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ABSTRACT OF THESIS

DIFFERENTIATING EXISTING HABITAT OF THE INVASIVE TAMARISK
(TAMARIX SPP.) FROM POTENTIAL HABITAT OF THE ENDANGERED
SOUTHWESTERN WILLOW FLYCATCHER (EMPIDONAX TRAILLII EXTIMUS)

THROUGH MAXIMUM ENTROPY MODELING

Biological control of the exotic plants known collectively as tamarisk (Tamarix
spp, saltcedar, tamarisk) in southwestern states is controversial regarding the protection
of the federally endangered Southwestern Willow Flycatcher (Empidonax traillii
extimus). The songbird sometimes nests in tamarisk where floodplain-level invasion
replaces native habitat. Biological control with the saltcedar leaf beetle (Diorhabda
elongate) began along the Virgin River, Utah, in 2006, enhancing the need for
comprehensive understanding of the tamarisk-Flycatcher relationship. 1 used maximum
entropy (Maxent) modeling to separately quantify the current extent of dense tamarisk
habitat (>50% cover) and the potential extent of habitat available for E. traillii extimus
within the studied watersheds. | used transformations of 2008 Landsat Thematic Mapper

images and a digital elevation model as environmental input variables.



Maxent models performed well for the Flycatcher and tamarisk with Area Under
the ROC Curve (AUC) values of 0.960 and 0.982, respectively. Classification of
thresholds and comparison of the two Maxent outputs indicated little spatial overlap
between predicted suitable habitat for E. traillii extimus and predicted dense Tamarisk
stands. Dense tamarisk habitat comprised 1,000 km? within the study area, of which
8.5% was also modeled as potential habitat for E. traillii extimus. Potential habitat
modeled for the Flycatcher constituted 230 km?, of which 38.1% also contained dense
tamarisk habitat. Results showed that both native vegetation and dense tamarisk habitats
exist in the study area and that most tamarisk infestations do not contain characteristics
that satisfy the habitat requirements of E. traillii extimus. Based on this study, effective
biological control of Tamarix spp. may initially reduce the suitable habitat available to E.
traillii extimus within the study area, but has the potential to increase suitable habitat if

native vegetation replaces tamarisk in biocontrol areas.
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I. INTRODUCTION

Humans have dramatically altered the global distribution of species over the past
few centuries (Chaplin III et al. 2000). This movement of species coupled with the
disturbance of native habitats has facilitated the invasion of exotic plants and animals
around the world, threatening the survival of many native species (Vitousek et al. 1997).
Although exotic and native species coexist in many modern habitats, conservation efforts
typically focus on single-species management of either the introduced or the threatened
species. Chemical, mechanical, and biological control efforts geared at eradicating exotic
species can have negative effects on native populations, especially on sensitive species of
endangered, threatened, or endemic status (Innes & Barker 1999; Cory & Myers 2000;
Matarczyk et al. 2002). New strategies are needed that combine conservation efforts for
both introduced and threatened species existing within the same landscape.

Riparian corridors often represent only 1-3% of the landscape but are vital to
biodiversity, especially in arid regions (Naiman et al. 1993; Naiman & Decamps 1997;
Patten 1998). Riparian areas are also highly susceptible to invasion by introduced species
due to their relatively abundant resources (Stohlgren et al. 1998). In the southwestern
United States, disturbance of the natural flow regime through damming and agricultural
divergences has dramatically altered riparian habitats. The lowered water table and
reduced peak flows hinder successful propagation of native cottonwood (Populus spp.)

and willow (Salix spp.) species, reducing the abundance of mature native riparian forests



(Lite & Stromberg 2005). Members and hybrids of the exotic genus Tamarix (Tamarix
spp, saltcedar, tamarisk) are adapted to the altered flow regime given their ability to
extract deep water through an extensive tap root (Everitt 1980). Tamarisk currently occur
within most large river systems of the southwestern United States and are estimated to
have replaced 470,000 — 650,000 ha of native riparian habitat (Robinson 1965; Zavaleta
2000). Tamarisk’s success further suppresses the ability of cottonwood and willows to
reproduce (Lytle & Merritt 2004; Stromberg et al. 2007a; Merritt & Poff 2010).

The altered ecosystems represent degraded habitat for many native species, and
restoration has become a high-priority goal for many natural resource managers (Szaro &
Rinne 1988). Millions of United States dollars have been spent by government agencies
at the local, state, and federal level in efforts to remove tamarisk and restore native
habitats (Shafroth & Briggs 2008). Control techniques have included burning, herbicide
treatments, mechanical removal and most recently, biological control by the saltcedar leaf
beetle (Diorhabda elongata) (Taylor & McDaniel 1998; Deloach et al. 2004).
Controversies surrounding biocontrol methods arose due to the possible repercussions for
the endangered Southwestern Willow Flycatcher (Empidonax traillii extimus) (Dudley &
Deloach 2004; Sogge et al. 2008).

