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ABSTRACT

INFINITE DIMENSIONAL STOCHASTIC INVERSE PROBLEMS

In many disciplines, mathematical models such as differential equations, are used to character-

ize physical systems. The model induces a complex nonlinear measurable map from the domain of

physical parameters to the range of observable Quantities of Interest (QoI) computed by applying a

set of functionals to the solution of the model. Often the parameters can not be directly measured,

and people are confronted with the task of inferring information about values of the parameters

given the measured or imposed information about the values of the QoI. In such applications, there

is generally significant uncertainty in the measured values of the QoI. Uncertainty is often modeled

using probability distributions. For example, a probability structure imposed on the domain of the

parameters induces a corresponding probability structure on the range of the QoI. This is the well

known Stochastic Forward Problem that is typically solved using a variation of the Monte Carlo

method. This dissertation is concerned with the Stochastic Inverse Problems (SIP) where the prob-

ability distributions are imposed on the range of the QoI, and problem is to compute the induced

distributions on the domain of the parameters. In our formulation of the SIP and its generaliza-

tion for the case where the physical parameters are functions, main topics including the existence,

continuity and numerical approximations of the solutions are investigated.

Chapter 1 introduces the background and previous research on the SIP. It also gives useful

theorems, results and notation used later. Chapter 2 begins by establishing a relationship between

Lebesgue measures on the domain and the range, and then studies the form of solution of the SIP

and its continuity properties. Chapter 3 proposes an algorithm for computing the solution of the

SIP, and discusses the convergence of the algorithm to the true solution. Chapter 4 exploits the

fact that a function can be represented by its coefficients with respect to a basis, and extends the

SIP framework to allow for cases where the domain representing the basis coefficients is a count-
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able cube with decaying edges, referred to as the infinite dimensional SIP. We then discusses how

its solution can be approximated by the SIP for which the domain is the finite dimensional cube

obtained by taking a finite dimensional projection of the countable cube. Chapter 5 begins with

an algorithm for approximating the solution of the infinite dimensional SIP, and then proves the

algorithm converges to the true solution. Chapter 6 gives a numerical example showing the effects

of different decay rates and the relation to truncation to finite dimensions. Chapter 7 reviews pop-

ular probabilistic inverse problem methods and proposes a combination of the SIP and statistical

models to address problems encountered in practice.
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Chapter 1

Introduction

1.1 Deterministic Inverse Problem
Mathematical models such as differential equations, are used to characterize physical systems

of many scientific and engineering disciplines, such as physics, mechanical engineering and meteo-

rology. Solutions of these mathematical model are usually determined by a few driving parameters.

In many cases, the solution itself is not of interest. Instead, Quantities of Interest (QoI) computed

as functionals of solution of the mathematical model are the focus of study.

Let Q1 : Λ → S, a map from the parameter space Λ to solution space S, be induced by

the mathematical model. Let Q2 : S → D map the mathematical model solution to QoI. Then

the composite operator Q = Q1 ◦ Q2, mapping the parameter to QoI, is the full model under

consideration. To simplify later discussion, we assume D = Q(Λ).

While Q is defined theoretically, the exact functional form of Q is usually unavailable. In

practice, Q is often solved by numerical methods and subject to errors, which potentially have

strong impact on the output and pose important research questions. To simplify discussion, we

shall not address errors arising in this process and treat Q as being computed exactly. But we

acknowledge the fact that evaluation of Q may be expensive and slow.

We refer to the process of computing Q(λ) for a given λ as the deterministic forward problem,

which, despite its computational cost, is usually straightforward. On the contrary, when given

one y ∈ D, The task of determining one λ ∈ Λ such that Q(λ) = y for a given y ∈ D is

not so straightforward as the there might be multiple solutions or the solution does not depend

continuously on the data.

If we define the inverse image of any set A ⊂ D as

Q−1(A) = {λ : Q(λ) ∈ A, λ ∈ Λ},
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then Q−1({y}) is a uniquely defined set and is the set-valued solution of deterministic inverse

problem for y ∈ D. We simply write Q−1({y}) as Q−1(y). This definition of set-valued solutions

gets past the issue of non-uniqueness in the usual deterministic inverse problem, but poses new

questions as to how continuity can be defined in set setting.

1.2 Stochastic Inverse Problem
We look at a motivating example from Breidt et al. (2011), which we paraphrase as follows.

A batch of metal plates are made to withstand high temperature. While purity of the alloy and

thickness are part of the manufacturing specification, they are inevitably subject to variations,

and affect the heat distribution when a heat source is placed on the plate. The heat distribution

can modelled by the heat equation under a given load for a given conductivity which is further

determined by the alloy composition and the thickness of the plates. At the same time, temperature

measurements on certain locations can be collected on a sample of plates after they are heated for

a specific period of time.

If we treat the purity of alloy and the thickness as a random vector Λ taking values in Λ, and

temperature measurements as realizations from distribution of a random vector Y taking values in

D, and assume other parameters for the heat equation such as the initial condition and the boundary

condition for the heat equation as fixed and known, then the heat equation induces a deterministic

map Q from parameter space Λ to the space of temperature measurements D. The probability

distribution of Λ determines the probability distribution of Y . Specifically, to understand how

stochasticity is propagated by Q, we need to further assume that Q is a measurable map from

measurable space (Λ,BΛ) to measurable space (D,BD). Then any PΛ on (Λ,BΛ) induces a PD

defined in the following way: for all A ∈ BD, PD(A) = PΛ(Q−1(A)). One common approach of

getting independent random samples distributed as PD is to generate independent random samples

distributed as PΛ and apply Q to each of the sample points. The problem of defining, computing

and sampling from PD for a given PΛ is known as the Stochastic Forward Problem (SFP).
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The Stochastic Inverse Problem (SIP), as its name suggests, is the direct inverse of the SFP.

Specifically, for Q : Λ → D, SIP seeks to identify and compute a probability measure PΛ on Λ

that induces the given probability measure PD onD. Just as with the deterministic inverse problem,

there might be multiple solutions to one given PD. Further restrictions may yield a unique solution.

In recent years, a theoretical framework of the SIP have been established through a series of

papers (Breidt et al., 2011; Butler et al., 2012, 2014). They also propose computational algorithms

for the SIP which are implemented in the BET package (Butler, Estep, Tavener Method - A python

based package for measure-theoretic stochastic inverse and forward problems. McDougall 2016).

Among the papers, Butler et al. (2014) presents the latest and most comprehensive work, but also

leaves some problems which inpire the reformulation of the SIP constituting a major part of our

work. Next, we present the formulation of the SIP in Butler et al. (2014).

1.3 A Formulation of the SIP
The formulation of Butler et al. (2014) is based on the setup that there is a deterministic mapQ :

Λ → D and Λ is compact subset in Rn, D ⊂ Rm, and n ≥ m. They also implicitly assume D =

Q(Λ), so that Q−1(y) is well-defined for every y ∈ D. They assume Q is (piecewise) continuously

differentiable, and the component maps of Q are geometrically distinct (GD), characterized as:

Definition 1.3.1 (Geometrically Distinct (GD)). Component maps of m-dimensional piecewise-

smooth vector valued map Q(λ) are geometrically distinct (GD) if the Jacobian of Q has full rank.

By the Implicit Function Theorem 1.5.1 introduced later, the inverse set Q−1(y) is a piecewise

n − m dimensional manifold in Λ called generalized contour for each y ∈ D. In the measure

theory formulation, Butler et al. (2014) use the solution of deterministic inverse problem of point

y consisting of Q−1(y), which is a set-valued solution that can be interpreted as an equivalence

class. Given a probability measure space (D,BD, PD), Q induces a σ-algebra CΛ, the point of

which is the generalized contours Q−1(y), and probability PCΛ on Λ. Therefore, as a counterpart

to deterministic inverse problem, (Λ, CΛ, PCΛ) is the direct solution of the SIP for (D,BD, PD).
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While PCΛ is a solution to the SIP, they determine a probability measure PΛ defined with

respect to BΛ instead of CΛ, such that PD(A) = PΛ(Q−1(A)) for A ∈ BD. PD is called the

induced measure of µΛ via Q.

Defining an equivalence relation on Λ as “being mapped to the same point in D", the resulting

partion is essentially a decomposion of Λ as union of manifolds {Q−1(y)} indexed by y ∈ D. This

space of equivalent class, {Q−1(y), y ∈ D}, is denoted as L. Then Q as a map from L to D is

one-to-one and onto, thus is an isomorphism between L and D, and Q induces (L,BL, PL) by the

probability space (D,BD, PD).

1.3.1 Disintegration Theorem

In practice, people want to know the probabilities of sets in BΛ instead of BD, so it is desirable

to compute a solution of the SIP with respect to BΛ. For A ∈ BD, define EA ∈ BL such that

Q(EA) = Q(A), then define the equivalence map πL : Λ → L by πL(A) = EA. To analyze the

relation between solutions regarding the two different σ-algebras, Butler et al. (2014) adapt the

disintegration theorem from Chang and Pollard (1997) as follows.

Theorem 1.3.2 (Disintegration Theorem). Let (Λ,BΛ) be a measurable space and Q : Λ→ D be

a measurable map with GD component maps, and assume that Ψ is a measure on (Λ,BΛ) and µL

is its induced measure on (L,BL) via πL. There is a family of measures {Ψ`} on (Λ,BΛ) defined

for almost every ` ∈ L such that

Ψ`(λ) = 0, λ ∈ Λ\π−1
L (`), a.e.` ∈ L,

i.e., Ψ`(A) = Ψ`(π
−1
L (`) ∩ A) for all A ∈ BΛ, which gives the following disintegration of Ψ:

Ψ(A) =

∫
EA

Ψ`(A)dµL(`) =

∫
EA

(∫
π−1
L (`)∩A

dΨ`(λ)

)
dµL(`)

for A ∈ BΛ.
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As already discussed, PD induces PL as the solution of the SIP through the isomorphism be-

tweenD and L. If there is a PΛ, defined with respect to BΛ, as a solution of the SIP for probability

measure PD, the Disintegration Theorem yields

PΛ(A) =

∫
EA
PN(A; `)dPL(`) =

∫
EA

(∫
π−1
L (`)∩A

PN(λ; `)

)
dPL(`),

where {PN(λ; `)} is a family of measures concentrated on π−1
L (`) for each ` ∈ L.

1.3.2 Uniform Ansatz

While the marginal distribution on L is entirely determined by the SIP, the family of condi-

tional distributions {PN(·; `)} are not determined by the inverse of Q. Butler et al. (2012) spec-

ify an ansatz assuming the values of {PN(·; `)}. Defining µL = πLµΛ, disintegrating the vol-

umn (Lebesgue) measure µΛ with respect to µL determines a family of conditional distributions

{µN(·; `)} by

µΛ(A) =

∫
EA
µN(A; `)dµL(`) =

∫
EA

(∫
π−1
L (`)∩A

µN(λ; `)

)
dµL(`).

In the absence of knowledge regarding the conditional probability distributions {PN(λ; `)},

Butler et al. (2014) use an ansatz that assigns probability mass evenly on the generalized contours,

i.e. the “Uniform Ansatz" defined as

dPN(λ; `) = ρN(λ; `)dµN(λ; `) with ρN(·; `) =
1

µN(π−1
L ; `)(`)

` ∈ L.

When one has no preference over different regions on the same generalized contour, letting {PN(·; `)}

be proportional to {µN(·; `)} is the most reasonable choice. The Uniform Ansatz determines the

probability measure as the solution to the SIP in an almost sure sense. Numerical methods to the

SIP under the Uniform Ansatz given by Butler et al. (2014) is discussed in next section.
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1.3.3 Numerical Method

The goal of solving the SIP numerically is to approximate PΛ(A) for A ∈ BΛ. According to

Butler et al. (2014), this involves three approximation issues:

1. approximation of events in BD

2. approximation of events in BΛ

3. approximation of events in CΛ

They let {Ii} and {bj} be generating sequences for σ-algebras BD and BΛ, and {Ii}Mi=1 and {bj}Nj=1

be a finite partition ofD and Λ with subsets taken from these sequences. Any event in BD, BΛ, can

be approximated by such partitions, and since CΛ ⊂ BΛ, events in BΛ can also be approximated

by partition {bj}Nj=1. They refer to both the rectangles from a regular grid and cells from a Voronoi

tesselation generated from random sampling as proper generating sequence.

They aim to compute the probability of each bj as an approximation of the solution of the SIP

by the following algorithm, which have variations in different scenarios.

Algorithm 1: Approximation to inverse probability.

1 Generate approximating sets {Ii}Mi=1 and {bj}Nj=1

2 Fix and normalize the simple function approximation ρD,M =
∑M

i=1 pi1Ii(q)

3 Let {Ai}Mi=1 ⊂ Λ denote the induced regions of generalized contours partitioning Λ

4 foreach j = 1, · · · , N do

5 foreach i = 1, · · · ,M do

6 Compute µΛ(Ai ∩ bj) and store as ij−component in matrix V

7 end

8 end

9 foreach j = 1, · · · , N do

10 Set P (bj) to
∑M

i=1 pi(Vij/
∑N

j=1 Vij)

11 end

6



In Theorem 4.6, where they prove the convergence for computed probabilty of a given set,

they assume PD has a density with respect to µD that is piecewise continuous. In the proof, they

show the above algorithm amounts to approximating the solution probability density on Λ by a

simple function taking values on the partition sets. They show that the simple function converges

to the true probability density a.e. and by using the dominated convergence theorem, they prove

the convergence of the computed probabilities.

1.4 Disintegration theorem
Butler et al. (2014) apply the disintegration theorem in L, the space of equivalence classes

represented as manifolds in Λ and analyze the computed approximations using measure theory in

Λ, we use the disintegration theorem inD. The original disintegration theorem (Chang and Pollard,

1997, Theorem 1,2) is stated in the range of a map, the data that is used to create a distribution on

D is represented in D, and the algorithms in Butler et al. (2014) involve computations in D. So

here we consider the disintegration theorem in D.

Theorem 1.4.1 (Disintegration Theorem 2). Let (Λ,BΛ) be a measurable space and Q : Λ→ D

be a measurable map with GD component maps, and assume that Ψ is a measure on (Λ,BΛ) and

ΨD is its induced measure on (D,BD) via Q. There is a family of measures {Ψy} on (Λ,BΛ)

uniquely defined for ΨD-almost every y ∈ D such that

Ψy(Q
−1(y)) = 1,Ψy(Λ\Q−1(y)) = 0,

which gives the following disintegration of Ψ:

Ψ(A) =

∫
Q(A)

Ψy(A)dΨD(y) =

∫
Q(A)

(∫
Q−1(y)∩A

dΨy(λ)

)
dΨD(y)

for A ∈ BΛ.
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1.5 The implicit function theorem
Generally speaking, the implict function theorem states how an equation for a function of

several variables determines the relation among variables such that some variables can be expressed

as a function of other variables.

We use two versions of the implicit function theorem. The first one from P224, Rudin et al.

(1964) is a standard result in multivariate calculus. This one is applied for many results in the

formulation of SIP, for example, it is key to prove that Q−1(y) is a manifold.

Theorem 1.5.1. Let f be a C1−mapping of an open set X × Y ⊂ Rn+m, where X ⊂ Rn and

Y ⊂ Rm are both open sets, into Rn, such that f(x̄, ȳ) = 0 for some point (x̄, ȳ) ∈ E. Put

Ax = Jf,x(x̄, ȳ) and assume that Ax is invertible. Also put Ay = Jf,y(x̄, ȳ). Then there exist open

sets U ⊂ X and W ⊂ Y , with (x̄, ȳ) ∈ U ×W , having the following property:

To every y ∈ W corresponds a unique x such that

x ∈ U and f(x, y) = 0.

If this x is defined to be g(y), then g is a C1−mapping of W into U , g(b) = a,

f(g(y), y) = 0 (y ∈ W ),

and

g′(b) = −(Ax)
−1Ay.

The scope of above theorem is limited to a Euclidean space, so it is inadequate for cases where

infinite dimensional spaces are involved. For the infinite dimensional case, we use Theorem 3 of

Border (2013).

Theorem 1.5.2. Let X be an open subset in Rn, let Y be a metric space, and let f : X × Y → Rn

be continuous. Suppose the derivative Jf,x of f with respect to x exists at each point (x, y) and is

8



continuous on X × Y . Assume that Jf,x(x̄, ȳ) is invertible. Let

f(x̄, ȳ) = 0.

Then there are neighborhoods U ⊂ X and W ⊂ Y of x̄ and ȳ, and a function ξ : W → U such

that:

1. f(ξ(y); y) = 0 for y ∈ W .

2. For each y ∈ W , ξ(y) is the unique solution to f(x, y) = 0 lying in U . In particular, then

ξ(ȳ) = x̄.

3. ξ is continuous on W .

1.6 Background in differential geometry
A (topological) manifold is a topological space that is locally Euclidean, i.e. for every point on

it, there is a neighborhood that is isomorphic to an open ball in Rn. We deal with a very specific

manifold prevalent in the SIP formulation: a k-dimensional smooth manifold in Rn. Even though

we only assume Q is C1 and the differential structure on the manifold is C1, Theorem 2.10 in

Chapter 2 of Hirsch (1976) asserts that for r ≥ 1, every Cr manifold is Cr diffeomorphic to a C∞

manifold, so consideration of a C∞ manifold, or smooth manifold, is sufficient for most purposes.

We use manifold and smooth manifold interchangeably. We apply definitions from Schlichtkrull

(2013) to k-dimensional manifold in Rn unless otherwise specified.

Definition 1.6.1 (Smooth function). If f has continuous partial derivatives up to order r, then f

is called a Cr−function. A function which is Cr for all r is called C∞ or smooth.

Definition 1.6.2. A parametrized manifold in Rn is a smooth map σ : U → Rn, where U ⊂ Rk is a

non-empty open set. It is called regular if the n×k Jacobian matrix Jσ(x) has rank k at all x ∈ U ,

that is, σ has geometrically distinct component maps. An k-dimensional parametrized manifold is

a parametrized manifold σ : U → Rn with U ⊂ Rk, which is regular.
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Definition 1.6.3. Let A ⊂ Rk and B ⊂ Rn. A map f : A→ B which is continuous, bijective and

has a continuous inverse is called a homeomorphism.

Definition 1.6.4. A regular parametrized manifold σ : U → Rn which is a homeomorphism

U → σ(U), is called an embedded parametrized manifold.

Definition 1.6.5. Let A ⊂ Rn. A subset B ⊂ A is said to be relatively open if it has the form

B = A ∩W for some open set W ⊂ Rn.

Definition 1.6.6. An k-dimensional manifold in Rn is a non-empty set S ⊂ Rn satisfying the

following property for each point p ∈ S. There exists an open neighborhood N(p) of p and an

k-dimensional embedded parametrized manifold σ : U → Rn with image σ(U) = S ∩N(p). The

surrounding space Rn is said to be the ambient space of the manifold.

A k-dimensional manifold is locally a k-dimensional embedded parametrized manifold, which

further admits a specific parameterization as the following Lemma.

Lemma 1.6.7. Let S ⊂ Rn be non-empty. Then S is an k-dimensional manifold if and only if it

satisfies the following condition for each p ∈ S: There exists an open neighborhoodN(p) ⊂ Rn of

p, such that S ∩N(p) is the graph of a smooth function h, where n− k of the variables x1, · · · , xn

are considered as functions of the remaining k variables.

By the Implicit Function Theorem 1.5.1, we can show that Q−1(y), y ∈ D is a n −m dimen-

sional manifold in Rn, just as the next theorem.

Theorem 1.6.8. Let f : Ω→ Rm be a C1 function, where m ≤ n and where Ω ⊂ Rn is open, and

let c ∈ Rm. If it is not empty, the set

S = {p ∈ Ω|f(p) = c, rank(Jf (p)) = m}

is an n−m-dimensional smooth manifold in Rn.
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For a C1 map f : U → V , where U, V are open subsets of Rn, Rm, we know the linear

approximation of f is given by the Jacobian matrix Jf . Next, we define differential as the linear

approximation of a map between manifolds f : M → N . The next definition is from Wilson

(2012, Definition 9).

Definition 1.6.9 (Tangent Space TxM, Differential). Suppose thatM ⊂ Rn is a k-dimensional

manifold. Let φ : U → M, where U is an open set in Rk, be a local parameterization around

some point x ∈ M with φ(0) = x. We define the tangent space TxM to be the image of the map

Jφ(0) : Rk → Rn at 0. Note that TxM is an k-dimensional subspace of Rn, and its translation

x+ TxM is the linear approximation to φ at x.

Given a Cr, r ≥ 1 map of manifolds f : M → N , and local parameterizations φ : U →

M, φ(0) = x ∈M and ψ : V → N,ψ(0) = f(x) ∈ N . Let h be the map h = ψ−1 ◦ f ◦ φ : U →

V . We can define the differential of f at x by

dfx : TxM→ Tf(x)N dfx = Jψ(0) ◦ Jh(0) ◦ Jφ(0)−1.

The spaces TxM, Tf(x)N , and the differential dfx are independent of choice of φ and ψ.

Next definition is from Wilson (2012, Definition 12).

Definition 1.6.10 (Submersion;Immersion). A Cr, r ≥ 1 map of smooth manifolds f : M → N

is a submersion if its differential is surjective at every point. The map is an immersion if the

differential is injective at every point.

A submersion is an extension of a projection map, and it is also an open map. The GD condition

insures the map Q is a submersion when n > m.

Proposition 1.6.11 (Properties of Submersions). LetM andN be smooth manifolds, and suppose

f :M→N is a submersion. Then f is an open map.

On the contrary, when the differential dfx is not surjective, x is called critical point, and its

value is called critical value, fomally defined as follows.
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Definition 1.6.12 (Critical values). Given a Cr, r ≥ 1 map of manifolds f : M → N , the set of

critical values of f is defined as

{f(p) ∈ N| rank(dfp) < dimN}.

Next classical result from Sard (1965) shows that when f is smooth enough, the set of critical

values is negligible.

Theorem 1.6.13 (Morse-Sard). If N is an n-dimensional manifold andM is an m-dimensional

manifold, f : N → M is a Ck map for k > max{n −m, 0}, then the set of critical values of f

has measure zero.

