizes of 32, 64, 128, 256, and

512 kilobytes each. The parameters obtained were βL2 = 0.04197 and αL2 = 0.7685. The linear

regression models obtained as above are shown in Figure C.2.
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Figure C.2: Linear regression models for various memory types on a Maxwell series GPU. The Cacti
predicted area used to obtain the linear model are also shown.

NVIDIA publishes obfuscated die-shots of their GPU chips, though these photographs are

sometimes not to scale. The community of GPU enthusiasts and researchers have also attempted to

decap packaged GPU chips and photograph the silicon dies independently. For example, Fritzchens

Fritz [1] has a vast collection of NVIDIA die photographs which we have used in association with

the obfuscated die shots published by NVIDIA. The NVIDIA official “die-shots” tend to show de-

marcated logical functional blocks - for SMs, this includes not only the SM core logic regions, but

also the associated control, and thread-scheduler logic areas too. We have taken these aspects into

account while making our area measurements. The area measurements were initially made in terms

of pixels and later normalized to mm2 using the total die area from the GPU’s datasheet. As a veri-

fication of the memory area model calibration, we first measured the area of the following memory

blocks on the die photograph – L2: 105mm2, L1: 7.34mm2, and shared memory: 1.27mm2.
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These measured areas matched quite well with the linear model predictions – L2: 98.25mm2,

L1: 7.78mm2, and shared memory: 1.59mm2. Furthermore, from the die photomicrographs for

GTX980 [1, 141], area per vector unit logic core was measured to be βV U = 0.04282mm2, ex-

cluding the register-file area. Similarly, measurements on GTX980 die photograph gave an area

estimate of 102.65mm2 for the overhead region containing the I/O pads, buffers, memory con-

trollers, gigathread and raster engines and PCI controller, which gives an αoh = 6.4156mm2 per

SM. The total published die area for GTX980 is also known to be Atot = 398mm2. For the

Maxwell family, our overall area model is therefore given by:

Atot = 0.0447nSMnV + 0.0043RVUnSMnV

+0.015MSMnSM + 0.08L1SMpairnSM

+0.041L2kB + 7.317nSM (C.7)

C.2.3 Validating the Model

In order to validate our area model, we applied it to another member of the Maxwell family,

the Titan X for which the total die area is known. Our model predicts a total area of 589.2mm2

which is within an error of 1.96% of the published die area of 601mm2.

Our area model above is only valid for the functional blocks as implemented for the specific

TSMC 28-nm process used to fabricate the NVIDIA Maxwell chips. The newer Pascal family of

NVIDIA GPUs are fabricated on a 16-nm technology node. If each of the constituent functional

block’s chip-level layouts were to remain the same across technology nodes and were only optically

reduced down by a certain shrinkage factor, then the area model can be similarly rescaled and

reused. However, the shift from 28-nm to 16-nm involves a non-trivial move from planar CMOS to

3D-FINFET technology, and consequently, a simple area rescaling would clearly not be sufficient

to predict the area parameters of Pascal family chips. However, the overall methodology still

remains applicable to any technology node or device family.
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C.3 Optimizing software and hardware parameters

We now show how to use the analytical chip area model and a previous execution time model

[22] to formulate and solve an optimization problem for simultaneously finding optimal hardware

and software parameters. Note that both components of the optimization problem, the area and

time models, are relatively accurate, with errors 2% and 10% [22], respectively, implying the

accuracy and amount of error expected in the results of the optimization.

C.3.1 Problem formulation

The parameters we are going to optimize are the elementary software (ES) parameters tS1 ,

tS2 , and tT (tSi represents tile size in the ith space dimension and tT represents tile size in the

time dimension) and the elementary hardware (EH) parameters nSM, nV, and MSM. For each

combination of EH parameters, the corresponding running time in the objective function will be

defined as the optimal time for that hardware configuration and for the stencil of interest over all

possible choices of tile sizes.

This results in the following optimization problem, which finds the best EH parameters for a

given stencil and a given bound on the chip area denoted by chip_area
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minimize
nSM,nV,MSM,tS1 ,tS2 ,tT

Talg(nSM, nV,MSM, tS1 , tS2 , tT) (C.8)

subject to: Atot(nSM, nV,MSM) ≤ chip_area (C.9)

Mtile ≤ MSM/threadblock (C.10)

k ≤ MTBSM (C.11)

k ∗Mtile ≤ MSM (C.12)

k, tS1 – integers (C.13)

nV, tS2 – multiple of 32 (C.14)

MSM – multiple of 48 k (C.15)

nSM, tT – even (C.16)

Note that Talg (modeled execution time as in [22]) in (C.8) is in fact a function not only of the

parameters nSM, nV, MSM, tS1 , tS2 , and tT, but also of the other parameters detailed elsewhere [22].

Also, for 3D stencils, there is an additional parameter to function (C.8) which is the tile size in the

third space dimension tS3 . We are only explicitly using those Talg parameters that are needed in

the specific context. Constraints encode the following requirements.

• Constraint (C.9) guarantees that the total area for the current hardware configuration, ac-

cording to the area model, does not exceed the optimization parameter chip_area.

• Constraint (C.10) asks the memory required for each tile (Mtile, the memory footprint of a

tile) not to exceed MSM/threadblock, the shared memory available for a threadblock.

• Constraints (C.11) and (C.12) restrict k, the number of tiles simultaneously executed by an

SM (using hyperthreading), to be no greater than the max threadblocks an SM can handle

and such that the total memory of such tiles is at most MSM.

• The values of k and tS1 can be only integers, by (C.13).
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• tS2 being a multiple of 32 (C.14) ensures that neighboring threads in S2 dimension can fit in

a number of full warps, where each warp is a group of 32 threads.

• We require nV to be multiple of 32 (C.14), MSM to be multiple of 48k (C.15), and nSM to

be even (C.16) in order to be consistent with the patterns for these parameters chosen by the

manufacturers in the existing NVIDIA GPUs.

• For the tile sizes, we want tT to be even (C.16) as it is a requirement for hybrid-hexagonal

tiling [19].

The optimization problem (C.8)–(C.16) allows, given a stencil of interest (say Jacobi 2D) and spe-

cific values of the problem size parameters Si (ith space dimension) and T (time), to find a combi-

nation of software and hardware parameters that results in optimal (smallest) run time. However,

it is unlikely that one may need a hardware that will be used for just a single problem size. A more

relevant problem is to optimize the hardware over a set of problem sizes. Given a set of sizes SZ

and a frequency function fr such that fr(Szi) is the expected frequency the size Szi ∈ SZ will be

encountered for the intended application, the corresponding new objective becomes

minimize
nSM,nV,MSM,SP

T J
alg =

∑

s∈SZ

fr(s)Talg(s), (C.17)

where SP is the set of tile sizes, with each tile size given as a triple (tS1 , tS2 , tT) for 2D stencils

(additionally tS3 for 3D stencils), and T J
alg (J is for Jacobi) is the time-model function, whose EH

parameters are nSM, nV, MSM, and whose ES parameters are SP . Hence, the optimization problem

(C.17) has |SP |+ 2 = 3|SZ|+ 3 decision variables.

In our experiments, we use as values for S the set SZS = {4096, 8192, 12228, 16384} and

for T the set SZT = {1024, 2048, 4096, 8192, 16384} and define SZ = {(S, T ) | S ∈ SZS, T ∈

SZT , T ≤ S}. We use T ≤ S since it is known from practice that no more than S iterations are

needed for convergence. One can check that |SZ| = 16 and hence the number of variables for

problem (C.17) is 16 ∗ 3 + 3 = 51. While this is a small number of variables for optimization

problems with a nice structure, e.g., linear or convex, in our case the problem is of a difficult (non-
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convex) type, with all variables being integer and the objective function and the constraints being

rational functions [22]. Because of the floor and ceiling functions used in the time model [22], our

objective and constraints are not even continuous, although this can be handled by introducing one

new integer variable per floor or ceiling function. This however further increases the number of

variables, which becomes 16 ∗ 10 + 2 = 162.

Regardless of the fact that an optimization problem with 162 integer variables and non-convex

constraints and objective is in most cases computationally infeasible, we will consider an even

larger version of (C.17), and then show how both problems can be simplified and solved accurately

and in reasonable time by exploring the separability of the objective.