The Southwestern Willow Flycatcher (hereafter, Flycatcher) is one of four
recognized subspecies of Willow Flycatchers existing throughout the United States and
southern Canada. Neotropical migrants, these birds winter in Central and South America,
and occupy breeding territories in riparian areas of North America for four to five months
of the year. The Flycatcher subspecies occupies breeding sites in Arizona, western New

Mexico, and the southern portions of California, Nevada, Utah, and Colorado (Paxton et



al. 2007). Extensive Flycatcher surveys conducted since 1993 have produced a current
estimate of over 1,200 territories located at 284 breeding sites throughout the bird’s range
(Durst et al. 2007). A site is defined as a location where at least one Flycatcher pair has
established a breeding territory, and a territory is generally referred to as the specific
location of one nesting pair. Most breeding sites contain five or less territories, and only
a few sites contain more than 50 territories (Durst et al. 2007). The United States Fish
and Wildlife Service listed the Flycatcher as endangered in 1995 (United States Fish and
Wildlife Service 1995). The alteration of riparian habitat has been linked as the major
factor in the subspecies’ decline (Unitt 1987). In fact, Durst et al. (2007) estimated that
throughout its range, approximately 27% of Flycatcher breeding sites were located in
areas dominated (>50% cover) by tamarisk.

Quantitative models are valuable tools when assessing habitat suitability for
species at landscape scales. Ground surveys can be labor-intensive and expensive, and
models enable researchers to focus these efforts by determining areas of investigative
importance (Morisette et al. 2006). Maxent (maximum entropy modeling; Phillips et al.
2006) uses presence-only data to assess the distribution of a species by estimating the
probability of its ability to survive and reproduce in a certain area (Phillips et al. 2006).
Maxent performs better than other models in many ecosystems including both terrestrial
(Elith et al. 2006) and aquatic environments (Kumar et al. 2008), and appears to fit
general relationships even under situations were sample sizes are small (Kumar &
Stohlgren 2009).

Both tamarisk (Evangelista et al. 2009) and the Flycatcher (Hatten & Paradzick

2003; Paxton et al. 2007; Hatten et al. 2010) have been modeled individually at the



landscape level. However, they have not been comparatively modeled for the same
landscape. In this study | demonstrate how single-species predictive modeling techniques
can be combined to provide information for multi-species management purposes. My
goals were to quantify the amount of habitat dominated by tamarisk and available to the
Flycatcher within the study area, and to further the understanding of the relationship

between this endangered bird and invasive plant.



Il. METHODS

Study Area

I conducted this study within the Great Basin Region. The area includes the five
United States Geological Survey watershed cataloguing units flowing into the Overton
(northern) arm of Lake Mead (Fig. 1). | downloaded Shapefiles of these watersheds from
the United States Geological Survey National Hydrology Dataset Geodatabase website

(http://nhdgeo.usgs.gov/). The total area studied equates to 34,180 square kilometers

(km?). The landscape is characterized by a mix of Mojave Desert to the south and Great
Basin Desert to the north and represents the northern limits of the Flycatcher’s range.
Tamarisk is present in many riparian corridors of these watersheds, and dense tamarisk
habitat (>50% cover) is common along eastern drainages. Biological control of tamarisk
with the saltcedar leaf beetle (Diorhabda elongata) began along the Virgin River near St.
George, Utah, in 2006. The area impacted by the beetles and intensity of defoliation

events have increased in each subsequent year (Hultine et al. 2009).

Datasets

I used six Landsat Thematic Mapper scenes from eight months of the growing season for
the analyses (Path 40, Row 33; Path 39, Rows 33, 34, and 35; and Path 38, Rows 34 and
35; March through November, excluding July). | downloaded the images at 30-meter

resolution from the United States Geological Survey Earth Explorer website



(http://edcsns17.cr.usgs.gov/EarthExplorer/). 1 collected images for each month dated

within ten days of each other when possible, although April, June, and November data
acquisition dates were further apart in order to acquire cloud-free images. | created
mosaics of individual bands 1-5 and 7 and clipped each to the project extent with ERDAS
Imagine 2009 software. | used the mosaics to create environmental model input variables
for both the tamarisk and Flycatcher individual models.