1.7 Some useful results
In this section we introduce some useful results.

1.7.1 Smith-Volterra-Cantor set

One famous set often used in construction of counter examples is the Smith-Volterra-Cantor

set, or fat Cantor set, denoted as C
1
4 . It is constructed by recursively removing the central 1/22n

from each bar beginning with [0, 1]. This set is nowhere dense and consequently has no interior,

so it is the boundary of itself. Yet it has a positive measure of 1/2. The next figure taken from

Wikipedia (2017) shows the first five steps towards construction of the fat Cantor set.

Figure 1.1: The first five steps towards construction of the Smith-Volterra-Cantor set.
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1.7.2 Lebesgue Differentiation theorem

For a Lebesgue integrable real valued function f on Rn, the integral of f over any measurable

set A is
∫
A
fdµ. The derivative of integral at x is defined as

lim
r→0

∫
N(x,r)

fdµ∫
N(x,r)

dµ
.

The Lebesgue Differentiation Theorem (Stein and Shakarchi, 2005, Chapter 3, Theorem 1.3), states

the derivative of integral exists and is equal to f at almost every point x ∈ Rn.

Theorem 1.7.1. If f is integrable on Rn, then

lim
r→0

∫
N(x,r)

fdµ∫
N(x,r)

dµ
= f(x) for almost every x.

1.7.3 Uniform integrability

The well known dominated convergence theorem shows that if a sequence of functions {fi} on

Ω converge to f a.e. and are dominated by an integrable function g, then f is integrable and {fi}

converges to f in L1, that is
∫
Ω
|fi − f |dµΩ → 0

Sometimes a dominating function is hard to find, and uniform integrability of {fn} yields the

same convergence result. First, we shall give the definition of uniform integrability.

Definition 1.7.2 (Uniform integrability). Let (Ω,BΩ, µΩ) be a measure space. A set Φ ⊂ L1(Ω)

is called uniformly integrable if to each ε > 0 there corresponds a δ > 0 such that

∫
E

|f |dµΩ < ε

whenever f ∈ Φ and µΩ(E) < δ.

Next theorem from Rudin (1987, Chapter 6, Problem 10) states the desired convergence is

implied from uniform integrability.
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Theorem 1.7.3 (Vitali convergence theorem). If µΩ(Ω) < ∞, and {fi} be a sequence that is

uniformly integrable and fi → f a.e., and f <∞ a.e., then f ∈ L1(Ω) and
∫
Ω
|fi − f |dµΩ → 0.

1.8 Some notation
In this section we define some notation used throughout this dissertation.

Let X be a metric space with metric d. For a point x0 ∈ X , we denote an open ball centered at

x0 as N(x0, r) = {x : d(x, x0) < r, x ∈ X}. When the radius is not important, we may just use

N(x0) to refer to an open ball centered at x0.

For A ⊂ X , we define the interior of A to be the set

int(A) = {x ∈ A|exists W (x, rx) ⊂ A, rx > 0}

We define the closure of A to be the set

A = {x ∈ X|x = lim
i→∞

ai,with {ai}∞i=1 ⊂ A}.

It can be proved that int(A) is open and A is closed, and int(A) ⊂ A ⊂ A. The boundary of A is

usually defined as ∂A = A \ int(A).

The symmetric difference between two sets A and B is denoted by4,

A4B = (A \B)
⋃

(B \ A).

1.9 Goal of this dissertation
While the previous formulation of the SIP is directly based on the space of equivalent class L,

formulated and analyzed as computations in Λ, there is an isomorphism between L and D, and the

Borel σ−algebra and probability on L are all induced by their counterparts on D, we may restate

the results in Butler et al. (2014) in terms of D. Furthermore, the available data and sample points
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with respect to which computations are carried out are all on D rather than on L. So it is entirely

possible and natural to reformulate the SIP with respect to D.

The formulation with respect to D enables us to address many questions include the relation

between µL and PL; and the specification of density ρN(·; `) on each generalized contour under

the Uniform Ansatz.

Our work in this dissertation begins with a significant reformulation of the SIP in terms of

D. Although our formulation does not directly involve L, we address similar questions in the

disintegration with respect to D, and use them as a starting point to give a precise form of the

solution to the SIP. We also propose a modified version of algorithm and show its convergence

under some mild conditions.

We refer to the SIP with respect to Q : Λ→ D where Λ ⊂ Rn as “SIP with finite dimensional

domain”, or “finite dimensional SIP”. The second part of our work concerns the extension to the

SIP for which the domain Λ is [0, 1]∞ endowed with metric d. Motivation for this extension comes

from applications where functions rather than finite dimensional vectors are potential inputs to

the mathematical model Q. Accordingly, this extension is called “SIP with infinite dimensional

domain”, or “infinite dimensional SIP”. We discuss the existence of solution, and its theoretical

and numerical approximations. Lastly, we present a numerical example for the infinite dimensional

SIP.

The last part is a review of other popular approaches of inverse problems where the probability

distributions of physical parameters are of interest. While the SIP starts with a given probabil-

ity distribution, it needs to be coupled with statistical methods to solve any practical problems

where only data are available. The introduction of SIP coupled with statistical models shows new

perspective on the SIP and suggests new research directions.
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Chapter 2

Reformulation of the SIP in terms of computations

on the range

In this chapter, we present a comprehensive reformulation of the SIP in terms of the range. The

problem setup resembles the problem setup in Butler et al. (2014). We let Q : Λ → D be a C1

function, where Λ ⊂ Rn is compact andD ⊂ Rm andm ≤ n. We assumeD = Q(Λ), however we

sometimes expand D to a slightly bigger open set. It is easy to infer which case D belongs to from

the context. We assume JQ is full rank on Λ. The results can be generalized to the case that JQ is

full rank except for a finite union of n − 1-dimensional manifolds in Λ, by union or summation.

This condition is called geometrically distinct of component maps in Butler et al. (2014). When

n > m, Q : intΛ→ Q(intΛ) is a submersion and when n = m, it is a diffeomorphism.

To impose probability structures on Λ and D, we let Λ and D inherit the Borel σ−algebra and

Lebesgue measures from measure spaces (Rn,BRn , µRn) and (Rm,BRm , µRm) respectively, and

denote the measure spaces as (Λ,BΛ, µΛ) and (D,BD, µD). When we say a measure is defined on

a space without specifying its σ-algebra, we implicitly take the σ-algebra to be the default Borel

σ-algebra.

For Q : Λ→ D where D = Q(Λ), we define the set function Q−1 as

Q−1(B) = {λ : λ ∈ Λ, Q(λ) ∈ B},

for B ⊂ D. When D is a larger set, we generalize Q−1 by letting Q−1(B) = ∅, for B ⊂

D, B ∩Q(Λ) = ∅, then Q−1(B) = Q−1(B ∩Q(Λ)) for B ⊂ D in general. We write Q−1(y) for

Q−1({y}) for simplicity.

In later sections, Q is assumed to be defined on a larger set UΛ containing Λ, making it a func-

tion Q : UΛ → D, where Q(UΛ) ⊂ D. Then Q−1 should be defined in terms of UΛ accordingly,
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that is

Q−1(B) = {λ : λ ∈ UΛ, Q(λ) ∈ B},

for B ⊂ D.

For Q : UΛ → D, we use Q−1(B) ∩Λ to denote the preimage restricted to Λ.

We define the induced measure µ̃D on D by µ̃D(A) = µΛ(Q−1(A)) for A ∈ BD, and denote it

as µ̃D = QµΛ. This notation also applies to other induced measures.

We begin the formulation in Section 2.1 by showing that µ̃D is dominated by µD with density

of a given expression. In Section 2.2, we apply the Disintegration Theorem to µΛ and PΛ, and by

utilizing the relation between µ̃D and µD and a more precise definition of the Uniform Ansatz, we

define a unique density as solution of the SIP. In Section 2.3, we present an simple example. In

Section 2.4, we discuss conditions that guarantee the continuity of the solution density of the SIP.

2.1 Relationship between the Lebesgue measures on the do-

main and the range of Q
The goal of the SIP for Q is to define and calculate a probability measure PΛ on Λ for a given

probability measure PD on D, such that PD = QPΛ. It is usually assumed that PD is dominated

by µD. Under this assumption, whether the solution probability measure PΛ is dominated by µΛ is

closely related to the relationship between µ̃D = QµΛ and Lebesgue measure µD.

In next theorem, we prove µ̃D is absolutely continuous with respect to µD, with the density

being an integration over each manifold Q−1(y). This result is the cornerstone of the theory of the

SIP.

Theorem 2.1.1. Let Q : Λ → D be a C1 function, where Λ ⊂ Rn is compact with codomain

D ⊂ Rm where m ≤ n, and the Jacobian JQ is full rank. Let µΛ and µD be the Lebesgue

measures on Λ and D. Let µ̃D = QµΛ, then dµ̃D = ρ̃D(y)dµD, where

ρ̃D(y) =

∫
Q−1(y)

1√
det(JQJTQ)

ds.
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Note this formula also applies for y ∈ D \Q(Λ), for which ρ̃D(y) = 0 and Q−1(y) = ∅.

Proof. We prove that for any generalized rectangle [a, b] ⊂ Rm, b > a,

µ̃D([a, b]) =

∫
[a,b]

∫
Q−1(y)

1√
det(JQJTQ)

dsdµD(y).

The general result follows from the Caratheodory Extension Theorem and the fact that family of

sets {[a, b]} is a semi-algebra.

Since JQ is full rank for every λ ∈ Q−1([a, b]), there arem indices i1, i2, . . . , im ∈ {1, 2, . . . ,m}

such that J (m)
Q =

(
J

(i1)
Q , J

(i2)
Q , . . . , J

(im)
Q

)
is invertible at λ, where J iQ = ith column of JQ. Since

JQ is continuous, there is an open ball N(λ, r) of radius r centered at λ, such that JmQ is invertible

in N(λ, r) ∩Q−1([a, b]).

Q−1([a, b]) is a closed subset of Λ so it is also compact. From {N(λ, r)}, we choose a collec-

tion Uj with center points λ1, . . . , λJ , such that Q−1([a, b]) ⊂
⋃J
j=1 Uj . Further we let U1 ← U1,

Uj ← Uj \ (
⋃j−1
k=1 Uk) for j > 1 so that Uj are disjoint open sets whose union is Λ except for a

negligible set.

In any Uj ∩ Q−1([a, b]), we have (λ) ∼ (λ(mj); λ̂(mj)) of which λ(mj) are m entries of λ

for which the Jacobian J (mj)
Q is invertible, and λ̂(mj) the remaining n − m entries with Jacobian

Ĵ
(mj)
Q . Define πj : Rn → Rn−m as πj(λ) = λ̂(mj). Then define Vj = {(Q(λ), πj(λ));λ ∈

Uj ∩Q−1([a, b])}, and for any y ∈ [a, b], define Vjy = {πj(λ);λ ∈ Q−1(y) ∩ Uj}. For now, we fix

j and drop superscript. When we consider all Uj ∩Q−1([a, b]) we rewrite superscript j.

Vj is diffeomorphic to Uj ∩Q−1([a, b]) with:

dλ(m)dλ̂(m) =
∣∣∣det(J

(m)
Q )−1

∣∣∣ dydλ̂(m).

Fixing y, in each Uj , by the implicit function theorem, λ(m) = f(λ̂(m)), with the Jf =

(J
(m)
Q )−1Ĵ

(m)
Q , so the volume form of manifold Q−1(y) ∩ Uj has the local representation as
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ds =

√
det((J

(m)
Q )−1Ĵ

(m)
Q , I)((J

(m)
Q )−1Ĵ

(m)
Q , I)Tdλ̂(m)

=

√
det((J

(m)
Q )−1Ĵ

(m)
Q Ĵ

(m)T
Q (J

(m)
Q )−T + I)dλ̂(m)

= k(λ)dλ̂(m),

where

k(λ) =

√
det((J

(m)
Q )−1(Ĵ

(m)
Q Ĵ

(m)T
Q + J

(m)
Q J

(m)T
Q )(J

(m)
Q )−T )

=
√

det(JQJTQ)
∣∣∣det(J

(m)
Q )−1

∣∣∣ .
Therefore

µ̃D([a, b]) = µΛ(Q−1([a, b])) =
J∑
j=1

µΛ(Uj ∩Q−1([a, b]))

=
J∑
j=1

∫
Uj∩Q−1([a,b])

dλ
(mj)
i dλ̂

(mj)
i

=
J∑
j=1

∫
Vj

∣∣∣det(J
(mj)
Q )−1

∣∣∣ dydλ̂(mj)
i

=

∫
[a,b]

dy
J∑
j=1

∫
Vjy

∣∣∣det(J
(mj)
Q )−1

∣∣∣ dλ̂(m)
i

=

∫
[a,b]

dy
J∑
j=1

∫
Vjy

∣∣∣det(J
(mj)
Q )−1

∣∣∣
kj(λ)

kj(λ)dλ̂
(m)
i

=

∫
[a,b]

dy
J∑
j=1

∫
Vjy

1√
det(JQJTQ)

ds

=

∫
[a,b]

∫
Q−1(y)

1√
det(JQJTQ)

dsdµD(y).

The expression for ρ̃D(y) shows it does not depend on the parameterization of the generalized

contour.
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We know that ρ̃D(y) = 0 when y /∈ Q(Λ). We want to find conditions that guarantee ρ̃D(y) >

0.

Theorem 2.1.2. For y ∈ D, such that Q−1(y) ∩ intΛ 6= ∅, ρ̃D(y) > 0.

Proof. If y ∈ D, and Q−1(y) ∩ intΛ 6= ∅, there exists λ ∈ intΛ such that Q(λ) = y. So there

exists a neighborhood of λ, N(λ), with N(λ) ⊂ intΛ. Q−1(y)∩N(λ) is diffeomorphic to an open

set in Rn−m. As a result,

ρ̃D(y) >

∫
Q−1(y)∩N(λ)

1√
det(JQJTQ)

ds > 0.

Theorem 2.1.3. If µD (Q(Λ) \Q(intΛ)) = 0, {y : y ∈ Q(Λ), ρ̃D(y) = 0} is a µD-null set.

Proof. The results follows from the previous theorem that {y : y ∈ Q(Λ), ρ̃D(y) = 0} ⊂ Q(Λ) \

Q(intΛ).

Theorem 2.1.3 shows that when µD (Q(Λ) \Q(intΛ)) = 0, µ̃D is dominated by µD on Q(Λ),

hence

1

ρ̃D(y)
dµ̃D = dµD.

In this case, we say ρ̃D and ρD are equivalent on Q(Λ).

2.2 The Solution of the SIP
We assume that PD is dominated by µD, i.e. dPD = ρDdµD. This assumption allows any

theoretic result regarding µD to be carried over to PD.

In Butler et al. (2014), a connection between PL and PΛ is established by identifying the

isomorphism between (L,BL, PL) and (D,BD, PD) and using Disintegration Theorem 1.3.2. Al-

ternatively, we use Theorem 1.4.1 to perform disintegration for the measure on Λ and its induced
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measure on D, including PD = QPΛ and µD = QµΛ. For A ∈ BΛ,

PΛ(A) =

∫
Q(A)

PN(A; y)dPD(y),

where {PN(·; y)} is a family of probability measures on Λ concentrated on Q−1(y), that is unique

for PD-almost all y. Consider the disintegration of Lebesgue measure

µΛ(A) =

∫
Q(A)

µN(A; y)dµ̃D(y),

where {µN(·; y)} is a probability measure on Λ concentrated on Q−1(y), that is unique for µ̃D-

almost all y.

In light of the two disintegrations, the relation between the unknown PΛ and known µΛ depends

on the relation between {PN(·; y)} and {µN(·; y)}. Such relation can not be inferred from the

problem itself and must be specified beforehand, and any choice of such relation is called an

ansatz with respect to µΛ. As in Butler et al. (2014), in the absense of other knowledge, we

assume PN(·; y) ≡ µN(·; y) for µ̃D-almost all y. The above identity holds because {PN(·; y)} and

{µN(·; y)} are all probability measures by Theorem 1.4.1.

Definition 2.2.1 (Uniform Ansatz). Disintegration of unknown PΛ incurs a family of unknown

conditional probability distributions {PN(·; y)} that is unique for PD-almost all y, and the disinte-

gration of the Lebesgue measure µΛ generates a family of {µN(·; y)} that is unique for µ̃D-almost

all y. We refer to the assumption PN(·; y) ≡ µN(·; y) as the uniform ansatz of PΛ with respect to

µΛ.

Theorem 2.2.2. Let Q : Λ → D be a measurable function from the measure space (Λ,BΛ, µΛ)

to (D,BD, µD), and µ̃D = QµΛ. Assuming dµ̃D = ρ̃D(y)dµD and ρ̃D(y) > 0, for µD-almost all

y. Given a probability measure PD on D as dPD = ρD(y)dµD for µD-almost all y. There is a

probability measure PΛ on Λ satisfying;

1. QPΛ = PD;
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2. the Uniform Ansatz with respect to Lebesgue measure µΛ.

PΛ is uniquely determined as dPΛ = ρΛ(λ)dµΛ up to an µΛ−almost a.e. sense, with

ρΛ(λ) =
ρD(Q(λ))

ρ̃D(Q(λ))
.

Proof. By the Disintegration Theorem 1.4.1, for A ∈ BΛ, if a solution PΛ exists, it satisfies

PΛ(A) =

∫
Q(A)

∫
Q−1(y)∩A

dPN(λ; y)dPD(y).

where {PN(·; y)} is uniquely determined up to PD-almost all y. By assumption, PD has a density

ρD with respect to µD. For Lebesgue measure µΛ, we have

µΛ(A) =

∫
Q(A)

∫
Q−1(y)∩A

dµN(λ; y)dµ̃D(y),

where {µN(·; y)} is uniquely determined up to µ̃D-almost all y. The Uniform Ansatz implies

dPN(λ; y) = dµN(λ; y), and Theorem 2.1.1 and Corollary 2.1.2 shows
1

ρ̃D(y)
dµ̃D(y) = dµD(y),

both in a µ̃D-a.e. sense (since µ̃D and µD dominate each other, µ̃D-a.e. is equivalent to µD-a.e.).

Combining the disintegration of µΛ, the Uniform Ansatz and the expression for PD, we have

PΛ(A) =

∫
Q(A)

∫
Q−1(y)∩A

dPN(λ; y)dPD(y)

=

∫
Q(A)

∫
Q−1(y)∩A

dPN(λ; y)ρD(y)dµD(y)

=

∫
Q(A)

∫
Q−1(y)∩A

dµN(λ; y)ρD(y)
1

ρ̃D(y)
dµ̃D(y)

=

∫
Q(A)

∫
Q−1(y)∩A

ρD(Q(λ))
1

ρ̃D(Q(λ))
dµN(λ; y)dµ̃D(y)

=

∫
A

ρD(Q(λ))

ρ̃D(Q(λ))
dµΛ.

The density
ρD(Q(λ))

ρ̃D(Q(λ))
is unique in a µΛ−a.e. sense, though it may take different values on a

subset of Q−1(A) where µΛ(Q−1(A)) = µ̃D(A) = 0.
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One implication of the Uniform Ansatz is that ρΛ(λ) depends on Q(λ), or ρΛ is same on

Q−1(y). In fact, this gives another characterization of the Uniform Ansatz without directly invok-

ing the Disintegration Theorem.

Definition 2.2.3 (Uniform Ansatz 2). Suppose the conditions in Theorem 2.2.2 hold. For the

unknown PΛ such that PD = QPΛ, requiring dPΛ = ρΛdµΛ and ρΛ(λ1) = ρΛ(λ2) for all λ1, λ2 ∈

Λ such that Q(λ1) = Q(λ2) uniquely determines ρΛ up to a µΛ-a.e. sense. Such requirement is

referred to as the Uniform Ansatz of PΛ with respect to µΛ.

Proof. Suppose ρΛ exists so that dPΛ = ρΛdµΛ and ρΛ(λ1) = ρΛ(λ2) for all λ1, λ2 ∈ Λ such

that Q(λ1) = Q(λ2). Define ρ̂D so ρ̂D(y) = ρΛ(λ) for any λ ∈ Q−1(y). Conversely, ρΛ(λ) =

ρ̂D(Q(λ)). Then for A ∈ BD,

PD(A) = PΛ(Q−1(A)) =

∫
Q−1(A)

ρΛ(λ)dµΛ =

∫
A

ρ̂D(y)dµ̃D =

∫
A

ρ̂D(y)ρ̃D(y)dµD

At the same time,

PD(A) =

∫
A

ρD(y)dµD.

As a result, ρ̂D(y)ρ̃D(y) = ρD(y), and we get

ρ̂D(y) =
ρD(y)

ρ̃D(y)
.

So

ρΛ(λ) = ρ̂D(Q(λ)) =
ρD(Q(λ))

ρ̃D(Q(λ))
.

The density ρΛ is uniquely defined up to an µΛ-a.e. sense because it is allowed to take different

values on a subset of Q−1(A) where µΛ(Q−1(A)) = µ̃D(A) = 0.

The contour Q−1(y) may shrink to a point when y goes to the boundary of D. Since ρ̃D(y) =∫
Q−1(y)

1√
det(JQJTQ)

ds, ρ̃D converges to 0 when Q−1(y) shrinks to a point. In such case, if ρD

does not goes to 0 at a same rate as ρ̃D near the boundary of D, ρΛ may go to infinity at the
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corresponding generalized contours Q−1(y). But such phenomenon is not a cause of concern, as

ρΛ still integrates to 1, and it occurs because some arbitrary ρD is imposed on D. Should PD be

generated by some P ′Λ of which the density is finite, the solution density ρΛ of the solution PΛ

under the Uniform Ansatz with respect to µΛ does not go to infinity at the boundary.

Although the results we have shown are expressed in terms of µΛ, especially the Uniform

Ansatz, which is specifically stated with respect to µΛ, one can easily replace µΛ with another

measure µ′Λ that are equivalent to µΛ and adapt the key steps in the above formulation to construct

a solution with respect to µ′Λ.

2.3 Example
We consider a simple example, with Λ = {λ = (λ1, λ2) : λ2

1 + λ2
2 ≤ 1} and map Q : Λ →

D, (λ1, λ2) = λ1 + 2λ2.