Let us first describe a problem setting that is more relevant from practical point of view. While

(C.17) can be used to determine stencil-optimal architecture parameters, in many cases, people

would be interested in having a special-purpose hardware that is optimized for an application

whose computation time is dominated by a set of often-used kernels. In our case, we assume that

an application Apl is using the six stencils studied in this paper and by studying a profiling data

we have determined how often each stencil is used and a distribution of problem dimension sizes

for each application. In our experiments, we use four 2D stencils: Jacobi-2D, Heat-2D, Laplacian-

2D, and Gradient-2D, all first order stencils, and two 3D stencils: Heat-3D and Laplacian-3D. All

2D stencils have two space dimensions and one time dimension, while the 3D stencils have three

space dimensions and one time dimension. We then extend the definition of the frequency function

so that, for each code c ∈ Cd := {Jacobi-2D, Heat-2D, Laplacian-2D, Gradient-2D, Heat-3D,

Laplacian-3D}, fr(c) denotes the frequency of using c in application Apl . Moreover, given c ∈ Cd

and Sz ∈ SZ, let fr(c, Sz) denote the frequency with which problem size Sz has been used for

stencil c. The updated objective of the resulting optimization problem is:

minimize
HP ,SP

TCd
alg =

∑

c∈Cd,Sz∈SZ

fr(c)fr(c, Sz)T c
alg(HP , SP , Sz). (C.18)

The set SP here includes tile sizes for each c ∈ Cd and each Sz ∈ SZ. The set HP includes the

hardware parameters in consideration. Hence the number of integer variables for problem (C.18)

148



is 10|Cd||SZ|+2 = 10 · 4 · 16+2 = 642, which is too large to be solved by existing solvers, given

that the problem is nonlinear, nonconvex, and with integer variables. Fortunately, the problem can

be made feasible by dividing the variables into two sets and combining exhaustive search on the

first set with nonlinear programming optimization on the second.

C.3.2 Solving the optimization problem

The main observation that helps us solve problem (C.18) more efficiently is the fact that, if we

knew the optimal value hpopt of parameters HP , then the objective (C.18) would become separable

since T c
alg(hpopt, SP , Sz) can be minimized with respect to the tile sizes independently for each c

and Sz. Formally, we are transforming (C.18) into the following equivalent problem

minimize
hp∈HP

∑

c∈Cd,Sz∈SZ

fr(c)fr(c, s) min
SP(c,s)

T c
alg(hp, SP , Sz). (C.19)

Since we don’t know hpopt, then we replace hp in (C.19) with all feasible values of HP and, for

each such value, we run a separate optimization problem with respect to SP for each combination

of c ∈ Cd and Sz ∈ SZ. As a result, instead of solving one large problem (C.18) with 642

variables, we do exhaustive search on the space HP × Cd × SZ and, for each point in that space,

we solve using a nonlinear solver an optimization problem with only 10 integer variables. (While

the variables we are interested in are only three, the optimization problem includes additional

internal variables such as the optimal number of tiles for hyperthreading and variables used to

simplify some nonlinearities, resulting in a total of 10.)

To further reduce the number of these problems, we will fix the range of values of the param-

eters as follows: 2 ≤ nSM ≤ 32 and is even, 32 ≤ nV ≤ 2048 and is a multiple of 32, which

come from the constraints of (C.8)–(C.16). 48k ≤ MSM ≤ 480k with the requirement (C.15) to be

multiple of 48k and positive. In addition, we explore the sizes 12k, 24k and 36k for MSM.

We ran these experiments using chip areas in the range 200 − 650mm2. Since we haven’t tied

the experiments to a specific application, we assumed all six stencils are equally likely, and that

each size combination is also equally likely; i.e., we set all coefficients in (C.18) to 1. For solving
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the optimization problems, we used the open source solver Bonmin [124]. The average solution

time per optimization instance is 19 sec (although it varies a lot from instance to instance), so the

total solution time varies between 7 and 24 hours depending on the chip area. Also note that in

the execution time model we use a parameter Citer, the execution time of a single iteration on one

thread. For optimal tile size selection, [22] empirically measured this parameter for the different

stencils. Although there was a small difference between the two platforms (GTX-980 and Titan X)

we used the former value for our experiments.

C.4 Insights

C.4.1 Insight 1: Pruning the Design Space

Given a range of area budgets between 200 and 650 mm2, we enumerate all feasible architec-

tures and solve the codesign optimization problem for each one of them. We separate the workload

into two classes, 2D stencils, and 3D stencils. Each illustrates interesting features. For each class,

we assume a uniform frequency (each instance is equally likely, and within each instance, each

problem size is also equally likely). Figure C.3 shows our results. The first observation is that only

about 1% of the thousands of feasible hardware designs (the Pareto optimal designs shown in blue)

are worth exploring further, leading to a significant pruning of the design space.

The same figure also shows the performance of two standard design points, NVIDIA’s GTX980

and Titan X architectures. For the comparable area, we can improve performance by 104% (resp.,

69% wrt. Titan X) for 2D stencils, and by 123% (resp., 126%) for 3D stencils. A large part of the

gains come from the fact that our proposed designs do not have caches because the HHC compiler

for which our model is specialized [19] generates codes to perform data transfers explicitly rather

than relying on caches13. To compensate for this, we could “delete” the caches from the GTX980

and Titan X die areas, which reduces their areas to respectively, 237mm2 and 356mm2. The

performance of the corresponding Pareto optimal designs for those reduced areas is 9.34% (resp.,

13For all polyhedral programs, the off-chip data transfers can be statically predicted and tuned using models for tile
sizes. Therefore, the ideal architecture for polyhedral programs are the ones that do not have caches.
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Table C.2: Workload sensitivity. The optimal architecture configuration for a single benchmark varies
significantly.

Code nSM nV MSM Area GFLOPs/S

Jacobi 2D 32 128 24 438 2059
Heat 2D 22 256 12 447 3017
Gradient 2D 28 160 24 431 4963
Laplacian 2D 28 160 12 426 2549
Heat 3D 18 288 192 447 3600
Laplacian 3D 8 896 96 446 1427

28.44% for the cache-less Titan X) better for 2D stencils and 9.22% (resp., 33.15% for the cache-

less Titan X) better for 3D stencils.

C.4.2 Insight 2: Workload Sensitivity

Eqn. (C.19) partitions the design space into a number of independent optimization problems.

This allows us to explore other hypothetical scenarios “for free.” As an example, changing fre-

quencies of the different programs in the benchmark suite requires us to simply recompute new

weighted sums of optimal values of minimization problems that we have already solved. A spe-

cific example would be to hypothetically set the frequency for one of the benchmarks as one (and

zero for the others) thereby allowing us to explore designs optimized for a single kernel. It also

helps determine whether the chosen suite is representative of the mix that occurs in practice. Ta-

ble C.2 illustrates the architectural parameters for the best performing designs for each of the six

benchmarks, for an area budget between 425–450 mm2. Observe how the parameters of the best

architecture are significantly different. There are also differences in the achieved performance for

each benchmark, but that is to be expected since the main computation in the stencil loop body has

different numbers of operations across the benchmarks.

C.4.3 Insight 3: Shared Memory Requirements

We can also observe that there are marked differences between the optimal architecture con-

figurations for 2D and 3D stencils in Table C.2. 3D stencils seem to require larger shared memory
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(≥ 96 kB / SM) compared to 2D stencils (≤ 24 kB / SM). Indeed, for designs with lower than

48kB, the performance was nowhere near the optimal for 3D stencil programs. Comparing the

optimal configurations for Heat 2D stencil with that of Heat 3D stencil (both have exactly same

area of 447 mm2), we see that the amount of shared memory required of Heat 3D stencil is 16

times more than Heat 2D stencil. Also note, 3D stencils require a higher number of vector units

per SM for optimal performance.

C.4.4 Insight 4: Resource Allocation

Another interesting perspective is seen in Figure C.4 which plots the same design space as in

Figure C.3 but this time the axes are different, showing the relative percentages of the chip area

devoted to memory, and to vector units. We notice that the optimal designs (blue points) lie in a

relative cluster for 3D stencils. This clustering of Pareto points suggests that 60-70% of die area

should be dedicated to the vector units and no more than 15% area should be dedicated to shared

memory. Ignoring the outliers for 2D stencils, 40-70% area should be allocated to vector units and

very little area (less than 5%) should be allocated to the shared memory.

C.5 Related work

Chip Reverse Engineering Chip area modeling can be formally considered a branch of semi-

conductor reverse engineering, which is a well researched subject area. Torrence et al. [86] gives

an overview of the various techniques used for chip reverse engineering. The packaged chips are

usually decapped and the wafer die within is photographed layer by layer. The layers are exposed

in reverse order after physical or chemical exfoliation. Degate [87], for example, is a well known

open source software that can help in analyzing die photographs layer by layer. The reverse en-

gineering process can be coarse-grained to identify just the functional macro-blocks. Sometimes,

the process can be very fine-grained, in order to identify standard-cell interconnections, and hence,

actual logic-gate netlists. Degate is often used in association with catalogs of known standard cell

gate layouts, such as those compiled by Silicon Zoo [88]. Courbon et al. [89] provides a case study
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of how a modern flash memory chip can be reverse engineered using a targeted scanning electron

microscope imagery. For chip area modeling, one is only interested in the relatively easier task of

demarcating the interesting functional blocks.

Performance Modeling There have been various works on time modeling and performance op-

timization. Pochoir [39] presents a cache-oblivious approach to avoid performance modeling on

CPUs all together. Polymage [77] provides a stencil graph DSL and pairs it with a simple ana-

lytical performance model for the automatic computation of optimal tile sizes and fusion choices.

