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ABSTRACT

JOINT TAIL MODELING VIA REGULAR VARIATION

WITH APPLICATIONS IN CLIMATE AND ENVIRONMENTAL STUDIES

This dissertation presents applied, theoretical, and methodological advances in the statis-

tical analysis of multivariate extreme values, employing the underlying mathematical frame-

work of multivariate regular variation. Existing theory is applied in two studies in climatol-

ogy; these investigations represent novel applications of the regular variation framework in

this field. Motivated by applications in environmental studies, a theoretical development in

the analysis of extremes is introduced, along with novel statistical methodology.

This work first details a novel study which employs the regular variation modeling frame-

work to study uncertainties in a regional climate model’s simulation of extreme precipitation

events along the west coast of the United States, with a particular focus on the Pineapple

Express (PE), a special type of winter storm. We model the tail dependence in past daily

precipitation amounts seen in observational data and output of the regional climate model,

and we link atmospheric pressure fields to PE events. The fitted dependence model is uti-

lized as a stochastic simulator of future extreme precipitation events, given output from a

future-scenario run of the climate model. The simulator and link to pressure fields are used

to quantify the uncertainty in a future simulation of extreme precipitation events from the

regional climate model, given boundary conditions from a general circulation model.

A related study investigates two case studies of extreme precipitation from six regional

climate models in the North American Regional Climate Change Assessment Program (NAR-

CCAP). We find that simulated winter season daily precipitation along the Pacific coast

exhibit tail dependence to extreme events in the observational record. When considering

summer season daily precipitation over a central region of the United States, however, we

find almost no correspondence between extremes simulated by NARCCAP and those seen
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in observations. Furthermore, we discover less consistency among the NARCCAP models in

the tail behavior of summer precipitation over this region than that seen in winter precip-

itation over the west coast region. The analyses in this work indicate that the NARCCAP

models are effective at downscaling winter precipitation extremes in the west coast region,

but questions remain about their ability to simulate summer-season precipitation extremes

in the central region.

A deficiency of existing modeling techniques based on the multivariate regular variation

framework is the inability to account for hidden regular variation, a feature of many theo-

retical examples and real data sets. One particular example of this deficiency is the inability

to distinguish asymptotic independence from independence in the usual sense. This work

develops a novel probabilistic characterization of random vectors possessing hidden regular

variation as the sum of independent components. The characterization is shown to be asymp-

totically valid via a multivariate tail equivalence result, and an example is demonstrated via

simulation.

The sum characterization is employed to perform inference for the joint tail of random

vectors possessing hidden regular variation. This dissertation develops a likelihood-based es-

timation procedure, employing a novel version of the Monte Carlo expectation–maximization

algorithm which has been modified for tail estimation. The methodology is demonstrated

on simulated data and applied to a bivariate series of air pollution data from Leeds, UK. We

demonstrate the improvement in tail risk estimates offered by the sum representation over

approaches which ignore hidden regular variation in the data.
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CHAPTER 1

INTRODUCTION

1.1 Background

In recent years, a number of costly natural disasters and a severe financial crisis in the

United States have given way to an increased awareness of extreme events from both scientists

and the general public. While these extremes are rare by definition, they typically inflict

great human, economic, and societal impacts. Despite the increased scrutiny, in many cases

the nature of extreme events, as well as their underlying causes, are not well understood.

Motivated in part by the high cost of these recent catastrophic events, scientists have

placed increased focus on the study of extremes. A recent report from the field of cli-

matology (Peterson et al., 2012) directly linked past observed extreme weather events to

human-induced climate change. In the field of finance, several works (e.g., Mikosch, 2006)

have criticized the use of mathematical models which are unable to adequately describe the

likelihood of a severe crisis. Many fields are now exploring the development of mathemati-

cal and statistical models which aim to characterize the likelihood and severity of extreme

events, as well as the underlying mechanisms which may drive them.

The work in this dissertation centers on the analysis of extreme values. Fundamentally,

the aim of an extreme value analysis is to describe the upper (or lower) tail of a probability

distribution. In the univariate case, one wishes to describe the upper tail of the distribution

of a single quantity, such as daily river flow volume at a single station or daily precipitation

at a weather station. In the multivariate setting, one must describe the dependence between

extremes of several variables. For example, a financial analyst may wish to estimate the

probability of multiple securities in a portfolio simultaneously experiencing losses exceeding
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high thresholds. Many extreme value problems also involve extrapolation: one may wish

to estimate probabilities of events falling further into the tail than those which have been

observed.

From a statistical perspective, the nature of extremes often renders the use of ‘ordinary’

statistical methods inappropriate for their analysis. For example, the central limit theo-

rem requires only that the second moment of a univariate distribution be finite, and many

statistical analyses focus on estimation of means and variances. In ‘ordinary’ multivariate

problems, a typical aim is to study the covariances or correlations between two or more

quantities. However, the usual summary measures such as means, variances, and correla-

tions often cannot fully describe the tail of a distribution. The statistical methods described

and employed in this dissertation are based on underlying results from probability theory

which specifically describe the tail.

Extreme value theory (EVT), the branch of probability and statistics which aims to

describe the upper (or lower) tail of a random variable, vector, or process, has roots in the

early to middle part of the 20th century. One of the first fields to use EVT extensively was

hydrology, which employed it to estimate quantities such as a “100-year flood”. EVT has

also been employed in fields such as engineering, financial risk analysis, and, more recently,

climatology. There are a number of informative books on the subject of EVT, including

Resnick (1987), Embrechts et al. (1997), and de Haan and Ferreira (2006), which provide a

thorough background on the probability theory underlying the study of extremes. Beirlant

et al. (2004) and Coles (2001) provide statistical approaches to the analysis of extremes,

focusing on applications. The notation employed in this dissertation generally follows Resnick

(2007), which offers a thorough treatment of regular variation, and whose framework is used

to develop the methodologies of this work.
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1.2 Outline and Links to Publications

This dissertation details applied, theoretical, and methodological advances in the study

of extreme values, employing the multivariate regular variation framework. After reviewing

classical EVT results, in this chapter we introduce the regular variation framework and

provide links to the classical theory. Chapter 2 employs the regular variation theory in

a study of the pineapple express, a weather phenomenon which is responsible for extreme

precipitation along the Pacific coast of North America. This work further draws a link

between large-scale atmospheric processes and extreme precipitation events produced by

this phenomenon. Chapter 3 examines a study of extreme precipitation from a suite of

deterministic climate models, using the regular variation theory to study the ability of such

models to capture extreme precipitation events. These chapters employ existing statistical

techniques in a novel examination of extremes in climatology.

Chapter 4 addresses the concept of hidden regular variation, which arises in both theo-

retical examples and real data. When hidden regular variation is present, statistical models

for extremes based on the regular variation framework break down, as the limiting measure

which characterizes extremal dependence is degenerate on some joint tail regions. We intro-

duce a probabilistic characterization for random vectors possessing hidden regular variation

as the sum of independent heavy-tailed components. Asymptotic justification for this charac-

terization is provided by a tail equivalence theorem, and the characterization is demonstrated

to exhibit useful finite-sample properties.

Chapter 5 introduces methodology for performing inference for random vectors possessing

hidden regular variation based on the characterization introduced in Chapter 4. We introduce

a novel modification of the expectation–maximization algorithm for performing maximum

likelihood inference for the joint tail of a random vector. The methodology is demonstrated

through simulation studies and applied to a bivariate series of air pollution data from Leeds,

UK.
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Table 1.1: References for published portions of this dissertation, by chapter.

Chapter Primary Reference

2

Weller, G., Cooley, D., and Sain, S. (2012). An investigation of the
pineapple express phenomenon via bivariate extreme value theory. En-
vironmetrics, 23(5):420–439.

3
Weller, G., Cooley, D., Sain, S., Bukovsky, M., and Mearns, L. (2013). Two
case studies on NARCCAP precipitation extremes. submitted.

4

Weller, G. and Cooley, D. (2012). An alternative characterization of hidden
regular variation in joint tail modeling. Technical report, Colorado State
University Department of Statistics.

5
Weller, G. and Cooley, D. (2013). A sum characterization of hidden regular
variation in joint tail modeling with likelihood inference via the Monte Carlo
expectation–maximization algorithm. submitted.

We conclude in Chapter 6 with a summary and discussion. This chapter also briefly

discusses possible future extensions of the work presented in this dissertation.

Portions of this dissertation also appear in jointly authored papers which have been

published or submitted for publication. In all cases, the author of this dissertation appears

as the first author on these papers. Table 1.1 provides primary references for material in

each chapter of the body of this dissertation. References to material which has been either

previously published or submitted for publication additionally appear in the introductory

section of each chapter, and these papers are cited in the References section.

1.3 Classical Extreme Value Theory

The classical results in EVT arise from the study of maxima, and the univariate and

multivariate cases are presented here. Analogous results exist for maxima of stochastic

processes; see de Haan (1984) and Smith (1990) for details.

1.3.1 Univariate Case

Classical univariate EVT dates back to the works of Fisher and Tippett (1928) and Gne-

denko (1943), which studied the limiting distribution of normalized block maxima. Consider
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independent copies X1, ..., Xn of a random variable X, and define Mn = ∨ni=1Xi. If one can

find normalizing sequences an ≥ 0 and bn ∈ R such that

P
[
Mn − bn
an

≤ z

]
−→ G(z) (1)

as n→∞, where G is non-degenerate, then G must be of the form

G(z) =


exp{−(1 + ξz)−1/ξ} if ξ 6= 0,

exp{− exp(−z)} if ξ = 0.

The parameter ξ determines the shape of the tail: ξ < 0 (reverse Weibull) corresponds to

a distribution with a finite upper limit, ξ = 0 (Gumbel) corresponds to an exponentially-

decaying tail, and ξ > 0 (Fréchet) corresponds to a (heavy) tail which decays like a power

function on z. Distributions of X for which (1) is satisfied are said to be in the domain of

attraction (DOA) of G. For example, the Beta distribution is in the DOA of G with ξ < 0,

the Gaussian and Gamma distributions are in the DOA of G with ξ = 0, and the Student t

distribution is in the DOA of G with ξ > 0.

In practice, the result (1) can be used to perform inference for block (e.g., annual or

seasonal) maximum data. Given m replicates of the maxima of n independent realizations

Mn,1, ...,Mn,m, one may assume the limit (1) as an equality. Absorbing the normalizing

sequences an and bn into location and scale parameters leads to the three-parameter gen-

eralized extreme value (GEV) distribution. The GEV can be fit to the data {Mn,j}mj=1 via

maximum likelihood (Smith, 1985) or probability weighted moments (Hosking et al., 1985),

and estimates of high quantiles (“return levels”) or small probabilities (“return periods”)

may be obtained from the fitted model, along with associated uncertainties.
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1.3.2 Multivariate Case

In the multivariate setting, classical EVT studies the limiting distribution of the vector of

appropriately normalized componentwise maxima. Assume one has independent replicates

X1, ...,Xn of a d-dimensional random vector X, and define Mn = (∨ni=1Xi,1, ...,∨ni=1Xi,d)
T .

If there exist normalizing sequences of vectors an ≥ 0 and bn ∈ Rd such that

P
[

Mn − bn
an

≤ z

]
−→ G(z) (2)

(nondegenerate) as n → ∞ (where all operations are taken componentwise), then G is

called a multivariate extreme value distribution (MVEVD) with univariate GEV marginals

(de Haan and Resnick, 1977; Resnick, 1987). While the marginal distributions of G are

GEV and thus fully parameterized, no finite parameterization exists for the dependence

structure of the d components. Some parametric subfamilies have been developed, and

are often described for the case where G has unit Fréchet marginal distributions; that is,

Gj(zj) = exp{−z−1j } for j = 1, ..., d. Examples are given in Coles (2001); more recently

developed models are provided by Cooley et al. (2010) and Ballani and Schlather (2011).

As the marginal distributions of G in (2) are fully parameterized and dependence models

are developed under the assumption of common marginals, statistical modeling of multivari-

ate extremes typically involves two steps: marginal estimation and dependence estimation.

Given m replicates Mn,1, ...,Mn,m of the vector of componentwise maxima of n independent

realizations, a typical approach is to fit a GEV distribution to marginal data Mj,n,1, ...,Mj,n,m

for j = 1, ..., d and use the fitted GEV to transform each margin to follow a unit Fréchet dis-

tribution. The dependence structure can then be modeled via an existing parametric form or

estimated nonparametrically. Likelihood-based modeling of marginal and dependence effects

may also be performed simultaneously; see e.g. Coles and Tawn (1991).
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1.4 Multivariate Regular Variation

Multivariate regular variation on cones provides a probabilistic framework for describing

the joint upper tail of a random vector and modeling multivariate threshold-exceedance data.

An intuitive description is that the joint tail of a regular varying random vector decays like a

power function. A decomposition into polar coordinates arises, and tail dependence can be

characterized by a limiting angular measure on the unit sphere under a fixed norm. We will

focus on the multivariate case; a comprehensive treatment of regular variation of functions

in the univariate case can be found in Bingham et al. (1989) and de Haan (1970).

1.4.1 Definition

Consider a d-dimensional random vector Z taking values in [0,∞) where 0 = (0, ..., 0)T

and ∞ is defined analogously. A cone C of Rd is defined such that for any set A ⊆ C, tA ⊆ C

for any t > 0, and multivariate regular variation considers sets on the cone C = [0,∞]\{0}.

Denote by M+(C) the space of nonnegative Radon measures on C. Chapter 6 of Resnick

(2007) presents nine equivalent definitions of multivariate regular variation; here we present

three which are most relevant to this dissertation.

The first definition formulates multivariate regular variation in terms of the probability

of (appropriately normalized) Z taking values in some set on C.

Definition 1. The random vector Z is regular varying if there exists a function b(t) → ∞

and Radon measure ν on C such that

tP
[

Z

b(t)
∈ ·
]

v−→ ν(·)

in M+(C) as t→∞, where
v−→ denotes vague convergence of measures.

An important idea emerging from Definition 1 is that multivariate regular variation de-

scribes the asymptotic distribution of only the upper tail of the random vector Z. Because
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the normalizing function b(t)→∞ and ν measures sets on C, which excludes the origin {0},

regular variation considers only the upper tail.

It follows from Definition 1 that the limit measure has the following homogeneity prop-

erty: for any set A ⊆ C,

ν(tA) = t−αν(A) (3)

for t > 0, where α > 0 is called the tail index. The normalizing function b(t) is itself regular

varying of index 1/α; that is, b(t) ∼ t1/α for large t. We denote this by b(t) ∈ RV1/α.

The homogeneity property (3) suggests a transformation to polar coordinates and leads

to the second definition of multivariate regular variation. Fix a norm ‖ · ‖ on C, and define

‘radial’ and ‘angular’ components R = ‖Z‖ and W = ‖Z‖−1Z. Denote the unit sphere under

the chosen norm as N = {z ∈ C : ‖z‖ = 1}.

Definition 2. The random vector Z is regular varying if there exists a function b(t) → ∞

and probability measure H on N such that for any Borel set B ⊆ N,

tP
[
R

b(t)
> r,W ∈ B

]
v−→ cr−αH(B)

as t→∞, for some c ∈ (0,∞).

Definition 2 states that in the limit, the radial and angular components of the random

vector Z become independent. The probability measure H is called the angular measure,

and it completely characterizes the limiting tail dependence structure of Z.

Denote by εx a probability measure placing unit mass at the point x, and denote by

Mp((0,∞]×N) the space of Radon point measures on the set (0,∞]×N. When performing

inference from independent samples Z1, ...,Zn of the random vector Z, the following definition

will be useful:
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Definition 3. The random vector Z is regular varying if there exists a sequence bn → ∞

and probability measure H on N such that

n∑
i=1

ε(Ri/bn,Wi)
d−→ PRM(να ×H)

in Mp((0,∞] × N) as n → ∞, where να is a Pareto measure, i.e., να((r,∞]) = cr−α for

constant c ∈ (0,∞); and PRM(µ) denotes a Poisson random measure with intensity measure

µ.

Definition 3 states that extremes of suitably normalized realizations of Z converge in

distribution to a non-homogeneous Poisson point process on C with intensity measure given

by the limiting product measure in Definition 2. Here the normalizing sequence can be

defined by bn = b(n), where b(t) is as in Definitions 1 and 2. This limiting Poisson process

will provide the probabilistic framework for performing likelihood-based inference for the

random vector Z.

Figure 1.1 provides an illustration of regular variation in the two-dimensional case. The

left panel of Figure 1.1 shows a realization of n = 2500 points from a bivariate regular varying

distribution with tail index α = 1. Displayed in the right panel is a histogram of angular

components values for realizations exceeding a fixed radial component threshold (in terms

of the L1 norm), shown in the left panel. Superimposed on the histogram is the density of

the angular measure H from which realizations were simulated.

In the two-dimensional case, the unit sphere N is one-dimensional, and it is helpful to

consider two limiting cases of the form of H. If Z1 determines Z2 exactly, H consists of a

single point mass on the interior of N, a situation known as perfect dependence. In this case,

extremes of Z1 occur in perfect accordance with extremes of Z2. On the other hand, H may

consist of two point masses, one at each end of the unit sphere N. This situation, known as

asymptotic independence, implies that extreme realizations of Z1 exhibit no correspondence

to extremes of Z2. Thus in the two dimensional case, H governs the extent to which extreme
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Figure 1.1: A realization of a bivariate regular varying random vector with tail index α = 1
(left) and a histogram of angular components for points exceeding the chosen radial

component threshold (right).

values of one margin correspond to extreme values of the other margin. We note here that

asymptotic independence is not the same as independence in the usual sense; the asymptotic

independence case is studied extensively in Chapter 4.

1.4.2 Relationship Between ν and H

An explicit link (Resnick, 2007, Proposition 6.4) exists between the measure ν, which

measures sets in Cartesian coordinates, and H, which measures sets on the unit sphere N.

Assume α = 1, the norm ‖·‖ = ‖·‖1, and consider the set A = [0, z]c for z = (z1, ..., zd)
T ∈ C.

It follows that

ν(A) =

∫
A

r−2drH(dw)

=

∫
N

∫ ∞
r=∧dj=1(zj/wj)

r−2drH(dw)
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=

∫
N

∨dj=1(wj/zj)H(dw).

Given an angular measure H, one can use the above integration to attain ν. Conversely,

Coles and Tawn (1991) provide a method for attaining the angular measure H induced by a

given form of ν.

1.4.3 Link to Classical Results

The regular variation framework can be linked to the classical MVEVDs of Section 1.3.2

in the following way (Resnick, 1987, Corollary 5.18). Suppose Z is multivariate regular

varying on C with limit measure ν as in Definition 1, and define Mn to be the vector of

componentwise maxima of n independent realizations of Z. Then there exist normalizing

sequences of vectors an ≥ 0 and bn ∈ Rd such that (2) holds with G(z) = exp{−ν([0, z]c)}.

Furthermore, the marginal distributions of G are GEV with ξ = 1/α > 0. That is, the

multivariate regular varying Z is in the domain of attraction of a MVEVD with Fréchet

marginal distributions and dependence structure given by the measure ν.

1.5 Statistical Inference for Multivariate Extremes

1.5.1 Threshold Exceedance Modeling

Modeling approaches based on the classical theory of extremes are limited to the study of

block maximum data. This approach can be wasteful of data, and in many applications, it

is desirable to employ exceedances of a high threshold to estimate the tail of distribution. In

the univariate case, a limiting parametric model for exceedances is given by the generalized

Pareto distribution (GPD) (Balkema and De Haan, 1974; Pickands, 1975). Statistical mod-

eling of univariate exceedances may also be performed using a related Poisson point process;

see Davison and Smith (1990).
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In the multivariate setting, the definition of a threshold exceedance is not as obvious

as in the univariate case. One approach is to employ a multivariate GPD (Rootzen and

Tajvidi, 2006), which leads to the study of data exceeding marginal thresholds. A multi-

variate threshold model implemented via a censored likelihood approach appears in Smith

et al. (1997). The approach employed in this dissertation defines a multivariate threshold

exceedance in terms of the norm of a random vector.

1.5.2 Regular Variation Framework in Practice

Definitions 1-3 of multivariate regular variation require that each of the marginal distri-

butions of Z are univariate regular varying with common tail index α. Typically, it is further

assumed that Z has common marginal distributions. In statistical practice, it is common

to apply transformations so that each margin has a common distribution function with tail

index α = 1. While in theory no dependence structure information is lost by marginal trans-

formations, there are statistical efficiency implications of the choice of transformation; see

e.g. Einmahl and Van den Akker (2011). When α = 1, a common choice for ‖ · ‖ is the L1

norm, in which case H is a measure on the unit simplex N = {w ∈ C : w1 + ... + wd = 1}

(Coles and Tawn, 1991; Ballani and Schlather, 2011; Cooley et al., 2010). Throughout the

remainder of this dissertation, we assume the L1 norm for polar coordinate transformations.

After estimation of marginal effects, attention turns to estimation of the dependence

structure, which is determined by the angular measure H. When the marginal distributions

of Z are common, a balance condition is imposed on the measure (Resnick, 1987, Proposition

5.11). Specifically, H must satisfy

∫
N

w1H(dw) =

∫
N

wjH(dw), j = 2, ..., d. (4)

In fact, any probability measure on N satisfying (4) is a possible angular measure of a

regular varying random vector with common marginal distributions (Resnick, 2007, Remark
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6.3). Thus, as in the classical MVEVDs, there is no finite parameterization for the class of

dependence structures. The work in this dissertation will focus on parametric forms for H;

nonparametric estimators have been explored in some low-dimensional problems (Einmahl

et al., 2001).

As the only requirement for H is that it is a probability measure on N satisfying the

balance condition (4), in practice it is often advantageous to model H directly, and this is

the focus of the work in this dissertation. Alternatively, one could focus on models for the

measure ν (Fougères et al., 2009; Einmahl et al., 2012).