Using Lagrange multipliers, we find that Q(λ1, λ2) achieves minimum and maximum at points

(−
√

5
5
,−2

√
5

5
) and (

√
5

5
, 2
√

5
5

) respectively. Since Λ is connected, the range D = Q(Λ) is also

connected, and D = [−
√

5,
√

5].

We want to check dµ̃D(y) = ρ̃D(y)dµD(y), where

ρ̃D(y) =

∫
Q−1(y)

1√
(JQJTQ)

ds.

Let y1 = y = λ1 + 2λ2, y2 = λ1, and let λ = (λ(1), λ̂(1)), where λ(1) = λ2, λ̂(1) = λ1. Then,

JQ = (J
(1)
Q , Ĵ

(1)
Q ), where J (1)

Q =
∂Q

∂λ2

, Ĵ (1)
Q =

∂Q

∂λ1

, so

∣∣∣∣∂(λ1, λ2)

∂(y1, y2)

∣∣∣∣ =

∣∣∣∣∣∣∣det

∂λ1
∂y1

∂λ1
∂y2

∂λ2
∂y1

∂λ2
∂y2


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣det

 ∂y1
∂λ1

∂y1
∂λ2

∂y2
∂λ1

∂y2
∂λ2


∣∣∣∣∣∣∣
−1

=

∣∣∣∣∣∣∣det

 ∂Q
∂λ1

∂Q
∂λ2

1 0


∣∣∣∣∣∣∣
−1

=
1∣∣∣ ∂Q∂λ2 ∣∣∣ =

1∣∣∣J (1)
Q

∣∣∣ ,
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thus dλ1dλ2 =
1∣∣∣ ∂Q∂λ2 ∣∣∣dydλ1. We define π1 : R2 → R as π1((λ1, λ2)) = λ1, then for [a, b] ⊂ D. We

define V = {(Q(λ), π1(λ)) : λ ∈ Q−1([a, b])}, and Vy = {π1(λ) : λ ∈ Q−1(y)}. This gives

µ̃D([a, b]) = µΛ(Q−1([a, b])) =

∫
Q−1([a,b])

dλ1dλ2

=

∫
V

1∣∣∣ ∂Q∂λ2 ∣∣∣
∣∣∣∣ (λ1,

y − λ1

2

)
dydλ1

=

∫
[a,b]

dy

∫
Vy

1∣∣∣ ∂Q∂λ2 ∣∣∣
∣∣∣∣ (λ1,

y − λ1

2

)
dλ1.

For a given y, the Implicit Function Theorem implies that
dλ2

dλ1

= −
∂Q
∂λ1
∂y
∂λ2

, thus ds =
√
dλ2

1 + dλ2
2 =√√√√1 +

∂Q
∂λ1

2

∂Q
∂λ2

2

∣∣∣∣(λ1,
y−λ1

2
)dλ1. Then,

∫
[a,b]

dy

∫
Vy

1∣∣∣ ∂Q∂λ2 ∣∣∣
∣∣∣∣(λ1,

y − λ1

2
)dλ1 =

∫
[a,b]

dy

∫
Q−1(y)

1∣∣∣ ∂Q∂λ2 ∣∣∣
1√√√√1 +

∂Q
∂λ1

2

∂Q
∂λ2

2

ds

=

∫
[a,b]

dy

∫
Q−1(y)

1√
∂Q
∂λ2

2
+ ∂Q

∂λ1

2
ds.

Since
√

(JQJTQ) = ∂Q
∂λ2

2
+ ∂Q

∂λ1

2
, Theorem 2.1.1 holds.

For this problem, we compute ρ̃D(y) in practice, using a parameterization of Q−1(y) with

respect to λ1 or λ2. This amounts to computing
∫
π1Q−1(y)

1∣∣∣ ∂Q∂λ2 ∣∣∣dλ1 or
∫
π2Q−1(y)

1∣∣∣ ∂Q∂λ1 ∣∣∣dλ2 instead of∫
Q−1(y)

1√
∂Q
∂λ2

2
+ ∂Q
∂λ1

2
ds.

We choose to compute ρ̃D(y) for a given y using parameterization with respect to λ1. First, we

find boundaries of π1 (Q−1(y)) by 
λ2

1 + λ2
2 = 1,

λ1 + 2λ2 = y.
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The solution is λ1 =
y ± 2

√
5− y2

5
, so π1 (Q−1(y)) =

[
y − 2

√
5− y2

5
,
y + 2

√
5− y2

5

]
. There-

fore,

ρ̃D(y) =

∫
π1Q−1(y)

1∣∣∣ ∂Q∂λ2 ∣∣∣
∣∣∣∣(λ1,

y − λ1

2
)dλ1

=

∫
[
y−2
√

5−y2
5

, y+2
√

5−y2
5

] 1

2
dλ1 =

2
√

5− y2

5
.

As shown in Figure 2.1, here the ρ̃D has a simple interpretation: the area under the graph of ρ̃D

on the right side and the area of the region between two corresponding generalized contours on the

circle on the left side are the same.

Figure 2.1: A simple example for computing ρ̃D.

If PD is a probability measure on D, with dPD(y) = ρD(y)dµD, and we assume there is a

probability distribution PΛ on Λ with 2 conditions:

1. QPΛ = PD,

2. the Uniform Ansatz with respect to µΛ,

then PΛ is has the form

dPΛ(λ1, λ2) =
ρD(Q(λ1, λ2))

ρ̃D(Q(λ1, λ2))
dµΛ.
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Here, we define ρΛ(λ1, λ2) =
ρD(Q(λ1, λ2))

ρ̃D(Q(λ1, λ2))
.

Suppose we assume a uniform distribution on D, then dPD(y) = 1
2
√

5
dµD(y). We have,

ρΛ(λ1, λ2) =

1

2
√

5

2
√

5− (λ1 + 2λ2)2

5

=

√
5

4
√

5− (λ1 + 2λ2)2
.

Note that when (λ1, λ2) → (−
√

5
5
,−2

√
5

5
), (

√
5

5
, 2
√

5
5

), ρΛ(λ1, λ2) → ∞, since Q−1(
√
−5) (or

Q−1(
√

5)) degenerates to a point.

We check ρΛ(λ1, λ2) is indeed a probability distribution by

∫
Λ

√
5

4
√

5− (λ1 + 2λ2)2
dλ1dλ2 =

∫
(−
√

5,
√

5)

∫
[
y−2
√

5−y2
5

, y+2
√

5−y2
5

]
√

5

4
√

5− y2

1

2
dλ1dy

=

∫
(−
√

5,
√

5)

√
5

4
√

5− y2

4

5

√
5− y2

1

2
dy

=

∫
(−
√

5,
√

5)

1

2
√

5
dy = 1.

2.4 Continuity of the density
In practice, we often assume ρD is continuous a.e.. It is also desirable for the solution density

of the SIP to be continuous a.e. as well. By the formula

ρΛ(λ) =
ρD(Q(λ))

ρ̃D(Q(λ))
,

this holds if ρ̃D is also continuous a.e..

In this section, we explore sufficient conditions that guarantee that ρ̃D is continuous. This

investigation also gives insights into the understanding of the geometry in the SIP, and provides

a sufficient condition for convergence of a numerical algorithm approximating the solution of the

SIP.
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We proved ρ̃D(y) =
∫
Q−1(y)

1√
det(JQJTQ)

ds in Theorem 2.1.1. Since Q is C1, JQ is continu-

ous and consequently
1√

det(JQJTQ)
is continuous. A formal definition of “continuity” of the set

Q−1(y) is difficult. At least it should satisfy

sup
λ′∈Q−1(y′)

d(λ′, Q−1(y))→ 0 as y′ → y. (2.1)

Whether (2.1) holds depends on how the boundary of Q−1(y) changes as y changes, which in turn

depends on how Q−1(y) interacts with ∂Λ.

To characterize the intersection of Q−1(y) and ∂Λ, we assume that Q is defined on an open set

UΛ containing Λ and ∂Λ is locally determined by B(λ) = 0, where B is a C1 function defined

on UΛ. We exclude the case that the boundary has redundant part by assuming Λ = intΛ. Then

for each piece of ∂Λ, intΛ lies on one side of ∂Λ, so intΛ is locally determined by B(λ) < 0 or

B(λ) > 0. For the generalized contourQ−1(y) inUΛ, the boundary ofQ−1(y) in Λ isQ−1(y)∩∂Λ,

which is determined by the augmented system:

 Q(λ)− y = 0,

B(λ) = 0.

While the domain of Q is enlarged to UΛ, we still define µ̃D with respect to Λ, that is

µ̃D(B) = µΛ(Q−1(B) ∩Λ),

for B ⊂ D. Abusing the notation, we still denote it as µ̃D = QµΛ. The next theorem gives

a sufficient condition for ρ̃D(y) to be continuous at point y, namely the intersection of ∂Λ and

Q−1(y) is nondegenerate, i.e. the Jacobian of the augmented system

JQ
JB

 is full rank.

Theorem 2.4.1. Let Q : UΛ → Rm be a C1 map, where UΛ is an open set in Rn. Define ρ̃D with

respect to the compact set Λ ⊂ UΛ, so
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ρ̃D(y) =

∫
Q−1(y)∩Λ

1√
(JQJTQ)

ds. (2.2)

Suppose ∂Λ is locally determined by B(λ) = 0, where B : UΛ → Rm is a piecewise C1 map.

Given y0, if

1. There exists {i1, . . . , im} ⊂ {1, . . . , n} such that J (m)
Q =

(
J

(i1)
Q , J

(i2)
Q , . . . , J

(im)
Q

)
is full rank

on Q−1(y0),

2.

JQ
JB

 is full rank on ∂Λ ∩Q−1(y0).

Then ρ̃D(y) is continuous in a neighborhood of y0.

Proof. Without loss of generality, we assume i1, . . . , im = 1, . . . ,m. Let λ(m) = (λ1, . . . , λm),

λ̂(m) = (λm+1, . . . , λn), then λ can be formally written as λ ∼ (λ(m), λ̂(m)). Define πm̂ : Rn →

Rn−m as πm̂(λ) = λ̂(m).

For a λ0 ∈ Λ ∩ Q−1(y0), since J (m)
Q (λ0) is full rank, the Implicit Function Theorem 1.5.1

implies that Q(λ)− y = 0 determines a unique continuous function h : N(λ̂
(m)
0 , r)×N(y0, r)→

N(λ
(m)
0 , r). Without loss of generality we assume h is defined on N(λ̂

(m)
0 , r)×N(y0, r). Since the

collection {N(λ̂(m), r)×N(λ(m), r)} covers the compact set Λ∩Q−1(y0), there is a finite subcover

{N(λ̂
(m)
k , rk) × N(λ

(m)
k , rk)}, k = 1, . . . , K. Let r0 = minKk=1 rk. There is a unique continuous

function h :
(⋃K

k=1N(λ̂
(m)
k , rk)

)
×N(y0, r0)→

⋃K
k=1 N(λ

(m)
k , rk). We have

ρ̃D(y0) =

∫
πm̂(Λ∩Q−1(y0))

1∣∣∣J (m)
Q (h(λ̂(m), y0), λ̂(m))

∣∣∣dλ̂(m).

Since J (m)
Q (λ) is a continuous function,

1∣∣∣J (m)
Q (h(λ̂(m), y), λ̂(m))

∣∣∣
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is continuous on a compact domain
(⋃K

k=1N(λ̂
(m)
k , rk)

)
×N(y0, r0), which means it is uniformly

continuous and bounded. Let S > 0 be bound, thus

1∣∣∣J (m)
Q (h(λ̂(m), y), λ̂(m))

∣∣∣ < S.

Since ∂Λ is piecewise smooth, for almost all λ0 ∈ ∂Λ, there exists r such that B : N(λ0, r)→

R is a C1 map and determines ∂Λ ∩N(λ0, r) by B(λ) = 0.

Take one such point λ0 ∈ ∂Λ∩Q−1(y0), then there exists N(λ0, r) such that ∂Λ∩Q−1(y0) is

determined by Q∗(λ) =

Q(λ)− y0

B(λ)

 = 0 with

JQ∗ =

JQ
JB

 =

J (m)
Q Ĵ

(m)
Q

J
(m)
B Ĵ

(m)
B


having full rank because of Condition 2. Since JQ∗(λ0) and J (m)

Q (λ0) are full rank, there exists

j ∈ m+ 1, . . . , n such that

J (m)
Q (Ĵ

(m)
Q )j

J
(m)
B (Ĵ

(m)
B )j

 (λ0)

is invertible.

Define λ(m+1) = (λ(m), λj), λ̂
(m+1) = λ̂(m) \ λj , where we write λ ∼ (λ(m+1), λ̂(m+1)). By the

Implicit Function Theorem 1.5.1, there exists a unique continuous function,

g : N(λ̂
(m+1)
0 , r′)×N(y0, r

′)→ N(λ
(m)
0 , r′)×N(λ0j, r

′),

which satisfies
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Q∗(g(λ̂(m+1), y), λ(m), λj) = 0.

Without loss of generality, we assume g is defined on N(λ̂
(m+1)
0 , r′)×N(y0, r′). By compactness

of the domain, g is uniformly continuous. The set {N(λ̂(m+1), r′)×N(λ(m), r′)×N(λj, r
′)} covers

∂Λ ∩Q−1(y) for y ∈ N(y0, r
′), and we assume r′ is sufficiently small so that

N(λ̂(m+1), r′)×N(λ(m), r′)×N(λj, r
′) ⊂

K⋃
k=1

(
N(λ̂

(m)
k , rk)×N(λ

(m)
k , rk)

)
.

Since ∂Λ∩Q−1(y0) is compact, a finite subcover {N(λ̂
(m+1)
` , r′`)×N(λ

(m)
` , r′`)×N(λ`j, r

′
`)}, ` =

1, . . . , L exists, and let r′0 = min{r′`, ` = 1, · · · , L; r0} then for any y ∈ N(y0, r
′
0), the sets also

cover ∂Λ ∩Q−1(y). So Condition 2 holds for all y ∈ N(y0, r
′
0). Thus

L⋃
`=1

(
N(λ̂

(m+1)
` , r′`)×N(λ

(m)
` , r′`)×N(λ`j, r

′
`)×N(y0, r

′
0)}
)

is covered by {N(λ̂
(m)
k , rk)×N(λ

(m)
k , rk)×N(y0, r0)}.

As a result, {N(λ̂
(m)
k , rk) × N(λ

(m)
k , rk)} covers Λ ∩ Q−1(y) for all y ∈ N(y0, r

′
0), thus we

have

ρ̃D(y) =

∫
πm̂(Λ∩Q−1(y))

1∣∣∣J (m)
Q (h(λ̂(m), y), λ̂(m))

∣∣∣dλ̂(m).

For y ∈ N(y0, r
′
0), let C = πm̂(Λ ∩Q−1(y0))4πm̂(Λ ∩Q−1(y)). Thus,

|ρ̃D(y0)− ρ̃D(y)| ≤
∫
πm̂(Λ∩Q−1(y0))

∣∣∣∣∣∣ 1∣∣∣J (m)
Q (h(λ̂(m), y0), λ̂(m))

∣∣∣ − 1∣∣∣J (m)
Q (h(λ̂(m), y), λ̂(m))

∣∣∣
∣∣∣∣∣∣ dλ̂(m)

+

∫
C

Sdλ̂(m)
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For the first term, uniform continuity implies that given ε, there exists rε < r′0 such that for y ∈

N(y0, rε), and λ̂(m) ∈
(⋃K

k=1 N(λ̂
(m)
k , rk)

)
,

∣∣∣∣∣∣ 1∣∣∣J (m)
Q (h(λ̂(m), y0), λ̂(m))

∣∣∣ − 1∣∣∣J (m)
Q (h(λ̂(m), y), λ̂(m))

∣∣∣
∣∣∣∣∣∣ < ε.

Thus,

∫
πm̂(Λ∩Q−1(y0))

∣∣∣∣∣∣ 1∣∣∣J (m)
Q (h(λ̂(m), y0), λ̂(m))

∣∣∣ − 1∣∣∣J (m)
Q (h(λ̂(m), y), λ̂(m))

∣∣∣
∣∣∣∣∣∣ dλ̂(m)

≤ µ̂(m)(πm̂(Λ ∩Q−1(y0)))ε

For the second term, we need µ̂(m)(B) to be small when y is close to y0.

Since {πm̂
(
N(λ̂

(m+1)
` , r′`)×N(λ

(m)
` , r′`)×N(λ`j, r

′
`)
)

= N(λ̂
(m+1)
` , r′`)×N(λ`j, r

′
`)} covers

πm̂(∂Λ ∩Q−1(y)) when y ∈ N(y0, r
′
0), then

µ̂(m)(B) = µ̂(m)(πm̂(Λ ∩Q−1(y0))4πm̂(Λ ∩Q−1(y)))

≤
L∑
`=1

µ̂(m)
((
πm̂
(
Λ ∩Q−1(y0)

)
4πm̂

(
Λ ∩Q−1(y)

))
∩
(
N(λ̂

(m+1)
` , r′`)×N(λ`j, r

′
`)
))

,

and

µ̂(m)
((
πm̂
(
Λ ∩Q−1(y0)

)
4πm̂

(
Λ ∩Q−1(y)

))
∩
(
N(λ̂

(m+1)
` , r′`)×N(λ`j, r

′
`)
))

≤
∫
N(λ̂

(m+1)
` ,r′`)

∣∣∣g(λ̂
(m+1)
` , y0)− g(λ̂

(m+1)
` , y)

∣∣∣ dλ̂(m+1).

By the uniform continuity of g, there exists an r′ε ≤ r′0 such that for all y ∈ N(y0, r
′
ε), µ̂(m)(B) < ε.

Finally, we have for all y ∈ N(y0, r), r = min(rε, r
′
ε),
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|ρ̃D(y0)− ρ̃D(y)| ≤
∫
πm̂(Λ∩Q−1(y0))

∣∣∣∣∣∣ 1∣∣∣J (m)
Q (h(λ̂(m), y0), λ̂(m))

∣∣∣ − 1∣∣∣J (m)
Q (h(λ̂(m), y), λ̂(m))

∣∣∣
∣∣∣∣∣∣ dλ̂(m)

+

∫
B

Sdλ̂(m)

≤µ̂(m)(πm̂(Λ ∩Q−1(y0)))ε+ Sε.

So ρ̃D(y) is continuous at y0. Furthermore, the two conditions hold for all y in N(y0, r
′
0), so ρ̃D(y)

is continuous in N(y0, r) as well.

In next theorem, we remove the requirement that Q−1(y0) is uniformly parameterized.

Theorem 2.4.2 (Continuity of ρ̃D). Let Q : UΛ → D be a C1 map, where UΛ is an open set in Rn,

and D is a subset of Rm. Suppose Λ is a compact subset of UΛ and JQ is full rank on Λ . Define

ρ̃D with respect to Λ, thus

ρ̃D(y) =

∫
Q−1(y)∩Λ

1√
(JQJTQ)

ds. (2.3)

Suppose ∂Λ is locally determined by B(λ) = 0, where B : UΛ → Rm is a piecewise C1 map.

Given y0, if

JQ
JB

 is full rank on ∂Λ ∩Q−1(y0) or ∂Λ ∩Q−1(y0) = ∅, ρ̃D(y) is continuous in a

neighborhood of y0.

Proof. For all λ ∈ Q−1(y0), there exists N(λ, r) such that there exists {i1, . . . , im} ⊂ {1, . . . , n}

with J (m)
Q =

(
J

(i1)
Q , J

(i2)
Q , . . . , J

(im)
Q

)
being full rank onQ−1(y0) inN(λ, r). Obviously, the bound-

ary ofN(λ, r)∩Λ, which is the union of part of ∂Λ and part of ∂N(λ, r) is piecewise smooth. Sup-

pose ∂ (N(λ, r) ∩Λ) is locally determined by B′(λ) = 0. When r is sufficiently small,

JQ
JB′


is full rank on ∂ (N(λ, r) ∩Λ) ∩ Q−1(y0) by continuity of JQ. The collection {N(λ, r)} admits

a finite sub cover {N(λk, rk)}, k = 1, . . . , K of Λ ∩ Q−1(y0). Taking r sufficiently small, the

collection covers Λ ∩Q−1(y), for y in N(y0, r). Define Nk = N(λk, rk) \
(⋃k−1

j=1 N(λj, rj)
)

, the
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boundary ofNk∩Λ is piecewise smooth. Suppose ∂ (Nk ∩Λ) is locally determined byBk(λ) = 0,

then,

 JQ

JBk

 is full rank on ∂ (Nk ∩Λ), and

ρ̃D(y) =

∫
Q−1(y)∩Λ

1√
det(JQJTQ)

ds =
K∑
k=1

∫
Q−1(y)∩(Nk∩Λ)

1√
det(JQJTQ)

ds.

So for all y ∈ N(y0, r),

|ρ̃D(y)− ρ̃(y0)| ≤
K∑
k=1

∣∣∣∣∣∣
∫
Q−1(y)∩(Nk∩Λ)

1√
det(JQJTQ)

ds−
∫
Q−1(y0)∩(Nk∩Λ)

1√
det(JQJTQ)

ds

∣∣∣∣∣∣
Theorem 2.4.1 implies that ρ̃D(y) is continuous at y0. Since

∫
Q−1(y)∩(Nk∩Λ)

1√
det(JQJTQ)

ds is

continuous in a neighborhood of y0 as Theorem 2.4.1 suggests, with finite K, ρ̃D(y) is continuous

in a neighborhood of y0.

Figure 2.2 shows when the generalized contour Q−1(y0) intersects with the boundary of Λ, or

it does not intersect with the boundary of Λ, y0 is a continuity points of ρ̃D.

Moreover, for y ∈ Q(Λ) satisfying conditions of this theorem, ρ̃D(y) > 0. This is trivially

true when ∂Λ ∩ Q−1(y) = ∅, since then intΛ ∩ Q−1(y) 6= ∅. When ∂Λ ∩ Q−1(y) 6= ∅, at the

intersection of Q(λ)− y = 0 and ∂Λ, the tangent space of Q(λ)− y = 0 intersects with both sides

of ∂Λ, so it must intersect with intΛ.