With MODESTO [78] an analytical performance model has been proposed that allows modeling

multiple cache levels and fusion strategies for both GPUs and CPUs as they arise in the context of

Stella. For stencil GPU code generation strategies that use redundant computations in combination

with ghost zones an analytical performance model has been proposed [79] that allows to automati-

cally derive “optimal” code generation parameters. Yotov et al. [80] showed already more than ten

years ago that an analytical performance model for matrix multiplication kernels allows generating

code that is performance-wise competitive to empirically tuned code generated by ATLAS [81],

but at this point no stencil computations have been considered. Shirako et al. [82] use cache mod-

els to derive lower and upper bounds on cache traffic, which they use to bound the search space

of empirical tile-size tuning. Their work does not consider any GPU specific properties, such as

shared memory sizes and their impact on the available parallelism. Grebhahn et al. [142] combine

ideas from a product line research with function-learning to predict the performance of a multi-

grid solver. Bao et al. [143] present an analytical model for the execution of affine programs on set

associative caches. In contrast to tools for tuning, Hong and Kim [83] present a precise GPU per-

formance model which shares many of the GPU parameters we use. It is highly accurate, low level,

and requires analyzing the PTX assembly code. For stencil GPU code generation strategies that

use redundant computations in combination with ghost zones, an analytical performance model

has been proposed [79] that allows deriving “optimal” code generation parameters automatically.
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Hardware/Software Codesign Application codesign is a well-established discipline and has

seen active research for well over two decades [101, 102, 103, 104, 105]. The essential idea

is to start with a program (or a program representation, say in the form of a CFDG—Control

Data Flow Graph) and then map it to an abstract hardware description, often represented as a

graph of operators and storage elements. The challenge that makes codesign significantly harder

than compilation is that the hardware is not fixed, but is also to be synthesized. Most systems

involve a search over a design space of feasible solutions, and various techniques are used to

solve this optimization problem: tabu search and simulated annealing [106, 107] integer linear

programming [108].

There are some recent studies on accurately modeling the design space, especially for regular,

or affine control programs [144, 25, 26]. However, all current approaches solve the optimization

problem for a single program at a time. To the best of our knowledge, no one has previously con-

sidered the generalized application codesign problem, seeking a solution for a suite of programs.

The research presented by Lee et al. [145] is closest to our work and uses GPUs as the target archi-

tecture. The SESH framework [145] takes the source code and workload as input, transforms the

code for better performance and later explores different hardware configurations to find optimal

performance per area. This process is repeated for each benchmark. Whereas in our work, we con-

sider an application suite with multiple benchmarks as the workload and formulate a mathematical

optimization to find the optimal architecture. The work presented in [146, 147] proposes design

space exploration as in [145] but for FPGAs.

There are multiple publications on codesign related to exascale computing, but they focus on

different aspects. For instance, Dosanji et al. [109] focus on methodological aspects of exploring

the design space, including architectural testbeds, choice of mini-applications to represent appli-

cations codes, and tools. The ExaSAT framework [110] was developed to automatically extract

parameterized performance models from source code using compiler analysis techniques. Perfor-

mance analysis techniques and tools targeting exascale and codesign are discussed in [7].
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There is also a large area of domain-specific accelerator which includes machine learning [148],

image processing [149], and linear algebra [150]. While all approaches design custom accelerators

none of these approaches has been reported to use non-linear solvers to find optimal design points

for performance trade-offs in the accelerator design.

C.6 Conclusion and Discussion

Codesign—the simultaneous design of hardware and software—has two common interpreta-

tions. System codesign is the problem of simultaneously designing hardware, runtime system,

compilers, and programming environments of entire computing systems, typically in the context

of HPC systems [7]. Application codesign, also called hardware-software codesign, is the problem

of systematically and simultaneously designing a dedicated hardware platform and the software

to execute a single application (program). The approach proposed in this paper is applicable to

both contexts. For system codesign, we specialized the problem. For application codesign, we

generalize it in the same domain-specific manner.

We developed a framework for software-hardware codesign for simultaneous optimization of

software and hardware parameters. It assumes having analytical models for performance (execu-

tion time), and cost (chip area). We use the execution time model from Prajapati et al. [22] for

stencil programs. We develop an analytical chip area model for designs from the Maxwell GPU

architecture.

We formulated a codesign optimization problem using the time model and our area model for

optimizing the compiler and architecture parameters simultaneously. We predict an improvement

in the performance of 2D stencils by (104% and 69%) and 3D stencils by (123% and 126%) over

existing Maxwell (GTX980 and Titan X) architectures.

The analyses from this paper indicate that for the chosen performance, cost criteria, applica-

tion profile and specific compiler used, we should remove caches completely and use the area

(previously devoted to caches) to add more cores on the chip. If the special purpose system is

used as hypothesized, then using part of the chip for cache is not optimal. For other uses and for
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general-purpose processing, cache might be useful or even critical element of the design. But our

result is not totally unexpected for efficiency-optimized stencil computations. For any program in

Polybench [151], data movement can be counted statically. In short, all polyhedral programs do

not need caches. With these techniques of using models for tile sizes, all data transfers can be

statically predicted and tuned. Therefore, ideal architecture for polyhedral programs are the ones

that do not have caches.

Our goal is to design accelerator for a suite of applications (stencils). We do not target a single

benchmark. Therefore, we need the programmability and ASICs are not programmable. The fact

that schedulers are able to statically predict the data transfers makes caches unfruitful. Cache-

less architecture are ideal for polyhedral programs. Moreover, the advantage of using GPUs in our

approach is that we just need to predict optimal values for several parameters; designing an ASIC is

a much more complex and involved task. It is about “how to design instruction-set-programmable

accelerators." We use GPUs as accelerators unlike other works that design FPGA based system. In

an FPGA based accelerator design, it is essential that the accelerator must be “redesigned" for each

application, and sometimes for each changing size parameter of the input program. Hence FPGA

based design space exploration is forced to solve a new optimization problem for each application.

Using GPU-like instruction set programmable targets is one of the novelties of our work.

However, our models are approximate and other parameters play an important role in, e.g.,

designers may seek to optimize for both execution time as well as power simultaneously. Our

approach can be extended to consider energy/power consumption into account. If the energy con-

sumption details of the individual components of the architecture are known, then the objective

function can be updated to be the argmin of the weighted execution times and energy components

where we seek to maximize the performance. Such an optimization function can be formulated to

solve power-gating problems where the designer wants to turn off certain parts of the chip.

The execution time model in [22] does not account for register usage, known to be critical for

performance because the size of the register file constrains the optimal tile sizes. In our area model,

we fix the register file size and do not include register files as constraints of the optimization.
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Figure C.3: Optimal performance (in GFLOPs/Sec) of each feasible design point as a function of total chip
area for 2D stencils (left) and 3D stencils (right). Each benchmark and input size combination is assumed
to occur with equal frequency. Of the many thousands of points (≈ 3000 for 2D stencils and ≈ 2000 for
3D) many are dominated by other design choices–a different architecture with smaller area yields better
performance. So, only a few tens of design points (the Pareto optimal points, shown in blue) need to be
explored further, a nearly 100-fold savings in design cost. In addition, the performance of the existing
NVIDIA Maxwell GTX980 and Titan X are also shown. The optimized designs for comparable area budget
could improve performance of 2D stencils by as much as 104% (c.f. 69%) relative to the GTX980 (c.f., the
TitanX). The performance of 3D stencils can be improved by as much as 123% (c.f. 126%) relative to the
GTX980 (c.f., the TitanX).
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Figure C.4: Resource Allocation.
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Appendix D

Minimizing Data Movement for Matrix Chain

Products

Data Movement is expensive, in terms of both, execution time and energy consumption of

computing systems. Moving data across memory hierarchy consumes a large portion of system

energy. For consumer devices such as smart phones, tablets, and wearable devices, the data move-

ment between main memory and the compute units consumes, on average, 62.7% of the total

system energy [152]. The energy consumption due to data movement is also one of the exascale

challenges [2, 3, 4, 5, 6]. Energy consumption of any application can be divided into two major

components: static energy and dynamic energy. The static energy component varies with the ex-

ecution time performance. The dynamic energy component can be further divided into two high

level components: computation and communication. In this work, we seek to minimize the total

energy consumption for matrix chain products. First, we use the classic matrix chain ordering

algorithm [61] to minimize the total op-count (reduce the static as well as dynamic energy) for a

given matrix sequence. Next, we develop a hyper-node parenthesization algorithm to minimize the

off-chip communication over the minimum op-count tree, in turn reducing the dynamic component

of energy consumption.

The hyper-node parenthesization algorithm builds over data movement costs of a single matrix

multiplication and a fused two matrix multiplication. We assume that all matrices are too large to fit

on-chip and that the memory hierarchy consists of two levels: fast and slow. Matrix multiplication

for those matrices that do not fit into the fast memory capacity of an architecture involves blocking

of the input and output matrices. The input and output matrices are transferred between fast and

slow memory in blocks. The size of these blocks dictate the total data transfer cost [153, 154, 155]

of matrix multiplication. We revisit closed form solutions for these block sizes that minimize

data transfers between slow and fast memory, given the fast memory capacity. For matrix chain

159



products, two matrices are multiplied to produce an intermediate result matrix and this intermediate

result is multiplied with another matrix (or intermediate result). A reduction in data movement is

possible if the intermediate result is not written to the slow memory, but is consumed as soon as it is

produced. We call this, Two MM. We develop closed form solutions for block sizes that minimize

data movement for Two MM. Next, we build a recurrence that uses these closed form solutions to

minimize global data movement for matrix chains.

