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ABSTRACT 
 
 
 

PHARMACOLOGICAL CHARACTERIZATION OF LOSARTAN AS A CCR2 

ANTAGONIST AND PRE-CLINICAL AND PHARMACODYNAMIC ASSESSMENT AS A 

POTENTIAL ANTI-METASTATIC THERAPY  

 

 Metastasis is the leading cause of cancer-related mortality, and remains a major 

hurdle in improving patient outcomes. Initial first line therapies in cancer patients, such 

as curative-intent surgery and adjuvant chemotherapy, are often highly successful, with 

excellent 5-year survival rates for the majority of patients. Despite this, many of these 

individuals are still at an elevated lifetime risk for the eventual development of 

metastasis. For example, 5-year survival rates for patients who present with localized 

breast or colorectal cancer are ~ 99% and 90%, respectively, yet 30-50% of these 

individuals eventually go on to develop disseminated disease. Thus, there remains a 

critical need for the development of therapies which target the metastatic process. 

Inflammatory monocytes (IMs), and their derivatives, metastasis-associated 

macrophages (MAMs), have been shown to play key roles in cancer metastasis through 

promotion of tumor cell extravasation, growth, and angiogenesis, in numerous pre-

clinical mouse models. Furthermore, substantial clinical data demonstrating the 

prognostic importance of monocytes and tumor-associated macrophages in various 

human malignancies have validated these pre-clinical findings. Migration of IMs to sites 

of metastasis is mediated primarily via the action of the CCL2-CCR2 chemotactic axis.  

Thus, disruption of this axis represents an attractive therapeutic target for the treatment 
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of metastatic disease. Losartan, an angiotensin II type 1 receptor (AT1R) antagonist, 

has been previously reported to have immunomodulatory properties in models of 

atherosclerosis and autoimmune encephalomyelitis, via suppression of monocyte and 

macrophage mediated inflammation; however, the exact mechanism of this effect has 

not been fully elucidated. In addition, the potential anti-metastatic effects of losartan, via 

modulation of monocyte and macrophage responses to tumors, has not been evaluated.  

To this point, and based on preliminary results of an in silico CCR2 homology 

model used to screen for small molecule antagonists, we undertook studies to 

pharmacologically characterize losartan as a potential CCR2 antagonist, and assess its 

ability to inhibit CCL2-CCR2 mediated monocyte recruitment, which are described in 

Chapter 2. Results of these studies demonstrated that both losartan and its primary 

metabolite (EXP-3174) potently inhibit CCL2-CCR2 dependent human and murine 

monocyte recruitment at clinically relevant doses. Furthermore, using G-protein coupled 

receptor function assays, we characterized the effects of losartan and EXP-3174 on 

CCL2 ligand binding and post-receptor signal transduction pathways stimulated by 

CCL2. Our findings suggest that both losartan and EXP-3174 function as 

noncompetitive antagonists of human, canine, and mouse CCR2. Based on its CCR2 

antagonist properties, we also assessed the potential of losartan to be re-purposed as 

an anti-metastatic therapy in experimental metastasis models of breast and colon 

cancer, which showed that losartan significantly slowed metastatic progression in a 

process that was associated with blockade of inflammatory monocyte recruitment and 

reduction in metastasis-associated macrophages. Taken together, these studies 

suggest that losartan and its primary metabolite might represent a novel class of safe 
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and already-FDA approved, noncompetitive CCR2 antagonists, with potential to be 

rapidly repurposed for the treatment of metastatic disease. 

While recent developments in human oncology have dramatically increased the 

relevance of immunotherapy as a new treatment modality, further progress in this field 

would be greatly accelerated by the ability to assess immune-based therapies in the 

more translationally relevant spontaneous canine cancer model. However, even a basic 

knowledge of the immune landscape of common canine tumor types is currently lacking, 

and to date, there has been little investigation into the role of monocytes in the 

regulation of canine tumor metastasis. This lack of foundational descriptive studies 

critically hinders appropriate tumor-type (target) selection, potentially precluding 

informed clinical evaluation of these drugs, such as losartan.  

Therefore, in the studies presented in Chapter 3, we investigated the potential 

role of CCL2-CCR2 mediated monocyte recruitment in the regulation of tumor 

metastasis in dogs. To address this question, we performed immunohistochemistry for 

detection of CD18+ mononuclear cells to determine the degree of monocyte infiltration 

in pulmonary metastases of several common biologically aggressive and highly 

metastatic tumors of dogs, including hemangiosarcoma (HSA), osteosarcoma (OSA), 

melanoma, and transitional cell carcinoma. We found that compared to other tumor 

types, HSA and OSA metastases had significantly greater infiltration of CD18+ myeloid 

cells. In vitro assays confirmed that HSA and OSA cells were among the strongest at 

stimulating monocyte migration, and were also found to be the highest producers of the 

monocyte chemoattractant CCL2. Antibody-mediated neutralization of CCL2 in tumor-

conditioned media significantly reduced the monocyte recruiting ability of HSA and OSA 
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cells in vitro. In addition, HSA and OSA metastases were found to produce large 

amounts of CCL2, compared to other tumor metastases, and CCL2 was found to be 

significantly elevated in the serum of hemangiosarcoma-bearing dogs as compared to 

healthy control dogs. Our results implicate a potential unique role for CCL2-CCR2 

mediated monocyte recruitment in promoting hemangiosarcoma, and to a lesser 

degree, osteosarcoma metastasis in dogs. These findings are consistent therefore with 

the hypothesis that overexpression of CCL2 and recruitment of large numbers of 

monocytes may explain in part the highly aggressive metastatic nature of these canine 

tumor types. Furthermore, these results provide a rational basis for the assessment of 

monocyte-targeted therapies in dogs with these cancers.  

Lastly, in Chapter 4, we assessed the clinical effects of losartan, based on its 

demonstrated inhibitory activity against CCL2-CCR2 monocyte recruitment, together 

with toceranib (Palladia), a drug known to deplete T regulatory cells (Tregs) in dogs, as 

a novel immunotherapy combination in a Phase I/II trial in dogs with spontaneous 

osteosarcoma pulmonary metastases. We initially screened this drug combination in a 

mouse osteosarcoma experimental metastasis model, which demonstrated synergistic 

activity of these drugs in combination. Utilizing in vitro monocyte chemotaxis assays, we 

identified a target losartan dose predicted to inhibit canine monocyte migration. For the 

clinical studies, we performed losartan pharmacokinetic analysis for 3 separate dose 

cohorts of 1mg/kg, 2.5mg/kg, and 10mg/kg in healthy and tumor bearing dogs, as well 

as monitored pharmacodynamic responses via ex-vivo monocyte chemotaxis, changes 

in plasma CCL2 concentrations, and flow cytometric evaluation of pre- and post-

treatment changes in peripheral blood Tregs and monocytes. In addition, we quantified 
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changes in serum cytokines associated with angiogenesis (VEGF), and effector T cell 

responses (IFN). Results of these studies identified a clinically achievable dose of 

losartan which effectively inhibited ex vivo CCL2-directed canine monocyte migration. 

This final dose (10mg/kg) was 10 times higher than the conventionally used dose for the 

treatment of glomerular disease in dogs, yet was found to be safe and well-tolerated in 

these dogs. The objective response rate (ORR) was greater for dogs in the 10mg/kg 

(n=8) vs 1mg/kg losartan cohorts (n=8), while median progression-free survival (PFS) 

and biological response rate were similar for both cohorts. In the 10 mg/kg cohort, 2/8 

dogs experienced a partial response (PR), for an ORR of 25%, and a biologic response 

rate of 37.5% (including 1 dog with stable disease, SD). No objective responses were 

observed in the 1mg/kg cohort (0/8), while the biologic response rate was 37.5% (3 

dogs with SD). Median PFS was 42.5 days in 10mg/kg cohort, and 61 days in the 

1mg/kg cohort. Furthermore, we observed evidence of modulation of systemic tumor 

immune suppression in these dogs, with post-treatment increases in absolute numbers 

of peripheral blood CD4+ and CD8+ T cells, and reductions in peripheral blood myeloid 

cells, which were associated with longer progression-free survival. 

In conclusion, these studies describe the pharmacological and pre-clinical 

characterization of losartan as a repurposed CCR2 antagonist and potential anti-

metastatic therapy. Furthermore, through retrospective histopathological and 

immunohistochemical analyses, as well as in vitro assays utilizing canine tumor cell 

lines, we provide foundational descriptive data which provide a rational basis for the 

evaluation of monocyte-targeted therapies in distinct canine tumor types. In addition, we 

highlight the importance of pharmacokinetics and pharmacodynamics for dose 
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optimization in translational chemokine antagonist drug development, and utilized 

pK/pD studies to optimize losartan dosing for inhibition of canine monocyte migration 

and evaluation as a novel immunotherapy in dogs with spontaneous metastatic disease.  
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CHAPTER 1 

Review of the literature 

 

Monocyte and macrophage development and biology 

 Monocytes are an innate immune cell subset which under normal physiological 

conditions play key roles in tissue homeostasis and inflammatory responses. Monocytes 

are produced in the bone marrow from hematopoietic progenitor cells, and progress 

through a developmental pathway involving common myeloid progenitor cells (CMPs), 

granulocyte-macrophage progenitor cells (GMPs), and macrophage-dendritic cell 

progenitors (MDPs) (1). At each of these stages, loss of pluripotency and further 

myeloid lineage commitment occurs, and current knowledge suggests that these steps 

are governed by the Ets family transcription factor PU.1, as well as signaling through 

the macrophage colony stimulating factor receptor (M-CSFR, CD115) (1).  

 Following their development, monocytes exit the bone marrow and enter the 

bloodstream where they temporarily reside and circulate (2). Blood monocytes exist in 

primarily two distinct subsets, categorized based on their cell surface expression of 

chemokine receptors (3). The first subset, which in mice is defined by CD11b and 

Ly6C++ expression, and in humans CD14++/CD16- expression, are termed inflammatory 

or classical monocytes, respectively (hereinafter jointly referred to as inflammatory 

monocytes) (2). In both humans and mice, these inflammatory monocytes express high 

levels of the chemokine receptor CCR2 which mediates their emigration from the bone 

marrow and into sites of peripheral tissue inflammation (4). The other primary subset of 

blood monocytes, termed steady-state/patrolling monocytes in mice, or non-
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classical/patrolling monocytes in humans (hereinafter jointly referred to as patrolling 

monocytes), are defined by Ly6Clow and CD16++ expression, respectively (2, 3). This 

patrolling monocyte subset expresses low levels of CCR2 but high levels of the 

chemokine receptor CX3CR1 (3, 5). Interestingly, Swirksi et al. have demonstrated that 

besides the blood and bone marrow, the spleen serves as a significant reservoir for 

both inflammatory and patrolling subsets of monocytes, which upon inflammation or 

tissue injury can be rapidly deployed to peripheral tissues (6).  

Distinct signaling cues coordinated by interactions between chemoattractant 

cytokines (chemokines), and their aforementioned cognate receptors expressed on the 

surface of monocytes, induce their migration into tissues (2, 7). Monocyte migration into 

tissues occurs in both normal tissue homeostasis as well as in response to 

inflammation, whereby these cells differentiate into various macrophage and dendritic 

cell (DC) populations (2). Migration of inflammatory monocytes into peripheral sites of 

infection or tissue injury is primarily controlled by the chemokines CCL2 and CCL7, via 

signaling through the chemokine receptor CCR2 (8). CCL2 is produced by almost all 

nucleated cells in the body, and is typically upregulated in response to various pro-

inflammatory cytokines or microbial or tissue-damage by products acting on innate 

immune receptors such as toll-like receptors (9, 10). In contrast, recruitment of patrolling 

monocytes into tissues is mediated by the chemokine CX3CL1 (11). 

To maintain normal tissue homeostasis, these monocyte subsets migrate into 

peripheral tissues and serve to replenish depleted tissue macrophage and dendritic cell 

subsets, including microglial in the central nervous system, Langerhan’s cells in the 

skin, and interdigitating DCs of the intestinal lamina propria (2). In addition, at sites of 



 

 3 

inflammation, depending on the inflammatory cytokine milieu and tissue danger signals 

present, monocytes can differentiate into what have conventionally been termed 

classically-activated (M1) macrophages, or alternatively-activated (M2) macrophages 

(12). For the sake of simplicity, in this review, I will describe the differences in 

macrophage subsets based on this conventional paradigm; however, recent 

advancements in our understanding of macrophage biology suggest that these cells 

maintain a far greater degree of plasticity and diversity in their functional responses than 

previously thought (12). Classically activated (M1) macrophages are predominately 

thought to develop in response to a combination of two inflammatory signals, IFN- and 

TNF- (7, 12). This combination of cytokines has been demonstrated to result in a 

macrophage population with enhanced production of pro-inflammatory cytokines and 

increased microbicidal and tumoricidal capabilities (7, 13). Specifically, M1 

macrophages produce abundant amounts of reactive oxygen species, as well as the 

cytokines IL-1, IL-6, TNF-, IL-12, IL-17, and IL-23 (7, 13). Thus, in the inflammatory 

microenvironment, these M1 macrophage derived cytokines direct the differentiation of 

naïve T cells towards the more pro-inflammatory Th1 and Th17 subsets (7, 13).  

Conversely, alternatively-activated M2 macrophages, are associated with 

functions of immune suppression and tissue healing, including promotion of fibrosis and 

angiogenesis (7, 12, 13). Differentiation of macrophages towards an M2 phenotype has 

been shown to occur in vitro through treatment with the Th2 related cytokines IL-4 and 

IL-13, engagement of Fc or toll-like receptors, or in response to the anti-inflammatory 

cytokines TGF- and IL-10 (7, 13). Subsequently, these cells are characterized by a 

significantly skewed cytokine profile towards the production of anti-inflammatory 
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molecules like TGF- and IL-10, pro-angiogenic cytokines like VEGF, and minimal 

production of the pro-inflammatory cytokines IL-12 and IL-23 (7, 13). Another important 

feature of M2 macrophages is the induction of significant arginase activity in these cells, 

allowing them to metabolize arginine into ornithine, an important pre-cursor for collagen 

synthesis, thus highlighting their critical role in extracellular matrix remodeling following 

inflammation-mediated tissue damage (12). 

 

The role of monocytes, macrophages, and CCL2-CCR2 signaling in tumor 

progression and metastasis 

It is now known that the tumor microenvironment is composed of highly 

heterogeneous populations of both stromal and immune cells, including monocytes and 

macrophages, whose diverse functions serve a collective purpose to predominately 

promote tumor growth and progression (14, 15). In addition, the multi-step process of 

tumor metastasis, in which tumor cells leave a primary tumor, invade and migrate 

through an extracellular matrix, intravasate into the bloodstream, and subsequently 

arrest, extravasate and grow at a metastatic site, is governed by intricate, overlapping 

interactions between tumor cells, immune cells, and their surrounding host environment 

(16). Recent studies have demonstrated that similar cellular components and secreted 

factors of the primary TME also play critical roles in conditioning secondary sites of 

metastasis, creating a favorable environment for both the recruitment of immune cells 

as well as subsequent colonization by disseminated tumors cells (15, 17).The CCL2-

CCR2 signaling axis has been demonstrated to play numerous vital roles in both tumor 

cell intrinsic and extrinsic processes of the metastatic cascade (18). CCL2 is produced 
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by both tumor and stromal cells, including fibroblasts and endothelial cells, in both 

primary tumors and metastatic sites (19, 20). Autocrine CCL2-CCR2 signaling in 

multiple cancer cells types has been shown to stimulate their proliferation through 

PI3K/Akt signaling, as well as induce their migration and invasion, either directly through 

CCR2-induced activation of Rac GTPase, or indirectly through the induction of matrix 

metalloproteinase (MMP) production by tumor cells (21-23). More well documented are 

the extrinsic tumor-promoting effects of CCL2-CCR2 signaling in the tumor 

microenvironment. CCL2 production by tumor cells has been associated with the 

recruitment of CCR2-expressing inflammatory monocytes to primary tumors, as well as 

their subsequent polarization into a growth promoting (M2) tumor-associated 

macrophage (TAM) phenotype associated with immune suppression and promotion of 

angiogenesis and tumor cell intravasation (24, 25).  In addition, the CCL2-CCR2 axis 

has been heavily implicated in the process of metastatic colonization. In pre-clinical 

mouse models of breast and colorectal cancer metastasis, it has been demonstrated 

that CCR2 expressing inflammatory monocytes are preferentially recruited early on to 

metastatic sites of the lung and liver, as early as 24 hours after the arrival of tumor cells, 

via tumor and stromal cell-mediated production of CCL2 (19, 26). Once present at 

metastases, these monocytes can differentiate into metastasis-associated 

macrophages (MAMs), which have been shown to play essential roles in metastatic 

colonization via promotion of tumor cell extravasation, growth, and angiogenesis 

through mechanisms associated with production of soluble factors such as VEGF, or 

the direct engagement of VCAM-1 on metastatic tumor cells (19, 27-29). More recently, 

it has been demonstrated that CCL2 signaling plays a critical role in the retention of 
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these MAMs within the metastatic site. CCL2 signaling through CCR2 expressed on 

MAMs induced their production of another chemokine CCL3, which through its 

interactions with its receptor CCR1, retains these cells within the metastatic lung (30).  

Substantiating these seminal observations in mice, and providing direct clinical 

evidence supporting a role for inflammatory monocytes in tumor progression in humans 

are multiple studies demonstrating that pre-treatment elevations in peripheral blood 

monocyte count and serum CCL2 levels are both negative prognostic indicators for a 

variety of cancers in people, including melanoma, lymphoma, and carcinomas of the 

prostate, colon, pancreas, and kidney, among others (31-38). For example, in patients 

with pancreatic cancer, an increased ratio of blood to bone marrow monocytes as well 

as patients whose tumors demonstrated high CCL2 expression and low CD8+ T cell 

infiltrates, were both inversely correlated with survival (38). Similarly, in patients with 

renal cell carcinoma, high CCL2 and CCR2 expression in patient tumors, as identified 

by immunohistochemistry, was associated with decreased survival time and increased 

risk of recurrence (39).  

Interestingly, hematopoietic stem/progenitor cells of a CD11b+ myelo-monocytic 

phenotype are also one of multiple cell types which preferentially accumulate at 

metastatic sites even before the arrival of tumor cells, a phenomenon known as the pre-

metastatic niche (40-42). This phenomenon has been demonstrated experimentally in 

syngeneic mouse models of lung carcinoma and melanoma, as well as a human 

xenograft breast cancer model (40-42). In addition, elevated levels of these cells have 

been detected in human cancer patients and correlate with increased risk for metastatic 

progression (40). Once present at metastatic sites, these cells function to establish a 
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permissive niche for incoming tumor cells through mechanisms involving immune 

suppression, up-regulation of tumor cell chemoattractants, and promotion of tumor cell 

survival, both directly via secretion of molecules like S100A8 and A9, and indirectly via 

matrix metalloproteinase-mediated release of VEGF and c-KIT(40-42). Furthermore, the 

functional impact of these cells on metastatic progression has been confirmed 

experimentally, as antibody-mediated depletion of these cells completely prevented 

metastasis in mice bearing well-established tumors (42). 

The role of inflammatory monocytes and macrophages in the regulation of tumor 

responses to chemotherapeutic drugs is also beginning to be defined. Recently, it has 

been demonstrated that conventional cytotoxic therapies such as doxorubicin can 

induce tumor and stromal cell production of CCL2 as well as other monocyte and 

macrophage chemoattractants such as M-CSF (20, 43). This therapy-induced 

inflammatory response was shown to lead to enhanced recruitment of CCR2+ 

monocytes and macrophage infiltration of primary tumors in a murine breast cancer 

model and in human breast cancer patients treated with neoadjuvant chemotherapy (20, 

43). Importantly, the functional role of these recruited cells in mediating 

chemoresistance was demonstrated via concurrent macrophage depletion with 

chemotherapy, which significantly improved overall survival in mammary tumor bearing 

mice (20, 43). In addition, clinical evidence supporting a role for monocytes and 

macrophages in chemoresistance comes from multiple studies in human breast cancer 

patients. In one study, patients having a high tumor gene expression ratio of CD68+ 

macrophages to CD8+ T cells had a significantly lower rate of pathological complete 

response to neoadjuvant chemotherapy, and significantly reduced overall survival, while 
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another study demonstrated that breast cancer patients having lower pre-treatment 

levels of circulating monocytes and an increased lymphocyte to monocyte ratio had a 

significantly high probability of pathological complete response to neoadjuvant therapy, 

and subsequently improved disease-free intervals and overall survival (43, 44). In 

conclusion, these findings highlight the potential therapeutic value in targeting the 

CCL2-CCR2 axis for the prevention of tumor progression and metastasis. 

 

GPCR biology and chemokine receptor signaling 

G-protein coupled receptors (GPCRs) comprise the largest protein family in the 

mammalian genome, with an estimate of >800 GPCRs encoded in the human genome 

(45). As compared to other cell surface receptors, such as receptor tyrosine kinases 

(RTKs), GPCRs have a relatively complex molecular structure, consisting of a 7-

transmembrance domain cell surface receptor, coupled to an intracellular signal-

transducing effector molecule, which is typically a heterotrimeric G protein (45, 46). 

Reflective of their complex molecular structure is the significant variety of extracellular 

stimuli that can be transduced by GPCRs into an intracellular response. These stimuli 

range from photons, taste, and pheromones, to lipids, amino acids, peptides, and 

proteins such as chemokines (47). Chemokine receptors, including CCR2, are members 

of the Class A family of GPCRs, the most highly studied class of GPCRs, and which 

contains the greatest number of documented receptor structures (48). For simplicity, 

this review will focus on G protein receptor signaling through heterotrimeric proteins; 

however, it must be noted that other effector molecules have been associated with G-

protein signaling, including G-protein coupled receptor kinases (GRKs) and -arrestins 
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(48). To date, there are four known members of heterotrimeric G proteins, each made 

up of , , and  subunits (46). These four members consist of Gs, which stimulates 

adenylate cyclase, Gi, which inhibits adenylate cyclase, Gq, which activates 

phospholipase C (PLC), and G12/13, whose function is currently unknown (46).  

Upon ligand-binding, GPCRs undergo activation and conformational change 

which catalyzes the exchange of GDP for GTP in the G subunit (46). This exchange 

results in dissociation of the G and G subunits, and subsequent activation of 

downstream signaling molecules, including adenylate cyclase, PLC, and PI3K, with 

resulting increases in second messengers such as Ca2+, cAMP, IP3, and DAG leading 

to activation of further downstream signal transduction pathways such as the MAP 

kinase pathway (46, 48). Specifically, previous work by Myers et al. assessing the 

effects of pertussis toxin on CCL2 signaling have demonstrated that the chemokine 

receptor CCR2 is coupled to the Gi class of heterotrimeric proteins (49). Subsequent 

work by Ashida et al. investigating the signal transduction pathways specifically 

associated with monocyte chemotaxis demonstrated that in THP-1 cells, CCL2-induced 

integrin activation and monocyte chemotaxis was indeed mediated through the mitogen-

activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway 

(50). Building on these foundational studies, more recent work by Jimenez-Sainz et al. 

elegantly dissected the cascade of second messengers required for CCL2-induced 

activation of ERK1/2 following CCR2 stimulation (51). These studies showed clearly 

showed that ERK activation was in fact independent of CCR2 receptor internalization/-

arrestin recruitment, changes in cytosolic [Ca2+], or transactivation by EGFR or other 

cytosolic tyrosine kinases, but required Gi proteins, protein kinase C (PKC), phospho-
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inositide-3-kinase (PI3K), and RAS (51). Importantly, these results demonstrated that 

different signal transduction pathways, acting in parallel, were required for complete 

ERK activation in response to CCL2. Furthermore, these results suggest that cytosolic 

calcium flux assays, a conventionally used screening assay for identification of 

chemokine receptor antagonists, and likely still useful in broad hit to lead optimization of 

CCR2 inhibitors, may not be predictive of their actual biological efficacy.  

 

CCL2-CCR2 targeted therapies in oncology 

The initial discovery of G-protein coupled receptors functioning as chemokine 

receptors stimulated great excitement in the drug development industry, as GPCRs 

have been traditionally been a foundation for drug discovery in the pharmaceutical 

industry (52). However, almost two decades after many of these discoveries, only two 

small molecules chemokine receptor antagonists are approved for the treatment of HIV 

(CCR5 antagonist Maraviroc) and stem cell mobilization (CXCR4 antagonist Plerixafor) 

(52). While numerous large pharmaceutical companies have active programs for the 

development of small molecule CCR2 antagonists, their therapeutic targets are not 

predominately not focused on cancer, and instead primarily on inflammatory diseases 

such as rheumatoid arthritis and multiple sclerosis (53). Instead, initial clinical trials 

targeting the CCL2-CCR2 axis in human cancer patients have utilized biologic therapies 

with anti-human CCL2 monoclonal antibody (Carlumab, CNTO888), or the monoclonal 

CCR2 blocking antibody MLN1202 (ClinicalTrials.gov identifier: NCT01015560) (54, 55). 

Initial trials with CNTO88 showed that CNTO888 alone or in combination with standard 
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of care therapies was ineffective at reducing serum CCL2 levels or slowing tumor 

progression in patients with various solid tumors (54).  

However, more recent and ongoing trials have shown that blockade of CCR2 via 

the monoclonal antibody MLN1202 has the potential to suppress tumor growth in 

patients with bone metastases (ClinicalTrials.gov identifier: NCT01015560). In addition, 

a small molecule CCR2 antagonist developed by Pfizer (PF-04136309) was recently 

evaluated in combination with FOLFIRINOX chemotherapy (5-fluorouracil, leucovorin, 

irinotecan, oxaliplatin) in a Phase 1B clinical trial in patients with locally advanced 

pancreatic cancer (ClinicalTrials.gov identifier: NCT01413022) (56). Results of this trial 

were promising and demonstrated an increased overall response rate as compared to 

patients receiving FOLFIRINOX alone, leading to a currently ongoing larger Phase II as 

a first line therapy in patients with stage IV pancreatic cancer (ClinicalTrials.gov 

identifier: NCT02732938). Interestingly, one of the secondary outcome measures of this 

study is ex vivo evaluation of CCL2-induced ERK phosphorylation. Combined, these 

clinical data suggest that inhibition of CCR2 might be a more valuable approach in the 

therapeutic targeting of the CCL2-CCR2 axis. However, while these recent early Phase 

I/II trials of CCR2 inhibitors are promising, they are not without hesitation, as recent data 

suggests that only 10% of agents entering clinical cancer trials make it to FDA approval 

(57, 58) . Furthermore, given that current estimations for the time and cost invested in 

new drugs is now a staggering 10 years and $2.6 billion dollars (59), alternative drug 

development programs which focus on re-purposing already approved drugs as 

potential anti-cancer therapies might offer greater promise, in terms of reduced cost and 

time, for getting more effective treatment options to patients with cancer (60). 
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AT1R antagonists and their immunomodulatory properties 

Losartan, a type I angiotensin II receptor (AT1R) blocker (ARB) used in the 

treatment of hypertension, has been shown to have immunomodulatory and anti-

inflammatory properties in models of vascular inflammation and multiple sclerosis (61-

63). Interestingly, these anti-inflammatory properties were primarily associated with an 

observation of reduced monocyte and macrophage recruitment to inflammatory lesions 

such as atherosclerotic plaques. In these studies, losartan’s blockade of monocyte and 

macrophage recruitment was attributed to an indirect effect on CCL2 and/or CCR2 

signaling, secondary to primary inhibition of AT1R signaling. Specifically, in a model of 

myelin-oligodendrocyte glycoprotein (MOG)-induced inflammation of the central nervous 

system (CNS), losartan treatment reduced accumulation of CD11b+ and CD11c+ cells 

within the spleen and CNS inflammatory lesions, which was attributed to a reduction in 

CCL2 expression secondary to inhibition of enhanced AT1R signaling in macrophages 

and spinal cord tissues in response to vaccination with MOG (61). Additionally, in a 

model of macrophage-mediated aortic vessel wall inflammation in spontaneously 

hypertensive rats, treatment with losartan significantly decreased macrophage 

infiltration into vessels walls, which was associated with reduced expression of CCL2 

and CCR2 (63). Again, these results were concluded to be an effect of inhibition of 

Angiotensin II-mediated inflammation; however, it was not definitively shown that 

losartan was not directly disrupting the CCL2-CCR2 axis, and in fact, molecular 

modeling studies of CCR2 suggest that losartan and other ARBs have a high affinity for 

and the potential to act as CCR2 antagonists (64). 
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 Increasingly, a role for the renin-angiotensin system (RAS) in the promotion of 

tumor growth via both tumor cell intrinsic and extrinsic (stromal-mediated) actions has 

been described (65). Specifically, these studies have demonstrated that autocrine 

angiotensin II-AT1R signaling in tumor cells can stimulate their proliferation, invasion, 

migration, and growth (66, 67), while AngII-AT1R signaling within the tumor stroma can 

drive tumor-promoting inflammation (68, 69), as well as tumor angiogenesis (70). In line 

with these observations are several pre-clinical studies in mice which have 

demonstrated anti-tumor effects associated with losartan monotherapy. In these 

models, losartan’s anti-tumor mechanism of action was primarily associated with either 

anti-angiogenic or anti-invasive properties, which were concluded to be the downstream 

result of primary inhibition of AngII-AT1R signaling, or secondary to anti-TGF- 

signaling effects, as losartan has been demonstrated to reduce TGF- expression, 

although again presumed (without direct supporting evidence) to be secondary to 

blockade of Angiotensin II-induced expression of the molecule. In a mouse model of 

pancreatic ductal adenocarcinoma, daily oral losartan treatment reduced aberrant TGF-

 expression and prolonged overall survival of these mice (71). In the B16 mouse model 

of melanoma, pre-treatment with and continued daily dosing with losartan significantly 

reduced subcutaneous primary tumor growth and metastasis (72). In this model, the 

authors demonstrated expression of AT1R within B16 melanoma tumors and associated 

this anti-tumor effect of losartan to inhibition of angiogenesis (72).  Cortez-Retamozo et. 

al have previously demonstrated a unique role for AngII-ATIR signaling in splenic 

myelopoiesis and subsequent Ly6CHi monocyte recruitment to the lungs of tumor-

bearing mice in the KRAS-p53 (KP) conditional model of NSCLC (73). In this model, 
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disruption of AT1R signaling via losartan or the angiotensin converting enzyme inhibitor 

(ACEi) enalapril, reduced the number of splenic monocytes; however, the impact of this 

effect on overall survival of mice with KP lung carcinomas was only evaluated for 

continuous enalapril treatment (and not for losartan therapy). Lastly, retrospective 

analyses of clinical data of patients being treated for hypertension have shown a 

correlation between the use of losartan, or other ARBs and ACE-inhibitors, with 

improved outcomes in patients with pancreatic, breast, or lung cancer (66, 74-76). 

Again, the therapeutic benefit in human cancer patients was presumed to be secondary 

to the effects of direct inhibition of AngII-AT1R signaling. 

 

Translational and comparative oncology: Recent progress, remaining hurdles, 

and the value of the spontaneous canine cancer model 

The last 10 years have witnessed significant progress in translational oncology 

research which has led to dramatic improvements in the treatment of primary tumors, 

with advances in molecular therapeutics such as drugs targeting receptor tyrosine 

kinases helping to make substantial gains in the survival of patients whose tumors 

harbor specific mutations (14, 77). Despite this, the inevitable clinical reality is that 

tumor metastasis remains the single greatest contributor to cancer patient mortality (14, 

77), accounting for up to 90% of all cancer-related deaths (78, 79). To frame the clinical 

significance of this problem, at the time of diagnosis, distant metastases are present in 

6-21% of breast and colorectal cancer patients, respectively, two tumor types whose 

incidence remains in the top three in the U.S. (80). Furthermore, although 5-year 

survival rates experienced by many patients treated for localized cancer, including 
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breast and colorectal cancer patients, these individuals are still considered to have a 

substantially increased lifetime risk for metastasis, with up to 30-50% of these patients 

eventually developing disseminated disease (81-83). Further compounding this situation 

are multiple independent analyses of clinical trial data for certain tumor types, such as 

those of the breast or pancreas, which demonstrate that in the established metastatic 

setting, survival of these patients has been unchanged for over 30 years (84-86). Thus, 

there remains a critical need for continued clinical development of anti-metastatic 

therapies, in both the context of preventing metastasis formation and treating 

established metastatic lesions.  

One significant therapeutic advancement in human oncology over the last 

decade has been the use of immunotherapy as a new treatment modality (87). In the 

case of certain patients, such as those with melanoma, lung, or renal cancer, 

immunotherapeutic interventions have resulted in unprecedented responses in patients 

with advanced stage/metastatic disease that would have otherwise been fatal (88, 89). 