Now that we have the local results, we want to study the global properties of ρ̃D. Theorem

2.4.2 indicates that if ρ̃D is discontinuous at point y0 and ∂Λ ∩ Q−1(y) 6= ∅, then the JacobianJQ
JB

 is rank deficient on a subset of ∂Λ ∩ Q−1(y). Treating Q as a map from the manifold ∂Λ

to D, a point on ∂Λ such that

JQ
JB

 is rank deficient is a critical point for the map. The image of
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Figure 2.2: Examples of continuity points of ρ̃D.

critical point is called a critical value. Sard’s Theorem 1.6.13 states that the set of critical values

has measure zero when Q is sufficiently smooth.

Theorem 2.4.3. If Q is Cr map with r > n−m− 1, then the set of discontinuity points of ρ̃D has

measure zero.

Proof. The set of discontinuity points of ρ̃D is a subset of set of critical values of Q : ∂Λ → D.

Since ∂Λ is n − 1 dimensional piecewise smooth manifold, and D is an m-dimensional smooth

manifold. By Sard’s theorem 1.6.13, when r > (n− 1)−m = n−m− 1, the set of critical values

has measure zero. So the set of discontinuity points has measure zero.

Moreover, as conditions of Theorem 2.4.2 guarantee ρ̃D(y) > 0 for y ∈ Q(Λ), Theorem 2.4.3

guarantees ρ̃D is positive on Q(Λ) a.e. when Q is sufficiently smooth.
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Chapter 3

Numerical analysis for solution of the SIP

In this chapter, we discuss different aspects of numerical methods to solve the SIP. Our ultimate

goal is to show that the approximation computed by an algorithm modified from Algorithm 1

converge to the probability measure PΛ that solves the SIP under the Uniform Ansatz with respect

to µΛ.

This chapter is divided into five sections. In Section 3.1, we discuss the approximation of sets

by discretization of the sample space. In Section 3.2, we point out that any Lebesgue measurable

function is approximated by the ratio of the integral to the volumn of a set containing the point.

In Section 3.3, we give a modified version of Algorithm 1, namely Algorithm 2, and prove the

function generated by this algorithm converges to the solution of the SIP. In Section 3.4, we give

an example where Algorithm 2 fails, due to the failure of the boundary condition. Lastly, an error

analysis is conducted in Section 3.5.

For the first two sections, we let Ω be a compact subset of Rn, and BΩ be the Borel σ-algebra

and Lebesgue measure µΩ inherited from Rn. Notationally, we avoid using Λ or D because we

want to emphasize that the approximations in these two sections work for a general measure space,

not necessarily a space related to the SIP.

3.1 Approximation of sets
It is well known that for any Lebesgue measurable set A ⊂ Rn for which µ(A) < ∞, given

ε > 0, A can be approximated by a finite collection of disjoint rectangles {Rj}N1 in the sense that

µ(A4
⋃N

1 Rj) < ε (Folland, 2013).

Here we restrict attention to the task of approximating a set with negligible boundary. Our

goal of set approximation can be summarized as this: We want to define a process for generating

partitions on Ω ⊂ Rn, such that any set in A ∈ BΩ with µΩ(∂A) = 0 can be approximated by

element sets from the partition.
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Before we tackle this problem, we show the Voronoi tessellation generated from a Poisson

point process on Ω is one such partition generating process. The Voronoi tessellation {Vj}Nj=1 of

Ω corresponding to a sample
{
ω(j)
}N
j=1

is the partition with Voronoi cells defined to be

Vj =
{
ω ∈ Ω : dv(ω

(j), ω) ≤ dv(ω
(i), ω), for all i = 1, . . . , N

}
,

where dv(·, ·) is a metric on Ω.

The Voronoi coverage AN of A ∈ BΩ is defined as

AN =
⋃

ω(j)∈A,1≤j≤N

Vj.

In other words, we use the Voronoi cell center to decide which cells to include in the approximation.

We prove AN converges to A under certain conditions by a proof adapted from Khmaladze and

Toronjadze (2001, Lemma 2.1).

Lemma 3.1.1. Given a probability density f(ω) > 0 a.e. on Ω with respect to the Lebesgue

measure, if A ∈ BΩ such that µΩ(∂A) = 0, then

µΩ(AN4A)→ 0, a.s. N →∞.

Proof. Suppose A ∈ BΩ, µΩ(A) > 0 and µΩ(∂A) = 0. Let Aδ := (A+ δB(0, 1)) ∩Ω denote the

Minkowski sum ofA and δB(0, 1) restricted to domain Ω, whereB(0, 1) is the unit ball in Rn. Let

Aδ = ((Ac)δ)c. Since µΩ(∂A) = 0, for all ε > 0 there exists δ(ε) > 0 such that ∂A ⊂ Aδ(ε)\Aδ(ε)

and µΩ(Aδ(ε)\Aδ(ε)) < ε.

Let r(ω(j)) := maxω∈V(ω(j)) dv(ω, ω
(j)) and

rN := max
1≤j≤N

r(ω(j)) = max
ω∈Ω

min
1≤j≤N

dv(ω, ω
(j)).
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We prove that rN → 0 a.s.. For any h ∈ N, let Hh denote the finite set of hypercubes in Rn with

edge-length 1/h partitioning compact Ω. By strong law of large numbers,

max
H∈Hh

∣∣∣∣∣∣
∑N

j=1 1{ω(j)∈H}
N

−
∫
H

f(ω) dµΩ(ω)

∣∣∣∣∣∣→ 0 a.s. N →∞

and

min
H∈Hh

∫
H

f(ω) dµΩ(ω) > 0 for all h.

This implies that there must be at least one sample point ω(j) in eachHh a.s. whenN is sufficiently

large. Since ω ∈ Ω must fall into one of Hh, rN ≤
√
n/h. So for all ε, there exists N such that

Aδ(ε) ⊂ AN ⊂ Aδ(ε).

The key for the approximation is that rN , the upper bound of radius of the Voronoi tessellation

goes to 0 a.s.. Intuitively, this means the partition sets become small uniformly when N →∞.

Definition 3.1.2. A rule for defining sequences of samples
{
ω(j)
}N
j=1
⊂ Ω is BΩ-consistent if

rN := max
1≤j≤N

r(ω(j)) = max
1≤j≤N

max
ω∈V(ω(j))

dv(ω, ω
(j))→ 0 a.s., as N →∞.

Drawing i.i.d samples from probability distribution with f(ω) > 0 a.e. is a BΩ-consistent rule.

For any partition I = {Ii}Mi=1 of Ω, there does not necessarily exist a point ωi associated with

each set Ii as is true for the Voronoi tessellation based on a point process. In order to measure the

size of each element of the partition, we simply use

diam Ii = sup
ω1,ω2∈Ii

dv(ω1, ω2).

In Lemma 3.1.1, the properties of approximation rely on properties of the point process by

which the Voronoi tessellation is generated. In general, we consider a sequence of partition

{Im}∞m=1 = {{Ii}Mm
i=1 }∞m=1 that is not associated with point process. The sequence of partitions
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does not need to be nested. The only condition the sequence needs to satisfy is

lim
m→∞

max
1≤i≤Mm

diam Ii = 0.

The sequence of Voronoi tessellations generated by a sequence of samples from BΩ-consistent

rule satisfies the above condition a.s.. For a general partition I = {Ii}Mi=1, one can associate each

Ii with an arbitrary point ωi ∈ Ii, and define a set approximation of A as

AM =
⋃

ωi∈A,1≤i≤M

Ii.

We can prove the following theorem.

Theorem 3.1.3. Given a sequence of partitions {Im}∞m=1 = {{Ii}Mm
i=1 }∞m=1, with

lim
m→∞

max
1≤i≤Mm

diam Ii = 0,

if A ∈ BΩ satisfies µΩ(∂A) = 0, then

µΩ(AMm4A)→ 0, as m→∞.

3.2 Approximation of density
For an integrable non-negative function ρΩ defined on (Ω,BΩ, µΩ), given a partition I =

{Ii}Mi=1, we are interested in whether ρΩ can be approximated by

ρΩ,M(ω) =
M∑
i=1

pi1Ii(ω), pi =

∫
Ii
ρΩdµΩ∫
Ii
dµΩ

. (3.1)

Consider a sequence of partitions {Im}∞m=1 = {{Ii}Mm
i=1 }∞m=1, we want ρΩ,Mm(ω) → ρΩ(ω) if

certain conditions hold for {Im}∞m=1. We define
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Im(ω) =
⋃

ω∈Ii,1≤i≤Mm

Ii.

Theorem 3.2.1. If ω is an interior point of one and only one Ii from all Im, and diam(Im(ω))→ 0,

then ρΩ,Mm(ω)→ ρΩ(ω).

Proof. This follows from the Lebesgue Differentiation Theorem 1.7.1.

For a sequence of partitions {Im}∞m=1, if limm→∞max1≤i≤Mm diam(Ii) = 0, for any ω except

points on boundaries of partition sets
⋃∞
m=1

⋃Mm

i=1 ∂Ii, diam(Im(ω))→ 0.

Note that µΩ(
⋃Mm

i=1 ∂Ii) = 0 for any Im, µΩ(
⋃∞
m=1

⋃Mm

i=1 ∂Ii) = 0, which means the exception

set of Theorem 3.2.1 is negligible.

Combing all the above results yields the following theorem.

Theorem 3.2.2. For a sequence of partitions {Im}∞m=1 = {{Ii}Mm
i=1 }∞m=1 satisfying

lim
m→∞

max
1≤i≤Mm

diam(Ii) = 0,

ρΩ,Mm → ρΩ a.e. as m→∞.

When the density ρΩ is unbounded as is ρΛ in Section 2.3, it is hard to find a function dominat-

ing {ρΩ,M}. To facilitate discussions concerning convergence of measures, we show that {ρΩ,M}

are uniform integrable.

Theorem 3.2.3. {ρΩ,M} is a uniformly integrable collection.

Proof. For any ε > 0, there exists a t such that
∫
{ρΩ>t}

ρΩdµΩ < ε. Let δ :=
∫
{ρΩ>t}

dµΩ =

µΩ({ρΩ > t}).

Since ρΩ,M is a simple function, there is a t′ such that µΩ({ρΩ,M ≥ t′}) ≥ δ and µΩ({ρΩ,M >

t′}) < δ. Define EM := {ρΩ,M > t′} ∪ F , where F is any set satisfying F ⊂ {ρΩ,M = t′} and

µΩ(F ) = δ − µΩ({ρΩ,M > t′}). Then for all E ∈ BΩ such that µΩ(E) ≤ δ,

∫
E

ρΩ,MdµΩ ≤
∫
EM

ρΩ,MdµΩ =

∫
{ρΩ,M>t′}

ρΩ,MdµΩ + µΩ(F ) · t′. (3.2)
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By definition of ρΩ,M , we have

∫
{ρΩ,M>t′}

ρΩ,MdµΩ =

∫
{ρΩ,M>t′}

ρΩdµΩ,

∫
{ρΩ,M=t′}

ρΩdµΩ = µΩ({ρΩ,M = t′}) · t′.

So, there is an F ′ ⊂ {ρΩ,M = t′}, such that

∫
F ′
dµΩ = µΩ(F ),

∫
F ′
ρΩdµΩ ≥ µΩ(F ) · t′.

So (3.2) implies

∫
{ρΩ,M>t′}

ρΩ,MdµΩ + µΩ(F )t′ ≤
∫
{ρΩ,M>t′}

ρΩdµΩ +

∫
F ′
ρΩdµΩ.

Since µΩ({ρΩ,M > t′} ∪ F ′) = δ = µΩ({ρΩ > t}), we have

∫
{ρΩ,M>t′}

ρΩdµΩ +

∫
F ′
ρΩdµΩ ≤

∫
{ρΩ>t}

ρΩdµΩ < ε

�

3.3 Approximation to solution of the SIP
In this section, we prove the main theorem regarding approximation of PΛ(A) forA ∈ BΛ with

PΛ(∂A) = 0.

OnD and Λ, we generate partitions {Ii}Mi=1 and {bj}Nj=1 respectively. Let each bj be associated

with a point λj ∈ bj . Then µΛ(Q−1(Ii) ∩ bj) in Algorithm 1 is further approximated as µΛ(bj) or

0 depending on whether λj is inside Q−1(Ii) or not. Adapted from Algorithm 1, the algorithm we

consider is
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Algorithm 2: Approximation to inverse probability.

1 Generate approximating sets {Ii}Mi=1 of D

2 Generate approximating sets {bj}Nj=1 of Λ, associate every bj with a point λj ∈ bj

3 Fix and normalize the simple function approximation ρD,M =
∑M

i=1 pi1Ii(q)

4 Compute M ×N matrix V this way:

5 if Q(λj) ∈ Ii then

6 Vij = µΛ(bj)

7 else

8 Vij = 0

9 end

10 foreach j = 1, · · · , N do

11 Set P (bj) to
∑M

i=1 pi

(
Vij/

∑N
j=1 Vij

)
12 end

To analyze the convergence properties of this algorithm, we denote the computed P (bj) as

PΛ,M,N(bj), and use PΛ to denote the true probability measure. For A ∈ BΛ with PΛ(∂A) = 0,

define AN as

AN =
⋃

λj∈A,1≤j≤N

bj,

then use

PΛ,M,N(AN) =
∑

λj∈A,1≤j≤N

PΛ,M,N(bj)

as an approximation of PΛ(A). The next theorem shows that when {Ii}Mi=1 and {bj}Nj=1 both

become fine, PΛ,M,N(AN) converges to PΛ(A).

Theorem 3.3.1. Let Q : Λ → D be the map satisfying the conditions in Theorem 2.1.1, with the

additional requirement µΛ(∂Λ) = 0. Given a probability measure PD on D that is dominated

by µD. Let PΛ be the solution of the SIP under the Uniform Ansatz with respect to µΛ. For

event A ∈ BΛ with µΛ(∂A) = 0, there exists a sequence of approximations PΛ,Mm,Nn(ANn) using
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simple function approximations and requiring only calculations of volumes in Λ based on partition

sequence {Im}∞m=1 = {{Ii}Mm
i=1 }∞m=1 on D and {Tn}∞n=1 = {{bj}Nnj=1}∞n=1 on Λ that satisfies

lim
m→∞

lim
n→∞

PΛ,Mm,Nn(ANn) = PΛ(A),

if limm→∞max1≤i≤Mm diam(Ii) = 0 and limn→∞max1≤i≤Nn diam(bj) = 0.

Proof. Since µD and µ̃D are equivalent with dµ̃D = ρ̃DdµD, PD has a density ρ′D =
ρD
ρ̃D

with

respect to µ̃D. Given any partition I = {Ii}Mi=1 on D, we define the simple function

ρ′D,M =
M∑
i=1

p′i1(Ii)(y), p′i =
PD(Ii)

µ̃D(Ii)
=

∫
Ii

ρD
ρ̃D
dµ̃D∫

Ii
dµ̃D

, (3.3)

as an approximation of ρ̃D. We also define

ρΛ,M =
M∑
i=1

p′i1Q−1(Ii)(λ), p′i =
PD(Ii)

µΛ(Q−1(Ii))
=
PD(Ii)

µ̃D(Ii)
=

∫
Ii

ρD
ρ̃D
dµ̃D∫

Ii
dµ̃D

, (3.4)

as an approximation of ρΛ. By definition, ρΛ,M(λ) = ρ′D,M(Q(λ)). For a sequence of partitions

{Im}∞m=1 = {{Ii}Mm
i=1 }∞m=1, we write corresponding sequence of densities as {ρ′D,Mm

}∞m=1 and

{ρΛ,Mm}∞m=1. By Theorem 3.2.2, since limm→∞max1≤i≤Mm diam(Ii) = 0, ρ′D,Mm
converges to

ρ′D =
ρD
ρ̃D

, µ̃D-a.e., so ρΛ,Mm → ρΛ, µΛ-a.e., where ρΛ(λ) =
ρD(Q(λ))

ρ̃D(Q(λ))
is the solution to the SIP

under the Uniform Ansatz with respect to µΛ.

Given a partition I = {Ii}Mi=1 on D with its associated ρΛ,M , partition sequence {Tn}∞n=1 =

{{bj}Nnj=1}∞n=1 on Λ, we can associate each bj with a point λj ∈ bj , and construct

ρΛ,M,Nn =
Nn∑
j=1

pj1bj(λ), pj =
PD(Ii)∑

λk∈Q−1(Ii)
µΛ(bk)

if λj ∈ Q−1(Ii), (3.5)

as an approximation of ρΛ,M . We can prove ρΛ,M,Nn → ρΛ,M a.e. if

lim
n→∞

max
1≤j≤Nn

diam(bj) = 0.
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Since µD(∂Ii) = 0 and µΛ(∂Λ) = 0, µΛ(∂(Q−1(Ii))) = 0, by Theorem 3.1.3,

∑
λk∈Q−1(Ii)

µΛ(bk)→ µΛ(Q−1(Ii)) if lim
n→∞

max
1≤j≤Nn

diam(bj) = 0.

Furthermore, for almost all λ ∈ intQ−1(Ii), λ ∈ intbj for one bj in Tn = {bj}Nnj=1 for all n, 1 ≤

n <∞. As a result, ρΛ,M,Nn(λ)→ ρΛ,M(λ) for almost all λ ∈ intQ−1(Ii) for an Ii ∈ I. Since

µΛ

(
M⋃
i=1

∂(Q−1(Ii))

)
≤

M∑
i=1

µΛ(∂(Q−1(Ii))) = 0,

ρΛ,M,Nn → ρΛ,M a.e. as n→∞.

Actually, the convergence of ρΛ,M,Nn to ρΛ,M is stronger than the pointwise sense. For every

Ii in partition I = {Ii}Mi=1, when Tn = {bj}Nnj=1 is sufficiently fine, i.e max1≤j≤Nn diam(bj) is

sufficiently small, we can ensure that |pj − p′i| < ε for any j such that bj has its associated λj ∈

Q−1(Ii), and

µΛ

 ⋃
λj∈Q−1(Ii)

bj

4Q−1(Ii)

 < ε.

Since M is finite, we can combine the above results for each Q−1(Ii) to guarantee that

|ρΛ,M,Nn(λ)− ρΛ,M(λ)| < ε, for λ ∈ Λ′ ⊂ Λ with µΛ(Λ \Λ′) < ε.

Consequently, |max ρΛ,M,Nn −max ρΛ,M | < ε.

Next, we want to use the Vitali Convergence Theorem 1.7.3 to conclude convergence of the in-

tegrals of functions that converge a.e., provided that the functions are uniformly integrable. Before

that, we need to show {ρΛ,Mm}∞m=1, and {ρΛ,M,Nn}∞n=1 for a fixed M , are uniformly integrable.

For a sequence of partitions {Im}∞m=1 = {{Ii}Mm
i=1 }∞m=1, the sequence of densities {ρΛ,Mm}∞m=1

is uniformly integrable by Theorem 3.2.3.

Fix the partition I = {Ii}Mi=1, we show {ρΛ,M,Nn}∞n=1 constructed from partition sequence

{Tn}∞n=1 = {{bj}Nnj=1}∞n=1 is uniformly integrable if limn→∞max1≤i≤Nn diam(bj) = 0.
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Given ε > 0, there exists δ > 0 such that
∫
E
ρΛ,MdµΛ < ε for all E ∈ BΛ satisfying µΛ(E) ≤

δ. When the partition Tn = {bj}Nnj=1 on Λ is sufficiently fine, we have |ρΛ,M,Nn(λ)−ρΛ,M(λ)| < ε/δ

for λ ∈ Λ′ ⊂ Λ where µΛ(Λ\Λ′) < ε/(max ρΛ,M + ε/δ), and |max ρΛ,M,Nn−max ρΛ,M | < ε/δ,

so

∫
E

ρΛ,M,NndµΛ =

∫
E∩Λ′

ρΛ,M,NndµΛ +

∫
E\Λ′

ρΛ,M,NndµΛ

≤
∫
E∩Λ′

(ρΛ,M + ε/δ)dµΛ +
ε

max ρΛ,M + ε/δ
(max ρΛ,M + ε/δ)

≤
∫
E

ρΛ,MdµΛ + ε+ ε < 3ε.

for all E ∈ BΛ satisfying µΛ(E) ≤ δ. So the sequence {ρΛ,M,Nn} is uniformly integrable.

If A ∈ BΛ satisfies µΛ(∂A) = 0, A is approximated by

ANn =
⋃
λj∈A

bj,

and PΛ(A) is approximated by

PΛ,Mm,Nn(ANn) =
∑
λj∈A

PΛ,Mm,Nn(bj) =

∫
ANn

ρΛ,Mm,NndµΛ.

We prove PΛ,Mm,Nn(ANn) converges to PΛ(A) in two steps.

First, we show for a given partition I = {Ii}Mi=1 on D,

∫
Λ

|ρΛ,Mm,Nn1ANn
− ρΛ,Mm1A|dµΛ → 0 as n→∞. (3.6)

Since the Vitali Convergence Theorem implies

∫
Λ

|ρΛ,Mm,Nn1A − ρΛ,Mm1A|dµΛ → 0 as n→∞, (3.7)

and uniform integrability of ρΛ,Mm,Nn implies
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∫
Λ

|ρΛ,Mm,Nn1ANn
− ρΛ,Mm,Nn1A|dµΛ =

∫
ANn4A

ρΛ,Mm,NndµΛ → 0 as n→∞, (3.8)

combining (3.7) and (3.8) yields (3.6).

Secondly, ∫
Λ

|ρΛ,Mm1A − ρΛ1A|dµΛ → 0 as m→∞, (3.9)

is implied by the Vitali Convergence Theorem.

Combing the (3.6) and (3.9), we have

∫
Λ

|ρΛ,Mm,Nn1ANn
− ρΛ1A|dµΛ → 0 as n→∞ and then m→∞,

hence

lim
m→∞

lim
n→∞

∫
ANn

ρΛ,Mm,NndµΛ =

∫
A

ρΛdµΛ = PΛ(A).

The order of first letting n → ∞ and then letting m → ∞ is important. For example, one can

show that for a fixed n, ρΛ,Mm,Nn → 0 a.e. as m→∞, thus

lim
n→∞

lim
m→∞

ρΛ,Mm,Nn = 0 a.e.,

while the proof of Theorem 3.3.1 shows

lim
m→∞

lim
n→∞

ρΛ,Mm,Nn = ρΛ a.e..