Finite-sample estimation of the angular measure assumes that the limit in Definition 2 is

an equality for suitably large r; that is, replacing t by n and defining bn = b(n), one assumes

nP
[
R

bn
> r,W ∈ B

]
= cr−αH(B)

for r > r0, where r0 is a suitably high threshold. Further assuming a parametric, continuously

differentiable form for H with density h(w;θ) and defining ri = ‖zi‖ and wi = ‖zi‖−1zi

allows one to write a likelihood function for the points z1, ..., zN0 for which ri > r0:

L(θ; z1, ..., zn) = exp

(
−r0
bn

){ N0∏
i=1

(αcr−1−αi /bn)h(wi;θ)

}/
N0!

∝
N0∏
i=1

h(wi;θ). (5)

Numerical methods may then be used to maximize the Poisson point process likelihood (5)

with respect to θ.
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CHAPTER 2

AN INVESTIGATION OF THE PINEAPPLE EXPRESS PHENOMENON

VIA BIVARIATE EXTREME VALUE THEORY

2.1 Introduction

In this chapter, we examine extreme winter precipitation on the west coast of the United

States and southern Canada, with special interest in the phenomenon known informally as

“pineapple express” (PE). A PE event is characterized by a narrow stream of moisture,

referred to in the meteorological community as an atmospheric river, which extends from

near Hawaii to the west coast of the United States or Canada. This phenomenon has been

known to cause extreme localized rainfall and flooding along the coast, and can also bring

heavy, wet snow to the Sierra Nevada and and Cascade mountain ranges. Because of the sub-

tropical origin of their moisture, PE events are often associated with warm temperatures,

which can exacerbate winter flooding. Additionally, precipitation events associated with

the PE phenomenon contribute significantly to the water resources of California and other

western states (Dettinger et al., 2011).

There is much current interest both in characterizing PE events and in understanding

if and how climate models capture and represent such events. In a recent study, Dettinger

(2011) analyzed occurrences of atmospheric rivers in past climate reconstructions and an

ensemble of simulations of future climate change. Leung and Qian (2009) found that the

Weather Research and Forecasting (WRF) regional climate model (RCM) driven by reanal-

ysis was able to reproduce the mean and 95th percentile of precipitation over the western

United States, and in addition, accurately captured the spatial extent and intensity of two
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major PE events. Here we investigate extreme winter Pacific precipitation and the PE relying

on tools developed from statistical extreme value theory.

Much of the recent discussion of climate change has focused on the changes in extreme

weather events. There are two primary reasons for this: first, these extreme weather events

have the largest financial, environmental, and societal impacts; and second, some recent

work (e.g., Holland, 2009) suggests that the bellwether of climate change will be an increase

in the frequency and intensity of such events. This leads to several important and very

broad questions: 1) How well are climate models able to reproduce extreme temperatures,

precipitation, and storms? 2) What are the connections between these extreme events and

the atmospheric processes that drive them? and 3) How will climatic change affect the

frequency and intensity of extreme events in the future? Our investigation of winter Pacific

precipitation and PE events attempts to address these questions with respect to particular

atmospheric phenomena.

In terms of aims and statistical methodologies, this investigation differs considerably

from previous work describing weather and climate extremes. Here, we perform several

bivariate extreme value analyses. Examples of multivariate extremes analyses are few in the

climate/atmospheric literature and relatively rare in general. Most multivariate extremes

analyses aim to assess the probability of a rare event due to combined effects of several

variables. One example is de Haan and de Ronde (1998), who assess flood risk as a result of

the combination of wave height and storm surge. Although the statistical tools we use are

similar, our aim is quite different. We aim to first describe and model the tail dependence of

precipitation amounts from various sources, and second, to link large scale drivers to extreme

precipitation. Below we first give a short review of extremes work related to weather and

climate studies and then lay out the aims of this chapter in more detail.
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2.1.1 Extreme Value Theory in Climate Studies

Because extreme weather events are costly in both human and economic terms, there has

long been a need to describe their potential magnitude. Extreme value theory, the branch

of probability specifically focused on describing the tail of a distribution, is well-suited for

this task. A very nice review and commentary on applications of extreme value theory to

temperatures, precipitation, and wind is given by Katz (2010).

Much extremes work aims to describe the tail of a distribution of a single quantity.

Such univariate analyses have an extensive history in hydrology, engineering, finance, and

climate research. In climate applications, numerous studies have endeavored to describe the

tail of temperature or precipitation at a single weather station or climate model grid box.

Other analyses in have used such descriptive extremes to identify climate change signals; see

Guttorp and Xu (2011) for one recent example.

Although the aim of describing the tail of a distribution is simple, the task is not nec-

essarily easy. Because an extreme value analysis uses a subset of data deemed extreme and

extreme data are by definition rare, one is always data limited when describing extremes.

This leads to large uncertainty in parameter and high quantile (or return-level) estimates.

When one has data from multiple locations, there are methods of borrowing strength across

locations to better describe distributions’ tails. Such work dates back at least to the flood

frequency analysis of Dalrymple (1960), and this methodology was used to produce the offi-

cial precipitation return-level estimates1 published by the National Oceanic and Atmospheric

Administration (NOAA). The modern practice of regional frequency analysis is well sum-

marized in Hosking and Wallis (1997). Another approach is to fit locations independently

and then to spatially smooth fields created from the parameter estimates or of quantities of

interest such as return levels (Kharin and Zwiers, 2000). Hierarchical modeling (e.g., Cooley

et al., 2007; Sang and Gelfand, 2010) is a recent alternative approach for borrowing strength

across locations.

1http://www.nws.noaa.gov/oh/hdsc/currentpf.htm

16



A regression approach (Beirlant et al., 2004, Chapter 7) has been used to model ex-

tremes of a non-stationary process by letting the parameters of the generalized extreme

value (GEV) or generalized Pareto (GPD) distributions to be functions of covariates. To

describe how extreme phenomena could be altered due to climate change, researchers (e.g.,

Kharin and Zwiers, 2005) have allowed the GEV or GPD parameters to be functions of

time. Others have modeled an extreme value distribution’s parameters as functions of an-

other measurable and generally larger-scale climate variable; for example, Sillman et al.

(2011) links the parameters of the GEV distribution describing European monthly minimum

temperatures to an atmospheric blocking covariate. Models typically define the GEV or

GPD parameters to be simple parametric functions (e.g., linear trends) of time, but more

flexible non-parametric approaches have been used (Chavez-Demoulin and Davison, 2005).

This regression approach is best suited for linking extreme phenomena to slowly varying

covariates (e.g., the El Nĩno/Southern Oscillation index (ENSO), North Atlantic Oscillation

index (NAO), or other indices), but we believe that linking the parameters of an extreme

value distribution to indices on a daily scale is generally a poor approach. Fitting either a

GEV or GPD implies one has a large number of identically distributed observations from

which one can extract either block maxima or threshold exceedances. Given an index that

varies slowly (say monthly), one can assume the observations during this month all arise

from the same distribution which is a function of that index and hence the parameters of

the GEV or GPD can be viewed as functions of the index. However, with an index that

varies rapidly (say daily), it is unclear how one could view an observation associated with a

specific covariate value as extreme, when generally one has at most a few observations for

the value of that covariate. Because we wish to link extremes to a daily index, we choose to

employ bivariate extreme value theory rather than the regression approach.

A possible alternative to the bivariate extremes approach we describe in Section 2.2

is to employ a copula model. Copulas (Nelsen, 2006) provide an approach for modeling

multivariate data and capturing dependence; such an approach is popular in hydrology.
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Aside from the extremal copulas (Joe, 1997), copula models in general are not robust enough

to capture tail dependence, and most are not regular varying. Thus, here we choose to model

dependence based on the framework of multivariate regular variation.

2.1.2 Bivariate Extremes Investigation of Pacific Winter Precipitation

In this work we have several ambitious goals, each novel to climate extremes studies. Our

first aim is to examine the tail dependence between observations and corresponding RCM

output. Significant tail dependence would indicate the climate model is getting the extreme

precipitation ‘right’, at least in the sense that the model’s extremes correspond with extreme

observations, even though the actual precipitation amount produced by the climate model

may not be directly interpretable in terms of observations. Finding tail dependence, we

then construct a statistical model which relates the extremes of the climate model output

to the extreme observations. This model can be viewed as a type of ‘statistical generator’ of

extreme observational precipitation from RCM output.

A second goal of this work is to draw a connection between extreme precipitation events

and large-scale atmospheric processes. The connection between the large-scale processes and

(often) localized extreme events in climate are, in many cases, not well understood and only

beginning to be explored. Much of the work in this area has focused on extreme temperatures

(Schubert and Henderson-Sellers, 1997; Sillman et al., 2011), though some studies have

focused on extreme precipitation (Mo et al., 1997; Katz, 1999). Extreme precipitation events

are short-lived, and our investigation is unique in that we link extreme precipitation to a

daily index, rather than to large scale processes whose variation is more meaningful on a

monthly or longer time scale. Specifically, we aim to build a daily “PE index” that exhibits

extremal dependence with precipitation produced by this phenomenon. By understanding

the processes which can lead to a PE event, we can quantify the extent of similarity of

process dynamics between future climate model precipitation events, and events known to
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produce PE-driven extreme precipitation. We build this index from daily north Pacific mean

sea-level pressure (SLP) fields.

Finally, we apply our statistical precipitation generator to a future run of the WRF

RCM driven by a general circulation model (GCM). GCM-driven RCM output does not

exhibit a daily correspondence to observations, and also exhibits differing tail behavior in

terms of precipitation. These obstacles, coupled with the fact that we do not have future

observations, creates new challenges for constructing this statistical generator. We examine

the extremes of precipitation in our study region from the future climate model run, and use

the fitted extremal dependence model to simulate future observations of extreme west coast

precipitation.

A brief review of extreme value theory and methods is given in Section 2.2. We discuss the

various data products and climate model output sources we utilize in Section 2.3. In Section

2.4, we fit an extremal dependence model to the daily precipitation measurements from the

WRF model and observational precipitation data. Section 2.5 details the motivation for

the PE index and the method used for building it. The methodology for simulating future

extreme precipitation observations is discussed in detail in Section 2.6. We conclude with a

summary of results and discussion in Section 2.7. Much of the material in this chapter also

appears in Weller et al. (2012).

2.2 Extreme Value Theory Background

In this chapter, we employ the regular variation framework introduced in Chapter 1

to conduct bivariate extreme value analyses. The aim is to characterize the extremal de-

pendence structure between two quantities. The dependence structure can be completely

characterized by the angular or spectral measure or equivalently, the Pickands’ dependence

function (Fougères, 2004). We first provide background on univariate techniques and tail

dependence measures which are employed in this chapter.

19



2.2.1 Univariate Threshold Exceedances

An extreme value analysis does not require knowledge of the entire underlying distribu-

tion, and it is standard practice to utilize only those data which are considered to be extreme.

The classical theory of extremes developed from the study of block (e.g., annual) maximum

data. This can be wasteful of data, however, and an alternative approach is used in this

work: we will study and model exceedances of a threshold. According to well-developed

probability theory, if a random variable X is in the domain of attraction of an extreme value

distribution, and given that the random variable X exceeds a suitably high threshold u, then

the exceedance amount should approximately follow a GPD. That is, for x > u and x such

that (1 + ξ(x− u)/ψu) > 0,

P(X > x | X > u) ≈
(

1 + ξ
x− u
ψu

)−1/ξ
,

where ψu > 0 depends on the threshold and ξ does not. The parameter ξ characterizes

the type of tail behavior: a bounded tail corresponds with ξ < 0, a light (exponentially

decreasing) tail corresponds with ξ = 0, and a heavy (decreasing as a power function) tail

corresponds with ξ > 0.

2.2.2 Bivariate Extremes and Tail Dependence

For random vectors, dependence in the joint upper tail is characterized differently than de-

pendence in the whole of the joint distribution. While covariances and correlations are useful

for describing dependence in many applications, these measures do not capture tail depen-

dence. To describe dependence in the tail of the joint distribution of two random variables,

one must first determine whether the pair are asymptotically dependent or asymptotically

independent. A pair of random variables Z1 and Z2 with a common marginal distribution
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are said to be asymptotically independent if

lim
z→z+

P(Z2 > z | Z1 > z) = 0, (6)

where z+ is the (possibly infinite) right endpoint of the support of the common marginal.

The random variables Z1 and Z2 are said to be asmyptotically dependent if the limit in (6)

is greater than 0. It is possible for the dependence in the tail to be quite different than the

dependence in the center of the joint distribution. For example, the two components of a

bivariate Gaussian distribution with any correlation less than one can be shown to be asymp-

totically independent. Conversely, it is possible to construct a bivariate distribution with

small correlation, but with strong tail dependence. An intuitive description of asymptotic

dependence is that the largest values of Z2 can occur concurrently with the largest values of

Z1.

2.2.3 Measures of Tail Dependence

There has been much work developing measures of dependence in both the asymptotic

dependence and independence cases. In the asymptotically dependent case, there are several

related dependence metrics (Davis and Resnick, 1993; Schlather and Tawn, 2003; Cooley

et al., 2006). In Section 2.4, we use the measure χ(u) of Coles et al. (1999), where if Z1 and

Z2 have a common marginal,

χ(u) = P(Z2 > u | Z1 > u).

Many recent works have aimed to quantify dependence in the asymptotically independent

case or to formulate hypothesis tests for determining the category of tail dependence (Coles

et al., 1999; Peng, 1999; Draisma et al., 2004; Zhang, 2008; Davis and Mikosch, 2009; Husler

and Li, 2009). Ledford and Tawn (1996) provide an early formulation of the different forms of

tail dependence of two random variables. They define the joint tail of two Fréchet-distributed
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random variables Z1 and Z2 to decay as

P(Z1 > r,Z2 > r) ∼ L(r)r−1/η

as r →∞, where η ∈ [1/2, 1] is a constant, and L(r) a slowly varying function. The param-

eter η serves as a measure of the amount of dependence in the asymptotically independent

case. The limiting cases are asymptotic dependence (η = 1) and independence of Z1 and Z2

(in the usual sense), which would imply η = 1/2. Despite all the recent effort, it remains

difficult to distinguish between the case of asymptotic dependence at a weak level and the

case of relatively strong dependence in the asymptotic independence setting.

2.3 Precipitation Observations and Model Output

Climate models are deterministic tools which simulate long-term interactions between

the atmosphere, oceans, and land. At their core, these models are a series of discretized

differential equations which model the circulation of the atmosphere and ocean according to

the known physics of the Earth system. They produce simulated weather phenomena on a

spatial grid and record outputs on a timescale of a few hours. The outputs of these models

are numerous; at each grid location and timestep, values of variables such as temperature,

precipitation, winds, and pressure are given. These models can be run under current climate

conditions or under various future scenarios, for which they provide insight into potential

climate changes.

2.3.1 GCMs, RCMs, and Reanalysis Products

General circulation models (GCMs), often referred to as global climate models, simulate

the climate over the entire Earth and generally have spatial resolutions of roughly 2.5 de-

grees latitude/longitude. Analysis of GCM output allows one to study climate on a large

scale. Researchers employ GCMs to make statements about global or continental changes
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in temperature, precipitation or other quantities. However, as their resolution is too coarse,

GCMs are poor tools for making statements about local weather phenomena.

Regional climate models (RCMs) are one approach atmospheric scientists use in order to

simulate higher-resolution phenomena and study their impacts. In comparison with GCMs,

RCMs simulate weather features at finer spatial scales, on the order of tens of kilometers.

Because of the computational cost of their high resolution and extensive parameterizations,

these models are run over a subregion of the globe (e.g., over North America). An RCM

requires boundary conditions to drive its climate simulations, since weather events at regional

scales are driven by synoptic-scale conditions.

One method to drive an RCM is to have the boundary conditions provided by a GCM.

RCMs driven by global models allow for examination of regional climate under various (cur-

rent or future) conditions. They provide dynamical downscaling of large-scale phenomena

from a GCM to a more local scale. However, GCMs are not meant to simulate weather on

any specific day. Output of an RCM driven by a GCM provides a distribution of weather

variables over a long period of time, but no correspondence exists between this output and

observed weather on a given day.

Alternatively, an RCM can be driven by a reanalysis. A reanalysis product is similar to

climate model output, but unlike GCMs, it has observed weather as inputs. Output from

RCMs driven by reanalysis has temporal correspondence to past observed weather. For a

particular day, we expect weather simulated by a reanalysis-driven RCM to be similar to

weather observed on that day. Hence, one can compare RCM output to observations at

short (e.g., daily) timescales. However, the RCM output does not exactly replicate observed

weather due to variability in the climate system and errors in the reanalysis and regional

models. As they require observational data as inputs, reanalysis-driven models do not allow

for the study of future climate change scenarios.
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2.3.2 WRF Regional Model and NARCCAP

In this work we primarily use output from the Weather Research and Forecasting (WRF)

RCM. The WRF model is one of six RCMs included in the North American Regional Climate

Change Assessment Program (NARCCAP). NARCCAP is studying regional climate change

over North America by driving the six RCMs with four different GCMs, as well as a reanalysis

product (Mearns et al., 2009). The NARCCAP models are run at approximately 50 km

resolution; more information on NARCCAP can be found at its website2.

As part of NARCCAP, the WRF model was driven by the NOAA National Center for

Environment Prediction (NCEP) Reanalysis-2 (Kanamitsu et al., 2002) for the period 1981-

2000. In Section 2.4, we compare output of the WRF model driven by NCEP reanalysis to

observed precipitation. The WRF model has also been coupled with two different GCMs

to simulate a control period from 1971-2000 and a future period from 2041-2070. The

driving GCMs themselves are run for future climate under the Intergovernmental Panel on

Climate Change (IPCC) A2 emissions scenario (Nakicenovic et al., 2000). In Section 2.6,

we study output of the WRF model forced by the Community Climate System (CCSM)

GCM (Collins et al., 2006). The CCSM model is maintained by the National Center for

Atmospheric Research (NCAR). The WRF model precipitation output used in this work

was downloaded from the Earth System Grid3 maintained by NCAR in Boulder, CO USA.

2.3.3 Observations

The ‘observations’ employed in this work are in fact a gridded meteorological data prod-

uct prepared by the Surface Water Modeling Group at the University of Washington4. To

construct this product, weather station measurements were interpolated to produce retro-

spective 1/8th degree (∼12 km) gridded values of precipitation over the United States and

2http://www.narccap.ucar.edu/about/index.html
3http://www.earthsystemgrid.org/project/NARCCAP.html
4http://www.hydro.washington.edu/SurfaceWaterGroup/Data/gridded/index.html
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parts of southern Canada (Maurer et al., 2002). While the gridded product contains un-

certainties due to gaps in weather station locations, its output is more easily compared to

climate model output than weather station data, since stations are not uniformly located

in space, and their measurements often have missing data. The observational product was

accessed from the website5 of Dr. Edward Maurer at Santa Clara University.

2.4 Investigating and Modeling Tail Dependence between RCM

Output and Observations

We begin by examining tail dependence in daily precipitation between reanalysis-driven

WRF output and observations, that is, we study the extent to which the largest precipitation

events from WRF output correspond to the largest events in the observational record. By

its construction, the reanalysis-driven RCM should see the same synoptic-scale conditions as

the observational record. When these conditions result in an observed extreme precipitation

event, we aim to learn whether the WRF model will produce an extreme event as well. We

restrict our attention to precipitation from November plus the winter months (NDJF), as

the vast majority of PE events occur within this four-month time frame. Daily precipitation

is examined for the years 1981-1999, resulting in a sample of Tc = 2284 days.

2.4.1 Study Region and Quantity of Interest

We define our study region to be roughly between 32◦N and 53◦N latitude, and from

118◦W longitude to the west coast. Figure 2.1 shows the spatial extent of the study region

from WRF output and observations. With this region we aim to capture extreme winter

precipitation events that occur along the coasts of California and the Pacific Northwest, as

well as extreme precipitation events in the Sierra Nevada and Cascade mountain ranges.

5http://www.engr.scu.edu/~emaurer/data.shtml
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Figure 2.1: Precipitation intensity from WRF model output (left) and observations (right)
on January 1, 1997. Footprint captured for this analysis is indicated by black lines (see

Section 2.4.1 for details). Both figures are on the scale (mm) indicated by the legend strip.
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An exploratory analysis was performed with the purpose of defining a daily precipitation

measurement that captures the spatial extent and intensity of PE events. The aim was to

find a daily quantity of which the largest realizations corresponded to PE events, as identified

by Dettinger (2004). This quantity was chosen to be the maximum total precipitation over

an approximately 200 × 200 km2 area (4 × 4 WRF grid cells) within the region on each

day. That is, for each day in the study, we find the 4 × 4 grid cell ‘footprint’ that has the

greatest total precipitation intensity. Let XNC
t be the sum of the daily grid cell precipitation

intensities over the maximum footprint from the NCEP reanalysis-driven WRF output for

day t (t = 1, ..., Tc). We define Y C
t to be the sum of gridded observations for the maximum

200km × 200km footprint for day t. We use ‘C’ in the subscript and superscripts here

to denote that we study the ‘current’ climate. An example of this footprint for both WRF

output and observations is shown in Figure 2.1. We extract realizations of (XNC
t , Y C

t ) for each

day in the study, without requiring that the two footprints must align spatially on a given

day. The primary reason for not requiring spatial alignment is to account for the possibility

that the WRF model may be reproducing an extreme precipitation event, but not in the exact

location seen in observations. In addition, coordinate systems and spatial resolutions differ

between WRF output and the gridded observational product, making exact spatial matching

difficult. No systematic bias was found in the latitudes or longitudes of precipitation events

simulated by WRF; boxplots of the discrepancies in latitude and longitude between locations

of extremes in the two products are provided in Figures 2.2 and 2.3.