I downloaded 175 tamarisk presence points from the National Institute for
Invasive Species Science website collected between 2000 and 2004 (www.niiss.org). |
used the points to run an initial tamarisk model. In November, 2009, | traveled to the
study area for initial model field verification. 1 randomly selected points within three
prediction categories (high, medium, and low), and | evaluated model accuracy for 81
points. Of the 81 points, 48 contained tamarisk with a cover value greater than 50%. |
used these 48 points as input for all remaining tamarisk models. | used the remaining 33
points, along with 44 additional collected points, as absence points. This designation of
cover value is important because it represents areas dominated by tamarisk as opposed to
the location of only a single or a few plants. This designation is also consistent with
previous models predicting dense tamarisk habitat, along with surveys regarding
Flycatcher habitat. A conceptual framework is included (Appendix 1).

I received Flycatcher breeding site presence points from United States Geological
Survey staff based out of the Colorado Plateau Research Station. Eleven Flycatcher sites
were located within the study area. Surveys conducted at sites over the course of eleven
years quantified total number of territories per site per survey year. Due to the dynamic

nature of Flycatcher breeding sites, not every site was surveyed each year, and surveyed



sites did not necessarily contain Flycatcher territories each year (Appendix 2). On
average, surveys documented 61 territories in the study area each year. More detailed
survey results were not provided due to the sensitivity of data associated with endangered
species. Of the 11 breeding sites, seven existed in sites dominated by native vegetation
and four existed in sites dominated by tamarisk. Absence points were not determined for
the Flycatcher. Unlike tamarisk “absence,” Flycatcher absence is more speculative.
Flycatchers move around and utilize different areas for different purposes during a single
breeding season. The absence of a Flycatcher nest does not necessarily indicate that the
area is unsuitable as habitat. Flycatchers have high fidelity to sites where they
successfully fledged a chick, and higher fidelity with more chicks fledged (Paxton et al.
2007). This fidelity makes them likely to return to one particular site even if others are

available.

Tamarisk Model Variables

I based the Maxent model predicting tamarisk occurrence at densities greater than
50% on Evangelista et al. 2009. The variables found as most suitable to predict tamarisk
dominance within the landscape included tasselled cap transformation, normalized
difference vegetation index (NDVI), and band 3 from October. Tasselled cap
transformations, originally developed to understand changes in agricultural lands,
generate three orthogonal bands from the six-band Landsat composite. The three
generated bands represent measurements of soil brightness (band 1), vegetation greenness
(band 2), and soil/vegetation wetness (band 3) (Kauth & Thomas 1976). NDVI is

commonly used to detect characteristics of vegetation such as canopy density. In a study



of the Colorado River delta, an arid landscape with similar riparian vegetation
characteristics to this study, NDVI performed best among indices in identifying
vegetation percent cover (Nagler et al. 2001). NDVI is calculated with the third (red
visible) and fourth (near-infrared) Landsat Thematic Mapper bands and the non-linear
equation:
NDVI = (band 4 — band 3) / (band 4 + band 3)

October band 3 (red visible) is used to detect tamarisk during senescence when the plant
turns a distinguishable bright yellow-orange color (Everitt & Deloach 1990). Due to the
lower elevation in this study area compared to that used in Evangelista et al. 2009, and
the presence of the saltcedar leaf beetle which has been shown to extend the growing
season of tamarisk by three to four weeks (Dudley & Deloach 2004), | used both October
and November band 3 in my analyses.

I did not include variables such as distance to water, elevation, or slope in the
tamarisk models. These three variables describe topographic features of the landscape,
not the unique spectral signatures that distinguish dense tamarisk infestation from other
vegetation (see Evangelista et al. 2009). The goal of the tamarisk modeling effort was to
detect areas already dominated by tamarisk, and not simply suitable for tamarisk.
Variables derived from remote sensing images enabled me to use the unique spectral

signatures of tamarisk to detect actual areas of tamarisk dominance.

Flycatcher Model Variables
I based the model predicting suitable habitat for the Flycatcher on Paxton et al.

(2007). The protocol for surveying Flycatcher breeding sites requires surveyors to rank



the relative amount of native vs. exotic vegetation into one of four categories (1: >90%
native, 2: mixed with >50% native, 3: mixed with >50% exotic, or 4: >90% exotic) and to
determine the dominant woody vegetation at each site (Sogge et al. 1997) (Appendix 2).
Results from surveys and previous models indicated that environmental variables thought
to be important to Flycatchers include vegetation density, amount of edge habitat, and
size of patch (Sogge et al. 1997; Sogge & Marshall 2000; Paxton et al. 2007). Flycatcher
habitat tends toward heterogeneous mixes of both vegetation age and species
composition, and nesting sites specifically tend toward riparian edge habitat (Paxton et al.
2007).