Theorem 3.3.1 is not the whole story in terms of approximation. In practice, it might be the case

that µΛ(bj) are not known, so PΛ,M,N(bj) =
µΛ(bj)∑

λk∈Q−1(Ii)
µΛ(bk)

PΛ(Q−1(Ii)) cannot be evaluated

directly. Instead we further use an approximation µ̂Λ(bk) of µΛ(bk), to approximate PΛ,M,N(bj) by

P̂Λ,M,N(bj) =
µ̂Λ(bj)∑

λk∈Q−1(Ii)
µ̂Λ(bk)

PΛ(Q−1(Ii)), where µ̂Λ(bk) is an approximation of µΛ(bk).
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However, when Tn = {bj}Nnj=1 has certain properties, an accurate approximation of µΛ(bj) may

not be necessary. For example, when µΛ(bj) approximately follows a distribution with mean 1/N ,

which is the case when Tn is Voronoi tessellation generated by a homogeneous Poisson process.

Using 1/N as approximation of µΛ(bj) yields

∑
λj∈A

P̂Λ,M,Nn(bj)→
∑
λj∈A

PΛ,M,Nn(bj) as n→∞.

Here, P̂Λ,M,Nn(bj) =
PΛ(Q−1(Ii))

#k : λk ∈ Q−1(Ii)
for λj ∈ Q−1(Ii).

That is because ∑
λj∈A

PΛ,M,Nn(bj)→
∫
A

ρΛ,MdµΛ as n→∞,

and for each i, by the Law of Large Numbers,

#j : λj ∈ Q−1(Ii) ∩ A
#k : λk ∈ Q−1(Ii)

→ µΛ(Q−1(Ii) ∩ A)

µΛ(Q−1(Ii))
=
PΛ,M(Q−1(Ii) ∩ A)

PΛ,M(Q−1(Ii))
as n→∞,

hence ∑
λj∈A

P̂Λ,M,Nn(bj)→
M∑
i=1

PΛ,M(Q−1(Ii) ∩ A) =

∫
A

ρΛ,MdµΛ.

3.4 Counter Example
We construct a counter example using fat Cantor setC

1
4 to show when the approximation might

fail. We need not worry about this counter example because in practice it is highly unlikely that

someone use a Fat Cantor set or other set with non-negligible boundary as the domain.

Let

Λ = ([0, 1]× [0, 1])
⋃(

C
1
4 × [1, 2]

)
,

and Q(λ1, λ2) = λ1, so D = [0, 1].

For a uniform probability measure on D, the solution of SIP with the Uniform Ansatz with

respect to µΛ is
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ρΛ(λ) = ρΛ((λ1, λ2)) =


1/4, λ1 ∈ C

1
4 ,

1/2, λ1 ∈ [0, 1] \ C 1
4 .

It is continuous at λ = (λ1, λ2) for which λ1 ∈ [0, 1] \ C 1
4 , and discontinuous at λ for which

λ1 ∈ C
1
4 . We review the key steps in the proof of Theorem 3.3.1 for the SIP for this problem to

explain how the approximation algorithm works (and fails).

First, we impose a partition I = {Ii}Mi=1 on D = [0, 1], and use

ρΛ,M =
M∑
i=1

p′i1Q−1(Ii)(λ), p′i =
PD(Ii)

µΛ(Q−1(Ii))
=
PD(Ii)

µ̃D(Ii)
=

∫
Ii

ρD
ρ̃D
dµ̃D∫

Ii
dµ̃D

, (3.10)

as an approximation of ρΛ. This is equivalent to assuming the distribution is uniform on each

Q−1(Ii), and using ρΛ,M to approximate ρΛ on every Q−1(y) for y ∈ Ii. The Lebesgue Differ-

entiation Theorem 1.7.1 guarantees ρΛ,M → ρΛ a.e.. So this step works even for such a bizarre

domain, provided that the µΛ(Q−1(Ii)) can be evaluated exactly.

Secondly, we impose a partition T = {bj}Nj=1 on Λ, and use the partition sets to approximate

each Q−1(Ii). This approximation is difficult because Q−1(Ii) has non-negligible boundary. The

theory of approximating a set with non-negligible boundary by Voronoi tesselation generated by

random sample has not been established. The second step fails if the approximation algorithm is

wrong. For example, if we use set inclusion as the standard, we would falsely identify [0, 1]× [0, 1]

as Λ, and end up approximating a uniform density on [0, 1]× [0, 1] as the solution.

3.5 Sources of error in the computation
There are two types of error in the approximation of the probability measure PΛ using the

numerical algorithm. The first type of error come from the partitions T = {bj}Nj=1 and I = {Ii}Mi=1,

and lack of information of µΛ(bj). The second type of error arises from the numerical evaluation

of Q. We only analyze the first type. The error of approximation of PΛ(A) for A ∈ BΛ can be

decomposed as:
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∑
λj∈A

P̂Λ,M,N(bj)− PΛ(A) =

∫
A

ρΛ,MdµΛ −
∫
A

ρΛdµΛ I

+

∫
AN

ρΛ,M,NdµΛ −
∫
A

ρΛ,MdµΛ II

+
∑
λj∈A

P̂Λ,M,N(bj)−
∑
λj∈A

PΛ,M,N(bj) III

Term I is associated with the partition I = {Ii}Mi=1 on D.

Given I, term II is associated with the partition T = {bj}Nj=1 on Λ. A finer I requires a finer

T to keep term II small.

Term III arises due to lack of information of µΛ(bj). When T is regular grid where every

µΛ(bj) is the same and known exactly, term III vanishes. When T is Voronoi Tesselation generated

by random sample, we may just use µ̂Λ(bj) = 1/N , then term III is inevitable. In other practical

cases, using a precise approximation of µΛ(bj) yields a smaller term III.
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Chapter 4

Formulation and Solution of the SIP for an Infinite

Dimensional Domain

4.1 Introduction
In many applications, the inputs of the mathematical models are functions rather than finite

dimensional vectors. To motivate such an extension, recall the metal plates example. Previously,

we treat the purity of alloy and the thickness as two parameters taking values in a two dimensional

parameter space on which the probability measure can be solved by the SIP. This choice of param-

eters relies on the assumption that the plates are all homogeneous in their physical properties, i.e.

the purity of alloy and the thickness are the same at any location on a plate. It is physically natural

to consider the situation in which the plates are inhomogeneous in their physical properties and

treat the purity of alloy and the thickness as two functions of the location on the plate. The pre-

vious SIP framework can be extended to allow for the description and computation of probability

distributions over input functions. To that end, we need to extend the domain of map Q.

We assume that the input function λ is square integrable on a measurable space (Ω,BΩ, µΩ),

thus λ ∈ L2(Ω). However, L2(Ω) contains functions not of interest, for example, very rough and

highly oscillatory functions that are neither physical nor allowable as inputs into the differential

equation. Like the SIP with finite dimensional domain, we consider a compact subset of L2(Ω) as

the domain.

The Riesz-Fischer Theorem implies L2(Ω) is a complete space. Moreover, when Ω is a subset

of Rn equipped with the inherited Borel σ-algebra and measure, L2(Ω) is separable (Bruckner

et al., 1997) and has a countable orthonormal basis. For any given basis, there is an isometric

isomorphism between the function space L2(Ω) and the space of the coefficients, which is a space

of square summable sequences `2, and the isometric isomorphism preserves the inner product
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(Conway, 1994, chap. 1). Therefore, a measure structure on `2 or on a subset of `2 is equivalent

to the measure structure on L2(Ω) or on a subset of L2(Ω). This enables us to consider compact

subset of `2 as the domain Λ, thereby allowing more straightforward generalization from Rn to `2.

Common orthonormal basis functions include the standard Fourier basis for L2([0, 1]), which

consist of orthonormal trigonometric functions:

{1

2
, cos(2πjt), sin(2πjt), j = 1, 2, · · · }.

Thus

λ(t) = (1/2)a0 +
∞∑
j=1

aj cos(2πjt) +
∞∑
j=1

bj sin(2πjt),

where the Fourier coefficients are given by

aj = 2

∫ 1

0

λ(t) cosntdt, j = 0, 1, 2, · · ·

bj = 2

∫ 1

0

λ(t) sinntdt, j = 1, 2, 3, · · ·

for all λ(t) ∈ L2([0, 1]). Of course, there are other orthonormal bases, for example, the Haar

wavelets form a countable orthonormal basis on L2([0, 1]) (Daubechies, 1992) as well. An ad-

vantage of certain bases like the standard Fourier basis or Haar wavelets is that the decay rate of

the coefficients with respect to index characterize the smoothness of functions. For example, a

continuous periodic function whose first k derivatives are continuous but whose k + 1 derivative

is discontinuous has Fourier coefficients that decay at a rate of 1/nk+2 after some finite index

(Grafakos, 2008). There are wavelet bases that have similar properties (Daubechies, 1992, Section

2.9). It is possible to characterize Sobolev spaces in terms of decay of coefficients in such bases.

This a good point to recall the importance of the Hilbert cube, which is the Cartesian product

of the sequence of intervals {[0, 1
n
]}∞n=1, in the study of measure structures in infinite dimensional

spaces. Any product of countably infinite intervals of decaying lengths is homeomorphic to the

hilbert cube, and is generally called a “countable dimensional cube”. Thus, we can directly relate
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a subspace of L2(Ω) consisting of functions of specified smoothness quantified by an asymptotic

decay rate in the coefficients with respect to the Fourier basis to a countable dimensional cube.

It turns out that dealing with a class of L2(Ω) functions of a specified smoothness or equiva-

lently to the countable dimensional cube with a specified decay rate in the interval lengths provides

a systematic way to approximate the probability structure on the infinite dimensional domain by

probability structures on the finite dimensional domains obtained by “truncation” or ending the

product after a specified point. The error in these approximations can be controlled by increasing

the dimension.

The countable dimensional cube is a metric space with the natural metric induced by the `2-

norm. Because of the decaying edge lengths, the topology induced by this metric is the product

topology, for which the basis is cylindrical open set whose “face” is an open set in the product

of intervals for first n dimensions n ∈ N and whose “side” are the product of intervals in the

remaining dimensions.

For notational convenience, we center and scale the countable dimensional cube C to [0, 1]∞

and instead consider a metric with the decay built in. Let this map be p : C → [0, 1]∞. Then

p is one-to-one and onto. With the `2-norm on C, we define a metric d on [0, 1]∞ by d(λ, µ) =

||p−1(λ)− p−1(µ)||2, and denote the metric space ([0, 1]∞, d). The metric d poses the same decay

rate as edges of C, which induces the product topology on [0, 1]∞. For any n ∈ N, [0, 1]∞ as

a topology space is a product space of [0, 1]n, endowed with the topology induced from Rn, and

[0, 1]∞n =
∏∞

k=n+1[0, 1], endowed with the product topology, written as [0, 1]∞ = [0, 1]n × [0, 1]∞n

We consider the SIP for Q : [0, 1]∞ → D, D ⊂ Rm. The product decomposition allows the

definition of Qλ̂n : [0, 1]n → D as Qλ̂n = Q(·, λ̂n) for λ̂n ∈ [0, 1]∞n . When n ≥ m, the SIP for

Qλ̂n : [0, 1]n → D falls into the previous formulation hence can be solved by Algorithm 2. Later

we show that the solution of the SIP for Q : [0, 1]∞ → D can be approximated by the solution of

the SIP for Qλ̂n : [0, 1]n → D under some conditions. The convergence rate depends on both the

decay rate and the properties of mapQ. In this regard, taking a countable dimensional cube to be Λ
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in the SIP amounts to regularizing the domain where the regularization strength is controlled by the

decay rate, in contrast to the usual approach to inverse problem, where the map Q is regularized.

In this chapter, we present a formulation of the SIP for Λ = ([0, 1]∞, d). In Section 4.2, we

present a technical result regarding the SIP for a domain that can be expressed as a product space of

two spaces, i.e. Λ = Λ1×Λ2. In Section 4.3, we give the conditions for the density to exist and be

continuous with respect to Λ = Λ1×Λ2. In Section 4.4, we discuss the topology, Borel σ−algebra

and “volume” measure of ([0, 1]∞, d). In Section 4.5, we show how to adapt the previous proof of

continuity to accommodate the infinite dimensional setting. This version of continuity theorem is

then applied to show the existence of solution. Other implications of continuity are also discussed.

In this chapter, Λ is still the domain of mathematical map Q, but represents different sets from

before. In Section 4.2 and Section 4.3, it denotes a general space that can be expressed as a product

space of two spaces, i.e. Λ = Λ1 ×Λ2. In Section 4.4 and Section 4.5, Λ = ([0, 1]∞, d).

4.2 The SIP for a product space domain
We consider the case where the domain of the SIP is a product measure space (Λ,BΛ, µΛ) of

two measure spaces (Λ1,BΛ1 , µΛ1) and (Λ2,BΛ2 , µΛ2). In this section, we assume Q : Λ → D

is measurable. Consequently, Qλ2(·) = Q(·, λ2) : Λ1 → D is also measurable for all λ2 ∈ Λ2

(Folland, 2013). We let (D × Λ2,BD×Λ2 , µD×Λ2) be the product measure space of (D,BD, µD)

and (Λ2,BΛ2 , µΛ2).

Next theorem states how measure induced by Q can be computed from measures induced by

Qλ2 .

Theorem 4.2.1. Let µ̃D = QµΛ and µ̃D,λ2 = Qλ2µΛ1 for λ2 ∈ Λ2. Then for A ∈ BD, µ̃D(A) =∫
Λ2
µ̃D,λ2(A)dµΛ2 .

Moreover, if dµ̃D,λ2(y) = ρ̃D,Λ2(y, λ2)dµD(y), where ρ̃D,Λ2(y, λ2) is uniquely defined µD-a.e.

for each λ2, and ρ̃D,Λ2(y, λ2) is measurable on D × Λ2, then µ̃D is absolutely continuous with

respect to µD and has density ρ̃D(y) =
∫
Λ2
ρ̃D,Λ2(y, λ2)dµΛ2 uniquely defined up to a µD-null set.

Proof. For A ∈ BD,
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∫
A

dµ̃D =

∫
Q−1(A)

dµΛ definition of µ̃D

=

∫
Λ2

∫
Λ1

1(Q−1
λ2

(A))dµΛ1dµΛ2 Tonelli’s Theorem

=

∫
Λ2

µ̃D,λ2(A)dµΛ2

=

∫
Λ2

∫
A

ρ̃D,Λ2(y, λ2)dµDdµΛ2

=

∫
A

∫
Λ2

ρ̃D,Λ2(y, λ2)dµΛ2dµD Tonelli’s Theorem

The minimal condition guaranteeing ρ̃D,Λ2(y, λ2) to be measurable is difficult to find, but con-

tinuity can be used as a sufficient condition.

Proposition 4.2.2. If ρ̃D,Λ2(y, λ2) is continuous a.e. onD×Λ2, then ρ̃D(y) =
∫
Λ2
ρ̃D,Λ2(y, λ2)dµΛ2 .

Proof. When ρ̃D,Λ2(y, λ2) is continuous a.e. on D × Λ2, it is measurable with respect to BD×Λ2 .

4.3 The continuity of density in a product space
In Chapter 2, we discuss the existence and continuity of ρ̃D for the SIP. We can give analogous

conditions to ensure ρ̃D,Λ2(y, λ2) exist and be continuous on Λ2 × D. Next theorem states the

conditions for ρ̃D,Λ2(y, λ2) to exist.

Theorem 4.3.1. Let Λ1 ⊂ Rn, D ⊂ Rm, and m ≤ n. Given a λ2 ∈ Λ2, if Qλ2 : Λ1 → D is C1

map and JQλ2 is full rank on Λ1, then dµ̃D,λ2 = ρ̃D,Λ2(y, λ2)dµD, with

ρ̃D,Λ2(y, λ2) =

∫
Q−1
λ2

(y)

1√
(JQλ2J

T
Qλ2

)
ds. (4.1)

which is an integration over manifold Q−1
λ2

in Λ1, and ρ̃D,Λ2(y, λ2) is uniquely defined µD-a.e..

Proof. This is implied by Theorem 2.1.1.

54



To study the continuity property of ρ̃D,Λ2(y, λ2), we extend the domain Λ1 to an open set UΛ1

containing Λ1. Write λ ∈ UΛ1 ×Λ2 as λ = (λ1, λ2) where λ1 ∈ UΛ1 and λ2 ∈ Λ2. We denote the

Jacobian of Q with respect to λ1 as JQ,λ1 , that is JQ,λ1(λ1, λ2) = JQλ2 (λ1).

Let Q be a map from UΛ1 × Λ2 to D, where UΛ1 is an open set in Rn, Λ2 is a metric space,

D is a subset of Rm and n ≥ m. Assume JQ,λ1 exist and is continuous on UΛ1 × Λ2. Further

assume Λ1 ⊂ UΛ1 is a compact subset of Rn, and JQ,λ1 is full rank on UΛ1 × Λ2. We define

µ̃D,λ2 = Qλ2µΛ1 then dµ̃D,λ2 = ρ̃D,Λ2(y, λ2)dµD for every λ2 ∈ Λ2 by Theorem 4.3.1. Next

theorem shows conditions analogous to Theorem 2.4.2 guarantees ρ̃D,Λ2(y, λ2) to be continuous

on D ×Λ2.

Theorem 4.3.2. Let Q : UΛ1 ×Λ2 → D be a continuous map. Suppose ∂Λ1 is locally determined

by B(λ1) = 0, where B : UΛ1 → Rm is a piecewise C1 map. Given y0, λ2,0, such that

JQλ2,0
JB


is full rank on ∂Λ1 ∩ Q−1

λ2,0
(y0) or ∂Λ1 ∩ Q−1

λ2,0
(y0) = ∅, then ρ̃D,Λ2(y, λ2) is continuous in a

neighborhood of y0, λ2,0.

This theorem can be proved by altering a few key steps in the proofs of Theorem 2.4.1 and

Theorem 2.4.2. In Theorem 2.4.1, we require the submatrix of JQ consisting of its first m columns

to be full rank, a special case allowing uniform parameterization. Let Q′(λ, y) = Q(λ) − y.

Theorem 2.4.1 is proved by following several vital steps given below.

1. We use the Implicit Function Theorem with respect to Q′(λ, y) = 0, to derive a uniform

parameterization of the manifold Q−1(y) ∩ Λ in terms of its projection to subspace of last

n −m coordinates for y in a neighborhood of y0. So ρ̃D can be expressed as an integration

of a function involving JQ′(λ, y) over a domain in the subspace of last n−m coordinates.

2. The boundary of the integration domain is the projection of Q−1(y)∩ ∂Λ to subspace of last

n−m coordinates. We can apply the Implicit Function Theorem with respect to

Q∗(λ, y) =

Q′(λ, y)

B(λ)

 = 0
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to get piecewise parameterization of the boundary of the integration domain. That means the

integration domain changes continuously with respect to y;

3. The integrand is continuous since JQ′(λ, y) is continuous on UΛ ×D.

Theorem 2.4.2 is proved by decomposing Λ to subdomains determined by balls covering Λ. In

each of the subdomains, Q−1(y) admits uniform parameterization, and the boundary of each sub-

domain is determined by the sphere of the ball and the orginal boundary ∂Λ, which are both smooth

manifolds.

By redefining Q′ as Q′(λ1, λ2, y) = Q(λ1, λ2) − y and change λ to λ1, y to (λ2, y), and

y0 to (λ2,0, y0) of the proof of Theorem 2.4.1, we come up with a proof of the special case of

Theorem 4.3.2 where Λ1 ∩ Q−1
λ2,0

(y0) can be uniformly parameterized. Then, by doing the same

subdomain trick as in the proof of Theorem 2.4.2, we prove Theorem 4.3.2 for the general case.

4.4 The countable dimensional cube ([0, 1]∞, d)

In this section, we are concerned with the metrics, topology, Borel σ-algebra and the measure

of domain Λ = ([0, 1]∞, d).

4.4.1 Decaying metric and product topology

For ([0, 1]∞, d), we prove the decaying metric induces the product topology.

Theorem 4.4.1. The product topology on [0, 1]∞ can be induced by the metric d defined as d(λ, µ) =

(
∑∞

i=1 a
p
i |λi − µi|p)

1
p , where 1 ≤ p < ∞, and {ai} is a sequence of positive numbers with∑∞

i=1 a
p
i <∞.

Proof. Recall that the basis of product topology has the form V =
∏∞

i=1 Ui where Ui ⊂ [0, 1] is

open for all i and Ui = [0, 1] for i outside for some finite subset of {1, 2, 3, . . . }. We refer to the

family of all such V as V .

We only need to prove that given a V ∈ V , for all λ ∈ V , there exists ε, such thatBd(λ, ε) ⊂ V ;

and for all Bd(λ, ε), there exists a V ∈ V , λ ∈ V such that V ⊂ Bd(λ, ε).
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On the one side, by the construction of set V , there exists n such that V = U × Λ̂n, where U is

an open set in Λn, and Λ = Λn × Λ̂n. Then for all λ ∈ V where λ = (λn, λ̂n), λn ∈ U , λ̂n ∈ Λ̂n.

Define dn : Λn × Λn → R+ as dn(λn, µn) = (
∑n

i=1 a
p
i |λi − µi|p)

1
p for λn, µn ∈ Λn. dn is

a well defined metric on Λn. Since λn ∈ U , there exists an ε, Bdn(λn, ε) ⊂ U . Consequently,

Bdn(λn, ε)× Λ̂n ⊂ U × Λ̂n = V . Since Bd(λ, ε) ⊂ Bdn(λn, ε)× Λ̂n, Bd(λ, ε) ⊂ V .

On the other side, given any Bd(λ, ε), there exists an m, such that
∑∞

i=m+1 a
p
i <

εp

2
. Then for

all y ∈ V = Bdm(λm, ε/2)× Λ̂m,

d(λ, µ) = (
∞∑
i=1

api |λi − µi|p)
1
p

< (
m∑
i=1

api |λi − µi|p +
∞∑

i=m+1

api )
1
p

< ((ε/2)p +
εp

2
)
1
p

= ε(
1

2p
+

1

2
)
1
p ≤ ε

Then V ⊂ Bd(λ, ε).