A scatterplot of the resulting daily quantities is shown in the left panel of Figure 2.4. As

expected, we see strong dependence between the NCEP-driven WRF output and observations

in the whole of the data, and the sample correlation is estimated to be 0.74. Our focus here

is the joint upper tail, however, and we also see that the largest values of XNC
t appear to

have correspondence with the largest values of Y C
t .
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Figure 2.2: Differences in latitudes of center of region from which precipitation quantities
XNC
t (WRFG output) and Yt (observations) were drawn, t = 1, ..., 2284. Positive values

indicate the RCM simulated an event at higher latitude than seen in observations. PE
events are as defined in Section 2.4.4; extreme PE events are largest 130 values of Yt which

correspond to PE days.
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Figure 2.3: Differences in longitudes of center of region from which precipitation quantities
XNC
t (WRFG output) and Yt (observations) were drawn, t = 1, ..., 2284. Positive values

indicate the RCM simulated an event more eastwardly than seen in observations. PE
events are as defined in Section 2.4.4; extreme PE events are largest 130 values of Yt which

correspond to PE days.
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Table 2.1: Threshold selected and maximum likelihood GPD parameter estimates with
standard errors for precipitation quantities. Marginal thresholds have common exceedance

rate 0.057 (130 exceedances).

Margin u· ψ̂· (se) ξ̂· (se)
XNC

t (WRF) 1054 288.95 (39.27) 0.0255 (0.104)
Y C
t (obs) 14240 3895.87 (512.03) 0.0213 (0.099)

2.4.2 Extremal Dependence Estimation

As a preliminary step in examining the upper tail dependence in (XNC
t , Y C

t ), the tails of

each marginal distribution are estimated separately. After checking diagnostics to ascertain

an appropriate threshold (Coles, 2001, Chapter 4), GPDs are fitted to the largest 130 ob-

servations of XNC
t and Y C

t (corresponding to exceedances of the empirical 0.943 quantile).

A summary of maximum likelihood estimates of GPD parameters is given in Table 2.1. It

is encouraging and perhaps surprising that estimates of the tail parameter ξ are similar for

the RCM output and the observations. It has been hypothesized that climate models could

not produce heavy-tailed precipitation. Weller et al. (2013) found that tail behaviors in this

precipitation quantity differ between NARCCAP models.

Probability integral transformations ZNC
t = TNC(XNC

t ) and ZC
t = TC(Y C

t ) are applied

to each margin using the fitted GPD above the chosen marginal thresholds and the empirical

distribution functions below. The transformation results in unit Fréchet margins; that is,

ZNC
t and ZC

t have distribution function F (z) = exp{−z−1}. Scatterplots of realizations

(xNCt , yCt ) and (zNCt , zCt ) are shown in Figure 2.4. While it is seen in the left panel that these

data exhibit high correlation, the Fréchet scale plot indicates that tail dependence appears to

be present as well, as many of the largest points lie on the interior of the first quadrant and

not near the axes. Note that the scales for XNC
t and Y C

t in the left plot differ considerably,

showing that the precipitation amounts produced by the RCM are not directly interpretable

in terms of observations.
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Figure 2.4: Daily precipitation quantity computed from WRFG output driven by NCEP
reanalysis and gridded observational data product on original scale (left) and after

transformation to Fréchet scale (right). PE events are as identified in Dettinger et al.
(2011). See also left panel of Figure 2.5.
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To confirm that the WRF output and observations exhibit tail dependence, we use the

hypothesis test of Ledford and Tawn (1996). Ledford and Tawn (1996) use an estimate of η

in a likelihood ratio test for H0: η = 1 against H1: η < 1, i.e. asymptotic dependence against

asymptotic independence. The resulting p-value is nearly 1, providing little evidence of

asymptotic independence of the bivariate pair (ZNC
t , ZC

t ). Furthermore, for q95 the 0.95 em-

pirical quantile in each margin, we estimate χ̂(q95) = 0.47, indicating a moderate-to-strong

level of tail dependence. That the reanalysis-driven WRF output exhibits this amount of tail

dependence means, in a certain sense, that the RCM is reproducing winter extreme precipi-

tation reasonably well. That is, when boundary conditions from the reanalysis are such that

the largest precipitation occurs, those conditions are adequately captured by the reanalysis

product and the RCM can respond in the correct way–by producing its largest precipitation.

This is strong statement about the way the RCM is simulating extreme precipitation events.

Not only does the WRF model accurately represent high quantiles, as found by Leung and

Qian (2009); it is also producing correspondence of its largest precipitation days with those

in the observed record.

2.4.3 Models for the Angular Measure

Having found the tails to be asymptotically dependent, we turn our attention to con-

structing a statistical model relating the tails of the RCM output to the observations. We use

an established procedure (Coles and Tawn, 1991; Cooley et al., 2010; Ballani and Schlather,

2011) to fit an angular measure model to (zNCt , zCt ). Assuming a parametric model for an

angular density, one can write down a corresponding point process likelihood approximation

to threshold exceedances given by (5) in Chapter 1, and then estimate the angular density’s

parameters via numerical maximum likelihood. A transformation to pseudo-polar coordi-

nates is made, as described in Section 2.2. Exceedances are defined in terms of rt = zNCt +zCt ,

and for these data, we select the threshold r0 = 40, the approximate 0.95 empirical quantile

of rt values. We fit an angular measure corresponding to the logistic model (Gumbel, 1960),
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a one-parameter model whose angular density is given by

h(w;α) =
1

2
(α−1 − 1){w(1− w)}−1−1/α{w−1/α + (1− w)−1/α}α−2.

We also fit the Dirichlet angular density (Coles and Tawn, 1991), a more flexible two-

parameter model with

h(w;α, β) =
αβΓ(α + β + 1)(αw)α−1{β(1− w)}β−1

2Γ(α)Γ(β){αw + β(1− w)}α+β+1

Figure 2.5 provides a closer inspection of the Fréchet-scaled data shown in Figure 2.4, as

well as a histogram of angular components wt = zNCt /rt of points for which rt > r0. For

the logistic model, the maximum likelihood procedure yields α̂ = 0.577, with a standard

error of 0.023. The Dirichlet model parameters are estimated as α̂ = 1.203 and β̂ = 0.862,

with standard errors of 0.318 and 0.189, respectively. This suggests slight asymmetry in the

dependence structure, which is indicated by the histogram in Figure 2.5. The fitted logistic

model and fitted Dirichlet models had AIC statistics of 2162.2 and 2156.1, respectively,

suggesting the Dirichlet model as preferable to the logistic. Both dependence model fits are

added to the histogram in Figure 2.5.

2.4.4 Pineapple Express Events

As the primary interest in this work is the PE phenomenon, it is of interest to study

those (xNCt , yCt ) that are associated with PE events. While the narrow band of atmospheric

moisture associated with PE events poses difficulty in detecting them, some recent work

has been done in this area. Dettinger et al. (2011) applies pattern recognition techniques

to NCEP reanalysis fields to classify days that exhibit a PE regime. This results in a list

of days which are labeled as PE events. The list first appeared in Dettinger (2004); it was

updated in Dettinger et al. (2011). In this work, we include these days as well as subsequent

days to be labeled as PE precipitation events. This results in a subset of 186 PE days.
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Figure 2.5: Left: WRFG output zNCt against observations zCt on Fréchet scale, with the
line r = r0 shown. Right: Distribution of angular component values wt = zNCt /rt for points

such that rt > r0. Estimated densities of h(w) from one-parameter logistic and
two-parameter Dirichlet models are added to the histogram. Note the Dirichlet model fit

indicates an asymmetric dependence structure.
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Figure 2.4 highlights PE days in the scatterplots of (xNCt , yCt ) and (zNCt , zCt ). The scatter-

plot indicates that not all PE events produce large precipitation measurements (as defined

by our footprints), and not all large precipitation events are associated with the PE phe-

nomenon. However, the tendency for the PE phenomenon to produce extreme precipitation

is apparent. While only 8% of all the days in our study are identified as PE days, 49 of the

130 days (37.7%) with the largest observed precipitation measurements Y C
t are identified as

PE events.

The left panel of Figure 2.4 suggests that extreme precipitation events occur in both

PE and non-PE conditions. Figure 2.6 shows the average precipitation intensity for the 130

largest observations of Y C
t , separated into PE days and non-PE days. The figure shows very

little difference between mean extreme precipitation patterns for PE and non-PE events.

Thus an attempt to identify PE events cannot rely on precipitation patterns only. We turn

to synoptic-scale patterns in Section 2.5 to better understand the PE phenomenon.

2.5 Pineapple Express Index

The PE phenomenon has been well-known to meteorologists for many years, and atmo-

spheric rivers have been the subject of several recent publications (e.g., Zhu and Newell,

1994; Dettinger, 2004; Dettinger et al., 2011). The connection between large-scale atmo-

spheric processes and extreme precipitation from PE is not well-known. Much of the work

in PE has centered around identification of these events from satellite imagery or reanalysis

fields. Many of the methods employed thus far have been used only for pattern recognition

(Dettinger et al., 2011). These methods are effective at identifying PE events, but have

not produced a direct link to the quantity of precipitation produced by PE. Identification

methods also rely on analysis of a combination of several atmospheric fields. Other works

have focused on the connections between indices such as the ENSO and Pacific Decadal

Oscillation (PDO) modes (Dettinger et al., 2011; Dettinger, 2004). However, these indices
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Figure 2.6: Mean observed precipitation intensity for 49 largest PE days (left) and largest
81 non-PE days (right). Figures are on the same scale (mm/day) indicated by the legend

strip.

are derived on larger temporal scales; we aim for an index defined the same daily timescale

as our precipitation measurements.

2.5.1 Connection to Sea-Level Pressure Fields

As a first step toward connecting synoptic-scale patterns to PE events, we turn our

attention to SLP fields, as these are often employed in the atmospheric science literature as

indicators for different weather regimes. The link between pressure fields and Pacific coast

precipitation has been studied in previous work. Stahl et al. (2006) connected SLP patterns

to precipitation and temperature anomalies at weather stations in British Columbia, Canada.

Stahl et al. (2006) used principal component analysis on daily mean SLP fields in the north

Pacific to classify 13 types of synoptic circulation patterns, and examined temperature and

precipitation anomalies associated with each type. However, Stahl et al. (2006) did not
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explicitly discuss connection of these circulation patterns to extreme precipitation or the PE

phenomenon. While Cannon et al. (2002) examines connections between circulation patterns

and surface weather conditions, the analysis is limited to one specific location.

We note here that the origin of the atmospheric river feature of PE events is outside the

domain of the NARCCAP simulations. We thus extract mean SLP fields for each day in

our study from the NCEP reanalysis product which drives the WRF precipitation output

discussed in Section 3. Daily mean SLP fields from NCEP reanalysis were downloaded from

the website of the NOAA Earth System Research Laboratory6 in Boulder, CO USA. Daily

average SLP fields have a spatial resolution of 2.5◦ latitude/longitude, and we examine the

region of the north Pacific between 157.5◦ W and 130◦ W longitude, and 30◦ N and 62.5◦ N

latitude (see Figure 2.7). This region is similar to that studied in Stahl et al. (2006). Winter

SLP anomalies for each day are calculated by subtracting the NDJF mean daily pressure over

the time period 1981-1999. This results in a 280-dimensional vector of daily SLP anomalies.

We denote this vector for day t as Mt.

As an exploratory step, we examine SLP anomaly fields of PE events and non-PE events.

Figure 2.7 shows the mean anomalies over the domain for the 130 largest observed precip-

itation events, partitioned into PE and non-PE events. Despite the similar precipitation

observations for PE and non-PE identified days shown in Figure 2.6, Figure 2.7 shows that

the SLP pattern composite from extreme precipitation days identified as PE by Dettinger

et al. (2011) differs dramatically from the composite of non-PE extreme events. It appears

that there are at least two different SLP regimes producing extreme precipitation in our

study region.

2.5.2 Construction of the PE Index

The PE SLP anomaly field in the left panel of Figure 2.7 is used to build a PE index. Let

µPE be the normalized vector of mean anomalies from the 49 PE extreme precipitation days.

6http://www.esrl.noaa.gov/psd/
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Figure 2.7: Mean SLP anomalies (Pa) for largest 49 PE precipitation days (left) and
largest 81 non-PE precipitation days (right).

We define our PE precipitation index for day t as the projection of that day’s SLP field onto

the mean PE anomaly: UPE
t = Mt ·µPE. Thus UPE

t is a function of both the “direction” and

magnitude of Mt. This index can be thought of as measuring the covariance between a given

day’s SLP anomaly pattern and the SLP anomaly shown in the left panel of Figure 2.7. The

left panel of Figure 2.8 shows the PE index plotted against observed precipitation, for both

PE and non-PE events. The index exhibits dependence with our precipitation footprint,

and the dependence appears to be slightly stronger for PE events. The sample correlation

between UPE
t and log(yCt ) is 0.31 for PE days and 0.28 for non-PE days. Additionally,

several of the largest PE index values correspond with the largest precipitation values from

PE events.

2.5.3 Tail Dependence with Observed Precipitation

In order to examine extremal dependence of UPE
t with observed precipitation Y C

t , a trans-

formation is made to the Fréchet scale. Here, we make a simplifying assumption of a Gaussian

distribution of daily winter SLP anomalies at each of the 280 locations, i.e. Mt ∼ N (0,Σ).

This assumption was found to be reasonable through exploratory analysis. It follows that
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Figure 2.8: PE precipitation index uPEt plotted against observed precipitation yFt .
Left: original scale. Right: Fréchet scale.

the index UPE
t is univariate Gaussian. After estimating the variance of UPE

t , a probability

integral transform is applied so ZPE
t = T PE(UPE

t ) follows a unit Fréchet distribution. The

right panel of Figure 2.8 shows the scatterplot of points (zPEt , zCt ). Although the tail depen-

dence is not as strong as that between ZNC
t and ZC

t , there are several large points in the

interior of the first quadrant, indicating asymptotic dependence of the pair (ZPE
t , ZC

t ).

We again employ the Ledford and Tawn (1996) likelihood ratio test for asymptotic inde-

pendence against the null hypothesis of dependence. Only observations from days identified

as PE events are included in the test. The p-value of the test was found to be approximately

0.8, giving little evidence of asymptotic independence of the PE precipitation index and PE

precipitation quantities. Furthermore, for the subset of PE days, χ̂(q95) = 0.37, suggesting

moderate-to-weak dependence. Due to the small sample size, caution should be used in in-

terpreting this quantity, as its confidence interval covers both 0 and 1. Although Figure 2.8

shows the tail dependence is not strong, the PE index does give some indication of extreme

precipitation on PE days. The same likelihood ratio test found that the PE precipitation

index was asymptotically independent of observed precipitation for non-PE days.
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The approach to the PE index here is novel in that it examines tail dependence between

observed precipitation and an index drawn from synoptic-scale processes. The index em-

ployed here is a first attempt and could likely be improved. While previous studies used

multiple fields (water vapor, wind, temperatures, etc.) to identify PE events (Dettinger

et al., 2011), this work draws upon only SLP fields to define UPE
t . It is clear from Figure

2.8 that there are many days that exhibit a very high value of UPE
t , but do not have ex-

treme precipitation in terms of Y C
t . Many days that are not identified by Dettinger et al.

(2011) as PE events also have high values of UPE
t . Nevertheless, our simple index is clearly

correlated with our precipitation quantity, has dependence (both in terms of correlation and

tail dependence) which increases for PE events, and exhibits asymptotic dependence with

the precipitation observations. Asymptotic dependence is an important feature, as it implies

that days with the largest values of the index have a nonzero probability of corresponding to

the largest days in terms of observed precipitation. Perhaps most importantly, for a given

day from a future run of a climate model, this simple index provides an indication of the

similarity between its SLP pattern and a pattern known to be associated with PE-driven

extreme precipitation.

2.6 Simulating 21st Century Extreme Precipitation Observations

Previous studies based on both observed data and climate models have suggested that

extreme precipitation increases in a warmer climate (Allan and Soden, 2008; Easterling et al.,

2000). Leung et al. (2011) found that the WRF model forced by CCSM indicated an increase

in the 90th and 95th percentile of west coast precipitation, as well as a 27% increase in the

frequency of events associated with atmospheric rivers. The study also found an increase

in precipitation intensity over the region from current to future climate. Here we aim to

generate future precipitation ‘observations’ from the precipitation output from the WRF

RCM driven by CCSM under the future scenario.
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We extract the precipitation quantity defined in Section 2.4 from WRF driven by CCSM

for NDJF days in the future period, and denote it for day t (t = 1, ..., Tf ) by XCF
t . The record

for December 2070 was incomplete and thus excluded, resulting in a sample of Tf = 3569

days. We denote Y F
t as the (unobserved) precipitation quantity from observations on day t

in the future time period.

Our generator is actually a two-step process. Recall from Section 2.4 that we linked

NCEP-driven RCM output to observations. As there is no reanalysis product for future

observations, we first use the larger NARCCAP experiment to forecast what the marginal

distribution of reanalysis-driven WRF precipitation would look like under the future scenario.

We denote this future unobserved NCEP reanalysis-driven WRF precipitation quantity by

XNF
t . We estimate the marginal distribution of XNF

t , and then link this distribution to the

marginal of CCSM-driven WRF precipitation XCF
t under the future scenario. We then em-

ploy the fitted Dirichlet angular measure model from Section 2.4 to simulate Y F
t , observations

of future Pacific coast precipitation from XCF
t , the precipitation quantity simulated by the

WRF RCM driven by CCSM, for the future period 2041-2070. We thus allow the marginal

distributions to change from current to future, but assume the dependence structure does

not change; see Section 2.7 for discussion.

2.6.1 Marginal Distribution of Future Reanalysis-Driven WRF Output Ex-

tremes

To project the marginal distribution of WRF output driven by NCEP reanalysis for the

period 2041-2070, we borrow information from other RCMs in the NARCCAP project. In

addition to the WRF RCM driven by the CCSM global model, we employ output from four

other RCMs driven by three other GCMs. Not all RCM-GCM combinations have been run,

but those that have been completed are run for the same current and future periods, and

under the same future A2 emissions scenario. All RCMs have been forced by the NCEP

reanalysis and run for the current climate (1981-2000). See Table 2.2 for a summary of
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Table 2.2: RCM-GCM combinations used in Section 2.6.2.

GCM
RCM CCSM CGCM3 GFDL NCEP

WRFG X X X
ECP2 X X
CRCM X X X
MM5I X X
RCM3 X X X

RCM Full name Modeling group
WRFG Weather Research and Forecasting Model Pacific Northwest National Lab
ECP2 Experimental Climate Prediction Center UC San Diego / Scripps
CRCM Canadian Regional Climate Model OURANOS / UQAM
MM5I MM5 - PSU/NCAR mesoscale model Iowa State University
RCM3 Regional Climate Model version 3 UC Santa Cruz

GCM Full name Modeling Group
CCSM Community Climate System Model NCAR
CGCM3 Third Generation Coupled Global Climate Model CCCMA
GFDL Geophysical Fluid Dynamics Laboratory GCM GFDL
NCEP NCEP/DOE AMIP-II Reanalysis NOAA ESRL

RCM-GCM combinations used for this estimation procedure. Though they are also included

in NARCCAP, we exclude the Hadley Centre RCM and GCM, as output from the coupling

of these models with other NARCCAP models was not yet available.

In Section 2.4 a two-step technique was used to estimate the distribution of the upper

tails of the quantities XNC
t and Y C

t . First a threshold q∗ was selected; we chose this to be the

0.943 empirical quantile. A generalized Pareto distribution was then fitted to exceedances

of q∗. In order to characterize the upper tail of XNF
t , estimates of q∗ as well as the GPD

parameters (ψ, ξ) must be obtained. We estimate q∗ for XNF
t independently of the estimation

of (ψ, ξ), and both are estimated as predictions from linear models.

For each RCM-GCM run available, we compute the daily precipitation quantity Xt as

defined in Section 2.4 for current and future runs, and find q∗, the empirical 0.943 quantile

of Xt. A summary of these estimates is given in Table 2.3. Denote q∗ijr as the 0.943 quantile
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of Xt from RCM i (i = 1, ..., 5), coupled with GCM j (j = 1, ..., 4), for time period r (r = 1

for current, r = 2 for future). We write the model

q∗ijr = µ+ αi + βj + γI{r=2} + εijr, εijr ∼ N(0, σ2) (7)

and estimate the parameters via least squares. Of particular interest is the parameter γ,

which estimates the average shift in q∗ from current to future climate over the RCM-GCM

combinations. We estimate γ̂ = 25.0, but this increase was not found to be statistically

significant. This is likely due to the small sample size (21 total climate model runs) and to

the fact that RCM runs forced by the GFDL global model exhibit a small decrease in q∗

from current to future. A decrease in future scenario precipitation in the region from the

GFDL model was also found by Cayan et al. (2008).

From this fitted model we obtain an estimate of q∗ for XNF
t , the 0.943 quantile of our

precipitation quantity as would be produced by the NCEP-driven WRF model for the fu-

ture period 2041-2070. This is estimated to be 1081.1, with a 95% confidence interval of

(1005.8, 1156.4) based on the least-squares estimation of σ2. This is an increase of about

27 from the estimate of this quantile for the current run of WRF driven by NCEP given in

Table 2.1.

In addition to extracting the quantity q∗ for each RCM-GCM-time period combination,

we estimate the parameters (ψ, ξ) of the GPD fit to exceedances of this threshold (see Table

2.3). For each run, we retain maximum likelihood estimates of the parameters and their

numerically estimated covariance matrix. Defining ψijr and ξijr to be the parameters of the

GPD fit to exceedances of q∗ of Xt for RCM i, GCM j, and run r, we write

(
ψijr
ξijr

)
=

(
µψ
µξ

)
+

(
αiψ
αiξ

)
+

(
βjψ
βjξ

)
+

(
γψ
γξ

)
I{r=2} + εijr, εijr ∼ N(0,Ωijr), (8)
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where Ωijr is the inverse of the numerically approximated information matrix of the estimate

of (ψijr, ξijr)
T . We estimate this model by generalized least squares.

The model parameters γψ and γξ in (8) provide insight into the change in the GPD scale

and shape parameters from current to future climate. Based on estimates from this model

we find almost no change in the scale parameter ψ from current to future, as γ̂ψ = 0.80, with

a standard error of 15.7. We estimate γ̂ξ = 0.057, providing evidence of an increase in the

shape parameter from current to future climate. The GLS-based 95% confidence interval

for this quantity is (−0.014, 0.129), so the evidence is not overwhelming for a change in ξ.