The approval and use of monoclonal antibodies targeting T cell checkpoint molecules 

such as programmed cell-death protein 1 (PD-1), or cytotoxic T-lymphocyte associated 

protein 4 (CTLA-4) (89, 90) have primarily accounted for these dramatic clinical 

responses. These recent developments in human oncology have substantially 

increased the relevance of immunotherapy as a new treatment modality, and were 

predominately the result of discoveries made during foundational pre-clinical studies in 

mice. While murine cancer models remain an invaluable tool for understanding basic 

cancer biology, the continued low rate of successful translation of therapies from pre-

clinical studies to human cancer patients calls into question their predictive value (91) 
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As such, a growing community of scientists and clinicians recognize that further 

progress in immuno-oncology and anti-metastatic drug development would be greatly 

accelerated by the ability to assess immune-based therapies in the more translationally 

relevant spontaneous canine cancer model (92, 93).  

Spontaneously occurring tumors in pet dogs represent a highly valuable 

intermediary animal model for evaluation of novel therapeutics and validation of pre-

clinical findings, prior to assessment in expensive human clinical trials. Naturally 

occurring tumors in dogs co-evolve in the presence of an intact host immune system 

and complex tumor microenvironment, and share striking similarities on a clinical, 

biological, genetic, and histological basis (91, 94). Canine osteosarcoma (OSA) is a 

prime example of a naturally occurring canine cancer with significant potential to inform 

oncology drug development (77, 95). Dogs with OSA share many clinical similarities 

with human pediatric OSA including primary tumor location, response to conventional 

therapies, the presence of microscopic metastases at diagnosis, and unfortunately, a 

lack of significant improvement of survival times over the past 15 years (77, 95). In 

addition, dogs develop OSA at an ~10 times greater incidence than people, thus 

facilitating rapid patient recruitment for evaluation of novel therapeutics (95). Yet one 

significant hurdle to fully leveraging this drug development pathway is that even a basic 

knowledge of the immune response or immune-based mechanisms of promoting tumor 

growth and metastasis of common canine tumor types, including osteosarcoma, is 

currently lacking including minimal investigation into the role of monocytes and the 

CCL2-CCR2 axis in the regulation of canine OSA metastasis.  
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A handful of studies have retrospectively characterized the presence of tumor-

associated myeloid cells/macrophages (TAMs) in primary canine tumor tissues of 

various histo-type including melanoma, mammary carcinoma, seminoma, glioma, 

meningioma, and nasal carcinoma (96-100). These studies were primarily small 

descriptive studies aimed at semi-quantitative assessment and characterization of 

tumor-infiltrating T cells, B cells, plasma cells, and myeloid cells, as well as expression 

of MHC class II antigen. Additionally, a single study of canine mammary tumors 

demonstrated an association between a high density of TAMs and significantly 

decreased overall survival time (99). The work of Biller et al. showed that elevated 

peripheral blood monocyte counts as well as a decrease in the ratio of CD8+ T cells to 

regulatory T cells are independently associated with decreased survival in dogs with 

OSA (101). Likewise, retrospective analyses by Sottnik et al. of clinical data from dogs 

with OSA demonstrated that higher numbers of circulating monocytes (> 0.4x103 

cells/L) and lymphocytes (> 1 x 103 cells/L was associated with significantly shorter 

disease-free interval (102). In a separate but similar study of 26 dogs with lymphoma, 

Perry et al. demonstrated that serum CCL2 levels, and peripheral blood neutrophil and 

monocyte counts were significantly elevated in lymphoma-bearing dogs as compared to 

healthy controls, and that elevations in all three parameters were independently 

associated with significantly shorter disease free interval (103). In addition, serum CCL2 

was also positively and significantly correlated with lymphoma disease stage in these 

patients.  

More substantiating however, is the significant amount of clinical data in dogs 

with OSA, which suggest that this is one canine tumor type which is not immunologically 
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ignorant, and indeed appears to have a pre-existing anti-tumor immune response which 

is primed for immunomodulation and/or response to immunotherapy (104). One of the 

most striking clinical findings for this tumor type is that for dogs undergoing limb-salvage 

surgery, those patients which experience bacterial infection of their surgery site 

experience significantly increased survival times (105). In addition, some of the earliest 

clinical trials of immunotherapeutics in veterinary medicine were performed in dogs with 

osteosarcoma. For example, clinical trials evaluating the administration of non-specific 

innate immune stimulants (so-called biologic response modifiers) such as live, 

attenuated Mycobacterium bovis (strain Bacillus Calmette-Geurin, BCG) or later, a 

modified component of the mycobacterial cell wall, liposomal muramyl tripeptide (L-

MTP) were initially performed in dogs with OSA (106, 107). Results of these studies 

demonstrated the activation and induction of tumoricidal activity of monocytes and 

macrophages, primarily in a mechanism dependent on TNF-, and were associated 

with significantly improved median survival times and disease-free intervals in these 

dogs (104, 106-109). These data suggest that pre-existing host immune responses 

likely play a significant role in the progression of canine OSA, and that dogs with 

spontaneous OSA likely represent a valuable model for the assessment of novel 

immunotherapy combinations.  
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CHAPTER 2 
 
 

Pharmacological characterization and pre-clinical assessment of losartan as a CCR2 

antagonist and potential anti-metastatic therapy 

 

Summary 

 Metastasis is the leading cause of cancer-related mortality, and remains a major 

hurdle in improving patient outcomes. Inflammatory monocytes (IMs) have been shown 

to play key roles in cancer metastasis through promotion of tumor cell extravasation, 

growth, and angiogenesis. Migration of IMs to sites of metastasis is mediated primarily 

via the action of the CCL2-CCR2 chemotactic axis.  Thus, disruption of this axis 

represents an attractive therapeutic target for the treatment of metastatic disease. 

Losartan, an angiotensin II type 1 receptor (AT1R) antagonist, has been previously 

reported to have immunomodulatory properties via suppression of monocyte and 

macrophage-mediated inflammation; however, the exact mechanism of this effect has 

not been fully elucidated.  Therefore, we characterized the direct effects of losartan and 

its EXP-3174 metabolite on CCL2-mediated monocyte recruitment and CCR2 receptor 

function. We show that losartan and its metabolite potently inhibit monocyte recruitment 

through inhibition of CCL2 induced ERK1/2 activation, and provide strong evidence 

which suggests that losartan is a non-competitive inhibitor of CCR2. Based on these 

observations, we conducted studies in murine breast (4T1) and colon (CT26) carcinoma 

experimental metastasis models, to determine if losartan exerted anti-metastatic activity 

via inhibition of CCL2-CCR2 mediated monocyte recruitment. We found that daily 

treatment with losartan prolonged survival, and significantly reduced metastatic burden, 
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percentages of CD11b+/Ly6C+ lung monocytes, and tumor microvessel density in mice 

with 4T1 and CT26 pulmonary metastases. Collectively, these results suggest that 

losartan, via inhibition of CCR2 signaling, has the potential for rapid repurposing as a 

novel anti-metastatic agent in humans at high risk for tumor metastasis. 

 

Significance 

Despite initial success with first-line therapies in cancer patients, many these 

patients still go on to develop metastasis. Significant progress has recently been made 

in our understanding of the tumor microenvironment, including how the host immune 

system can be co-opted by tumors to promote their growth and dissemination. CCR2-

expressing monocytes are one immune cell type which has been shown to play a critical 

role in the promotion of tumor cell metastasis, yet to date, there are currently no 

approved therapies which target these cells. Here, we show that losartan, an already 

approved and known to be safe drug, has significant antagonistic activity against CCR2, 

and can suppress pulmonary metastasis growth via sustained inhibition of monocyte 

recruitment. 

 

Introduction 

Metastasis remains the greatest clinical challenge in cancer treatment, 

accounting for up to 90% of all cancer-related deaths (1, 2). Specifically, the incidence 

of breast and colorectal cancer remains in the top three in the U.S., and at time of 

diagnosis, distant metastases are present in 6 to 21% of these patients, respectively (3). 

Furthermore, although 5-year survival rates experienced by breast and colorectal 
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cancer patients with localized disease are typically excellent, these individuals are still 

considered to have a substantially increased lifetime risk for metastasis, with up to 30-

50% of these patients eventually developing disseminated disease (4-6). While the 

success of cytotoxic and molecularly-targeted therapies in both the established and 

adjuvant disease setting is undeniable, the continued development of therapies that halt 

metastatic progression remains a critical hurdle in improving patient outcome. 

Conventionally, the track to FDA-approval of anti-cancer drugs is based on direct anti-

tumor activity in pre-clinical models, followed by demonstration of responses in early 

phase clinical trials of patients with established gross metastases (7, 8). Yet, under this 

current paradigm, drugs designed to target micro-metastatic processes would often be 

predicted to fail in this established disease setting (8, 9) .Therefore, it is becoming more 

and more apparent that the disconnect often observed between preclinical and clinical 

efficacy is likely in part be due to a disregard for the impact of the tumor 

microenvironment (TME) on tumor progression and anti-cancer drug responses. 

 It is now known that the TME is composed of highly heterogeneous populations 

of both stromal and immune cells, whose diverse functions serve a collective purpose to 

predominately promote tumor growth and progression (9, 10). Recent studies have also 

demonstrated that the same cellular components and secreted factors of the primary 

TME also play critical roles in conditioning secondary sites of metastasis, creating a 

favorable environment for colonization by disseminated tumors cells (10, 11). 

Inflammatory monocytes (IMs) are a myeloid-derived immune cell subset, and one 

component of the TME which have recently been shown to play key roles in the 

metastatic process (12). In pre-clinical models, CCR2 expressing IMs are preferentially 
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recruited early on to metastatic sites such as the lung and liver via tumor and stromal 

cell-mediated production of the monocyte chemoattractant, CCL2 (13, 14). Once 

present at metastases, IMs, and their derivatives, metastasis-associated macrophages 

(MAMs), play key roles in promoting metastatic tumor cell extravasation and growth (13, 

15-17). In these models, the importance of IMs and MAMs in the metastatic process 

was demonstrated through the pharmacologic or genetic manipulation of macrophages, 

their secreted factors, or the CCL2-CCR2 recruitment axis, which resulted in 

significantly slowed metastatic tumor growth and prolonged survival in mice. In addition, 

the translational relevance of these findings has also been validated by multiple clinical 

studies which have demonstrated a negative prognostic role for IMs and the CCL2-

CCR2 axis in human patients with various malignancies, including those of the breast, 

colon, and pancreas (18-21). Thus, it is now apparent that IMs, macrophages, and the 

CCL2-CCR2 chemotactic axis represent an attractive therapeutic target for the 

treatment of cancer metastasis. 

 Initial clinical trials targeting the CCL2-CCR2 axis in human cancer patients 

evaluated an anti-human CCL2 monoclonal antibody (Carlumab, CNTO888), which 

showed that CNTO888 alone or in combination with standard of care therapies was 

ineffective at reducing serum CCL2 levels or slowing tumor progression in patients with 

various solid tumors (22). However, more recent and ongoing trials have shown that 

blockade of the CCL2 receptor, CCR2, has the potential to suppress tumor growth in 

patients with bone metastases and locally advanced pancreatic cancer, suggesting that 

inhibition of CCR2 might be a more valuable approach in the therapeutic targeting of the 

CCL2-CCR2 axis (23). While these recent early Phase I/II trials of CCR2 inhibitors are 



 

 32 

promising, they are not without hesitation, as recent data suggests that only 10% of 

agents entering clinical cancer trials make it to FDA approval (24, 25) . Furthermore, 

given that current estimations for the time and cost invested in new drugs is now a 

staggering 10 years and $2.6 billion dollars (26), alternative drug development 

programs which focus on re-purposing already approved drugs as potential anti-cancer 

therapies might offer greater promise, in terms of reduced cost and time, for getting 

more effective treatment options to patients with cancer (27).  

Losartan, a type I angiotensin II receptor (AT1R) blocker (ARB) used in the 

treatment of hypertension, has been shown to have immunomodulatory and anti-

inflammatory properties in models of vascular inflammation and multiple sclerosis (28-

30). Interestingly, these anti-inflammatory properties were primarily associated with an 

observation of reduced monocyte and macrophage recruitment to inflammatory lesions. 

In these studies, losartan’s blockade of monocyte and macrophage recruitment was 

attributed to an indirect effect on CCL2 and/or CCR2, secondary to primary inhibition of 

AT1R signaling. However, it was not definitively shown that losartan was not directly 

disrupting the CCL2-CCR2 axis, and in fact, molecular modeling studies of CCR2 

suggest that losartan and other ARBs have a high affinity for and the potential to act as 

CCR2 antagonists (31). Despite these observations, very few studies have evaluated 

the immunomodulatory properties and potential therapeutic efficacy of losartan in 

models of tumor metastasis, and to date, no one has evaluated the molecular 

pharmacology underlying losartan’s interactions with CCR2, and its potential to act as a 

CCR2 antagonist. 
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To this point, we evaluated losartan’s ability to directly inhibit monocyte 

recruitment using a diverse repertoire of in vitro and in vivo assays of monocyte 

chemotaxis, acute inflammation, and early tumor metastasis. Our results demonstrate 

that both losartan and its primary metabolite (EXP-3174) potently inhibit CCL2-CCR2 

dependent human and murine monocyte recruitment at clinically relevant doses. 

Furthermore, using G-protein coupled receptor function assays, we characterized the 

effects of losartan and EXP-3174 on CCL2 ligand binding and post-receptor signal 

transduction pathways stimulated by CCL2. Our findings suggest that both losartan and 

EXP-3174 function as noncompetitive inhibitors of human CCR2. Based on its CCR2 

antagonist properties, we assessed the potential of losartan to be re-purposed as an 

anti-metastatic therapy in experimental metastasis models of breast and colon cancer, 

which showed that losartan significantly slowed metastatic progression in a process that 

was associated with blockade of inflammatory monocyte recruitment and reduction in 

metastasis-associated macrophages. Taken together, these studies suggest that 

losartan and its primary metabolite might represent a novel class of safe and already-

FDA approved, noncompetitive CCR2 antagonists, which could be rapidly repurposed 

for the treatment of metastatic disease. 

 

Materials and Methods 

Mice 

6-8 week old, female BALB/c and ICR mice were purchased from Harlan 

laboratories (Denver, CO). CCR2-/- mice on the C57BL/6J background and wild-type 

C57BL/6J mice were purchased from The Jackson Laboratory (Bar Harbor, ME). CCR2-
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/- mice on a BALB/c background were obtained from Dr. Cynthia Ju (University of 

Colorado, Denver). All animals were housed in microisolator cages in the laboratory 

animal facility at Colorado State University, and all procedures were approved by the 

Institutional Animal Care and Use Committee at Colorado State University.  

 

Cell lines  

4T1-luc, CT26, and CT26-luc cells were generously provided by Dr. Daniel 

Gustafson (Colorado State University, Fort Collins, CO). THP-1 cells were purchased 

from the ATCC. CT26-GFP cells were generated by transducing CT26 cells with lentivirus 

particles expressing GFP under the EF1A promoter (LVP425, GenTarget Inc. San Diego, 

CA). After 72 h cells were treated with G-418 (600 g/mL; Invivogen, San Diego, CA) to 

select for successfully transduced cells, and GFP expression was subsequently 

confirmed by flow cytometry. Cells were maintained in MEM [4T1 and CT26] or RPMI1640 

[THP1] media (Gibco, Grand Island, NY USA) supplemented with 10% fetal bovine serum 

(FBS; Atlas Biologicals, Fort Collins, CO USA), penicillin (100 U/mL), streptomycin (100 

g/mL), L-glutamine (2 mM), and non-essential amino acids (0.1 mM) (All obtained from 

Gibco). Cells were grown sterilely on standard plastic tissue culture flasks (Cell Treat, 

Shirley, MA), under standard conditions of 37 °C, 5% CO2, and humidified air, and were 

confirmed Mycoplasma-free. CCR2 expression by THP-1 cells was periodically confirmed 

by flow cytometry.  
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Losartan, losartan EXP3174 metabolite, and CCR2 antagonist drugs 

50mg losartan potassium tablets (Cozaar) were obtained from the Veterinary 

Teaching Hospital pharmacy, ground using a mortar and pestle, and dissolved in water 

and sterile-filtered to obtain a stock concentration of 10 mg/mL. Losartan carboxylic acid 

(EXP3174 metabolite) was purchased as a powder from Santa Cruz Biotechnology 

(Dallas, TX), and reconstituted in DMSO at 10 mg/mL. INCB3284 and RS102895 powder 

stocks were obtained from Tocris Bioscience (Bristol, UK), and re-constituted in DMSO 

at 10 mg/mL. All drug stocks were aliquoted and stored at -20C. For all animal 

experiments, losartan and losartan EXP3174 metabolite drug stocks were diluted in PBS, 

and administered by once daily intra-peritoneal (i.p.) injection of 60 mg/kg and 10 mg/kg, 

respectively, in a 100 L volume. 

 

Experimental lung metastasis models 

Wild-type or CCR2-/- BALB/c mice were inoculated by I.V. tail vein injection of 1 x 

105 4T1-luc cells, 2.5 x 105 CT26-luc cells, or 4 x 105 CT26-GFP cells in 100 L PBS. 

Treatment with losartan (60 mg/kg, i.p.) was initiated 24h after tumor cell inoculation. 

For 72 h metastasis assays, mice were treated a total of three times (24, 48, and 72 h) 

prior to euthanasia and tissue collection. For long term tumor growth studies, mice were 

treated daily until study completion. To monitor the development and growth of 

luciferase-positive pulmonary metastases, bioluminescence imaging was performed 

thrice weekly using an IVIS100 imager (Perkin-Elmer, Waltham, MA). For imaging, mice 

were injected i.p. with 100 L of 30 mg/mL luciferin (GoldBio, St. Louis, MO), followed 
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by isoflurane anesthesia and imaging 12 minutes post-luciferin injection (2 minute 

exposure, medium binning).  

 

Analysis of lung inflammatory monocytes 

Following study completion and animal euthanasia, lungs were collected from mice 

and stored in complete media on ice prior to processing. Right lung lobes were minced in 

6-well plates, and then digested in 2x collagenase D (Roche) diluted in HBSS + 0.1% 

FBS/EDTA for 30 minutes at 37°C. Following digestion, tissues were triturated using an 

18 g needle and filtered through 70 µm cell strainers (x2) (BD Biosciences). Lastly, red 

blood cells were lysed using ACK solution and remaining cells re-suspended in FACS 

buffer (PBS with 2% fetal bovine serum and 0.05% sodium azide) for immunostaining.  

 

Flow cytometry analysis 

Following plating of single cell suspensions of lung or LN in 96 well round-bottom 

plates, non-specific binding was blocked by adding normal mouse serum (Jackson 

Immunoresearch) and un-labeled anti-mouse CD16/32 (eBiosciences) to cells before 

immunostaining. Cells were then incubated with the following directly labeled rat 

monoclonal antibodies (eBioscience, San Diego, CA unless otherwise noted) directed 

against mouse CD11b (clone M1/70), mouse Ly6C (clone AL-21), mouse Ly6G (clone 

1A8), mouse MHC II (clone M5/114.15.2), mouse Gr1 (clone RB6-8C5), mouse F4/80 

(clone MCA497; AbD Serotec) mouse CD11c (clone N418), and mouse CCR2 (clone 

475301; R&D Systems) for 25 min at room temperature (RT).  Cells were washed in FACS 

buffer (PBS + 2% FBS and 1% sodium azide) and incubated with streptavidin conjugates 
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when necessary. Flow cytometry was conducted using either a Dako/CyanADP or 

Beckman Coulter Gallios flow cytometer. Analysis was done with FlowJo software 

(Ashland, OR).  

 

Fluorescence microscopy 

Immediately following euthanasia, left lung lobes were dissected and immersion 

fixed in 1% paraformaldehyde-lysine-periodate fixative (1% paraformaldehyde in 0.2 M 

lysine-HCL, 0.1 M anhydrous dibasic sodium phosphate, with 0.21% sodium periodate, 

pH 7.4) for 24 hours at 4°C. Following fixation, lungs were placed in a 30% w\v sucrose 

solution for 24 hours at 4°C, prior to embedding and freezing in O.C.T. compound 

(Tissue Tek). Embedded tissues were sectioned at 5 μm for immunostaining. 

Nonspecific binding was blocked by pre-incubation of sections with 5% donkey serum 

(Jackson ImmunoResearch, West Grove, PA) in 1% BSA for 30 min at RT.  Primary 

antibody labeling (1:200 anti-GFP, Novus Biologicals; 1:100 anti-F4/80 clone BM8, 

eBiosciences, and 1:100 anti-Ly6C ab76975) was performed at RT for 1 hr in 1% BSA. 

After removal of the primary antibody, tissues were washed with PBS-T, followed by 

addition of the following secondary antibodies (diluted 1:200 in PBST) for 30 min at RT: 

AlexFluor488-conjugated donkey anti-rabbit IgG (GFP), AlexaFluor647-cojugated 

donkey anti-rat IgG (F4/80), and Cy3-conjugated donkey anti-rat IgG (Ly6C) (Jackson 

ImmunoResearch). Tissues were counter stained with DAPI, cover-slipped, and 

visualized using an Olympus IX83 confocal microscope and Hamamatsu digital camera. 

Figures were assembled using Adobe Photoshop (CC2016). 
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In vivo mouse footpad vaccination assay 

The cationic liposome-poly I:C adjuvant was prepared in the laboratory as 

described previously. Using an insulin syringe (BD Biosciences), 50 l of adjuvant was 

injected into the right rear footpad of mice while under isoflurane anesthesia. Following 

injection, mice were immediately treated i.p. with losartan or losartan EXP3174 

metabolite (60 mg\kg, or 10 mg\kg, respectively), and again 24 hours later. Animals 

were euthanized ~2 hours following the second drug treatment, and right popliteal 

lymph nodes (LNs) were harvested and stored in complete media on ice until 

processing. Right popliteal LNs harvested from naïve, un-injected mice served as 

controls. LNs were mashed on 40 M cell-strainers using a 3 ml syringe plunger, rinsed 

with 10 ml complete medium, centrifuged @1200 rpm for 5 min, and re-suspended in 

FACS buffer for immunostaining and flow cytometry analysis. 

 

In vitro THP-1 and PBMC chemotaxis assays 

Peripheral Blood Mononuclear Cells (PBMCs) were isolated from fresh, EDTA-

treated human blood by lysing erythrocytes (x2) with ACK buffer solution (150 mM 

NH4Cl, 10 mM KHCO3, and 0.1 mM Na2EDTA). PBMCs were washed into serum-free 

RPMI (sf-RPMI), and re-suspended at 2 x 106 cells/ml. Cultured THP-1 cells were 

washed into sf-RPMI and re-suspended at 6 x106 cells/ml. Drug stocks (losartan, 

losartan EXP3174 metabolite, or RS102895) were diluted to 2x in sf-RPMI. THP-1 cells 

or PBMCs were diluted 1:1 in media alone (positive and negative controls) or in media 

containing 2x drug dilutions. Cells were pre-treated @ 37C in the incubator for 1 hour 

prior to plating. The chemotactic stimulus for positive control and drug treated wells 
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consisted of 50 ng/ml recombinant human CCL2 (Peprotech Inc. Rocky Hill, NJ). 

Negative control wells consisted of sf-RPMI only. THP-1 chemotaxis was conducted in 

24-well plates containing 3 M-pore diameter cell culture inserts (Falcon, Corning, NY). 

For these assays, 600l of medium +/- CCL2 was plated in the lower compartment of 

the plate, while 100 L (3 x 105) THP-1 cells in medium +/- drug were plated in the 

upper compartment of the cell culture insert. For PBMC migration assays, 96 well 

chemotaxis plates (Corning, Corning, NY) with an 8 M pore diameter were used, and 

150 l of media +/- CCL2 was plated in the lower compartment of the plate, while 50l 

(5 x 104) PBMCs in media +/- drug were plated in the upper compartment of the cell 

culture insert. Cells were allowed to migrate for 4 h. Following migration, non-migrated 

cells were removed, wells washed, and membranes (THP-1 migration) or lower 

compartment wells (PBMCs) were fixed with 4% paraformaldehyde for 10 min on ice, 

stained with 3% crystal violet (Sigma-Aldrich, St. Louis, MO USA), rinsed with dH20, and 

air-dried overnight. For analysis of THP-1 chemotaxis, membranes were cut from the 

cell culture inserts, and mounted “migrated-side” up on superfrost plus glass slides 

using immersion oil. A total of (5) 40x fields per membrane were counted to determine 

the Mean # of monocytes/40x field for each membrane. For PBMC migration assays, 

4x4-tiled 10x magnification overviews of 96 well plates were obtained for each individual 

well, and total monocytes per/well counted using ImageJ (NIH).  

 

CCL2-induced ERK phosphorylation 

Western blot. THP-1 cells (5 x 105 cells/ well) were plated in 24 well plates and 

serum starved overnight for ~20-24 hours in the incubator. The following morning, 
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losartan or losartan EXP3174 was added to cultures to achieve the indicated treatment 

concentrations, and cells were pre-treated for 2 hours prior to CCL2 stimulation. 

Samples were stimulated with CCL2 (10 nM; Peprotech, Rocky Hill, NJ) for 1 min, 

quickly pelleted, supernatant discarded, and re-suspended in ice-cold lysis buffer [M-

PER reagent (ThermoFisher, Waltham, MA) containing 1mM sodium orthovanadate, 

100 mM PMSF, 2% SDS, and 1x protease inhibitor cocktail (Roche, Basel, 

Switzerland)] for 10 min on ice. Lysates were then centrifuged at 13,000 rpm for 5 min 

and supernatant removed. For western analysis, 5 μg of THP-1 lysate was mixed 1:1 

with 2x Laemelli sample buffer containing 5% 2-Mercaptoethanol (BioRad, Hercules, 

CA), boiled for 5 minutes, cooled on ice, and then loaded into a Mini-Protean TGX 4-

20% pre-cast polyacrylamide gel (BioRad) for electrophoresis (150 V, 45 min). Protein 

was then transferred to nitrocellulose membranes (95 V, 50 min, at 4 °C), and 

membranes were blocked for 1 h at RT with 5% BSA in Tris-buffered saline Tween 20 

solution (TBST). After washing in TBST, membranes were incubated with the primary 

antibody (monoclonal rabbit anti-Phospho p44/42 MAPK, clone D13.14.4E, Cell 

Signaling Technology, Danvers, MA) diluted in 5% BSA-TBST, overnight at 4 °C. The 

following day membranes were rinsed (x3 with TBST), incubated with the secondary 

antibody (HRP-linked goat anti-rabbit IgG; ThermoFisher, Waltham, MA) diluted 1: 

20,000 in 5% BSA/TBST for 1 h at RT. Lastly, membranes were imaged with 

chemiluminescent substrate (Clarity Western ECL, BioRad) using a Chemi Doc XES + 

system (BioRad). 

Flow cytometry. 2.5 x 105 THP-1 cells in serum-free RPMI +/- losartan or losartan 

EXP3174 metabolite at indicated concentrations were incubated for 1 h 37C in 
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microcentrifuge tubes. Following drug pre-treatment, cells were stimulated with 20 nM 

human rCCL2 for 3 min at 37C. Immediately following stimulation, the reaction was 

terminated by fixation of cells in an equal volume of 4% paraformaldehyde for 15 min at 

37C. Fixed cells were pelleted, washed twice in FACS buffer, and then permeabilized 

by re-suspension in 150L of ice-cold 100% methanol for 15 min. Following 

permeabilization, cells were washed in FACS (x2), and then stained with monoclonal 

rabbit anti-human Phospho p44/42 MAPK-AlexaFluor 647 (clone1792G2, Cell Signaling 

Technology, Danvers, MA) at 1 g/mL diluted in FACS for 30 min at RT. Following 

primary antibody labeling, cells were washed in FACS (x2), and then analyzed by flow 

cytometry. 

 

CCR2 cell surface expression 

THP-1 cells, human PBMCs, or mouse bone marrow cells were washed and re-

suspended into sf-RPMI at 8 x 105 cells/mL. Drug stocks (10 mg/mL) were diluted to 

either 2x or 4x treatment concentrations for either single agent or combination therapy 

studies, respectively. 2 x 105 cells in 250 L were plated in 24 well plates and diluted 

either 1:1 with media alone (control) or 2x drug stocks (single agent treatment), or 

1:0.5:0.5 (4x drug stocks, combination treatment studies). Cells +/- drug treatment were 

then incubated under standard conditions of 37 °C, 5% CO2, and humidified air for the 

indicated time periods (1-24 hr). Following drug treatment, cells were centrifuged 

@1800 rpm for 3 minutes, re-suspended in FACS buffer and stained for CCR2 using a 

monoclonal mouse anti-human CCR2 antibody (clone TG5/CCR2, Biolegend, San 

Diego, CA). For human PBMCs, cells were also labeled with mouse anti-human CD14 
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(clone TUK4, Bio-Rad, Hercules, CA). For mouse bone marrow, cells were stained with 

the following panel of rat monoclonal antibodies directed against: mouse CD11b (clone 

M1/70), mouse Ly6C (clone AL-21), mouse Ly6G (clone 1A8), and mouse CCR2 (clone 

475301; R&D Systems). Data were expressed as CCR2 geometric mean fluorescence 

(gMFI) intensity as % of un-treated controls. 

 

CCL2 ligand binding assays 

THP-1 cells (2.5 x 105 cells/well) were plated in 96 well plates in chemokine-

labeling buffer (RPMI + 20mM HEPES, 10% FBS, 1% L-glutamine, and 1% pen/strep) 

alone (positive control), or buffer containing either 30nM un-labeled human rCCL2 (cold-

competition control), or losartan, losartan EXP3174 metabolite, or INCB3284 at the 

indicated concentrations. Human rCCL2-AlexFluor 647 (CAF-2, Almac, Souderton, PA) 

was then added to all wells to obtain a final concentration of 30nM. Cells were then 

incubated for 1h @ 37C, and ligand binding subsequently analyzed by flow cytometry. 

Data were expressed as % inhibition of ligand binding as determined by differences in 

CCR2 gMFI between untreated and drug treated cells.  

 

Intracellular Ca2+ signaling 

Briefly, changes in cytoplasmic calcium levels in response to CCL2 stimulation 

(10 nM) was measured in THP-1 cells (2.5x105 cells/well) loaded with Fluo-3AM dye (1 

M for 45 min at 37C; ThermoFisher, Waltham, MA). Following loading, cells were 

washed and re-suspended in buffer +/- losartan, losartan EXP3174 metabolite, or CCR2 

antagonist at the indicated concentrations, and pre-treated for 1 hour at 37C prior to 
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CCL2 stimulation. Analysis was performed on a BioTek Synergy HTX plate reader. 

Baseline fluorescence was collected over a 30 s interval prior to addition of CCL2, and 

then for 2 minutes after stimulation. The buffer for cell loading, drug treatment, and 

CCL2 stimulation consisted of Hanks’ balanced salt solution containing 20 mM HEPES 

and 0.2 mM sulfinpyrazone.  

 

Angiotensin II and CCL2 ELISA assays 

 Angiotensin II (AngII) and CCL2 production by tumor cell lines and in the serum 

of tumor bearing mice were measured using commercially available ELISA kits (For 

AngII: RAB0010, Sigma-Aldrich, St. Louis, MO; For CCL2: DY479, R&D Systems, 

Minneapolis, MN). Assays were performed according to kit instructions. 

 

Losartan pharmacokinetics 

Following two weeks of losartan dosing (60 mg/kg/day i.p.), blood samples were 

collected via cardiac venipuncture at 0.25, 0.5, 1, 2, 4, 6, 12, and 24 hours after the final 

dose on day 14. Samples were treated with EDTA anticoagulant, centrifuged, and 

plasma removed and stored at -80C prior to analysis. Standard curve and QCs were 

prepared in the following manner: Initial 10 mg/ml stocks of losartan and losartan 

EXP3174 carboxylic acid metabolite were prepared in 1:1 acetonitrile(ACN)/Milli-Q 

water (1 mg/mL). A standard curve of losartan and EXP3174 metabolite was then 

prepared ranging from 5 to 25000 ng/mL in 1:1 ACN/Milli-Q water. 10 l of each 

appropriate standard was then added to 100 µL of blank plasma collected from naïve 

ICR mice fortified with 10 µL internal standard (ENMD-2076 at 1000 ng/mL). 10 µL 
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internal standard, 10 µL 1:1 ACN/Milli-Q water, and 100 µL ACN were then added to 

100 µL of each unknown plasma sample in 1.5mL micro centrifuge tubes. All samples 

were then vortexed for 5 min, centrifuged @ 13,300 rpm for 20 min, and 200 µL of the 

organic phase was transferred to fresh 2 mL micro-centrifuge tubes. Samples were 

concentrated to dryness on a speed vacuum then reconstituted in 200 µL of 85:15 [v:v], 

0.1% formic acid: 50/50 ACN/methanol. Finally, samples were transferred to glass 

autosampler vials for injection onto the HPLC system. Mass spectra were obtained with 

a MDS Sciex 3200 Q-TRAP triple quadrupole mass spectrometer (Applied Biosystems, 

Inc., Foster City, CA) with a turbo ionspray source (operating in positive ion mode) 

interfaced to an Agilent 1200 Series Binary Pump SL HPLC system (Santa Clara, CA). 