The main contributions are:

• Two MM closed form solutions for block sizes to minimize off-chip data movement for two

matrix multiplications.

• Hyper-node Parenthesization a recurrence that minimizes data movement over a minimum

op-count tree for matrix chain products.

We apply Hyper-node Parenthesization recurrence over a set of 19, 000 matrix sequences of

lengths {2, 3, 4, . . . , 20} and show that off-chip data transfers can be reduced by 9% (and 13%) on

average for architectures with 64KB (and 96KB) of on-chip memory capacity.

The rest of the chapter is organized as follows. Section D discusses related work. Section D.1

develops closed form solutions for block sizes to minimize off-chip data transfers for single matrix

multiplication. Section D.2 develops closed form solutions for block sizes that minimize off-chip

data transfers for Two MM. Section D.3.2 discusses the classic matrix chain ordering algorithm [61]

that minimizes the total number of computations. Section D.4 produces a recurrence to minimize

data transfers for a given minimum op count tree. Section D.5 further reduces the data transfers

for a minimum op count tree using loop fusion. Finally, section D.7 concludes the chapter.

D.1 Related Work

In 1981, Hong and Kung [153] showed that a sequential matrix multiplication algorithm trans-

fers Ω(n3/
√
M) words between fast and slow memory (M is the size of the slow memory and n is

the size of matrices). This lower bound is attained by blocking/tiling algorithms that slice the three
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matrices into square blocks of size
√

M/3, which means that three faces (one of each matrix) of a

cubic tile occupy the fast memory. Irony et al. [156] extended this algorithm for distributed memory

machines and showed that for 2D algorithms such as Cannon [154] and SUMMA [157], the com-

munication lower bounds are Ω(n3/
√
P ) where each processor P stores at least M = O(n2/P )

words. Irony et al. [156] also showed that for 3D algorithms such as Agarwal et al. [155] and

Johnsson [158], the communication lower bounds are Ω(n2/P 2/3) where each processor P stores

at least M = O(n2/P 2/3) words. For sequential BLAS computations, Frigo et al. [159] developed

cache oblivious algorithms and showed that the blocked versions of the naive algorithms attain the

lower bound in the two-level memory model for matrix multiplication. In 2011, Solomonik and

Demmel [160] came up with a 2.5D communication-avoiding algorithm that stores c/p data in

memory, where c is a tunable parameter ranging between 1 to
√
3p, and allows the algorithm to in-

terpolate between 2D and 3D cases. McColl and Tiskin [161], Solomonik and Demmel [160] and

Demmel et al. [162] proposed parallel classical algorithms attaining communication lower bounds

with no assumption on local memory use. These algorithms have computational cost θ(n3/P ) and

may use local memory of size more than θ(n2/P ). Ballard et al. [163] provide an excellent sur-

vey of methods for finding communication lower bounds, communication avoiding algorithms, and

cache-oblivious blocking techniques for numerical linear algebra. For single matrix-multiplication,

we provide a simple derivation of well known closed form solutions for tile sizes that minimize

off-chip communication. These solutions can be further refined to maximally exploit available

hardware resources. For example, Kim et al. [164] developed cost models for efficient data move-

ment (coalescing, register tiling, etc) of tensor contractions over GPUs.

Loop fusion is a transformation that merges multiple loops into single loop. It is used to im-

prove data locality of programs. In 1993, Kennedy and McKinley [165] showed that applying

fusion transformation for maximizing data locality is NP-hard and proposed a new algorithm for

fusing a collection of sequential and parallel loops. Singhai and McKinley [166] developed a pa-

rameterized loop fusion algorithm and modeled data locality, parallelism, and register pressure.

Qasem and Kennedy [167] combined loop fusion with loop tiling and presented a model-guided
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empirical tuning strategy at different levels of memory hierarchy. Bondhugula et al. [168] pre-

sented a model that captures the utilization of hardware prefetch streams, loss of parallelism, con-

straints imposed by privatization and code expansion into a single convex optimization space. Un-

like these strategies that can be applied to different types of problems, our work focuses on fusing

two matrix multiplications. We develop closed form solutions that guarantee minimum off-chip

data movement for fused Two MM kernels for two-level memory architectures.

Pouchet et al. [169] developed an automatic parallel framework that searches empirically the

set of valid possibilities to perform fusion/code motion transformations, and relies on model-based

mechanisms to perform tiling, vectorization and parallelization on the fusion-transformed program.

They later introduced a fusibility concept [170] that generalizes legality conditions and enables

fusion transformations. They developed cost models to tune for trade-off between parallelism and

locality at different levels. The fusibility decision considers all possible loop permutations and

minimizes the dependence distance. For matrix chain products, they explore the space of possible

fusion/distribution structures and tiling but the input matrices were square and hence fusion and

tiling of all dimensions is legal. Our work focuses on minimizing reuse distance for matrix chain

products with rectangular matrix sizes. However, with rectangular matrices fusion of only the two

outer-loops is possible as discussed in section D.2. Therefore, Pouchet et al. [170] has a larger

optimization space compared to the space discussed in this work and they explore k-fuse: fusion of

more than two matrix multiplications. Their decisions depend on the problem and the underlying

architecture considering square (single problem size) matrices and are made statically (at compile-

time). Our work takes as input the problem sizes and architecture parameters and minimizes the

off-chip data movement over a minimum op-count tree dynamically (at run-time).

Rajbhandari et al. [171, 172] developed a compile-time approach to dependence characteriza-

tion and program transformation to enable fusion across recursively specified tree-traversal opera-

tors on k-ary trees. They develop necessary and sufficient conditions for fusion across a collection

(directed acyclic graph) of k-ary tree operators with producer-consumer relationships. They con-

sider multiple types of operators for a k-ary tree and explore the fusion choices for multiple related
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(parents, children, and sibling) nodes in the tree. For sequences of loops representing a producer-

consumer relationship, Rajbhandari et al. [173] presented an approach to use data movement lower

bounds to reason about the utility of loop fusion to reduce data movement and its application to find

an optimal fusion choice for the four-index integral transform. Similar to our work, they consider

two-level memory architecture. However, they consider a single input problem size.

Barthels et al. [174] extend the matrix chain multiplication problem to generalized matrix chain

problem (GMCP) with inverse and transpose operations. The matrices can also be different shapes:

lower and upper triangular, symmetric, diagonal, and symmetric positive-definite. Their parenthe-

sization decision is based on the number of flops required considering matrix shape and operation.

For this work, we consider only rectangular matrices without any inverse or transpose operators.

Also, our cost function consists of both op-count as well as data movement. In the future we plan

to extend our methods of minimizing off-chip data transfers to the GMCP problem.

D.2 Off-chip Data Movement for Single Matrix Multiplication

Consider the following matrix multiplication:

R = A1A2 (D.1)

where P0, P1, P2 are the problem sizes. Our goal is to reduce off-chip data transfers. We

consider three options: keep either of the R, A1, or A2 matrices in the on-chip memory. We

develop the following for GPU architectures, with shared memory as the fast (on-chip) memory.

Our goal is to reduce global memory accesses (off-chip data transfers) for matrix multiplication

equation D.1 where the matrices R, A1, and A2 are too large to fit into the shared memory capacity

of a GPU. For such large problem sizes, one of the common techniques is to tile all the three

dimensions of the iteration space [155, 158]. Consider tile sizes x, y, and z as shown in the

Figure D.1. There are three options: retain one of the R, A1, or A2 matrices in the shared memory.
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Figure D.1: 3D blocking of Matrix Multiplication

Case 1: Store R in the shared memory

In this case, a threadblock is responsible for executing all the tiles along k. The partial answers

produced by the previous tile are consumed from shared memory and are overwritten. This means

that the output (a patch of R) generated by a tile is retained in the shared memory and is written

back to the global memory only after the final answer is computed. The shared memory required

to store the result per tile is given by x ∗ y. As shown in figure D.2, a x ∗ z patch of matrix A1 and

a y ∗ z patch of matrix A2 is read from the global memory to compute x ∗ y patch of R.

The total number of off-chip data transfers can be calculated as

hR =
(P0

x
∗ P2

y
∗ P1

z

)

∗ (xz + yz) + P0P2

= P0P1P2

(x+ y

xy

)

+ P0P2

(D.2)
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Figure D.2: Retain the output matrix R in the shared memory.

Note, z cancels out in the equation. The matrix R (of size P0P2) is written to off-chip memory

only once, which is after the final answer is computed. In order to reduce the off-chip data transfers

in hR, the term (x+ y)/xy should be minimized. If xy = c is a constant, the value of (x+ y)/xy

decreases as the value of x + y decreases, and the value of x + y is minimum when x = y. The

constraints on the tile sizes, x and y, are 0 < x 6 P0 and 0 < y 6 P2. Also, if the shared

memory capacity (per threadblock) is M , then xy must fit into M . Figure D.3 shows the xy = M

hyperbola. The minimum value of (x+ y)/xy is found at the point where the line x = y intersects

with xy = M hyperbola.