Again, this is likely due to the small sample size, and possibly the decrease in precipitation

from GFDL-forced RCMs.

It is of note from estimation of the linear model (8) that β4ξ, the parameter for ξ cor-

responding to NCEP reanalysis-driven RCM output, was estimated to be 0.150, with a

95% confidence interval of (0.053, 0.247). That is, in terms of the quantity Xt, west coast

precipitation as simulated by the NARCCAP RCMs driven by NCEP reanalysis exhibits

a significantly heavier tail than the same quantity as simulated by these RCMs driven by

the other GCMs. In particular, the reanalysis-driven WRF model produces a much heavier

tail of precipitation than the CCSM-driven WRF model in the current climate (see Table

2.3). This is a primary reason for estimating the marginal distribution of XNF
t via (7)

and (8), rather than only estimating the marginal of XCF
t . Due to the fundamental differ-

ences in tail behavior of our precipitation quantity between reanalysis-driven RCM output

and GCM-driven RCM output, we are more comfortable making a transformation to future

reanalysis-driven WRF output, rather than using CCSM-driven WRF output directly. The

marginal distribution of reanalysis-driven WRF output also has a nice relationship with the

distribution of observations, as we show in Section 2.6.2.

We use the fitted linear model (8) to estimate the parameters (ψ, ξ) of the GPD tail of

XNF
t , the unobserved reanalysis-driven WRF precipitation output. We estimate ψ̂ = 302.3,

and associated 95% confidence interval of (242.8, 355.8). The tail parameter ξ̂ = 0.069,
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Table 2.3: Empirical 0.943 quantile q∗, and numerical maximum likelihood estimates of
GPD parameters (standard errors) for precipitation footprint from each climate model

combination used in Section 2.6.2.

RCM-GCM
Current (1981-1999) Future (2041-2070)

q∗ ψ̂ ξ̂ q∗ ψ̂ ξ̂
CRCM-CCSM 792 233.7 (31.1) −0.092 (0.10) 846 275.7 (23.9) −0.177 (0.05)
CRCM-CGCM 781 187.4 (25.1) 0.018 (0.10) 804 210.4 (21.6) −0.077 (0.08)
CRCM-NCEP 810 199.5 (23.8) −0.059 (0.08) − − −
ECP2-GFDL 1117 380.9 (44.0) −0.101 (0.08) 1091 378.4 (36.5) −0.109 (0.07)
ECP2-NCEP 1075 315.2 (42.0) −0.007 (0.10) − − −
MM5I-CCSM 1104 327.9 (34.4) −0.200 (0.06) 1154 422.5 (39.5) −0.088 (0.06)
MM5I-NCEP 975 242.9 (32.3) 0.122 (0.10) − − −
RCM3-CGCM3 1090 344.0 (37.6) −0.125 (0.07) 1119 266.1 (25.8) −0.054 (0.07)
RCM3-GFDL 1171 349.8 (43.3) −0.084 (0.09) 1155 421.3 (39.8) −0.165 (0.06)
RCM3-NCEP 1035 338.8 (43.1) −0.060 (0.09) − − −
WRFG-CCSM 1158 378.4 (44.0) −0.219 (0.08) 1234 477.0 (43.8) −0.123 (0.06)
WRFG-CGCM3 1035 358.1 (44.7) −0.170 (0.09) 1045 282.3 (28.1) −0.073 (0.07)
WRFG-NCEP 1053 291.7 (39.4) 0.019 (0.10) − − −

with a 95% confidence interval of (−0.058, 0.194). Although the confidence intervals of these

quantities are relatively wide, the point estimates indicate an increase in both the scale and

shape parameters from current (see Table 2.1) to future climate.

These estimates of changes in q∗, ψ, and ξ are small, but their effect on changes in

probabilities of extreme events is quite large. For example, using the GPD parameters

estimated from reanalysis-driven WRF output in the current climate in Table 2.1, the 100-

year winter precipitation event (the event which has probability of 0.01 of occurring in any

given year) is estimated to have a value of 3105.8. Using the parameters estimated above for

future reanalysis-driven WRF output, an event of at least this size has probability of about

1/36.3 of occurring in a given year. The 100-year event in the current climate becomes a

36.3-year event in future climate. Similarly, a 20-year event from the current run is estimated

to be a 10.1-year event in the future scenario, which is in striking agreement with estimates

reported for the western United States region under the A2 scenario in the IPCC 2012 special

report on extremes (IPCC, 2012).
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2.6.2 Marginal Distribution of Future Observed Precipitation Extremes

Having estimated the upper tail of the marginal distribution of XNF
t , we can apply the

statistical precipitation generator to simulate Fréchet-scaled realizations of future observed

precipitation. In order to represent these realizations on their original scale, one needs

to know the marginal distribution of Y F
t , the observational precipitation quantity in future

climate. Since the NCEP reanalysis offers a reconstruction of past climate based on observed

weather, we turn to the reanalysis-driven WRF output to estimate this marginal distribution.

Letting Y C
t and Y F

t be the daily observed precipitation footprint for current and future

climate, respectively, we assume

Y C
t

d
= aXNC

t , (9)

that is, the marginal distribution of daily observed precipitation is the same as that of

reanalysis-driven precipitation output, up to a scaling constant a. Note that we do not

imply daily equivalence here; the relationship is only in the marginal distributions over the

current time period. We make a further assumption that this relationship holds for the

future climate; that is, Y F
t

d
= aXNF

t .

The maximum likelihood estimates of the GPD parameters in Table 2.1 provide an es-

timator of a in (9). Under the assumption (9), one can show that for a given threshold

u,

[XNC
t | XNC

t > u] ∼ GPD(ψ, ξ) ⇐⇒ [Y C
t | Y C

t > au] ∼ GPD(aψ, ξ).

Thus an estimate of a is given by the ratio of GPD scale parameters from Table 2.1: â =

ψ̂Y C
t
/ψ̂XNC

t
= 13.48. The 95% confidence interval for a based on the delta method is

(8.48, 18.48). Figure 2.9 shows the quantile-quantile plot of Y C
t and âXNC

t . The plot shows
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Figure 2.9: Quantile-quantile plot of scaled NCEP-driven WRF output quantity âXNC
t and

observational quantity Y C
t , with confidence bands and 45◦ line added.

the assumption made in (9) is reasonable for the current climate, particularly when exam-

ining the upper tails of the two distributions.

2.6.3 Conditional Simulation of Future Extreme Winter Precipitation given

WRF-CCSM Output

Having estimated the marginal distributions of the future unobserved quantities XNF
t

and Y F
t , we aim to simulate realizations Y F

t given XCF
t , the day t precipitation quantity

obtained from the future run of the WRF RCM coupled with the CCSM GCM. We apply

a probability integral transformation to the realizations of the quantity XCF
t to represent it

in terms of XNF
t . For a realization xCFt , this transformation results in the quantity xNFt ,

that we assume would be realized in the NCEP reanalysis-driven WRF model, given the

same process dynamics as seen in the CCSM model on day t. Given these realizations of

XNF
t , a further transformation to the Fréchet-scaled ZNF

t is made, and we can apply the
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fitted Dirichlet model for H to simulate large realizations of Y F
t , the observed precipitation

quantity in future climate.

Definition 3 of multivariate regular variation in Chapter 1 states that the sequence of

point processes Nn = {Zi/bn}ni=1, where Zi are independent copies of Z = (Z1, Z2)
T , a regular

varying random vector with tail index α, converge on Borel sets of C to a nonhomogeneous

Poisson process with intensity measure ν. In pseudo-polar coordinates the density of the

limiting measure is ν(dr × dw) = r−(α+1)drH(dw) (Coles and Tawn, 1991). Here we work

with unit Fréchet margins Z1 and Z2 (tail index α = 1), and assume a differentiable measure

H, so we write ν(dr × dw) = r−2h(w)dw.

Cooley et al. (2012) showed that the above Poisson process intensity measure in Cartesian

coordinates is ν(dz) = ‖z‖−3h(z‖z‖−1)dz, for ‖z‖ large. As this point process convergence

is valid on regions bounded away from 0, Cooley et al. (2012) derived an approximated

conditional density of Z2 when Z1 is large: for z1 > r∗,

fZ2|Z1=z1(z2) ≈
(z1 + z2)

−3h( z1
z1+z2

)∫∞
0

(z1 + s)−3h( z1
z1+s

)ds
, (10)

for r∗ sufficiently large.

The aim of Cooley et al. (2012) is to approximate the conditional density of Z2, given

that Z1 is large. Our objective is the reverse: we aim to simulate values of Z2 such that

Z2 > r∗, given any value of Z1. When z1 > r∗, the approximated conditional density (10) of

Cooley et al. (2012) can be used to simulate values of Z2. When z1 ≤ r∗, it follows that for

z2 > r∗,

fZ2|Z1=z1(z2) ≈ P(Z2 ∈ (z2, z2 + dz) | Z1 = z1)

= P(Z2 ∈ (z2, z2 + dz) | Z1 = z1, Z2 > r∗) · P(Z2 > r∗ | Z1 = z1)

+ P(Z2 ∈ (z2, z2 + dz) | Z1 = z1, Z2 < r∗) · P(Z2 ≤ r∗ | Z1 = z1)

= P(Z2 ∈ (z2, z2 + dz) | Z1 = z1, Z2 > r∗) · P(Z2 > r∗ | Z1 = z1). (11)
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Recall that for a Poisson process with intensity function λ and sets B1 and B2 with finite

intensity measure,

P(Z ∈ B1 | Z ∈ B2) =

∫
B1∩B2

λ(dz)∫
B2
λ(dz)

. (12)

Define the sets A = {(s1, s2) : s1 > 0, s2 > r∗} and A′ = {(z1, s2) : s2 > r∗}. Recognize that

the Poisson process measure ν(·) has been assumed to be valid on these sets. By applying

(12), the first term in (11) is approximately ν(dz)|z=(z1,z2)/ν(A′). The second term in (11)

is not amenable to our Poisson process approximation as the event on which we condition

(Z1 = z1 ≤ r∗) is not sufficiently large, so we apply Bayes’ rule:

P(Z2 > r∗ | Z1 = z1) =
P(Z1 = z1 | Z2 > r∗) · P(Z2 > r∗)

P(Z1 = z1)
.

Since P(Z1 = z1 | Z2 > r∗) = P(Z ∈ A′ | Z ∈ A), where A′ ⊂ A, (12) gives

P(Z1 = z1 | Z2 > r∗) =
ν(A′)

ν(A)
.

Finally, noting that P(Z1 = z1) ≈ P(Z1 ∈ (z1, z1 + dz)), we obtain

fZ2|Z1=z1(z2) ≈
ν(dz)|z=(z1,z2)

ν(A′)
· ν(A′)

ν(A)
· 1− FZ2(r

∗)

fZ1(z1)
, (13)

where

ν(A) =

∫ 1

w=0

∫ ∞
r= r∗

1−w

r−2drh(w)dw

and

ν(A′) =

∫ ∞
r∗

(z1 + s)−3h

(
z1

z1 + s

)
ds.
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To approximate the conditional density of large observational precipitation measure-

ments, ZNF
t (derived via transformation of XCF

t ) plays the role of Z1 above, and Z2 = ZF
t ,

Fréchet-scaled daily observational precipitation measurements in future climate. We set

r∗ = 40, which is the threshold chosen for fitting the dependence model in Section 2.4. Here

the event ZF
t > 40 corresponds to Y F

t > 18070, which is the 0.979 empirical quantile of cur-

rent climate observations, but given the parameters estimated in Section 2.6.2, corresponds

to the 0.963 quantile of future observed precipitation.

Given the output from the CCSM-driven WRF model on any given day in the future,

we approximate (at least the upper tail of) the conditional density of Y F
t using (13) if

ZNF
t ≤ r∗, and using (10) if ZNF

t > r∗. For illustration, we show three events in Figure

2.10. The January 20, 2063 event is the largest event produced by the WRF-CCSM future

run, with a precipitation value of xCFt = 3343.29. Let y∗ = maxt(y
C
t ), that is, the largest

observational footprint from the current climate. For the January 20, 2063 output of the

RCM, the approximated conditional density estimates P(Y F
t > y∗ | XCF

t = xCFt ) = 0.66.

The December 21, 2051 event was the 24th largest in the future WRF run, with a value of

xCFt = 1819.60. Given this output, the approximated conditional density estimates P(Y F
t >

y∗ | XCF
t = xCFt ) = 0.008.

The conditional densities of the two events above were derived via (10). To illustrate (13),

we plot the upper tail of the conditional density of Y F
t on January 11, 2069. The WRF-

CCSM precipitation output on this day (xCFt = 1181.98) was quite large; it was the 155th

largest of the 3569 days in the future period. But the output from this day was not ‘extreme’,

in the sense that zNFt = 23.84 < r∗. Given the output of this day, we show the upper tail of

the approximated conditional density in Figure 2.10, and estimate P(Y F
t > 18070 | XCF

t =

xCFt ) = 0.15; that is, the probability that the observed precipitation footprint is ‘extreme’.

Using the approximation, for this day we also find P(Y F
t > y∗ | XCF

t = xCFt ) = 0.0001.

One should recall that climate models are not weather prediction models, but rather

climate simulation models. Thus the exact dates attached to the individual events discussed
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Figure 2.10: Conditional densities of observational precipitation given WRF-CCSM output
on labeled day. January 11, 2069 event is approximated via (13). Other two densities are

approximated via (10).

above are simply timestamps; we consider their precipitation outputs to be draws from

the distribution of climate model-generated precipitation over the time period in which the

events occur. A more appropriate interpretation is that if the large-scale dynamics are as

the GCM supplies to the RCM on a given day, Figure 2.10 gives the conditional densities of

observational precipitation on that day, given the RCM output.

The two components of (11) provide a means for simulating large realizations of Z2 given

small values of Z1. Given Z1 = z1, where z1 ≤ r∗, the second piece is evaluated and this

probability is used to simulate I{Z2>r∗}. Conditional on this event, the first piece is used

to draw a realization of Z2. We employ (10) and (13) to generate future observational

precipitation measurements, given CCSM-driven WRF output.

Figure 2.11 shows the future CCSM-driven WRF output XCF
t plotted against one real-

ization of simulated observational footprints Y F
t , along with marginal histograms. We note

that while the CCSM-driven output on the x-axis is estimated to have a bounded tail, the

simulated observational footprints exhibit a heavy tail. This is due to the transformation to
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Figure 2.11: Simulated observations of precipitation footprint Y F
t (y-axis) from future run

of WRF-CCSM output XCF
t (x-axis). Marginal tail histograms added, as well as estimated

GPD tail densities (solid lines). Dashed line corresponds to estimated GPD tail of
observations in current climate (Y C

t ).

future reanalysis-driven output before the simulation. The estimated density of the current

observations Y C
t is also shown to illustrate the estimated change in tail behavior of observed

precipitation from current to future climate.

While Figure 2.11 also shows ‘non-extreme’ precipitation simulated from large values of

WRF-CCSM output, the primary interest is in examining the simulated large observational

footprints {yFt : zFt > r∗}. Applying this statistical generator allows us to examine individual

extreme precipitation events from the simulation, and the process dynamics associated with

each. Specifically, we study the PE precipitation index (as defined in Section 2.5) of these

simulated future observations.

2.6.4 Pineapple Express Index of Future Extreme Precipitation Events

By tying the simulated observations Y F
t to WRF-CCSM output XCF

t through XNF
t , we

can link Y F
t to large-scale dynamics. We extract daily mean SLP anomalies from the future
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run of the CCSM global model that drives the future run of the WRF regional model. The

SLP fields were downloaded from the Earth System Grid7. The PE index is calculated for

future events by projecting future daily anomaly fields onto the mean PE field from Section

2.5.

From the future values of the PE index, we find evidence suggesting an increase in

frequency and intensity of PE events in future climate. We find that 8.9% of PE index

scores in the future run exceed the 0.95 quantile of PE scores in the current climate. This

corroborates the findings of Leung et al. (2011), which suggests an increase in both the

frequency of PE events and their total contribution to western United States precipitation.

One can also examine χ(q95) of Coles et al. (1999) between the daily PE index and RCM

output. In the future scenario χ̂(q95) = 0.23, an increase from the current climate, for which

χ̂(q95) = 0.18. This suggests that the tail dependence between the PE index and RCM-

produced precipitation increases from current to future, which may be a result of increased

precipitation intensity from PE events.

To study the link between the PE index and simulated precipitation extremes in the

future, we again assume normality of the anomaly fields, and for ease of interpretation we

represent the PE index in terms of z-scores. We apply our statistical precipitation generator

to obtain a realization of Y F
t , t = 1, ..., Tf , and repeat the simulation 500 times. Figure

2.12 shows the observed precipitation events simulated from one realization of the generator

and their associated PE index scores. It is apparent that many of the simulated extreme

events in future climate have very high PE index values. A useful quantity to examine is the

proportion of simulated extreme observations (i.e., for which the simulated value zFt > r∗)

which have PE index scores that exceed the 0.95 quantile of PE index scores over the future

period. Over 500 simulations, the mean of this quantity was found to be 0.284, with 95%

of all values falling between 0.213 and 0.356. The realization shown in Figure 2.12 had

7http://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm.output.html
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Figure 2.12: Realization of future observed daily extreme precipitation footprints Y F
t from

the generator, plotted against time. Legend strip indicates z-score of the event’s associated
PE index; horizontal line corresponds to the largest observed event from current climate.

31.6% of observations exceeding this quantile. This is similar to the proportion of extreme

observations with high PE index values in the current climate (32.1%).

Figure 2.12 also gives some evidence for non-stationarity of the frequency and intensity

of extreme west coast precipitation within the future period 2041-2070. The largest 11

precipitation events simulated in this particular realization occur in the years 2055-2070, and

57% of the extreme events simulated occur in the years 2056-2070. Over 500 simulations,

the mean of this proportion was 0.571, with 95% of values falling between 0.477 and 0.656.

This potential non-stationarity deserves attention in future work.

One can reverse the perspective and examine precipitation simulated from future events

which have large PE index values. Figure 2.13 shows the largest 79 days in terms of the future

PE index, and the precipitation footprints simulated from these. This number was chosen to

correspond with the number of precipitation events that were simulated as extreme (i.e., for

which zFt > r∗) in this realization. In Section 2.5 we found the PE index was tail dependent

to observed precipitation in the current climate. If this was true for the future climate, we
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would expect some of these large PE index days to exhibit extreme precipitation, and this is

indeed the case. In this realization, 18 of the 79 (22.7%) extreme observed precipitation days

are also among the 79 largest days in terms of PE index values. Over 500 realizations, an

average of 20.3% of the extreme precipitation days were also among the exceedances of the

same quantile of the future PE index, with a simulation-based 95% interval of (0.144, 0.257).

The proportion estimated above can be thought of as similar to an estimate of χ(q) of

Coles et al. (1999), for q a very high quantile, between the PE index and observational pre-

cipitation. The quantile q changes from one realization to the next based on the number

of events for which ZF
t was simulated to be extreme in that particular realization. The

mean of this quantity (0.203) is a significant increase from the current climate scenario, for

which the proportion reported above is 0.143. This suggests that the level of tail dependence

between the PE index and observed precipitation increases from the current to future sce-

nario. An increase in tail dependence may be the result of PE events producing more intense

precipitation in the future, as was found by both Leung et al. (2011) and Dettinger (2011).

Applying a fitted model for tail dependence is a novel approach to generating observed

precipitation extremes from climate model output. It allows one to simulate realizations

of future observations based on knowledge of how well climate models represent extreme

events. The fitted dependence model accounts for uncertainty in what an extreme event, as

produced by an RCM driven by a chosen GCM, will look like in observations. Simulations

of observations from climate model output can also be used to study the connection between

observed extreme precipitation and synoptic-scale processes.

2.7 Summary and Discussion

In Section 2.1.2, we proposed several novel goals which this work aimed to achieve. We

have proposed new ways of utilizing bivariate extreme value methods within the context

of studying winter precipitation on the Pacific coast and nearby areas. In Section 2.4, we

categorized the tail dependence between observed precipitation and that produced by a
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Figure 2.13: Largest 79 PE index z-scores from future climate. Circles indicate simulated
observed precipitation yFt from that particular day, with the legend strip giving the

precipitation value. Crosses indicate the observed precipitation from that day was not
simulated to be extreme in this particular realization.

reanalysis-driven RCM as asymptotically dependent, then further modeled the dependence

parametrically. This dependence model can be viewed as a statistical simulator of gridded

observations from given climate model output. We used SLP fields in Section 2.5 to build a

straightforward and easily-defined daily PE precipitation index. We found this index to be

asymptotically dependent to observed precipitation. This index links precipitation extremes

to large-scale, short-lived process dynamics. Because of its simplicity, the index is can be

readily obtained from output from future runs of GCMs. Finally, we extended the statistical

generator to RCM output driven by a future GCM run. Doing so required estimation of the

marginal distribution of two unobserved quantities: RCM output that would be obtained

from a future reanalysis product and the gridded observations. From this estimation, we

found evidence of a heavier tail of precipitation in the Pacific region in the future scenario.

By relying on the dependence structure estimated in Section 2.4, we can simulate bivariate

observations of these two unobserved quantities. Repeated conditional simulation can be
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used to account for uncertainties in how RCMs represent these extreme events. We further

extended the future precipitation generator by linking to future values of the PE index.

It is worthwhile to review important assumptions made throughout this work. Our

procedure for generating future observational precipitation assumes that the parameters

of the extremal dependence model fitted in Section 2.4 do not change in future climate;

that is, that the future climate model run produces extreme precipitation as ‘correctly’

as the current climate model run. Also, we have assumed throughout this work that daily

precipitation measurements and PE index values are independent and identically distributed.

It is known that precipitation from the PE and other storms can persist for several days at

a time. Furthermore, SLP patterns associated with PE events develop and evolve over the

course of several days, which is in violation of these assumptions. While this likely does

not bias estimates, the confidence intervals related to tail dependence parameters will be

anticonservative.

