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ABSTRACT OF THESIS  

 

DIFFERENTIATING EXISTING HABITAT OF THE INVASIVE TAMARISK 

(TAMARIX SPP.) FROM POTENTIAL HABITAT OF THE ENDANGERED 

SOUTHWESTERN WILLOW FLYCATCHER (EMPIDONAX TRAILLII EXTIMUS) 

THROUGH MAXIMUM ENTROPY MODELING 

 

 

Biological control of the exotic plants known collectively as tamarisk (Tamarix 

spp, saltcedar, tamarisk) in southwestern states is controversial regarding the protection 

of the federally endangered Southwestern Willow Flycatcher (Empidonax traillii 

extimus).  The songbird sometimes nests in tamarisk where floodplain-level invasion 

replaces native habitat.  Biological control with the saltcedar leaf beetle (Diorhabda 

elongate) began along the Virgin River, Utah, in 2006, enhancing the need for 

comprehensive understanding of the tamarisk-Flycatcher relationship.  I used maximum 

entropy (Maxent) modeling to separately quantify the current extent of dense tamarisk 

habitat (>50% cover) and the potential extent of habitat available for E. traillii extimus 

within the studied watersheds.  I used transformations of 2008 Landsat Thematic Mapper 

images and a digital elevation model as environmental input variables. 
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Maxent models performed well for the Flycatcher and tamarisk with Area Under 

the ROC Curve (AUC) values of 0.960 and 0.982, respectively.  Classification of 

thresholds and comparison of the two Maxent outputs indicated little spatial overlap 

between predicted suitable habitat for E. traillii extimus and predicted dense Tamarisk 

stands.  Dense tamarisk habitat comprised 1,000 km2 within the study area, of which 

8.5% was also modeled as potential habitat for E. traillii extimus.  Potential habitat 

modeled for the Flycatcher constituted 230 km2, of which 38.1% also contained dense 

tamarisk habitat.  Results showed that both native vegetation and dense tamarisk habitats 

exist in the study area and that most tamarisk infestations do not contain characteristics 

that satisfy the habitat requirements of E. traillii extimus.  Based on this study, effective 

biological control of Tamarix spp. may initially reduce the suitable habitat available to E. 

traillii extimus within the study area, but has the potential to increase suitable habitat if 

native vegetation replaces tamarisk in biocontrol areas. 
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I. INTRODUCTION

 

Humans have dramatically altered the global distribution of species over the past 

few centuries (Chaplin III et al. 2000).  This movement of species coupled with the 

disturbance of native habitats has facilitated the invasion of exotic plants and animals 

around the world, threatening the survival of many native species (Vitousek et al. 1997).  

Although exotic and native species coexist in many modern habitats, conservation efforts 

typically focus on single-species management of either the introduced or the threatened 

species.  Chemical, mechanical, and biological control efforts geared at eradicating exotic 

species can have negative effects on native populations, especially on sensitive species of 

endangered, threatened, or endemic status (Innes & Barker 1999; Cory & Myers 2000; 

Matarczyk et al. 2002).  New strategies are needed that combine conservation efforts for 

both introduced and threatened species existing within the same landscape. 

Riparian corridors often represent only 1-3% of the landscape but are vital to 

biodiversity, especially in arid regions (Naiman et al. 1993; Naiman & Decamps 1997; 

Patten 1998).  Riparian areas are also highly susceptible to invasion by introduced species 

due to their relatively abundant resources (Stohlgren et al. 1998).  In the southwestern 

United States, disturbance of the natural flow regime through damming and agricultural 

divergences has dramatically altered riparian habitats.  The lowered water table and 

reduced peak flows hinder successful propagation of native cottonwood (Populus spp.) 

and willow (Salix spp.) species, reducing the abundance of mature native riparian forests 
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(Lite & Stromberg 2005).  Members and hybrids of the exotic genus Tamarix (Tamarix 

spp, saltcedar, tamarisk) are adapted to the altered flow regime given their ability to 

extract deep water through an extensive tap root (Everitt 1980).  Tamarisk currently occur 

within most large river systems of the southwestern United States and are estimated to 

have replaced 470,000 – 650,000 ha of native riparian habitat (Robinson 1965; Zavaleta 

2000).  Tamarisk’s success further suppresses the ability of cottonwood and willows to 

reproduce (Lytle & Merritt 2004; Stromberg et al. 2007a; Merritt & Poff 2010). 

The altered ecosystems represent degraded habitat for many native species, and 

restoration has become a high-priority goal for many natural resource managers (Szaro & 

Rinne 1988).  Millions of United States dollars have been spent by government agencies 

at the local, state, and federal level in efforts to remove tamarisk and restore native 

habitats (Shafroth & Briggs 2008).  Control techniques have included burning, herbicide 

treatments, mechanical removal and most recently, biological control by the saltcedar leaf 

beetle (Diorhabda elongata) (Taylor & McDaniel 1998; Deloach et al. 2004).  