The on-chip memory capacity is M , and xy = x2 must fit into M . i.e., x =
√
M where

x 6 P0, P2, call this x∗. For the example in figure D.3, the bounds on x and y are P0 = 60 and

P2 = 50. The on-chip memory capacity is 64 and x = y =
√
M = 8. Substituting x = y in

equation ( D.2) and using the closed form solution for tile sizes x = y = x∗ =
√
M , we get

h∗
R, the minimum off-chip data transfers required in the case where the output matrix R is stored

on-chip, as
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Figure D.3: Minimizing the value of (x+ y)/xy for the case when matrix R is stored on-chip.

h∗
R =

2P0P1P2

x∗
+ P0P2

=
2P0P1P2√

M
+ P0P2

(D.3)

Case 2: Store A1

Alternatively, the matrix A1 can be stored in the shared memory (i.e., A1 is read exactly once

from the global memory), matrix A2 can be read, and the matrix R can be read & written from

global memory. In this case, a threadblock computes all tiles in the i − th row of R. The shared

memory requirement per tile is given by x ∗ z. As shown in Figure D.4, a x ∗ z patch of matrix A1

stays in the shared memory. A patch of matrix A2 of size y ∗ z is read from the global memory to

compute x ∗ y patch of R. The values of x ∗ y patch of R are read and written.
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Figure D.4: Retain the input matrix A1 in the shared memory.

The total number of off-chip data transfers is given by

hA =
(P0

x
∗ P2

y
∗ P1

z

)

∗ (2xy + yz) + P0P1 − P0P2

= P0P1P2

(2x+ z

xz

)

+ P0P1 − P0P2

(D.4)

Note the term P0P1, i.e., matrix A1, is read only once. We also subtract the term P0P2 because

we assume that the first read of matrix R is not needed because it is initialized to 0. To reduce the

off-chip data transfers hA1
, the term (2x+ z)/xz should be minimized. The constraints on x and z

are 0 < x 6 P0 and 0 < z 6 P1. The objective is to minimize (2x+ z)/xz such that x ∗ z fits into

the shared memory M . The value of (2x+ z)/xz decreases as the value of x increases. Similar to

the analysis in Case 1, the minimum value of (2x+ z)/xz is found at z = 2x.

The shared memory capacity is M , xz = 2x2 must fit into M . i.e., x =
√

M/2 where x 6 P0

and z = 2x =
√
2M where z 6 P1. Substituting z = 2x in equation( D.4) and using the maximum

value of x given by x∗ =
√

M/2, we get h∗
A1

, the minimum off-chip data transfers required in the

case where the output matrix R is stored on-chip, as
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h∗
A1

= 2
√
2P0P1P2

1√
M

+ P0P1 − P0P2 (D.5)

Case 3: Store A2

One can also choose to keep the matrix A2 on-chip (shared memory), read matrix A1 as needed

(from off-chip memory), and read & write R (from off-chip memory). Similar to Case 2, we can

obtain a closed form solution for the total amount of off-chip data transfers as

h∗
A2

= 2
√
2P0P1P2

1√
M

+ P1P2 − P0P2 (D.6)

i.e., x =
√

M/2 where x 6 P0, and y =
√
2M where y 6 P2.

We would like to reiterate the fact that our problem formulation assumes that the problem sizes

are too large and the matrices do not fit in the on-chip memory. Therefore, note that the closed

form solution, h∗
A1

(and h∗
A2

), does not hold true for all problem sizes. Consider the case where

P1 = 1. The cubic term in h∗
A1

becomes quadratic and depending on the value of
√
M , the value

of h∗
A1

might become negative. This situation is not possible in our scenario where the problem

sizes are too large to fit matrices in the on-chip memory. To be more precise, we add a constraint

that the problem sizes must be greater than
√
M . This guarantees that h∗

A1
, and h∗

A2
are positive.

In the next section we extend this analysis to the case of multiplying 3 matrices.

D.3 Off-chip Data Movement for Two Matrix Multiplications

Let R = A1A2A3. By associativity, there are two ways to multiply these matrices: (A1A2)A3

and A1(A2A3). Note that there are two matrix multiplications involved and the closed form solu-

tions developed in the previous section can be applied to the first matrix multiplication to produce

an intermediate result and then to the second matrix multiplication. This method involves writ-

ing the intermediate result to the off-chip memory. We develop solutions that avoid off-chip data

movement for the intermediate result.

168



D.3.1 Option 1: R = (A1A2)A3

Let T = A1A2 be the intermediate result produced by multiplying the matrices A1 and A2.

Conventionally, this intermediate result is stored in the off-chip memory. However, this result can

be consumed as soon as it is produced — it is not necessary to write it to off-chip memory. Let us

see how.

The code structure for multiplying the matrices A1 and A2 to produce the intermediate result T

is shown in the Listing 2. The code structure for multiplying the intermediate result T with input

matrix A3 to produce the final answer R is shown in the Listing 3. We permute the loops j2 and

k2 as shown in the Listing 4. The outermost two loops in the Listings 2 and 4 can be fused to form

the code structure as shown in the Listing 5. The indices i1 in Listing 2 and i2 in the Listing 4 are

referred as i in Listing 5. Similarly, the indices j1 in Listing 2 and k2 in the Listing 4 are referred

as j in Listing 5.

Algorithm 2: T = A1 ∗ A2

for i1 ∈ 1, ..., P0 do

for j1 ∈ 1, ..., P2 do

for k1 ∈ 1, ..., P1 do

T [i1][j1]+ = A1[i1][k1] ∗ A2[k1][j1];
end

end

end

Algorithm 3: R = T ∗ A3

for i2 ∈ 1, ..., P0 do

for j2 ∈ 1, ..., P3 do

for k2 ∈ 1, ..., P2 do

R[i2][j2]+ = T [i2][k2] ∗ A3[k2][j2];
end

end

end
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Algorithm 4: R = T ∗ A3 (loop permutation)

for i2 ∈ 1, ..., P0 do

for k2 ∈ 1, ..., P2 do

for j2 ∈ 1, ..., P3 do

R[i2][j2]+ = T [i2][k2] ∗ A3[k2][j2];
end

end

end

Algorithm 5: R = (A1 ∗ A2) ∗ A3 (loop fusion)

for i ∈ 1, ..., P0 do

for j ∈ 1, ..., P2 do

for k1 ∈ 1, ..., P1 do

T [i][j]+ = A1[i][k1] ∗ A2[k1][j];
end

for j2 ∈ 1, ..., P3 do

R[i][j2]+ = T [i][j] ∗ A3[j][j2];
end

end

end

Figure D.5 shows the data movement requirements for the fused code in Listing 5. Consider

the tile sizes x, y, z, and z′ as shown in the figure D.5. The idea is to retain the x ∗ y patch of

the intermediate matrix T in the shared memory and consume it as soon as it is produced. This

means that we avoid writing the matrix T of size P0P2 to the global memory. The matrices A1, A2,

and A3 are read from the global memory. The output matrix R is read and written from the global

memory multiple times.

The number of data transfers required for computing the x ∗ y tile of the intermediate matrix T

is given by
P0

x
∗ P2

y
∗ P1

z
∗ (xz + yz). And the number of data transfers required to compute the

output matrix R is given by
P0

x
∗ P2

y
∗ P3

z′
∗ (2xz′ + yz′)− P0P3. Therefore, total data movement

cost of computing the output R = (A1A2)A3 via fusion is

hlc = P0P1P2
x+ y

xy
+ P0P2P3

2x+ y

xy
− P0P3 (D.7)
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Figure D.5: Data Movement for fused code: R = (A1A2)A3

Note that the terms z and z′ cancel out. Let P3/P1 = α. The problem sizes P3 and P1 are

greater than 0. Therefore, α > 0. Substituting P3/P1 = α, we get

hlc = P0P1P2
x+ y + 2αx+ αy

xy
− P0P3

= P0P1P2
(1 + 2α)x+ (1 + α)y

xy
− P0P3

(D.8)

Let (1 + 2α)/(1 + α) = α′ and observe that 1 < α′ < 2, sine α > 0. Substituting this in the

above equation

hlc = P0P1P2(1 + α)
α′x+ y

xy
− P0P3 (D.9)

In order to minimize the value of hlc, the term (α′x+y)/xy must be minimized. The constraints

are 1 6 α′ 6 2, 1 6 x 6 P0, and 1 6 y 6 P2. The objective function (α′x + y)/xy is minimum

at α′x = y, where xy fits the shared memory capacity of M , Therefore, x ∗ y = x(α′x) = α′x2
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must fit into the shard memory capacity (per threadblock), M , of the GPU. α′x2 = M , which gives

x =
√

M/α′ and y =
√
Mα′. Substituting these in the above equation D.9

h∗
lc =

2P0P1P2(1 + α)
√
α′

√
M

− P0P3 (D.10)

This gives us the closed form solution for minimum data movement requirement for fusing the

computation of left child T = (A1A1) with the second matrix multiplication with matrix A3. If

any of the problem sizes P1 or P2 are less than
√
M , the value for h∗

lc can be negative. Therefore,

the closed form solution h∗
lc holds true only for the case where problem sizes that are larger than

√
M . Next we show how the right child T = (A2A3) can be fused with the output R.