The simulation of future extreme precipitation introduced several unique challenges. We

turned to precipitation output from other climate models in Section 2.6 in order to estimate

the marginal distribution of future reanalysis-driven WRF output. We judged this to be the

best approach, due to the fundamental difference in tail behavior between the GCM-driven

and reanalysis-driven RCM outputs. Having little information about the future marginal

distribution of observed precipitation, we turned to the connection between observations

and reanalysis-driven RCM output in current climate, and again assumed this relationship

was valid for future precipitation.

We recognize that the work herein represents early attempts at answering difficult ques-

tions, and much can be done to extend the work done here. The PE index in particular

can almost certainly be improved by incorporating more large-scale information. As the PE

typically exhibits itself over the course of several days, an index developed from multiple

days is a possible extension. Our link between future precipitation observations and the PE
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index could be made more explicit by conditioning on the value of the index as well as the

RCM precipitation output.

There are also other avenues for continued work applying multivariate extremes methods

to the analysis of climate model output. The methods used in Section 2.4 to examine tail

dependence can be used for climate model assessment. It is well known that discrepancies

exist in climate model output quantities (Rougier, 2007). Differences in the tail behavior of

temperature and precipitation from climate models have been found in other studies (Schliep

et al., 2010; Frei et al., 2006). Weller et al. (2013) found that different RCMs forced by the

same global reanalysis produce different tail behavior in west coast precipitation output.

Examination of tail dependence between climate model output and observations provides a

means of studying how well climate models are able to simulate extreme events. Finally,

while we applied our statistical generator to the WRF RCM forced by reanalysis and a future

scenario run of one GCM, it could easily be applied to other climate models as well.
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CHAPTER 3

TWO CASE STUDIES ON

NARCCAP PRECIPITATION EXTREMES

3.1 Introduction

In recent years, the literature on climate change has devoted increasing attention to

potential changes in the frequency and severity of extreme weather events. Several studies

have projected significant changes in extremes due to climate change (e.g., Frei et al., 2006;

Karl and Melillo, 2009; Allan and Soden, 2008), and recent efforts have linked some individual

extreme events to human-induced warming (Peterson et al., 2012). Because many of the

aforementioned studies employed deterministic simulation models to study extreme events,

it is important to understand if and how extreme weather events manifest themselves in

such models. In some cases, it has been found that climate models are unable to reproduce

extreme weather statistics from the past observed record (Wehner, 2013). Additionally,

because extreme weather events are often by definition rare, there is great uncertainty in

future projections of these events based on both climate model data and past observations.

In this chapter, we examine extreme precipitation produced by the six regional climate

models (RCMs) of the North American Regional Climate Change Assessment Program

(NARCCAP). Previous studies have examined extreme precipitation from NARCCAP mod-

els from different perspectives. Schliep et al. (2010) perform statistical analyses using spatial

hierarchical modeling to fit generalized extreme value (GEV) distributions to annual max-

imum precipitation amounts at each climate model output gridbox. Mailhot et al. (2011)

examine future changes in annual maxima of precipitation measurements over Canada from

the NARCCAP ensemble. Wehner (2013) used the GEV distribution to compare the be-
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havior of past extreme precipitation from NARCCAP models to that seen in observations.

Gutowski et al. (2010) examined monthly extreme precipitation events in two different re-

gions of North America, comparing output of the NARCCAP models to observations.

This chapter first describes the marginal behavior of daily extreme precipitation produced

by each of the six NARCCAP RCMs, as well as that seen in an observational product. We

go on to describe the tail dependence in daily precipitation amounts between each RCM and

the observational product; that is, we aim to discover the extent to which the most extreme

precipitation events produced by each RCM correspond to the most extreme events seen in

the observations. Studies of marginal extremes of climate variables have an extensive history,

and Section 2.9 of Von Storch and Zwiers (2002) gives an overview of appropriate statistical

methodologies, all of which analyze a subset of data deemed to be extreme. One common

approach is to model seasonal maximum precipitation amounts using the GEV (Wehner,

2013). Alternative methods exist for modeling exceedances over a threshold, and we employ

a threshold exceedance approach using the Generalized Pareto distribution (GPD). There

are two advantages to using this approach here, rather than the GEV. First, the precipitation

record studied here covers a relatively short time period (23 years), and an approach using

daily exceedances will offer reduced uncertainty over the GEV, which retains only one data

point per year or season. Second, as we wish to compare model output to observations, a

threshold exceedance approach allows us to maintain the daily correspondence between these

two.

The second and more important aim of this work is to examine the ability of the

reanalysis-driven NARCCAP models to reproduce past extreme precipitation events seen

in observations. The objective here is to examine the extent of the agreement (on a daily

basis) of simulated NARCCAP extreme precipitation with past observed extremes, and this

requires multivariate techniques. Typically, statistical dependence measures such as correla-

tion or covariance are quite useful for summarizing dependence in climate and atmospheric

data. While these measures are effective at capturing dependence in the center of a mul-
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tivariate probability distribution, they do not measure dependence in the joint tail of the

distribution. Here, we examine tail dependence through an established probability frame-

work designed specifically for the joint tail of a multivariate distribution (Resnick, 2007). To

summarize tail dependence, we employ measures which gauge the extent of correspondence

of the largest events in each margin.

To our knowledge, the use of bivariate extreme value methods to compare the extremes

of two data sources is novel to the atmospheric sciences literature. A marginal analysis

allows one to compare summary statistics from the two sources; Wehner (2013) compared

NARCCAP precipitation extremes to observational data using summary statistics obtained

from estimated 20-year return values. However, a marginal analysis cannot describe the

daily correspondence of extreme behavior. Our analysis is also fundamentally different from

conditional approaches (e.g. Sillman et al., 2011; Katz, 2010; Zhang et al., 2010) which

model the parameters of the GEV or GPD to be functions of covariates such as time or

some large-scale atmospheric variable. A conditional approach is not appropriate here as the

quantities we wish to relate are both observed daily. With data such as this, we are not able

to extract a subset of extreme values of one variable conditional on a particular value of the

other variable. Instead, we treat daily precipitation amounts from NARCCAP output and

observations as emerging from a bivariate probability distribution.

We investigate two case studies of extreme precipitation, over different regions and dif-

ferent seasons. The first is a study of winter precipitation on the Pacific coast, which was

partially explored in Weller et al. (2012). A portion of that work examined past daily

winter-season precipitation over a west coast region of North America in regional climate

simulations produced by the Weather Research and Forecasting (WRF) model, one of the

NARCCAP RCMs, and an observational product (Maurer et al., 2002). It was found that

strong tail dependence in precipitation amounts existed between the WRF model output

and observations. We extend that work here by examining tail dependence between the

observations and all six RCMs in NARCCAP for winter precipitation in this region. Second,
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we investigate summer-season precipitation extremes over the prairie (Corn Belt) region of

the US.

These two case studies are chosen due to the differences in the nature of precipitation

events between the two regions and seasons. While wintertime precipitation on the west coast

is often driven by strong larger-scale systems, central US summer precipitation extremes

are typically associated with convective systems forced by processes that are more local

and regional in scale. Thus, while past wintertime extreme precipitation events from the

NARCCAP models may show correspondence with observations (as Weller et al. (2012)

found with WRF), it is not guaranteed that this will be the case for summer precipitation.

The outline of the chapter is as follows: in Section 3.2 we describe the NARCCAP program

in more detail and introduce the model output and observational data sources used in this

work. Section 3.3 details an examination of the ability of the NARCCAP models to simulate

past observed winter precipitation extremes along a west coast region of North America. This

section also includes a review of our statistical techniques, which are based in extreme value

theory. In Section 3.4 we employ similar techniques to study the models’ representations of

extreme summer precipitation events over a central US region. We conclude with a summary

and discussion in Section 3.5. Much of this chapter is taken from Weller et al. (2013), which

has been submitted for publication.

3.2 NARCCAP Models and Observations

The North American Regional Climate Change Assessment Program (NARCCAP) is

an international coordinated effort to investigate uncertainties in high-resolution dynamical

simulations of regional climate over North America (Mearns et al., 2009). NARCCAP con-

sists of a suite of six regional climate models (RCMs) run over a common spatial domain

at similar resolutions (∼50 km) and over common time periods. Phase I of the experiment

involves running each RCM for the period 1979-2004 with boundary conditions provided by

the National Center for Environment Prediction (NCEP) – Department of Energy (DOE)
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Table 3.1: Acronyms, full names, and major references for RCMs employed in this study.

Acronym Name References

CRCM Canadian RCM Caya and Laprise (1999)

ECP2
Experimental Climate Prediction Center’s version
of the Regional Spectral Model

Juang et al. (1997)

HRM3 Third-generation Hadley Centre RCM Jones et al. (2003)

MM5I
Fifth-generation Pennsylvania State Univer-
sity National Center for Atmospheric Research
(NCAR) Mesoscale Model

Grell et al. (1994)

RCM3
International Centre for Theoretical Physics RCM
version 3

Giorgi et al. (1993a,b); Pal
et al. (2007)

WRFG Weather Research and Forecasting model Skamarock et al. (2005)

global reanalysis II product (Kanamitsu et al., 2002). In Phase II, the regional models are

run with boundary conditions provided by four different fully coupled global climate mod-

els (GCMs) in a fractional factorial design, for the years 1981-2003 (control period) and

2041-2070, under the IPCC A2 scenario (Nakicenovic et al., 2000). As we wish to study

past daily correspondence between NARCCAP model output and observations, we only use

output from Phase I.

The six RCMs and their major references are listed in Table 3.1. The CRCM and the

ECP2 are the only two RCMs that include some form of interior nudging (a push toward

the large-scale driving conditions in the interior of the domain). Additional details on NAR-

CCAP and the configuration of the models can be found in Mearns et al. (2012), on the

program website8, and in the provided references.

In this work, we compare precipitation output of each NARCCAP RCM to the gridded

observational product produced by Maurer et al. (2002). This product consists of spatially

gridded precipitation amounts interpolated from weather station measurements. In con-

structing this product, the PRISM technique (Daly et al., 1997) was employed to correct for

elevation, which is particularly important in mountainous regions. This product is gridded

at 1/8◦ resolution and on a daily temporal scale, with each day defined to begin at midnight

local time. We compare daily precipitation output from each of the six NARCCAP models,

8http://www.narccap.ucar.edu
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driven by the NCEP reanalysis, to daily precipitation in the observational product for the

years 1981-2003.

A challenge in comparing output from the NARCCAP models and the Maurer et al.

(2002) product arises from the differences in spatial resolutions of the two sources. Wehner

(2013) noted significant differences over some regions and seasons in precipitation statistics

between the Maurer et al. (2002) gridded product and a coarser observational product. We

will see in Sections 3.3.1 and 3.4.1 that the observational product appears to capture some

small-scale precipitation phenomena in greater detail than the NARCCAP model output.

When comparing output from the two sources, we will define quantities of interest which

represent output over approximately common spatial areas. After comparing the tail be-

havior of the marginal distributions of each source, we will study the correspondence of the

sources’ extreme events. Our investigation of tail dependence will require us to view the

different sources on a common scale, achieved via marginal transformation.

3.3 Tail Behavior of Pacific Region Winter Precipitation

We begin with an analysis of daily extreme Pacific region precipitation events seen in

the observational record and each of the NARCCAP models forced by the NCEP reanalysis

product. We first examine the nature of the upper tails of the probability distribution of

precipitation produced by each model. Second, we study the tail dependence in precipitation

events between each model and the observational data; the objective here is to determine

the extent to which the largest precipitation events in the observed record correspond to the

largest events produced by the regional models. We examine daily precipitation occurring

in the winter season plus November (NDJF) months for the years 1981-2003, which results

in a sample of Tw = 2765 days.
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3.3.1 Study Region and Quantity of Interest

Our study region is defined as the area between 32◦N and 53◦N latitude, and from 118◦W

longitude to the Pacific coast; this is the same region studied in Weller et al. (2012). This

region captures extreme precipitation events affecting the coastal regions of California and

the Pacific Northwest, as well as heavy precipitation in the mountainous regions of the

Cascades and Sierra Nevadas. Figure 3.1 shows the 1981-2003 mean precipitation field over

this region from the observational product, as well as the NARCCAP ensemble mean. The

figure indicates that, on average, the NARCCAP models are able to reproduce the patterns

of spatial variability in winter precipitation over the region. However, their coarse resolution

relative to the observational product does not allow them to capture localized areas of heavy

precipitation seen in observations, such as over the Olympic peninsula in Washington.

While Figure 3.1 shows time-averaged precipitation, our interest here is daily precipita-

tion output from NARCCAP and the observational product. As in Weller et al. (2012), we

extract the maximum total precipitation over an area of approximately 200×200 km2 (4×4

RCM grid cells, 17× 17 grid cells from the observational product). Thus the daily quantity

we examine corresponds to the total precipitation amount over the ‘footprint’ which has

the greatest precipitation intensity on a given day. This size footprint was chosen in order

to adequately capture the spatial extent and intensity of wintertime extreme precipitation

events in the region. Define Xjt to be this quantity on day t from RCM j, where t = 1, ..., Tw

and j = 1, ..., 6. Let Yt be this quantity extracted from the observational data product on

day t. We do not require spatial matching of footprints from model output and observations

on a given day.

Figure 3.2 shows scatterplots of the quantity Xj against the observations Y for each

regional climate model. We see strong dependence in our precipitation quantity between the

observational product and reanalysis-driven model output, and no great discrepancies exist

in the scatterplots between the six regional models. Note that the difference in measurement
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Figure 3.1: Mean NDJF precipitation field over Pacific study region from 1981-2003 from
NARCCAP ensemble average (left) and observational product (right). Figures are on a

common scale (mm/day) indicated by the legend strip.
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Figure 3.2: Modeled daily winter precipitation quantity Xj plotted against observed
precipitation Y , for each regional climate model. Note the scales differ due to differing

spatial resolutions of the model output and observational product.
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scales between model output and observations is due to the differing resolutions of the

NARCCAP models and observational product. We examine the Spearman rank correlation

between Xj and Y for j = 1, ..., 6. The Spearman correlation is used here as opposed to the

usual Pearson correlation, due to its robustness to extreme values. Correlations range from

0.704 (RCM3) to 0.761 (CRCM). While Spearman correlation measures dependence over all

levels of the distribution of (Xj, Y )T , our primary aim is to examine tail dependence; we

thus proceed to examine the upper tails of the distributions of Y and the Xj for j = 1, ..., 6.

3.3.2 Marginal Estimation

We first examine the upper tails of each precipitation quantity Xj and Y . The aim is

to study the consistency of the different models’ representations of extreme precipitation, as

was done via the GEV in Wehner (2013). We fit the GPD to the precipitation quantities

extracted from both the observational product and each NARCCAP model. After examining

diagnostics to determine an appropriate threshold (Coles, 2001, Chapter 4), the GPD is fit

to exceedances of the 0.955 quantile of each Xj and Y , precipitation from the observational

product. A summary of chosen thresholds, maximum-likelihood estimated parameter values,

and their standard errors is given in Table 3.2. Because of the differences in resolution

between the observational product and each regional model, the thresholds uj are not directly

comparable to the threshold chosen for the observations. However, one can see differences

in the quantity of precipitation produced from each of the NARCCAP models, with CRCM

having the smallest value for its 0.955 quantile, and ECP2 having the largest.

Table 3.2 also shows estimates of ξ, the shape parameter of the GPD, for each NARC-

CAP RCM and observations. One sees that the precipitation quantity Y derived from the

observational data product is estimated to be slightly heavy-tailed, while five of the six NAR-

CCAP models produce bounded-tail estimates for precipitation. Only the MM5I regional

model produces a positive estimate of ξ, and this parameter is estimated to be much larger

than that estimated from the observational product. The standard errors on estimates of ξ
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Table 3.2: Threshold selected and maximum-likelihood parameter estimates (standard
errors) from GPDs fit to exceedances of the 0.955 quantile of winter precipitation quantity
(125 exceedances) from each source. Also shown are estimated 20 and 50 year return levels

(mm) with 95% profile likelihood confidence intervals. Return values and confidence
intervals have been normalized to gridbox-level values.

j Model uj ψ̂j (se) ξ̂j (se) x̂j,20 (CI) x̂j,50 (CI)
1 CRCM 863 172.5 (21.6) −0.02 (0.09) 102.3 (93.0, 125.7) 111.3 (98.6, 148.0)
2 ECP2 1129 325.9 (43.8) −0.04 (0.10) 157.4 (140.5, 203.5) 172.5 (149.4, 245.3)
3 HRM3 1032 273.9 (32.3) −0.13 (0.08) 124.5 (115.6, 145.8) 132.5 (114.2, 161.6)
4 MM5I 1026 246.7 (33.3) 0.11 (0.10) 159.0 (135.0, 222.5) 184.0 (148.3, 293.9)
5 RCM3 1093 325.2 (42.4) −0.06 (0.10) 151.6 (136.4, 192.4) 165.4 (144.9, 228.7)
6 WRFG 1086 339.8 (43.2) −0.06 (0.09) 153.8 (138.4, 193.1) 167.7 (147.2, 228.0)
- (Obs) 14969 3938.5 (554.6) 0.00 (0.11) 116.1 (102.4, 154.8) 128.8 (109.5, 192.1)

reflect the relatively large uncertainty in these estimates, which is inherent in tail estimation

problems. Indeed, we cannot conclude that any differences exist in the shape parameter

between the different RCMs. Finally, we note that Weller et al. (2012) estimated the tail

parameter ξ to be positive for the WRFG model using data from 1981-1999; the analysis

here includes daily precipitation measurements through the year 2003.

In Table 3.2, we also show estimates of xj,m, the m year return value for our precipitation

quantity from regional climate model j, for m = 20, 50. For ease of comparison, return levels

and associated confidence intervals have been scaled to be gridbox-level values. We see that

slight differences in estimates of the tail parameter ξ produce larger differences in the return

levels as the return period increases. As an example, consider the HRM3 and MM5I regional

models. The thresholds chosen are nearly the same for each, but due to the difference in

estimates of ξ, the estimated 20 and 50 year return values are quite different. Also shown are

95% profile likelihood confidence intervals for the return values, which reflect the relatively

large uncertainty in these estimates. Large uncertainty is seen even for the 20 year return

value, which corresponds to a time frame shorter than that of the NARCCAP simulations

studied here.

Due to differences in the study region and the quantity of interest, the 20 year return

values reported in Table 3.2 are not directly comparable to results reported in Wehner
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(2013). Twenty-year return values were reported by Wehner (2013) for winter-season (DJF)

precipitation over the western United States (defined to be west of 100◦ W longitude), and

these values were compared to those obtained from the Maurer et al. (2002) observational

data. The 20 year return values in Table 3.2 show some agreement with Wehner (2013) in

that five of the six models exhibit larger return values than the observational product. The

exception is CRCM, which Wehner (2013) found to have the smallest disagreement with this

observational product over the western US in winter.

3.3.3 Tail Dependence

Having examined the marginal behavior of our precipitation quantities Xj and Y from

reanalysis-driven NARCCAP models and observations, respectively, we turn attention to the

tail dependence between each Xj and Y . When an extreme precipitation event is seen in

the observed record on a given day, we expect that, to a certain extent, the synoptic-scale

atmospheric conditions which produced that event will be reflected in the NCEP reanalysis

for that day. When these boundary conditions are fed into the regional climate model, we

aim to discover whether the model is likely to produce an extreme precipitation event.

A first step in examining tail dependence between two study variables is to determine

whether they are asymptotically dependent or asymptotically independent. Two random

variables Z1 and Z2 with common marginal distribution function F are said to be asymptot-

ically dependent if

χ = lim
z→z∗

P(Z2 > z | Z1 > z) > 0, (14)

where z∗ is the (possibly infinite) right endpoint of the support of Z1 and Z2. Asymptotic

independence occurs when χ = 0. Asymptotic dependence implies that the very largest

events in one margin exhibit some correspondence to the largest events in the other margin.

This is an important feature, and it is different from dependence in the usual sense of corre-
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lations and covariances. For example, a bivariate Gaussian distribution with any correlation

less than one exhibits asymptotic independence (Sibuya, 1960). In practice, a determination

that asymptotic dependence is present must be made from the data.

As an exploratory step, we examine the level of tail dependence between each NARCCAP

model and observations via a metric introduced by Coles et al. (1999):

χj,q = 2− logP(Y < yq, Xj < xj,q)

logP(Y < yq)
, (15)

where yq and xj,q are the q quantile levels of Y and Xj, respectively. It can be shown that

lim
q→1

χj,q = χj, where the subscript j is added to (15) to indicate we are measuring the level of

extremal dependence between Xj and Y . Coles et al. (1999) suggest an empirical estimator

of χj,q for large values of q as a diagnostic for assessing tail dependence.

Figure 3.3 shows a plot of estimated χj,q plotted against q for q ∈ [0.75, 1) and j = 1, ..., 6.

We see that all six regional models exhibit similar tail dependence with observations, with

the χj,q estimates fluctuating near 0.5 for large q. Confidence intervals (shown only for

CRCM) reveal no significant differences in χj,q between the different regional models, and

show great uncertainty in these estimates for q close to 1 due to the limited amount of

data exceeding high quantiles. The plot provides strong evidence that lim
q→1

χj,q > 0 for each

j; that is, each bivariate pair (Xj, Y )T exhibits asymptotic dependence. In other words,

some correspondence is seen between the very largest daily precipitation amounts from the

observational product and each of the six models.

As seen in the definition of χ in (14), an examination of tail dependence requires that each

component of a given random vector has a common marginal distribution. In order to fur-

ther examine the tail dependence in (Xj, Y )T , we apply probability integral transformations

Zj = Tj(Xj) and Zobs = T (Y ) using the fitted GPD above the chosen thresholds, and the em-

pirical distribution below. These transformations result in the Zj and Zobs having common

unit Fréchet marginal distributions, with distribution function F (z) = exp{−z−1}, z > 0.
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Figure 3.3: Estimates of χj,q (for Pacific winter precipitation) plotted against q for six
RCMs (j = 1, ..., 6), with 95% confidence intervals for CRCM (thin dashed lines) added.