Flycatchers typically arrive at nesting areas from late April through May and
return to wintering grounds in September, and occasionally as late as October (Finch &
Stoleson 2000). Where previous models used variables from the months of June or July
exclusively, | added variables from five additional months throughout the breeding
season to incorporate the timing of migration. | thought that environmental variables
from the months in which nesting sites were determined may be important in predicting
suitable habitat for the Flycatcher. In addition, knowing that Flycatchers sometimes
produce more than one brood per year (Paxton et al. 2007), | thought environmental
variables depicting habitat quality toward the end of the breeding season may be
important as well. | created variables by transforming Landsat Thematic Mapper mosaics
from April, May, June, August, September and October. | used NDVI to quantify
vegetation density, and circular neighborhood statistics at four spatial levels to quantify
patch size, heterogeneity, and edge proximity. | created a variable depicting topographic

slope from a digital elevation model and used neighborhood statistics to analyze



floodplain characteristics. Since Flycatchers are obligate riparian species, | included a
Euclidean “distance to water” variable, also derived from the digital elevation model, to

exclude densely-vegetated upland areas that may otherwise appear suitable.

Data Analyses
| separately modeled dense tamarisk habitat and suitable habitat for the Flycatcher

with Maxent software v.3.2 (www.cs.princeton.edu/~schapire/maxent/). For each initial

model, | used all environmental variables as inputs (all variables listed in Appendices 3 &
4). After the initial run, | excluded all variables with contributions less than 1.0% and ran
the model again. This step reduced the variables included in the second model for
tamarisk from twenty-three to fourteen and for the Flycatcher from sixty-nine to nine.
From the second model outputs, | tested the contributing variables for cross-correlations
with Predictive Analytics Software Statistics (SPSS for Windows, Rel. 18.0.0. 2009.
Chicago: SPSS Inc.). For highly correlated variables (Pearson correlation coefficient
>0.80), | removed the variable with a lower contribution in the second model. After
removing all correlations, | ran each model a final time, the tamarisk model with ten
environmental variables, and the Flycatcher model with five.

To measure the predictive performance of the tamarisk model, | used features
available through Schroder’s ROC/AUC software (http://brandenburg.geoecology.uni-
potsdam. de/users/schroeder/download.html).  This software requires presence and
absence points to test threshold-dependent measures including correct classification rate,
sensitivity (true positives), specificity (true negatives), and Cohen’s maximized Kappa,

along with threshold-independent measures such as Area Under the Receiver Operating
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Characteristic (ROC) Curve (AUC). | randomly generated ten 34-point subsets
(approximately 70%) of the 48 training points. | used each subset to run a separate
Maxent model. | restricted the variables in each subset model as | did for the full
tamarisk model. | used each final subset model output to determine the prediction values
for the respective 14 excluded presence points and a random selection of 14 of the 77
collected absence points. | pooled the subset prediction values to run Schroder’s analysis
with a total of 140 presence and 140 absence points, and | reported the results of this
analysis. | used Raster Calculator, an ESRI ArcGIS 9.2 Spatial Analyst tool, to average
the prediction values of the ten final subset raster outputs. 1 used this average of the
subset models for the habitat comparison.

As with the tamarisk data, | randomly generated ten eight-point (approximately
70%) subsets of the 11 Flycatcher training points. | used each subset to run separate
Maxent models. | removed variables in each subsequent run of the separate subset
models as before, and | averaged the prediction values of the ten subset final model
outputs. | used this average model in the habitat comparison. | was unable to use
Schroder’s ROC/AUC software to test the predictive performance of the Flycatcher

model due to the lack of absence points.

Habitat Overlap Analysis

To compare the resulting continuous model outputs, | defined threshold values
which | used to categorize the continuous predictive values. | chose thresholds consistent
with well-performing criteria (Liu et al. 2005; Jimenez-Valverde & Lobo 2007). For the

tamarisk model, | used the “sensitivity-specificity difference minimizer” criteria (0.255),
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generated from Schroder’s ROC/AUC analysis of prediction values from the 48 training
points used in the full model and a random subset of 48 out of the 77 absence points. |
reclassified all prediction values less than 0.255 in the continuous model output to the
value of one, representing the absence of dense tamarisk stands (defined as >50% cover),
and all prediction values greater than 0.255 to the value of two, representing presence of
dense tamarisk stands.