Controversies surrounding biocontrol methods arose due to the possible repercussions for 

the endangered Southwestern Willow Flycatcher (Empidonax traillii extimus) (Dudley & 

Deloach 2004; Sogge et al. 2008).   

The Southwestern Willow Flycatcher (hereafter, Flycatcher) is one of four 

recognized subspecies of Willow Flycatchers existing throughout the United States and 

southern Canada.  Neotropical migrants, these birds winter in Central and South America, 

and occupy breeding territories in riparian areas of North America for four to five months 

of the year.  The Flycatcher subspecies occupies breeding sites in Arizona, western New 

Mexico, and the southern portions of California, Nevada, Utah, and Colorado (Paxton et 



 3

al. 2007).  Extensive Flycatcher surveys conducted since 1993 have produced a current 

estimate of over 1,200 territories located at 284 breeding sites throughout the bird’s range 

(Durst et al. 2007).  A site is defined as a location where at least one Flycatcher pair has 

established a breeding territory, and a territory is generally referred to as the specific 

location of one nesting pair.  Most breeding sites contain five or less territories, and only 

a few sites contain more than 50 territories (Durst et al. 2007).  The United States Fish 

and Wildlife Service listed the Flycatcher as endangered in 1995 (United States Fish and 

Wildlife Service 1995).  The alteration of riparian habitat has been linked as the major 

factor in the subspecies’ decline (Unitt 1987).  In fact, Durst et al. (2007) estimated that 

throughout its range, approximately 27% of Flycatcher breeding sites were located in 

areas dominated (>50% cover) by tamarisk. 

Quantitative models are valuable tools when assessing habitat suitability for 

species at landscape scales.  Ground surveys can be labor-intensive and expensive, and 

models enable researchers to focus these efforts by determining areas of investigative 

importance (Morisette et al. 2006).  Maxent (maximum entropy modeling; Phillips et al. 

2006) uses presence-only data to assess the distribution of a species by estimating the 

probability of its ability to survive and reproduce in a certain area (Phillips et al. 2006).  

Maxent performs better than other models in many ecosystems including both terrestrial 

(Elith et al. 2006) and aquatic environments (Kumar et al. 2008), and appears to fit 

general relationships even under situations were sample sizes are small (Kumar & 

Stohlgren 2009). 

Both tamarisk (Evangelista et al. 2009) and the Flycatcher (Hatten & Paradzick 

2003; Paxton et al. 2007; Hatten et al. 2010) have been modeled individually at the 
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landscape level.  However, they have not been comparatively modeled for the same 

landscape.  In this study I demonstrate how single-species predictive modeling techniques 

can be combined to provide information for multi-species management purposes.  My 

goals were to quantify the amount of habitat dominated by tamarisk and available to the 

Flycatcher within the study area, and to further the understanding of the relationship 

between this endangered bird and invasive plant. 
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II. METHODS 

 

Study Area 

I conducted this study within the Great Basin Region.  The area includes the five 

United States Geological Survey watershed cataloguing units flowing into the Overton 

(northern) arm of Lake Mead (Fig. 1).  I downloaded Shapefiles of these watersheds from 

the United States Geological Survey National Hydrology Dataset Geodatabase website 

(http://nhdgeo.usgs.gov/).  The total area studied equates to 34,180 square kilometers 

(km2).  The landscape is characterized by a mix of Mojave Desert to the south and Great 

Basin Desert to the north and represents the northern limits of the Flycatcher’s range.  

Tamarisk is present in many riparian corridors of these watersheds, and dense tamarisk 

habitat (>50% cover) is common along eastern drainages.  Biological control of tamarisk 

with the saltcedar leaf beetle (Diorhabda elongata) began along the Virgin River near St. 

George, Utah, in 2006.  The area impacted by the beetles and intensity of defoliation 

events have increased in each subsequent year (Hultine et al. 2009). 

 

Datasets 

I used six Landsat Thematic Mapper scenes from eight months of the growing season for 

the analyses (Path 40, Row 33; Path 39, Rows 33, 34, and 35; and Path 38, Rows 34 and 

35; March through November, excluding July).  I downloaded the images at 30-meter 

resolution from the United States Geological Survey Earth Explorer website 
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(http://edcsns17.cr.usgs.gov/EarthExplorer/).  I collected images for each month dated 

within ten days of each other when possible, although April, June, and November data 

acquisition dates were further apart in order to acquire cloud-free images.  I created 

mosaics of individual bands 1-5 and 7 and clipped each to the project extent with ERDAS 

Imagine 2009 software.  I used the mosaics to create environmental model input variables 

for both the tamarisk and Flycatcher individual models. 