Samples were chromatographed with 

Phenomenex, Torrance, CA). An LC gradient was employed with mobile phase A 

consisting of 0.1% formic acid and mobile phase B consisting of 50/50 ACN/methanol. 

Chromatographic resolution was achieved by increasing mobile phase B linearly from 

15 to 98% from 1 to 1.5 min, maintaining at 98% from 1.5 to 3.75 min, decreasing 

linearly from 98 to 215% from 3.75 to 4 min, followed by re-equilibration of the column at 

15% B from 4 to 5 min. The LC flow rate was 1.25 mL/min, the sample injection volume 

was 30 µL, and the analysis run time was 5 min. 

 

Statistical analysis 

All data expressed as means  SD unless otherwise noted. Statistical 

significance was determined by a two-tailed, unpaired Student’s t test, or One-way 
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ANOVA with Tukey’s post-test for multiple group comparisons. All statistical analyses 

were performed using Graph Pad Prism software (La Jolla, CA, USA). 

 

Results 

Losartan and its primary metabolite (EXP3174) inhibit CCL2-mediated monocyte 

migration in vitro and in vivo in humans and mice 

We first determined the effect of losartan and losartan’s primary carboxylic acid 

metabolite (Los CA; EXP3174) on in vitro, CCL2-directed THP-1 migration using a 

trans-well chemotaxis assay (Fig. 2.1A). Both losartan and its EXP3174 metabolite 

significantly inhibited CCL2 directed THP-1 migration to ~10% of that observed for 

positive control wells (*p<0.05). Furthermore, the strength of this inhibition was 

comparable to that observed for the specific small molecule CCR2 antagonist 

RS102895 when evaluated at equimolar concentrations. To determine if this inhibitory 

effect of losartan was intrinsic only to THP-1 cells, we also evaluated losartan’s ability to 

inhibit CCL2-mediated migration of human peripheral blood mononuclear cells (PBMCs) 

(Fig. 2.1B-F). These results demonstrated that losartan significantly inhibited human 

PBMC migration (by ~50%; *p<0.04) at a pharmacologically achievable and clinical 

relevant dose. Next, to evaluate the ability of losartan and EXP3174 to inhibit in vivo 

inflammatory monocyte recruitment, we utilized a murine footpad vaccination model. 

Using this model, we have previously demonstrated that vaccination with a lipsome-Toll 

like receptor (TLR) adjuvant induces recruitment of large numbers of Ly6CHi IMs to 

vaccine-draining lymph nodes (LNs), a process which is almost entirely dependent on 

CCL2-CCR2 signaling (Fig. 2.2). Both losartan and EXP3174 significantly reduced the  
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Figure 2.1 Losartan and its primary EXP3174 metabolite inhibit CCL2-CCR2 mediated 
monocyte migration in vitro and in vivo in humans and mice at pharmacologically 
relevant concentrations and equimolar potency to a small molecule CCR2 antagonist. 
(A) Graph depicting results of in vitro trans-well migration assays assessing the ability of 
losartan (Los) and its EXP3174 metabolite (losartan carboxylic acid, Los CA) to inhibit 
CCL2-directed THP-1 monocyte migration as compared to the specific small molecule 
CCR2 antagonist RS102895 (RS102). (B) Graph showing inhibition of CCL2-mediated 
human PBMC migration by losartan at clinically relevant concentrations. (C-F) 
Representative whole well images (10x) and higher magnification (40x; inset) of human 
PBMC migration assays quantified in (B). (G) Representative dot plots demonstrating 
the ability of losartan and it’s metabolite to inhibit the recruitment of Ly6G-

/CD11b+/Gr1(Ly6C)Hi inflammatory monocytes (IMs) to vaccine-draining popliteal lymph 
nodes (LNs) of mice. This recruitment is almost entirely dependent on the CCL2-CCR2 
axis (Fig. 2.2). Mice were treated at time of vaccination and 24h later with losartan 
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(60mg/kg), or EXP3174 losartan metabolite (10mg/kg). (H) Graph showing flow 
cytometric quantification of absolute numbers of IMs in vaccine-draining popliteal LNs of 
groups of mice in (G). Data expressed as means ± SD, and were analyzed by One-way 
ANOVA, with Tukey’s post-test comparisons (n= 3 mice per group, or 2-4 independent 
experiments representing the mean of technical replicates, each technical replicate 
being the average of (5) 40x fields (THP-1 migration) or (16) 10x fields (PBMC 
migration), *p <0.05, **p < 0.01). 
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Figure 2.2 Recruitment of IMs to vaccine draining LNs is entirely dependent on the 
chemokine receptor CCR2. Graph showing results of flow cytometric quantification of 
Ly6G-/CD11b+/Ly6CHi IMs in naïve (un-injected) C57BL/6 w/t mice as compared to 
C57BL/B6 w/t (Vax W/T) or CCR2-/- (VAX CCR2-/- ) mice injected in the right-rear 

footpad with 50L of a liposome-TLR3 agonist adjuvant. Popliteal LNs were harvested 
24 hours after injection and processed to single suspensions for flow cytometry. Data 
expressed as means ± SD, and were analyzed by One-way ANOVA, with Tukey’s post-
test comparisons (n= 3 mice per group, **p < 0.01). 
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absolute number of IMs recruited to popliteal draining LNs of vaccinated mice by ~75% 

(**p<0.01) (Fig. 2.1 G-H). Thus, we next sought to evaluate losartan’s ability to inhibit IM 

recruitment to tumor metastases using experimental lung colonization assays. 

 

Losartan blocks early tumor-mediated inflammatory monocyte recruitment to the 

lungs and significantly reduces CT26 tumor cell colonization 

To assess losartan’s effect on monocyte recruitment in a model of early tumor 

lung colonization, we injected syngeneic wild-type BALB/c mice in the lateral tail vein 

with CT26-GFP colon carcinoma cells, which resulted in reliable lung colonization (Fig. 

2.3F) and significantly increased (~ 4-fold) recruitment of CD11b+/Ly6CHi IMs to the 

lungs of tumor-injected as compared to naïve control mice (Fig. 2.3 A, B, & F) by 72 

hours. In addition, injection of CT26-GFP cells into BALB/c-CCR2-/- mice demonstrated 

that this recruitment was entirely dependent on the presence of CCR2 (Fig. 2.3 D & E). 

To assess losartan’s ability to inhibit CT26 mediated recruitment of IMs, mice were 

treated with losartan 60 mg  kg-1  d-1 i.p. beginning 24 hours after tumor cell injection, 

and were sacrificed at 72h post-injection for flow cytometric and immunofluorescent 

quantification of Ly6G-/SiglecF-/CD11c-/CD11b+/Ly6CHi lung IMs, and F4/80+ 

metastasis-associated macrophages (MAMs), respectively. Losartan treatment 

significantly reduced the percentages of lung IMs and mean number of F4/80+ MAMs by 

70% and 36%, respectively, to levels near those observed in CCR2-/- and naïve un-

injected mice (Fig. 2.3 C, E, F, & I). Similar results were also observed when IM 

recruitment was evaluated by Ly6C immunofluorescent staining of micrometastases 

(Fig. 2.4 A-C).  
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Figure 2.3. Losartan blocks IM recruitment to the lungs during early CT26 tumor cell 
engraftment. (A-D) Representative dot plots gated on CD11b+/Ly6CHi IMs in the lungs of 
either naïve Balb/c mice (A), or 72 hours post tail-vein injection of CT26-GFP tumor 
cells (4 x 105 cells) in control mice (B), mice treated with Losartan 60mg/kg (C), or 
CCR2-/- mice (D). (E) Graph depicting the flow-cytometric quantification of IMs in the 
lungs of the groups of mice in (A-D).  (F) Corresponding immunofluorescent images of 
F4/80+ metastasis-associated macrophages (MAMs, red) surrounding CT26-GFP+ 
micrometastases (green) in control, losartan-treated, and CCR2-/- mice. (G) Graph of 
immunofluorescent quantification of F4/80+ MAM density in the lungs of the groups of 
mice in (F). Data expressed as means ± SD, and were analyzed by One-way ANOVA, 
with Tukey’s (E) or Kruskal-Wallis (G) post-test comparisons (n= 3 mice per group (E 
and G), 10-46 micrometastases analyzed per mouse (G) ***p < 0.001).  
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Figure 2.4. Immunofluorescent image analysis of IMs and MAMs surrounding early 
CT26-GFP micrometastases. (A-C) Immunofluorescent images of pulmonary 
micrometastases showing Ly6C+ monocytes (red) also intimately surrounding early 
(72h) CT26-GFP pulmonary micrometastases (green). (D-F) Representative lower 
magnification F4/80+ (red) immunofluorescent images of micrometastases used for 
ImageJ analysis, and (E-I) Corresponding F4/80+ threshold masks of 
immunofluorescent images shown in (D-F), which were used to determine the F4/80+ 
MAM cell count data shown in the graph in Fig. 2I. DAPI nuclear counterstain. 40x 
magnification (Ly6C), 20x magnification (F4/80). 
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Figure 2.5. Losartan treatment significantly reduces the establishment of early CT26 
pulmonary micrometastases to a density similar to that observed in CCR2-/-mice. (A-C) 
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Representative 10x magnification whole left lung lobe immunofluorescent images 
demonstrating the density of CT26-GFP+ tumor cell clusters in control (A), losartan 
treated (B), and CCR2-/- mice (C). Insets are higher magnification (20x) images 
representing single CT26-GFP+ micrometastases chosen from the indicated region of 
the whole lung overview field. (D) Graph depicting quantification of micrometastatic 
burden (CT26-GFP+ tumor cell area as % of total lung area) for groups of mice shown 
in (A-C). Data expressed as means ± SD, and were analyzed by One-way ANOVA, with 
Tukey’s post-test comparison (n= 3 mice per group, *p < 0.05). 
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Figure 2.6. (A-C) Corresponding ImageJ image analysis masks from the whole lung 
overview images in Fig 3. A-C, which demonstrate accurate thresholding for 
determination of total lung lobe area (black) and CT26-GFP+ tumor cell cluster area 
(overlaid in green), used in the quantification of pulmonary micrometastatic burden 
expressed in Fig 3D. (A) Control, (B) losartan-treated, and (C) CCR2-/-. 
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In addition, when performing the image analysis for F4/80+ MAM density (Fig. 2.4 

D-I), we also observed a striking reduction in the number of CT26-GFP+ colonies in the 

lungs of losartan-treated and CCR2-/- mice as compared to control mice. Using ImageJ  

 (NIH), we quantified the area of all CT26-GFP micrometastases as a percentage of 

total lung lobe area, which was reduced by 70% and 90% in losartan-treated and CCR2-

/- mice, respectively, as compared to un-treated control mice (Fig. 2.5 & 2.6). These 

results suggested that losartan-mediated blockade of IM recruitment was associated 

with decreased tumor cell engraftment of the lungs. Additional image analysis 

quantifying the average size (m2) of CT26-GFP micrometastases, as well as Ki67 

immunoreactivity of CT26-GFP cells suggested that this reduction in total 

micrometastatic burden was predominately the result of decreased tumor cell 

extravasation/retention within the lungs, and not necessarily reduced tumor cell growth 

following colonization, as GFP+ tumor cells displayed positive nuclear immunoreactivity 

for Ki67, and no significant difference in the average size of CT26GFP micrometastases 

was observed between control and losartan treated mice (data not shown).    

 

Losartan and its primary metabolite inhibit CCL2-induced ERK1/2 

phosphorylation and reduce cell surface CCR2 expression in monocytes 

While results of the in vitro chemotaxis and in vivo vaccine and tumor-elicited 

monocyte recruitment assays strongly suggested that losartan blocks CCL2-CCR2 

directed monocyte migration, we still sought to determine whether or not this effect was 

due to direct inhibition of CCL2-induced CCR2 signaling by losartan or its EXP-3174 

metabolite. Prior studies have demonstrated that CCL2-induced integrin activation and 
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monocyte chemotaxis is mediated through the mitogen-activated protein 

kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Thus, we evaluated 

the inhibitory effect of losartan and EXP-3174 on CCL2-induced ERK1/2 activation in 

THP-1 cells, using western blot and intracellular flow cytometry assays to detect 

phospho-ERK1/2 (Fig. 2.7). For these assays, human THP-1 cells were pre-treated with 

losartan/EXP-3174 for various durations at pharmacologically relevant concentrations 

that resulted in drug exposure levels similar to those observed in our prior mouse 

studies (Fig. 2.13). Cells were then stimulated with 20nM CCL2, a concentration 

previously reported to induce strong and rapid activation (phosphorylation) of ERK1/2, 

and were subsequently fixed or lysed and analyzed by intracellular flow cytometry and 

western blot. Results of phospho-ERK1/2 flow cytometry demonstrated that both 

losartan and EXP-3174 significantly inhibited ERK activation in response to CCL2 to 

~25% of that observed in un-treated cells (Fig. 2.7 A, B). Similarly, a dose-dependent 

inhibition of ERK1/2 phosphorylation by both losartan and EXP-3174 was also observed 

in human peripheral blood-derived CD14+ monocytes (Fig. 2.8 A, B). In addition, we 

evaluated ERK1/2 phosphorylation by western blot analysis of THP-1 cells following 

either acute (Fig. 2.7C) or chronic/prolonged (Fig. 2.7D) CCL2 stimulation (as would be 

expected in a tumor-bearing individual), which showed similar results. Both losartan and 

EXP-3174 inhibited ERK activation in response to CCL2 by 29% and 42% following 

acute stimulation, respectively, and 67% and 65%, following prolonged 24h CCL2 

stimulation, respectively (Fig. 2.7 C, D).   

 As it is plausible that the observed effects of both losartan and EXP-3174 on 

CCL2-induced ERK stimulation and monocyte chemotaxis could be due to drug-induced 
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receptor down regulation, we evaluated cell surface CCR2 expression in losartan or 

EXP-3174 pre-treated THP-1 cells by flow cytometry. Indeed, flow cytometry 

demonstrated a moderate dose and time-dependent reduction in cell surface CCR2 

expression following losartan or EXP-3174 treatment, an effect which appeared additive 

with combination treatment (Fig. 2.7 E, F). In addition, similar results of reduced CCR2 

cell surface expression by losartan and EXP-3174 treatment were also observed in 

human peripheral blood CD14+ monocytes (Fig. 2.8 C, D) and murine bone-marrow 

derived CD11b+/Ly6C+ monocytes (Fig. 2.8 E, F). Thus, while these results suggest that 

losartan and EXP-3174’s effects on CCL2-induced ERK activation could in part be 

secondary to drug-induced CCR2 receptor down regulation, the degree to which 

losartan or EXP-3174 reduced CCR2 expression was not concordant with the observed 

inhibitory effect of these drugs on CCL2-induced ERK1/2 phosphorylation. As it is 

known that CCR2 and other G-protein coupled receptors are internalized following 

ligand (chemokine or drug) binding, and that receptor internalization following agonist or 

antagonist binding has been demonstrated to be an accurate indirect measurement of 

beta-arresting recruitment, we felt that these results instead were more consistent with 

additional indirect evidence of binding of losartan and EXP-3174 to CCR2. 

 

Pharmacological characterization of losartan, EXP-3174, and CCR2 interactions 

Based on the above results, we hypothesized that losartan and its metabolite 

were in fact directly antagonizing CCR2 signaling, and decided to conduct additional 

experiments to better pharmacologically characterize this interaction. Using the THP-1 

cell line, which was confirmed to express high levels of CCR2 by flow cytometry, we  
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Figure 2.7. Losartan and its EXP3174 metabolite inhibit CCL2-mediated ERK 1/2 
phosphorylation in THP-1 monocytes. (A) Histogram overlay of phospho-ERK 1/2 
expression in THP-1 cells which were either untreated (negative control), or stimulated 
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for 3 min with 20nM CCL2, +/-  1hr pre-treatment with losartan or losartan EXP3174 

metabolite at 10 g/mL. (B) Graph demonstrating the % inhibition of CCL2-induced ERK 
1/2 phosphorylation. The maximum CCL2-induced response was determined as the 
mean difference in p-ERK1/2 geometric mean fluorescence intensity (MFI) between 
unstimulated and CCL2-stimulated THP-1 cells. (C and D) Western blots and graphs 
quantifying the effects of losartan and losartan EXP3174 metabolite treatment on 
inhibition of ERK1/2 activation in THP-1 cells following acute (C) or prolonged (D) CCL2 
agonist stimulation. (E and F) Effects of losartan, EXP3174 metabolite, or combination 
therapy on CCR2 cell surface expression, as assessed by flow cytometry, in THP-1 
cells following short (E) and long-term (F) drug treatment at clinically relevant 
concentrations. Data expressed as means ± SD, and were analyzed by One-way 
ANOVA, with Tukey’s post-test comparison (n=2-4 independent experiments, each 
performed in duplicate or triplicate, independent experiments, **p < 0.01, ***p < 0.001, 
****p<0.0001). 
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Figure 2.8. Losartan and it’s EXP3174 metabolite also reduce CCL2-mediated ERK1/2 
activation and decrease CCR2 cell surface expression in primary human monocytes 
and murine bone marrow monocytes. (A, B) Graphs showing flow cytometric 
quantification of CCL2-mediated ERK1/2 activation in human peripheral blood CD14+ 
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monocytes, +/- pre-treatment with losartan or losartan EXP3174 metabolite. (A) 
pERK1/2 geometric MFI in CD14+ monocytes, and (B) pERK1/2+ cells as % of total 
gated CD14+ monocytes. (C, D) Graphs of flow cytometric quantification of cell surface 
CCR2 expression in human peripheral blood CD14+ monocytes following 4 hour 
treatment with a range of clinically relevant concentrations of losartan and EXP3174 
metabolite. (C) CCR2 geometric MFI of CD14+ cells, and (D) CCR2+ cells as % of total 
gated CD14+ cells. (E, F) Flow cytometric quantification of cell surface CCR2 
expression in Ly6G-/CD11b+/Ly6C+ murine bone marrow monocytes. Data expressed 
as CCR2 geometric MFI (E) and CCR2+ as % of total gated monocytes (F). Cells were 

treated with 10 g/mL losartan or EXP3174 for 4 hours prior to analysis, mirroring drug 
exposure levels observed in vivo with once daily 60mg/kg losartan dosing (Fig. S6). 
Data expressed as means ± SD, and were analyzed by One-way ANOVA, with Tukey’s 
post-test comparison, and represents one independent experiment performed in 
triplicate (C-F), *p<0.05, **p < 0.01, ***p < 0.001, ****p<0.0001. 
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evaluated the effects of losartan and EXP-3174 metabolite on recombinant hCCL2 

ligand binding and CCL2-induced intracellular Ca2+ release. As a comparison, we used 

the previously discovered, potent, human CCR2 antagonist INCB3284 as a positive 

control. Surprisingly, results of the ligand-binding studies demonstrated that while 

INCB3284 could inhibit 75% of hCCL2 biding at a concentration of 100nM, reaching its 

maximal inhibitory effect at 1 M, both losartan and its metabolite completely failed to 

block CCL2 binding at concentrations ranging from 1 nM to 100 M (Fig. 2.9 A-C). In 

contrast, results of the Ca2+ flux assays demonstrated that at equimolar concentrations, 

both losartan and EXP-3174 did indeed block CCL2-stimulated cytosolic calcium 

release, although in a less potent fashion as compared to INCB3284 (Fig. 2.9 D&E). 

One hour pre-treatment with 10 M losartan and EXP-3174 inhibited the CCL2-induced 

maximal calcium response by 54% and 36%, respectively, while treatment with 10 M 

INCB3284 inhibited this response by 92% (Data expressed as % of mean  relative 

fluorescence units, determined as maximum fluorescence observed post CCL2 

stimulation minus baseline fluorescence in untreated cells) (Fig. 2.9, E). 

 Thus, by means of two separate functional assays, we demonstrate that both 

losartan and EXP-3174 are antagonists of CCR2 signaling at the level of cytosolic Ca2+ 

release and downstream ERK1/2 phosphorylation. Although the results of the Ca2+ flux 

assay suggest only a modest inhibitory activity against the receptor for this functional 

assay, it should be noted that prior studies by Jimenez-Sainz et al. have elegantly 

dissected the second messengers required for CCL2-induced activation of ERK1/2, 

showing that ERK activation was in fact independent of CCR2 receptor internalization or  
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Figure 2.9. Losartan and EXP3174 losartan metabolite do not block CCL2 ligand 
binding, but inhibit CCL2-induced cytoplasmic Ca2+ release in THP-1 monocytes. (A-C) 
CCL2 binding was assessed by flow cytometry using fluorescently labeled human 
rCCL2 (CCL2-APC). (A, B) Representative histograms showing complete lack of 
inhibition of CCL2 ligand binding by losartan or EXP3174 metabolite, which is in striking 
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contrast to the orthosteric CCR2 antagonist, INCB3344. (B) Graph depicting flow 
cytometric measurement of % inhibition of CCL2 binding for losartan, EXP3174 
metabolite, and INCB3344 across a broad range of drug concentrations. (D) Overlay of 
calcium trace plots for THP-1 cells stimulated with 20nM CCL2 +/- 1hr pre-treatment 
with the indicated concentrations of losartan, EXP3174, or the CCR2 antagonist 
RS102895. THP-1 cells were loaded with Fluo-3AM to detect CCL2-induced calcium 
flux over time using the kinetics measurement function of a fluorescent plate reader. 
Data expressed as means ± SEM (D), or SD (E), and were analyzed by One-way 
ANOVA, with Tukey’s post-test comparison, and represents one independent 
experiment performed in triplicate (C-F), **p < 0.01, ***p < 0.001, ****p<0.0001. 
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changes in cytosolic [Ca2+], but required Gi proteins, protein kinase C (PKC), phospho-

inositide-3-kinase (PI3K), and RAS. Given that the end consequence of CCL2-CCR2 

signaling for monocyte chemotaxis is ERK1/2 activation, and both losartan and EXP-

3174 inhibited this process by  75%, these results corroborate the potent in vitro and in 

vivo inhibition of monocyte recruitment we observed for losartan and EXP-3174. Lastly, 

as both losartan and EXP-3174 failed to inhibit CCL2 ligand binding over a wide range 

of concentrations, which was in contrast to the competitive antagonism we observed for 

INCB3284, these data taken together suggest that both losartan and EXP-3174 appear 

to function as non-competitive antagonists of CCR2.  

 

Losartan-mediated blockade of inflammatory monocyte recruitment suppresses 

tumor growth in 4T1 and CT26 experimental pulmonary metastasis models  

Given the known role of CCL2-CCR2 recruited IMs in the promotion of tumor 

metastasis in pre-clinical models of breast and colon cancer, we next sought to 

determine whether losartan’s ability to inhibit CCR2 signaling and monocyte recruitment 

could suppress metastasis growth in murine 4T1 and CT26 experimental metastasis 

models. For these experiments, luciferase-transfected 4T1 breast (1 x 105) or CT26  
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colon carcinoma (2.5 x 105) cells were injected in the lateral tail vein of syngeneic 

BALB/c mice, losartan treatment (60 mg  kg-1  d-1 i.p.) was initiated 24 hours post-

injection, and metastatic burden was monitored via thrice weekly bioluminescence 

imaging of mice on the IVIS 100 imager. Daily treatment with losartan significantly 

reduced both CT26 and 4T1 pulmonary metastatic burden by 64% and 90%, 

respectively, as quantified by bioluminescent imaging (CT26: Fig. 2.10 A-C, and 4T1; 

Fig. 2.11 A-B). In the 4T1 model, these results were paralleled by an observed similar 

reduction in metastatic burden via histopathological evaluation of the lungs at 

euthanasia (Fig. 2.11 D).  In addition, in the 4T1 model, daily losartan treatment also 

significantly prolonged overall survival, increasing median survival to 23 days in losartan 

treated mice as compared to 21 days in vehicle treated mice (Fig. 2.11 C, *p=0.04). 

Importantly, in both the CT26 and 4T1 models, daily losartan treatment resulted in 
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Figure 2.10. Daily treatment with losartan reduces pulmonary metastasis growth in a CT26luc experimental metastasis 
model. (A) IVIS bioluminescent images of CT26luc pulmonary metastases in control and losartan-treated mice on day 17, 
immediately prior to euthanasia. (B) Graph depicting CT26luc pulmonary metastatic burden over time as quantified by 
repeated bioluminescent imaging. (C) Representative gross images and sub-gross photomicrographs of the lungs of mice 
from control and losartan treated groups shown in (A&B). (D) At euthanasia, lung IMs were quantified by flow cytometry, 
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and MAMs assessed by F4/80 immunofluorescent staining.  Shown are representative dot plots gated on CD11b+/Ly6CHi 

cells, and corresponding F4/80+ immunofluorescent images of pulmonary metastases. (E) Graph depicting flow cytometric 
quantification of lung IMs at sacrifice for the groups of mice shown in (A-D). (F) Representative CD31 immunofluorescent 
images and associated graph of quantification of tumor micro-vessel as assessed by CD31 staining of pulmonary 
metastases. Data expressed as means ± SD, and were analyzed by Two-way ANOVA (B), or two-tailed Student’s t test 
(E,F), (n= 5 mice/group, *p<0.05, ****p < 0.0001). 
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Figure 2.11. Losartan also demonstrates anti-metastatic activity in a 4T1luc experimental pulmonary metastasis model. 
(A) IVIS bioluminescent images of 4T1luc pulmonary metastases in control and losartan-treated mice on day 11, 
immediately prior to euthanasia. (B) Graph depicting 4T1luc pulmonary metastatic burden over time as quantified by 
repeated bioluminescent imaging. (C) Kaplan-Meier (KM) survival curves of 4T1luc control or losartan-treated mice. (D) 
Representative gross images of the lungs of mice from control and losartan treated groups shown in (A&B), and graph of 
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histological quantification of pulmonary metastatic burden as assessed by H&E staining in these mice. (E) Lung IMs were 
quantified by flow cytometry at euthanasia, and MAMs assessed by CD11b immunofluorescent staining.  Shown are 
representative dot plots gated on CD11b+/Ly6CHi cells, corresponding CD11b+ immunofluorescent images of pulmonary 
metastases, and graph depicting flow cytometric quantification of lung IMs at sacrifice for the groups of mice shown in (A, 
B, & D). Data expressed as means ± SD, and were analyzed by Two-way ANOVA (B), Log-rank test (C), or two-tailed 
Student’s t test (D, E), (n= 5 mice/group, *p<0.05, **p < 0.01). 
 



 71 

significant, sustained inhibition of CD11b+/Ly6CHi IM recruitment to the lungs of 

metastasis-bearing mice, as flow cytometric analysis of lung IMs at study termination 

(day 19 for CT26 mice and day 14 for 4T1 mice) showed an ~ 2-fold reduction in the 

percentage of lung IMs in losartan-treated as compared to vehicle (saline)-treated mice 

(Fig. 2.10D and Fig. 2.11E). Consistent with the flow cytometry results, 

immunofluorescent analysis of CT26 and 4T1 pulmonary metastases of from these 

same mice showed a similar reduction in tumor-infiltrating F4/80+ and CD11b+ myeloid 

cells, respectively. As IMs are known to be a rich source of VEGF, we also analyzed 

CT26 metastatic tumor microvessel density (MVD) in these mice by CD31 

immunofluorescence. Quantification of CD31+ vessels within CT26 pulmonary 

metastases showed a 35% reduction in tumor MVD in losartan-treated as compared to 

control mice (Fig. 2.10F).  Taken together, these results demonstrate that daily losartan 

treated effectively suppressed breast and colon carcinoma pulmonary colonization and 

growth, an effect which was associated with a significant reduction in lung IMs in treated 

vs control animals.  

 Increasingly, a role for the renin-angiotensin system (RAS) in the promotion of 

tumor growth via both tumor cell intrinsic and extrinsic (stromal-mediated) actions has 

been described (32). Specifically, these studies have demonstrated that autocrine 

angiotensin II-AT1R signaling in tumor cells can stimulate their proliferation, invasion, 

migration, and growth (33, 34), while AngII-AT1R signaling within the tumor stroma can 

drive tumor-promoting inflammation (35, 36), as well as tumor angiogenesis (37). Thus, 

it is plausible that the observed anti-tumor effects of losartan in our metastasis models 

could be due to direct inhibition of AngII-AT1R signaling, and not secondary to the 
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observed blockade of IM and tumor-macrophage recruitment. To address this, we first 

performed CT26luc experimental metastasis assays in BALB/c CCR2-/- mice, as we 

hypothesized that if losartan had additional anti-tumor effects mediated through AT1R 

blockade, we should observe enhanced suppression of CT26 metastasis growth in 

losartan-treated CCR2-/- mice. As expected, CT26 experimental metastasis growth was 

significantly reduced in CCR2-/- mice; however, the anti-metastatic effect of losartan 

treatment was not additive in these mice, and in fact was partially abolished in the 

absence of CCR2-/- (Fig. 2.12 A), suggesting that the presence of CCR2 was required 

for the anti-tumor mechanism of losartan in this model. To further evaluate the potential 

role of AngII-AT1R mediated effects in our models, we quantified in vitro 4T1 and CT26 

CCL2 and AngII production, as well as in vivo serum AngII levels in CT26 metastasis 

bearing mice by ELISA. Results of these assays demonstrated that both 4T1 and CT26 

cells produced substantially more CCL2 as compared to AngII in vitro (Fig. 2.12 B), and 

that serum AngII levels were not elevated in CT26 metastasis-bearing control (175.7   

46.8) or losartan-treated mice (143.4   37.4), as compared to naïve, BALB/c mice 

(176.1  9.5) (Fig. 2.12 C, Mean  SEM pg/mL). Lastly, a possible direct anti-

proliferative/cytotoxic effect of losartan on CT26 and 4T1 cells was assessed in vitro by 

MTT assay. 72-hour treatment of CT26 or 4T1 cells with a losartan concentration 

roughly equivalent to overall exposure observed in our in vivo pharmacokinetic studies  
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Figure 2.12. Losartan-mediated blockade of IM recruitment and associated anti-tumor 
effects are not associated with changes in Angiotensin II-AT1R signaling. (A) Graph 
depicting CT26luc pulmonary metastatic burden over time in control and losartan-
treated CCR2-/- mice, as quantified by repeated bioluminescent imaging. (B) In vitro 
CCL2 and AngII production by 4T1 and CT26 cell lines, measured by ELISA assay 
performed on cell culture supernatants following 24h of culture. (C) Ang II levels in the 
serum of control and losartan-treated CT26luc pulmonary metastasis-bearing mice vs 
naïve BALB/c mice, as measured by EIA. (D) Results of MTT assay following 72hr 
treatment of 4T1 or CT26 cells with losartan at the indicated concentration. (E) Splenic 
IMs were measured by flow cytometry in CT26luc metastasis-bearing mice on Day 21 
post tumor cell injection. Data expressed as means ± SD, and were analyzed by two-
way ANOVA (A, B), one-way ANOVA (C) or two-tailed Student’s t test (D, E), (n= 3-5 
mice/group (A, C, & D). (*p<0.05, **p < 0.01, ***p<0.001; not significant, n.s.) 
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(as determined by AUC0-) showed no significant reduction in tumor cell 

survival/proliferation (Fig. 2.12 D). In addition, treatment of CT26 tumor cells with 

losartan or losartan EXP-3174 had no effect on CCL2 production by these cells (data 

not shown). 

Cortez-Retamozo et al., have previously demonstrated a unique role for AngII-

ATIR signaling in splenic myelopoiesis and subsequent Ly6CHi monocyte recruitment to 

the lungs of tumor-bearing mice in the KRAS-p53 (KP) conditional model of NSCLC 

(38). To determine if a similar signaling axis was present in the CT26 model, we 

evaluated the percentage of CD11b+\Ly6C+ monocytes in the spleens of CT26 

metastasis bearing mice on day 21. In contrast to the findings in the KP mouse model, 

in which disruption of AT1R signaling reduced the number of splenic monocytes, 

losartan did not significantly alter the percentage of splenic monocytes in treated vs 

control CT26 metastasis bearing mice (Fig. 2.12 E).  

Finally, pharmacokinetic analysis after 14 days of i.p. losartan dosing in mice was 

performed to determine: 1. If the observed anti-tumor effects in losartan-treated mice 

were associated with plasma drug levels equivalent to those demonstrated to inhibit 

CCR2 signaling in our in vitro THP-1 studies, and 2. To assess the clinical relevance 

and potential to achieve these doses in humans. Fig. 2.13 (A) shows the mean plasma 

concentration of both losartan and EXP-3174 in mice following a single i.p. dose of 60 

mg  kg-1 on day 14, and the table in Fig. 2.13 (B) summarizes pertinent pK parameters. 