Since the southwestern willow Flycatcher currently occupies less territory than
historically, 1 determined three threshold levels to represent potential past, current, and
future habitat suitability. A relatively robust approach to threshold selection that tends
toward high values of sensitivity and specificity is to average the prediction values for the
model-building presence points (Liu et al. 2005). This approach is considered good
especially when the prevalence of model-building data changes, as is the case with the
dynamic Flycatcher habitat. The approach resulted in a threshold value of 0.624 for the
Flycatcher model. | added two additional thresholds, one above and one below this
value. | sorted the 11 prediction values resulting from the Flycatcher model and averaged
the top, middle, and bottom thirds of the ordered prediction values. | used the mean
between the bottom and middle third as the lower threshold, and the mean between the
middle and top third as the higher threshold value. This method resulted in lower and
higher threshold values of 0.515 and 0.851, respectively. | reclassified all prediction
values in the continuous model output below each respective threshold to the value of
three, representing habitat not suitable for the Flycatcher, and all values above each

respective threshold to the value of four, representing suitable habitat for the Flycatcher.
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I chose reclassification values so that when multiplied, each product resulted in a
unique value. | multiplied the reclassified tamarisk output with each of the reclassified
Flycatcher outputs. Each raster calculation resulted in a habitat overlap analysis raster
containing four classes: habitat not dominated by tamarisk and not suitable for Flycatcher
(overlap analysis value 3), habitat not dominated by tamarisk and suitable for Flycatcher
(overlap analysis value 4), habitat dominated by tamarisk and not suitable for Flycatcher
(overlap analysis value 6), and habitat both dominated by tamarisk and suitable for
Flycatcher (overlap analysis value 8). | translated the number of 30-m resolution pixels
occurring in each class to square kilometers of habitat and calculated percentages of

overlapping habitat.
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I1l. RESULTS

Tamarisk Prediction Models

The Maxent model predicting the occurrence of tamarisk and using all training
points performed quite well with an Area Under the (ROC) Curve (AUC) score of 0.982.
Ten variables contributed to the final tamarisk model (Table 1). The top two contributing
variables (June tasselled cap wetness and band 3 from October) were also ranked in the
top three contributing variables in the study by Evangelista et al. 2009.

The tamarisk model also performed well according to Schroder’s external model
performance analysis of pooled subset data. The AUC score was calculated as 0.874 with
a 95% confidence interval of [0.827, 0.914]. This AUC score significantly exceeds the
AUC critical value (set at 0.70, p <0.0001). Schroder’s external model analysis of the
“P-Optimal” criteria calculated the correct classification rate at 82.6%, sensitivity at
91.5%, specificity at 73.8%, and the Cohen’s kappa statistic as 0.65. Fielding and Bell
(1997) suggested that a kappa score between 0.40 and 0.75 signifies good model
performance.

The average AUC value for the ten tamarisk subset models was 0.972 and ranged
from 0.944 to 0.985. The subset models included five to eight variables in their
respective final runs. June tasselled cap wetness ranked as the top predictor variable in
seven of the ten subset models with an average contribution of 42.5%, and October band

3 ranked in the top three predictor variables in six of the ten subset models (Table 2).
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Flycatcher Prediction Models

The Maxent model predicting suitable habitat for Flycatcher and using all 11
training points also performed well with an AUC score of 0.960. Five variables
contributed more than 1.0% to the final Flycatcher model (Table 3). The top predicting
variable (May NDVI standard deviation neighborhood statistic, radius 120 m) contributed
44.3% to model prediction. Higher standard deviation of NDVI within this 4.5-ha
neighborhood signified greater prediction of suitable habitat for the Flycatcher (Fig. 2).

The average AUC score for the ten eight-point subset models was 0.955 and
ranged from 0.901 to 0.971. The subset models used three to six variables in their
respective final runs. Habitat heterogeneity within a 120-m radius neighborhood
(represented as standard deviation of NDVI) also ranked as the top contributing variable
in seven of the ten subset models, four models with this variable representing May and
three models with this variable representing September (average contribution 58.4%).
Distance to water ranked as the second or third most contributing variable in nine of the
ten subset models and had an average contribution of 22.8%. Other highly ranking

variables in the ten subset models represented floodplain characteristics.

Habitat Overlap Analysis

The habitat overlap analysis compared the individual habitat model outputs to
examine the relationship between tamarisk and the Flycatcher. Habitat overlap occurred
in four categories: 1) not dominated by tamarisk and not suitable for Flycatcher; 2) not
dominated by tamarisk and suitable for Flycatcher; 3) dominated by tamarisk and not

suitable for Flycatcher; and 4) dominated by tamarisk and suitable for Flycatcher (Fig. 3).
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For all analyses, the first category included approximately 33,000 km?, representing 97%
of the modeled landscape.