4.4.2 The Borel σ−algebra and measure

In order to formulate the SIP with domain Λ = ([0, 1]∞, d), we need to define σ-algebra BΛ

and measure µΛ on Λ. Analogous to the SIP with finite dimensional domain, the measure µΛ on

Λ should properly reflect intuition of “volume”. Specifically, µΛ(Λ) = 1, and it should equal the

Lebesgue measure on a finite dimensional face of a cylindrical set, thus µΛ(A× [0, 1]∞n ) = µ(A),

where A is a measurable set in Rn and µ is Lebesgue measure on Rn. But µΛ may lack other

properties, like rotation invariance, of the Lebesgue measure. We use a construction adapted from

Da Prato (2006), using cylindrical sets to generate the Borel σ-algebra and desired measure.

Define cylindrical subsets In,A of [0, 1]∞, where n ∈ N and A ∈ BΛn as:

In,A = {λ = (λk) ∈ [0, 1]∞ : (λ1, . . . , λn) ∈ A}.
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Denote the family of all such cylindrical sets as C.

The set In,A can be also expressed as

In,A = In+k,A×[0,1]k , k, n ∈ N.

Using this identity we can show that C is an algebra. In fact, if In,A and Im,B are two cylindrical

sets we have

In,A ∪ Im,B = Im+n,A×[0,1]m ∪ Im+n,B×[0,1]n

= Im+n,A×[0,1]m∪B×[0,1]n ,

and Icn,A = In,Ac .

We make the concept of “face” of cylindrical sets formal. We call a set A ∈ BΛ` as the face of

cylindrical set I if

I = A× [0, 1]∞` .

Therefore A and A× [0, 1]k for positve integer k are faces of In,A.

Define the minimal face of I as F (I), such that F (I) is the face of I and F (I) ∈ BΛn where n

is the smallest possible integer.

The σ-algebra σ(C) generated by C coincides with BΛ since any ball (with respect to the de-

caying metric defined in Theorem 4.4.1) is a countable intersection of cylindrical sets.

Finally, we define the product pre-measure

µ(In,A) = (µ1 × · · · × µn)(A), In,A ∈ C

It is easy to see µ is additive. We only need to verify that µ is σ−additive on C. The Caratheodory

Extension Theorem implies that µ can be uniquely extended to a measure on the product σ−algebra

B[0,1]∞ .
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Theorem 4.4.2. µ is σ−additive on C and it possesses a unique extension to a measure on (Λ,BΛ).

Proof. To prove the σ−additivity of µ, we show continuity of µ at ∅. This is equivalent to proving

that if {Ej} is a decreasing sequence on C such that

µ(Ej) ≥ ε, j ∈ N

for some ε > 0, we have
∞⋂
j=1

Ej 6= ∅

To show this, we consider the sections of Ej ,

Ej(α) = {λ ∈ [0, 1]∞1 : (α, λ) ∈ Ej}, α ∈ [0, 1].

Let

F
(1)
j = {α ∈ [0, 1] : µ(1)(Ej(α)) ≥ ε

2
}, j ∈ N,

where µ(n) =
∏∞

k=n+1 µk, n ∈ N. Then Fubuni’s Theorem implies

µ(Ej) =

∫
[0,1]

µ(1)(Ej(α))µ1(dα)

=

∫
F

(1)
j

µ(1)(Ej(α))µ1(dα) +

∫
[F

(1)
j ]c

µ(1)(Ej(α))µ1(dα)

≤ µ1(F
(1)
j ) +

ε

2

Therefore,

µ1(F
(1)
j ) ≥ ε

2

Since µ1 is Lebesgue measure on ([0, 1],B[0,1]), it is continuous at ∅. Therefore, since the

sequence {F (1)
j } is decreasing, there exists α1 ∈ [0, 1], such that
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µ1(Ej(α1)) ≥ ε

2
, j ∈ N,

Consequently, we have

Ej(α1) 6= ∅.

Now set

Ej(α1, α2) = {λ2 ∈ [0, 1]∞2 : (α1, α2, λ) ∈ Ej}, j ∈ N, α2 ∈ [0, 1]

and

F
(2)
j = {α2 ∈ [0, 1] : µ(2)(Ej(α1, α2)) ≥ ε

4
}, j ∈ N.

Then, again by Fubini’s theorem, we have

µ1(Ej(α1)) =

∫
[0,1]

µ(2)(Ej(α1, α2))µ2(dα2)

=

∫
F

(2)
j

µ(2)(Ej(α1, α2))µ2(dα2) +

∫
[F

(2)
j ]c

µ(2)(Ej(α1, α2))µ2(dα2)

≤ µ2(F
(2)
j ) +

ε

4
.

Therefore,

µ2(F
(2)
j ) ≥ ε

4

Since (F
(2)
j ) is decreasing, there exists α2 ∈ R such that

µ2(Ej(α1, α2)) ≥ ε

4
, j ∈ N

and consequently we have

Ej(α1, α2) 6= ∅

Arguing in a similar way as before we see that there exists a sequence (αk) ∈ [0, 1]∞ such that
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Ej(α1, . . . , αn) 6= ∅

where

Ej(α1, . . . , αn) = {λ ∈ [0, 1]∞n : (α1, . . . , αn, x) ∈ Ej}, n ∈ N

This implies

(αn) ∈
∞⋂
j=1

Ej.

Therefore
⋂∞
j=1Ej is not empty. Thus we have proved that µ is σ−additive on C and consequently

on BΛ.

4.5 Convergence of the solution on the dimension truncated do-

main

4.5.1 Solution of the SIP on domain ([0, 1]∞, d)

The fact that the domain Λ = ([0, 1]∞, d) admits product decomposition Λ = [0, 1]∞ =

[0, 1]n × [0, 1]∞n = Λn × Λ̂n for any n ∈ N gives us great flexibility in choosing an appropriate n

to show the existence of the solution ρΛ.

Theorem 4.5.1. Let Q : Λ→ D, and D ⊂ Rm. If there exists M ≥ m with Λ = ΛM × Λ̂M , such

that QM
λ̂M

(·) = Q(·, λ̂M) : ΛM → D is continuously differentiable on Λ and has full rank JQM
λ̂M

for all λ̂M ∈ Λ̂M . Define µ̃D,λ̂M = Qλ̂MµΛM , then dµ̃D,λ̂M = ρ̃D,Λ̂M (y, λ̂M)dµD with

ρ̃D,Λ̂M (y, λ̂M) =

∫
Q−1

λ̂M
(y)

1√
(JQ

λ̂M
JTQ

λ̂M
)
ds. (4.2)

ρ̃D,Λ̂M (y, λ̂M) is uniquely defined µD-a.e..

Proof. This is a special case of Theorem 4.3.1 where Λ2 = Λ̂M .
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Just like in Section 4.3, to study the continuity property of ρ̃D,Λ̂M (y, λ̂M), we extend ΛM to

slightly larger open set UΛM ⊂ RM containing ΛM . We denote the Jacobian of Q with respect to

λM as JQ,λM . That is JQ,λM (λM , λ̂M) = JQ
λ̂M

(λM).

Let Q be a map from UΛM × Λ̂M to D, where UΛM is an open set in RM containing ΛM , D

is a subset of Rm and M ≥ m. Assume JQ,λM exist and is continuous on UΛM × Λ̂M . Further

assume JQ,λM is full rank on Λ. We define µ̃D,λ̂M = Qλ̂MµΛM , then dµ̃D,λ̂M = ρ̃D,Λ̂M (y, λ̂M)dµD

for every λ̂M ∈ Λ̂M by Theorem 4.5.1. We then have the following result concerning continuity.

Theorem 4.5.2. Let B : UΛM → Rm be a piecewise C1 map, such that ∂ΛM is locally determined

by B(λM) = 0, λM ∈ UΛM . If

JQMλ̂M
JB

 is full rank on ∂ΛM ∩ Q−1

λ̂M
(y) or ∂Λ1 ∩ Q−1

λ̂M
(y) = ∅

for µΛ̂M×D-almost all (λ̂M , y), ρ̃MD,Λ̂M (y, λ̂M) is continuous µΛ̂M×D-a.s. on D × Λ̂M .

Proof. This is a direct result of Theorem 4.3.2 with Λ2 replaced by Λ̂M .

Corollary 4.5.3. Given all the conditions in Theorem 4.5.2, ρ̃D exists and has the expression as

ρ̃D(y) =
∫
Λ̂M

ρ̃MD,Λ̂M (y, λ̂M)dµΛ̂M .

Proof. This is implied by Proposition 4.2.2.

Corollary 4.5.4. Given PD on D, which has a density ρD with respect to µD, the solution density

of the SIP with respect to µΛ under the Uniform Ansatz with respect to µΛ, is

ρΛ(λ) =
ρD(Q(λ))

ρ̃D(Q(λ))
.

Proof. This is a direct result of Theorem 2.2.2.

The continuity of ρ̃MD,Λ̂M (y, λ̂M) on D × Λ̂M has more implications than measurability and

existence of ρ̃D; for example, it also leads to the continuity of ρ̃D.

Theorem 4.5.5. Under the conditions in Theorem 4.5.1, if ρD defined in Corollary 4.5.4 is contin-

uous a.e., the solution density ρΛ(λ) is continuous a.e. on Λ.
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Proof. Since ρ̃D(y) =
∫
Λ̂M

ρ̃MD,Λ̂M (y, λ̂M)dµΛ̂M , when |y1 − y2| < δ,

∣∣∣ρ̃MD,Λ̂M (y1, λ̂
M)− ρ̃MD,Λ̂M (y2, λ̂

M)
∣∣∣ < ε,

then ∣∣∣∣∫
Λ̂M

ρ̃MD,Λ̂M (y1, λ̂
M)dµΛ̂M −

∫
Λ̂M

ρ̃MD,Λ̂M (y2, λ̂
M)dµΛ̂M

∣∣∣∣ < ε.

Thus |ρ̃D(y1) − ρ̃D(y2)| < ε, i.e. ρ̃D is continuous a.e.. In addition, when both ρD and Q are

continuous a.e., ρΛ is continuous a.e..

Since Λ = ΛN × Λ̂N for any N , for λ = (λN , λ̂N) ∈ Λ, we write

ρΛ(λ) = ρΛ((λN , λ̂N)) ≡ ρΛ(λN , λ̂N),

to get rid of repetition of parenthesis without causing confusion.

Note that the notation λ̂N (or λN ) has two layers of meaning: a point in Λ̂N , and there is one

λN ∈ ΛN , such that λ = (λN , λ̂N) ∈ Λ. To distinguish variables from spaces ΛN and the space

Λ̂N , we write λN0 ∈ ΛN and λ̂N ∈ Λ̂N , so (λN0 , λ̂
N) ∈ Λ. The marginal density of λ̂N ∈ Λ̂N is

ρΛ̂N (λ̂N) =

∫
ΛN

ρΛ(λN0 , λ̂
N)dµΛN (λN0 )

=

∫
Λ̂N

∫
ΛN

ρΛ(λN0 , λ̂
N)dµΛN (λN0 )dµΛ̂N (λ̂N0 )

=

∫
Λ

ρΛ(λN0 , λ̂
N)dµΛ(λ0).

When we evaluate ρΛ̂N (λ̂N), we treat λ̂N as a point in Λ̂N without considering its complemen-

tary part λN .

In next theorem, we prove that if ρΛ is uniformly continuous on Λ, ρΛ̂N converges to uniform

distribution as N →∞.

Theorem 4.5.6. If ρΛ is uniformly continuous on Λ, given ε > 0, there exists N , such that for all

n > N , |ρΛ̂n(λ̂n)− 1| < ε for any λ ∈ Λ.
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Proof. Since ρΛ is uniformly continuous, there existsN , such that for all n > N for any λ0, λ ∈ Λ,

d((λn0 , λ̂
n), λ0) < δ, then |ρΛ(λn0 , λ̂

n)− ρΛ(λ0)| < ε. So

∣∣∣∣∫
Λ

ρΛ(λn0 , λ̂
n)dµΛ(λ0)−

∫
Λ

ρΛ(λ0)dµΛ(λ0)

∣∣∣∣ < ε,

i.e. |ρΛ̂n(λ̂n)− 1| < ε.

4.5.2 Convergence of the solution

To our knowledge, there is no sampling method in an infinite dimensional space taking the

cylindrical sets, the generating sets of the Borel σ-algebra, into account. At the same time, both

the theoretical and computational aspects of the SIP with respect to QN
λ̂N0

: ΛN → D have been

thoroughly investigated. In this part, we study whether the SIP with respect to Q : Λ→ D can be

approximated by the solution of SIP with respect to QN
λ̂N0

: ΛN → D. This is true under conditions

in Theorem 4.5.1 and Theorem 4.5.2, and we refer to such an approach as approximation by “the

SIP with truncated domain”, and N the truncation number.

As is implied by Corollary 4.5.4, the solution density with respect to Q : Λ → D under the

Uniform Ansatz exists. Furthermore, when N > M for M in Theorem 4.5.1, the solution density

with respect to QN
λ̂N0

: ΛN → D under the Uniform Ansatz exists as well.

To see this, we first look at the decomposition Λ = ΛM×Λ̂M . ForN > M , Λ̂M can be further

decomposed as Λ̂M = ΛN−M × Λ̂N . Define µ̃D,λ̂N0 = Qλ̂N0
µΛN then dµ̃D,λ̂N0 = ρ̃D,Λ̂N0

(y, λ̂N0 )dµD

with

ρ̃ND,Λ̂N (y, λ̂N0 ) =

∫
ΛN−M

ρ̃MD,Λ̂M (y, (λN−M , λ̂N0 ))dµΛN−M (λN−M),

for λN−M ∈ ΛN−M .

Then the solution density on ΛN under the Uniform Ansatz is given by Theorem 2.2.2 as

ρN
ΛN ,λ̂N0

(λN) =
ρD(Q(λN , λ̂N0 ))

ρ̃ND,Λ̂N (Q(λN , λ̂N0 ), λ̂N0 )
.

64



Given N0 ≤ N , ΛN can be further decomposed as ΛN = ΛN0 × ΛN−N0 . We expect

ρN
ΛN ,λ̂N0

(λN0 , λN−N0
1 ) to be close to ρΛ(λ) if N0 is big enough as long as ρ̃MD,Λ̂M (y, λ̂M) is con-

tinuous on D × Λ̂M .

Theorem 4.5.7. If ρ̃MD,Λ̂M (y, λ̂M) is continuous onD×Λ̂M , given λ, for all λ0 ∈ Λ̂M andN ≥ N0,

ρN
ΛN ,λ̂N0

(λN0 , λN−N0
1 ) =

ρD(Q((λN0 , λN−N0
1 ), λ̂N0 ))

ρ̃ND,Λ̂N (Q((λN0 , λN−N0
1 ), λ̂N0 ), λ̂N0 )

→ ρΛ(λ) =
ρD(Q(λ))

ρ̃D(Q(λ))
,

as N0 →∞.

Proof. Since Q and ρD are both continuous, ρD(Q((λN0 , λN−N0
1 ), λ̂N0 ))→ ρD(Q(λ)) as N →∞.

We only need to prove ρ̃ND,Λ̂N (Q((λN0 , λN−N0
1 ), λ̂N0 ), λ̂N0 )→ ρ̃D(Q(λ)).

Since ρ̃MD,Λ̂M (y, λ̂M) is continuous on D × Λ̂M , it is uniformly continuous. Therefore for all ε,

there exists δε, such that when d((y1, λ̂
M
1 ), (y2, λ̂

M
2 )) < δε,

∣∣∣ρ̃MD,Λ̂M (y1, λ̂
M
1 )− ρ̃MD,Λ̂M (y2, λ̂

M
2 )
∣∣∣ < ε.

Since Q is uniformly continuous on Λ, there exists N∗1 , such that for all N0 > N∗1 ,

d(Q(λN0 , λ̂N0), Q(λN0 , λ̂N0
0 )) < δ.

Then there exists N∗2 , such that for all N0 > N∗2 ,

d((Q((λN0 , λN−N0), λ̂N), λ̂′N−M , λ̂′N), (Q((λN0 , λN−N0
1 ), λ̂N0 ), λ̂′N−M , λ̂N0 )) < δε,

for all λ′, λ0 ∈ Λ̂M , so

∣∣∣ρ̃MD,Λ̂M (Q((λN0 , λN−N0), λ̂N), (λ̂′N−M , λ̂′N))− ρ̃MD,Λ̂M (Q((λN0 , λN−N0
1 ), λ̂N0 ), (λ̂′N−M , λ̂N0 ))

∣∣∣ < ε.
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Consequently

∣∣∣∣ ∫
Λ̂M

ρ̃MD,Λ̂M (Q((λN0 ,λN−N0), λ̂N), (λ̂′N−M , λ̂′N))dµΛ̂M (λ̂′M)

−
∫
Λ̂M

ρ̃MD,Λ̂M (Q((λN0 , λN−N0
1 ), λ̂N0 ), (λ̂′N−M , λ̂N0 ))dµΛ̂M (λ̂′M)

∣∣∣∣ < ε,

thus

∣∣∣ρ̃D(Q(λ))− ρ̃ND,Λ̂N (Q((λN0 , λN−N0
1 ), λ̂N0 ), λ̂N0 )

∣∣∣ < ε.

The next result shows the density of SIP with truncated domain is close to the density of SIP

with original domain at the same point.

Theorem 4.5.8. If ρ̃MD,Λ̂M (y, λ̂M) is continuous on D × Λ̂M , then for all λ̂0 ∈ Λ̂M ,

ρN
ΛN ,λ̂N0

(λN) =
ρD(Q(λN , λ̂N0 ))

ρ̃ND,Λ̂N (Q(λN , λ̂N0 ), λ̂N0 )
→ ρΛ(λ) =

ρD(Q(λ))

ρ̃D(Q(λ))
,

as N →∞.

Proof. Set N0 = N , and it follows from Theorem 4.5.7.

In Theorem 4.5.7, we show that given λ, ρN
ΛN ,λ̂N0

((λN0 , λN−N0
1 )) → ρΛ(λ), as N0 → ∞. If

this convergence holds uniformly for all λ ∈ Λ, we can obtain similar results to Theorem 4.5.6 for

the SIP with dimension truncated domain as follows. Define the marginal distribution of λN−N0
1 ∈

ΛN−N0 as

ρN
ΛN−N0 ,λ̂N0

(λN−N0
1 ) =

∫
ΛN0

ρN
ΛN ,λ̂N0

(λN0 , λN−N0
1 )dµΛN0 (λN0),

we have the following result.
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Theorem 4.5.9. If given ε > 0, there exists N0 such that for any N ≥ N0,

∣∣∣ρN
ΛN ,λ̂N0

(λN0 , λN−N0
1 )− ρΛ(λ)

∣∣∣ < ε,

for all λ ∈ Λ, then ρN
ΛN−N0 ,λ̂N0

(λN−N0
1 )→ 1 as N0 →∞.

Proof. If |ρN
ΛN ,λ̂N0

(λN0 , λN−N0
1 )− ρΛ(λ)| < ε, for all λ ∈ ΛN ,

∣∣∣∣ρNΛN−N0 ,λ̂N0
(λN−N0

1 )− 1

∣∣∣∣ =

∣∣∣∣ ∫
Λ

ρN
ΛN ,λ̂N0

((λN0 , λN−N0
1 ))dµΛ(λ)−

∫
Λ

ρΛ(λ)dµΛ(λ)

∣∣∣∣
≤
∫
Λ

∣∣∣∣ρNΛN ,λ̂N0 ((λN0 , λN−N0
1 ))− ρΛ(λ)

∣∣∣∣dµΛ < ε.

This means when the truncation number is high enough, the marginal distribution ρN
ΛN−N0 ,λ̂N0

will converge to uniform distribution just like ρΛ̂n .
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Chapter 5

Numerical analysis for the solution of the Infinite

Dimensional SIP

In this chapter, we use results from the last chapter as the basic setup. Specifically, we assume

there is a continuous map Q : Λ → D, where Λ = ([0, 1]∞, d) and D ⊂ Rm. We define

µ̃D = QµΛ, and assume dµ̃D = ρ̃DdµD. We also assume that the probability measure PD has a

density ρD with respect to µD. Theorem 2.2.2 yields the solution density ρΛ =
ρD(Q(λ))

ρ̃D(Q(λ))
on Λ.

One way to solve this SIP is to solve the SIP with the truncated dimension, i.e. applying

Algorithm 2 with respect to Qλ̂k0
: ΛL → D. Letting the truncation number k vary yields an new

algorithm as Algorithm 3 with respect to the original Q : Λ→ D.
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Algorithm 3: Approximation to inverse probability.

1 Generate approximating sets {Ii}Mi=1 of D

2 Choose k then use [0, 1]k or Λk, as substitute domain, and Qλ̂k0
as substitue map for any λ̂k0

3 Generate approximating sets {bj}Nj=1 of [0, 1]k, associate every bj with a point λkj inside

4 Fix and normalize the simple function approximation ρD,M =
∑M

i=1 pi1Ii(q)

5 Initiate an M ×N matrix V

6 foreach j = 1, · · · , N do

7 foreach i = 1, · · · ,M do

8 if Qλ̂k0
(λkj ) ∈ Ii then

9 Vij = µΛk(bj)

10 else

11 Vij = 0

12 end

13 end

14 end

15 foreach j = 1, · · · , N do

16 Set P (bj) to
∑M

i=1 pi(Vij/
∑N

j=1 Vij)

17 end

This approach poses questions in terms of approximating sets and density functions on Λ. For

example, how can A ∈ BΛ be approximated by a cylindrical set with face in BΛk .

We address issues concerning the approximation of sets and density functions that only arise

in the settings of Λ = ([0, 1]∞, d) in Sections 1 and 2. In Section 3, we prove a theorem showing

probabilities computed by Algorithm 3 converges to the true probability.
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5.1 Approximation of sets
As a starting point, we restate Theorem D of Page 56, in Section 13 of Halmos (1974) as

Theorem 5.1.1. For a measure space (Ω,BΩ, µΩ), where µΩ is a σ-finite measure, suppose BΩ is

generated by C, that is σ(C) = BΩ. Given an event A ∈ σ(C) such that µΩ(A) <∞, for ε > 0, we

can find a set C ∈ C, such that µΩ(A4C) < ε.