Indeed, the maximum plasma concentration (Cmax) and overall exposure (area under 

the curve, AUC0-) in these mice was well within the range of the demonstrated effective  
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Figure 2.13. Steady-state pharmacokinetics of high dose losartan in mice. (A) Mean plasma concentration of losartan and 
losartan carboxylic acid metabolite (EXP3174) in mice following 14 days of intra-peritoneal dosing at 60mg/kg once daily. 
Drug levels were measured by LC/MS/MS at the indicated post-dose time points following the last dose on day 14. (B) 
Table summarizing pK parameters from data shown in (A). Data representative of the mean ± SD, n=3 mice per time 
point. 
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concentrations in our in vitro CCR2 functional assays. In addition, the half-life (t1/2) of 

both losartan and EXP-3174 at these steady state doses confirmed that 1x per day 

dosing was sufficient for CCR2 target inhibition. Of important note, EXP-3174 

demonstrated significant plasma accumulation with two week once daily dosing, which 

given the activity of this metabolite against CCR2, suggests a very favorable pK profile 

for sustained inhibition of CCR2 mediated monocyte recruitment. 

 

Discussion 

There is now a substantial amount of data from mouse models of metastasis 

describing the importance of myeloid cells, and in particular Ly6C+ IMs, in the facilitation 

of multiple steps of the metastatic cascade (12). Specifically, these studies implicate 

IMs in conditioning the pre-metastatic site (39) and promoting tumor cell extravasation 

and growth (16, 40), and have all demonstrated a critical role for CCL2-CCR2 in their 

recruitment to metastases (13, 39, 41, 42). Validating the relevance of these pre-clinical 

findings are an increasing number of clinical studies demonstrating the importance of 

monocytes and/or CCL2 in the prognosis of various human malignancies (18-20, 43), 

further highlighting the potential of CCL2-CCR2 as a valuable therapeutic target for the 

treatment of metastasis. Despite this, at present, there are only two ongoing and/or 

recently completed trials of CCR2 targeted therapies in cancer patients 

(ClinicalTrials.gov, NCT01015560 and NCT02732938), and prior attempts at targeting 

CCL2 were unsuccessful (22). Thus, we sought to determine whether the AT1R 

antagonist losartan, a drug known to modulate monocyte and macrophage responses in 
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other inflammatory diseases, could be re-purposed as a CCR2 antagonist for the 

treatment of cancer metastasis. 

Using in vitro chemotaxis assays and in vivo models of acute inflammation and 

experimental pulmonary metastasis, we demonstrate that losartan and its primary 

metabolite (EXP-3174) effectively inhibit CCL2-CCR2 mediated inflammatory monocyte 

recruitment. While studies in models of atherosclerosis and auto-immune 

encephalomyelitis have associated losartan with inhibition of monocyte recruitment via 

perturbations in CCL2 and/or CCR2, losartan’s mechanism of action in these models 

was shown to be entirely due to a primary inhibition of AngII-AT1R mediated 

inflammation. Here, via three separate CCR2 functional assays, we provide evidence 

that losartan and its primary EXP-3174 metabolite can directly antagonize CCL2-CCR2 

signaling. We show that losartan and EXP-3174 inhibit CCR2 signaling at the level of 

cytosolic Ca2+ flux and downstream ERK phosphorylation, in a manner that was not 

associated with inhibition of CCL2-ligand binding, consistent with non-competitive 

inhibition of CCR2. Interestingly, recent molecular studies on CCR2 have described the 

presence of a novel, highly druggable, intracellular, allosteric binding site for CCR2 

antagonists (44, 45). Based on this observation, we utilized previously published 

homology models of CCR2 to perform docking studies for both losartan and EXP-3174, 

which show that indeed, these molecules do bind to CCR2 at this intracellular allosteric 

site (data unpublished). These preliminary modeling findings are in agreement with the 

observed lack of inhibition of CCL2-ligand binding, and the overall results of our CCR2 

functional studies reported here. Future experiments to verify these modeling results via 
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assessment of losartan and EXP-3174’s effects on CCR2 activation following site-

directed mutagenesis of the ortho- and allosteric binding pockets of CCR2 are planned. 

Given the continued substantial need for the development of drugs which target 

metastatic disease, we sought to determine whether losartan, based on its 

demonstrated inhibition of CCL2-CCR2 signaling, could be re-purposed as an adjunct 

anti-metastatic therapy. By utilizing experimental metastasis models, we chose to limit 

our evaluation of losartan’s anti-tumor effects to a defined step of the metastatic 

cascade, removing potential confounding effects of losartan’s impact on primary tumor 

growth or invasion. We demonstrate in these models that tumor cell colonization of the 

lung was strongly associated with Ly6CHi IM recruitment, in a process which was 

dependent on the presence of CCR2, and that losartan therapy prevented this early 

(72hr) tumor cell colonization, and subsequent IM recruitment and MAM accumulation, 

to a degree similar to that observed with genetic knockout of CCR2. Using two different 

tumor cell lines, we show that daily losartan therapy suppresses experimental 

metastasis growth in a process which was associated with sustained inhibition IM 

monocyte recruitment and a reduction in metastasis-associated myeloid cells. Lastly, as 

losartan is an already FDA-approved and known to be same drug, and thus has 

potential to be rapidly repurposed as an anti-metastatic agent, we felt it was essential to 

compare the pharmacokinetics of high-dose losartan used in our mouse studies with 

previously published losartan pK studies in humans. Direct comparison of losartan 

Cmax and AUC0- observed in our mice suggests that this dose results in ~ 6-fold 

higher exposure than that published for a single 200 mg dose in humans. However, the 

drug concentrations evaluated in our in vitro chemotaxis and CCR2 functional assays 
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were lower than those measured in our in vivo mouse studies, and in the range 

expected with 2-3 mg  kg-1 dosing in humans, doses which are achievable and have 

already been used in Marfan’s syndrome and losartan pK studies in humans, 

respectively (46, 47).  

It is important to note that several other pre-clinical studies in mice have also 

demonstrated anti-tumor effects associated with losartan monotherapy, albeit using 

doses 3-5 time greater than used in our studies (48-50). In addition, retrospective 

analyses of clinical data of patients being treated for hypertension have shown a 

correlation between the use of losartan, or other ARBs and ACE-inhibitors, with 

improved outcomes in patients with pancreatic, breast, or lung cancer (33, 51-53). In 

these models, losartan’s anti-tumor mechanism of action was primarily associated with 

either indirect anti-angiogenic or anti-TGF- signaling effects, or direct anti-invasive 

properties, all of which were the downstream result of primary inhibition of AngII-AT1R 

signaling, and the therapeutic benefit in human cancer patients was presumed to be 

secondary to these effects. However, it is not without reason to suggest that these 

previously described anti-angiogenic and TGF- effects of losartan are not in part the 

result of its overlapping effects on monocyte/macrophage recruitment, as these cells are 

known drivers of angiogenesis and TGF- production in tumors (54, 55). Regardless, 

the data from our models suggests that this suppression of metastasis is unlikely to be 

the result of inhibition of AT1R signaling in tumor or stromal cells, as the cell lines used 

in our models produced significantly less AngII as compared to CCL2, and metastasis-

bearing mice did not have elevated serum levels of AngII as compared to naïve, control 

mice. In addition, losartan therapy did not reduce the tumor-associated macrophage 
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reservoir of splenic IMs, a previously described effect of AT1R inhibition in the KP 

mouse model of NSCLC (38). Lastly, it is unlikely that the observed anti-metastatic 

effects of losartan were due to intrinsic effects on tumor cells, as in our models, losartan 

therapy was not initiated until 24 hours after tumor cell inoculation and lung colonization, 

and no direct inhibition of 4T1 or CT26 tumor cell survival/proliferation by losartan was 

observed in vitro.   

In conclusion, our studies demonstrate a unique and previously undescribed 

mechanism of direct inhibition of CCL2-CCR2 signaling and monocyte recruitment by 

losartan and its primary EXP-3174 metabolite, and show that daily losartan therapy is 

effective in suppressing experimental metastasis growth, in a manner which was 

associated with sustained blockade of inflammatory monocyte mobilization and with 

suppression of accumulation of metastasis-associated myeloid cells. These results 

provide another, yet undescribed, anti-tumor mechanism of losartan, in addition to its 

previously documented effects on angiogenesis and TGF- signaling. Indeed, this new 

understanding of losartan’s mechanism of action could explain all of the previously 

described phenomena associated with losartan therapy for cancer. In summary, these 

data further substantiate the potential clinical utility of losartan in cancer patients, and 

suggest that this low cost, safe, and already-approved drug, could be rapidly 

repurposed as an adjuvant therapy for patients at high risk of metastasis. 
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CHAPTER 3 
 
 

Role of monocyte recruitment in hemangiosarcoma metastasis in dogs 

 

Summary 

 Canine hemangiosarcoma is a highly malignant tumor, which is associated with 

poor long-term survival due to the development of early and widespread metastatic 

disease. Currently, little is known regarding the biology of canine hemangiosarcoma, 

and the mechanisms accounting for the highly metastatic nature of the tumor are poorly 

understood. In humans and rodents, monocytes have been shown to play key roles in 

metastasis through promotion of tumor cell extravasation, seeding, growth, and 

angiogenesis, as well as suppression of anti-tumor immunity. However, there has been 

little investigation into the role of monocytes in canine tumor metastasis. Therefore, we 

investigated the potential role of monocyte infiltration in the regulation of tumor 

metastasis in dogs. To address this question, we initially performed 

immunohistochemistry for CD18 to determine the degree of monocyte infiltration in 

necropsy samples obtained from several common metastatic tumors of dogs, including 

hemangiosarcoma, osteosarcoma, and various carcinomas. We found that compared to 

other tumor types, hemangiosarcoma metastases had significantly greater infiltration of 

CD18+ monocytes. Next, migration assays were used to compare the ability of tumor 

cell lines to stimulate monocyte migration in vitro. Hemangiosarcoma cell lines were 

among the strongest at stimulating monocyte migration, and were also found to be the 

highest producers of the monocyte chemoattractant CCL2. In addition, 

hemangiosarcoma metastases in vivo were found to produce large amounts of CCL2, 
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compared to other tumor metastases. These results are consistent therefore with the 

hypothesis that overexpression of CCL2 and recruitment of large numbers of monocytes 

may explain in part the aggressive metastatic nature of canine hemangiosarcoma. 

Moreover, these findings suggest that immunotherapeutic interventions designed to 

block monocyte recruitment or mobilization may be an effective adjuvant strategy for 

suppressing tumor metastasis in dogs with hemangiosarcoma. 

 

Introduction 

Hemangiosarcoma (HSA) is a malignant vascular neoplasm, which occurs 

spontaneously in the dog more frequently than any other species (1, 2). Specifically, 

canine hemangiosarcoma comprises 5-7% of all non-cutaneous malignant canine 

neoplasms, with the most common primary tumor sites including the right atrium/auricle, 

spleen, and skin/subcutis (3-10). Based on its histomorphological appearance, the 

tumor is presumed to arise from transformed endothelial cells; however, the tumors’ 

origins are still under debate, and more recent investigations into the genotypic nature 

of hemangiosarcoma in dogs and humans show that the tumor likely originates from 

hematopoietic endothelial progenitor cells (11, 12).  

In the dog, hemangiosarcoma is characterized by very aggressive biological 

behavior and a high rate of rapid and widespread metastasis, with 1-year survival rates 

following surgery +\- adjuvant chemotherapy reported to be less than 10% (13-16). 

Current standard of care for canine hemangiosarcoma includes surgical removal of the 

primary tumor, followed by adjuvant chemotherapy consisting of either a conventional 

protocol, typically with the anthracycline drug doxorubicin (DOX), or cyclophosphamide-
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based metronomic therapy (13-15, 17, 18). However, these adjuvant therapies do little 

to slow the development and/or growth of metastases, with median survival times for 

either chemotherapy protocol reported to be 6 months or less in multiple, independent 

studies (13, 14, 17-19). As such, numerous clinical trials evaluating alternative 

treatment modalities for canine hemangiosarcoma have been performed, including 

addition of the anti-angiogenic drug minocycline or the non-specific immune stimulant L-

MTP-PE to DOX therapy, doxorubicin dose intensification, and combination metronomic 

therapy with etoposide, cyclophosphamide, and piroxicam (13, 15, 19-21). However, the 

majority of these investigative therapies have failed to extend survival times in the post-

surgical period, with only L-MTP-PE providing a significant, although still modest, 

increase in median survival time as compared to DOX therapy alone (162 days vs. 96 

days MST, respectively) (15). This lack of efficacious treatments for canine 

hemangiosarcoma is not surprising however, given the critical knowledge gaps currently 

present in our understanding of the fundamental biological processes driving the 

pathogenesis of this tumor. 

Inflammatory monocytes (IMs) are one immune cell subset of a heterogeneous 

population of immature myeloid cells, which have been shown to play key roles in 

promoting tumor metastasis in both humans and pre-clinical rodent models (22, 23). In 

contrast to resident monocytes, inflammatory monocytes are defined in part by their 

high surface expression of the chemokine receptor CCR2 (23). Both tumor and stromal 

cells at sites of metastases have been shown to produce abundant amounts of the 

monocyte chemoattractant and CCR2 ligand, CCL2, which efficiently recruits these 

CCR2+ inflammatory monocytes as early as 24 hours following the seeding of 
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metastatic tumor cells within the lung (23). This CCL2-CCR2 chemotactic axis serves to 

provide a continual supply of IMs to metastatic sites, whereby these cells can 

differentiate into metastasis-associated macrophages (MAMs), which function to 

prepare the metastatic microenvironment for the continued arrival of tumor cells via 

production of various cytokines and growth factors (22-25). These macrophage-derived 

soluble factors are critical to the multi-step processes of tumor cell extravasation, 

survival, growth, and angiogenesis, which are required for the efficient colonization and 

subsequent outgrowth of tumor cells at the metastatic site. Substantiating these seminal 

observations in mice, and providing direct clinical evidence supporting a role for 

inflammatory monocytes in tumor progression in humans are multiple studies 

demonstrating that pre-treatment elevations in peripheral blood monocyte count and 

serum CCL2 levels are both negative prognostic indicators for a variety of cancers in 

people, including melanoma, lymphoma, and carcinomas of the prostate, colon, and 

kidney, among others (26-32). 

Despite rapid gains in our understanding of myeloid cell promotion of tumor 

growth and metastasis in human oncology, there have been limited investigations into 

the role of monocytes and other myeloid-derived cells in canine cancer, and currently, 

their role in tumor metastasis in dogs is poorly defined. Independent results from two 

retrospective studies performed in tumor-bearing dogs do however provide strong 

evidence that peripheral blood monocyte counts could have prognostic relevance in 

canine cancer (33, 34). In one study which evaluated pre-treatment blood monocyte 

counts in 69 dogs with osteosarcoma, it was demonstrated that higher numbers of 

circulating monocytes (> 0.4x103 cells/L) was associated with significantly shorter 
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disease-free interval, with the proportion of dogs disease free at 1 year being 

approximately 50% less than dogs with low monocyte counts ( 0.4 x 103 cells/L) (34). 

In a separate but similar study of 26 dogs with lymphoma, Perry et al. demonstrated that 

serum CCL2 levels, and peripheral blood neutrophil and monocyte counts were 

significantly elevated in lymphoma-bearing dogs as compared to healthy controls, and 

that elevations in all three parameters were independently associated with significantly 

shorter disease free interval (33). In addition, serum CCL2 was also positively and 

significantly correlated with lymphoma disease stage in these patients.  

A handful of other studies have retrospectively characterized the presence of 

tumor-associated myeloid cells/macrophages (TAMs) in primary canine tumor tissues of 

various type including melanoma, mammary carcinoma, seminoma, glioma, and nasal 

carcinoma (35-39). While a single study of canine mammary tumors demonstrated an 

association between a high density of TAMs and significantly decreased overall survival 

time (38), the majority of these studies were descriptive in nature and not focused 

specifically on myeloid cells, but aimed to more broadly characterize the diversity of 

intra-tumoral immune cell infiltrates. To our knowledge, the characterization of myeloid 

cells, and specifically monocytes, within metastatic canine tumors of any histo-type has 

not yet been evaluated, nor have the mechanisms driving the recruitment of these cells 

been investigated. Therefore, the purpose of this study was to characterize the density 

of tumor-associated myeloid cells within pulmonary metastases of multiple, common 

and highly metastatic canine tumor types using immunohistochemistry for CD18. In 

addition, we sought to determine the potential cellular and molecular mechanisms 
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responsible for the recruitment of these myeloid cells via in vitro trans well monocyte 

migration assays, CCL2 ELISA assays, and CCL2 immunohistochemistry.   

We found that while all evaluated tumors had some degree of CD18+ myeloid 

cell infiltration within pulmonary metastases, hemangiosarcoma metastases had a 

uniquely intense CD18+ monocyte\macrophage infiltrate, which was significantly greater 

than other evaluated tumor types. In vitro assays demonstrated that hemangiosarcoma 

cells produce abundant amounts of the monocyte chemoattractant CCL2, and that 

hemangiosarcoma tumor-conditioned elicited strong canine monocyte migration, which 

could be significantly inhibited by the addition of CCL2 neutralizing antibody. In addition, 

hemangiosarcoma pulmonary metastases demonstrated intense positive 

immunolabeling for CCL2, and hemangiosarcoma tumor-bearing dogs had significantly 

elevated levels of serum CCL2 as compared to healthy control dogs. These findings 

demonstrate a potential unique role for CCL2-CCR2 mediated monocyte recruitment in 

promoting hemangiosarcoma metastasis in dogs, and suggest that recruitment of large 

numbers of monocytes may explain in part the highly aggressive metastatic nature of 

canine hemangiosarcoma. Thus, immunotherapeutic interventions designed to inhibit 

CCL2-CCR2 mediated monocyte recruitment might represent effective adjuvant 

therapies for suppressing tumor metastasis in dogs with hemangiosarcoma. 

 

Materials and Methods 

Tumor tissues 

Formalin-fixed, paraffin-embedded (FFPE) tissues of pulmonary metastases of 

various canine tumor types were obtained from archived cases submitted to the 
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Colorado State University Veterinary Diagnostic Laboratory (CSU-VDL) for post-mortem 

evaluation between the years of 2007-2014. Evaluated tumor types included 

hemangiosarcoma (n=18), osteosarcoma (n=11), transitional cell carcinoma (n=4), 

melanoma (n=5), and soft tissue sarcoma (n=4). Necropsy reports from the CSU-VDL 

database were reviewed, and sections were cut and hematoxylin-eosin stained to 

confirm the previous diagnoses. 

 

Immunohistochemistry 

Tissue blocks were sectioned at 5 µm, mounted on Superfrost Plus slides (Fisher 

Scientific, Pittsburgh, PA) and immunolabeling for the β-2 integrin, pan-leukocyte 

marker CD18, and chemokine CCL2, was performed using standard methods. Briefly, 

tissue slides were de-paraffinized in xylenes and re-hydrated using a series of graded-

alcohols. Antigen retrieval was performed using either: 1.) A proprietary Leica Bond 

enzyme-1 (Buffalo Grove, IL) enzymatic retrieval for 10 min (CD18), or 2.) 10mM 

sodium citrate buffer, pH 6.0, for 20 min at 125 C in a pressurized chamber (CCL2). 

Immunolabeling was performed using either a Leica Bond Max autostainer (CD18), or 

Dako autostainer link 48 (CCL2). Tissues were blocked for endogenous peroxidase by 

incubation in 3% H202 for 5 minutes. Subsequently, sections were then incubated with 

the following primary antibodies for 1 hr at room temperature (RT): mouse α canine 

CD18 (clone CA16.3C10), or rabbit α human CCL2 (Abcam, ab9669, 2.5 μg/ml). For 

CCL2, detection was performed using the universal labeled streptavidin-biotin2 system 

(Dako, Carpinteria, CA), which consists of incubation with a mixture of biotinylated goat 

anti- mouse and rabbit IgG secondary antibodies followed by horseradish peroxidase-
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labeled streptavidin. For CD18, detection was performed using the Leica Bond Polymer 

Red Refine Detection (Buffalo Grove, IL) system, which consists of an alkaline 

phosphatase-linked rabbit anti-mouse IgG. Positive staining was visualized using either 

refine red (CD18) or DAB (CCL2) chromogen substrates. 

 

CCL2 immunofluorescence  

For intra-cellular CCL2 immunofluorescent staining, canine tumor cells (100,000 

cells) in complete MEM media were grown on sterilized glass coverslips (Fisher 

Scientific, Waltham, MA USA) in 24-well plates for 24 h +\- a protein transport inhibitor 

(Brefeldin A, 10 ug\ml, BioLegend, San Diego, CA USA) for the last 4 hours of culture. 

After 24 h, cells were fixed in 1% paraformaldehyde for 10 minutes on ice, and then 

permeabilized via incubation with 0.1% Triton-X100 in PBS containing 0.5% Tween20 

(PBST) for 15 minutes at room temperature. Non-specific binding was blocked by 30 

min incubation with 5% donkey serum in 1% bovine serum albumin (BSA) (Calbiochem, 

San Diego, CA USA). Coverslips were incubated with the primary antibody (rabbit α 

human CCL2 (Abcam, ab9669, 2.5 μg/ml) diluted in 1% BSA containing 0.1% Triton-

X100 for 1 hr at RT.  Positive CCL2 labeling was visualized using a FITC-labeled 

donkey α rabbit IgG secondary antibody (Jackson ImmunoResearch Inc., West Grove, 

PA USA). Nuclei were counterstained with DAPI, and coverslips mounted onto glass 

slides using Fluoromount aqueous mounting media (Sigma-Aldrich, St. Louis, MO 

USA).   
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Western blot for cross-species validation of the anti-human CCL2 antibody 

 1 μg of recombinant canine CCL2 (R&D systems Inc., Minneapolis, MN USA) 

was mixed 1:1 with 2x Laemelli sample buffer containing 5% 2-Mercaptoethanol 

(BioRad Laboratories, Hercules, CA USA), boiled for 5 minutes, cooled on ice, and then 

loaded in a 20 μL volume into a Mini-Protean TGX 4-20% pre-cast polyacrylamide gel 

(BioRad Laboratories, Hercules, CA USA) for sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE). SDS-PAGE was performed at 150 V for 

approximately 1 h. Protein was then wet transferred to nitrocellulose membranes (95 V, 

50 min, at 4 °C), and membranes were blocked for 1 h at RT in a 5% non-fat dry milk in 

Tris-buffered saline Tween 20 solution (TBST). After washing in TBST, membranes 

were incubated with the primary antibody (1.25 μg /mL rabbit anti-human CCL2, 

abcam9669) diluted in 5% non-fat dry milk in TBST, overnight at 4 °C. The following day 

membranes were rinsed (x3 with TBST), incubated with the secondary antibody (HRP-

linked goat anti-rabbit IgG; Thermo Scientific, Waltham, MA USA) diluted 1: 20,000 in 

5% milk-TBST for 1 h at RT. Lastly, membranes were imaged with chemiluminescent 

substrate (Clarity Western ECL, BioRad) using a Chemi Doc XES + system (BioRad, 

Hercules, CA, USA). 

 

Image analysis and quantification 

For quantification of CD18+ immunoreactivity, (5-8) 40x magnification, intra-

tumoral independent fields of multiple pulmonary metastases of each tumor were 

captured using standardized exposure times and either a Nikon 80i microscope and 

Olympus DP70 camera, or an Olympus IX83 microscope and Olympus SC30 camera. 
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In order to ensure accurate quantitative assessment of CD18+ cells, we used the color 

deconvolution algorithm developed for the NIH open-source image analysis software, 

ImageJ. Using the FastRed and FastBlue vectors for this algorithm, digitized intra-

tumoral images of tumor metastases were separated in into 8-bit gray scale images 

representative of the chromogen color (red) only. A lower threshold limit was then set at 

a value corresponding to the mean of the isotype control, and universally applied to 

every single image. Any pixel value falling above this lower threshold value was 

measured as positive for CD18, and used to determine % area positive within the field. 

For quality control, image masks of the “thresholded”, positive counted area were also 

generated and directly visually compared to the originally captured photomicrographs by 

a board-certified pathologist, to ensure accuracy in representation of CD18+ 

immunoreactivity (Figure S3). This method was chosen as the most accurate 

representation of CD18+ immune cell infiltrates within tumor regions, as numerical 

quantification of single positive cells within tumor fields was impossible due to the 

marked density and overlap of CD18+ cells within tumor fields. 

   

Tumor cell culture 

The DEN-HSA hemangiosarcoma cell line was used for all in vitro monocyte 

migration and CCL2 immunofluorescence and ELISA assays. The DEN-HSA cell line 

was provided by Dr. Doug Thamm (Flint Animal Cancer Center), and was originally 

derived at the University of Wisconsin, Madison, WI from a spontaneous renal 

hemangiosarcoma of a Golden Retriever (41). Cells were maintained in MEM culture 

media (Gibco, Grand Island, NY USA) supplemented with 10% fetal bovine serum 
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(Atlas Biologicals, Fort Collins, CO USA), penicillin (100 U/mL), streptomycin (100 

g/mL), L-glutamine (2 mM), and non-essential amino acids (0.1 mM) (All obtained from 

Gibco). Cells were grown on standard plastic tissue culture flasks (Cell Treat, Shirley, 

MA USA), incubated under standard conditions of 37 °C, 5% CO2, and humidified air. 

 

In vitro monocyte migration assays and CCL2 neutralization 

Peripheral Blood Mononuclear Cells (PBMCs) were isolated from fresh, EDTA-

treated canine blood and used for in vitro trans-well migration assays to assess the 

degree to which HSA tumor-conditioned media elicited canine monocyte migration. For 

generation of tumor conditioned media, 100,000 DEN-HSA tumor cells were plated in a 

24-well plate (Falcon) in 1 mL of complete MEM media and grown for approximately 24 

hours prior to harvest of the culture supernatant. 600 μL of HSA-conditioned media was 

placed in the 24-well plate below each migration chamber to serve as the 

chemoattractant for the PBMCs. The negative control consisted of 600 L of complete 

MEM media alone. The positive control consisted of 600 μL of complete MEM media 

containing 100 ng/mL of recombinant human CCL2 (Peprotech Inc. Rocky Hill, NJ). For 

CCL2 neutralization experiments, rabbit polyclonal anti-human CCL2 antibody (Abcam, 

ab9669) or rabbit IgG (Jackson ImmunoReserach, West Grove, PA) was added to the 

tumor conditioned media at 5 μg/mL immediately prior to addition of PBMCs. 250,000 

PBMCs in 100 μL complete MEM were plated in the top well of the migration chamber 

insert. Subsequently, cells were allowed to migrate for 4 hours under standard 

conditions of 37 °C, 5% CO2, and humidified air. Following migration, the non-migrated 

cells were removed, and membranes were fixed with ice-cold methanol for 10 min on 
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ice, stained with 3% crystal violet (Sigma-Aldrich, St. Louis, MO USA), rinsed with dH20, 

and air-dried overnight. The following day, membranes were cut from the cell culture 

inserts, and mounted “migrated-side” up on superfrost plus glass slides using immersion 

oil. A total of (5) 40x fields per membrane were counted to determine the Mean # of 

monocytes/40x field for each membrane. Only cells displaying the appropriate nuclear 

and cytoplasmic characteristics consistent with monocytes were counted and included 

in the analysis. Neutrophils and lymphocytes were rarely observed on the migrated side 

of the membrane, but if present were excluded based on their segmented nuclear 

morphology, and nuclear:cytoplasmic ratio, respectively. Each migration assay was run 

in technical replicates at minimum, and each experiment was repeated at least once. 

  

Serum and cell culture supernatant CCL2 analysis 

A commercially available canine CCL2 ELISA kit (R&D Systems Inc., 

Minneapolis, MN USA) was used to measure the concentration of CCL2 in tumor-

conditioned cell culture media and in the serum of healthy control and 

hemangiosarcoma-bearing dogs. For in vitro assessment of CCL2 production by HSA 

tumor cells, 200,000 were plated in a 24-well plate in 1 mL of complete MEM media, 

and grown for approximately 24 hr prior to harvesting the culture supernatants for 

ELISA assay. Due to the abundant amount of CCL2 produced by tumor cells, culture 

supernatants were diluted 1:20 (1:10 with MEM media, and 1:1 with the reagent diluent) 

prior to ELISA measurement, and a 7-point standard curve with a high standard of 4000 

pg/mL was used to determine the concentration of CCL2 within the supernatant. 
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Appropriate controls included cell culture media alone, diluted on a 1:1 ratio with 

reagent diluent, as well as other canine tumor cell lines (data not shown).  

For analysis of serum CCL2 levels in hemangiosarcoma-bearing dogs, archived, frozen, 

serum samples from dogs with a histologically confirmed diagnosis of 

hemangiosarcoma (n=24) were obtained from the tissue archive of the Flint Animal 

Cancer Center. For comparison, serum from “healthy” control dogs (n=6; median 

age=10 yrs., range 3-12 yrs.) was obtained from personal pets of laboratory personnel 

or from the Clinical Pathology Laboratory at Colorado State University. These animals 

were deemed healthy based on their history, medical records, and physical 

examination, and were not currently receiving any medications at the time of serum 

sampling.  

 

Statistical analyses 

 For the comparison of mean values between three or more groups (% CD18+ 

area analysis, in vitro monocyte migration assays with CCL2 neutralization), a One-way 

ANOVA with Tukey’s post-test was performed. For comparison of means between two 

groups (in vitro monocyte migration assays, CCL2 ELISA assays of serum samples and 

tumor-conditioned media) a two-tailed, unpaired t test was used. All statistical analyses 

were performed using Graph Pad Prism software (La Jolla, CA, USA). 
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Results 

Immunohistochemical characterization of CD18+ cell infiltrates in pulmonary 

metastases of various canine tumor types 

Positive immunostaining for CD18+ cells within pulmonary metastases was 

characterized by moderate to intense membranous to cytoplasmic labeling of 

individualized, round to sometimes slightly polygonal to elongate infiltrating immune 

cells (Fig. 3.1 A-D). These cells were easily distinguishable from tumor cells by their 

lack of cellular and nuclear pleomorphism. The CD18+ cells within metastases 

predominately consisted primarily of monocytes, along with a smaller population of 

CD18+ macrophages).  The cellular features of the CD18+ cells included the following: 

1) diameter larger than typical lymphocytes, containing a larger nucleus, increased 

cytoplasm, and a lower nuclear:cytoplasmic ratio, and 2) typical mononuclear 

morphology, characterized by a round to U-shaped nucleus, lacking the nuclear 

segmentation typical of neutrophils (Fig. 3.2).  

 Notably, despite the highly vascular nature of hemangiosarcoma, CD18+ cells 

within hemangiosarcoma metastases were predominately localized to the fibrous 

connective tissue stroma and connective tissue bundles forming the vascular spaces, 

and not within vascular spaces (Fig. 3.2). Additionally, hemangiosarcoma pulmonary 

metastases were often comprised of tumor cells arranged in sheets that resulted in an 

“epithelioid” appearance, which allowed for easier image capture and analysis of CD18+ 

cell density, as opposed to the highly vascular morphological appearance associated 

with hemangiosarcoma of the spleen, liver, right atrium, or elsewhere. 
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Figure 3.1. Representative photomicrographs of CD18+ myeloid cell infiltrates within 
pulmonary metastases of various canine tumor types. (A) The greatest density of 
infiltrating CD18+ cells were typically present within hemangiosarcoma metastases, and 
was frequently characterized by a very uniform, diffuse, distribution of CD18+ cells 
infiltrating throughout the tumor stroma. CD18+ cellular infiltrates within osteosarcoma 
(B), soft tissue sarcoma (C), and transitional cell carcinoma (D) metastases were typically 
less dense, and more frequently composed of multifocal, small to medium sized nodular 
clusters present throughout the tumor stroma. All images 40x magnification. Fast red 
chromogen. Hematoxylin counterstain.  
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Figure 3.2. Higher magnification image of CD18+ myeloid cell infiltrates within a 
hemangiosarcoma metastasis. CD18+ cells were typically characterized by a U-shaped 
to round, mononuclear morphology, consistent with either monocyte (thin arrows) or 
macrophage (thick arrows) morphology. Importantly, CD18+ cellular infiltrates were 
localized to the tumor stroma and thin fibrovascular septa forming the vascular spaces, 
and were not present within the lumens of neoplastic vessels. 100x magnification. Fast 
red chromogen. Hematoxylin counterstain.  
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The micro-anatomical distribution and density of CD18+ cellular infiltrates within 

pulmonary metastases varied between tumor types. For hemangiosarcoma metastases, 

the CD18+ cells had the greatest density and degree of uniformity in cellular infiltrates 

(Fig. 3.1A).  For example, CD18+ cells were typically uniformly distributed, dense 

infiltrates throughout the tumor core, as well as forming dense rims 3-5 cell layers thick, 

which circumferentially surrounded the periphery of metastatic nodules (Fig. 3.3). In 

contrast, CD18+ cells within soft tissue sarcoma and osteosarcoma metastases were 

more frequently arranged in small to medium sized nodular clusters, randomly scattered 

throughout the tumor periphery and within the tumor core. Within melanoma and 

transitional cell carcinoma metastases, CD18+ cells were typically localized to within 

thin bands of reactive fibrous connective tissue stroma surrounding packets and nests 

of tumor cells, and were significantly less dense, individualized, and frequently more 

polygonal to elongate in appearance (Fig. 3.1 B-D). Lastly, the density of CD18+ cells 

varied within each tumor type, with some tumors exhibiting markedly high degrees of 

CD18+ cellular infiltrates, while other cases were almost completely devoid of CD18+ 

cells. 