I downloaded 175 tamarisk presence points from the National Institute for 

Invasive Species Science website collected between 2000 and 2004 (www.niiss.org).  I 

used the points to run an initial tamarisk model.  In November, 2009, I traveled to the 

study area for initial model field verification.  I randomly selected points within three 

prediction categories (high, medium, and low), and I evaluated model accuracy for 81 

points.  Of the 81 points, 48 contained tamarisk with a cover value greater than 50%.   I 

used these 48 points as input for all remaining tamarisk models.  I used the remaining 33 

points, along with 44 additional collected points, as absence points.  This designation of 

cover value is important because it represents areas dominated by tamarisk as opposed to 

the location of only a single or a few plants.  This designation is also consistent with 

previous models predicting dense tamarisk habitat, along with surveys regarding 

Flycatcher habitat.  A conceptual framework is included (Appendix 1). 

I received Flycatcher breeding site presence points from United States Geological 

Survey staff based out of the Colorado Plateau Research Station.  Eleven Flycatcher sites 

were located within the study area.  Surveys conducted at sites over the course of eleven 

years quantified total number of territories per site per survey year.  Due to the dynamic 

nature of Flycatcher breeding sites, not every site was surveyed each year, and surveyed 
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sites did not necessarily contain Flycatcher territories each year (Appendix 2).  On 

average, surveys documented 61 territories in the study area each year.  More detailed 

survey results were not provided due to the sensitivity of data associated with endangered 

species.  Of the 11 breeding sites, seven existed in sites dominated by native vegetation 

and four existed in sites dominated by tamarisk.  Absence points were not determined for 

the Flycatcher.  Unlike tamarisk “absence,” Flycatcher absence is more speculative.  

Flycatchers move around and utilize different areas for different purposes during a single 

breeding season.  The absence of a Flycatcher nest does not necessarily indicate that the 

area is unsuitable as habitat.  Flycatchers have high fidelity to sites where they 

successfully fledged a chick, and higher fidelity with more chicks fledged (Paxton et al. 

2007).  This fidelity makes them likely to return to one particular site even if others are 

available.  

 

Tamarisk Model Variables 

I based the Maxent model predicting tamarisk occurrence at densities greater than 

50% on Evangelista et al. 2009.  The variables found as most suitable to predict tamarisk 

dominance within the landscape included tasselled cap transformation, normalized 

difference vegetation index (NDVI), and band 3 from October.  Tasselled cap 

transformations, originally developed to understand changes in agricultural lands, 

generate three orthogonal bands from the six-band Landsat composite.  The three 

generated bands represent measurements of soil brightness (band 1), vegetation greenness 

(band 2), and soil/vegetation wetness (band 3) (Kauth & Thomas 1976).  NDVI is 

commonly used to detect characteristics of vegetation such as canopy density.  In a study 
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of the Colorado River delta, an arid landscape with similar riparian vegetation 

characteristics to this study, NDVI performed best among indices in identifying 

vegetation percent cover (Nagler et al. 2001).  NDVI is calculated with the third (red 

visible) and fourth (near-infrared) Landsat Thematic Mapper bands and the non-linear 

equation:  

NDVI = (band 4 – band 3) / (band 4 + band 3) 

October band 3 (red visible) is used to detect tamarisk during senescence when the plant 

turns a distinguishable bright yellow-orange color (Everitt & Deloach 1990).  Due to the 

lower elevation in this study area compared to that used in Evangelista et al. 2009, and 

the presence of the saltcedar leaf beetle which has been shown to extend the growing 

season of tamarisk by three to four weeks (Dudley & Deloach 2004), I used both October 

and November band 3 in my analyses. 

 I did not include variables such as distance to water, elevation, or slope in the 

tamarisk models.  These three variables describe topographic features of the landscape, 

not the unique spectral signatures that distinguish dense tamarisk infestation from other 

vegetation (see Evangelista et al. 2009).  The goal of the tamarisk modeling effort was to 

detect areas already dominated by tamarisk, and not simply suitable for tamarisk.  

Variables derived from remote sensing images enabled me to use the unique spectral 

signatures of tamarisk to detect actual areas of tamarisk dominance. 

 

Flycatcher Model Variables 

 I based the model predicting suitable habitat for the Flycatcher on Paxton et al. 

(2007).  The protocol for surveying Flycatcher breeding sites requires surveyors to rank 
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the relative amount of native vs. exotic vegetation into one of four categories (1: >90% 

native, 2: mixed with >50% native, 3: mixed with >50% exotic, or 4: >90% exotic) and to 

determine the dominant woody vegetation at each site (Sogge et al. 1997) (Appendix 2).  

Results from surveys and previous models indicated that environmental variables thought 

to be important to Flycatchers include vegetation density, amount of edge habitat, and 

size of patch (Sogge et al. 1997; Sogge & Marshall 2000; Paxton et al. 2007).  Flycatcher 

habitat tends toward heterogeneous mixes of both vegetation age and species 

composition, and nesting sites specifically tend toward riparian edge habitat (Paxton et al. 

2007). 