One can think of this transformation as analogous to computing a z-score to standardize a

normal variate; however, the transformation here is to a very heavy-tailed distribution. The

top left panel of Figure 3.4 shows a scatterplot of transformed precipitation amounts from the

WRFG regional model and observations. Notice that the transformation to a heavy-tailed

distribution visually magnifies the very largest precipitation amounts, while ‘non-extreme’

realizations cluster near the origin. Furthermore, many of the largest precipitation events

from the climate model correspond to the largest events seen in the observations, which indi-

cates that tail dependence is present. Compare this to the summer precipitation comparison

in the lower left panel of the figure (discussed in Section 3.4), in which the very largest events

fall near the axes of the scatterplot.

As both Zj and Zobs are heavy tailed, we assume that (Zj, Zobs)
T is a multivariate regular

varying distribution. As described by Definition 2 in Chapter 1, this framework suggests a

polar coordinate transformation, and for each bivariate pair (Zj, Zobs)
T , we transform to

polar coordinates under the L1 norm by defining Rj = Zj + Zobs and Wj = Zj/Rj. One

72



0 200 400 600 800 1000

0
20

0
60

0
10

00

WRFG winter

Model Output

O
bs

er
va

tio
ns

WRFG winter

w

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

5
1.

0
1.

5

0 200 400 600 800 1000

0
20

0
60

0
10

00

WRFG summer

Model Output

O
bs

er
va

tio
ns

WRFG summer

w

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Figure 3.4: Fréchet-transformed winter precipitation amounts in Pacific region from
WRFG regional climate model plotted against transformed observations (top left) and

histogram of angular components for data points with large radial components (top right).
Bottom row shows the same for summer precipitation over the Bukovsky prairie region.
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can think of the ‘radial’ component Rj as measuring the overall size of a realization from

(Zj, Zobs)
T , and the ‘angular’ component Wj as measuring the relative contribution of Zj

(the climate model output) to the total size.

In statistical practice, one could fit dependence models for the angular component to

realizations with radial component values exceeding r0, a high empirical quantile. We choose

r0j to be the empirical 0.955 quantile of rj values; thus 125 pairs (zjt, zobs,t) are used in

each examination of tail dependence. The top right panel of Figure 3.4 shows a histogram

of angular component values for these largest 125 radial component values from pairing

WRFG output with observations. An angular component value near 0 indicates an extreme

precipitation event occurred in the observational data product, but was not produced by the

RCM. Conversely, a value near 1 results when the RCM produces an extreme event that was

not seen in observations. The histogram shows many of the angular components falling on

the interior of the interval [0, 1], indicating relatively strong tail dependence between WRFG

output and observations. Similar results are seen for each of the other five RCMs as well;

histograms similar to those in Figure 3.4 are given in Figure 3.5.

As the NCEP reanalysis product is derived from past observed weather, the precipitation

output of the NARCCAP RCMs forced by the reanalysis exhibits temporal correspondence

(on a daily scale) with past observed weather, and we examined precipitation output from

each RCM and an observational product. We found strong dependence between the observa-

tional quantity and the RCMs, as output from each regional model exhibits high correlation

with observations. The upper tails of our precipitation quantity are estimated to have a

finite endpoint in 5 of the 6 NARCCAP models, despite the observations being estimated to

be slightly heavy-tailed. We further discovered that tail dependence (between each model

and observations) is also present: the largest events produced by the RCMs exhibit some

correspondence with the largest events in the observed record. We quantified the level of tail

dependence using an empirical estimator of a tail dependence measure, and examined the

dependence visually with histograms of angular component values. The results here indicate
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Figure 3.5: Histograms of angular component values for largest 125 values of radial
components, for each RCM vs. observation comparison of Pacific region winter

precipitation.
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that each of the six RCMs are effective at downscaling extreme winter precipitation events

in the Pacific region.

3.4 Tail Behavior of Prairie Region Summer Precipitation

In this section, we turn our attention to summer-season (JJA) precipitation over the

prairie region defined in Bukovsky (2011). This region was chosen due to its relatively

homogeneous terrain, as well as its central location within the NARCCAP domain. While the

Pacific region studied in Section 3.3 was near the boundary of the NARCCAP simulations,

this region is far from the boundary. Thus it is possible that the boundary conditions will

have less influence on regional model precipitation output in this region than in the Pacific

region. The prairie region stretches from approximately 38◦ to 49◦ N latitude and 86◦ to 98◦

W longitude, excluding the Great Lakes. Figure 3.6 shows the mean daily precipitation over

this region from the NARCCAP ensemble and gridded observational product.

In addition to the fact that the study region chosen here is much farther from the bound-

ary of the NARCCAP domain than the region studied in Section 3.3, there are other reasons

to expect differences in the way the NARCCAP RCMs simulate summer extreme precipita-

tion events in the prairie region. For one, the nature of winter-season extreme precipitation

events in the Pacific region is much different than that of summer-season extremes over the

region studied here. Winter precipitation over the west coast has been linked to global phe-

nomena such as the El Nĩno/Southern Oscillation (Castello and Shelton, 2004; Ropelewski

and Halpert, 1987) and is often associated with strong synoptic-scale features such as atmo-

spheric rivers (Leung and Qian, 2009; Dettinger et al., 2011; Weller et al., 2012). Because

these features generally exhibit themselves in large-scale global models (Dettinger, 2011)

and coarse-resolution reanalyses, it may not be surprising that the regional models produce

these events in similar ways when given boundary conditions from these sources. On the

other hand, extreme precipitation events during the summer season in the prairie region are

often associated with mesoscale convective systems (Fritsch et al., 1986; Trenberth et al.,
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Figure 3.6: Mean JJA precipitation (mm/day) over prairie region from NARCCAP
ensemble average (left) and gridded observations (right), 1981-2003. Figures are on a

common scale indicated by the legend strip.
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2003; Schumacher and Johnson, 2006) which are not well-resolved in coarse-resolution global

climate models and even many finer-resolution regional climate model simulations. Convec-

tion is not only resolved poorly in many cases, with problems compounded by the use of

convective parameterization, but the mesoscale processes that produce favorable conditions

for convection are not always well resolved or well simulated either (see, e.g. Anderson et al.,

2003; Bukovsky and Karoly, 2011; Davis et al., 2003; Cook et al., 2008). Thus, even given

the same boundary conditions, it may not be surprising if each of the six regional models

studied here simulate these types of events in their own unique manner.

Some previous examinations of precipitation from NARCCAP models also suggest that

we may see differences in extreme summer events over the prairie region. While not di-

rectly studying extremes, Sain et al. (2011) used a functional analysis of variance approach

to study variability in precipitation fields produced by regional and global model couplings

in the NARCCAP experiment. Their work found that summer precipitation fields over the

NARCCAP domain exhibited complex interactions between global and regional models, sug-

gesting that different regional models may produce significantly different precipitation fields,

even given the same boundary conditions. Schliep et al. (2010) found some differences in

marginal behavior of summer-season extreme precipitation among NARCCAP RCMs driven

by the NCEP reanalysis product. However, no previous analysis has directly examined the

tail dependence in summer precipitation between NARCCAP regional models and observa-

tions.

3.4.1 Exploratory Analysis

As a way to begin to understand how both the RCMs and gridded observational product

record precipitation over the prairie region, we produce maps of mean precipitation over the

study period, as well as from a single day of heavy precipitation over the region. Figure

3.6 displays mean daily amounts from the gridded observational product for the years 1981-

2003, as well as the NARCCAP ensemble average over the region over the same time period.
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Figure 3.7: Mean JJA precipitation (mm/day) over prairie region from NARCCAP
regional climate models driven by NCEP reanalysis, 1981-2003.

The map of observations shows a band of greatest precipitation running from southwest to

northeast over the region. The driest part of this region is over the eastern Dakotas and

western Minnesota. The average field from the NARCCAP models exhibits a pattern of

increasing precipitation from west to east over the region.

In Figure 3.7 we plot the daily mean precipitation over the same region and time period

from each of the six NARCCAP RCMs driven by the NCEP reanalysis. In the figure, one

sees differences among the six models in both overall precipitation amounts and spatial pre-

cipitation patterns. Generally, the RCM3 and ECP2 models appear to be the wettest on

average, while HRM3 and WRFG are the driest. While in general there is an increase in

precipitation from west to east in each of the models, the spatial patterns also vary signifi-
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Figure 3.8: Observed precipitation field (mm) over prairie region on June 16, 1990, the day
with the second-largest total rainfall over the study region.

cantly between regional models and the observational product. The RCM3 model appears

to capture the spatial pattern seen in observations most accurately, with the exception of

the southern Illinois region. The HRM3, RCM3, and ECP2 mean fields show fairly dramatic

variability over the region, while CRCM and MM5I show less spatial variation.

As the primary interest here is in daily extreme precipitation events, we also examine

the precipitation pattern on June 16, 1990, the day which saw the second-largest total

precipitation amount over the study region in the observed record. Figure 3.8 shows the

precipitation pattern over the region on this day from the gridded observational product. The

figure indicates several very intense precipitation pockets over eastern Iowa, which caused

severe flash flooding over the region (Barnes and Eash, 1994). Notice that the most intense

precipitation amounts are highly concentrated over an area that would be covered by only a

few RCM gridboxes.
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Figure 3.9: Precipitation fields (mm) for June 16, 1990 over the prairie region from each
NARCCAP regional climate model driven by NCEP reanalysis.
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In Figure 3.9 we plot the spatial precipitation fields for June 16, 1990 from each of

the six NARCCAP models driven by the NCEP reanalysis. Generally speaking, Figure 3.9

shows that the regional models do not capture the extreme precipitation event very well.

It appears that WRFG captures the event most adequately, simulating large precipitation

amounts over eastern Iowa. The MM5I and RCM3 models do exhibit significant precipitation

amounts; however, they fail to adequately capture the location of the observed rainfall event.

The other three models do not exhibit large precipitation events; in fact, the HRM3 model

indicates nearly zero rainfall over most of the region on this day. It is possible that some

of the processes forcing this large precipitation event are not captured well in the NCEP

reanalysis boundary conditions or translating well into the RCM domains. On the other

hand, it is quite likely that the resolution of the NARCCAP regional models is still too

coarse to capture such an event. In Section 3.4.2, we study the ability of each regional

model to capture summer extreme precipitation events over the prairie region with a formal

statistical analysis.

3.4.2 Analysis of Summer Precipitation Extremes

We now carry out an analysis similar to that in Section 3.3, focusing on summer precipi-

tation extremes over the prairie region of North America. The aim here is to learn whether

the largest summer precipitation events over the prairie region in the regional models corre-

spond with the largest events in the observed record. We study daily precipitation from the

summer months (JJA) for the years 1981-2003, for a total sample size of Ts = 2116 days.

In the prairie region, extreme precipitation events in summer are often associated with

relatively small-scale convective systems; thus, following the exploratory analysis above, here

we choose to examine a smaller ‘footprint’ than was chosen in Section 3.3.1. For each day

t = 1, ..., Ts, we extract the sum of precipitation values over the 2 × 2 climate model grid

box area (9 × 9 from the observational product) for which this sum is greatest over the

prairie region. This quantity on day t from each regional climate model is denoted by Xs
jt
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Figure 3.10: Modeled daily precipitation quantity Xs
j plotted against observed

precipitation Y s, for each regional climate model. Note the different scales due to differing
spatial resolutions of the data sources.

for j = 1, ..., 6 and by Y s
t from the observational product. A 4 × 4 grid box footprint was

also examined, with similar results.

Figure 3.10 shows the resulting daily quantities from each regional model plotted against

observations. Note that the dependence between output of each regional climate model and

observations appears much weaker than in winter precipitation, shown in Figure 3.2. The

visual differences between each of the six scatterplots are also more apparent than in Figure

3.2, suggesting larger variation between the regional models in summer precipitation over

the prairie than seen in winter precipitation over the west coast. Spearman correlations

between output of each regional climate model and observations are found to range from
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0.162 (HRM3) to 0.408 (CRCM). Despite the positive correlations, it appears from Figure

3.10 that the largest events produced by the RCMs do not show much correspondence to

the largest events from the observational product. Our primary interest is the joint upper

tail of each bivariate distribution (Xs
j , Y

s)T , and we proceed to examine both marginal and

joint tail behavior.

As in Section 3.3.2, we fit a GPD to the exceedances of a high quantile in each mar-

gin separately. After checking diagnostics, we choose the 0.94 quantile, resulting in 127

exceedances used for each estimation procedure. A summary of maximum likelihood pa-

rameter estimates and scaled estimates of 20 and 50 year return values is shown in Table

3.3. We see greater variability between the six regional models in terms of marginal tail

behavior of our computed precipitation quantity; tail parameter estimates range from −0.12

(MM5I) to 0.15 (WRFG). Given that Xj and Y were computed using relatively small spatial

areas, it is perhaps surprising that the observational precipitation quantity is estimated to

have a bounded tail. The effects of the varying parameter estimates are most clearly seen

in extrapolation: the point estimates of the 50 year summer precipitation return value from

each RCM cover a wide range. Due to the relatively large uncertainty in its estimation,

we cannot conclude that significant differences in the tail parameter ξ exist between the

six RCMs; however, less consistency among the RCMs is seen in these estimates for prairie

region summer precipitation than was observed for Pacific winter precipitation.

Wehner (2013) found significant wet biases (compared to this observational product)

in the 20 year return values for the eastern US (defined to be east of 100◦ W longitude)

for all NARCCAP models except CRCM. The results in Table 3.3 are in agreement with

these findings over the prairie region. The estimated 20 year return values from five of the

NARCCAP models are significantly higher than the value estimated from the observational

product. The exception is CRCM, which is in approximate agreement with this observational

product.
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Table 3.3: Threshold selected and maximum-likelihood parameter estimates (standard
errors) from GPDs fit to exceedances of the 0.94 quantile of defined summer precipitation

quantity (127 exceedances) from each source. Also shown are estimated 20 and 50 year
return levels (mm) with 95% profile likelihood confidence intervals. Return values and

confidence intervals have been normalized to gridbox-level values.

j Model uj ψ̂j (se) ξ̂j (se) x̂j,20 x̂j,50
1 CRCM 153 51.1(5.9) −0.03(0.07) 94.2(84.2, 116.8) 104.2(91.2, 139.0)
2 ECP2 220 72.7(9.3) 0.06(0.09) 153.0(130.8, 202.2) 175.3(144.1, 267.2)
3 HRM3 230 142.7(18.1) −0.10(0.09) 191.9(169.1, 249.8) 211.6(181.9, 299.7)
4 MM5I 237 85.9(10.0) −0.12(0.08) 136.8(124.9, 163.9) 147.5(132.7, 187.2)
5 RCM3 364 108.2(14.5) 0.07(0.10) 240.5(204.6, 331.8) 275.4(223.7, 429.4)
6 WRFG 280 67.8(10.1) 0.15(0.12) 184.6(151.4, 280.0) 217.5(166.8, 391.7)
- (Obs) 3939 964.3(119.1) −0.05(0.09) 99.0(89.8, 121.8) 107.7(95.4, 142.8)

In terms of the marginal distribution of summer precipitation over the prairie region, we

see varying tail behaviors produced by the six NARCCAP regional climate models. The

observational product produces a distribution which is estimated to have a finite upper end-

point. This is also seen in three of the NARCCAP models (CRCM, HRM3, and MM5I), while

the other three produce heavy-tailed estimates for precipitation. We also see relatively large

variability in the empirical 0.94 quantile level of precipitation from each model, suggesting

that some models are generally wetter than others (see also Figure 3.7). We now turn to

an examination tail dependence; that is, we aim to learn if the largest summer precipitation

events observed in the prairie region exhibit any daily correspondence to the largest events

produced by the NARCCAP RCMs.

As an exploration of the level of tail dependence in summer precipitation amounts be-

tween climate model output and observations, we again employ the Coles et al. (1999)

estimator of χ as defined in (14). Figure 3.11 shows empirical estimates of χj,q in (15) for

q ∈ [0.75, 0.97) and j = 1, ..., 6. In contrast to Figure 3.3, which shows estimates of χj,q

near 0.5 for large q, Figure 3.11 shows this tail dependence metric decreasing toward zero

for all six regional models. This provides strong evidence that asymptotic independence is

present here; that is, there is little to no correspondence between the largest summer precip-

itation events over the region produced by the RCMs, and those seen in observations. We
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Figure 3.11: Estimates of χj,q for summer precipitation plotted against q for six RCMs
(j = 1, ..., 6). 95% confidence bands (thin solid lines) added for MM5I model.

also add 95% confidence bands for the MM5I comparison with observations to the plot to

illustrate the uncertainty in these estimates. Note that all six estimates of χq are within

these confidence bands for all q ∈ [0.75, 0.97).

One can further see evidence for asymptotic independence by applying transformations

to marginal distributions so that each is unit Fréchet, and examine the angular component

values for those points with large radial components (see Section 3.3.3). The lower left panel

of Figure 3.4 shows a scatterplot of Fréchet-transformed summer precipitation amounts over

the region from the WRFG RCM plotted against observations. Note that nearly all points

with large values in either margin are near the axes of the plot. Compare this with winter

precipitation in the top left panel, which contains many large points on the interior of the

quadrant. The lower right panel of Figure 3.4 shows the corresponding plot of angular

components for the largest 127 sample values in terms of the radial component, for the

WRFG-observation comparison. In contrast to the upper right panel, the histogram here

is heavily U-shaped, indicating a lack of correspondence of large precipitation events in
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Figure 3.12: Histograms of angular component values for largest 127 values of radial
components, for each RCM vs. observation comparison of prairie region summer

precipitation.

observations with large precipitation events from WRFG. Similar results are seen for each

of the six NARCCAP models, indicating asymptotic independence of summer precipitation

amounts produced by the NARCCAP models and those seen in observations. Histograms of

angular components for all six RCM-observation comparisons are shown in Figure 3.12.

While it was found that prairie region summer precipitation amounts seen in observations

are asymptotically independent of those amounts produced by the NARCCAP models, the

empirical Spearman correlations between each model and observations suggest that there is

some positive dependence in each bivariate pair (Xs
j , Y

s)T . From an extremes perspective,

a conclusion of asymptotic independence drawn from data does not tell the whole story
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about dependence at observable, sub-asymptotic levels. For example, a bivariate Gaussian

distribution with correlation ρ = 0.9 possesses asymptotic independence, but still exhibits

tail dependence at finite levels. For practical application, it is useful to address the strength

of this ‘second-order’ dependence in the distribution’s tail.

Coles et al. (1999) introduce a metric to quantify the strength of this second-order de-

pendence. For a bivariate random vector (X1, X2)
T with common marginal distributions,

they define

χ̄q =
2 logP(X1 > xq)

logP(X1 > xq, X2 > xq)
− 1,

where xq is the q quantile level of X1 and X2. For q ∈ [0, 1], χ̄q ∈ (−1, 1] serves as a measure

of the level of tail dependence in the asymptotic independence setting. Specifically of interest

is the limiting behavior, and Coles et al. (1999) define

χ̄ = lim
q→1

χ̄q.

As an example, if (X1, X2)
T follow a bivariate Gaussian distribution with correlation ρ ∈

(−1, 1), it follows that χ̄ = ρ.

Here we apply empirical estimates of χ̄q to our samples from (Xs
j , Y

s)T for j = 1, ..., 6.

Figure 3.13 shows these estimates plotted against q ∈ [0.75, 0.97). With the exception of

the CRCM and ECP2 regional models, the estimates of χ̄ are all near zero. For perspective,

a situation in which Xs
j and Y s were exactly independent would correspond to χ̄ = 0.

Figure 3.13 suggests, then, for four of the six NARCCAP models, the extreme summer

precipitation events in the prairie region produced by the RCMs occur nearly independently

of the observed extremes. Some sub-extremal dependence is seen between observations and

the CRCM and ECP2 models, although it is rather weak. That the CRCM and ECP2 models

exhibit stronger dependence to observations than the other four models is not surprising in
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Figure 3.13: Estimates of χ̄j,q for summer precipitation plotted against q for six RCMs
(j = 1, ..., 6).

light of the fact that these two models employ nudging techniques that force the RCM to

more closely follow the reanalysis product in the interior of their domains and not just at

their boundaries.

In contrast to the examination of Pacific region winter precipitation in Section 3.3, we

have found that extreme summer precipitation events over the prairie region produced by the

NARCCAP RCMs forced by the NCEP reanalysis show little to no correspondence with such

events seen in the observed record. This may have a number of causes, including the still-

too-coarse resolution of the NARCCAP RCMs for these convective events and some of their

driving processes, errors related to the use of convective parameterization, potential biases

in the NCEP reanalysis being inherited by RCMs, resolved-scale forcing for the events not

occurring over the oceans where the RCM boundaries are in the NCEP reanalysis, resolved-

scale forcing from the NCEP reanalysis not translating well to the center of the large RCM

domains, and errors in the timing and/or placement of events in the RCMs that would place
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them later and not within the daily totals as defined in the observations and/or not within

the prairie region.

3.5 Summary and Discussion

This study examines two case studies on the ability of NARCCAP RCMs, driven by the

NCEP reanalysis, to reproduce past observed extreme precipitation events. The NARCCAP

models are able to simulate past observed winter precipitation events over the west coast

region of North America reasonably well, and we studied the tail dependence between daily

RCM output precipitation through techniques from statistical extreme value theory. The

results lend confidence to the idea that the RCMs, when provided boundary conditions that

are conducive to an extreme precipitation event over this region in winter, can downscale the

synoptic-scale conditions appropriately and exhibit this event in their precipitation output.

When such conditions are present in a future-scenario run of a global model, the RCM

can then produce the extreme event in its simulation from the boundary conditions it is

given. The nature of winter west coast precipitation, which is often driven by synoptic-scale

processes and orographic features, lends itself to adequate simulation by the RCMs.