D.3.2 Option 2: R = A1(A2A3)

Let T = A2A3 be the intermediate result produced by multiplying the matrices A2 and A3. We

apply loop permutation and fusion techniques similar to the case of R = (A1A2)A3. The code

structure for multiplying the matrices A2 and A3 to produce the intermediate result T is shown in

the Listing 6. The code structure for multiplying the input matrix A3 with the intermediate matrix

T to produce the final output matrix R is shown in the Listing 7. We permute the loops i2 and k2

as shown in the Listing 8. The outermost two loops in the Listings 6 and 8 can be fused to form

the code structure as shown in the Listing 9. The indices i1 in Listing 6 and k2 in the Listing 8 are

referred as i in Listing 5. Similarly, the indices j1 in Listing 6 and j2 in the Listing 8 are referred

as j in Listing 9.

Algorithm 6: T = A2 ∗ A3

for i1 ∈ 1, ..., P1 do

for j1 ∈ 1, ..., P3 do

for k1 ∈ 1, ..., P2 do

T [i1][j1]+ = A2[i1][k1] ∗ A3[k1][j1];
end

end

end
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Algorithm 7: R = A1 ∗ T
for i2 ∈ 1, ..., P0 do

for j2 ∈ 1, ..., P3 do

for k2 ∈ 1, ..., P1 do

R[i2][j2]+ = A1[i2][k2] ∗ T [k2][j2];
end

end

end

Algorithm 8: R = A1 ∗ T (loop permutation)

for k2 ∈ 1, ..., P1 do

for j2 ∈ 1, ..., P3 do

for i2 ∈ 1, ..., P0 do

R[i2][j2]+ = A1[i2][k2] ∗ T [k2][j2];
end

end

end

Algorithm 9: R = A1 ∗ (A2 ∗ A3) (loop fusion)

for i ∈ 1, ..., P1 do

for j ∈ 1, ..., P3 do

for k1 ∈ 1, ..., P2 do

T [i][j]+ = A2[i][k1] ∗ A3[k1][j];
end

for k2 ∈ 1, ..., P0 do

R[k2][j]+ = A1[k2][i] ∗ T [i][j];
end

end

end

Figure D.6 shows the data movement requirements for the fused code in 9. Consider the tile

sizes x, y, z, and z′ as shown in the figure D.6. The idea is to retain the x ∗ y patch of the

intermediate matrix T in the shared memory and consume it as soon as it is produced. This means

that we avoid writing the matrix T of size P1P3 to the global memory. The matrices A1, A2, and
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A3 are read from the global memory. The output matrix R is read and written from the global

memory.
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Figure D.6: Data Movement for fused code: R = A1(A2A3)

The amount of data transfer required for computing the x ∗ y tile of the intermediate matrix T

is given by
P1

x
∗ P3

y
∗ P2

z
∗ (xz + yz). And the amount of data transfers required to compute the

output matrix R is given by
P1

x
∗ P3

y
∗ P0

z′
∗ (2yz′ + xz′)− P0P3. Therefore, total data movement

cost of computing the output R = (A1A2)A3 via fusion is
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hrc = P1P2P3
x+ y

xy
+ P0P1P3

x+ 2y

xy
− P0P3 (D.11)

Note that the terms z and z′ cancel out. Let P0/P1 = β. The problem sizes P0 and P1 are

greater than 0. Therefore, β > 0. Substituting P0/P1 = β, we get

hrc = P1P2P3
x+ y + βx+ βy

xy
− P0P3

= P1P2P3
(1 + β)x+ (1 + 2β)y

xy
− P0P3

(D.12)

Let (1 + 2β)/(1 + β) = β′ and observe that β′ lies between 1 and 2, since β > 0. Substituting

this in the above equation

hrc = P1P2P3(1 + β)
x+ β′y

xy
− P0P3 (D.13)

In order to minimize the value of hrc, the term (x+β′y)/xy must be minimized. The constraints

are 1 6 β′ 6 2, 1 6 x 6 P1, and 1 6 y 6 P3. The value of this hyperbola is minimized at x = β′y.

The objective function is given by (β′y+β′y)/y(β′y) = 2/y. The value of 2/y is minimized when

y is maximized. Therefore, we maximize the value of y such that x ∗ y = (β′y) ∗ y = β′y2

fits into the shard memory capacity (per threadblock), M , of the GPU. β′y2 = M , which gives

y =
√

M/β′ and x =
√
Mβ′. Substituting in the above equation D.13

h∗
rc =

2P1P2P3(1 + β)
√
β′

√
M

− P0P3 (D.14)

This gives us the closed form solution for fusing the right child T = (A2A3) with the output R.

In the next section, we discuss the state-of-the-art matrix chain ordering algorithm that minimizes

the total number of computations. The matrix chain ordering algorithm produces a minimum op-

count tree. We apply the technique of fusion to minimize data movement for this tree.

175



D.4 Optimal Parenthesization: Op Count

A sequence of matrices A1, A2, A3 . . . , An with problem sizes P0, P1, P2 . . . , Pn, are to be mul-

tiplied. Matrix multiplication is associative, therefore, there are many ways to parenthesize the

chain. The classic textbook dynamic programming algorithm seeks to find the parenthesization

that minimizes the total number of computations [61]. We refer to this algorithm as OP-opcount.

The algorithm is shown in Figure 10.

Algorithm 10: OP-opcount

Input : P [0...n] : matrix sizes
Output: opcount[i][j] : minimum number of computations required to compute the

subsequence Ai...j

split[i][j] : the value k that determines an optimal split for Ai...j

for i ∈ 1, ..., n do

opcount[i][i] = 0;
end

for l ∈ 1, ..., n− 1 do

for i ∈ 1, ..., n− l do

j = i+ l;
opcount[i][j] = ∞;
for k ∈ i, ..., j − 1 do

min_count = opcount[i][k] + opcount[k + 1][j] + P [i− 1] · P [k] · P [j];
if min_count < opcount[i][j] then

opcount[i][j] = min_count;
split[i][j] = k;

end

end

end

end

The OP-opcount algorithm builds a dynamic programming table that keeps the count of total

number of operations required to multiply the matrices. First, all the diagonal entries are set to 0

(i.e., opcount[i][i] = 0, 1 6 i 6 n). The cost of multiplying two consecutive matrices is computed,

opcount[i][i+1], 1 6 i 6 n−1. The cost is opcount[i][i+1] = opcount[i][i]+ opcount[i+1][i+

1] +P [i− 1] ·P [i] ·P [i+1], where the first two terms are 0. Using this information the minimum
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cost of multiplying three consecutive matrices is computed as

opcount[i][i+ 2] = min{opcount[i][i] + opcount[i+ 1][i+ 2] + P [i− 1] · P [i] · P [i+ 2],

opcount[i][i+ 1] + opcount[i+ 2][i+ 2] + P [i− 1] · P [i+ 1] · P [i+ 2]}.

This is repeated for all chains of sizes 1 to n. The value opcount[1][n] gives the minimum number

of computation required to multiply n matrices. The main observation is that opcount[i][j] depends

on opcount[i][k] and opcount[k + 1][j] for all i 6 k < j.

OP-opcount seeks to minimize the total number of computations required for multiplying a se-

quence of matrices. To the best of our knowledge we are not aware of any algorithm that minimizes

the cost of data transfers. In the next section we show how the closed form solution described in

Section D.1 can be used to minimize the total number of data transfers required for matrix chain

products.

D.5 Minimizing Data Movement for Minimum Op Count Tree

The Op-opcount algorithm minimizes the total number of computations (Op Count) required

for a given matrix chain product. After minimizing the Op Count, we want to minimize the total

number of off-chip data transfers to reduce energy consumption. Consider the following matrix

multiplication:

R = A1A2A3 (D.15)

with P0, P1, P2, P3 as the problem sizes. This can be parenthesized in two ways: (A1A2)A3

and A1(A2A3), because matrix multiplication is associative. Figure D.7 shows the data movement

requirements for the case R = (A1A2)A3. First the matrices A1 and A2 are multiplied, that

produces an intermediate matrix T . T is then multiplied with A3 to produce the output matrix R.

Again, from the solutions h∗
R, h∗

A1
, and h∗

A2
, it is clear that the total off-chip data movement is

minimized in the case where the output of the matrix multiplication is stored on-chip. Therefore,
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it is beneficial to store the intermediate matrix T and the output matrix R in the shared memory.

The total number of off-chip data transfers for R = (A1A2)A3 can be calculated as follows:

h(A1A2)A3
=

2P0P1P2√
M

+ P0P2 +
2P0P2P3√

M
+ P0P3 (D.16)

Similarly, for R = A1(A2A3) parenthesization the data movement is given by

hA1(A2A3) =
2P1P2P3√

M
+ P1P3 +

2P0P1P3√
M

+ P0P3 (D.17)

The total data transfers in D.16 and D.17 can vary based on the problem sizes. We now formu-

late an optimal parenthesization problem with data movement as the cost metric for matrix product

chains. Our formulation is similar to the classic dynamic programming formulation explained in

Section D.3.2 with op count as the cost metric.

For a sequence of matrices A1, A2, A3, . . . , An to be multiplied, given their problem sizes

P0, P1, P2, . . . , Pn, we first use the Op-opcount algorithm to find a parenthesization that mini-

mizes the total number of computations. Let this tree be called OpTree. We apply the following

objective function to this tree to minimize the total off-chip data transfers.