Theorem 5.1.1 implies that a set A in BΛ can be approximated by cylindrical set in the sense

that given a sequence of positive numbers {ε`} where ε` → 0, we can find a sequence of cylin-

drical sets {A`} such that µΛ(A4A`) < εj . Assuming the minimal face of A` is A′`, we want to

approximate PΛ(A) by approximating probabilities of A′`.

However, in Section 3.3, we only address the approximation of measurable set with negligible

boundary in ΛN , so we only focus on a set which can be approximated by a sequence of cylindrical

sets with negligible boundaries. This does not mean that the set A itself has negligible boundary.

For example,

A =
∞∏
k=1

[
0,

1− 1/(k + 1)

1− 1/(k + 2)

]
,

is measurable and has a measure of 1/2, and can be approximated by

{A` =
∏̀
k=1

[
0,

1− 1/(k + 1)

1− 1/(k + 2)

]
× [0, 1]∞},

and

µΛ`

(
∂

(∏̀
k=1

[
0,

1− 1/(k + 1)

1− 1/(k + 2)

]))
= 0,

so this set is within the framework of the proposed algorithm. However, boundary of A is not

measure 0. One can show that Ā = A, Å = φ, so ∂A = Ā \ Å = A.

Next we examine a special case of Borel σ-algebra being approximated by cylindrical sets. As

a preparation, we need the following Lemma.

Lemma 5.1.2. For a given ε, there exists δ, such that ifE ∈ BD and µD(E) < δ, µΛ(Q−1(E)) < ε.

Furthermore, µΛ(Q−1(E)) = 0 if µD(E) = 0.
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Proof. This is a direct result of µ̃D = QµΛ and dµ̃D = ρ̃DdµD.

Next, we show Q−1(E), the preimage of E ∈ BD under Q, can be approximated by cylindrical

set with a given form.

Theorem 5.1.3. For E ∈ BD of which µD(E) > 0 and µD(∂E) = 0,

lim
`→∞

µΛ

(
(Q`

λ̂`0

−1
(E)× Λ̂`)4Q−1(E)

)
= 0

for any λ0 ∈ Λ.

Proof. Let Eδ := (E + δB(0, 1)) ∩ D denote the Minkowski sum of E and δB(0, 1) restricted

to D, where B(0, 1) is the unit ball in Rm. Let Eδ = ((Ec)δ)c. Since µD(∂E) = 0, for

a given ε > 0, there exists δ(ε) > 0 such that µD(E2δ(ε)\E2δ(ε)) is sufficiently small so that

µΛ(Q−1(E2δ(ε))\Q−1(E2δ(ε))) < ε.

First we show that there exists a truncation number L0, such that for all L ≥ L0, E ∈ BD and

λ0 ∈ Λ, (
QL
λ̂L0

)−1

(Eδ(ε))× Λ̂L ⊂ Q−1(E) ⊂
(
QL
λ̂L0

)−1

(Eδ(ε))× Λ̂L.

Because Q : Λ → D is continuous so uniformly continuous, there exists an L0, such that

for all L ≥ L0, with |QL
λ̂L1

(λL) − QL
λ̂L2

(λL)| < δ(ε) for any λ, λ1, λ2, so for any λ0 ∈ Λ,

Q

((
QL
λ̂L0

)−1

(Eδ(ε))× {λ̂L}
)
⊂ E for any λ̂L. Hence

⋃
λ̂L∈Λ̂L

(
QL
λ̂L0

)−1

(Eδ(ε))× {λ̂L} =
(
QL
λ̂L0

)−1

(Eδ(ε))× Λ̂L ⊂ Q−1(E).

On the other side, since for all λ̂L ∈ Λ̂L,
(
QL
λ̂L

)−1

(E) ⊂
(
QL
λ̂L0

)−1

(Eδ(ε)),

Q−1(E) =
⋃

λ̂L∈Λ̂L

(
QL
λ̂L

)−1
(E)× {λ̂L} ⊂ QL

λ̂L0

−1
(Eδ(ε))× Λ̂L.
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Since E2δ(ε) = (Eδ(ε))δ(ε) and E2δ(ε) = (Eδ(ε))δ(ε), we have Q−1(E2δ(ε)) ⊂
(
QN
λ̂N0

)−1

(Eδ(ε))×

Λ̂N ⊂ Q−1(E) ⊂
(
QN
λ̂N0

)−1

(Eδ(ε))× Λ̂N ⊂ Q−1(E2δ(ε)).

For a positive sequence {εi} decreasing to 0, we can find a positive decreasing sequence {δ(εi)}

converges to 0 as well. Suppose {L0
δ(εi)
} is the sequence of truncation number constructed as above.

We define a new sequence {δ`} such that

δ` =


+∞ if ` < L0

δε1

max{δ(εi), L0
δ(εi)
≤ `}} if ` ≥ L0

δε1

,

so that

C1
` =

(
Q`
λ̂`0

)−1

(Eδ`)× Λ̂`, C2
` =

(
Q`
λ̂`0

)−1

(Eδ`)× Λ̂`

satisfy C1
` ⊂ Q−1(E) ⊂ C2

` and µΛ(C2
` \C1

` )→ 0 as `→∞. The statement of the theorem holds

since C1
` ⊂ Q`

λ̂`0

−1
(E)× Λ̂` ⊂ C2

` .

5.2 Approximation of densities
In this section, we investigate how for a given I = {Ii}Mi=1 on D, the ρΛ,M induced by Q

defined as in Theorem 3.3.1,

ρΛ,M =
M∑
i=1

pi1Q−1(Ii)(λ), pi =
PD(Ii)

µΛ(Q−1(Ii))
, (5.1)

can be approximated by a simple function induced by Q`
λ̂`0

. Define a simple function on Λ` as

ρ′Λ`,M =
M∑
i=1

p′i1(
Q`
λ̂`0

)−1

(Ii)
(λ`), p′i =

PD(Ii)

µΛ`

((
Q`
λ̂`0

)−1

(Ii)

) . (5.2)
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We omit λ0 in the notation ρ′
Λ`,M

, since its properties do not depend on the choice of λ̂`0 ∈ Λ̂. So

when we use ρ′
Λ`,M

, we assume Q`
λ̂N0

has been defined according to an arbitrarily chosen λ̂`0. At

the same time, we define ρΛ`,M as density on Λ by

ρΛ`,M(λ) = ρ′Λ`,M(λ`),

or we can define it as

ρΛ`,M =
M∑
i=1

p′i1Q`
λ̂`0

−1
(Ii)×Λ̂`(λ), p′i =

PD(Ii)

µΛ(Q`
λ̂`0

−1
(Ii)× Λ̂`)

. (5.3)

The next result shows ρΛ`,M converges to ρΛ,M a.e..

Theorem 5.2.1. Given a partition I = {Ii}Mi=1 of D,

a.ρΛ`,M → ρΛ,M a.e. as `→∞.

b. {ρΛ`,M} is uniformly integrable.

Proof. Since µD(
⋃M
i=1 ∂Ii) = 0, µΛ(

⋃M
i=1 Q

−1(∂Ii)) = 0 by Theorem 5.1.2, we only consider

λ ∈ Λ \
⋃M
i=1Q

−1(∂Ii).

For λ ∈ Q−1(Ij) and λ /∈ Q−1(∂Ij), there exists anL such that for all ` > L, λ ∈
(
Q`
λ̂`0

)−1

(Ij)×

Λ̂`, so ρΛ`,M(λ) = p`j when ` > L, where

p`j =
PD(Ij)

µΛ`

((
Q`
λ̂`0

)−1

(Ij)

) =
PD(Ij)

µΛ

((
Q`
λ̂`0

)−1

(Ij)× Λ̂n

) .

Since µΛ

(((
Q`
λ̂`0

)−1

(Ij)× Λ̂`

)
4Q−1(Ij)

)
→ 0, when `→∞,

p′j →
PD(Ij)

µΛ(Q−1(Ij))
= pj.

which means ρΛ`,M(λ)→ ρΛ,M . Therefore ρΛ`,M → ρΛ,M a.e. as `→∞.
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For a fixed M , when ` is sufficiently large, we have |ρΛ`,M(λ)− ρΛ,M(λ)| < ε/δ for λ ∈ Λ′ ⊂

Λ where µΛ(Λ \Λ′) < ε/(max ρΛ,M + ε/δ), and |max ρΛ`,M −max ρΛ,M | < ε/δ. So,

∫
E

ρΛ`,MdµΛ =

∫
E∩Λ′

ρΛ`,MdµΛ +

∫
E\Λ′

ρΛ`,MdµΛ

≤
∫
E∩Λ′

(ρΛ,M + ε/δ)dµΛ +
ε

max ρΛ,M + ε/δ
(max ρΛ,M + ε/δ)

≤
∫
E

ρΛ,M + ε+ ε < 3ε.

for all E ∈ BΛ satisfying µΛ(E) ≤ δ. Thus, the sequence {ρΛ`,M} is uniformly integrable.

5.3 Approximation of probabilities
To discuss the convergence properties of Algorithm 3, we denote the computed P (bj) as

PΛk,M,N(bj), and reserve PΛ to denote the true probability measure. For A ∈ BΛ with PΛ(∂A) =

0, define AN as

AN =
⋃

λj∈A,1≤j≤N

bj,

then use

PΛ,M,N(AN) =
∑

λj∈A,1≤j≤N

PΛ,M,N(bj)

as an approximation of PΛ(A). The next theorem shows that when {Ii}Mi=1 and {bj}Nj=1 become

fine, PΛ,M,N(AN) converges to PΛ(A).

Theorem 5.3.1. Given an event A ∈ BΛ, which can be approximated by a sequence of cylindrical

sets with negligible boundaries, i.e. there exists {A`}, A` = A′`×Λ̂k` , A′` ∈ BΛk` , µΛk` (∂A
′`) = 0

such that lim`→∞ µΛ

(
A4A`

)
= 0. There exists a sequence of approximations PΛk` ,Mm,Nn(A′`Nn)

using simple function approximations and requiring only calculations of volumes in Λk` based on

partition sequence {Im}∞m=1 = {{Ii}Mm
i=1 }∞m=1 on D and {T`,n}∞n=1 = {{bk`,j}

Nn
j=1}∞n=1 on Λk` that

satisfies

lim
m→∞

lim
`→∞

lim
n→∞

PΛk` ,Mm,Nn(A′`Nn) =

∫
A

ρΛdµΛ,
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if limm→∞max1≤i≤Mm diam(Ii) = 0 and limn→∞max1≤j≤Nn diam(bk`,j) = 0.

Proof. The proof of this theorem is closely related to proof of Theorem 3.3.1. First of all, given

a sequence of partitions {Im}∞m=1 = {{Ii}Mm
i=1 }∞m=1 on D, we define ρΛ,Mm according to Theorem

3.3.1, ρ′
Λk` ,Mm

as (5.1), ρΛk` ,Mm
as (5.2). For a sequence of partitions {T`,n}∞n=1 = {{bk`,j}

Nn
j=1}∞n=1

on Λk` , we associate each bk`,j with a point λk`j ∈ bk`,j , and construct

ρ′
Λk` ,M,Nn

(λk`) =
Nn∑
j=1

pj1bk`,j(λ
k`), pj =

PD(Ii)∑
λ
k`
o ∈

(
Q
k`

λ̂
k`
0

)−1

(Ii)

µΛk` (bk`,o)
if λk`j ∈ Q

k`

λ̂
k`
0

−1
(Ii),

(5.4)

and

PΛk` ,Mm,Nn(A′`Nn) =
∑

λ
k`
j ∈A′`

PΛk` ,Mm,Nn(bk`,j)

=

∫
A′`Nn

ρ′
Λk` ,Mm,Nn

dµΛk`

As with the proof for the finite dimensional case, the proof consists of 3 steps. First we show

a.e. convergence; second we show uniform integrability; finally we combine a.e. convergence and

uniform integrability to show the convergence of the measures.

As in the proof of Theorem 3.3.1, ρΛ,Mm → ρΛ a.e. whenm→∞, and ρ′
Λk` ,Mm,Nn

→ ρ′
Λk` ,Mm

a.e. when n→∞. By Theorem 5.2.1, ρΛk` ,Mm
→ ρΛ,Mm a.e. as `→∞.

For uniform integrability, in the proof of Theorem 3.3.1, {ρΛ,Mm} is shown to be uniformly

integrable, and {ρ′
Λk` ,Mm,Nn

} for fixed m and ` are shown to be uniformly integrable as well.

Lemma 5.2.1 also shows {ρΛk` ,Mm
} for fixed m are uniformly integrable.

Convergence of measure can be proved in 3 steps as below: First, the Vitali convergence theo-

rem implies ∫
Λk`
|ρ′

Λk` ,Mm,Nn
1A′` − ρ′Λk` ,Mm

1A′` |dµΛk` → 0 as n→∞;

for fixed m and `. By the uniform integrability of ρΛk` ,Mm,Nn ,
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∫
Λk`
|ρ′

Λk` ,Mm,Nn
1A′`Nn

− ρ′
Λk` ,Mm,Nn

1A′` |dµΛ =

∫
A′jNn4A

′j
ρ′
Λk` ,Mm,Nn

dµΛk` → 0 as n→∞.

So we have ∫
Λk`
|ρ′

Λk` ,Mm,Nn
1A′`Nn

− ρ′
Λk` ,Mm

1A′` |dµΛk` → 0 as n→∞. (5.5)

Since ρ′
Λk` ,Mm

(λk`) = ρΛk` ,Mm
(λ)

∫
Λk`

ρ′
Λk` ,Mm

1A′`dµΛk` =

∫
Λ

ρΛk` ,Mm
1A`dµΛ.

Second, by the Vitali convergence theorem,

∫
Λ

|ρΛk` ,Mm
1A` − ρΛ,Mm1A` |dµΛ → 0 as `→∞,

and by properties of the sequence {A`}

∫
Λ

|ρΛ,Mm1A` − ρΛ,Mm1A|dµΛ =

∫
A`4A

ρΛ,MmdµΛ → 0 as `→∞.

Combining these two yields

∫
Λ

|ρΛk` ,Mm
1A` − ρΛ,Mm1A|dµΛ → 0. (5.6)

Last, the Vitali convergence theorem implies,

∫
Λ

|ρΛ,Mm1A − ρΛ1A|dµΛ → 0 as m→∞. (5.7)

Combing (5.5), (5.6), and (5.7), we have

lim
m→∞

lim
`→∞

lim
n→∞

∣∣∣∣∫
Λk`

ρ′
Λk` ,Mm,Nn

1A′jNn
dµΛk` −

∫
Λ

ρΛ1AdµΛ

∣∣∣∣→ 0.
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Chapter 6

Numerical examples

In this chapter, we present an example of the SIP for Q consisting of a set of linear functionals

on L2([0, 1]).

By using Fourier basis, we establish a isometric isomorphism between L2([0, 1]) and the space

of Fourier coefficients `2. Any λ ∈ L2([0, 1]) is isomorphic to a function on [0, 1), which we extend

to a periodic function λ̄ : R → R by λ̄(t) = λ(t), t ∈ [0, 1) and λ̄(t + 1) = λ̄(t). For simplicity,

we use λ to denote its extension λ̄ as well.

Consider the following functions in L2([0, 1]):

λ1(t) =
1

4
t3,

λ2(t) = (1− t)t,

λ3(t) =
5

2
t(1− t)(0.5− t),

λ4(t) = 32t2(1− t)2.

Although all of them seem arbitrarily smooth, when extended to periodic functions on R, they

have very different behaviors at points 0,±1,±2, · · · as shown in Figure 6.1. Specifically, after

such extension, λ1 is not continuous, λ2 is a C0 function, λ3 is a C1 function, λ4 is a C2 function.

So their Fourier coefficients have a decay rate of
1

n
,

1

n2
,

1

n3
,

1

n4
respectively.

We consider the SIP to detect a function in L2([0, 1]), which can be treated as an SIP for a

sequence in `2. We set the QoI as the function values at 5 points (0.1, 0.2, 0.4, 0.5, 0.7), so the map

Q : Λ→ D is defined to be

Q(λ) = (λ(0.1), λ(0.2), λ(0.4), λ(0.5), λ(0.7)).
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(b) λ2(t) = t(1− t).
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(d) λ4(t) = 32t2(1− t)2.

Figure 6.1: Periodic functions whose Fourier coefficients have different decay rates
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We take λ2(t) = t(1− t) as the true function, which is equivalent to taking the Fourier coeffi-

cients

λ2 = (a0, ai, bi) where a0 =
1

3
, ai = −cos(iπ)

i2π2
, bi = 0, i = 1, 2, 3, · · ·

as the true point in `2. Then

Q(λ2) = (0.08547066, 0.16300031, 0.24245401, 0.24758289, 0.20740456)

is the true value of Q(λ). We let D be given by a cube centered at Q(λ2) with edge length being

0.2. The probability measure to be inverted is a uniform distribution on D.

Since Q is continuously differentiable, and for any Λ = ([0, 1]∞, d) and M ≥ 5, JQ
λ̂M

(λM)

does not depend on λ̂M , we can show ρ̃D,Λ̂M (y, λ̂M) is continuous on D × Λ̂M a.e. by Theo-

rem 2.4.3. Consequently, all convergence results apply, and solution to the infinite dimensional

SIP can be approximated by the SIP with truncated dimension. All subsequent computations are

carried out in BET package McDougall (2016).

We now formulate the SIP to solve for the probability distribution on Λ using the specified

distribution on D. To study the effect of decay, we consider domains of Fourier coefficients with

decay powers from 1 to 4 for the SIP

Λ(−p) = {(a0, ai, bi) : a0 ∈ [−1

2
,
1

2
], ai ∈ [− 1

2ip
,

1

2ip
], bi ∈ [− 1

2ip
,

1

2ip
], i = 1, 2, 3, · · · }

for p = 1, 2, 3, 4.

Since all such SIP can be approximated by the SIP with truncated dimension, we set the trun-

cation number M = 9 and then only consider a0, ai, bi, i = 1, 2, 3, 4. Abusing the notation, we

denote the truncated cube as Λ(−p), that is

Λ(−p) = {(a0, ai, bi) : a0 ∈ [−1

2
,
1

2
], ai ∈ [− 1

2ip
,

1

2ip
], bi ∈ [− 1

2ip
,

1

2ip
], i = 1, 2, 3, 4}

79



for p = 1, 2, 3, 4, as the domain for the SIP we actually solve. The true value on the truncated

domain are then

λ2 = (a0, ai, bi) where a0 =
1

3
, ai = −cos(iπ)

i2π2
, bi = 0, i = 1, 2, 3, 4.

To solve these SIP, we simply let the partition on the range be the cube itself, and the partition on

the domains be a Voronoi Tesselation generated by random sample of size 20000. The numerical

solutions to each of the SIP are probability estimates for cells centered at every sample point in

Voronoi tessellation on the domain, although we do not construct the Voronoi tessellation explicitly.

To compare the solutions, we show a two dimensional marginal density of a1 and b3 in Figure

6.2. While the edges of domains have different sizes, we scale them to the same size for compari-

son. When the decay power is increasing, the 2-dimensional marginal plots show less multimodal

behavior and tend to be more spread out over the domain of b3.

We draw sample points from the high probability region from different domains, and plot the

functions they represent in Figure 6.3. The effect of the decay is then reflected in the fluctuation

of the functions: the higher the decay rate, the less the fluctuation of the functions from the high

probability region.
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Figure 6.2: Marginal density of a1, b3 of solutions of SIP with domains of different decay powers.
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Figure 6.3: Orange curve represents the true function λ2(t) = t(1 − t), blue curve represents its Fourier
expansion approximation up to truncation number 9, blue dots are the true values Q(λ2), grey curves are 10
samples from the high probability regions from solutions of the SIP.
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Chapter 7

Review of probabilistic inverse problem methods

This chapter is a review about all inverse problem methods which solve model inputs prob-

abilistically. It is a self-contained chapter begins with reviewing some of the pertinent materials

from Chapter 1.

7.1 Introduction
Mathematical models, for example differential equations implemented by computer code using

numerical methods, are widely used to characterize physical processes in systems in science and

engineering disciplines. The solution to differential equations characterize behavior of the system

being modeled. However the interest is typically not in the solution, but in Quantities of Interest

(QoI) computed as functionals of the solution. Thus the model induces a complex, nonlinear,

multiscale, computationally expensive measurable map from the parameter domain to the range

defined as the space of QoI. Solutions of these models are usually determined by a set of parameters

having physical meanings. Thus, parameter values are of interest for the information about the

physical system being modeled. Parameter values are also critical for predicting system behavior.

The procedure of inferring unknown parameters of mathematical models from QoI observations

is a fundamental inverse problem that has many variations in mathematics and statistics. In this

paper we just use “inverse problem" as a broad term for all such procedures.

Uncertainty and stochastic variation associated with parameters due to inherent stochasticity

and/or incomplete knowledge is ubiquitous in physical modelling, and is a central topic of the

discipline of Uncertainty Quantification (UQ). The main approach to represent and quantify such

uncertainty uses probability theory, treats parameters as random variables and describes the uncer-

tainty using probability distributions.

In recent years, we have developed a formulation of inverse problems called the Stochastic

Inverse Problem (SIP) for computing the probability distribution of stochastic parameters from
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stochastic ovservations of QoI. We assume that there is an unknown probability distribution gov-

erning behavior of the parameters which results in a distribution describing the variations of the

QoI. If the distribution on the QoI is given the SIP is to determnine the distribution on the param-

eters. This is complicated becasue the inverse problem for the model has set-valued solutions in

general. This approach has a complete theoretical foundation based in measure theory, differen-

tial geometry, stochastic geometry, and numerical analysis, as well as an implementation that has

allowed application to complex engineering problems.

The SIP begins with the assumption that a probability measure is given on the range of the

mathematical model, while in practice only data are available and estimating the probability distri-

bution from data is a well-studied task in statistics. As for many applications, the ideal approach

would be applying the SIP coupled with statistical methods.

One of the most popular statistical methods is parametric statistical models based on the as-

sumption that the true distribution comes from a family of distributions indexed by finite dimen-

sional parameters. The inputs to the mathematical models are also often called parameters as we

have done in the preceding discussions. To distinguish the two, we name the parameters to math-

ematical models as “inputs”, and reserve “parameter” to denote the vectors indexing statistical

models.