 

CD18+ cellular infiltrates are greatest within hemangiosarcoma pulmonary 

metastases 

For accurate quantitative assessment of CD18+ cells, we used the ImageJ color 

deconvolution algorithm as described in Materials and Methods. For each image, a 

mask of the positive area as determined by ImageJ was generated and directly 

compared to its “parent” photomicrograph to ensure accuracy in automated assessment  
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Figure 3.3. Overview of distribution of CD18+ cells within hemangiosarcoma metastases. 
Low-magnification image demonstrating CD18+ cells localized both circumferentially 
around the periphery of metastatic nodules (black arrows), as well as diffusely infiltrating 
through the tumor stroma and core of metastatic nodules. 10x magnification. Fast red 
chromogen. Hematoxylin counterstain. 
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Figure 3.4. Validation of the ImageJ color deconvolution algorithm for quantitative 
assessment of CD18+ cell density. (A) Original 40x image of CD18+ immunolabeling, 
and (B) corresponding quality control, thresholded image mask of CD18 positive area 
as determined in ImageJ using the color deconvolution algorithm. Color deconvolution 
with the Fast red and Fast blue vectors followed by setting a lower threshold limit at the 
mean gray value of negative control images generated effective masks for accurate 
quantitative evaluation of CD18+ cellular infiltrates. 
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of CD18 immunoreactivity. As shown in Figure 3.4, the color deconvolution algorithm 

was accurate in identifying CD18+ immunoreactivity, accurately selecting the Fast red 

chromogen signal localized to cellular membranes and cytoplasm, but at the same time 

excluding pigment, hyperchromatic nuclei, or other artifacts. Importantly, this algorithm 

was also effective in discriminating the Fast red positive chromogen from the red hue of 

erythrocytes, thus preventing false positives resulting from the vascular nature of 

hemangiosarcoma (black arrow, Fig. 3.4). The percentage of CD18+ area within tumor 

metastases was significantly greater within hemangiosarcoma, which had a mean of 

11.75 % (± 2.913 % positive area), as compared to transitional carcinoma metastases 

(6.229 ± 2.746 %), and melanoma metastases (6.623 ± 3.245 %) (Fig. 3.5A; One-way 

ANOVA, Tukey’s post-test, *p<0.05). While the mean % CD18+ area within 

hemangiosarcoma metastases was numerically greater than for osteosarcoma (9.164 ± 

4.168 %) and soft tissue sarcoma metastases (8.924 ± 3.788 %), but did not reach the 

level of statistical significance (p = 0.28, and 0.56, respectively). Importantly, the mean 

% CD18+ area within hemangiosarcoma metastases was significantly greater than the 

mean of the other tumor types combined (11.75 ± 0.69 % vs. 8.11 ± 0.76 %, 

respectively) (p=0.001). 

 

CCL2 secreted by canine hemangiosarcoma cell line elicits strong monocyte 

migration. 

 A canine hemangiosarcoma cell line (DEN-HSA) was used to investigate the 

immunological mechanisms responsible for monocyte infiltrates observed in  
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Figure 3.5. Quantification of CD18+ cell density within pulmonary metastases using 
ImageJ color deconvolution. (A) The density of C18+ cells, expressed as CD18+ area 
as percentage of tumor area, was greatest within hemangiosarcoma metastases, and 
was significantly greater than that observed in transitional cell carcinoma and melanoma 
metastases. (B) Furthermore, the percentage of CD18+ cells were even more 
significantly greater in hemangiosarcoma metastases, when compared to all other 
evaluated tumor types combined. HSA=hemangiosarcoma, OSA=osteosarcoma, 
STS=soft tissue sarcoma, and TCC=transitional cell carcinoma. Data representative of 

Mean  SD. *p=0.03 (HSA vs. melanoma) and *p=0.04 (HSA vs TCC); One-way 
ANOVA, Tukey’s post-test; **p=0.001; unpaired, two-tailed t test. 
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hemangiosarcoma metastases. A monocyte migration assay was used to evaluate the 

effects of DEN-HSA conditioned medium on monocyte recruitment, using canine 

peripheral blood mononuclear cells (PBMC) from healthy control dogs and transwell 

plates (Fig. 3.6 A-C).  Following exposure of PBMC to HSA-conditioned medium, the 

mean number of migrated monocytes per HPF (24.7 ± 10.02) was significantly 

increased compared to control medium (1.6 ± 2.054) (p<0.05 (Fig. 3.6). In addition, as 

CD18+ monocyte infiltrates were also observed in pulmonary metastases of other 

canine tumor types evaluated by IHC (although not the same significant degree as 

canine hemangiosarcoma), we decided to quantify in vitro PBMC migration to tumor-

conditioned media from a panel of other canine tumor cell lines. As shown in Figure 3.7, 

cell lines of other metastatic canine tumor histotypes, including histiocytic sarcoma 

(Nike), transitional cell carcinoma (Bliley), and osteosarcoma (Abrams) also elicited 

strong in vitro PMBC migration; however, hemangiosarcoma cells (DEN-HSA) 

demonstrated the greatest mean number of monocytes migrated in greater than 4 

independent experiments performed in duplicate.  

Given the known role of the CCL2-CCR2 chemotactic axis in monocyte 

recruitment in mouse and human tumor models, we hypothesized that the observed 

monocyte recruitment by canine tumor cell lines could also be mediated by CCL2. Thus, 

CCL2 secretion by DEN-HSA tumor cells was quantified in the same conditioned media 

utilized in the above PBMC migration assays using a canine CCL2 ELISA, as described 

previously (42).  DEN-HSA conditioned media contained very high concentrations of 

CCL2 (Fig. 3.8A), with a mean concentration of 22,830 pg/mL. Furthermore, a second 

canine hemangiosarcoma cell line (SB-HSA) was evaluated for CCL2 production by  



 

 108 

 

 

Figure 3.6. Canine hemangiosarcoma tumor-conditioned media stimulates strong 
monocyte migration in vitro. Representative photomicrographs of crystal violet stained 
membranes of the cell culture inserts used for quantification of in vitro monocyte 
migration. Complete MEM media stimulated little to no monocyte migration (A); 
however, conditioned-media from canine DEN-HSA cells stimulated strong monocyte 
migration (C), which was significantly greater than the negative control, and at minimum 
equivalent to the positive control of 100 ng/mL recombinant human rCCL2 (B). Only 
migrated cells displaying a mononuclear morphology consistent with monocytes were 
counted and included in the analysis. (D) Quantitative assessment of monocyte 
migration to media alone (negative control), 100 ng/mL recombinant human CCL2 

(positive control), or HSA-conditioned media. Each data point represents the mean ( 
SD) number of monocytes per 40x field for duplicate membranes as determined by 
counting (5) independent 40x fields per membrane. *p<0.05, repeated measures One-
way ANOVA, Tukey’s post-test. All images are 40x magnification and crystal violet 
stained. 
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Figure 3.7. Conditioned media of other highly metastatic canine tumor cell lines also 
stimulates strong monocyte migration in vitro. Graph showing quantitative assessment 
of monocyte migration to media alone (negative control), 100 ng/mL recombinant 
human CCL2 (positive control), or tumor-conditioned media form the indicated cell line. 

Each data point represents the mean ( SD) number of monocytes per 40x field for 
duplicate membranes as determined by counting (5) independent 40x fields per 
membrane. ****p<0.0001 as compared to negative control, One-way ANOVA, Tukey’s 
post-test.  
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Figure 3.8. Canine hemangiosarcoma cells produce abundant amounts of CCL2 in 
vitro. Significant amounts of CCL2 was detected via ELISA assay of conditioned media 
from both the DEN and SB canine hemangiosarcoma cell lines. 2 x 105 tumor cells were 
seeded in 24-well plates and allowed to grow for 24h prior to harvesting the supernatant 
for CCL2 measurement via ELISA assay. **p<0.01; unpaired, two-tailed t test. Data 

representative of Mean  SD. 
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ELISA assay, and was found to also produce significant amounts of the chemokine (Fig. 

3.8B).  

To determine the potential chemokine responsible for the observed in vitro 

PBMC migration elicited by the other evaluated canine tumor cells lines, CCL2 

production by these cells was also quantified by ELISA assay, again which was 

performed on the same conditioned media utilized in the above PBMC migration 

assays. Similar to hemangiosarcoma cells, the other canine tumor cell lines which also 

elicited strong in vitro monocyte migration (Abrams, Bliley, and Nike), were significant 

producers of CCL2 (Fig. 3.9A). In addition, the amount of CCL2 produced by canine 

tumor cell lines strongly correlated with the mean number of migrated monocytes for all 

evaluated canine tumor cell lines (Fig. 3.9B; r=0.87, **p=0.001). In summary, these 

results suggest that of all evaluated canine tumor cell lines in our panel, those derived 

from tumor histotypes which are known to be more clinically aggressive and highly 

metastatic (hemangiosarcoma, osteosarcoma, and histiocytic sarcoma) produced 

abundant amounts of CCL2. Of interesting note, the Jenny melanoma cell line elicited 

strong in vitro monocyte migration, yet was found to produce minimal to no CCL2, 

suggesting another monocyte chemoattractant is likely responsible for the observed 

monocyte recruitment for this cell line. 

 To further confirm the results of the CCL2 ELISA assays, immunofluorescence 

staining was used to localize tumor cell production of CCL2. Initially, cross-reactivity of a 

polyclonal CCL2 antibody for canine CCL2 was confirmed via western blotting against 

recombinant canine CCL2 (Fig. 3.10 C). The antibody detected a band of approximately 

15 kDa, consistent with the predicted molecular weight of canine CCL2 (8-12 kDa).  
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Figure 3.9. Other highly metastatic canine tumor cell lines also produce abundant 
amounts of CCL2, which correlates with in vitro monocyte migration. (A) Graph showing 
quantitative assessment of CCL2 production by tumor cell lines via ELISA assay of 
conditioned media. Again, 2 x 105 tumor cells were seeded in 24-well plates and 
allowed to grow for 24h prior to harvesting the supernatant for ELISA. (B) Graph 
demonstrating a strong positive correlation between CCL2 concentration within tumor 
conditioned media and mean number of migrated monocytes for all cell lines evaluated 

in (A). Each data point in (A) represents the mean ( SD) number of monocytes per 40x 
field for duplicate membranes as determined by counting (5) independent 40x fields per 
membrane. Pearson correlation = 0.87, **p=0.0018. 
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Figure 3.10. Immunofluorescent localization of CCL2 within canine hemangiosarcoma 
cells. Immunolabeling of DEN-HSA cells for CCL2 required pre-treatment with a protein 
transport inhibitor (Brefeldin A). Un-treated cells (A) displayed no immunoreactivity for 
CCL2, whereas cells pre-treated with Brefeldin A (B), demonstrated, strong, punctate, 
peri-nuclear immunoreactivity for CCL2, which is more clearly demonstrated in the 
enlarged single cell image inset. 40x magnification. CCL2=FITC (green). Nuclei=DAPI 
(blue) (C) Cross-reactivity of the anti-human CCL2 antibody was confirmed via western 
blot against canine recombinant CCL2 (R&D systems Inc. Minneapolis, MN), which 
detected a band of ≈ 15 kDa (predicted M.W. of 8-12 kDa).  
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DEN-HSA cells were pre-incubated with the protein transport inhibitor Brefeldin A (10 

μg/mL) for 4 hours prior to staining. DEN-HSA cells exhibited strong CCL2 positive 

immunoreactivity, characterized by punctate to granular staining which discretely 

localized to the peri-nuclear golgi zone of the cytoplasm (Fig. 3.10 A, B). 

Lastly, while these assays confirmed the ability of DEN-HSA cells to make 

abundant amounts of the monocyte chemokine CCL2, they still did not directly implicate 

this CCL2 production with the observed in vitro monocyte migration. In order to 

investigate this relationship, monocyte migration assays were repeated using DEN-HSA 

conditioned media +/- treatment with a CCL2 neutralizing antibody, or irrelevant IgG 

control antibody. Addition of the CCL2 neutralizing antibody to the tumor-conditioned 

media significantly reduced the mean number of migrated monocytes to approximately 

60-80% lower than that observed for the positive control of HSA-conditioned media 

alone (***p=0.0002) (Fig. 3.11). This result verifies that DEN-HSA in vitro elicited 

monocyte migration is in fact dependent to a significant degree on the CCL2-CCR2 

chemotactic axis. 

 

Immunohistochemical localization of CCL2 in hemangiosarcoma and other canine 

tumor pulmonary metastases 

To corroborate our in vitro results of CCL2 mediated monocyte migration by 

hemangiosarcoma and other canine tumor cell lines, we performed CCL2 

immunohistochemistry on the same cases of canine pulmonary metastases evaluated 

for CD18+ infiltrates in Figure 3.1. Within hemangiosarcoma metastases, expression of 

CCL2 in all evaluated cases was almost entirely restricted to neoplastic cells, with  
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Figure 3.11. In vitro monocyte migration elicited by canine hemangiosarcoma cells (DEN-
HSA) is primarily mediated by CCl2. Neutralization of CCL2 in HSA-conditioned media 
using an anti-human CCL2 antibody (5 μg/mL) resulted in a significant (~60-80%) 
reduction in in vitro monocyte migration as compare to the positive control of HSA-

conditioned media only. Data representative of Mean  SD. ***p=0.0002, ****p<0.0001. 
One-way ANOVA, Tukey’s post-test. 
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Figure 3.12. Tumor cells within hemangiosarcoma metastases demonstrate positive 
immunolabeling for CCL2. All evaluated cases (n=5) demonstrated strong, positive 
immunolabeling for CCL2. (A) In all cases, greater than 50-75% of tumor cells within 
hemangiosarcoma pulmonary metastases demonstrated moderate to strong 
immunoreactivity for CCL2. 20x magnification. DAB chromogen. Hematoxylin 
counterstain. (B) Higher magnification image of the same case in (A), which 
demonstrates the strongly positive, intra-cytoplasmic, peri-nuclear (golgi zone) 
localization for CCL2 within tumor cells. 50x magnification.  
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between 50% and 100% of cells within metastatic nodules demonstrating moderate to 

strong labeling intensity for CCL2 (Fig. 3.12 A). Within tumor cells, the localization of 

CCL2 immunoreactivity varied from diffuse and intra-cytoplasmic, to focal, intense, and 

peri-nuclear (Fig.3.12 B). Metastatic transitional cell carcinoma tumors demonstrated 

diffuse, intense, cytoplasmic labeling for CCL2, which was present in 75-100% of tumor 

cells (Fig. 3.12 B). Additionally, most osteosarcoma pulmonary metastases also 

displayed positive CCL2 labeling (Fig. 3.12 C), though the pattern of immunoreactivity 

was typically characterized by weaker cytoplasmic labeling for CCL2 as compared to 

hemangiosarcoma metastases (Fig. 3.12 A). Lastly, only one of three metastatic 

melanoma biopsies demonstrated positive immunolabeling of tumor cells for CCL2 (Fig. 

3.12 D).  Thus, while there was a wide range of CCL2 expression by all evaluated tumor 

types, hemangiosarcoma metastases were most consistently strongly CCL2 positive.   

 

Serum CCL2 levels elevated in the blood of dogs with splenic hemangiosarcoma 

 CCL2 concentrations in the pre-treatment serum of 24 dogs with a 

histopathologically confirmed diagnosis of hemangiosarcoma, were measured using an 

ELISA assay as described above. For comparison, CCL2 concentrations were also 

measured in the serum of 6 age-matched, healthy control dogs. The median age of 

hemangiosarcoma-bearing dogs was 9.8 years (range of 7-15 years), and consisted of 

12 males and 12 females. The median age of the healthy control dogs was 10 years 

(range of 3-12 years), and consisted of 3 males and 3 females. The mean concentration 

of CCL2 in the serum of hemangiosarcoma-bearing dogs (267.4 ± 56.64 pg/mL) was  
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Figure 3.12. CCL2 positive immunolabeling within other pulmonary metastatic canine 
tumors. (A) Another case of hemangiosarcoma demonstrating strong CCL2 cytoplasmic 
immunoreactivity in the majority (>75%) of tumor cells. (B) A transitional cell carcinoma 
metastasis demonstrating multifocal, strong CCL2 cytoplasmic immunoreactivity in focal 
clusters of tumor cells. (C) Diffuse, weak to moderate positive immunolabeling for CCL2 
within an osteosarcoma metastasis. (D) A melanoma metastasis that was negative for 
CCL2. 40x magnification. DAB chromogen. Hematoxylin counterstain. 
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Figure 3.13. Serum CCL2 levels are elevated in dogs with hemangiosarcoma vs. 
“healthy” controls. Serum samples from dogs with HSA (n=24) were obtained at the time 
of surgical removal of the primary tumor, performed at the CSU Veterinary Teaching 
Hospital. Samples were frozen and maintained in the tissue archive of the Flint Animal 
Cancer Center until analysis. Serum CCL2 concentrations were measured using a 

commercially available canine CCL2 ELISA. Data representative of Mean  SD.   
*p=0.03. unpaired, one-tailed t test with Welch’s correction. 
  

 



 

 120 

significantly elevated (Fig. 3.13) compared to healthy control dogs (123.9 ± 50.68 

pg/mL). Values for serum CCL2 concentration were significantly elevated compared to 

control dogs, whether evaluating dogs with hemangiosarcoma of any primary location, 

or only dogs with primary splenic hemangiosarcoma (data not shown). 

 

Discussion 

While experimental and clinical evidence strongly suggests that monocytes 

promote tumor metastasis in humans and rodent tumor models, there remains a 

considerable knowledge gap in our understanding of the role of monocytes in canine 

tumor metastasis. A primary goal of this study was to immunohistochemically 

characterize the degree of monocyte infiltration within pulmonary metastases of 

common and highly metastatic canine tumors of multiple histo-types. One of the most 

important findings that emerged from these studies was that hemangiosarcoma 

pulmonary metastases appear to have a unique propensity in their ability to recruit 

monocytes, as these tumors demonstrated a significantly greater degree of CD18+ 

monocyte infiltration as compared to all other evaluated canine tumor metastases (Figs. 

1-3). In order to build on this observation and expand the translational relevance of this 

finding, we performed CCL2 immunostaining of tumor metastases, as well in vitro 

migration and ELISA assays to determine the mechanism responsible for this 

recruitment.  As the CCL2-CCR2 axis is known to recruit metastasis-promoting 

monocytes in multiple tumors types in humans and mouse models, we specifically 

focused on this chemotactic axis. CCL2 immunostaining of hemangiosarcoma 

metastases as well as measurement of serum CCL2 levels in hemangiosarcoma-
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bearing dogs confirmed an overproduction of CCL2 by hemangiosarcoma cells in vivo 

(Figs. 6 & 7). In vitro assays utilizing a HSA tumor cell line demonstrated that this CCL2 

production correlated with the ability for in vitro recruitment of canine peripheral blood 

derived monocytes by HSA tumor-conditioned media (Figs. 4 & 5). As 

hemangiosarcoma is an endothelial-derived tumor, and monocytes are known to be a 

rich source of the endothelial growth factor VEGF (23), these findings may be reflective 

of a unique dependence between this specific canine tumor type, and monocyte-derived 

endothelial growth factors. Future studies aimed at assessing changes in the cytokine 

profile of canine blood-derived monocytes following exposure to HSA-conditioned media 

could begin to shed light on this phenomenon. 

 Interestingly, hematopoietic stem/progenitor cells of a CD11b+ myelo-monocytic 

phenotype are also one of multiple cell types which preferentially accumulate at 

metastatic sites even before the arrival of tumor cells, a phenomenon known as the pre-

metastatic niche (41-43). This phenomenon has been demonstrated experimentally in 

syngeneic mouse models of lung carcinoma and melanoma, as well as a human 

xenograft breast cancer model (41-43). In addition, elevated levels of these cells have 

been detected in human cancer patients and correlate with increased risk for metastatic 

progression (41). Once present at metastatic sites, these cells function to establish a 

permissive niche for incoming tumor cells through mechanisms involving immune 

suppression, up-regulation of tumor cell chemoattractants, and promotion of tumor cell 

survival, both directly via secretion of molecules like S100A8 and A9, and indirectly via 

matrix metalloproteinase-mediated release of VEGF and c-KIT (41-43). Furthermore, 

the functional impact of these cells on metastatic progression has been confirmed 
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experimentally, as antibody-mediated depletion of these cells completely prevented 

metastasis in mice bearing well-established tumors 43. Obvious inherent limitations of 

the canine spontaneous cancer model limit our study to the evaluation of canine tumor 

metastases not in a pre-metastatic setting, but in a wide temporal spectrum 

encompassing established metastatic tumors at various stages of growth. Nonetheless, 

our results suggest that the rapid and widespread visceral metastasis characteristic of 

hemangiosarcoma could be due to a distinctive ability of this tumor type to efficiently 

prime the soil of distant metastatic sites through efficient CCL2-CCR2 monocyte 

recruitment.   

 The role of inflammatory monocytes and macrophages in the regulation of tumor 

responses to chemotherapeutic drugs is also beginning to be defined. Recently, it has 

been demonstrated that conventional cytotoxic therapies such as doxorubicin can 

induce tumor and stromal cell production of CCL2 as well as other monocyte and 

macrophage chemoattractants such as M-CSF (44, 45). This therapy-induced 

inflammatory response was shown to lead to enhanced recruitment of CCR2+ 

monocytes and macrophage infiltration of primary tumors in a murine breast cancer 

model and in human breast cancer patients treated with neoadjuvant chemotherapy (44, 

45). Importantly, the functional role of these myeloid-derived cells in mediating 

chemoresistance was demonstrated via concurrent macrophage depletion with 

chemotherapy, which significantly improved overall survival in mammary tumor bearing 

mice (44, 45). In addition, clinical evidence supporting a role for macrophages in 

chemoresistance comes from human breast cancer patients, in which patients having a 

high tumor gene expression ratio of CD68+ macrophages to CD8+ T cells had a 
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significantly lower rate of pathological complete response to neoadjuvant 

chemotherapy, and significantly reduced overall survival (44). As our study compared 

the degree of myeloid cell infiltration within metastatic canine tumors in the post-

therapeutic setting, these observations could have significant implications regarding the 

interpretation of the results of our study. It is plausible then that our findings suggest 

that canine hemangiosarcoma may be unique in its ability to elicit a counter regulatory, 

CCL2-driven myeloid response following cytotoxic therapy. This could in part, potentially 

explain the poor response of this tumor type to conventional cytotoxic therapies, and 

suggest that combination of chemotherapy with a monocyte blocking drug could have a 

synergistic effect in treating this tumor. To more fully investigate these findings and 

potential associations, future studies could be aimed at comparing pre- and post-

chemotherapy treatment serum CCL2 levels and peripheral blood monocyte counts in 

dogs with hemangiosarcoma. 

In conclusion, these studies demonstrate that canine hemangiosarcoma, as 

compared to other common and highly metastatic canine tumors types, is unique in its 

ability to recruit large numbers of monocytes to sites of metastasis. Moreover, through 

CCL2 immunostaining as well as serum ELISA and in vitro assays, we provide 

substantial mechanistic data which strongly suggests that monocyte recruitment to 

hemangiosarcoma metastases is at least in part dependent on the CCL2-CCR2 

chemotactic axis. These observations provide important insights into the biology and 

immunopathogenesis of hemangiosarcoma, and are consistent with the hypothesis that 

overexpression of CCL2 and recruitment of large numbers of monocytes may explain in 

part the aggressive metastatic nature of canine hemangiosarcoma. Thus, drugs 
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designed at blocking monocyte recruitment through disruption of the CCL2-CCR2 axis 

might represent a novel immunotherapeutic approach for slowing the growth and/or 

development of metastasis in dogs with hemangiosarcoma. 
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CHAPTER 4 
 
 

Phase I/II clinical trial and pharmacodynamic evaluation of combination losartan and 

toceranib in dogs with spontaneous, metastatic osteosarcoma 

 

Summary 

 Further progress in the field of immuno-oncology would be greatly accelerated by 

the ability to assess immune-based therapies in the more translationally relevant 

spontaneous canine cancer model. Inflammatory monocytes (IMs) and regulatory T 

cells (Tregs) are two immune cell subsets which have been shown to plays keys roles in 

tumor growth and metastasis through mechanisms involving promotion of tumor cell 

extravasation and angiogenesis, and suppression of anti-tumor immune responses, 

respectively. Recruitment of CCR2+ IMs to sites of metastasis is mediated primarily via 

tumor and stromal cell production of the monocyte chemokine CCL2. We have 

previously demonstrated that losartan, an angiotensin II type 1 receptor (AT1R) 

antagonist, can suppress tumor growth in murine metastasis models through inhibition 

of CCL2-CCR2 signaling and suppression of monocyte recruitment. In addition, prior 

studies have shown that the tyrosine kinase inhibitor (TKI) toceranib, has 

immunomodulatory effects on Tregs in tumor-bearing dogs. Thus, we hypothesized that 

combination losartan and toceranib therapy could exert significant anti-metastatic 

activity based on their combined immunomodulatory effects on monocytes and Tregs. 

We performed initial studies in a murine osteosarcoma (OS) experimental metastasis 

model (K7M2), which demonstrated synergistic anti-tumor activity of losartan when 

combined with the TKI sunitinib, a drug which shares significant functional homology to 
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toceranib. Immunohistochemical analyses of canine OS pulmonary metastases, as well 

as in vitro assays utilizing a canine OS tumor cell line, suggested a potential role for 

CCL2-CCR2 monocyte recruitment in the pathogenesis of OS in dogs. Utilizing in vitro 

monocyte chemotaxis assays, we identified a target losartan dose that significantly 

inhibited CCL2-mediated canine monocyte migration. This dose was therefore used as 

a target plasma drug concentration for dosing of losartan in PK/PD studies in dogs with 

OS metastases. 

Thus, trials were designed in which we sought to determine the safety and 

efficacy of losartan plus toceranib as a novel immunotherapy combination in a Phase I/II 

trial in dogs with spontaneous osteosarcoma (OS) pulmonary metastases. We 

performed losartan pharmacokinetic analysis for 3 separate dose cohorts of dogs 

treated with 1mg/kg, 2.5mg/kg, and 10mg/kg losartan (given BID) in normal and tumor 

bearing dogs, as well as assessed pharmacodynamics (PD) responses via ex-vivo 

monocyte chemotaxis assays, changes in plasma CCL2 concentrations, and flow 

cytometric evaluation of pre- and post-treatment changes in peripheral blood Tregs and 

monocytes. Results of these studies identified a safe and well tolerated dose of losartan 

in dogs which effectively inhibited CCL2-mediated monocyte migration in blood samples 

collected from treated dogs. In the 10 mg/kg losartan cohort, objective tumor responses 

included 2/8 dogs experiencing a partial response (PR) for an overall response rate of 

25%, while 1 additional dog experienced clinically meaningful stable disease (>8 

weeks), for an overall biologic response rate of 37.5% (3/8 dogs). No objective 

responses were observed in the 1mg/kg cohort (0/8), while the biologic response rate in 

this dose cohort was 37.5% (3 dogs with SD). The Median PFS was 42.5 days in 
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10mg/kg cohort, and 61 days in the 1mg/kg cohort. The ORR observed for combination 

losartan and toceranib therapy in this small pilot study of dogs with OSA metastasis 

suggests that a larger, randomized, placebo-controlled trial may be warranted to assess 

the true potential efficacy of this novel immunotherapy combination. 

 

Introduction 

 Successful progress in oncology research has led to improvements in the 

treatment of primary tumors, with advances in molecular therapeutics such as drugs 

targeting receptor tyrosine kinases helping to make substantial gains in the treatment of 

patients whose tumors harbor specific mutations (1, 2). Despite this, the inevitable 

clinical reality is that tumor metastasis remains the single greatest contributor to cancer 

patient mortality (1, 2). Independent analyses of clinical trial data for certain tumor 

types, such as those of the breast or pancreas, demonstrate that in the established 

metastatic setting, survival of these patients has been unchanged for over 30 years (3-

5). This lack of therapeutic advancement in the metastatic setting is alarming, given that 

up to 50% of patients with certain malignancies, such as those of the breast, colon, or 

bone, will eventually develop metastasis despite successful first line therapy of their 

localized disease (2, 6, 7). Thus, there remains a critical need for continued clinical 

development of anti-metastatic therapies, in both the context of preventing metastasis 

formation and treating established metastatic lesions.  

Tumor metastasis is a complex multi-step process governed by intricate, 

overlapping interactions between tumor cells, immune cells, and their surrounding host 

environment (8). The G-protein coupled chemokine receptor CCR2 and its ligand, 
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CCL2, represent a signaling axis which has been demonstrated to play numerous vital 

roles in both tumor cell intrinsic and extrinsic processes of the metastatic cascade (9). 

CCL2 is produced by both tumor and stromal cells in primary tumors and metastatic 

sites (10, 11) Autocrine CCL2-CCR2 signaling in tumor cells has been shown to 

stimulate their migration and invasion, either directly through CCR2 signaling, or 

indirectly through the induction of matrix metalloproteinase (MMP) production by tumor 

cells (12, 13). More well documented are the extrinsic tumor-promoting effects of CCL2-

CCR2 signaling in the tumor microenvironment. CCL2 production by tumor cells has 

been associated with the recruitment of CCR2-expressing inflammatory monocytes to 

primary tumors, as well as their subsequent polarization into a growth promoting (M2) 

tumor-associated macrophage (TAM) phenotype associated with immune suppression 

and promotion of angiogenesis and tumor cell intravasation (14, 15).  In addition, the 

CCL2-CCR2 axis has been heavily implemented in the process of metastatic 

colonization. In pre-clinical mouse models of metastasis, CCR2 expressing IMs are 

preferentially recruited early on to metastatic sites via tumor and stromal cell-mediated 

production of CCL2 (10, 16). Once present at metastases, these monocytes can 

differentiate into metastasis-associated macrophages (MAMs), which have been shown 

to play essential roles in metastatic colonization via promotion of tumor cell 

extravasation, growth, and angiogenesis (10, 17-19). Thus, the combined tumor 

promoting effects of CCL2-CCR2 signaling in both tumor and stromal-immune cells 

suggest that this chemotactic axis represents an attractive target for metastasis-directed 

therapies.  
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A significant therapeutic advancement in human oncology over the last decade 

has been the use of immunotherapy as a new treatment modality (20). In the case of 

certain patients, such as those with melanoma, lung, or renal cancer, 

immunotherapeutic interventions have resulted in unprecedented responses in patients 

with advanced stage/metastatic disease that would have otherwise been fatal (21, 22) . 

These clinical responses have been primarily observed with the use of monoclonal 

antibodies targeting checkpoint molecules such as programmed cell-death protein 1 

(PD-1), or cytotoxic T-lymphocyte associated protein 4 (CTLA-4) (22, 23). However, the 

magnitude and durability of responses observed for certain tumor types suggest that 

therapies designed to target other conserved and tightly-regulated immune cell 

processes, such as those involved in metastasis, likely hold great promise if applied to 

the right patient subsets. 

While these recent developments in human oncology have dramatically 

increased the relevance of immunotherapy as a new treatment modality, further 

progress in immuno-oncology and anti-metastatic drug development would be greatly 

accelerated by the ability to assess immune-based therapies in the more translationally 

relevant spontaneous canine cancer model (24, 25). While murine cancer models 

remain an invaluable tool for understanding basic cancer biology, the continued low rate 

of successful translation of therapies from pre-clinical studies to human cancer patients 

calls into question their predictive value (26). Spontaneously occurring tumors in pet 

dogs represent a highly valuable intermediary animal model for evaluation of novel 

therapeutics and validation of pre-clinical findings, prior to assessment in expensive 

human clinical trials. Naturally occurring tumors in dogs co-evolve in the presence of an 
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intact host immune system and complex tumor microenvironment, and share striking 

similarities on a clinical, biological, genetic, and histological basis (26, 27).  

Canine osteosarcoma (OSA) is a prime example of a naturally occurring canine 

cancer with the potential to inform oncology drug development (2, 28). Dogs with OSA 

share many clinical similarities with human pediatric OSA including primary tumor 

location, response to conventional therapies, the presence of microscopic metastases 

at diagnosis, and unfortunately, a lack of significant improvement of survival times over 

the past 15 years (2, 28). Yet one significant hurdle to fully leveraging this drug 

development pathway is that even a basic knowledge of the immune landscape of 

common canine tumor types, including osteosarcoma, is currently lacking, and to date, 

there has been little investigation into the role of monocytes and the CCL2-CCR2 axis in 

the regulation of canine OSA metastasis. Our lab has previously demonstrated an 

increased infiltrate of CD18+ myeloid cells in canine OSA metastases(29), and have 

shown that elevated peripheral blood monocyte counts as well as a decrease in the 

ratio of CD8+ T cells to regulatory T cells are independently associated with decreased 

survival in dogs with OSA (30, 31). In addition, a substantial amount of clinical data from 

dogs with OSA suggest that this canine tumor type is not immunologically ignorant, and 

indeed appears primed for response to immunotherapy. For example, some of the 

earliest immunotherapy trials in veterinary medicine were conducted in dogs with OSA, 

and demonstrated that administration of non-specific innate immune stimulants such as 

Bacillus Calmette-Geurin (BCG) or liposomal muramyl tripeptide (L-MTP) resulted in the 

activation and induction of tumoricidal activity of monocytes and macrophages, and 

significantly improved median survival times and disease free intervals in these dogs 
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(32-36). These data suggest that patient immune responses likely play a significant role 

in the progression of canine OSA, and that dogs with spontaneous OSA likely represent 

a valuable model for the assessment of novel immunotherapy combinations.  