Flycatchers typically arrive at nesting areas from late April through May and 

return to wintering grounds in September, and occasionally as late as October (Finch & 

Stoleson 2000).  Where previous models used variables from the months of June or July 

exclusively, I added variables from five additional months throughout the breeding 

season to incorporate the timing of migration.  I thought that environmental variables 

from the months in which nesting sites were determined may be important in predicting 

suitable habitat for the Flycatcher.  In addition, knowing that Flycatchers sometimes 

produce more than one brood per year (Paxton et al. 2007), I thought environmental 

variables depicting habitat quality toward the end of the breeding season may be 

important as well.  I created variables by transforming Landsat Thematic Mapper mosaics 

from April, May, June, August, September and October.  I used NDVI to quantify 

vegetation density, and circular neighborhood statistics at four spatial levels to quantify 

patch size, heterogeneity, and edge proximity.  I created a variable depicting topographic 

slope from a digital elevation model and used neighborhood statistics to analyze 
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floodplain characteristics.  Since Flycatchers are obligate riparian species, I included a 

Euclidean “distance to water” variable, also derived from the digital elevation model, to 

exclude densely-vegetated upland areas that may otherwise appear suitable. 

 

Data Analyses 

I separately modeled dense tamarisk habitat and suitable habitat for the Flycatcher 

with Maxent software v.3.2 (www.cs.princeton.edu/~schapire/maxent/).  For each initial 

model, I used all environmental variables as inputs (all variables listed in Appendices 3 & 

4).  After the initial run, I excluded all variables with contributions less than 1.0% and ran 

the model again.  This step reduced the variables included in the second model for 

tamarisk from twenty-three to fourteen and for the Flycatcher from sixty-nine to nine.  

From the second model outputs, I tested the contributing variables for cross-correlations 

with Predictive Analytics Software Statistics (SPSS for Windows, Rel. 18.0.0. 2009. 

Chicago: SPSS Inc.).  For highly correlated variables (Pearson correlation coefficient 

>0.80), I removed the variable with a lower contribution in the second model.  After 

removing all correlations, I ran each model a final time, the tamarisk model with ten 

environmental variables, and the Flycatcher model with five. 

To measure the predictive performance of the tamarisk model, I used features 

available through Schroder’s ROC/AUC software (http://brandenburg.geoecology.uni-

potsdam. de/users/schroeder/download.html).  This software requires presence and 

absence points to test threshold-dependent measures including correct classification rate, 

sensitivity (true positives), specificity (true negatives), and Cohen’s maximized Kappa, 

along with threshold-independent measures such as Area Under the Receiver Operating 
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Characteristic (ROC) Curve (AUC).  I randomly generated ten 34-point subsets 

(approximately 70%) of the 48 training points.  I used each subset to run a separate 

Maxent model.  I restricted the variables in each subset model as I did for the full 

tamarisk model.  I used each final subset model output to determine the prediction values 

for the respective 14 excluded presence points and a random selection of 14 of the 77 

collected absence points.  I pooled the subset prediction values to run Schroder’s analysis 

with a total of 140 presence and 140 absence points, and I reported the results of this 

analysis.  I used Raster Calculator, an ESRI ArcGIS 9.2 Spatial Analyst tool, to average 

the prediction values of the ten final subset raster outputs.  I used this average of the 

subset models for the habitat comparison.  

As with the tamarisk data, I randomly generated ten eight-point (approximately 

70%) subsets of the 11 Flycatcher training points.  I used each subset to run separate 

Maxent models.  I removed variables in each subsequent run of the separate subset 

models as before, and I averaged the prediction values of the ten subset final model 

outputs.  I used this average model in the habitat comparison.  I was unable to use 

Schroder’s ROC/AUC software to test the predictive performance of the Flycatcher 

model due to the lack of absence points. 

 

Habitat Overlap Analysis 

 To compare the resulting continuous model outputs, I defined threshold values 

which I used to categorize the continuous predictive values.  I chose thresholds consistent 

with well-performing criteria (Liu et al. 2005; Jimenez-Valverde & Lobo 2007).  For the 

tamarisk model, I used the “sensitivity-specificity difference minimizer” criteria (0.255), 
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generated from Schroder’s ROC/AUC analysis of prediction values from the 48 training 

points used in the full model and a random subset of 48 out of the 77 absence points.  I 

reclassified all prediction values less than 0.255 in the continuous model output to the 

value of one, representing the absence of dense tamarisk stands (defined as >50% cover), 

and all prediction values greater than 0.255 to the value of two, representing presence of 

dense tamarisk stands. 

Since the southwestern willow Flycatcher currently occupies less territory than 

historically, I determined three threshold levels to represent potential past, current, and 

future habitat suitability.  A relatively robust approach to threshold selection that tends 

toward high values of sensitivity and specificity is to average the prediction values for the 

model-building presence points (Liu et al. 2005).   This approach is considered good 

especially when the prevalence of model-building data changes, as is the case with the 

dynamic Flycatcher habitat.  The approach resulted in a threshold value of 0.624 for the 