S(i, j) =















0, if i = j

S(i, k) + S(k + 1, j) +
2P [i− 1]P [k]P [j]√

M
+ P [i− 1] · P [j], otherwise

(D.18)

The optimal split value of k for subsequence Ai...j is obtained from split[i][j] table produced

by Op-opcount algorithm. We build an algorithm, OP-DM (OP refers to Optimal Parenthesization

and DM refers to Data Movement), that calculates the total number of off-chip data transfers using

the equation D.18.

The OP-DM algorithm (see algorithm 11) builds a table that keeps the count of minimum

number of data transfers required to multiply the matrices. First, all the diagonal entries are set

to 0 (i.e., table[i][i] = 0, 1 6 i 6 n). Then the cost of multiplying two consecutive matrices is
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Figure D.7: Data Movement for Matrix Product Chains, R = (A1A2)A3
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computed, table[i][i+1], 1 6 i 6 n−1. The cost is table[i][i+1] = table[i][i]+table[i+1][i+1]+

2P [i− 1] · P [i] · P [i+ 1]√
M

+P [i− 1] ·P [i+1]. The cost of table[i][i] + table[i+1][i+1] is 0. So

the total data movement cost for multiplying any two adjacent matrices(Ai and Ai+1) is given by
2P [i− 1] · P [i] · P [i+ 1]√

M
+P [i−1] ·P [i+1]. Using this information the cost of multiplying three

consecutive matrices is computed using the values from split[i][j] table. This process is repeated

for all chains of sizes 1 to n. The value at table[1][n] gives the minimum number of data transfers

required to multiply n matrices.

Algorithm 11: OP-DM

Input : P [0...n] : matrix sizes
M : size of on-chip memory
split[i][j] : the value k that determines optimal split for Ai...j using Op-opcount

Output: table[i][j] : minimum number of off-chip data transfers required to compute the
subsequence Ai...j

for i ∈ 1, ..., n do

table[i][i] = 0;
end

for i ∈ 1, ..., n− 1 do

for j ∈ 1, ..., n− 1 do

k = split[i][j];

table[i][j] = table[i][k] + table[k + 1][j] +
2P [i− 1] · P [k] · P [j]√

M
+ P [i− 1] · P [j];

end

end

A further reduction in the data movement is possible for matrix product chains. The savings can

be obtained if the intermediate result is not stored in the off-chip memory. Next section describes

this in detail.

D.6 Hyper-node Parenthesization of Minimum Op Count Tree

The Op-opcount algorithm minimizes the total number of computations (Op Count) required

for a given matrix chain product. After minimizing the Op Count, we want to minimize the to-

tal number of off-chip data transfers to reduce energy consumption. With the code structures in
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Listings 5 and 9, it is possible to consume the intermediate values of T [i][j] as soon as they are

produced and bypass writing the intermediate matrix T to the off-chip memory. We apply these

loop fusion techniques to a given Minimum Op Count Tree for matrix chain products and formulate

an algorithm to minimize the global cost of data movement. This involves identifying two matrix

multiplications (Two MM) that produce fused hyper-nodes in a Minimum Op Count Tree.

Given a Minimum Op Count Tree for a sequence of matrix products A1, A2, A3, . . . , An with

problem sizes P0, P1, P2, . . . , Pn, the problem is to minimize the off-chip data movement for this

given tree. Let this Minimum Op Count Tree be called OpTree.

At every intermediate node in this OpTree, we have three choices: either fuse the node with its

left child, or fuse the node with its right child, or do not fuse at all. We call this Local Decision.

Recall, fusion means we consume the left/right child (intermediate matrix) as soon as it is com-

puted and that the intermediate matrix is never written to the off-chip memory. Note that the fusion

technique can be applied only to the intermediate nodes. The leaf nodes are the input matrices and

have to be read from the off-chip memory. We develop a set of three local costs (one for each case:

no fusion, fuse left, fuse right) for every intermediate node in the OpTree.

Let w(i, j) be the cost of writing the node 〈i, j〉 to the off-chip memory. While making a local

decision, we do not want to consider the cost of writing the node 〈i, j〉 to the off-chip memory.

Therefore, w(i, j) can be computed as

w(i, j) =















0, if i = j

Pi−1 · Pj, otherwise

(D.19)

When i = j, the node is a leaf, that means it is an input matrix which is not written to the off-chip

memory.

The data transfer cost for the case where an intermediate node 〈i, j〉 is not fused with either of

its children is

hp(i, j) = w(i, k) + w(k + 1, j) +
2Pi−1 · Pk · Pj√

M
(D.20)
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where, the first term is the cost of writing the node 〈i, k〉 to the off-chip memory. Similarly, the

second term is the cost of writing the node 〈k + 1, j〉 to the off-chip memory. And, the third term

is the data movement cost of computing 〈i, j〉 but not writing it out to the off-chip memory. The

third term is derived from the closed form solution of equation D.3.

Figure D.8 shows fusion options. The black nodes represent the nodes that are written to (and

read from) the off-chip memory. A red edge represents the fusion edge. This means the child stays

on chip.

The data movement cost for the case when the node 〈i, j〉 is fused with its left child 〈i, k〉 is

hl(i, j) = w(i, k1) + w(k1 + 1, k) + w(k + 1, j) +
2Pi−1 · Pk1 · Pk(1 + α)

√
α′

√
M

− 2w(i, j)

(D.21)

where α = Pj/Pk1 and α′ = (1 + 2α)/(1 + α). The first three terms are the cost of writing the

nodes 〈i, k1〉, 〈k1 + 1, k〉, and 〈k + 1, j〉 to the off-chip memory. The fourth and the fifth terms are

derived from the closed form solution D.10 from the Section D.2. Note that we subtract w(i, j)

twice. We subtract the cost of initial read of the intermediate node 〈i, j〉 because we assume it

is initialized to 0. See Figure D.8(b), the nodes 〈i, k1〉, 〈k1 + 1, k〉 and 〈k, j〉 are read from the

off-chip memory.

Similarly, the data movement cost for the case(See Figure D.8(c)) when the node 〈i, j〉 is fused

with the right child 〈k + 1, j〉 is given by

hr(i, j) = w(k + 1, k2) + w(k2 + 1, j) + w(i, k) +
2Pk · Pk2 · Pj(1 + β)

√
β′

√
M

− 2w(i, j) (D.22)

where β = Pi−1/Pk and β′ = (1+2β)/(1+β). The first three terms are the cost of writing the

nodes 〈k + 1, k2〉, 〈k2 + 1, j〉, and 〈i, k〉 to the off-chip memory. The fourth and the fifth terms are

derived from the closed form solution in equation D.14. Again, we subtract w(i, j) twice because

we do not consider the cost of writing the node 〈i, j〉 to the off-chip memory in the local cost. See

Figure D.8(c), the nodes 〈i, k〉, 〈k, k2〉 and 〈k2 + 1, j〉 are read from the off-chip memory.
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⟨ i , j ⟩

⟨ i , k ⟩ ⟨ k + 1, j ⟩

hp(i, j) =     (i) write T(i, k)

+  (ii) write T(k+1, j)

+ (iii) cost of computing T(i, j)

⟨ i , j ⟩

⟨ i , k ⟩ ⟨ k + 1, j ⟩

hl(i, j) =       (i) write T(k+1, j)

+  (ii) cost of computing left fused version of

T(i, j) =  ( T(i, k1) T(k1+1, k) )   T(k+1, j) 

⟨ i , j ⟩

⟨ i , k ⟩ ⟨ k + 1, j ⟩

hr(i, j) =        (i) write T(i, k)

+  (ii) cost of computing right fused version of 

T(i, j) =  T(i, k)  ( T(k, k2) T(k2+1, j) )

(a) No Fusion

(b) Fuse with left child

(c) Fuse with right child

⟨ i , k1 ⟩ ⟨ k1 + 1, k ⟩

⟨ k +1, k2 ⟩ ⟨ k2 +1, j ⟩

Figure D.8: Local data movement cost of computing the intermediate node T 〈i, j〉.

Next, we calculate the total data movement cost of computing an intermediate node T 〈i, j〉.

The goal is to minimize the total data movement cost for this sub-tree. Consider a sub-tree (of

seven nodes) of a given OpTree, as shown in figure D.9. For this sub-tree, we have the following

options: (a) do not fuse any edge, (b) fuse one of the 1 − 6 edges, or (c) fuse two of the 1 − 6

edges. In the case where we want to fuse two edges, all combinations of 1− 6 are not legal. If we
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decide to fuse an edge then no adjacent edge can be fused. For e.g., it is not legal to fuse the edges

1 and 5. Fusing both 1 and 5 means that we have three matrix multiplications to be fused, and is

not legal as discussed in Section D.2. Therefore, the only legal choices are {1, 3}, {1, 4}, {1, 6},

{2, 3}, {2, 4}, {2, 6}, {3, 5}, and {4, 5}. Moreover, it is not legal to fuse three or more edges in

1− 6.