I used one tamarisk threshold (0.255) and three Flycatcher thresholds (0.515,
0.624, and 0.851) to compute the habitat overlap analysis. | performed one-tail t-tests of
the means to assess differences in habitat predicted by the three Flycatcher thresholds. |
used one-tail tests of significance since lower thresholds would logically predict greater
amounts of suitable habitat. | averaged the area calculated for categories of suitable
habitat (excluding area determined as not dominated by tamarisk and not suitable for
Flycatcher) within each threshold, and tested these averages for significant differences.
Tests revealed that threshold values were not significantly different: p-values equal
0.247, 0.287, and 0.267 for tests between the low and middle, middle and high, and low
and high thresholds, respectively. Since the thresholds were not significantly different in
the prediction of habitat area, | will discuss further results as averages within each
overlap analysis category (Fig. 4). This analysis calculated approximately 1,000 km? of
dense tamarisk habitat (>50% cover) and approximately 230 km? of suitable habitat for
the Flycatcher within the study area. Of the area modeled as suitable for the Flycatcher,
38.1% was also modeled as densely invaded by tamarisk. Of the area modeled as densely

invaded by tamarisk, only 8.5% was also modeled as suitable habitat for the Flycatcher.
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IV. DISCUSSION

Data Quality

I downloaded much of the data for the purposes of this study from varying
sources. | needed six separate Landsat Thematic Mapper scenes to represent all parts of
the study area, meaning that I combined scenes from different days to form one
environmental variable. This can be problematic when identifying specific pieces of the
landscape and especially when differentiating between varying spectral signatures.
Atmospheric “noise” can vary considerably, even within a few hours, and differences in
noise can produce differences in adjoining Landsat Thematic Mapper images (Song et al.
2001; Song & Woodcock 2003). This issue did not appear to affect the outcome of the
models, but it is difficult to discern small differences that may not have occurred with

data from the exact same date and time.

I used the 175 tamarisk points downloaded from www.niiss.org to create the
initial tamarisk model. Field verification produced false-positive results under three
circumstances. A desert shrub known commonly as creosote bush (Larrea tridentata),
agricultural fields, and irrigated lawns appeared as highly predicted areas of tamarisk
habitat seven, four, and four times out of 81, respectively. Without knowing any
attributes of the downloaded points, | had no indication if the points had been taken in

stands of tamarisk with greater than 50% cover, or if there were flaws associated with
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data acquisition. With the collection of both presence and absence points during the
verification trip, | was able to re-run Maxent with data of known origin. The use of this
collected data greatly reduced the occurrence of false-positives in the final tamarisk

model (down from 46.3% to 26.2%).

Individual Model Performance

The final model predicting dense tamarisk habitat performed quite well according
to the various criteria examined. The top contributing variables (June tasselled cap
wetness and band 3 from October) were consistent with previous models that also used
transformations of remotely sensed images to detect tamarisk habitat (Everitt & Deloach
1990; Evangelista et al. 2009). As in these previous modeling studies, we can speculate
that the spectral signatures unique to tamarisk phenology provide us with the ability to
distinguish heavy infestations from other vegetation. These results provided addition
evidence that modeling dense tamarisk habitat with remote sensing is viable at the
landscape scale.

The final model predicting suitable habitat for the Flycatcher also performed well
according to model criteria. An environmental variable from the month of May
contributed to almost half of the Maxent model’s prediction. This variable represented
the heterogeneous character of a large (4.5-ha) habitat at the time of season when
Flycatchers were establishing breeding territories. Heterogeneity within and beyond the
breeding territory is thought to be important to Flycatcher breeding success (Durst et al.
2007), and its importance as a predictor of suitable habitat for the Flycatcher was

consistent with previous models (Hatten & Paradzick 2003; Paxton et al. 2007; Hatten et
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al. 2010). However, these previous models investigated this habitat characteristic in the
months of June and July. The results of this study suggest that environmental variables
from May describing habitat heterogeneity at larger neighborhood spatial scales are

important in predicting suitable breeding habitat for the Flycatcher.

Habitat Overlap Analysis

The main reason for the Flycatcher’s decline to endangered status is thought to be
the destruction of high quality, native habitat, mostly due to the regulation of rivers in the
southwestern United States and confounded by the widespread invasion of tamarisk
(Durst et al. 2007). This analysis allowed me to examine the relationship between
tamarisk and the Flycatcher within the study area. The models showed that 38.1% of
suitable habitat for the Flycatcher is densely invaded by tamarisk, and only 8.5% of area
densely invaded by tamarisk is also considered suitable as breeding grounds for the
Flycatcher within the study area. This study contributed further evidence to the thought
that dense tamarisk stands are not considered high quality habitat by the Flycatcher. The
Flycatcher currently nests in dense tamarisk stands approximately 27% of the time, and
the results of this study suggest that the birds may be nesting in areas of dense tamarisk

only because native vegetation options are currently unavailable.