Flycatcher model.  I added two additional thresholds, one above and one below this 

value.  I sorted the 11 prediction values resulting from the Flycatcher model and averaged 

the top, middle, and bottom thirds of the ordered prediction values.  I used the mean 

between the bottom and middle third as the lower threshold, and the mean between the 

middle and top third as the higher threshold value.  This method resulted in lower and 

higher threshold values of 0.515 and 0.851, respectively.  I reclassified all prediction 

values in the continuous model output below each respective threshold to the value of 

three, representing habitat not suitable for the Flycatcher, and all values above each 

respective threshold to the value of four, representing suitable habitat for the Flycatcher. 
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 I chose reclassification values so that when multiplied, each product resulted in a 

unique value.  I multiplied the reclassified tamarisk output with each of the reclassified 

Flycatcher outputs.  Each raster calculation resulted in a habitat overlap analysis raster 

containing four classes: habitat not dominated by tamarisk and not suitable for Flycatcher 

(overlap analysis value 3), habitat not dominated by tamarisk and suitable for Flycatcher 

(overlap analysis value 4), habitat dominated by tamarisk and not suitable for Flycatcher 

(overlap analysis value 6), and habitat both dominated by tamarisk and suitable for 

Flycatcher (overlap analysis value 8).  I translated the number of 30-m resolution pixels 

occurring in each class to square kilometers of habitat and calculated percentages of 

overlapping habitat. 
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III. RESULTS 

 

Tamarisk Prediction Models 

 The Maxent model predicting the occurrence of tamarisk and using all training 

points performed quite well with an Area Under the (ROC) Curve (AUC) score of 0.982.  

Ten variables contributed to the final tamarisk model (Table 1).  The top two contributing 

variables (June tasselled cap wetness and band 3 from October) were also ranked in the 

top three contributing variables in the study by Evangelista et al. 2009. 

The tamarisk model also performed well according to Schroder’s external model 

performance analysis of pooled subset data.  The AUC score was calculated as 0.874 with 

a 95% confidence interval of [0.827, 0.914].  This AUC score significantly exceeds the 

AUC critical value (set at 0.70, p <0.0001).  Schroder’s external model analysis of the 

“P-Optimal” criteria calculated the correct classification rate at 82.6%, sensitivity at 

91.5%, specificity at 73.8%, and the Cohen’s kappa statistic as 0.65.   Fielding and Bell 

(1997) suggested that a kappa score between 0.40 and 0.75 signifies good model 

performance. 

The average AUC value for the ten tamarisk subset models was 0.972 and ranged 

from 0.944 to 0.985.  The subset models included five to eight variables in their 

respective final runs.  June tasselled cap wetness ranked as the top predictor variable in 

seven of the ten subset models with an average contribution of 42.5%, and October band 

3 ranked in the top three predictor variables in six of the ten subset models (Table 2). 
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Flycatcher Prediction Models 

The Maxent model predicting suitable habitat for Flycatcher and using all 11 

training points also performed well with an AUC score of 0.960.  Five variables 

contributed more than 1.0% to the final Flycatcher model (Table 3).  The top predicting 

variable (May NDVI standard deviation neighborhood statistic, radius 120 m) contributed 

44.3% to model prediction.  Higher standard deviation of NDVI within this 4.5-ha 

neighborhood signified greater prediction of suitable habitat for the Flycatcher (Fig. 2). 

The average AUC score for the ten eight-point subset models was 0.955 and 

ranged from 0.901 to 0.971.  The subset models used three to six variables in their 

respective final runs.  Habitat heterogeneity within a 120-m radius neighborhood 

(represented as standard deviation of NDVI) also ranked as the top contributing variable 

in seven of the ten subset models, four models with this variable representing May and 

three models with this variable representing September (average contribution 58.4%).  

Distance to water ranked as the second or third most contributing variable in nine of the 

ten subset models and had an average contribution of 22.8%.  Other highly ranking 

variables in the ten subset models represented floodplain characteristics. 

 

Habitat Overlap Analysis 

 The habitat overlap analysis compared the individual habitat model outputs to 

examine the relationship between tamarisk and the Flycatcher.  Habitat overlap occurred 

in four categories: 1) not dominated by tamarisk and not suitable for Flycatcher; 2) not 

dominated by tamarisk and suitable for Flycatcher; 3) dominated by tamarisk and not 

suitable for Flycatcher; and 4) dominated by tamarisk and suitable for Flycatcher (Fig. 3).  
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For all analyses, the first category included approximately 33,000 km2, representing 97% 

of the modeled landscape. 

 I used one tamarisk threshold (0.255) and three Flycatcher thresholds (0.515, 

0.624, and 0.851) to compute the habitat overlap analysis.  I performed one-tail t-tests of 

the means to assess differences in habitat predicted by the three Flycatcher thresholds.  I 

used one-tail tests of significance since lower thresholds would logically predict greater 

amounts of suitable habitat.  I averaged the area calculated for categories of suitable 

habitat (excluding area determined as not dominated by tamarisk and not suitable for 

Flycatcher) within each threshold, and tested these averages for significant differences.  