Losartan, an angiotensin II type 1 receptor (AT1R) antagonist, has been 

previously reported by our laboratory to suppress tumor growth in murine metastasis 

models through mechanisms associated with blockade of CCL2-CCR2 monocyte 

recruitment and inhibition of angiogenesis (Regan et al. in review). In addition, our 

laboratory has previously shown that the tyrosine kinase inhibitor, toceranib phosphate 

(Palladia), has immunomodulatory properties, including reduction in peripheral blood 

Tregs (37). Thus, we sought to assess the safety and tolerability of combined losartan 

and toceranib therapy, as well as its potential anti-tumor activity and immunomodulatory 

effects on canine Tregs and monocytes, in dogs with naturally occurring osteosarcoma. 

Here we provide preliminary evidence for a role of CCL2-CCR2 mediated monocyte 

recruitment in canine OSA metastasis, and report the results of a Phase I/II clinical trial 

of continuous losartan/toceranib combination therapy in dogs with spontaneous 

pulmonary metastatic osteosarcoma. 

 

Materials and Methods 

Patient enrollment 

All patients enrolled in this trial were client-owned dogs presenting to either the 

Colorado State University Veterinary Teaching Hospital (Fort Collins, CO), or VRCC 

Veterinary Specialty and Emergency Hospital (Englewood, CO). Owners of dogs were 

offered enrollment for treatment with losartan plus toceranib under compliance with the 
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Clinical Review Board and Animal Care and Use Committee of Colorado State 

University, and signed informed consent was obtained from all owners prior to 

enrollment. For consideration of study inclusion, all patients were required to have a 

previous histopathologically confirmed diagnosis of osteosarcoma, with measurable 

pulmonary metastasis documented via thoracic radiographs. Prior treatment of the 

primary tumor with surgical resection was also required. Previous cytotoxic chemotherapy 

or other antineoplastic treatment was acceptable with a 2-week washout period. Dogs 

receiving concurrent homeopathic/alternative therapies, or that had received 

chemotherapy within 2 weeks of enrollment were excluded. In addition, animals that had 

other concurrent malignancies, or were <1 year of age on Day 0 were also excluded. 

Prior to study entry, dogs were assessed by physical examination, and standard 

laboratory tests including complete blood count (CBC), serum chemistry, urinalysis, 

urine protein:creatinine ratio (UPCR) and systolic blood pressure to ensure that 

inclusion criteria were met. Dogs were included in the study if the above clinical criteria 

were met, were deemed to have adequate organ function (as determined by the 

standard laboratory tests), and had a modified Eastern Comparative Oncology Group 

(ECOG) score of 0 or 1.  Baseline 3-view thoracic radiographs were obtained and 

evaluated by a board-certified radiologist. Target lesions (up to 5) were identified and 

measurements (longest diameters) were recorded. For study immune endpoints, 

baseline serum, plasma and whole blood samples were also obtained, processed 

accordingly and banked for subsequent analysis.  
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Drug treatments 

For clinical trial dogs and healthy dogs who participated in losartan 

pharmacokinetic studies, 50mg losartan potassium tablets (Cozaar) were obtained from 

the Veterinary Teaching Hospital pharmacy and administered orally at doses of 1mg/kg, 

2.5mg/kg or 10mg/kg BID. For losartan, doses were rounded up to the nearest tablet 

size/number. In addition, clinical trial dogs also received Palladia (toceranib phosphate) 

P.O at a dose of 2.75mg/kg every other day (EOD). Palladia for study dogs was 

generously supplied by Zoetis Animal health Inc.  For dogs enrolled in the 1mg/kg dose 

cohort, losartan and palladia therapy was started concurrently on Day 0. For the first 5 

dogs enrolled in the 10mg/kg dose cohort, dogs received losartan monotherapy only for 

the first two weeks to allow for accurate collection of losartan pK samples and 

assessment of pharmacodynamics response via ex vivo monocyte migration. 

Subsequently, remaining dogs enrolled in this high dose cohort (n=3) initiated losartan 

and palladia therapy concurrently on day 0.   

For in vitro assays and animal experiments, losartan tablets were ground using a 

mortar and pestle, and dissolved in water and sterile-filtered to obtain a stock 

concentration of 10mg/mL. Sunitinib maleate was obtained from Sigma-Aldrich (St. 

Louis, MO), and dissolved in dimethyl sulfoxide (DMSO) to a concentration of 

2.5mg/mL. All drug stocks were aliquoted and stored at -20C. For animal experiments, 

losartan and sunitinib drug stocks were further diluted in PBS, and administered in 100 

L at the following doses: 1.) Once daily intra-peritoneal (i.p.) injection of 60 mg/kg for 

the losartan single agent study, or 2.) Twice daily i.p. injection of 3 mg/kg losartan plus 
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once daily i.p. sunitinib at 0.015 mg/mouse (previously reported to be the mouse 

equivalent of the 50mg human daily dose) for the combination study. 

 

Patient monitoring and treatment evaluations 

Dogs enrolled in the losartan toceranib OSA trial were re-assessed at weeks 1, 

2, and 4 post-initiation of therapy, and every 4 weeks thereafter for the duration of the 

study. At each visit, owner history, physical examination, and systolic blood pressure 

were recorded. In addition, a CBC, serum chemistry, urinalysis, and UPCR were 

performed at week 4 and every 4 weeks thereafter. Adverse events (AEs) were 

recorded and graded according to the Veterinary Cooperative Oncology Group 

Common Terminology for Adverse Events v1.1 (VCOG CTAE; Vail et al.) based on 

owner history, physical examination, CBC, serum chemistry, urinalysis, and UPCR. AEs 

were recorded on day 0, 7, and 14, and every visit thereafter. Reductions in dosage 

and/or frequency were permitted to manage AEs which were attributed to losartan 

and/or Palladia. Treatment response was evaluated according to the published modified 

Response Evaluation Criteria in Solid Tumors (RECIST) and VCOG criteria and were 

based on measurements obtained for target lesions identified at baseline thoracic 

radiographs. Responses were monitored via repeat thoracic radiographs performed at 

week 8 and every 8 weeks thereafter. In addition, dogs in the 10mg/kg losartan dose 

cohort were also evaluated by thoracic radiographs at week 2. Dogs experiencing stable 

disease, or a partial or complete response at week 2 (10mg/kg cohort) or week 8 were 

allowed to remain on study. At each recheck examination, EDTA treated whole blood, 

as well as serum and plasma were collected for immune endpoints. Serum and plasma 
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were aliquoted and stored at -80C for batch cytokine analysis by ELISA. Blood was 

processed within 1 hour of collection by ACK lysis, and freshly isolated PBMCs were 

immediately assayed for CCL2-directed ex vivo monocyte migration (as described 

below) at weeks 0, 1, 2, and 4. Remaining PBMCs were immediately frozen and stored 

in liquid nitrogen until processing for flow cytometry and immune cell subset analysis. 

 

Flow cytometry 

 Previously processed, frozen PBMCs were thawed, washed into cell culture 

medium, re-suspended in FACS buffer (PBS with 2% fetal bovine serum and 0.05% 

sodium azide), counted, and plated at ~ 2.5 x 105 cells/well in 96 well round bottom 

plates for immunostaining. For analysis of T cell subsets, cells were stained with the 

following directly conjugated antibodies directed against canine CD4 (clone YKIX302.9, 

conjugated to Pacific Blue, AbD Serotec, Kidlington, UK), canine CD8 (clone 

YCATE55.9, Alexa 647, AbD Serotec) and canine CD5 (clone YKIX322.3, PE, 

eBioscience, San Diego, CA, USA) diluted in FACS buffer and incubated for 20 min at 

RT in the dark. Following cell surface labeling, PBMCs were then stained for 

intracellular FoxP3 expression, performed as previously described with a cross-reactive, 

PE-conjugated murine FoxP3 antibody (clone FJK-16s, eBioscience). 

 For assessment of CD4 and CD8 T cells, cells were gated initially by forward and side-

scatter properties, then CD5+ cells were gated and separated into CD5+CD4+ and 

CD5+CD8+populations to determine relative percentages. Gates for analysis of 

FoxP3+ regulatory T cells (Tregs) were determined based on binding of a FoxP3 

matched isotype control antibody to the CD5+/CD4+ T cell population. Tregs were 
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considered CD5+/CD4+/FoxP3+, and relative percentages of Tregs were expressed as 

the percentage of CD4+ T cells expressing FoxP3. Absolute numbers of Treg, CD4+ 

and CD8+ T cells in peripheral blood were calculated based on the total lymphocyte 

count determined from a CBC performed with an automated cell counter on a matched 

blood sample. 

For analysis of CCL2+ peripheral blood monocyte populations, PBMCs were 

immunostained with the following panel of directly conjugated antibodies: anti canine 

CD11b (clone Mac-1, PeCy7, Beckman Coulter, Indianapolis, IN, USA), anti canine 

CD4 (clone YKIX302.9, conjugated to Pacific Blue, AbD Serotec, Kidlington, UK), anti 

canine MHCII (clone YKIX334.2, FITC, BioRad, Hercules, CA), cross-reactive anti 

human CD14 (clone TüK4, APC, Invitrogen, Carlsbad, CA), and cross-reactive 

AlexaFluor-647 conjugated human rCCL2 (CAF-2, Almac, Souderton, PA). Myeloid cell 

populations were gated first on forward and side scatter properties, then gated on 

CD11b+/CCL2+ cells, which were further delineated based on their expression of CD4 

and MHCII. The cell populations analyzed included MHCII-/CD4+ granulocytic (based on 

side scatter properties) myeloid cells and MHCII+/CD4- monocytes. All (100%) of 

CD11b+/CCL2+ cells co-expressed CD14. Flow cytometry was conducted using a 

Beckman Coulter Gallios flow cytometer (Indianapolis, IN). Analysis was performed with 

FlowJo software (Ashland, OR). 

 

Losartan pharmacokinetics 

For initial assessment of losartan trough concentrations in the 1mg/kg dose 

cohort, weekly blood samples were collected via jugular venipuncture approximately 6 
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hours following oral administration of losartan. Blood samples were treated with EDTA 

anticoagulant, centrifuged, and plasma removed and stored at -80C prior to batch 

analysis. For pharmacokinetic analysis of high dose losartan, healthy dogs or dogs with 

osteosarcoma metastasis enrolled in the clinical trial received losartan (2.5mg/kg or 

10mg/kg PO BID.) for 14 days. On day 14, a catheter was placed in the lateral 

saphenous vein to allow for ease with repeated sampling, and blood was collected at 

0.25, 0.5, 1, 2, 4, 6, and 12 hours post dosing. Samples were treated with EDTA 

anticoagulant, centrifuged, and plasma removed and stored at -80C prior to analysis. 

Standard curve and QCs were prepared in the following manner: Initial 10mg/ml stocks 

of losartan and losartan EXP3174 carboxylic acid metabolite were prepared in 1:1 

acetonitrile(ACN)/Milli-Q water (1 mg/mL). A standard curve of losartan and EXP3174 

metabolite was then prepared ranging from 5 to 25000 ng/mL in 1:1 ACN/Milli-Q water. 

10l of each appropriate standard was then added to 100 µL of blank plasma collected 

from naïve ICR mice fortified with 10 µL internal standard (ENMD-2076 at 1000 ng/mL). 

10 µL internal standard, 10 µL 1:1 ACN/Milli-Q water, and 100 µL ACN were then added 

to 100 µL of each unknown plasma sample in 1.5mL micro centrifuge tubes. All samples 

were then vortexed for 5 min, centrifuged @ 13,300 rpm for 20 min, and 200 µL of the 

organic phase was transferred to fresh 2-mL micro-centrifuge tubes. Samples were 

concentrated to dryness on a speed vacuum then reconstituted in 200 µL of 85:15 [v:v], 

0.1% formic acid: 50/50 ACN/methanol. Finally, samples were transferred to glass 

autosampler vials for injection onto the HPLC system. Mass spectra were obtained with 

a MDS Sciex 3200 Q-TRAP triple quadrupole mass spectrometer (Applied Biosystems, 

Inc., Foster City, CA) with a turbo ionspray source (operating in positive ion mode) 
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interfaced to an Agilent 1200 Series Binary Pump SL HPLC system (Santa Clara, CA). 

Samples were chromatographed with 

Phenomenex, Torrance, CA). An LC gradient was employed with mobile phase A 

consisting of 0.1% formic acid and mobile phase B consisting of 50/50 ACN/methanol. 

Chromatographic resolution was achieved by increasing mobile phase B linearly from 

15 to 98% from 1 to 1.5 min, maintaining at 98% from 1.5 to 3.75 min, decreasing 

linearly from 98 to 215% from 3.75 to 4 min, followed by re-equilibration of the column at 

15% B from 4 to 5 min. The LC flow rate was 1.25 mL/min, the sample injection volume 

was 30 µL, and the analysis run time was 5 min. 

 

Losartan pharmacokinetic data analysis 

Quantitation of losartan was based on linear standard curves in spiked blank 

canine plasma using the ratio of losartan peak area to ENMD-2076 peak area and 

1/x2 weighting of linear regression. Noncompartmental modeling was used for the 

calculation of pharmacokinetic (PK) parameters using Phoenix® WinNonlin® software, 

version 6.3 (Pharsight Corp., Cary, NC, USA). 

 

Ex vivo monocyte migration assays for assessment of losartan 

pharmacodynamics 

Peripheral Blood Mononuclear Cells (PBMCs) were isolated from fresh, EDTA-

treated blood of healthy dogs, tumor bearing dogs, or dogs enrolled in the clinical trial 

and used for in vitro trans-well migration assays by lysing erythrocytes (x2) with ACK 

buffer solution (150 mM NH4Cl, 10 mM KHCO3, and 0.1 mM Na2EDTA). PBMCs were 
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washed into serum-free Dulbecco Modified Eagle Medium (sf-DMEM), and re-

suspended at 1 x 106 cells/ml. For in vitro losartan dose titrations, 10mg/mL losartan 

drug stocks were diluted to 2x treatment concentrations in sf-DMEM. PBMCs were 

diluted 1:1 in media alone (positive and negative controls) or in media containing 2x 

drug dilutions. Cells were pre-treated @ 37C in the incubator for 1 hour prior to plating. 

The chemotactic stimulus for positive control and drug treated wells consisted of 50 

ng/ml recombinant canine CCL2 (R&D Systems, Minneapolis, MN). Negative control 

wells consisted of sf-DMEM only. For these assays as well as ex-vivo PBMC migration 

assays of clinical trial patients, 96 well chemotaxis plates (Corning, Corning, NY) with 

an 8 M pore diameter were used, and 150l of media +/- CCL2 was plated in the lower 

compartment of the plate, while 50l (5 x 104) PBMCs in media +/- drug were plated in 

the upper compartment of the cell culture insert. Cells were allowed to migrate for 4 h. 

Following migration, non-migrated cells were removed, wells washed, and remaining 

adherent PBMCs  in the bottom wells were fixed with 4% paraformaldehyde for 10 min 

on ice, stained with 3% crystal violet (Sigma-Aldrich, St. Louis, MO USA), rinsed with 

dH20, and air-dried overnight. For analysis and quantification of migration, 4x4-tiled 10x 

magnification overviews of 96 well plates were obtained for each individual well, and 

total monocytes per/well counted using ImageJ (NIH). To normalize data for comparison 

between clinical trial patients and dose cohorts, the chemotactic index for each patient 

was calculated, which was determined to be the mean fold-change in CCL2-directed 

migration (positive control) over mean spontaneous migration observed in negative 

control wells.  
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Mice 

6-8 week old, female BALB/c mice were purchased from Harlan laboratories 

(Denver, CO). All animals were housed in microisolator cages in the laboratory animal 

facility at Colorado State University, and all procedures were approved by the 

Institutional Animal Care and Use Committee at Colorado State University.  

 

Cell lines  

The Abrams osteosarcoma (OSA) cell line was used for all in vitro monocyte 

migration and CCL2 ELISA assays. The Abrams-OSA cell line was provided by…… The 

parent K7M2 and luciferase-transfected K7M2 murine osteosarcoma cell lines were 

generously provided by the laboratory of Dr. Chand Khanna (National Cancer Institute, 

Bethesda, MD). Both cell lines were maintained in MEM media (Gibco, Grand Island, 

NY USA) supplemented with 10% fetal bovine serum (FBS; Atlas Biologicals, Fort 

Collins, CO USA), penicillin (100 U/mL), streptomycin (100 g/mL), L-glutamine (2 mM), 

and non-essential amino acids (0.1 mM) (All obtained from Gibco). Cells were grown 

sterilely on standard plastic tissue culture flasks (Cell Treat, Shirley, MA), under 

standard conditions of 37 °C, 5% CO2, and humidified air.  

 

Experimental lung metastasis models 

Wild-type BALB/c mice were inoculated by I.V. tail vein injection of 2.5 x 105 to 1 

x 106 K7M2-luc cells in 100 L PBS. Treatment with losartan (60 mg/kg SID or 3 mg/kg 

BID, i.p.)  sunitinib (0.015 mg per mouse i.p.) was initiated 24h after tumor cell 

inoculation and continued until study completion. To monitor the development and 
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growth of luciferase-positive pulmonary metastases, bioluminescence imaging was 

performed thrice weekly using an IVIS100 imager (Perkin-Elmer, Waltham, MA). For 

imaging, mice were injected i.p. with 100 L of 30mg/mL luciferin (GoldBio, St. Louis, 

MO), followed by isoflurane anesthesia and imaging 12 minutes post-luciferin injection 

(2 minute exposure, medium binning). For the single agent high dose (60 mg/kg) 

losartan study, metastatic burden was determined by dissecting the heart and lungs and 

measuring the total pluck weight at study termination, which was compared to age and 

sex-matched naïve control BALB/c mice. 

 

Canine tumor tissues 

Formalin-fixed, paraffin-embedded (FFPE) tissues of osteosarcoma primary 

tumors and pulmonary metastases were obtained from the Flint Animal Cancer Center 

tissue archive, or archived cases submitted to the Colorado State University Veterinary 

Diagnostic Laboratory (CSU-VDL) for post-mortem evaluation between the years of 

2007-2014. Necropsy reports from the CSU-VDL database were reviewed, and slides 

were cut and hematoxylin-eosin stained to confirm the previous diagnoses. 

 

CCL2 and MAC387 Immunohistochemistry 

Tissue blocks were sectioned at 5 µm, mounted on Superfrost Plus slides (Fisher 

Scientific, Pittsburgh, PA) and immunolabeling for the myeloid antigen MAC387, and 

chemokine CCL2, was performed using standard methods. Briefly, tissue slides were 

de-paraffinized in xylenes and re-hydrated using a series of graded-alcohols. Antigen 

retrieval was performed using either: 1.) A proprietary Leica Bond enzyme-1 (Buffalo 
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Grove, IL) enzymatic retrieval for 10 min (MAC387), or 2.) 10mM sodium citrate buffer, 

pH 6.0, for 20 min at 125C in a pressurized chamber (CCL2). Immunolabeling was 

performed using either a Leica Bond Max autostainer (MAC387), or Dako autostainer 

link 48 (CCL2). Primary antibodies were incubated for 1 hr at room temperature (RT), 

and included the following clones mouse α human myeloid/histiocyte antigen(Dako, 

clone MAC 387), or rabbit α human CCL2 (Abcam, ab9669). For CCL2, detection was 

performed using the universal labeled streptavidin-biotin2 system (Dako, Carpinteria, 

CA), which consists of incubation with a mixture of biotinylated goat anti- mouse and 

rabbit IgG secondary antibodies followed by horseradish peroxidase-labeled 

streptavidin. For MAC387, detection was performed using the Leica Bond Polymer Red 

Refine Detection (Buffalo Grove, IL) system, which consists of an alkaline phosphatase-

linked rabbit anti-mouse IgG. Positive staining was visualized using either refine red 

(CD18) or DAB (CCL2) chromogen substrates. 

 

Image Analysis 

For quantification of MAC387+ immunoreactivity, 10x magnification, whole slide 

images were captured using standardized exposure times and an Olympus IX83 

microscope and Olympus SC30 camera. For analysis, regions of interest (tumor tissue) 

was outlined in ImageJ (NIH) by a board-certified veterinary pathology (DPR). To 

ensure accurate quantitative assessment of MAC387+ cells, we used the color 

deconvolution algorithm developed for the NIH open-source image analysis software, 

ImageJ. Using the FastRed and FastBlue vectors for this algorithm, whole slide images 

contained outlined ROIs of primary tumors and metastases were separated in into 8-bit 
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gray scale images representative of the chromogen color (red) only. A lower threshold 

limit was then set at a value corresponding to the mean of the isotype control, and 

universally applied to every single image. Any pixel value falling above this lower 

threshold value was measured as positive for MAC387, and used to determine the total 

area of MAC387+ positive within the ROI. This number was the divided by the mean 

area of a single MAC387+ cell (determined in previous experiments in our lab) to get a 

total MAC387+ cell count, which then the expressed as cells/mm2 based on the area of 

the entire outlined ROI of tumor tissue. For quality control, image masks of the 

“thresholded”, positive counted area were also generated and directly visually compared 

to the originally captured photomicrographs by a board-certified pathologist, to ensure 

accuracy in representation of MAC387+ immunoreactivity.  

 

In vitro monocyte migration to OSA tumor-conditioned media and CCL2 

neutralization assays 

Peripheral Blood Mononuclear Cells (PBMCs) were isolated from fresh, EDTA-

treated blood of healthy dogs and used for in vitro trans-well migration assays to assess 

the degree to which Abrams OSA tumor-conditioned media elicited canine monocyte 

migration. For generation of tumor conditioned media, 1x 105 Abrams OSA tumor cells 

were plated in a 24-well plate (Falcon) in 1 mL of complete MEM media and grown for 

approximately 24 hours prior to harvest of the culture supernatant. 600 μL of OSA-

conditioned media was placed in the 24-well plate below each migration chamber to 

serve as the chemoattractant for the PBMCs. The negative control consisted of 600 L 

of complete MEM media alone. The positive control consisted of 600 μL of complete 
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MEM media containing 100 ng/mL of recombinant human CCL2 (Peprotech Inc. Rocky 

Hill, NJ). For CCL2 neutralization experiments, rabbit polyclonal anti-human CCL2 

antibody (Abcam, ab9669) or rabbit IgG (Jackson ImmunoReserach, West Grove, PA) 

was added to the tumor conditioned media at 5 μg/mL immediately prior to addition of 

PBMCs. 250,000 PBMCs in 100 μL complete MEM were plated in the top well of the 

migration chamber insert. Subsequently, cells were allowed to migrate for 4 hours under 

standard conditions of 37°C, 5% CO2, and humidified air. Following migration, the non-

migrated cells were removed, and membranes were fixed with ice-cold methanol for 10 

min on ice, stained with 3% crystal violet (Sigma-Aldrich, St. Louis, MO USA), rinsed 

with dH20, and air-dried overnight. The following day, membranes were cut from the cell 

culture inserts, and mounted “migrated-side” up on superfrost plus glass slides using 

immersion oil. A total of (5) 40x fields per membrane were counted to determine the 

Mean # of monocytes/40x field for each membrane. Only cells displaying the 

appropriate nuclear and cytoplasmic characteristics consistent with monocytes were 

counted and included in the analysis. Neutrophils and lymphocytes were rarely 

observed on the migrated side of the membrane, but if present were excluded based on 

their segmented nuclear morphology, and nuclear:cytoplasmic ratio, respectively. Each 

migration assay was run in technical replicates at minimum, and each experiment was 

repeated at least once.  

 

Cytokine analysis of patient samples and cell culture supernatant 

A commercially available canine CCL2 ELISA kit (R&D Systems Inc., 

Minneapolis, MN USA) was used to measure the concentration of CCL2 in pre- and 
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post treatment patient plasma samples and in osteosarcoma tumor-conditioned cell 

culture media. In addition, IFN- and VEGF was also quantified in pre- and post 

treatment patient plasma samples also by commercially available ELISA kits (R&D 

Systems Inc.). For in vitro assessment of CCL2 production by Abrams OSA tumor cells, 

1 x 105 cells were plated in a 24-well plate in 1 mL of complete MEM media, and grown 

for approximately 24 hr prior to harvesting the culture supernatants for ELISA assay. 

Due to the abundant amount of CCL2 produced by tumor cells, culture supernatants 

were diluted 1:20 (1:10 with MEM media, and 1:1 with the reagent diluent) prior to 

ELISA measurement, and a 7-point standard curve with a high standard of 4000 pg/mL 

was used to determine the concentration of CCL2 within the supernatant. Appropriate 

controls included cell culture media alone, diluted on a 1:1 ratio with reagent diluent, as 

well as other canine tumor cell lines (data not shown).  

 

Statistical analyses 

For the comparison of mean values between three or more groups, a One-way 

ANOVA with Tukey’s post-test was performed. For comparison of means between two 

groups, or comparison of repeated measures between two groups, a two-tailed, 

unpaired Students’ t test or Wilcoxon matched-pairs t test was used, respectively. All 

statistical analyses were performed using Graph Pad Prism software (La Jolla, CA, 

USA).  
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Results 

Immunohistochemical quantification of MAC387+ myeloid cell infiltrates and 

localization of CCL2 expression in canine osteosarcoma primary tumors and 

pulmonary metastases 

For accurate quantitative assessment of MAC387+ cells, we used the ImageJ 

color deconvolution algorithm as described in Materials and Methods. For each image, 

regions of interest (tumor tissue only) were defined by a blinded veterinary pathologist, 

and then masks of the MAC387+ cell area and total tumor area analyzed were 

generated by intensity thresholding in ImageJ and directly compared to its “parent” 

photomicrograph to ensure accuracy in the image analysis. Strikingly, the number of 

MAC387+ cells per mm2 of tumor tissue was significantly greater in osteosarcoma 

pulmonary metastases (n=10, 869.8 ± 358.5 cells) as compared to primary tumors 

(n=26, 191.5 ± 57.2 cells), suggesting a preferential recruitment of monocytes and 

macrophages to OSA pulmonary metastases (Fig. 4.1 A-C; **p<0.01). Importantly, 

immunohistochemistry for the monocyte chemokine CCL2, performed on matched OSA 

pulmonary metastases, demonstrated strong, peri-nuclear, cytoplasmic positive 

immunolabeling of tumor cells for CCL2 (Fig. 4.1D), suggesting a potential relationship 

between CCL2 expression and monocyte and macrophage recruitment to OSA 

metastases.  
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Figure 4.1. MAC387+ myeloid cells are increased in canine osteosarcoma pulmonary 
metastases vs. primary tumors and are associated with tumor cell production of the 
monocyte chemoattractant CCL2. (A) 10x magnification overview of an osteosarcoma 
pulmonary metastasis (arrow) demonstrating extensive peripheral and intratumoral 
infiltrates of MAC387+ monocytes and macrophages (red) (Asterisk denotes normal 
lung parenchyma). (B) 40x higher magnification of the metastatic lesion in (A) 
demonstrating the density of intratumoral MAC387+ myeloid cells (red). (C) Graph 
showing immunohistochemical quantification of MAC387+ myeloid cells in 
osteosarcoma pulmonary metastases as compared to primary tumors. (D) 100x 
magnification image of the same metastatic lesion shown in (A & B) demonstrating 
strong intracytoplasmic, peri-nuclear positive immunolabeling of OSA tumor cells for 
CCL2 (arrow; brown). Fast Red (MAC387) or DAB (CCL2) chromogens. Hematoxylin 
counterstain. Data expressed as means ± SEM, and was analyzed by two-tailed 
Student’s t test (C), (n=10-26 animals per group, **p<0.01).  
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Canine osteosarcoma tumor-conditioned media elicits strong ex vivo monocyte 

migration in a CCL2 dependent manner 

A canine osteosarcoma cell line (Abrams-OSA) was used to further investigate 

the potential immunological mechanisms responsible for the MAC387+ monocyte 

infiltrates observed in osteosarcoma metastases. First, we performed trans-well 

monocyte migration assays to evaluate the effects of Abrams-OSA conditioned medium 

on ex vivo monocyte recruitment, using canine peripheral blood mononuclear cells 

(PBMC) from healthy control dogs. After 4 hours, Abrams OSA tumor-conditioned 

media strongly elicited canine monocyte migration (13.3 ± 4.1 cells per hpf), which was 

significantly greater than the random migration observed in negative control wells (1.5 ± 

1.8 cells per hpf), and similar to that observed for the 100ng/mL CCL2 positive control 

wells (14.3 ± 5.0 cells per hpf) (Fig. 4.2 A-D, **p<0.01, ***p<0.001).  To determine if 

CCL2 production by Abrams-OSA cells was potentially responsible for this ex vivo 

monocyte recruitment, CCL2 secreted by Abrams-OSA cells was quantified using a 

canine CCL2 ELISA, as described previously (38).  Abrams-OSA conditioned media 

contained very high concentrations of CCL2, with a mean concentration of 24.5 ± 11.8 

ng/mL (Fig. 4.2E).   

While these assays confirmed the ability of Abrams-OSA cells to make abundant 

amounts of the monocyte chemokine CCL2, they still did not directly implicate this CCL2 

production with the observed ex vivo monocyte migration. In order to investigate this, 

monocyte migration assays were repeated using Abrams-OSA conditioned media +/- 

treatment with a CCL2 neutralizing antibody (previously demonstrated to bind canine 

CCL2), or irrelevant IgG control antibody. Addition of the CCL2 neutralizing antibody to  
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Figure 4.2. Canine osteosarcoma cells produce abundant amounts of CCL2 in vitro and 
elicit canine monocyte migration in a CCL2-CCR2 dependent manner. (A-C) 
Representative photomicrographs of crystal violet stained membranes of the cell culture 
inserts used for quantification of in vitro monocyte migration to OSA tumor-conditioned 
media. Complete MEM media stimulated little to no monocyte migration (A), while 
conditioned-media from canine Abrams OSA cells stimulated strong monocyte migration 
(C), which was significantly greater than the negative control, and similar in magnitude 
to the positive control of 100ng/mL recombinant human CCL2 (B). (D) Graph showing 
quantification of in vitro canine monocyte migration assays depicted in (A-C). (E) Graph 
showing CCL2 production by Abrams OSA cells, quantified via ELISA performed on the 
same tumor-conditioned media utilized in the monocyte migration assays shown in (A-
D). (F) Neutralization of CCL2 in Abrams OSA-conditioned media using a cross-reactive 
anti-human CCL2 antibody (5 μg/mL) resulted in a significant (~60-80%) reduction in in 
vitro monocyte migration as compare to the positive control of HSA-conditioned media 
only. Data expressed as means ± SD, and were analyzed by One-way ANOVA, with 
Tukey’s post-test comparison (n=3-5 independent experiments, each performed in 
duplicate or triplicate, *p < 0.05**p < 0.01, ***p < 0.001, ****p<0.0001). 
  

 



 

 155 

Abrams tumor-conditioned media significantly reduced the mean number of migrated 

monocytes by ~85% as compared to that observed for the positive control of Abrams 

OSA-conditioned media alone (Fig. 4.2F, ***p=0.0001). This result verifies that the ex 

vivo monocyte migration elicited by Abrams-OSA cells is in fact dependent to a 

significant degree on tumor cell production of CCL2. 