For an intermediate node 〈i, j〉, we develop a set of three total costs (i.e., for the entire sub-tree

rooted at 〈i, j〉) as follows. The total off-chip data movement cost, Fp(i, j), when node T 〈i, j〉 is

not fused, the total data movement cost, Fl(i, j), when node T 〈i, j〉 is fused with its left child, and

the total data movement cost, Fr(i, j), when node T 〈i, j〉 is fused with its right child. And finally,

let F (i, j) be the minimum global cost of computing the subsequence Ai...j , defined as

F (i, j) =































































0, if i = j

Fp(i, j), if i = k and k+1 = j

min(Fp(i, j), Fr(i, j)), if i = k

min(Fp(i, j), Fl(i, j)), if k+1 = j

min(Fp(i, j), Fl(i, j), Fr(i, j)), otherwise

(D.23)

We now set up recurrences for each of these functions. The value of Fp(i, j) is computed as

Fp(i, j) = F (i, k) + F (k + 1, j) + hp(i, j) (D.24)

Equation D.24 computes the minimum cost of data movement considering all the possible cases

when the node 〈i, j〉 is not fused with any of its two children. It considers all the possibilities where

the edges 5 and 6 are not marked as fused.

Consider the case when the edge 5 is marked as fused. In this case, the node 〈i, k〉 is not

available for fusion with its children and must be free. However, the node 〈k + 1, j〉 is available

for fusion. The minimum total data movement cost for when edge 5 is fused can be computed as
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⟨ i , k ⟩ ⟨ k +1 , j ⟩

⟨ i , j ⟩

⟨ i , k1 ⟩ ⟨ k1 +1, k ⟩ ⟨ k +1 , k2 ⟩ ⟨ k2 +1 , j ⟩

Figure D.9: Global Data Movement Cost.

Fl(i, j) = F (i, k1) + F (k1 + 1, k) + F (k + 1, j) + hl(i, j) (D.25)

Similarly, the minimum total cost of data movement for when edge 6 is marked as fused can

be computed as

Fr(i, j) = F (i, k) + F (k + 1, k2) + F (k2 + 1, j) + hr(i, j) (D.26)

The root of the OpTree is at i = j = n and is the final output that is written to the off-chip

memory. Therefore, the global data movement cost will be F (1, n)+ = P0Pn.

D.7 Reduction in Data Movement

Consider the matrix sequence {936, 1008, 552, 368, 1016, 616, 544} with n = 6 matrices and

shared memory capacity of M = 65536. OP-opcount algorithm generates the parenthesization

((A[1](A[2]A[3]))((A[4]A[5])A[6])) with minimum op-count of 1092977664. The tree is shown in
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A1 A2 A3 A4 A5 A6

T1 T2

T3 T4

T5

Figure D.10: Minimum Op Count Tree for the example.

hp hl hr Fp Fl Fr F Fusion tile size 

x

tile size 

y

T1 16 – – 16 – – 16 – 256 256

T2 18 – – 18 – – 18 – 256 256

T3 31 – 31 47 – 31 31 fuse-right (T1 – T3) 312 210

T4 12 28 – 30 28 – 28 fuse-left (T2 – T4) 220 296

T5 20 44 40 79 88 89 79 no fuse 256 256

Figure D.11: Calculating data movement cost of the intermediate nodes of the minimum Op-Count Tree in
figure D.10. All values(except tile sizes) are multiples of 104.

figure D.10. For this Op-Count Tree, the total data movement cost of single matrix multiplication

recurrence S in equation D.18 is 10, 190, 344. For this Op-Count Tree, let us apply the fused two

matrix multiplication recurrence F (i, j). The values of hp, hl, hr, Fp, Fl, Fr, and F are shown in

the table D.11. All the values are multiples of 104. The value Fp cost of the node T5(highlighted in

red) is given by the F cost of T3, F cost of T4, and hp cost of T5, i.e., Fp〈T5〉 = 31+28+20 = 79.

The value Fl cost of the node T5(highlighted in green) is given by the F cost of T1, F cost of

T4, and hl cost of T5, i.e., Fl〈T5〉 = 16 + 28 + 44 = 88. Similarly, the Fr of T5 is calculated as

18+31+40 = 89. The total data movement cost of F (1, 6) is 7, 882, 874+509, 184 = 8, 392, 058.
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The reduction in total off-chip data transfers using F (1, 6) compared to S(1, 6)(recurrence D.18)

is 17.6%.

A1 A2 A3 A4 A6

Fr (T3) Fl (T4)

Fp (T5)

A5)  (( )

( 312, 210 ) ( 220, 296 )

( 256, 256 )

Figure D.12: Minimum Op Count Tree with hyper-nodes (fused nodes) for the example.

The minimum op-count tree with fused nodes is shown in Figure D.12. Note, there are only 3

intermediate nodes in this hyper-node tree. The nodes T3 and T4 are the hyper-nodes with right-

fuse and left-fuse Two MM operations. In general, every node in the hyper-node tree can have two

or three children. Any node with three children cannot have a child with more than two children.

The tile sizes used for computing the intermediate nodes(including the root) are as follows. For

the nodes with the minimum cost F (i, j) = Fp(i, j), the tile sizes are x = y =
√
M = 256. For

the hyper-nodes that have minimum cost F (i, j) = Fr(i, j) or F (i, j) = Fl(i, j), the tile sizes

are based on the values of α′ and β′. For our example, the tile sizes for nodes T3 and T4 are

{x = 312, y = 210} and {x = 220, y = 296} respectively.

For lengths n = {2, 3, 4, . . . , 20}, we generate 1, 000 instances for each length of matrix chains.

We apply the recurrences S(1, n)(equation D.18) and F (1, n)(equation D.23) to produce the total

cost of data transfers. For on-chip memory capacities of M = 64KB and M = 96KB, the

average % improvement in the data transfer cost of F over S is 9.44% and 13.27% respectively.

The average, minimum, and maximum % improvement in the data transfer cost across chains of

different lengths are listed in Table D.1. Observe that the % reduction in the data movement cost
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Table D.1: Reduction(%) in total off-chip data transfers for matrix sequences.

M = 64KB M = 96KB

n Average Min Max Average Min Max

2 0.00 0.00 0.00 0.00 0.00 0.00
3 6.58 0.00 46.93 10.30 0.00 50.11
4 7.67 0.00 47.36 10.76 0.00 41.48
5 8.31 0.00 33.65 12.16 0.00 36.00
6 8.81 0.00 37.63 12.68 1.32 38.20
7 8.97 0.00 33.47 12.68 2.36 32.71
8 9.57 0.35 31.22 13.21 3.20 31.64
9 9.49 0.49 28.76 13.45 1.75 32.30
10 9.55 0.63 27.37 13.59 3.10 31.01
11 9.86 1.26 25.78 13.73 3.65 30.75
12 9.90 1.03 25.43 13.95 4.04 30.39
13 9.87 1.39 24.20 13.78 4.80 31.61
14 9.80 1.74 27.68 13.88 4.30 30.83
15 10.14 1.48 26.45 14.09 4.88 29.95
16 10.26 1.65 24.00 14.23 4.77 28.54
17 10.15 1.11 24.45 14.17 4.14 32.21
18 10.29 1.72 25.38 13.81 4.93 27.10
19 10.20 2.30 24.21 14.32 5.86 30.94
20 10.53 2.43 23.97 14.14 5.65 28.26

9.44 0.00 47.36 13.27 0.00 50.11
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Table D.2: Tile sizes and closed form solutions for Single MM.

On-chip tile size 1 tile size 2 data transfers

Output x =
√
M y =

√
M h∗

R =
2P0P1P2√

M
+ P0P2

Input 1 x =
√

M/2 z =
√
2M h∗

A1
=

2
√
2P0P1P2√

M
+ P0P1 − P0P2

Input 2 x =
√

M/2 y =
√
2M h∗

A2
=

2
√
2P0P1P2√

M
+ P1P2 − P0P2

Table D.3: Tile sizes and closed form solutions for Two MM.

tile size x tile size y data transfers

left fuse
√

M/α′
√
Mα′ h∗

lc =
2P0P1P2(1 + α)

√
α′

√
M

− P0P3

right fuse
√
Mβ′

√

M/β′ h∗
rc =

2P1P2P3(1 + β)
√
β′

√
M

− P0P3

decreases as the chain length increases. Also, the higher the on-chip memory capacity the more

the savings in data transfers(expected).

D.8 Conclusion

We present techniques that minimize off-chip data transfers for single matrix multiplication and

fused two matrix multiplications. These techniques consist of closed form solutions that minimize

off-chip data transfers. Problem sizes and on-chip memory capacity are the inputs. The outputs

are respective tile sizes and total off-chip data transfers. Table D.2 and D.3 show these tile sizes

and closed form solutions for Single MM and Two MM.

We also present two ways to minimize the global data movement for a matrix chain prod-

ucts. Using the closed form solutions for Single MM and Two MM, the recurrences S(i, j) (equa-

tion D.18) and F (i, j) (equation D.23) minimize the off-chip data transfers for a given minimum

op-count tree. Using these recurrences, we show that off-chip data transfers can be reduced by 9%

(and 13%) on average for architectures with 64KB (and 96KB) of on-chip memory capacity.
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