Tests revealed that threshold values were not significantly different: p-values equal 

0.247, 0.287, and 0.267 for tests between the low and middle, middle and high, and low 

and high thresholds, respectively.  Since the thresholds were not significantly different in 

the prediction of habitat area, I will discuss further results as averages within each 

overlap analysis category (Fig. 4).  This analysis calculated approximately 1,000 km2 of 

dense tamarisk habitat (>50% cover) and approximately 230 km2 of suitable habitat for 

the Flycatcher within the study area.  Of the area modeled as suitable for the Flycatcher, 

38.1% was also modeled as densely invaded by tamarisk.  Of the area modeled as densely 

invaded by tamarisk, only 8.5% was also modeled as suitable habitat for the Flycatcher. 
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IV. DISCUSSION 

 

Data Quality 

 I downloaded much of the data for the purposes of this study from varying 

sources.  I needed six separate Landsat Thematic Mapper scenes to represent all parts of 

the study area, meaning that I combined scenes from different days to form one 

environmental variable.  This can be problematic when identifying specific pieces of the 

landscape and especially when differentiating between varying spectral signatures.  

Atmospheric “noise” can vary considerably, even within a few hours, and differences in 

noise can produce differences in adjoining Landsat Thematic Mapper images (Song et al. 

2001; Song & Woodcock 2003).  This issue did not appear to affect the outcome of the 

models, but it is difficult to discern small differences that may not have occurred with 

data from the exact same date and time. 

 I used the 175 tamarisk points downloaded from www.niiss.org to create the 

initial tamarisk model.  Field verification produced false-positive results under three 

circumstances.  A desert shrub known commonly as creosote bush (Larrea tridentata), 

agricultural fields, and irrigated lawns appeared as highly predicted areas of tamarisk 

habitat seven, four, and four times out of 81, respectively.  Without knowing any 

attributes of the downloaded points, I had no indication if the points had been taken in 

stands of tamarisk with greater than 50% cover, or if there were flaws associated with 
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data acquisition.  With the collection of both presence and absence points during the 

verification trip, I was able to re-run Maxent with data of known origin.  The use of this 

collected data greatly reduced the occurrence of false-positives in the final tamarisk 

model (down from 46.3% to 26.2%). 

 

Individual Model Performance 

 The final model predicting dense tamarisk habitat performed quite well according 

to the various criteria examined.  The top contributing variables (June tasselled cap 

wetness and band 3 from October) were consistent with previous models that also used 

transformations of remotely sensed images to detect tamarisk habitat (Everitt & Deloach 

1990; Evangelista et al. 2009).  As in these previous modeling studies, we can speculate 

that the spectral signatures unique to tamarisk phenology provide us with the ability to 

distinguish heavy infestations from other vegetation.  These results provided addition 

evidence that modeling dense tamarisk habitat with remote sensing is viable at the 

landscape scale. 

The final model predicting suitable habitat for the Flycatcher also performed well 

according to model criteria.  An environmental variable from the month of May 

contributed to almost half of the Maxent model’s prediction.  This variable represented 

the heterogeneous character of a large (4.5-ha) habitat at the time of season when 

Flycatchers were establishing breeding territories.  Heterogeneity within and beyond the 

breeding territory is thought to be important to Flycatcher breeding success (Durst et al. 

2007), and its importance as a predictor of suitable habitat for the Flycatcher was 

consistent with previous models (Hatten & Paradzick 2003; Paxton et al. 2007; Hatten et 
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al. 2010).  However, these previous models investigated this habitat characteristic in the 

months of June and July.  The results of this study suggest that environmental variables 

from May describing habitat heterogeneity at larger neighborhood spatial scales are 

important in predicting suitable breeding habitat for the Flycatcher. 

 

Habitat Overlap Analysis 

The main reason for the Flycatcher’s decline to endangered status is thought to be 

the destruction of high quality, native habitat, mostly due to the regulation of rivers in the 

southwestern United States and confounded by the widespread invasion of tamarisk 

(Durst et al. 2007).  This analysis allowed me to examine the relationship between 

tamarisk and the Flycatcher within the study area.  The models showed that 38.1% of 

suitable habitat for the Flycatcher is densely invaded by tamarisk, and only 8.5% of area 

densely invaded by tamarisk is also considered suitable as breeding grounds for the 

Flycatcher within the study area.  This study contributed further evidence to the thought 

that dense tamarisk stands are not considered high quality habitat by the Flycatcher.  The 

Flycatcher currently nests in dense tamarisk stands approximately 27% of the time, and 

the results of this study suggest that the birds may be nesting in areas of dense tamarisk 

only because native vegetation options are currently unavailable. 