 

Evidence of synergistic anti-tumor activity of losartan plus sunitinib therapy in a 

mouse K7M2 osteosarcoma experimental metastasis model  

We have previously demonstrated that the angiotensin receptor blocker drug, 

losartan, demonstrates significant anti-metastatic activity in murine breast and colon 

cancer experimental metastasis models through its ability to inhibit CCL2-CCR2 

monocyte recruitment and reduction in angiogenesis. Initially, we evaluated the anti-

metastatic activity of single agent losartan in the K7M2 model at a dose of 60 mg  kg-1 

 d-1 i.p., which is the same dose we have previously demonstrated to have anti-tumor 

activity in other mouse metastasis models. As assessed by gross visualization of lung 

metastases and total lung weights, high dose losartan monotherapy showed a trend 

towards reduction in experimental metastasis growth in the K7M2 model; however, this 

trend was not significant (Fig. 4.3 A, B). Previous work by Ozao-Choy and others have 

shown that the tyrosine kinase inhibitor, sunitinb, also exhibits anti-angiogenic activity, 

and can reverse tumor immune suppression in mice via decreasing the number of 

myeloid-derived suppressor cells and Tregs. Thus, we hypothesized that the combined 

immunomodulatory and anti-angiogenic effects of losartan and sunitinib would exert  
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Figure 4.3. Losartan demonstrates anti-metastatic activity in a mouse K7M2 
osteosarcoma experimental metastasis model which is synergistic when used in 
combination with the tyrosine-kinase inhibitor sunitinib. (A) Representative gross images 

of lung metastases in control and high dose losartan-treated (60 mg  kg-1  d-1) mice on 
day 21 post tail vein injection of 1 x 106 K7M2 cells. (B) Graph showing quantification of 
lung metastatic burden in control vs. high-dose losartan treated mice, as determined by 
overall pluck weight. (C) IVIS bioluminescent images of K7M2-luciferase positive 
pulmonary metastases on day 22 in control mice and mice treated with low dose 
losartan in combination with sunitinib. (D) Graph depicting quantification of K7M2luc 
pulmonary metastasis growth over time in control, single agent losartan or sunitinib-
treated mice, and combination losartan + sunitinib treated mice, expressed as 
photons/second, and quantified by repeated bioluminescent IVIS imaging. Data 
expressed as means ± SD, and were analyzed by two-tailed Student’s t test (B) or Two-
way ANOVA (D), (n= 3-5 mice/group, **p<0.01). 
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more significant anti-metastatic activity in the K7M2 metastasis model as compared to 

that observed for losartan monotherapy.  

Our previous work evaluating the pharmacokinetics of 60 mg  kg-1  d-1 losartan 

dosing in mice suggested that the maximum plasma drug levels and exposure seen at  

this dose would not be biologically achievable in dogs. Thus, for these studies, mice 

were treated with losartan at a significantly lower and more clinically relevant dose of 3 

mg  kg-1 every 12 hours, and sunitinib was administered at 0.015 mg per mouse, a 

dose previously published to be equivalent to the 50mg daily human dose. While neither 

losartan nor sunitinib alone demonstrated any significant anti-metastatic activity at these 

lower doses, the combination of the two drugs resulted in a robust reduction in 

pulmonary metastatic burden as compared to control and losartan only treated mice, by 

~ 83% and 91%, respectively, as quantified by repeated bioluminescent imaging (Fig. 

4.3 C, D, **p<0.01 control vs combination therapy, and losartan vs. combination 

therapy). As sunitinib bears significant structural and functional similarity to toceranib 

phosphate (55), a tyrosine kinase inhibitor approved for the treatment of canine mast 

cell tumor, we felt this data provided additional strong rationale for a clinical trial 

assessing losartan plus toceranib immunotherapy for the treatment of pulmonary 

metastatic osteosarcoma in dogs.  

 

Losartan inhibits in vitro CCL2-mediated canine monocyte migration at 

pharmacologically relevant concentrations 

Prior to initiating clinical studies in OSA-bearing dogs, we first sought to 

determine the therapeutic range of losartan required for inhibition of CCL2-directed in  
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Figure 4.4. Losartan inhibits CCL2-CCR2 mediated canine monocyte migration in vitro 
at pharmacologically relevant concentrations. (A-C) Graphs showing quantification of ex 
vivo CCL2-directed monocyte migration of PBMCs obtained from tumor-bearing dogs 
(A), healthy control dogs (B), or the pooled-results of both healthy and tumor-bearing 
dogs (C). PBMCs were pre-treated with losartan for 1h at the indicated concentrations. 
(D-G) Representative whole well images (10x magnification) of the canine PBMC 

 



 

 159 

migration assays quantified in (A). Data expressed as means ± SD, and were analyzed 
by One-way ANOVA, with Tukey’s post-test comparisons (n= 2 (tumor-bearing and 
healthy dogs) or 4 (tumor and healthy) dogs, 8 (A, B) to 20 (C) technical replicates per 
condition, each replicate being the mean number of migrated monocytes determined in 
(16) 10x fields (*p <0.05, **p < 0.01, ***p < 0.001, ****p<0.0001). 
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vitro canine monocyte migration. To determine this, we again performed trans-well 

migration assays, this time utilizing a 96 well format for more high throughput screening, 

and canine rCCL2 for the chemotactic stimulus instead of tumor-conditioned media. For 

these assays, PBMCs were isolated via ACK lysis of EDTA-treated whole blood 

obtained from both tumor-bearing dogs (n=2, OSA and grade III soft tissue sarcoma) 

and healthy control dogs (n=2). In tumor bearing dogs, in vitro losartan treatment of 

PBMCs significantly reduced CCL2 mediated migration in a dose-dependent manner to 

levels ranging from 42% (100ng/mL) to 12% (10 g/mL) of those observed for untreated 

PBMCs in CCL2 positive control wells (Fig. 4.4 A, D-G **p<0.01, ***p<0.001, and 

****p<0.0001). Similar results were also observed for PBMCs obtained from healthy 

control dogs, with losartan inhibiting PBMC migration to ~ 29% (100ng/mL) to 39% (10 

g/mL) of the levels observed in CCL2 positive control wells (Fig. 4.4B, *p<0.05, 

**p<0.01). When analyzing the pooled results for both tumor-bearing and healthy control 

dogs, losartan treatment reduced CCL2-directed ex vivo monocyte migration to 36-24% 

(100ng/mL to 10 g/mL) of those observed for untreated CCL2 positive control wells 

(Fig. 4.4C, *p<0.05). Based on the results of these in vitro assays, we determined that 

our target therapeutic range for in vivo inhibition of canine monocyte migration was a 

maximum plasma concentration (Cmax) of at least ~ 200 ng/mL, with a minimum 

exposure (AUC) of 60 g  min  mL-1. Previous work by Christ et al. determined the 

pharmacokinetics of losartan in healthy dogs following single p.o doses of 5 mg/kg to 20 

mg/kg (39). These studies demonstrated a strong linear relationship between losartan 

dose and plasma concentration (Cmax) and systemic exposure (AUC). Based on this 

data, we were able to extrapolate the predicted Cmax and AUC for a losartan dose of 1 
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mg/kg, as this is the dose previously published for the treatment of proteinuria in dogs 

(40). Based on this extrapolation, a p.o losartan dose of 1 mg/kg was predicted to result 

in a Cmax of 285 ng/mL and an AUC of 5.9 g  min  mL-1. While the Cmax was within 

the range identified by our in vitro migration assays, the overall exposure was 

significantly lower; however, as this dose of losartan was known to be safe for repeated 

daily administration to dogs, we chose 1 mg/kg as our initial target dose for treatment of 

OSA metastasis-bearing dogs. Overall, these results demonstrate that similar to our 

prior studies with human and murine monocytes, losartan can significantly inhibit CCL2-

mediated canine PBMC migration at a dose which is likely to be clinically achievable.  

 

Patient characteristics 

Sixteen dogs that met eligibility criteria were enrolled in the study between 

December 2014 through February 2017, with 8 dogs enrolled in the initial 1 mg/kg dose 

cohort, and a subsequent 8 dogs enrolled in the 10 mg/kg cohort. All but two of the dogs 

in the study were treated at the Colorado State University Veterinary Teaching Hospital 

(Fort Collins, CO), while the other two dogs (1 in each cohort) were treated by Dr. 

Robyn Elmslie at the VRCC-Veterinary Specialty and Emergency Hospital (Englewood, 

CO). Data from all 16 dogs was available for assessment of toxicity associated with 

combined losartan and toceranib therapy. In addition, data for single agent high dose 

losartan (10mg/kg) toxicity assessment was available for 5 dogs treated with losartan 

only for 2 weeks prior to initiation of toceranib therapy. Progression-free survival was 

evaluable for all dogs; however, measurable responses were only evaluable in 5/8 dogs 

in the 1 mg/kg trial and 7/8 dogs in the 10 mg/kg trial, as the remaining dogs did not 
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remain on study long enough for repeat thoracic radiographs. Samples for 

pharmacokinetic analysis were available for all 8 dogs in the 1 mg/kg cohort, and the 

initial 5 dogs treated with single agent losartan in the 10 mg/kg cohort. All patients had 

prior surgical removal of their primary tumor, which included amputation for 14 cases of 

appendicular OSA, amputation and hemi-pelvectomy for a single case of axial (right 

ischium) OSA (10mg/kg cohort), and hemi-mandibulectomy for a single case of 

mandibular OSA (1mg/kg cohort). Prior adjuvant chemotherapy was administered in 14 

of 16 patients, and consisted primarily of carboplatin-based protocols. Two patients did 

not receive prior therapy due to the presence of pulmonary metastases at time of 

diagnosis.  All patients underwent pre-treatment evaluation including physical exam, 

blood pressure measurement, serum chemistry and CBC, and baseline thoracic 

radiographs. Baseline characteristics for all patients, including information on primary 

tumor and prior therapies, are presented in Table 4.1. 

 

Losartan pharmacokinetics and pharmacodynamic responses in peripheral blood 

 Pharmacodynamic responses to 1 mg/kg losartan therapy were evaluated via 

quantification of ex vivo PBMC migration to CCL2 and ELISA measurement of plasma 

CCL2 levels, performed on day 14. Compensatory elevations in plasma CCL2 levels 

has been previously shown to be a valid, mechanism of action-based pharmacodynamic 

endpoint for CCR2 antagonists in human clinical trials (ClinicalTrials.gov 

NCT01215279). Monocyte migration data was expressed as the chemotactic index, as 

described in materials and methods. Samples from all 8 dogs in this cohort were  
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Table 4.1     

Baseline characteristics 

Losartan 1mg/kg                                        
(+ toceranib 
phosphate 

2.75mg/kg EOD) 

Losartan 10 mg/kg                                               
(+ toceranib 

phosphate 2.75 
mg/kg EOD) 

Median age, years (range) 8.5 (3-11) 10 (7-11.5) 

Sex (no., %) 
    

Male castrated 2 (25) 5 (62.5) 

Female spayed 6 (75) 3 (37.5 

Breed (no., %)     

Purebred 6 (75) 5 (62.5) 

Mixed breed 2 (25) 3 (37.5 

Primary tumor location (no., %) 
   

Forelimb 5 (62.5) 5 (62.5) 

Hind limb 2 (25) 2 (25) 

Other 1 (12.5) 1 (12.5) 

Adjuvant chemotherapy     

Carboplatin 6 (75) 5 (62.5) 

Alt. Carbo/DOX ⏤ 1 (12.5) 

Othera ⏤ 2 (25) 

Noneb 2 (25) ⏤ 

aCarboplatin +/- rapamycin clinical trial     

bPulmonary metastases present at time of diagnosis   
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Figure 4.5. Assessment of losartan drug levels and pharmacodynamic responses of dogs in the 1 mg/kg cohort. (A) 
Graph showing quantification of ex-vivo CCL2 directed migration of PBMCs obtained from dogs following 2 and 4 weeks 
of oral losartan dosing at 1 mg/kg BID. Data depicted is the mean chemotactic index (fold-change of CCL2-directed 
migration over negative control wells) as a percentage of week 0 baseline. (B) Plasma levels of losartan, determined in 
matched blood samples collected concurrently (~ 4-6h post dose) with the same blood utilized for migration assays in (A). 
The dotted line indicates the 200 ng/mL level, the target concentration identified for inhibition of monocyte migration by the 
in vitro chemotaxis assays shown in Fig S2. (C) Graph showing plasma CCL2 concentration at week 0 and following 2 
and 4 weeks of losartan 1 mg/kg dosing, as measured by ELISA (expressed as % of week 0 baseline). Data expressed as 
means ± SD (migration assay) or SEM (losartan and CCL2 plasma concentrations), and were analyzed by two-tailed 
paired t test (Wilcoxon signed rank test), (n=6-8 dogs/time point, ns, not significant). 
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available for evaluation of monocyte migration and losartan pharmacokinetics, while 6 of 

8 dogs had plasma samples available for CCL2 measurement.  

Unexpectedly, quantification of CCL2-mediated ex vivo monocyte migration 

demonstrated an overall increase in the mean ( SD) chemotactic index as a 

percentage of baseline at both week 2 (1,924  4,677 %, n=8) and week 4 (266  537%, 

n=6) post losartan therapy (Fig. 4.5 A, B). While 3 of 8 dogs in this cohort did 

experience a 79-85% reduction in their mean chemotactic index, the other 5 dogs 

demonstrated increased monocyte migration ranging from 106% to 13,469% of their 

baseline measurements. Determination of losartan levels in plasma collected  

concurrently with the peripheral blood utilized for migration assays (~ 4-6h post dose) 

demonstrated significantly low levels of the drug, and substantial inter-individual 

variation, with a plasma concentration (mean  SD) of 6.8  7.9 ng/mL at week 2 (n=8) 

and 6.7  8.3 ng/mL at week 4 (n=6) (Fig. 5B). In fact, 1 to 3 dogs in this cohort had 

drug levels below the lower limit of quantification (<1 ng/mL) at each time point.  For the 

6 dogs in which post-treatment plasma CCL2 concentrations could be measured, 5 of 

these 6 dogs demonstrated increases in plasma CCL2 at both weeks 2 and 4 post 

treatment, ranging from 20 to 1800% above pre-treatment baseline values (Fig. 4.5C, 

p=0.06, week 2, and p=0.09 week 4). No significant correlations were observed 

between changes in monocyte migration or plasma CCL2 concentrations and losartan 

blood levels (data not shown). Although 2 weeks would be considered a relatively short 

time period for a significant enough increase in tumor burden to account for elevations 

in plasma CCL2, it is not without reason. However, 2 of the 5 dogs demonstrating  
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Figure 4.6. Losartan drug concentration curves for individual dogs in the 2.5 mg/kg and 
10 mg/kg cohorts (A) Losartan plasma concentration over time for individual healthy 
dogs following 14 days consecutive oral dosing at 2.5 mg/kg BID. (B) Losartan plasma 
concentration over time for individual osteosarcoma-bearing dogs following 14 days 
consecutive oral dosing at 10 mg/kg BID. 
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increases in plasma CCL2 experienced stable disease of 12 and 16 weeks, while the 1 

dog in which the plasma CCL2 concentration did not increase had progressive disease 

(grossly detectable subcutaneous metastasis) by week 4, suggesting that progression 

of disease is an unlikely mechanism accounting for this increase. 

However, given the significantly low plasma levels of losartan and lack of robust 

pharmacodynamic responses on ex vivo monocyte migration in these patients, we 

decided to perform an interim dose escalation study of losartan to 2.5 mg/kg BID in a 

cohort (n=3) of healthy control dogs. Again, losartan pharmacokinetics and 

pharmacodynamics were assessed after 14 days of losartan therapy, at six defined time 

points post dose. Drug concentration curves over time for individual dogs are shown in  

Figure 4.6. In these dogs, the mean ( SD) Cmax for losartan was 76.7  54.3 ng/mL, 

while the mean  SD AUC0-12h was 18.2  13.2 g  min  mL-1 (Fig. 4.7 A, B). The 

mean  SD chemotactic index (expressed as % of baseline) for CCL2-mediated ex vivo 

monocyte migration following 2 weeks of losartan dosing in these dogs was 73  51% 

(range of 42 - 132%) (Fig. 4.7C). These data demonstrated that while the effects of 

losartan on CCL2-mediated monocyte pharmacodynamic responses were significantly 

more robust as compared to the 1mg/kg cohort, still only 2 of 3 dogs demonstrated a 

reduction in monocyte migration below baseline, and maximum losartan plasma 

concentrations and exposure levels were still significantly below the therapeutic levels 

determined from our prior in vitro migration assays. Based on these results, we decided 

to enroll an additional 8 dogs in the clinical trial at an escalated losartan dose of 

10mg/kg BID.  
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Figure 4.7. Pharmacokinetics and pharmacodynamic responses of losartan dose-
escalation in healthy and osteosarcoma metastasis-bearing dogs. (A) Mean (± SEM) 
plasma losartan concentration over time following oral administration of losartan at 2.5 
mg/kg or 10 mg/kg BID for 14 consecutive days (n=3 or 4 dogs/group). (B) Table 
summarizing pertinent pK parameters of losartan maximum concentration (Cmax) and 
concentration over time (AUC) for the two dose cohorts. (C) Pharmacodynamic 
assessment of ex vivo CCL2-directed monocyte migration pre- and 14 days post dosing 
of losartan at 2.5 mg/kg BID in healthy dogs (D) Pharmacodynamic assessment of ex 
vivo CCL2-directed monocyte migration pre- and post 7, 14, and 28 days oral dosing of 
either losartan only (10 mg/kg BID, days 7 and 14), or losartan (10mg /kg BID) plus 
toceranib (2.75 mg/kg EOD; day 28) in osteosarcoma-bearing dogs. (E) Graph showing 
plasma CCL2 concentration at week 0 and weeks 2 and 4 post losartan 10 mg/kg 
dosing, as measured by ELISA (expressed as % of week 0 baseline). For graphs (C & 
D), data depicted is the mean chemotactic index (fold-change of CCL2-directed 
migration over negative control wells), as percentage of week 0 baseline. Data 
expressed as means ± SD (C, D) or SEM (A, E) and were analyzed by a two-tailed 
paired t test (Wilcoxon signed rank test), (n=3-8 dogs/group/time-point. *p < 0.05). 
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The first 5 dogs enrolled in this cohort were treated with losartan only for an initial 

two-week period to eliminate the effects of potential pharmacokinetic interactions 

between losartan and palladia. Blood samples were collected from these five dogs for 

assessment of monocyte migration at week 1 and week 2 post losartan treatment, and 

again at week 4 following addition of toceranib therapy. In addition, repeated blood 

samples at six time points post day 14 dosing were collected in 4 of the 5 dogs for 

pharmacokinetic analysis. The other dog was enrolled at an outside veterinary hospital 

(VRCC) and did not have a complete set of blood samples available for pK analysis. 

Plasma samples were collected from all 8 dogs in this cohort at Weeks 0, 2, and 4 for 

quantification of CCL2 via ELISA. Mean ( SEM) plasma losartan concentration over 

time for the 10 mg/kg cohort vs. 2.5 mg/kg cohort is shown in Fig. 4.7A, with drug 

concentration curves for individual dogs presented in Fig. 4.6 B. A comparison of 

pertinent pK parameters between the two cohorts is summarized in Fig. 4.7B. Again, 

significant inter-individual variation was observed in this 10mg/kg cohort, and the mean 

concentration curves for individual dogs presented in Fig. 4.6 B. A comparison of 

pertinent pK parameters between the two cohorts is summarized in Fig. 4.7B. Again, ( 

SD) Cmax for losartan was 508.6  368.1 ng/mL, while the mean  SD AUC0-12h was 94.9 

 64.2 g  min  mL-1 (Fig. 4.7B). Most importantly however, the observed mean 

maximum losartan concentration and exposure over time were significantly above the 

target therapeutic levels determined from our prior in vitro migration assays. 

Pharmacodynamic assessment of ex vivo CCL2-mediated monocyte migration 

showed a significant reduction in the mean ( SD) chemotactic index (expressed as % 

of baseline) at week 1 post losartan therapy in all 5 dogs (58.3  26.6%; range of 21.3 - 
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91%) (Fig. 4.7D, *p<0.05). However, this reduction was not statistically significant at 

week 2 (67.3  51.6 %, mean  SD), as a single dog experienced an increase in 

monocyte chemotaxis above baseline (Fig. 4.7D, *p<0.05). Of note, addition of 

toceranib therapy at week 2 resulted in restored inhibition of monocyte migration in this 

dog at week 4, with a reduction in the mean ( SD) chemotactic index of all patients to 

60.9  31.6% of baseline, although this effect was not significant (Fig. 4.7D, p=0.056). 

Post losartan treatment increases in plasma CCL2 levels were observed in 7 of 8 dogs 

at week 2, and 6 of 7 dogs at week 4, with mean ( SD) increases of 79.4  80.4% and 

94.6  99.9% above baseline, respectively (Fig. 4.7E, *p<0.05). However, similar to the 

1mg/kg cohort, no statistically significant correlations were observed between changes 

in plasma CCL2 levels, ex vivo monocyte migration, and blood losartan concentrations 

(data not shown). Nonetheless, these significant elevations in plasma CCL2 levels and 

consistently lower ex vivo monocyte migration at week 2 and 4 post losartan therapy 

provide strong evidence for greater CCR2 target inhibition by this higher (10 mg/kg) 

dose of losartan, as compared to results for the 1 mg/kg cohort. 

 

Toxicity and treatment response 

 Concurrent oral administration of losartan and toceranib was well tolerated by 

dogs in both the 1mg/kg and 10mg/kg losartan dose cohorts (Table 4.2). Of important 

note, no dogs experienced any significant degree of hypotension associated with 

losartan treatment, and repeated blood pressure measurements for dogs in the 

10mg/kg losartan cohort are shown in Fig. 4.8. Toxicities observed in the 1mg/kg 

losartan plus toceranib cohort were predominately grade 1 and 2 and consisted  
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Table 4.2: Treatment-related adverse events by dose cohort 

Losartan 1mg/kg  + toceranib phosphate 2.75mg/kg EOD 

Adverse event Grade n (events/dogs) 

Lethargy   3/2 

  1 2/2 

  2 1/1 

Generalized muscle weakness 2 1/1 

Anorexia   4/2 

  1 3/2 

  2 1/1 

Vomiting 1 2/2 

Diarrhea 1 2/2 

Neutropenia 1 3/2 

Thrombocytopenia 1 2/2 

Metabolic: Increase ALT   2/1 

  2 1/1 

  3 1/1 

Metabolic: Increased AST   5/3 

  1 3/3 

  2 1/1 

  3 1/1 

Metabolic: Increased ALP   2/1 

  1 1/1 

  2 1/1 

Dermatologic; Hypopigmentation (nasal planum) 1 1/1 

Cutaneous ulceration 1 1/1 

Otitis 1 1/1 

Dyspnea 2 1/1 

Cough 2 1/1 

Fever 1 1/1 

Losartan 10 mg/kga 

Adverse event Grade n (events/dogs) 

Vomiting 1 1/1 

Diarrhea 1 3/1 

Lethargy 3 1/1 

Fore-/hind limb weakness 2 1/1 

Anorexia   3/2 
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  1 2/2 

  2 1/1 

Metabolic: Increased ALT 2 1/1 

Metabolic: Increased AST 1 1/1 

a Losartan toxicities for the 10mg/kg cohort were 
determined for the first 5 dogs enrolled in the trial during a 2 
week losartan only dosing period prior to initiation of 
toceranib  

    

Losartan 10 mg/kg  + toceranib phosphate 2.75 mg/kg EOD 

Adverse event Grade n (events/dogs) 

Ocular    3/1 

  2 1/1 

  3 1/1 

Lethargy 1 3/2 

Fore-/hind-limb weakness   3/3 

  1 2/2 

  3 1/1 

Anorexia   2/2 

  1 1/1 

  2 1/1 

Diarrhea 2 1/1 

Cough 1 2/2 

Seizure 2 2/1 

Increased urine protein:creatinine (UPC) ratiob 3 1/1 

Otherc 1 3/3 

bPre-existing condition but increased severity post-
enrollment      
cOther toxicities include adverse events of unknown etiology 
(elevated creatinine kinase)     
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Figure 4.8. Weekly mean systolic blood pressure measurements for osteosarcoma-
bearing dogs receiving 10 mg/kg losartan BID.  
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primarily of gastrointestinal (anorexia, vomiting, diarrhea), hematologic (neutropenia, 

thrombocytopenia), metabolic (liver enzyme elevations), or lethargy. Grade 3 toxicities 

were experienced by one dog in this cohort and included elevated AST and ALT liver 

enzymes; however, these abnormalities were diagnosed pre-enrollment, and the only 

increases of these enzymes observed on study were for AST at 1 week post-initiation of 

therapy. In addition, one dog experiencing grade 2 lethargy was withdrawn from the 

study based on the owner’s request. For the entire study duration, lethargy, 

gastrointestinal toxicities of vomiting and diarrhea, and hematologic abnormalities of 

neutropenia and thrombocytopenia were all transient and observed at a frequency of 

25% (2 out of 8 dogs), while transient increases in serum AST levels were observed in 

37.5% of dogs (3/8). 

In addition, toxicities directly attributable to high dose losartan therapy were 

assessed in a subset of 5 dogs treated with single agent losartan (10mg/kg) for two 

weeks prior to initiation of toceranib therapy (Table 4.2). Again, losartan toxicities 

observed during this period were limited and primarily grade 1 or 2 gastrointestinal 

(anorexia, vomiting, diarrhea), neuromuscular, or metabolic toxicities, with anorexia 

being the most frequently observed toxicity (25%; 2/8 dogs). However, a single dog in 

this cohort did experience grade 3 lethargy directly attributed to losartan therapy, which 

resolved within 7 days following a 25% dose reduction. No significant increases in 

frequency, severity, or duration of toxicities were observed with concurrent 

administration of toceranib in the 10mg/kg losartan dose cohort (Table 4.2). Observed 

grade 1 and 2 toxicities were similar to those reported for the 1mg/kg dose combination 

therapy cohort and the 10mg/kg single agent losartan cohort, and most commonly 
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included neuromuscular weakness (37.5 %, 3/8 dogs), anorexia (25%, 2/8 dogs), cough 

(25%, 2/8 dogs), and lethargy (25%, 2/8 dogs). The grade 3 toxicities observed in this 

cohort included one dog which experienced bilateral ocular discharge, which 

progressed to grade 3 episcleral injection and 3rd eyelid swelling, another dog with 

transient grade 3 weakness of the right hind limb, and one dog experiencing a 

persistently increased urine protein:creatinine (UPC) ratio above baseline. This dog had 

an elevated UPC ratio of 1.6 on pre-enrollment evaluation, but which increased to 4.2 

over the 16-week course of therapy. The dog who experienced grade 3 hind limb 

weakness, also experienced grade 2 focal and generalized seizures; however, this is 

likely attributable to tumor progression, as calvarial metastases were identified on 

necropsy.  

Treatment responses were evaluated by repeat thoracic radiographs according 

to the revised Response Evaluation Criteria in Solid Tumors (RECIST) (41). For the 

1mg/kg losartan cohort, repeat thoracic radiographs were performed every 8 weeks, 

while for the 10 mg/kg cohort, radiographs were performed at 2 weeks, 8 weeks, and 

every 8 weeks thereafter. Measurements of target lesions were compared to those 

obtained at baseline radiographs performed within 2 weeks of enrollment. Response 

data for all dogs is summarized in Table 4.3 and presented in Figure 4.9A. Best 

responses in the 1mg/kg cohort included stable disease in 3 of 8 dogs (of 11, 16, and 

17 weeks duration) for an overall biologic response rate of 37.5%. In the 10mg/kg dose 

cohort, partial responses occurred in 2 of 8 dogs, with stable disease (of 16 weeks 

duration) in 1 of 8 dogs, for an overall response rate of 25% and a biologic response 

rate of 37.5%. Baseline and 16 week thoracic radiographs are presented in Figure 4.10  
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Table 4.3: Treatment responses by dose cohort 

Best Response (no., %) 
LOS 1mg/kg + TOC 

2.75mg/kg EOD (n=8) 
LOS 10mg/kg + TOC 

2.75mg/kg EOD (n=8) 

Complete response 
0 (0) 0 (0)a 

Partial response 
0 (0) 2 (25) 

Stable disease (> 8 weeks) 
3 (37.5) 1 (12.5) 

Progressive disease 
5 (62.5) 5 (62.5) 

Overall response rate (PR and CR; %) 
0 25 

Biologic response rate (SD, PR, and CR; 
%) 

37.5 37.5 

Progression-free survival (days) 
61 42.5 

aRadiographic assessment consistent 
with a PR, but no evidence of pulmonary 
metastasis was observed at necropsy 
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Figure 4.9. Progression-free survival and objective responses. (A) Graph depicting 
objective tumor responses, as determined by RECIST criteria (shown as % change from 
baseline) for dogs which survived long enough for at least one cycle of repeat thoracic 
radiographs.  (B) Kaplan-Meier curve showing progression-free survival for 
osteosarcoma-metastasis bearing dogs receiving either 1 mg/kg or 10 mg/kg losartan 
BID in combination with toceranib. There was no significant difference between dose 
cohorts (log rank test, p=0.83) and median time to progression was 61 days (1 mg/kg) 
vs. 42.5 days (10 mg/kg). * Denotes dogs with stable disease, and # denotes dogs 
experiencing a partial response. 
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Figure 4.10. Baseline and week 16 thoracic radiographs of patient 005 in the 10 mg/kg 
cohort demonstrating regression of pulmonary metastases after losartan plus toceranib 
therapy. Right lateral and ventrodorsal views of week 0 thoracic radiographs depicting 
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two separate target lesions (red circles) are shown on the left. Repeat thoracic 
radiographs of these same nodules at week 16 are shown on the right (red circles), 
which demonstrated an ~ 70 % size reduction in these lesions (based on RECIST 
criteria). This response was initially noted at week 8, and remained present to slightly 
increased at week 16. Regression of grossly visible OSA pulmonary metastases were 
confirmed on necropsy of this patient, with only minimal microscopic metastases 
observed in the lung. 
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for one of the dogs who experienced a partial response. Median progression-free 

survival (PFS) was 61 days (17-127 days) for the 1mg/kg cohort, and 42.5 days (14-188 

days) for the 10 mg/kg cohort, and was not statistically different between the two groups 

(Fig. 4.9B, p=0.82). For PFS analysis, one dog with SD in the 1mg/kg cohort was 

censored at 74d due to owner’s request for withdrawal from the study (due to grade 2 

lethargy). Of note, one of the dogs in the 10mg/kg cohort who experienced a partial 

response eventually died secondary to OSA metastases to the right scapula and distal 

ulna; however, on necropsy only microscopic evidence of pulmonary metastasis was 

identified, with no grossly visible lung metastases observed.  

 

Evidence for reversal of tumor immune suppression in the peripheral blood of 

dogs treated with toceranib and losartan 

 Immune parameters associated with evidence of Treg and inflammatory 

monocyte modulation by combined toceranib and losartan therapy, and secondary 

enhancement of anti-tumor immune responses, were evaluated in the peripheral blood 

of dogs at various post-treatment time points. Samples were available from 7 of 8 dogs  

who also had matched CBC data for the same time points for determination of absolute 

cell numbers. Similar to previously published results of the immunomodulatory effects of 

toceranib therapy on Tregs in dogs, there was a decrease in the mean absolute number 

of Tregs at week 4 post therapy (85  56.1 cells/L), as compared to baseline (105.3  

68.3 cells/L), with absolute Treg numbers decreased in 6 of 7 evaluable dogs; 

however, this trend was not significant (Fig. 4.11A, p=0.13). Absolute numbers of 

CCR2+ peripheral blood monocytes were quantified by flow cytometry at weeks 1 and 2  
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Figure 4.11. Effects of high dose losartan and Palladia combination therapy on immune 
cell subpopulations in the peripheral blood of dogs with metastatic osteosarcoma. (A) 
Absolute numbers of CD4+/FoxP3+ regulatory T cells (Tregs) in the peripheral blood of 
dogs with metastatic osteosarcoma at baseline and following 1 month combination 
therapy with losartan (10mg/kg BID) and Palladia (2.75 mg/kg EOD). (B) Absolute 
numbers of CD11b+/CCL2+ monocytes in the blood of dogs at baseline and 1 and 2 

weeks post losartan (n=5)  toceranib (n=2) combination therapy. (C) Absolute numbers 
of CD5+/CD4+ T cells, and CD5+/CD8+ T cells (D). Data expressed as means ± SD 
and analyzed by Wilcoxon signed rank test (n=7 dogs per time point, * p < 0.05). 
  

 



 

 182 

post treatment. CCR2 expression was determined indirectly using a fluorescently-

labeled human CCL2 ligand, as to our knowledge, no commercially available species-

specific or cross-reactive antibody exists for canine CCR2. However, we suspect 

thisligand to be specific for canine CCR2 as its binding is completely competed off by 

pre-incubation with unlabeled canine rCCL2 (data not shown). No significant decreases 

in absolute numbers of CD11b+/CCL2+ peripheral blood monocytes were observed with 

losartan treatment (Fig. 4.11B). In addition, a broader analysis of peripheral blood 

monocytes at these time points, by various permutations of CD11b, MHCII, CD4, and 

CD14 expression, revealed no statistically significant decrease in these cell populations 

at weeks 1 and 2 post losartan therapy (data not shown). 

Interestingly, however, we observed a statistically significant negative correlation 

between week 4 neutrophil or total myeloid (neutrophil and monocyte) cell counts (as a 

percentage of baseline), and progression-free survival, when analyzing all dogs in the 

study (1 mg/kg and 10 mg/kg cohorts) (Fig. 4.12A, Spearman r = -0.59, *p = 0.02). 

Additionally, when values for week 4 neutrophil and total myeloid cell counts (as % 

decrease from baseline) were dichotomized based on the median for all evaluable dogs 

(n=14), dogs experiencing a decrease of week 4 neutrophil or total myeloid cell counts 

greater than the median value of 32% had significantly longer PFS (median PFS = 74 

days), as compared to dogs experiencing a decrease below the median value (median 

PFS = 28 days) (Fig. 4.12B, log rank test, *p=0.02, HR 2.8, 95% confidence intervals; 

CI, 0.853 – 9.21). 