The results for summer precipitation over the prairie region in the central US are quite

different. Greater differences in marginal tail behavior of precipitation are seen between the

six NARCCAP models, as compared to simulated west coast winter precipitation. Addi-

tionally, tail dependence in daily precipitation between model output and observations is

virtually non-existent for prairie region summer precipitation. Further analysis indicates

that most of the NARCCAP RCMs produce daily precipitation extremes occurring nearly

independently of extreme precipitation events in the observed record. This is likely due to

the nature of summer-season extreme precipitation events over the prairie region: most are

the result of regional to local-scale convective storms. It may be that the forcing for these

storms are not captured in the NCEP reanalysis boundary conditions for the NARCCAP

RCMs, and/or that the RCMs themselves may not be able to simulate these events ade-
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quately. When attempting to project summer precipitation extremes over this region from

future-scenario climate model runs, this deficiency should be acknowledged.

Despite studying different quantities and employing different statistical techniques, the

results of marginal analyses conducted here are consistent with the findings of Wehner (2013).

Twenty year return values for winter west coast precipitation as seen in five of six NARCCAP

models were greater than that estimated from the observational product. The same is seen

for summer precipitation return values in the prairie region, with the CRCM model as

the exception in each case. While the marginal analyses result in comparison of return

values from each source, the novelty of this work is the examination of tail dependence,

which examines daily correspondence of extremes from NARCCAP output and observations.

Here a stark contrast is found between the two regions and seasons: the models are able to

reproduce observed winter extreme precipitation events on the west coast, but not summer

precipitation extremes in the prairie region.

While the work here provides an exploration of the ability of NARCCAP RCMs to

simulate extreme precipitation events over two different regions in different seasons, the

increased emphasis on potential changes in extreme weather events under climate change

motivates further examination of the ability of RCMs to simulate such events. Future studies

may apply the techniques used here to study precipitation extremes over different regions

and further examine uncertainties in climate model representations of extreme precipitation

events.
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CHAPTER 4

A SUM CHARACTERIZATION

OF HIDDEN REGULAR VARIATION

4.1 Introduction

As described in Chapter 1, fundamental to the multivariate regular variation framework

is a polar coordinate decomposition which describes joint tail behavior in terms of a radial

component and an angular component, which become independent as the radial compo-

nent becomes large. Dependence in the joint tail of the random vector is described by a

probability measure governing the angular component. Over the past 15 years, it has been

recognized that modeling approaches based on this framework may not adequately describe

some tail dependence structures. As a canonical example, the bivariate Gaussian distribu-

tion (X1, X2)
T with correlation ρ < 1 can be shown (Sibuya, 1960) to be asymptotically

independent; that is,

lim
x→∞

P(X2 > x | X1 > x) = 0.

In this case, a modeling approach based on the first-order limiting measure under the regular

variation framework does not capture tail dependence induced by the correlation ρ (Ledford

and Tawn, 1996). The fundamental shortcoming is that the first-order limit measure is

degenerate on some joint tail regions, thus masking possible dependence structure at finite

levels.

The concept of hidden regular variation (Resnick, 2002) offers a mathematical struc-

ture for describing sub-asymptotic tail dependence. Hidden regular variation is essentially a

second-order formulation of regular variation on regions where the first-order limit is degen-
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erate. More treatment is given in Maulik and Resnick (2004), Heffernan and Resnick (2007),

and Mitra and Resnick (2010). More recently, de Haan and Zhou (2011) offered characteri-

zations of hidden regular variation based on an alternative polar coordinate transformation.

In this chapter, we offer a characterization of a random vector with hidden regular varia-

tion as the sum of independent first- and second-order components. We demonstrate that our

characterization exhibits useful finite-sample properties, thus lending itself to inference. This

characterization is asymptotically justified via the concept of multivariate tail equivalence

(Maulik and Resnick, 2004). We demonstrate the characterization through simulation.

The remainder of this chapter is structured as follows: in Section 4.2 we provide back-

ground on the concept of hidden regular variation. Through two examples, Section 4.3

illustrates possible hidden angular measure structures. Previous characterizations of hidden

regular variation which have appeared in the literature are reviewed in Section 4.4. In Section

4.5 we describe the construction of our characterization and show that it is tail equivalent

to a random vector with hidden regular variation. Section 4.6 demonstrates simulation from

our representation for a random vector with Gaussian dependence structure and compares

it to other representations. We conclude in Section 4.7 with a summary and discussion.

Portions of this chapter also appear in a Colorado State University Department of Statistics

technical report (Weller and Cooley, 2012), as well as in Weller and Cooley (2013), which

has been submitted for publication.

4.2 Hidden Regular Variation

Recall Definition 1 of multivariate regular variation in Chapter 1: we say that a random

vector Z taking values in a subset of [0,∞)d is regular varying with finite limiting measure
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ν 6= 0 if there exists a function b(t)→∞ such that

tP
[

Z

b(t)
∈ ·
]

v−→ ν(·) (16)

in M+(C) as t→∞.

Definition 2 introduces the polar coordinate transformation. Fix a norm ‖ · ‖ on C,

and consider the unit sphere N = {z ∈ C : ‖z‖ = 1}. Define the bijective transformation

T : C→ (0,∞]×N via T (z) = (‖z‖, z‖z‖−1) = (r,w). The measure ν can then be expressed

in terms of the new coordinate system via ν = να×H, where να is a Pareto measure and H is

a non-negative measure on N. The measure H is called the angular measure. By appropriate

choice of normalizing function b(t), H can be made to be a probability measure on N.

It is possible that the limiting measure ν in (16) places zero mass on pie slice-shaped

regions {z ∈ C : z‖z‖−1 ∈ B ⊂ N} of the cone C. In such cases, the normalizing function

b(t) obliterates any finer structure of the random variable on such regions, if such a finer

structure exists. The angular measure H thus places zero mass on corresponding regions of

the unit sphere N. This prompted Resnick (2002) to formulate the concept of hidden regular

variation.

Definition 4. Consider a subcone C0 ⊂ C with ν(C0) = 0. A random vector Z is said to

possess hidden regular variation if, in addition to (16), there exists a non-decreasing function

b0(t)→∞ with b(t)/b0(t)→∞ and nonnegative Radon measure ν0 such that

tP
[

Z

b0(t)
∈ ·
]

v−→ ν0(·) (17)

as t→∞ in M+(C0).

The measure ν0 is homogeneous with tail index α0; that is, for any measurable set A ⊂ C0,

ν0(tA) = t−α0ν0(A). A polar decomposition of ν0 arises; the measure can be written as a

product of Pareto measure να0 and positive Radon measure H0 on N0 = N∩C0. The function
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b0(t) ∈ RV1/α0 , with α0 ≥ α; thus, Z has a lighter tail on C0 than on C. As N0 may not be a

relatively compact set of N, H0 (called the hidden angular measure) may be either finite or

infinite; see Section 4.3.

In the bivariate case when asymptotic independence is present, the first-order limit mea-

sure ν concentrates fully on the axes of the cone C. If hidden regular variation exists, it

can be formulated on the subcone C0 = (0,∞]2: the first quadrant with the axes removed

(Resnick, 2002).

Figure 4.1 provides an illustration of hidden regular variation in the two dimensional

case. This figure plots realizations of sizes n = 1000, 2500, 5000 of a bivariate Gaussian

random vector with correlation ρ = 0.75, after marginal transformation to unit Fréchet and

normalization by n. Also shown is a histogram of angular component values for normalized

points exceeding a fixed radial component threshold. Notice as the sample size increases,

the histograms become more heavily U-shaped, and the angular measure H degenerates to

point masses on the endpoints of N, indicating asymptotic independence. However, for any

finite sample of n realizations of this random vector, tail dependence exists, as it is induced

by the correlation ρ. In this example, the shortcoming of the regular variation framework is

the inability to distinguish asymptotic independence from independence in the usual sense

(e.g., ρ = 0). Hidden regular variation captures tail dependence induced by ρ; we explore

this example more thoroughly in Section 4.6.

4.3 Finite and Infinite Hidden Measures

Definition 2 of multivariate regular variation in Chapter 1 guarantees finiteness of the

limit measure ν, as the associated angular measure H can be made to be a probability

measure. The subcone C0 on which hidden regular variation exists need not be a relatively

compact subset of C, and thus while the hidden measure ν0 is Radon (assigning finite measure

to relatively compact sets), it may be infinite on the entire subcone C0. The corresponding

hidden angular measure H0 may thus be infinite on N0 ⊂ N.

95



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n = 1000, ρ = 0.75

z1 n

z 2
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n = 2500, ρ = 0.75

z1 n

z 2
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n = 5000, ρ = 0.75

z1 n

z 2
n

w

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

w

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

w

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Figure 4.1: Realizations of a bivariate Gaussian random vector with correlation ρ = 0.75,
plotted after transformation to Fréchet scale and normalization by n. Bottom row gives
histograms of angular component values for realizations with radial component values

exceeding r0 = 0.15.
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4.3.1 Examples

We present two examples of hidden regular variation: one with finite hidden measure and

one for which the hidden measure is infinite. More examples are provided in Resnick (2002),

Maulik and Resnick (2004), and Mitra and Resnick (2010).

Example 4.1. Let X ∈ R3 have distribution function F (x) = exp{−(x
−1/β
1 + x

−1/β
2 +

x
−1/β
3 )β}, for β ∈ (0, 1); that is, X has unit Fréchet marginal distributions and trivariate

logistic dependence (Gumbel, 1960). Let Y = (Y1, Y2, Y3)
T , where Yj, j = 1, 2, 3 are inde-

pendent Pareto random variables with distribution function F (y) = y−1 for y > 1. Let B be

a Bernoulli(0.5) random variable and define

Z = BX1/α0 + (1−B)Y

for α0 ∈ (1, 2).

It is straightforward to show that

tP
[

Z

t
∈ ·
]

v−→ ν(·)

in M+(C) as t→∞, where ν places all mass on the axes L = {z ∈ C : z(2) = 0}, where z(2)

is the second-largest component of z. Consider the subcone C0 = C \ L. One can show that

in M+(C0),

tP
[

Z

t1/α0
∈ ·
]

v−→ ν0(·),

where the form of ν0 is given by

ν0([0, z]c ∩ C0) = (z
−α0/β
1 + z

−α0/β
2 + z

−α0/β
3 )β.
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Thus Z is regular varying on C with tail index α = 1 and exhibits hidden regular variation on

C0 with tail index α0. The finiteness of the hidden angular measure ν0 is seen in the fact that

it can be extended to the axes of the cone. Specifically, for this example ν0([0, z]c ∩ C0) =

ν0([0, z]c) because the logistic angular dependence structure concentrates fully on the interior

{z ∈ C : z1, z2, z3 > 0} of the cone C (Coles and Tawn, 1991).

Example 4.2. (Resnick, 2002) Define Z = (Z1, Z2)
T where Zj, j = 1, 2 are independent

standard Pareto random variables. Then in M+(C)

tP
[

Z

t
∈ ·
]

v−→ ν(·),

where ν concentrates on the axes; that is, Z exhibits asymptotic independence. On C0 =

(0,∞]2, it suffices to consider sets of the form (z,∞] for z = (z1, z2)
T ∈ C0, and we have

tP
[

Z

t1/2
∈ (z,∞]

]
−→ (z1z2)

−1

as t→∞. The hidden measure in this case cannot be extended to the axes, however: consider

the set A = {z ∈ C0 : ‖z‖ > 1}. For any δ > 0,

ν0(A) ≥ ν0([(2, δ),∞]) = (2δ)−1 →∞

as δ → 0. Despite being finite on any relatively compact set of C0, the hidden measure ν0 is

infinite on C0 because it diverges near the axes of the cone.

4.3.2 Alternative Coordinate Transformations when H0 is Infinite

An infinite ν0 on C0 admits an infinite hidden angular measure; that is, H0(N0) = ∞.

Several authors have proposed alternative coordinate transformations to represent infinite

hidden measures. We examine two such alternatives here, focusing on the bivariate case;

generalizations to higher dimensions are made in the corresponding references.
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Mitra and Resnick (2010) propose a transformation T̃ : C0 7→ (0,∞] × Ñ, where Ñ =

{z ∈ C0 : z1 ∧ z2 = 1}. This transformation is given by

T̃ (z) =

(
z1 ∧ z2,

z

z1 ∧ z2

)
= (r̃, w̃).

Mitra and Resnick (2010) show that the hidden measure ν0 decomposes into the product of

a Pareto measure on (0,∞] and finite measure on Ñ.

We demonstrate the Mitra and Resnick (2010) transformation on Example 4.2 above.

The density of the limit measure ν0 in Cartesian coordinates is

ν0(dz) = (z1z2)
−2.

Notice that this density is symmetric about the ray given by {z ∈ C0 : z1 = z2}, so first

consider the case z1 > z2. The coordinate decomposition is given by (r̃, w̃) = (z2, z1/z2).

Applying a simple change-of-variable argument to this case and the case z2 > z1 gives

ν0(dr̃ × dw̃) = 2r̃−3 × 1

2

(
w̃−2I{w̃= z1

z2
} + w̃−2I{w̃= z2

z1
}

)
.

Hence, under this transformation ν0 decomposes into the product of a Pareto measure and

a mixture of Pareto measures.

A different transformation is examined by de Haan and Zhou (2011). These authors

consider a two-dimensional random vector Z which is regular varying of index α = 1 and ex-

hibits hidden regular variation of index α0 ∈ (1, 2). de Haan and Zhou (2011) first normalize

the random vector by Zα0 and then define the transformation T ∗ : C0 7→ (0,∞)× (0, 1) via

T ∗(z1, z2) =

(
{z−11 + z−12 }−1,

{z−11 + z−12 }−1

z1

)
= (r∗, w∗).
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The limiting measure of the normalized Zα0 then decomposes into the product of a Pareto

measure of tail index 1 on (0,∞) and finite measure H∗ on (0, 1). An example is presented

in Section 4.4.3.

4.4 Previous Characterizations of Hidden Regular Variation

Consider a random vector Z with support on [0,∞)d which is multivariate regular varying

on C with limit measure ν as in (16). Further assume that Z exhibits hidden regular variation

of index α0 on a subcone C0 ⊂ C as in (17). Two previous works have developed probabilistic

characterizations of the joint tail of Z. Maulik and Resnick (2004) introduce a mixture

characterization when the hidden measure ν0 is finite. In the two-dimensional asymptotic

independence case, de Haan and Zhou (2011) construct a characterization when the tail index

of the hidden measure α0 ∈ (1, 2). Before presenting these characterizations, we review the

concept of multivariate tail equivalence.

4.4.1 Multivariate Tail Equivalence

Multivariate tail equivalence was introduced in Maulik and Resnick (2004).

Definition 5. Consider random vectors X and Y taking values in [0,∞) with distribution

functions F and G, respectively. The random vectors X and Y are said to be tail equivalent

on the cone C∗ ⊆ C if there exists a scaling function b∗(t)→∞ such that

tP
[

X

b∗(t)
∈ ·
]

v−→ ν∗(·) and tP
[

Y

b∗(t)
∈ ·
]

v−→ cν∗(·) (18)

as t→∞ in M+(C∗), for some constant c ∈ (0,∞) and measure ν∗ on C∗.

The definition (18) implies that the random vectors X and Y have the same asymptotic

tail properties on C∗, up to a scaling constant. Following Maulik and Resnick (2004) we
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write

X
te(C∗)∼ Y.

Maulik and Resnick (2004) and de Haan and Zhou (2011) develop characterizations which

are tail equivalent to Z on both C and C0 in special cases.

4.4.2 Mixture Characterization when ν0 is Finite

When the hidden measure ν0 is finite, Maulik and Resnick (2004) introduce a mixture

characterization of Z. Without loss of generality, assume b(t) in (16) is such that H is

a probability measure on N. Define the random vector X = RW, where P(R > r) =

1/b←(r), r > 1 and W is drawn from the probability distribution H. As H(N0) = 0, X has

support only on C \ C0.

Because the hidden measure is finite, there exists a random vector U defined on the same

probability space and independent of X which is regular varying on C0 with limit measure

ν0; that is,

tP
[

U

b0(t)
∈ ·
]

v−→ ν0(·)

as t → ∞ in M+(C0). Letting B be a Bernoulli(0.5) random variable, Maulik and Resnick

(2004) define Zmix = BX + (1−B)U and show that Zmix is tail equivalent to Z on both C

and C0.

While it satisfies the tail equivalence requirements, Zmix may exhibit different finite-

sample behavior than Z. As an example, asymptotic independence in d = 2 implies that

ν concentrates on the axes of the positive quadrant in R2. Thus, a realization from Zmix

would consist of points falling exactly on the axes. However, this may not be the case for

finite-sample realizations of Z; see Section 4.6.2.

101



4.4.3 Two-dimensional Max-linear Combination

In the case where Z ∈ R2 is regular varying with tail index α = 1 and exhibits asymptotic

independence and hidden regular variation with tail index α0 ∈ (1, 2), de Haan and Zhou

(2011) employ the transformation discussed in Section 4.3.2 to construct a tail equivalent

representation to Z. In this case, the hidden angular measure H∗ under the transformation

T ∗ is guaranteed to be finite. Denote the total mass of the measure H∗ as

D =

∫
(0,1)

H∗(dw)

and let R∗ be such that P(R∗ > r) = D/r for r ≥ D. Consider Θ independent of R∗ with

P(Θ ≤ θ) = D−1
∫ θ
0
H∗(dw). Since α0 ∈ (1, 2) there exists a constant β ∈ (1, 1/α0). Define

X = (X1, X2)
T via

X1 =
R∗

Θ
∧ (R∗)β, X2 =

R∗

1−Θ
∧ (R∗)β.

Independently of X, define Wj, j = 1, 2 independent with P(Wj > x) = 1/x for x ≥ 1.

Construct Z∗ = (Z∗1 , Z
∗
2)T via

Z∗1 = W1 ∨X1/α0

1 , Z∗2 = W2 ∨X1/α0

2 .

de Haan and Zhou (2011) show that Z∗ is tail equivalent to Z on both C and C0. However,

finite-sample behavior of Z∗ may differ considerably from that of Z; we explore this in Section

4.6.2.

4.5 Regular Varying Sum Characterization

Consider a random vector Z satisfying (16) and (17). We develop a characterization

for such a random vector as the sum of independent regular varying components. The
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components of the sum are constructed in a manner similar to the components of the mixture

characterization of Maulik and Resnick (2004); however, our construction does not require

that the hidden angular measure be finite. We prove tail equivalence to Z on both C and C0.

4.5.1 Construction

Define a random vector Y = RW taking values in [0,∞)d, where P(R > r) ∼ 1/b←(r) as r →

∞ and W is drawn from H(·), where b(t) is as in (16) and H is the angular measure corre-

sponding to ν in (16). As ν(C0) = 0, H(N ∩ C0) = 0. Assume that the quantities R and W

are independent. It follows that in M+(C)

tP
[

Y

b(t)
∈ ·
]

v−→ ν(·)

as t → ∞ (Maulik and Resnick, 2004). The limited support of Y on only C \ C0 is a key

feature of this construction; Y has no hidden regular variation on C0.

Now consider a random vector V ∈ [0,∞)d defined on the same probability space and

independent of R and W which satisfies the hidden regular variation condition on C0 with

tail index α0. Specifically, assume

tP
[

V

b0(t)
∈ ·
]

v−→ ν0(·) (19)

in M+(C0), with ν0 as in (17); that is, V has the same tail behavior as Z on C0.

When the measure ν0 is finite, V can be constructed in a similar manner to Y, with

support only on C0. Assumption (19) does not restrict the support of V; instead, assume
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that on the full cone C,

P(‖V‖ > r) ∼ cr−α
∗

as r →∞,

for some c > 0, where the tail index α∗ satisfies

α∗ > α ∨ (α0 − α). (20)

We will see that the purpose of assumption (20) is twofold: the condition α∗ > α is needed to

obtain tail equivalence on C, while obtaining tail equivalence on C0 will require α∗ > α0−α.

Maulik and Resnick (2004) show that mixtures of Y and V are tail equivalent to Z on

both C and C0. In practice, it may be more natural to represent Z as a sum of the random

vectors Y and V. Next we show

Z
te(C)∼ Y + V and (21)

Z
te(C0)∼ Y + V, (22)

with scaling constant c = 1 in (18). The result (21) follows from Jessen and Mikosch (2006);

we review the proof below. Following a similar argument, we prove (22).

4.5.2 Tail Equivalence on C

With Y and V defined above, we adapt Lemma 3.12 of Jessen and Mikosch (2006) to

show tail equivalence on the full cone C. Consider a relatively compact rectangle A ∈ C;

that is, A is bounded away from 0. This class of sets A generates vague convergence in C

(Resnick, 2007, Lemma 6.1); thus it is sufficient to show

lim
t→∞

tP
[

Y + V

b(t)
∈ A

]
= lim

t→∞
tP
[

Z

b(t)
∈ A

]
= ν(A).
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Assume without loss of generality that A = [a,b] = {x ∈ C : a ≤ x ≤ b}. For small

ε > 0, define a−ε = (max{0, a1− ε}, ...,max{0, ad− ε})T , and define b−ε analogously. Define

the rectangles A−ε = [a−ε,b] and Aε = [a,b−ε]. For small ε, the rectangles Aε and A−ε are

relatively compact in C, and Aε ⊂ A ⊂ A−ε. Note that ν(∂A) = 0 (Jessen and Mikosch,

2006); there is no mass on the boundary of A.

For small ε > 0 and fixed t > 0,

P
[

Y + V

b(t)
∈ A

]
= P

[
Y + V

b(t)
∈ A, ‖V‖

b(t)
> ε

]
+ P

[
Y + V

b(t)
∈ A, ‖V‖

b(t)
≤ ε

]
≤ P [‖V‖ > b(t)ε] + P

[
Y

b(t)
∈ A−ε

]
.