Important to consider is the sensitive nature of this endangered bird and the 

limitations regarding habitat available for breeding.  The suggestion of introducing 

biocontrol agents as a way to rid western rivers of tamarisk produced much controversy 

because of these issues.  Even if the Flycatcher only deems dense tamarisk stands as 

suitable 8.5% of the time, the fact remains that they do nest in tamarisk more regularly 
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than this amount suggests.  In addition, 38% of habitat available to the Flycatcher within 

the study area is dominated by tamarisk, suggesting that whether the bird prefers it or not, 

tamarisk makes up a considerable fraction of available breeding habitat.  Considering the 

Flycatcher is listed as endangered, any habitat that facilitates successful breeding 

attempts is important in terms of the species’ survival.  Therefore, it is important to 

recognize the limitations of this modeling approach when assessing management for the 

Flycatcher.  Although this modeling method provides insight into the tamarisk-Flycatcher 

relationship, field knowledge of species behavior should always be assessed before 

determining management plans.  While this study showed that effective biocontrol 

coupled with the reintroduction of native vegetation has the opportunity to increase the 

suitable habitat available to the Flycatcher by 38%, it is also apparent that biocontrol will 

initially reduce the habitat available to the Flycatcher within the study area by the same 

percentage.  Precautions must be taken to ensure new native habitat is available for 

individuals moving out of biocontrolled areas. 

Over all, the habitat overlap analysis demonstrated how comparison of single-

species habitat models can help determine implications for multi-species management.  

The methods presented in this study offer a promising opportunity for concurrent 

management of invasive and endangered species existing within the same landscape.  

When attempting to manage separately for two or more interacting species, this type of 

research is invaluable (Zavaleta et al. 2001).  Efforts to control exotic species can have 

negative effects on native populations, especially those of endangered, threatened, or 

endemic status (Matarczyk et al. 2002).  One interpretation of this study is that some 

areas of native vegetation that once consisted of high-quality suitable habitat for the 
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Southwestern Willow Flycatcher may now be dominated by tamarisk.  Therefore, 

restoration efforts, completed with concern for the Flycatcher, may have the potential to 

reestablish high quality territory for this endangered songbird. 
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Table 1. The contributions of variables for the Maxent model predicting dense tamarisk 
habitat and using all 48 training points 
 

Environmental Variable     Contribution (%) 

June Tasselled Cap Wetness   28.3 

October Band 3     15.7 

October Tasselled Cap Wetness  13.2 

September Tasselled Cap Brightness  12 

September NDVI*    11.8 

August NDVI*     8.4 

November Band 3    5.6 

October NDVI *    2 

August Tasselled Cap Greenness  1.9 

March NDVI*     1.1 

* NDVI refers to the normalized difference vegetation index 
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Table 2. The five most common variables with predictive contributions to the ten thirty-
four-point tamarisk subset models 
 

Environmental Variable  Subset Models (#) Average Contribution (%) 

November Band 3   10         8.4 

August Tasselled Cap Greenness  9         4.7 

September NDVI*    8         15.1 

June Tasselled Cap Wetness   7         42.5 

October Band 3     7         20.8 

* NDVI refers to the normalized difference vegetation index 
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Table 3. The contributions of variables for the Maxent model predicting suitable habitat 
for the Flycatcher and using all 11 training points 

Environmental Variable        Contribution (%) 

May NDVIa Standard Deviation (r = 120 m)b  44.3 

Distance to Water     19.7 

October NDVIa Cell Variety (r = 30 m)b  15.8 

Slope Standard Deviation (r = 30 m)b   10.8 

Slope Sum (r = 60 m)b     9.4 

aNDVI refers to the normalized difference vegetation index 
bRadius of the circular neighborhood statistic calculated for the variable. 
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Figure 1. Study area map.  The study area encompasses 34,180 km2 of landscape.  The 11 
Flycatcher presence points represent nesting sites and may contain more than one 
breeding pair.  The 48 tamarisk points designate areas with dense tamarisk habitat (>50% 
cover). 
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Figure 2. Maxent prediction response curve.  The standard deviation of the May NDVI 
within a 4.5 hectare circular neighborhood (120 meter radius) is the highest contributor to 
the final Flycatcher Maxent model (44.3%, Table 3). The curve shows how the logistic 
prediction changes as the standard deviation of this variable increases and all other 
variables are kept at their average sample value. 
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Figure 3. Habitat overlap analysis map.  The area displayed is a representative riparian 
corridor modeled within the study area.  Categories represent the four possible outcomes 
of the habitat overlap analysis. 
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Figure 4. Habitat overlap analysis data.  Three Flycatcher thresholds were initially used 
in this analysis; these numbers represent the averages across those three thresholds.  
Letters represent significant differences between categories. 
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APPENDIX 3 

Environmental predictor variables considered in the initial tamarisk predictive Maxent 
model including their spatial resolution and data source 