Lastly, we sought to determine if losartan plus toceranib therapy had 

immunomodulatory effects on other T cell subsets that might be reflective of an  
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Figure 4.12. Effects of losartan and toceranib combination therapy on changes in total 
myeloid cell counts and association with progression-free survival. (A) Linear regression 
plot depicting the correlation between % change in total myeloid cell counts at 4 weeks 
post treatment and progression-free survival (n=14 dogs). (B) Kaplan-Meier curve 
comparing progression free survival in dogs experiencing a greater than 30% decrease 
in week 4 total myeloid cell counts below baseline (n=7), vs. those that did not (n=7). 
(Spearman correlation = -0.59, *p=0.02; log rank test *p=0.02). 
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enhanced anti-tumor immune response. For this, we measured absolute numbers of 

peripheral blood CD4+ and CD8+ T cells by flow cytometry. We observed significant 

increases in the mean number of CD4+ and CD8+ T cells at week 4 as compared to 

baseline. The mean number of CD4+ cells pre-treatment was 57.7 (23.3 cells/L), as  

compared to 221 (134 cells/L) at week 4, while the mean number of CD8+ cells pre-

treatment was 78.1 (89.5 cells/L), as compared to 148 (119.8 cells/L) at week 4 

(Fig. 4.11 C, D, *p<0.05). To determine if the observed increases in peripheral blood 

CD4+ and CD8+ T cells were associated with restoration of an IFN- mediated T cell 

response, we quantified plasma IFN- concentrations at these same time points via  

ELISA assay. However, no significant elevations in plasma IFN- as compared to 

baseline were observed in these dogs (data not shown). 

 

Discussion 

 The last decade has seen significant advances in the utility of immunotherapy as 

a new treatment modality in human oncology. These responses have primarily been 

observed with the use of monoclonal antibodies (mAbs) targeting T cell checkpoint  

molecules in tumors such as melanoma and non-small cell lung cancer, or genetically 

engineered autologous T cells for the treatment of hematologic malignancies (20, 45). 

Yet, glaringly absent from the growing tool box of currently approved immunotherapies 

are small molecule drugs, a class of compounds which have previously been a 

mainstay in molecularly targeted cancer therapeutics (45). However, it is likely that 

processes such as infiltration of immune suppressive cells into the tumor 

microenvironment and immune cell promotion of metastasis would be best targeted by 
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small molecule drugs, and that the combination of currently approved biologic immune 

therapies with small molecule antagonists of these processes could result in substantial 

improvement of patient responses. 

 The CCL2-CCR2 axis represents an attractive therapeutic target for the 

treatment of tumor progression and metastasis, as a significant amount of experimental 

and clinical evidence now exists implicating CCL2-CCR2 signaling in multiple, over-

lapping, pro-tumorigenic functions (9). In tumor-bearing hosts, CCL2 mediates the 

recruitment of CCR2+ inflammatory monocytes from the bone marrow into the 

peripheral blood, subsequently facilitating macrophage population of both primary and 

metastatic sites (10, 46). These primary tumor- and metastasis-associated 

macrophages promote tumor growth and metastasis through multiple mechanisms 

involving stimulation of angiogenesis, induction of an immune suppressive 

microenvironment, and activation of intrinsic tumor cell survival pathways (17-19). 

Regulatory T cells (Tregs) represent another immune cell subset known to promote 

tumor growth and metastasis, primarily through mechanisms associated with 

suppression of anti-tumor NK and CD8+ T cell responses (47, 48). As such, 

immunotherapeutic strategies designed to target both Tregs and the CCL2-CCR2 axis 

represent a rational combination for the reversal of tumor immune suppression and 

treatment of cancer metastasis. 

 We have previously demonstrated that the small molecule drug losartan, an 

angiotensin II type 1 receptor (AT1R) antagonist, can suppress tumor growth in murine 

metastasis models through mechanisms associated with blockade of CCL2-CCR2 

monocyte recruitment and inhibition of angiogenesis (Regan et al. in review). Sunitinb, a 
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multi-kinase inhibitor approved for the treatment gastrointestinal stromal tumors and 

renal cell carcinomas, has also been shown to have potent immunomodulatory effects 

on the tumor microenvironment, including prevention of Treg and myeloid-derived 

suppresser cell (MDSC) accumulation (49). Furthermore, previous clinical studies in 

tumor bearing dogs have demonstrated that the veterinary-approved tyrosine kinase 

inhibitor toceranib (Palladia), a drug which shares significant functional homology to 

sunitinib, has similar immunomodulatory properties, including reduction in peripheral 

blood Tregs (37). Therefore, we sought to evaluate the potential anti-tumor effects of 

combination losartan and sunitinb/toceranib immunotherapy in a pre-clinical murine 

osteosarcoma metastasis model, and a phase I/II clinical trial in dogs with spontaneous 

osteosarcoma pulmonary metastasis.  

We initially choose canine osteosarcoma, as 1.) Previous clinical data has 

implicated a prognostic role for both monocytes and regulatory T cells in the 

progression of this disease(30, 31), 2.) The high incidence of canine OSA provides for 

rapid patient accrual (28), and 3.) The predilection for canine OSA to metastasize to the 

lungs allows for ease and reproducibility in monitoring metastatic tumor progression via 

thoracic radiographs (28). Additionally, we simultaneously undertook descriptive 

immunohistochemical studies aimed at characterizing the immune landscape, including 

the role of CCL2-CCR2 monocyte recruitment, in canine OSA primary tumors and 

metastases. Results of these analyses demonstrated that OSA pulmonary metastases 

contained a significantly greater number of MAC387+ monocytes and macrophages as 

compared to primary tumors, and that neoplastic cells within OSA metastases produced 

abundant amounts of CCL2, suggesting a potential role for CCL2-CCR2 signaling in 



 

 187 

monocyte recruitment to metastatic sites of canine OSA. These results were further 

corroborated by a series of in vitro assays utilizing a canine OSA tumor cell line, which 

demonstrated the ability of this cell line to elicit strong ex vivo canine monocyte 

migration, in a mechanism primarily dependent on tumor cell production of CCL2. 

While losartan has been used in the treatment of glomerular disease and 

proteinuria in dogs, formal pharmacokinetic and pharmacodynamic assessment for 

inhibition of CCL2 mediated canine monocyte migration has not been performed (50). 

As such, our primary objective for the clinical study in tumor-bearing dogs was to 

determine the pharmacokinetics of losartan dosing for canine monocyte migration 

inhibition, as well as assess its safety and tolerability when combined with toceranib. In 

addition, data on treatment responses as well as immune parameters associated with 

monocyte and Treg modulation and enhancement of effector T cell responses were 

collected. For the clinical trial, we initiated losartan dosing at 1 mg/kg BID orally, as 

while no specific data exists for the use of losartan in dogs, this was the anecdotal dose 

recommended for the treatment of proteinuria (50). Assessment of pharmacodynamic 

activity in PBMCs and plasma obtained from the 8 dogs enrolled in this 1 mg/kg cohort 

demonstrated equivocal results for CCR2 target inhibition by losartan, with an overall 

increase in the mean chemotactic index as a percentage of baseline at both weeks 2 

and 4 post losartan therapy. Concordantly, determination of losartan concentration in 

plasma collected concurrently with the peripheral blood utilized for PBMC 

pharmacodynamic responses demonstrated levels of losartan which were significantly 

below the therapeutic target of 200 ng/mL identified by our in vitro canine monocyte 

migration studies. Of note, these plasma samples were collected around the time 
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predicted for observation of losartan trough concentrations (~4-6h post dose), thus it is 

possible that the maximum plasma concentrations for 1mg/kg dosing in these dogs 

could have reached levels near the 200ng/mL target. Supporting this notion, increased 

plasma CCL2 concentrations, a pD response observed in human clinical trials of the 

CCR2 mAbs and small molecule antagonists (42, 43), were observed in 5 of 6 

evaluable dogs, suggesting potential CCR2 inhibition; however, these increases were 

not statistically significant, and combined with the equivocal results of the PBMC 

migration assays, prompted us to perform losartan dose escalation studies in additional 

cohorts of healthy and tumor-bearing dogs.  

Pharmacokinetic and pharmacodynamic assessment of losartan at doses of 2.5 

mg/kg and 10 mg/kg demonstrated increasing maximum plasma and overall drug 

exposure levels, which at the 10 mg/kg dose met or exceeded the in vitro predicted 

therapeutic target for Cmax and exposure (AUC). More importantly, significant inhibition 

of ex vivo CCL2-directed monocyte migration was observed in 5 of 5 evaluated dogs at 

weeks 1 and 4, and 4 of 5 dog at week 2 in this 10 mg/kg cohort. Additionally, 

statistically significant elevations in mean plasma CCL2 concentrations above baseline 

were observed at both 2 and 4 weeks post treatment in this cohort. Overall, these 

results demonstrated increasing CCR2 target inhibition at increasing doses of losartan, 

and identified an oral losartan dose (10 mg/kg BID) effective for the inhibition of CCL2-

mediated monocyte migration in tumor-bearing dogs. 

Despite this, it is important to note that these results highlight the potential 

difficulty in assessing peripheral blood pharmacodynamic responses for chemokine 

receptor antagonists, especially in terms of drugs, such as losartan, which are predicted 
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to be non-competitive antagonists (Regan et al. in review). Pharmacodynamic results of 

previously published clinical trials of chemokine receptor antagonists have primarily 

relied on either the evaluation of drug receptor occupancy, indirectly through measuring 

the inhibition of chemokine-induced receptor internalization, or assessment of inhibition 

of fluorescently-labeled chemokine ligand binding (51, 52). In the case of losartan, 

neither of these approaches were feasible, as we have previously demonstrated that 

losartan itself induces CCR2 internalization, and in human monocytes does not inhibit 

CCL2 binding, and is predicted to be a non-competitive antagonist of CCR2 (Regan et 

al. in review). Thus, we relied on assays of ex vivo monocyte migration and assessment 

of changes in plasma CCL2 levels. One problem with our method of evaluation of ex 

vivo monocyte migration was that blood was processed via erythrocyte lysis followed by 

repeated washes, thus removing PBMCs from the patients’ plasma containing free 

losartan drug. Inherently, this assumes that losartan’s effects on CCR2 signaling remain 

active during the 4-hour duration of the migration assay, despite a likely free losartan 

drug concentration of essentially zero. While out of the scope of these studies, this 

hypothesis could be easily tested in vitro utilizing data from our in vivo pK studies. One 

possibility for improving this pD endpoint in future studies could be the optimization of 

ex vivo migration assays using leukocyte-rich plasma instead of blood processed via 

Ficoll separation or ACK lysis. Alternatively, in line with results of CCR2 antagonist trials 

in people we consistently observed post-treatment elevations in plasma CCL2 levels in 

both the 1 mg/kg and 10 mg/kg dose cohorts, suggesting that ELISA measurement of 

plasma CCL2 likely represents a more reliable and high-throughput means for 

monitoring target inhibition by CCR2 antagonists. 
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For all 19 dogs (including 3 healthy control dogs), losartan therapy was well 

tolerated at doses up to 10 mg/kg BID. Toxicities observed during a 2-week period of 10 

mg/kg losartan monotherapy were generally mild and self-limiting and most commonly 

included gastrointestinal disturbance (anorexia, vomiting, diarrhea). Addition of 

toceranib therapy was well tolerated in dogs in both the 1 mg/kg and 10 mg/kg cohorts 

and resulted in no significant increases in toxicity, with the most commonly reported 

adverse events consistent with those previously reported for toceranib, including 

gastrointestinal disturbance, lethargy, and neuromuscular (fore-/hind-limb) weakness.  

In terms of observed clinical responses, combination losartan and toceranib therapy 

produced objective responses in 2 of 16 dogs (12.5%) with metastatic osteosarcoma, 

both which occurred in the high dose 10 mg/kg cohort. In addition, stable disease of 

meaningful duration (>8 weeks) was observed in 4 of 16 dogs (25%).  

In this study, the mechanisms accounting for the observed tumor growth 

stabilization/regression are not known. Besides inhibition of monocyte migration, 

losartan has been previously demonstrated to exert anti-tumor effects associated with 

mechanisms of blockade of angiogenesis or TGF- signaling, secondary to primary 

AT1R inhibition (53, 54). Likewise, toceranib can directly suppress the proliferation of 

neoplastic cells with activating KIT mutations, and also has potential to inhibit 

angiogenesis based on its activity against other kinases including VEGFR and PDGFR 

(55). Thus, it is plausible that the observed tumor responses could be the result of 

blockade of tumor angiogenesis and/or direct inhibition of KIT signaling in tumor cells. 

However, in contrast to this notion, we observed a statistically significant negative 

correlation between week 4 neutrophil or total myeloid (neutrophil and monocyte) 



 

 191 

counts (as % of baseline), and progression-free survival for all study dogs. Additionally, 

PFS was significantly prolonged in those dogs experiencing a greater than 30% 

decrease of their week 4 neutrophil or total myeloid cell counts below baseline, as 

compared to those that did not. While it is possible that these results are reflective of 

dogs receiving a greater biologically effective dose of toceranib, given the known role of 

KIT signaling in hematopoiesis, we feel this is an unlikely scenario. Toceranib has not 

been reported to result in significant myelotoxicity, and thus variations in the degree of 

myelosuppression are not likely to be a good surrogate marker for dose intensity as 

they are with traditional cytotoxic therapies (55, 56). In fact, only 1 dog in our study 

experienced neutropenia, which was grade 1 in severity, and based on the phase I trials 

for toceranib in dogs (55), more significant variations in gastrointestinal toxicities than 

those observed in our study would be predicted, if true differences in dose intensity 

were present. Interestingly, similar results have been observed in humans with 

advanced stage melanoma treated with the checkpoint inhibitor ipilimumab (57). In 

these patients, an elevated neutrophil to lymphocyte ratio (NLR) at baseline or a >30% 

increase during ipilimumab treatment was significantly associated with worse overall 

and progression free survival, while changes in the NLR in patients receiving BRAF 

inhibitors were not consistently associated with outcome (57).  

Lastly, we observed statistically significant increases in absolute numbers of 

CD4+ and CD8+ T cells in the peripheral blood of dogs in the 10 mg/kg cohort; an effect 

evaluated in but not previously reported for dogs receiving toceranib (37), suggesting 

this observation is the result of the addition of losartan to toceranib therapy. 

Interestingly, previous studies characterizing canine myeloid-derived suppressor cells 
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(MDSCs), an immune cell subset known to suppress T cell responses in tumor-bearing 

humans and mice, have demonstrated that these cells are of granulocytic (neutrophilic) 

phenotype in dogs (58). Thus, based on the observed changes in total neutrophil and 

myeloid cell counts, in conjunction with the observed increases in peripheral CD4+ and 

CD8+ T cells, we feel these results support our hypothesis of potential reversal of the 

systemic tumor immune suppression by combination losartan and toceranib therapy.  

In conclusion, these studies provide preliminary evidence implicating a role for 

CCL2-CCR2 signaling in canine OSA metastases, and are the first to evaluate losartan 

pharmacokinetics for the pharmacodynamic endpoint of inhibition of CCL2-mediated 

monocyte migration in any species. Here, we demonstrate that 10 mg/kg BID oral 

dosing of losartan is a safe and well-tolerated dose which can effectively inhibit CCL2-

mediated monocyte migration in dogs with spontaneous osteosarcoma metastasis. In 

addition, results of this pilot Phase I/II trial demonstrate that these drugs can be co-

administered at their respective recommended dosages on a continuous basis with 

minimal toxicity. Furthermore, the biological response rate observed in these dogs with 

advanced, established metastases, in conjunction with the observed modulation of 

systemic immune suppression, support further clinical evaluation and validation of this 

novel immunotherapeutic combination and potential mechanisms of action in larger, 

randomized, placebo controlled studies. 
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CHAPTER 5 
 
 

Final conclusions and future directions 

 

G protein-coupled receptors (GPCRs) have traditionally been a cornerstone of 

drug discovery in the pharmaceutical industry. Thus, the initial discovery of chemokine 

receptors functioning as GPCRs stimulated great excitement at the prospects of small 

molecule drug development for the treatment of a variety of immune-related diseases, 

ranging from inflammatory conditions such as atherosclerosis, chronic obstructive 

pulmonary disease, and rheumatoid arthritis, to cancer and HIV (1). However, almost 

two decades after the discovery of many of these receptors, only two small molecule 

chemokine receptor antagonists are approved for clinical use in humans, including the 

CCR5 antagonist maraviroc for treatment of HIV, and the CXCR4 antagonist plerixafor 

(AMD3100) for hematopoietic stem cell mobilization (1).  

While numerous large pharmaceutical companies continue to maintain active 

programs for the development of small molecule chemokine receptor antagonists, 

including against CCR2, their therapeutic targets appear to be predominately focused 

on inflammatory diseases and not cancer (2). Indeed, a search of “chemokine receptor 

AND cancer” on ClinicalTrials.gov demonstrates that only 3 small molecule chemokine 

receptor antagonists, including one CCR2 antagonist, are currently in trials for treatment 

of human cancer patients (the other two being the aforementioned CCR5 and CXCR4 

antagonists) (ClinicalTrials.gov identifiers: NCT01736813, NCT02737072, 

NCT02732938). Although drug development is a lengthy process, these results are 

surprising, given the well-documented role of chemokine receptor signaling in tumor 
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progression and control of metastasis, both through direct signaling on tumor cells, as 

well as indirectly through the recruitment of tumor-promoting immune cells (3). As one 

example, it has been demonstrated that signaling between the chemokine SDF-1 

(CXCL12) and CXCR4 expressed on breast cancer cells promotes both primary tumor 

growth, as well as breast tumor cell invasion and recruitment to metastatic sites (4, 5).  

In contrast, biological therapies targeting immune-related proteins and their 

associated processes have driven major clinical advancements in human oncology over 

the last decade (6). These immunotherapeutic advancements have primarily been 

observed with the use of monoclonal antibodies targeting T cell checkpoint molecules 

such as programmed cell-death protein 1 (PD-1), or cytotoxic T-lymphocyte associated 

protein 4 (CTLA-4) (6-8), predominately in patients with certain tumor types such as 

melanoma, lung, or renal cancer. Yet, it is likely that certain processes such as 

infiltration of immune suppressive cells into the tumor microenvironment and immune 

cell promotion of metastasis would be best targeted by small molecule drugs, and that 

the combination of currently approved biologic immune therapies with small molecule 

antagonists of these processes could result in substantial improvement of patient 

responses.  

Small molecule immunotherapies could offer distinct advantages over currently 

approved biologics. These include: 1.) oral bioavailability, 2.) their small size, which 

potentially lends itself to greater intratumoral distribution and ability to cross 

physiological barriers (such as the blood-brain barrier), and 3.) the ability to access 

intracellular drug targets which are otherwise unachievable by large biological therapies 

(9). As has been extensively outlined and documented throughout this thesis, the CCL2-
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CCR2 chemokine plays a significant role in the promotion of tumor metastasis, and thus 

likely holds great promise as an immunotherapeutic target. Despite this, at the onset of 

the studies presented in this thesis, only a single drug targeting the CCL2-CCR2 axis, 

the anti-CCL2 monoclonal antibody Carlumab, was in early phase clinical development 

for human cancer patients (10). Given that current estimations for the time and cost 

invested in new drugs is now a staggering 10 years and $2.6 billion dollars (11), 

alternative drug development programs which focus on re-purposing already approved 

drugs as potential anti-cancer therapies might offer greater promise, in terms of reduced 

cost and time, for getting more effective treatment options to patients with cancer (12). 

Thus, we initially sought to identify potential CCR2 antagonists via in silico screening of 

a library of > 300 FDA approved small molecule drugs against a CCR2 homology 

model. We chose this approach in hopes of identifying an already approved, known to 

be safe, cost effective drug which could be rapidly repurposed as a CCR2 antagonist. 

An identified lead compound from these in silico studies was the angiotensin 

receptor blocker, losartan. We initially chose losartan out of a list of predicted CCR2 

antagonists, among other things, based on its previously published reports of 

immunomodulatory activity on monocytes and macrophages in other inflammatory 

diseases such as atherosclerosis (13, 14). In the studies presented in chapter 2, we 

pharmacologically characterize losartan as a potential CCR2 antagonist, and assess its 

ability to inhibit CCL2-CCR2 mediated monocyte recruitment. Results of these studies 

demonstrated that both losartan and its primary metabolite (EXP-3174) potently inhibit 

CCL2-CCR2 dependent human and murine monocyte recruitment at clinically relevant 

doses, and in a manner which appears most consistent with non-competitive 
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antagonism of CCR2. In addition we also assessed the potential of losartan to be re-

purposed as an anti-metastatic therapy in experimental metastasis models of breast 

and colon cancer, which showed that losartan significantly slowed metastatic 

progression in a process that was associated with blockade of inflammatory monocyte 

recruitment and reduction in metastasis-associated macrophages. Taken together, 

these studies suggest that losartan and its primary metabolite might represent a novel 

class of safe and already-FDA approved, noncompetitive CCR2 antagonists, with 

potential to be rapidly repurposed for the treatment of metastatic disease. 

While the results presented in Chapter 2 provide strong evidence that losartan 

functions as a non-competitive CCR2 antagonist, full confirmation of these findings 

require additional CCR2 functional studies. As such, we have already collaborated with 

a group of molecular pharmacologists at the University of California-San Diego (UCSD), 

which have re-evaluated the in silico modeling of losartan and EXP-3174, now using the 

recently solved molecular structure of CCR2 (15) instead of a CCR2 homology model. 

Results of these assays have confirmed that both losartan and EXP-3174 bind with 

moderate potency to the CCR2 receptor, and at a novel, recently described intracellular 

allosteric binding site(15, 16); however, these results must be further substantiated by 

additional molecular pharmacology assays. Specifically, we are collaborating with this 

same group at UCSD as they have fully automated, high-throughput fluidic capabilities 

to more completely evaluate and generate a full dose-response curve for changes in 

CCL2-induced intracellular calcium release for both increasing concentration of losartan 

and CCL2 ligand. The response and shape of this curve will provide significant further 

insight as to the ortho or allosteric nature of losartan in terms of inhibition of CCR2. 
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Furthermore, we plan to repeat the CCR2 signaling studies shown in chapter 2, this 

time using cell lines which have been transfected with plasmids containing human 

CCR2 mutants with specific mutations in both the orthosteric and allosteric binding site. 

It would be hypothesized that the functional impact of losartan CCL2 signaling would be 

lost with mutation of its binding site (whether the ortho or allosteric pocket of CCR2), 

and thus results of these studies will definitively confirm to which portion of the CCR2 

molecule losartan binds. 

In addition, the in silico CCR2 modeling work by this same group of collaborators 

have demonstrated that double-antagonist bound CCR2, that is CCR2 bound by both 

orthosteric and allosteric (intracellular) antagonist drugs, represents the most highly 

inactive conformation of a G-protein coupled receptor observed to date (15). Thus, if 

losartan is determined to be a true intracellular allosteric inhibitor of CCR2, we plan to 

perform additional pre-clinical metastasis studies in mice assessing the combination of 

losartan (an allosteric inhibitor), with an orthosteric CCR2 antagonist, such as 

INCB3344 (17).  

While only a single small molecule CCR2 antagonist is currently in human clinical 

trials for the treatment of cancer; other small molecule CCR2 drugs have been 

evaluated in clinical trials for a variety of other diseases including rheumatoid arthritis 

and neuropathic pain (2, 18). In both of these trials however, CCR2 antagonist drugs 

failed to provide a clinical benefit greater than that observed in placebo-treated 

individuals (18, 19). It has previously been assumed that redundancy of the chemokine 

system was the likely cause for these failures, but more recent insights suggest that 

instead, inappropriate target selection and sub-therapeutic dosing might be the most 
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likely barriers to the success of these drugs (18). In chapters 3 and 4, we address both 

of these potential hurdles in the continued development and assessment of losartan as 

a CCR2 antagonist.  

In chapter 3, we demonstrate that canine hemangiosarcoma (HSA), as compared 

to other common and highly metastatic canine tumors types, is unique in its ability to 

recruit large numbers of monocytes to sites of metastasis. Moreover, we provide 

substantial mechanistic data which strongly suggests that monocyte recruitment to 

hemangiosarcoma metastases is at least in part dependent on the CCL2-CCR2 

chemotactic axis. These observations provide important insights into the biology and 

immunopathogenesis of hemangiosarcoma, and are consistent with the hypothesis that 

overexpression of CCL2 and recruitment of large numbers of monocytes may explain in 

part the aggressive metastatic nature of canine hemangiosarcoma. Future studies 

building on the foundational work we present here are currently underway. Specifically, 

we are collaborating to conduct a prospective, randomized, double blinded placebo-

controlled clinical trial evaluating the effects of oral losartan (10mg/kg) plus intravenous 

doxorubicin vs. intravenous doxorubicin (plus placebo) in 40 dogs that had splenectomy 

for splenic HSA. 

Finally, the studies presented in chapter 4 provide preliminary evidence also 

implicating a role for CCL2-CCR2 signaling in canine OSA metastases, and are the first 

to evaluate losartan pharmacokinetics for the pharmacodynamic endpoint of inhibition of 

CCL2-mediated monocyte migration in any species. Here, we demonstrate that 10 

mg/kg BID oral dosing of losartan is a safe and well-tolerated dose which can effectively 

inhibit CCL2-mediated monocyte migration in dogs with spontaneous osteosarcoma 
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metastasis. In addition, results of this pilot Phase I/II trial demonstrate that these drugs 

can be co-administered at their respective recommended dosages on a continuous 

basis with minimal toxicity. Furthermore, the biological response rate observed in these 

dogs with advanced, established metastases, in conjunction with the observed 

modulation of systemic immune suppression, support further clinical evaluation and 

validation of this novel immunotherapeutic combination and potential mechanisms of 

action in larger, randomized, placebo controlled studies. 

Future directions for the studies in chapter 4 will be focused on increasing our 

understanding of the immune response to canine tumors, and specifically of the role of 

CCL2-CCR2 in canine tumor metastasis. To this end, we plan to 

immunohistochemically evaluate larger numbers of osteosarcoma metastases for both 

MAC387 and CCL2, so that we can assess if there is a statistically significant positive 

correlation between CCL2 production and macrophage infiltration of canine OSA 

metastases. 

In addition, we plan to evaluate the immunotherapeutic effects of both losartan 

monotherapy, and in combination with toceranib, in a larger, better powered Phase II 

clinical trial in dogs with osteosarcoma. Furthermore, we plan to assess the monocyte 

migration inhibiting and anti-tumor effects of other drugs within the class of angiotensin 

receptor blockers. Informative studies on the comparative pharmacokinetics of ARBs 

have already been performed in both humans and rodents (20). Based on the results of 

these studies, it appears that other second and third generation ARBs, such as 

telmisartan may have a potentially more favorable pK profile for daily dosing and 

maintenance of therapeutic levels effective at inhibiting monocyte migration (20). 
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Specifically, telmisartan has a higher oral bioavailability than losartan, as well as a 

significantly greater half-life, which could facilitate once a day dosing in humans and 

dogs that still maintains the same or greater drug levels that we demonstrate here in our 

studies of losartan (20).  

In addition, besides the potential for losartan to inhibit CCL2-CCR2 signaling, we 

feel it is important not to ignore the other potential anti-tumor effects of this drug or other 

members of the class of ARBs. Pre-clinical studies in mice have demonstrated losartan 

to have potent anti-fibrotic effects through inhibition of TGF-B signaling (21-24). It is now 

well documented that radiation induces increased TGF- signaling, the effects of which 

contribute to the activation of carcinoma-associated fibroblasts and myofibroblasts in 

the tumor microenvironment, inducing the post-radiation fibrotic response often 

observed (25, 26). In addition, it has been shown that a pre-existing or induced fibrotic 

microenvironment provides a protective niche for the survival of tumor cells, as well as 

potentially accounting for radio-resistance through enhanced integrin signaling between 

tumor cells and ECM (25, 27). Additionally, radiation therapy is known to induce a 

significant inflammatory response, which in some regards is hypothesized to be 

beneficial due to enhanced immunogenic cell death of tumor cells, release of tumor 

antigens, and recruitment of T cells (27). However, this radiation-induced inflammation 

also leads to the production of chemokines and recruitment of myeloid cells which are 

likely to have deleterious effects on anti-tumor immune responses as well as serve to 

promote regrowth of tumor cells via their known roles in angiogenesis (28).  

Given that we and others have demonstrated in mouse models that losartan has 

significant anti-inflammatory properties (via inhibition of CCL2-CCR2 signaling) and anti-
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fibrotic properties (via inhibition of TGF- signaling), it is likely that this drug, or 

potentially other drugs in the ARB class might represent successful adjuvant therapies 

for tumor radiation, especially in cases of stereotactic radiation therapy for individuals 

with oligometastatic lung tumors. We feel that the clinical effects of the addition of 

losartan to radiotherapy could be easily assessed in dogs with oligometastatic 

osteosarcoma in a randomized, placebo controlled trial. While one potential hypothesis 

is that inhibition of myeloid cell recruitment could have a negative impact through 

dampening recruitment of cells required for presentation of newly liberated tumor 

antigens following radiation, we hypothesize that the negative impact of myeloid cell 

recruitment would far outweigh the potential role of these cells in stimulating an immune 

response. Thus, we feel that adjuvant losartan therapy for patients undergoing radiation 

could have significant potential clinical benefits in terms of enhancement of 

radiosensitization and/or suppression of tumor recurrence through suppression of pro-

fibrotic signaling, as well as the mitigation and/or prevention of radiation-induce counter-

regulatory immune responses. Inadvertently, losartan may also possess the potential to 

mitigate radiation induced side effects such as pulmonary fibrosis (26). 

In addition, the anti-fibrotic effects of losartan have already been co-opted by 

others for the enhancement of therapeutic effects of other traditional anti-cancer 

therapies, such as doxorubicin (24). Multiple studies from the laboratory of Rakesh Jain 

demonstrate that inhibition of TGF- induced collagen synthesis via daily losartan 

treatment can result in the decompression of tumor blood vessels, allowing enhanced 

chemotherapeutic drug delivery and improved survival above chemotherapy alone in 

mouse tumor models (24, 29). We feel that the dog model of osteosarcoma is well-
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aligned for the further validation of this pre-clinical result. Following amputation, dogs 

with osteosarcoma are often treated with adjuvant single agent platinum drugs 

(carboplatin) (30). When these dogs either fail during platinum-based chemotherapy, or 

eventually develop metastasis post-completion of adjuvant chemotherapy, they are 

often times offered experimental drugs, or other traditional cytotoxic therapies; however, 

these have been woefully ineffective in this established metastatic setting (31-33). Thus, 

we feel there is promise and opportunity in assessing, in a randomized, placebo 

controlled trial, the effect of losartan therapy on improving doxorubicin efficacy in dogs 

with grossly evident metastatic osteosarcoma which have been previously treated with 

single agent platinum-based chemotherapy.  

In summary, these studies describe the pharmacological and pre-clinical 

characterization of losartan as a repurposed CCR2 antagonist and potential anti-

metastatic therapy in both pre-clinical mouse models and in companion dogs with 

spontaneous cancer. This work demonstrates a unique and previously undescribed 

mechanism of direct inhibition of CCL2-CCR2 signaling and monocyte recruitment by 

losartan and its primary EXP-3174 metabolite, and show that in pre-clinical models, 

daily losartan therapy is effective in suppressing experimental metastasis growth, in a 

manner which is associated with sustained blockade of inflammatory monocyte 

mobilization and accumulation of metastasis-associated myeloid cells. These results 

provide another, yet undescribed, anti-tumor mechanism of losartan, in addition to its 

previously documented effects on angiogenesis and TGF- signaling  

Furthermore, through retrospective histopathological and immunohistochemical 

analyses, as well as in vitro assays utilizing canine tumor cell lines, we provide 
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foundational descriptive data which provides a rational basis for the evaluation of 

monocyte-targeted therapies in distinct canine tumor types. In addition, we highlight the 

importance of pharmacokinetics and pharmacodynamics for dose optimization in 

translational chemokine antagonist drug development, and utilized pK/pD studies to 

optimize losartan dosing for inhibition of canine monocyte migration and evaluation as a 

novel immunotherapy, in combination with the tyrosine kinase inhibitor toceranib, in 

dogs with spontaneous metastatic disease. In this pilot Phase I/II clinical trial, the 

biological response rate, in conjunction with the observed modulation of systemic 

immune suppression, support further clinical evaluation of losartan and toceranib as a 

novel immunotherapeutic combination, with greater focus on secondary endpoints of 

their immunomodulatory mechanism(s) of action, in a larger, randomized, placebo 

controlled study. In conclusion, these data further substantiate the potential clinical 

application of losartan in cancer patients, and suggest that this low cost, safe, and 

already-approved drug, could be rapidly repurposed as an adjuvant therapy for both 

dogs and humans at high risk of metastasis.  
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