Bayesian methods, such as Bayesian Inversion (Stuart, 2010) and Bayesian calibration(Kennedy

and O’Hagan, 2001), are popular partly because Bayes rule automatically outputs the posterior dis-

tribution, up to its functional form, as the solution once the prior distribution and likelihood (sta-

tistical model) are specified. Random samples drawn supposedly from the posterior distribution

via algorithms like MCMC are often used in applications. While Bayesian Inversion and Bayesian

calibration both employ Bayes rule to yield posterior distributions of inputs, they have different

assumptions and goals.

This article is divided into five parts. The next section, Section 2 describes the Deterministic

Inverse Problem. Section 3 discusses the formulation and computational considerations of the SIP.

Section 4 describes the basic formulation of Bayesian inversion, and Bayesian calibration with
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some discussions of their implications. It also contains a subsection explaining how Bayesian

Inversion and SIP are related, with a simple example. Section 5 shows how SIP can be coupled

with statistical methods.

7.2 Inverse problem

7.2.1 Basic setup

Differential equations induce an operator Q0 : Λ → S from the parameter space Λ to the

solution function space S. Usually, the interest lies not in the solution itself, but in QoI, computed

by functionals Q1 : S → D. Then the composite operator Q = Q1 ◦ Q0 : Λ → D maps the

unknown parameter space Λ to space of observable QoI D. We assume Λ ⊂ Rn. Since the

collected data are always finite dimensional, we assume the observation space D ⊂ Rm.

In order to work with the probability distributions, we consider measurable spaces (Λ,BΛ)

and (D,BD), where BΛ and BD are both Borel σ-algebras induced by the corresponding Borel

σ-algebras in Rn and Rm. Different approaches discussed in the following sections all rely on such

measure structures.

7.2.2 The Deterministic Inverse Problem

Given a point d ∈ D, the problem of finding input points λ∗ ∈ Λ such that Q(λ∗) = d is

the Deterministic Inverse Problem. We assume JQ has full rank. The existence and uniqueness of

the inverse solution depend on the relationship between n and m. When n > m, the problem is

underdetermined in which the solution, if it exists, is an n−m dimensional manifold; when n = m,

the solution is a unique point; when n < m, the problem is overdetermined, and the solution exists

only if d belongs to an n dimensional submanifold in D.

When λ∗ does not exist, a least square estimator is often used instead. Namely, for a given

norm || · ||D, we compute

argmin
λ
||d−Q(λ)||2D,
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and interpret λ∗ as a “best” possible solution. Note that the least square estimate is the solution of

the deterministic inverse problem, even when the exact solution λ∗ exists, since ||d−Q(λ∗)||2D = 0.

However, this approach does not solve the problem of non-uniqueness when n < m. For n > m,

even when the solution exists and is unique, it is generally difficult to find. A common modification

that alleviates numerical instability, and yields a unique solution in the underdetermined case is the

so-called regularized least square, which has the form,

argmin
λ
||d−Q(λ)||2D + ||λ− λ0||2Λ,

where a point λ0 is specified along with a norm || · ||Λ (Tikhonov and Arsenin, 1977).

The weight of regularization term can be adjusted so that the regularized least square estimator

is unique and has nice numerical properties. However, the connection between the regularized

least square estimator and the least square estimator and/or the set-valued inverse in the underde-

termnined case is unclear.

7.2.3 The Stochastic Inverse Problem

Studying of forward stochastic problem, which concerns the definition and computing for

probability distribution of QoI induced by a given probability distribution of the model inputs

(Breidt et al., 2011; Butler et al., 2012, 2014), motivates the SIP, which is the direct inverse of

the forward stochastic problem. In the Stochastic Forward Problem (SFP), a probability mea-

sure PΛ on (Λ,BΛ) induces a probability measure PD on (D,BD) in the sense that for A ∈ BD,

PΛ(Q−1(A)) = PD(A), which is denoted PD = QPΛ. The SIP is the direct inverse to the SFP in

which the existence and computation of PΛ such that PD = QPΛ given PD is studied.

As with the Deterministic Inverse Problem, when n ≥ m, solution exists but is not unique;

when n = m, Q is a diffeomorphism, and there is a unique solution; when n = ∞ or n > m, the

solution is not unique. We do not consider the overdetermined case. In that case generalizations of

a least square estimator, for example, defining the solution as the one inducing a measure with the

least Kullback-Leibler divergence with PD, are possible.
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We assume D = Q(Λ), thus D is the image of Q on Λ. As a result, each value d ∈ D cor-

responds to a set of values in Λ, denoted as Q−1(d). Using results from differential geometry,

Q−1(d) is a n − m dimensional smooth manifold, called generalized contour, and Λ can be de-

composed as a union of non-intersecting generalized contours indexed by points inD. If we define

the equivalence relation on Λ as being mapped to the same point on D, a generalized contour is an

equivalence class under this equivalence relation, which induces an equivalence decomposition of

Λ. We can index the space of equivalence classes in Λ by D.

The Disintegration Theorem(Chang and Pollard, 1997), which is analogous to a non-linear

generalization of product measure theorem, plays a central role in the SIP. It asserts that there exists

a family of probability measures {PN(·; d)}, each of which is concentrated on the generalized

contour Q−1(d), such that

PΛ(A) =

∫
Q(A)

∫
Q−1(d)∩A

dPN(λ; d)dPD(d).

The disintegration of PΛ reveals that PD entirely determines the distributions of generalized con-

tours, but provides no information as to {PN(·; d)}. So different families of conditional probabil-

ity distributions {PN(·; d)} yield different solutions of the SIP. The choice of {PN(·; d)} is totally

subjective and hence called “Ansatz”. A common Ansatz is associated with the disintegration of

Lebesgue measure µΛ:

µΛ(A) =

∫
Q(A)

∫
Q−1(d)∩A

dµN(λ; d)dµ̃D(d),

where µ̃D = QµΛ. Under reasonable regularity conditions on Q and Λ, µD is absolutely con-

tinuous with respect to µ̃D. So if PD is absolutely continuous with respect to µD, it is absolutely

continuous with respect to µ̃D. The Uniform Ansatz (Butler et al., 2014) assumes dµN(λ; d) =

dPN(λ; d), and uniquely define PΛ up to an almost sure equivalence on Λ with the density

pΛ(λ) =
dµD(Q(λ))

dµ̃D(Q(λ))
pD(Q(λ)),
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with respect to µΛ. Furthermore, any probability measure P 0
Λ on Λ which has a density with

respect to µΛ can provide a different family of conditional distribution by disintegration, and in

turn determine a different PΛ as a solution to the SIP under the Uniform Ansat. We refer to P 0
Λ as

a base measure.

Now that the solution probability measure is uniquely defined, it needs to be computed nu-

merically. A partition of Λ of which the elements are generating sets for Borel σ−algebra of Λ,

along with their probability estimates (Butler et al., 2014) is taken as a representation of PΛ. The

partition can be a regular grid, while a Voronoi tessellation generated by Monte Carlo samples

from a known probability distribution is more robust in high dimensional settings. The latter ap-

proach resembles importance sampling, as its probability estimates for each of Voronoi cells can

be interpreted as weights in importance sampling.

7.3 Bayesian Inversion
The underpinning assumption of Bayesian Inversion have two ingredients: the inputs are fixed

yet unknown, and the observed data point is an outcome of true output perturbed by additive

random noise(Marzouk et al., 2007; Stuart, 2010). So it is necessary to distinguish the space of

observed QoI, D̄, from the space of true QoI,D. Again, we assume (D̄,BD̄) is a measurable space.

Let random variable Λ distributed as the prior distribution PΛ, so Y = Q(Λ) is the random

variable taking values in D. By assumption, the observed random variable Ȳ follows a parametric

distribution {PD̄|D(·|y)} when Y = y, and each PD̄|D as a measure on (D̄,BD̄) is absolutely

continuous with respect to a measure ν on (D̄,BD̄), i.e.

pD̄|D(ȳ|y) =
dPD̄|D(·|y)

dν
(ȳ).

Treated as a function of y with ȳ fixed, pD̄|D(ȳ|y) is the likelihood.

It is also assumed that the conditional distribution for Ȳ given Λ = λ is

PD̄|Λ(·|λ) = PD̄|D(·|Q(λ)).
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So

pD̄|Λ(ȳ|λ) =
dPD̄|D(·|Q(λ))

dν
(ȳ) = pD̄|D(d̄|Q(λ)).

When pD̄|Λ(d̄|λ) is a measurable function on D̄ × Λ, Bayes Theorem (Schervish, 2012) implies

that the posterior distribution of Λ satisfies:

dPΛ|D̄

dPΛ

(λ|ȳ) =
pD̄|Λ(ȳ|λ)∫

Λ
pD̄|Λ(ȳ|λ)dPΛ

=
pD̄|D(ȳ|Q(λ))∫

Λ
pD̄|D(ȳ|Q(λ))dPΛ

.

A common choice of pD̄|D(ȳ|y) follows from Ȳ = Y + η where Y and η are independent, and

η follows a specific distribution. It is further assumed that i.i.d. additive errors are responsible for

the discrepancy between each true QoI Yi and its measurement Ȳi; i.e.,

Ȳi = Q(Λi) + ηi, ηi
iid∼ N

(
0, σ2

)
, 1 ≤ i ≤ m.

Frequently, it is assumed that Ȳ −Q(Λ) ∼ N(0, σ2Σ0) with specified σ2 and Σ0 (Marzouk et al.,

2007).

As an example, we assume a Gaussian prior for λ centered at λ0, the posterior distribution of

Λ satisfies:

pΛ|D̄(λ|d̄) ∝ exp

(
−1

2
||d̄−Q(λ)||2D −

1

2
||λ− λ0||2Λ

)
.

This implies that the MAP estimator is equivalent to the regularized least square estimator. In

general the solution depends on the choice of prior, where Bayesian theory does not provide a

prior.

The primary goal of solving Bayesian Inversion is to represent the entire posterior distribution,

which usually does not belong to any standard parametric distribution. This can either be done by

drawing random samples from the distribution via algorithms like MCMC; or approximating the

target probability density by variational methods.
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7.4 The Bayesian Inversion posterior distribution as a solution

to the SIP
If Λ ∼ PΛ and Y = Q(Λ), it follows that Y ∼ PD where PD = QPΛ. We refer to PD as the

induced prior. Given a conditional distribution {pD̄|D(·|y)}, the posterior distribution PD|D̄ of Y

satisfies
dPD|D̄
dPD

(d|d̄) =
pD̄|D(d̄|d)∫

D pD̄|D(d̄|d)dPD
,

given Ȳ = ȳ.

Recall that the first step of the formulation of the SIP is to uniquely define a probability measure

on Λ as the solution with the Uniform Ansatz. One natural question arises as to what is the

posterior distribution of the Bayesian Inversion from the perspective of the SIP for the case n ≥ m.

Next theorem asserts that it can be shown as a solution to the SIP given PD|D̄ on D.

Theorem 7.4.1. When n > m, the posterior distribution PΛ|D̄(·|d̄) of Λ, is a solution to the SIP

given PD|D̄(·|d̄), the posterior distribution of Y on D, with the Uniform Ansatz with respect to the

prior PΛ. A direct result is PD|D̄(·|d̄) = QPΛ|D̄(·|d̄).

Proof. By the Disintegration Theorem (Chang and Pollard, 1997), given A ∈ B(Λ), PΛ admits

the following disintegration:

PΛ(A) =

∫
Q(A)

∫
Q−1(d)∩A

dPN(λ; d)dPD(d).

The posterior distribution PD|D̄ satisfies

dPD|D̄
dPD

(d|d̄) =
pD̄|D(d̄|d)∫

D pD̄|D(d̄|d)dPD
.

Assuming there is a P̂Λ on Λ such that its induced measure on D is PD|D̄, then:

P̂Λ(A) =

∫
Q(A)

∫
Q−1(d)∩A

dP̂N(λ; d)dPD|D̄(d|d̄).

90



Under the Uniform Ansatz dP̂N(λ; d) = dPN(λ; d), we get

dP̂Λ

dPΛ

(λ|d̄) =
pD̄|D(d̄|Q(λ))∫

Λ
pD̄|D(d̄|Q(λ))dPΛ

,

which means P̂Λ = PΛ|D̄(·|d̄) is the solution to the Bayesian Inversion problem.

7.5 Example
We assume that Λ = {(λ1, λ2) : |λ1| < 1, |λ2| < 1}, and the map is Q(λ1, λ2) = 2λ2

1 +λ3
2. We

also assume a truncated Gaussian prior on Λ, which can be sampled by first sampling (λ1, λ2)T ∈

R2 by
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Figure 7.1: Contour plot of Q.

λ1

λ2

 ∼ N


0

0

 ,

 0.25 0.125

0.125 0.3125


 ,

then remove samples outside Λ.

We assume d̄ = 2 and a Gaussian noise model with σ2 = 1. So the likelihood is proportional

to

exp{−1

2
(Q(λ1, λ2)− 2)2}.
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Then, the posterior has the form

pΛ|D̄(λ|d̄) ∝ exp{ − 1

2

λ1

λ2


T  0.25 0.125

0.125 0.3125


−1λ1

λ2


− 1

2

(
2λ2

1 + λ3
2 − 2

)2}1λ21+λ22<1.

While MCMC algorithms are widely used in Bayesian methods, we use an importance sampling

approach due to its easy implementation and close relation to the SIP numerical algorithms. Specif-

ically, we generate random samples from the prior distribution, and then use the likelihood as

weights of the samples. By Bayes rule, we know that these weighted samples can represent the

posterior distribution.

Although the solution to the Bayesian Inversion is uniquely defined, there are infinitely many

probability measures on Λ capable of inducing the posterior distribution on D. To illustrate this

and compare with results for Bayesian Inversion, we solve the SIP using the Uniform Ansatz with

respect to the Lebesgue measure and the prior distribution given the posterior distribution on D.

As shown in Figure 7.3, while two probability measures are very different, they induce the same

probability measure on D. The solution using the Lebesgue base measure has contours which

match those in Figure 7.1 due to the Uniform Ansatz. The solution using prior base measure is the

same as the posterior for the Bayesian Inversion as implied by Theorem 7.4.1.

7.6 Bayesian Calibration
There is another popular approach towards modelling the inputs of deterministic model as

random variables named Bayesian Calibration pioneered by Kennedy and O’Hagan (2001). Cal-

ibration models use Gaussian processes to represent both the real physical process and mathe-

matical model represented by computer code. Then it aims to find a best-fitting parameter λ “in

the sense of representing the data faithfully according to error structure that is specified for the

residuals"(Kennedy and O’Hagan, 2001). The processes often have spatial or temperal domain.
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(b) Posterior distribution on Λ.
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Figure 7.2: 2d histogram for prior and posterior on Λ, and 1d histogram for prior and posterior on D.
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Figure 7.3: 2d histogram for solutions of the SIP
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For physical process, the data are real observations; for computer code process, the data are gen-

erated by computer program. Bayesian hierarchical model provides a flexible tool to incorporate

mean and covariance parameters for both processes and the inputs. With a multiple of parameters,

Bayesian hierarchical model enjoys strong expressive power but may suffer from identifiable or

consistency problems (Tuo and Jeff Wu, 2016).

7.7 Comment
The above theorem and example illustrate how the SIP can be employed to connect two pos-

terior distributions from the Bayesian Inversion. However, the SIP and Bayesian Inversion are

fundamentally different approaches reflecting distinct beliefs. The SIP begins with the idea that

there is inherent stochasticity of the inputs responsible for the stochasticity of the QoI. In Bayesian

Inversion, however, the posterior distribution is totally determined by the noise model with as-

sumed variance and subjective belief summarized by prior distribution. The Bayesian Inversion is

usually formulated for a one point problem, i.e. there are no replications in each QoI. Should the

replications are given, the variance of noise can be estimated and uncertainty of the inputs can be

hugely reduced.

So in Bayesian Inversion, more replications should result in a more concentrated posterior

distribution of Λ, indicating less uncertainty; while for the SIP, ideally more data lead to a more

accurate estimation of an irreducible probability distribution of Y and hence of Λ. To faithfully

reflect the motivation of SIP, we need to apply a full statistical modeling approach to the data with

replications, as is described in next section.

7.8 SIP coupled with statistical models
Consider the problem of estimating probability distribution from a random sample of i.i.d.

random vectors whose observations are not available. Rather, there is a deterministic map from the

space of random vector values, refered to as input space, to an observational space, thus inducing

a new set of i.i.d. random vectors whose observations can be collected.
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We assume a random vector Λ taking values on Λ with distribution PΛ, and it induces random

vector Y = Q(Λ) taking values on D with distribution PD, then PD = QPΛ. Given pD as the

density of PD with respect to µD, denoted as Y ∼ pD, we want to know the distribution of Λ. Then

under usual conditions of the SIP, Λ ∼ pΛ, where

pΛ(λ) =
dµD(Q(λ))

dµ̃D(Q(λ))
pD(Q(λ)).

A common task of statistics is to estimate a probability distribution function by random samples

drawn from it. When data are abundant, nonparametric statistical methods like histogram often

yield reasonable results. On the contrary when data are relatively scarce and can be comfortably

assumed to drawn from a family of probability distributions indexed by parameters, parametric

statistical modelling are more efficient.

The SIP and statistical models, each addressing one aspect of the proposed problem, should

be combined to solve it as a whole. One possibility is to apply them stepwise: first to fit a sta-

tistical model to the data on D yielding a probability distribution of the observations, then find

the probability measure as the solution of the SIP on Λ. Another possibility is to directly make

inference for the statistical models on Λ induced by statistical models on D. Here we compare the

two approaches in a parametric statistical modelling framework.

We first consider a one variable problem where there is one random variable Λ taking values

on Λ and Y = Q(Λ). Assume a parametric model indexed by θ ∈ Θ ⊂ Rk denoted as PD|Θ =

{pD|Θ(·|θ) : θ ∈ Θ} on (D,BD), which induces a parametric model PΛ|Θ on Λ by

pΛ|Θ(λ|θ) =
dµD(Q(λ))

dµ̃D(Q(λ))
pD|Θ(Q(λ)|θ), θ ∈ Θ,

under the Uniform Ansatz. Assume y is a realization of Y , then treated as a function of θ, the

likelihood function on D is just

L(θ|y) = pD|Θ(y|θ).
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Since Y = Q(Λ), the realization of Λ satisfies λ ∈ Q−1(y), yielding the likelihood on Λ as

L(θ|λ) =
dµD(Q(λ))

dµ̃D(Q(λ))
pD|Θ(Q(λ)|θ) =

dµD(y)

dµ̃D(y)
pD|Θ(y|θ) ∝ L(θ|y).

Thus the likelihood on D is proportional to the likelihood on Λ.

Where there are i.i.d. {Λ`}L`=1 and Y` = Q(Λ`), {Y`}L`=1 are also i.i.d.. Further assume Y`
iid∼

pD|Θ(·|θ), 1 ≤ ` ≤ L, θ ∈ Θ, given their realizations {y`}L`=1, define y = (y`)
L
`=1, the likelihood

based on the statistical models on D is

L(θ|y) =
L∏
`=1

pD|Θ(y`|θ).

The realizations of {Λ`}L`=1 are unknown {λ`}L`=1 with Q(λ`) = y`. We define λ = (λ`)
L
`=1, so

under the Uniform Ansatz the likelihood function on Λ is:

L(θ|λ) =
L∏
`=1

dµD(Q(λ`))

dµ̃D(Q(λ`))
pD|Θ(Q(λ`)|θ) =

L∏
`=1

dµD(y`)

dµ̃D(y`)

L∏
`=1

pD|Θ(y`|θ) ∝ L(θ|y).

Under both scenarios, the implication of the Uniform Ansatz can be summarized as this: the

location of the assumed λ on the generalized contour Q−1(y) does not affect the the value of

likelihood function for Q(λ) = y.

There is a famous principle in statistics called “likelihood principle”. One statement of this is

“all information about θ obtainable from an experiment is contained in the likelihood function for

θ given x”(Lindsey, 1999). Based on the fact that L(θ|λ) and L(θ|y) only differ by a factor, we

come to the following result.

Lemma 7.8.1 (Invariance of θ). Statistical inference procedures satisfying likelihood principle

produce same results concerning θ on D and on Λ with the Uniform Ansatz.

Many popular statistical inference procedures, including maximum likelihood and Bayesian

statistics, follow likelihood principle. Broadly speaking, many nonparametric procedures, such

as histogram, can be interpreted as a result of maximum likelihood estimation by the method of
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sieves (Geman and Hwang, 1982). These methods will lead to the same inference of θ for statistical

models on D and Λ. As the probability distributions on Λ and D indexed by the same parameter θ

have one-to-one correspondence in the SIP framework under the Uniform Ansatz, the two different

approaches of combining SIP and statistical models are equivalent in the sense explained below.

Theorem 7.8.2 (Invariance of probability distribution of Λ). Two approaches of combining the SIP

under the Uniform Ansatz and statistical models satisfying likelihood principle:

1. First fit the statistical model to the data on D and obtain the corresponding probability dis-

tribution onD, then solve the SIP using the Uniform Ansatz to get the probability distribution

on Λ;

2. Since the statistical model on D induces a statistical model on Λ by the SIP under the

Uniform Ansatz, directly make statistical inference on Λ and generate the corresponding

probability distribution on Λ.

Since Bayesian method is one such invariant procedure, Theorem 7.8.1 implies the posterior

distributions of θ generated by the statistical models onD and Λ are the same given the same prior

distribution; and Theorem 7.8.2 implies the posterior predictive distributions of Λ generated by the

two mentioned procedures are the same as well.

Unlike the Bayesian Inversion or the Bayesian Calibration, the prior in this approach directly

specified to the statistical parameter space Θ rather than the mathematical input space Λ. In statisti-

cal terminology, the parameter Θ is indeed the hyperparameter for Λ. So the uncertainty expressed

by the prior and posterior distributions are in terms of the statistical parameters. So more data

result in a more accurate estimation of probability distribution of D under the Uniform Ansatz,

rather than a more accurate estimation of D itself.

The choice of appropriate statistical methods is vital for every statistical application, and the

SIP coupled with statistical model is no exception. Specifically, the statistical models should be

able to capture the variations of QoI. The choice of parameter estimation method, among maximum
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likelihood method, Bayesian method etc., is secondary. A poorly chosen statistical model would

not produce a satisfactory fit regardless of parameter estimation method.
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