Variable Short 
Name 

Variable Long Name 
Spatial 

Resolution 
Data Source 

apr_ndvi April NDVI 30 m Landsat Thematic Mapper 

aug_ndvi August NDVI 30 m Landsat Thematic Mapper 

aug_tc_bright August tasseled cap brightness 30 m Landsat Thematic Mapper 

aug_tc_green August tasseled cap greenness 30 m Landsat Thematic Mapper 

aug_tc_wet August tasseled cap wetness 30 m Landsat Thematic Mapper 

jun_ndvi June NDVI 30 m Landsat Thematic Mapper 

jun_tc_bright June tasseled cap brightness 30 m Landsat Thematic Mapper 

jun_tc_green June tasseled cap greenness 30 m Landsat Thematic Mapper 

jun_tc_wet June tasseled cap wetness 30 m Landsat Thematic Mapper 

mar_ndvi March NDVI 30 m Landsat Thematic Mapper 

may_tc_bright May tasseled cap brightness 30 m Landsat Thematic Mapper 

may_tc_green May tasseled cap greenness 30 m Landsat Thematic Mapper 

may_tc_wet May tasseled cap wetness 30 m Landsat Thematic Mapper 

nov_b3 November band 3 30 m Landsat Thematic Mapper 

oct_b3 October band 3 30 m Landsat Thematic Mapper 

oct_ndvi October NDVI 30 m Landsat Thematic Mapper 

oct_tc_bright October tasseled cap brightness 30 m Landsat Thematic Mapper 

oct_tc_green October tasseled cap greenness 30 m Landsat Thematic Mapper 

oct_tc_wet October tasseled cap wetness 30 m Landsat Thematic Mapper 

sep_ndvi September NDVI 30 m Landsat Thematic Mapper 

sep_tc_bright September tasseled cap brightness 30 m Landsat Thematic Mapper 

sep_tc_green September tasseled cap greenness 30 m Landsat Thematic Mapper 

sep_tc_wet September tasseled cap wetness 30 m Landsat Thematic Mapper 
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APPENDIX 4 

Environmental predictor variables considered in the initial flycatcher predictive Maxent 
model including their spatial resolution and data source 
Variable Short 

Name 
Variable Long Name 

Spatial 
Resolution

Source 

apr_ndvi April NDVI 30 m Landsat Thematic Mapper

aug_ndvi August NDVI 30 m Landsat Thematic Mapper

distwater Distance to water 30 m Digital Elevation Model 
jun_std1, 

2, 3, 4 
June NDVI standard deviation neighborhood 

statistic (numbers indicate radius in “pixels”)* 
30 m Landsat Thematic Mapper

jun_sum1, 
2, 3, 4 

June NDVI sum neighborhood statistic (numbers 
indicate radius in “pixels”)* 

30 m Landsat Thematic Mapper

jun_var1, 
2, 3, 4 

 June NDVI variety neighborhood statistic 
(numbers indicate radius in “pixels”)* 

30 m Landsat Thematic Mapper

june_ndvi June NDVI 30 m Landsat Thematic Mapper

mar_ndvi March NDVI 30 m Landsat Thematic Mapper

may_ndvi May NDVI 30 m Landsat Thematic Mapper
may_std1, 

2, 3, 4 
May NDVI standard deviation neighborhood 

statistic (numbers indicate radius in “pixels”)* 
30 m Landsat Thematic Mapper

may_sum1, 
2, 3, 4 

 May NDVI sum neighborhood statistic (numbers 
indicate radius in “pixels”)* 

30 m Landsat Thematic Mapper

may_var1, 
2, 3, 4 

 May NDVI variety neighborhood statistic 
(numbers indicate radius in “pixels”)* 

30 m Landsat Thematic Mapper

oct_ndvi October NDVI 30 m Landsat Thematic Mapper
octndvi_std1, 

2, 3, 4 
October NDVI standard deviation neighborhood 
statistic (numbers indicate radius in “pixels”)* 

30 m Landsat Thematic Mapper

octndvi_sum1, 
2, 3, 4 

October NDVI sum neighborhood statistic 
(numbers indicate radius in “pixels”)* 

30 m Landsat Thematic Mapper

octndvi_var1, 
2, 3, 4 

October NDVI variety neighborhood statistic 
(numbers indicate radius in “pixels”)* 

30 m Landsat Thematic Mapper

sepndvi_std1, 
2, 3, 4 

September NDVI standard deviation neighborhood 
statistic (numbers indicate radius in “pixels”)* 

30 m Landsat Thematic Mapper

sepndvi_sum1, 
2, 3, 4 

September NDVI sum neighborhood statistic 
(numbers indicate radius in “pixels”)* 

30 m Landsat Thematic Mapper

sepndvi_var1, 
2, 3, 4 

September NDVI variety neighborhood statistic 
(numbers indicate radius in “pixels”)* 

30 m Landsat Thematic Mapper

sept_ndvi September NDVI 30 m Landsat Thematic Mapper

slope Slope 30 m Digital Elevation Model 
slope_std1, 

2, 3, 4 
Slope standard deviation neighborhood statistic 

(numbers indicate radius in “pixels”)* 
30 m Digital Elevation Model 

slope_sum1, 
2, 3, 4 

 Slope sum neighborhood statistic (numbers 
indicate radius in “pixels”)* 

30 m Digital Elevation Model 

slope_var1, 
2, 3, 4 

Slope variety neighborhood statistic (numbers 
indicate radius in “pixels”)* 

30 m Digital Elevation Model 

*Pixels are 30 m resolution.  Radius values are 30 m, 60 m, 90 m, and 120 m for values 1, 2, 3, and 4, 
respectively. 