Important to consider is the sensitive nature of this endangered bird and the
limitations regarding habitat available for breeding. The suggestion of introducing
biocontrol agents as a way to rid western rivers of tamarisk produced much controversy
because of these issues. Even if the Flycatcher only deems dense tamarisk stands as

suitable 8.5% of the time, the fact remains that they do nest in tamarisk more regularly
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than this amount suggests. In addition, 38% of habitat available to the Flycatcher within
the study area is dominated by tamarisk, suggesting that whether the bird prefers it or not,
tamarisk makes up a considerable fraction of available breeding habitat. Considering the
Flycatcher is listed as endangered, any habitat that facilitates successful breeding
attempts is important in terms of the species’ survival. Therefore, it is important to
recognize the limitations of this modeling approach when assessing management for the
Flycatcher. Although this modeling method provides insight into the tamarisk-Flycatcher
relationship, field knowledge of species behavior should always be assessed before
determining management plans. While this study showed that effective biocontrol
coupled with the reintroduction of native vegetation has the opportunity to increase the
suitable habitat available to the Flycatcher by 38%, it is also apparent that biocontrol will
initially reduce the habitat available to the Flycatcher within the study area by the same
percentage. Precautions must be taken to ensure new native habitat is available for

individuals moving out of biocontrolled areas.

Over all, the habitat overlap analysis demonstrated how comparison of single-
species habitat models can help determine implications for multi-species management.
The methods presented in this study offer a promising opportunity for concurrent
management of invasive and endangered species existing within the same landscape.
When attempting to manage separately for two or more interacting species, this type of
research is invaluable (Zavaleta et al. 2001). Efforts to control exotic species can have
negative effects on native populations, especially those of endangered, threatened, or
endemic status (Matarczyk et al. 2002). One interpretation of this study is that some

areas of native vegetation that once consisted of high-quality suitable habitat for the
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Southwestern Willow Flycatcher may now be dominated by tamarisk. Therefore,
restoration efforts, completed with concern for the Flycatcher, may have the potential to

reestablish high quality territory for this endangered songbird.
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Table 1. The contributions of variables for the Maxent model predicting dense tamarisk
habitat and using all 48 training points

Environmental Variable Contribution (%)
June Tasselled Cap Wetness 28.3
October Band 3 15.7
October Tasselled Cap Wetness 13.2
September Tasselled Cap Brightness 12
September NDVI* 11.8
August NDVI* 8.4
November Band 3 5.6
October NDVI * 2
August Tasselled Cap Greenness 1.9
March NDVI* 11

* NDVI refers to the normalized difference vegetation index
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Table 2. The five most common variables with predictive contributions to the ten thirty-

four-point tamarisk subset models

Environmental Variable Subset Models (#)  Average Contribution (%)
November Band 3 10 8.4

August Tasselled Cap Greenness 9 4.7

September NDVI* 8 15.1

June Tasselled Cap Wetness 7 42.5

October Band 3 7 20.8

* NDVI refers to the normalized difference vegetation index

28



Table 3. The contributions of variables for the Maxent model predicting suitable habitat
for the Flycatcher and using all 11 training points

Environmental Variable Contribution (%)
May NDVI? Standard Deviation (r = 120 m)" 44.3
Distance to Water 19.7
October NDVI? Cell Variety (r = 30 m)° 15.8

Slope Standard Deviation (r = 30 m)° 10.8

Slope Sum (r = 60 m)° 9.4

ANDVI refers to the normalized difference vegetation index
PRadius of the circular neighborhood statistic calculated for the variable.
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Figure 1. Study area map. The study area encompasses 34,180 km? of landscape. The 11
Flycatcher presence points represent nesting sites and may contain more than one
breeding pair. The 48 tamarisk points designate areas with dense tamarisk habitat (>50%

cover).
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Figure 2. Maxent prediction response curve. The standard deviation of the May NDVI
within a 4.5 hectare circular neighborhood (120 meter radius) is the highest contributor to
the final Flycatcher Maxent model (44.3%, Table 3). The curve shows how the logistic
prediction changes as the standard deviation of this variable increases and all other
variables are kept at their average sample value.
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Figure 3. Habitat overlap analysis map. The area displayed is a representative riparian
corridor modeled within the study area. Categories represent the four possible outcomes

of the habitat overlap analysis.
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Figure 4. Habitat overlap analysis data. Three Flycatcher thresholds were initially used
in this analysis; these numbers represent the averages across those three thresholds.
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APPENDIX 3

Environmental predictor variables considered in the initial tamarisk predictive Maxent
model including their spatial resolution and data source

WEUER® el Variable Long Name Spatiql Data Source
Name Resolution

apr_ndvi April NDVI 30m Landsat Thematic Mapper
aug_ndvi August NDVI 30m Landsat Thematic Mapper
aug_tc_bright | August tasseled cap brightness 30m Landsat Thematic Mapper
aug_tc_green August tasseled cap greenness 30m Landsat Thematic Mapper
aug_tc_wet August tasseled cap wetness 30m Landsat Thematic Mapper
jun_ndvi June NDVI 30m Landsat Thematic Mapper
jun_tc_bright June tasseled cap brightness 30m Landsat Thematic Mapper
jun_tc_green June tasseled cap greenness 30m Landsat Thematic Mapper
jun_tc_wet June tasseled cap wetness 30m Landsat Thematic Mapper
mar_ndvi March NDVI 30m Landsat Thematic Mapper
may_tc_bright May tasseled cap brightness 30m Landsat Thematic Mapper
may_tc_green May tasseled cap greenness 30m Landsat Thematic Mapper
may_tc_wet May tasseled cap wetness 30m Landsat Thematic Mapper
nov_bh3 November band 3 30m Landsat Thematic Mapper
oct_b3 October band 3 30m Landsat Thematic Mapper
oct_ndvi October NDVI 30m Landsat Thematic Mapper
oct_tc_bright | October tasseled cap brightness 30m Landsat Thematic Mapper
oct_tc_green October tasseled cap greenness 30m Landsat Thematic Mapper
oct_tc_wet October tasseled cap wetness 30m Landsat Thematic Mapper
sep_ndvi September NDVI 30m Landsat Thematic Mapper
sep_tc_bright | September tasseled cap brightness 30m Landsat Thematic Mapper
sep_tc_green | September tasseled cap greenness 30m Landsat Thematic Mapper
sep_tc_wet September tasseled cap wetness 30m Landsat Thematic Mapper

36




APPENDIX 4

Environmental predictor variables considered in the initial flycatcher predictive Maxent
model including their spatial resolution and data source

Vel St Variable Long Name Spathl Source

Name Resolution
apr_ndvi April NDVI 30m [Landsat Thematic Mapper
aug_ndvi August NDVI 30m |Landsat Thematic Mapper
distwater Distance to water 30m Digital Elevation Model
jun_std1, June NDVI standard deviation neighborhood .

2,3,4 statistic (numbers indicate radius in “pixels”)* 30m Landsat Thematic Mapper
jun_suml, | June NDVI sum neighborhood statistic (numbers .

2l 3’ 4 indicate radius in upixelsu)* 30m Landsat Thematic Mapper
jun_varl, June NDVI1 variety neighborhood statistic .

2,3,4 (numbers indicate radius in “pixels”)* 30m |Landsat Thematic Mapper
june_ndvi June NDVI 30m |Landsat Thematic Mapper
mar_ndvi March NDVI 30m |Landsat Thematic Mapper
may_ndvi May NDVI 30m |Landsat Thematic Mapper
may_std1, May NDVI standard deviation neighborhood .

2,3,4 statistic (numbers indicate radius in “pixels”)* 30m |Landsat Thematic Mapper

may_suml, | May NDVI sum neighborhood statistic (numbers 30m  |Landsat Thematic Maooer

2,3,4 indicate radius in “pixels”)* PP
may_varl, May NDVI variety neighborhood statistic .

2,3,4 (numbers indicate radius in “pixels”)* 80m Landsat Thematic Mapper
oct_ndvi October NDVI 30m |[Landsat Thematic Mapper

octndvi_stdl, | October NDVI standard deviation neighborhood .

2,3,4 statistic (numbers indicate radius in “pixels”)* 80m Landsat Thematic Mapper
octndvi_suml, October NDVI sum neighborhood statistic .

2,3,4 (numbers indicate radius in “pixels”)* 80m |Landsat Thematic Mapper
octndvi_varl, October NDVI variety neighborhood statistic .

2,3,4 (numbers indicate radius in “pixels”)* 80m Landsat Thematic Mapper
sepndvi_std1, | September NDVI standard deviation neighborhood .

2,3,4 statistic (numbers indicate radius in “pixels”)* 80m Landsat Thematic Mapper
sepndvi_suml,| September NDVI sum neighborhood statistic .

2.3.4 (numbers indicate radius in “pixels”)* 30m Landsat Thematic Mapper
sepndvi_varl, | September NDVI variety neighborhood statistic .

2,34 (numbers indicate radius in “pixels”)* 30m Landsat Thematic Mapper
sept_ndvi September NDVI 30m |Landsat Thematic Mapper

slope Slope 30m Digital Elevation Model

slope_std1, Slope standard deviation neighborhood statistic - .

2,34 (numbers indicate radius in “pixels”)* 30m | Digital Elevation Model

slope_sumi, Slope sym_nelghbo_rhogd“stgtlstlg (numbers 30m Digital Elevation Model

2,3,4 indicate radius in “pixels”)*

slope_varl, Slope variety nelghbprhc_m(‘:i‘ S.tatISt,I’C (numbers 30m Digital Elevation Model
2,3,4 indicate radius in “pixels”)*

*Pixels are 30 m resolution. Radius values are 30 m, 60 m, 90 m, and 120 m for values 1, 2, 3, and 4,

respectively.
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