Thus

lim sup
t→∞

tP
[

Y + V

b(t)
∈ A

]
≤ lim sup

t→∞
tP [‖V‖ > b(t)ε] + lim sup

t→∞
tP
[

Y

b(t)
∈ A−ε

]
= lim

t→∞
t1−α

∗/αε−α
∗

+ lim sup
t→∞

tP
[

Y

b(t)
∈ A−ε

]
= ν(A−ε)↘ ν(A) as ε→ 0,

since α∗ > α by assumption. For the lower bound, recognize

P
[

Y + V

b(t)
∈ A

]
≥ P

[
Y

b(t)
∈ Aε, ‖V‖

b(t)
≤ ε

]
≥ P

[
Y

b(t)
∈ Aε

]
− P [‖V‖ > b(t)ε] ,

and so

lim inf
t→∞

tP
[

Y + V

b(t)
∈ A

]
≥ lim inf

t→∞
tP
[

Y

b(t)
∈ Aε

]
− lim inf

t→∞
tP [‖V‖ > b(t)ε]

= ν(Aε)↗ ν(A) as ε→ 0.
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Collecting the upper and lower bounds, and using the fact that A is a ν-continuity set, we

achieve the desired result

tP
[

Y + V

b(t)
∈ ·
]

v−→ ν(·)

in M+(C).

4.5.3 Tail Equivalence on C0

For (22) to hold, it is sufficient to show the following result:

Theorem 1. For Y, V, b0(t), and ν0 defined as above,

tP
[

Y + V

b0(t)
∈ ·
]

v−→ ν0(·) (23)

as t→∞ in M+(C0). That is, Y + V
te(C0)∼ Z.

Proof. It suffices to consider any rectangle A0 which is relatively compact in C0, and show

that

lim
t→∞

tP
[

Y + V

b0(t)
∈ A0

]
= ν0(A0).

Without loss of generality assume A0 = [c,d] = {x ∈ C0 : c ≤ x ≤ d}. For small ε > 0,

define the rectangles A−ε0 = [c−ε,d] and Aε0 = [c,d−ε], with c−ε = (c1 − ε, ..., cd − ε)T

and d−ε = (d1 − ε, ..., dd − ε)T . For small ε, Aε0 and A−ε0 are relatively compact in C0,

Aε0 ⊂ A0 ⊂ A−ε0 , and ν0(∂A0) = 0.

Recognize that for small ε > 0 and fixed t > 0,

P
[

V

b0(t)
∈ Aε0

]
= P

[
V

b0(t)
∈ Aε0,

‖Y‖
b0(t)

≤ ε

]
+ P

[
V

b0(t)
∈ Aε0,

‖Y‖
b0(t)

> ε

]
≤ P

[
Y + V

b0(t)
∈ A0

]
+ P

[
‖V‖
b0(t)

≥ ‖c‖, ‖Y‖
b0(t)

> ε

]
.
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Thus by definition of Y and V and independence,

lim inf
t→∞

tP
[

Y + V

b0(t)
∈ A0

]
≥ lim inf

t→∞
tP
[

V

b0(t)
∈ Aε0

]
− lim inf

t→∞
tP
[
‖V‖
b0(t)

≥ ‖c‖
]
P
[
‖Y‖
b0(t)

> ε

]
= ν0(A

ε
0)− lim

t→∞
t(t−α

∗/α0‖c‖−α∗
)(t−α/α0ε−α)

= ν0(A
ε
0)− lim

t→∞
t1−(α

∗+α)/α0‖c‖−α∗
ε−α

= ν0(A
ε
0)↗ ν0(A0) as ε→ 0,

since A0 is a ν0-continuity set. Here we have used the assumption α∗ > α0 − α.

For the upper bound, we employ the fact that ν(C0) = 0. For fixed t,

P
[

Y + V

b0(t)
∈ A0

]
= P

[
Y + V

b0(t)
∈ A0,

‖Y‖
b0(t)

≤ ε

]
+ P

[
Y + V

b0(t)
∈ A0,

‖Y‖
b0(t)

> ε

]
= I + II.

Notice that I is bounded above by

P
[

V

b0(t)
∈ A−ε0

]
.

Recalling that by construction P[Y/b0(t) ∈ A−ε] = 0,

II = P
[

Y + V

b0(t)
∈ A0,

‖Y‖
b0(t)

> ε,
V

b0(t)
∈ A0,

Y

b0(t)
/∈ A−ε0

]
+ P

[
Y + V

b0(t)
∈ A0,

‖Y‖
b0(t)

> ε,
V

b0(t)
/∈ A0,

Y

b0(t)
/∈ A−ε0

]
≤ P

[
‖V‖
b0(t)

≥ ‖c‖, ‖Y‖
b0(t)

> ε

]
+ P

[
∨di=1Vi
b0(t)

> ε,
‖Y‖
b0(t)

> ε

]
.
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Then

lim sup
t→∞

tP
[

Y + V

b0(t)
∈ A0

]
≤ lim sup

t→∞
tP
[

V

b0(t)
∈ A−ε0

]
+ lim sup

t→∞
tP
[
‖V‖
b0(t)

≥ ‖c‖
]
P
[
‖Y‖
b0(t)

> ε

]
+ lim sup

t→∞
tP
[
∨di=1Vi
b0(t)

> ε

]
P
[
‖Y‖
b0(t)

> ε

]
= ν0(A

−ε
0 ) + lim

t→∞
t(t−α

∗/α0‖c‖−α∗
)(t−α/α0ε−α)

+ lim
t→∞

t(t−α
∗/α0ε−α

∗
)(t−α/α0ε−α)

= ν0(A
−ε
0 )↘ ν0(A0) as ε→ 0,

by independence and ν0-continuity of A0, and again following from α∗ > α0 − α.

Finally, putting together the upper and lower bounds yields the desired result (23).

Remark 1. Heuristically, the scaled random vector (Y + V)/b0(t) can only land in C0 when

‖Y‖ is small and ‖V‖ is large. Suitably normalized large values of Y will converge to points

outside of C0, and by independence, the probability of Y and V being simultaneously large is

asymptotically negligible.

Remark 2. The proof relies on Y being constructed in such a way that P[Y ∈ C0] = 0. Such

a condition gives convergence to the measure ν0 on C0. The result may not hold in general

if Y has angular measure H only in the limit and exhibits hidden regular variation on C0.

We do not impose such additional conditions on the support of V.

Remark 3. Assumption (20) imposes two constraints on the behavior of V on C, and Figure

4.2 gives a plot of valid values of (α0, α
∗) for α = 1. The first, requiring α∗ > α, is needed

to obtain convergence of the properly normalized sum to the required limit measure ν on C.

This assumption eliminates the possibility of taking V to be Z itself, and poses additional

difficulty in the case where ν0 is infinite on C0.

108



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Valid combinations of (α0,α*) for α = 1

α0

α
*

α* = α0 −α

α* = α0

α* = α

Figure 4.2: Valid choices of α∗ for different values of α0 (blue shading) when α = 1.

The second assumption imposed by (20), namely that α∗ > α0−α, is necessary to obtain

convergence on C0. Essentially, if V is much heavier-tailed on C than on C0, convergence

is not obtained on C0. As an example, consider a random vector in dimension d = 3 which

is regular varying on C with tail index α = 1. To represent hidden regular variation of tail

index α0 = 5/2 on the full open subcone C0 = {z ∈ C : z1 ∧ z2 ∧ z3 > 0}, one would need to

choose V to have tail decay on C which is lighter than that corresponding to α∗ = 3/2.

On the other hand, the case when this condition does not hold may not be of interest

in applications, as hidden measure tail dependence implied by such cases is weaker than a

scenario of exact independence. One example in dimension d = 2 is a distribution with

unit Fréchet margins and Gaussian dependence with negative correlation. When the hidden

angular measure is finite, one can always choose α∗ = α0 and restrict the support of V to

C0.
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4.6 Tail Equivalent Representations to the Bivariate Gaussian Ex-

ample

In this section, we consider the bivariate random vector Z = (Z1, Z2)
T , where Zj =

−1/ log Φ(Xj), j = 1, 2 and (X1, X2)
T follows a bivariate Gaussian distribution with unit

marginal variances and correlation ρ ∈ [0, 1). Here Φ(·) is the standard Gaussian distribution

function. Sibuya (1960) showed that asymptotic independence holds; indeed, we can find

b(t) ∈ RV1 such that (16) holds with limit measure ν = ν1 ×H, where H consists of point

masses at the endpoints N ∩ {z ∈ C : z1 ∧ z2 = 0}. If b(t) = 2t, H is a probability measure

with point masses of 1/2 at w = 0 and w = 1.

An exploration of the hidden regular variation of Z was provided by Ledford and Tawn

(1996, 1997). Ledford and Tawn (1996) formulate this in terms of the joint survivor function

F̄ (z1, z2) = P[Z1 > z1, Z2 > z2]. Ledford and Tawn (1997) show

F̄ (z1, z2) ≈ (z1z2)
−1/(1+ρ)L(z1, z2; ρ)(1 +O[1/ log{min(z1, z2)}])

for large z1, z2 > 0, where L(z1, z2) is a slowly varying function with (Ledford and Tawn,

1996)

L(t, t; ρ) = (1 + ρ)3/2(1− ρ)−1/2(4π log t)−ρ/(1+ρ). (24)

Let η = (1 + ρ)/2. Ledford and Tawn (1996) refer to η as the coefficient of tail dependence.

Consider a set (z,∞] for z = (z1, z2)
T with z1, z2 > 0. One can show

tP
[

Z

b0(t)
∈ (z,∞]

]
−→ (z1z2)

−1/2η = ν0 ((z,∞]) (25)
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as t→∞, where the function b0(t) = 2U←(t), with

U(t) =
(2t)1/η

L(2t, 2t)
,

for L given by (24).

It is easily shown for sets of the form A(r, B) = {z ∈ C0 : ‖z‖ > r, z‖z‖−1 ∈ B} that

ν0(A(r, B)) = r−1/ηH0(B), (26)

where B is a Borel set of N0 = (0, 1) and

H0(dw) =
1

4η
{w(1− w)}−1−1/2η; (27)

see, e.g., Beirlant et al., 2004, Chapter 9. Note that H0(N0) =
∫
(0,1)

H0(dw) = +∞, thus the

hidden measure ν0 is infinite on C0.

The fact that the hidden angular measure is infinite makes this a challenging example

and poses difficulty in finite-sample simulation of the joint tail of Z. Because the hidden

measure diverges near the endpoints of N0, one always encounters difficulty near the axes

of C. We first offer a modification of the Y + V representation introduced above, and then

compare it to previous approaches described in Section 4.4.

4.6.1 Simulation from Sum Representation

Because the hidden measure with density H0(dw) given by (27) is infinite on (0, 1), one

cannot simulate from it directly. Furthermore, in this situation we are unaware of a random

vector V which satisfies both assumptions (19) and (20). As an alternative, we propose an

approximation to H0(dw) by restricting the subcone C0 to Cε0 = {z ∈ C0 : z1‖z‖−1 ∈ Nε
0},

where Nε
0 = [ε, 1 − ε] for some ε ∈ (0, 1/2). The density (27) can then be made to be a
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probability density on Nε
0 via Hε

0(dw) = H0(dw)/H0(N
ε
0) for w ∈ Nε

0. One can then simulate

realizations from Hε
0 via an accept-reject algorithm or other sampling method.

We proceed to simulate realizations of Zsum = Y + V, which is tail equivalent to Z on

C and Cε0. Define Y as follows: let R follow a Pareto distribution with P(R > r) = 2/r for

r ≥ 2. Draw a Bernoulli(1/2) random variable W independently of R, and let Y1 = RW ,

Y2 = R(1−W ). For a fixed sample size n, draw R0 independently of Y = (Y1, Y2)
T with R0

such that

P(R0 > x) =


dε,nx

−1/η if x > (dε,n)η

1 otherwise,

where

dε,n = {2U←(n)}1/η
{
H0(N

ε
0)

n

}
.

Draw n independent realizations of W0 from the density Hε
0(dw) independently of Y and

R0. Define V = (V1, V2)
T via

V1 = R0W0, V2 = R0(1−W0).

Then for any set A(r, B) = {z ∈ Cε0 : ‖z‖ > r, z1‖z‖−1 ∈ B} with B a Borel set of Nε
0,

nP
[

V

b0(n)
∈ A(r, B)

]
= nP

[
R0

2U←(n)
> r,W0 ∈ B

]
= nP [R0 > 2rU←(n)]P[W0 ∈ B]

= n
[
dε,n(2rU←(n))−1/η

] H0(B)

H0(Nε
0)

= r−1/ηH0(B)

for r > {H0(N
ε
0)/n}η, which is precisely the decomposition of ν0 in (26).
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When examining the limiting measure of a set in the full subcone C0 which is not com-

pletely contained in Cε0, a bias is induced by the choice of ε. To see this, extend the restricted

hidden measure by setting Hε
0{(0, ε)} = Hε

0{(1−ε, 1)} = 0, and consider a set A = (z,∞] for

z1, z2 > 0. Note that one can choose n and ε such that z ∈ Cε0 and z1 + z2 > {H0(N
ε
0)/n}η,

and in this case we have

nP
[

V

b0(n)
∈ A

]
= n

∫ 1

0

∫ ∞
b0(n)z1

w
∨ b0(n)z2

1−w

η−1dε,nr
−(1+1/η)drHε

0(dw)

=

∫ 1

0

{
w

z1

∧ 1− w
z2

}1/η

H0(N
ε
0)H

ε
0(dw)

=

∫ 1−ε

ε

{
w

z1

∧ 1− w
z2

}1/η

H0(dw)

= (z1z2)
−1/2η − 1

2

(
ε

1− ε

)1/2η (
z
−1/η
1 + z

−1/η
2

)
= ν0(A)−B(ε, z), (28)

where the bias term B(ε, z) can be made arbitrarily small via choice of ε.

4.6.2 Comparison to Other Representations

Figure 4.3 shows n = 2500 simulated realizations of Z with correlation ρ = 0.5, as well as

simulated points from four tail equivalent representations. We display a simulation from Zsum

for ε = 0.01, 0.1, as well as Z∗ of de Haan and Zhou (2011), and a mixture Zmix of Y and V for

ε = 0.1. We also display a realization of Y, the limiting first-order component, in the lower

middle panel of Figure 4.3. The dashed lines imposed on plots of realizations from each of the

tail equivalent representations correspond to the restriction of C0 on which the hidden regular

varying component can be simulated; for Zsum, this corresponds to Cε0. The de Haan and

Zhou (2011) representation Z∗ was constructed as described in Section 4.4; for this example

the measure H∗ is proportional to a Beta(1/2, 1/2) distribution. This construction also

requires a choice of fixed constant β ∈ (1, 1/η), which restricts the simulation of the ‘hidden’
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Figure 4.3: Simulation of n = 2500 points from (left to right, top to bottom) Z with
ρ = 0.5 and its tail equivalent representations: Zsum for ε = 0.01, 0.1; Z∗ of de Haan and

Zhou (2011); Y; and a mixture of Y and V with ε = 0.1. Boundaries of set for which
hidden components are simulated are given by dashed lines.

component to a subset of C0 given by {(z1, z2) : z
1/β
1 ≤ z2 ≤ zβ1 }. Here β = 1/η−0.01 ≈ 1.32

was selected.

The representation Zsum is tail equivalent to Z on C and Cε0, and its realizations are

comparable to those from Z in tail regions both near the axes and on the interior of the

positive quadrant. The primary difference between Zsum simulations with ε = 0.01 and

ε = 0.1 is the number of points near the axes of the cone C. As ε decreases, we see more

large points with angular components near 0 and 1 in finite samples. This is due to the

increase in scale parameter of R0 induced by smaller ε; see Section 4.6.3. The restriction

induced by choice of β in the construction of Z∗ is seen in finite-sample simulations from this
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representation. The first-order component Y does not capture tail behavior on the interior

of the cone C. The mixture representation of Maulik and Resnick (2004) results in points

which fall exactly on each axis, which does not occur in finite samples from Z.

In Table 4.1, we provide a comparison of Z and each of the tail equivalent representations

displayed in Figure 4.3 by examining the empirical average number of points in specific sets

over 250 simulations of n = 2500 points from each for ρ = 0.5 and ε = 0.01, 0.1. We display

mean number of points in the set (z,∞], where z = (z, z)T for various z. Also shown

are mean number of realizations for which z2 > z for a range of z. Simulation-based 95%

intervals for each quantity are also displayed.

For ε = 0.01, the convergence of Zsum to the limiting measure is slow for regions that

are near the axes of the cone C, as demonstrated by examination of the empirical average

number of points with z2 > z. We examine this in detail in Section 4.6.3. For sets of the

form A = (z,∞], choosing ε small results in near-unbiased approximation of ν0(A) by Zsum.

Choosing ε slightly larger results in faster convergence to the limiting measure in terms of

marginal distributions, but results in greater bias for sets on C0; see (28). The de Haan and

Zhou (2011) representation Z∗ results in more points than expected in Z in most regions

of the cone C. This is likely due to the slowly varying function L, which is ignored by this

representation. The first-order approximation Y fails to capture any of the distribution of

Z on C0. The mixture characterization exhibits approximately half as many points in each

set as seen in Z due to the ‘thinning’ induced by mixing Y and V.

4.6.3 Choice of ε

Figure 4.3 and Table 4.1 show that realizations of Zsum result in more large observations

near the axes of the cone C than seen in realizations of Z. This is not surprising when one

considers the limiting marginal measure of V:
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Table 4.1: Summary statistics from 250 simulations of n = 2500 points from Z with ρ = 0.5
and its tail equivalent representations. Figures reported are empirical means and

simulation-based 95% intervals.

Number of points in the set (z,∞] Number of points with Z2 > z
z 100 250 500 500 1000 2000
Z 3.20 (1, 6) 0.90 (0, 3) 0.36 (0, 2) 4.80 (2, 8) 2.39 (0, 6) 1.29 (0, 3)

Zsum (ε = 0.01) 3.97 (1, 7) 1.08 (0, 3) 0.36 (0, 2) 9.39 (5, 14) 4.19 (2, 8) 1.89 (0, 4)
Zsum (ε = 0.1) 2.89 (1, 6) 0.84 (0, 3) 0.3 (0, 2) 6.03 (2, 10) 2.86 (0, 6) 1.42 (0, 4)

Z∗ 11.29 (7, 16) 3.21 (1, 6) 1.14 (0, 3) 8.48 (5, 14) 3.97 (1, 7) 1.93 (0, 4)
Zmix (ε = 0.1) 1.46 (0, 4) 0.46 (0, 2) 0.18 (0, 1) 3.00 (1, 6) 1.42 (0, 4) 0.70 (0, 2)

Y 0 0 0 5.00 (2, 9) 2.37 (0, 5) 1.16 (0, 3)

nP
[
V1
b0(n)

> z1

]
=

∫ 1

0

(
w

z1

)1/η

H0(N
ε
0)H

ε
0(dw)

=

∫ 1−ε

ε

(
w

z1

)1/η

H0(dw)

= z
−1/η
1

∫ 1−ε

ε

w1/ηH0(dw)

=
1

2
z
−1/η
1

{(
ε

1− ε

)−1/2η
−
(

ε

1− ε

)1/2η
}

. (29)

For very large z1, (29) is negligible compared to the heavier-tailed component Y1 of Ẑ1, which

has limit measure z−11 . However, for small ε the scaling factor in (29) is quite large, and plays

a significant role in finite samples. This difficulty can be alleviated by choosing a slightly

larger ε, which will reduce the magnitude of the scaling factor in (29).

The result of choosing a larger value for ε is an increase in the bias term in (28). That is,

for sets in C0 for which smaller ε results in greater coverage by Cε0, a larger ε increases the rate

of convergence to the limiting measure, but also decreases the accuracy of the approximation

to the limiting measure of such a set. Thus the choice of ε involves a trade-off between the

marginal behavior of Zsum and the size of the restricted subcone Cε0. This tradeoff will

reappear in Chapter 5 when we examine estimation from this representation.

While the infinite hidden angular measure of a Fréchet-marginal random vector with

Gaussian dependence poses difficulty in simulation, our sum representation of Z in terms of
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independent Y and V provides several advantages over previous approaches. We are able

to capture not only the first-order limit on the whole cone C, but also the hidden regular

varying component on the subcone Cε0. We can choose ε such that the restricted subcone Cε0

becomes arbitrarily close to C0. Choosing ε involves a tradeoff between bias in the limiting

measure of sets not fully contained in Cε0, and the level at which the limiting measure is a

useful approximation for finite samples.

4.7 Summary and Discussion

This chapter presents a new representation of a multivariate regular varying random

vector with hidden regular variation, in terms of a sum of independent regular varying

components. We have shown our representation to be asymptotically justified via the concept

of multivariate tail equivalence. An illustration of simulation from our characterization was

provided using the bivariate Gaussian as an example. The infinite hidden measure of this

example introduced difficulty in simulation; however, one can still simulate the lighter-tailed

component V on a restricted subcone. Our sum representation shares features with real

data in applications and provides an intuitive model for the joint tail of a random vector.

While the examples of the Y+V representation presented here are limited to the bivariate

case, this construction is able to accommodate more general cases of hidden regular variation

which may arise. In general, the support of the angular measure of the first-order component

Y may be any subset of the unit sphere N, and the hidden regular varying component

V can be chosen to have the appropriate hidden angular measure on N0. For example,

this representation might be used to study hidden regular variation in extreme-value factor

models (Einmahl et al., 2012) with discrete spectral measures. In higher dimensions, more

complex hidden regular variation structures are possible; some examples are given in Mitra

and Resnick (2010) and de Haan and Zhou (2011).
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CHAPTER 5

LIKELIHOOD INFERENCE FOR HIDDEN REGULAR VARIATION VIA

THE MONTE CARLO EXPECTATION–MAXIMIZATION ALGORITHM

5.1 Introduction

In this chapter, we turn our attention to inference for random vectors possessing hidden

regular variation. Working from the multivariate regular variation framework introduced

in Chapter 1, we focus on estimation of hidden regular variation structures discussed in

Chapter 4. Specifically, we leverage the sum characterization introduced in Chapter 4 and

tail equivalence result provided by Theorem 1 to perform parametric maximum likelihood

inference.

Though the term “hidden regular variation” was first introduced to the literature by

Resnick (2002), methodology for its estimation dates back to at least the work of Ledford

and Tawn (1996), which considered the structure of the joint tail P(X > x, Y > y) of a

random vector (X, Y )T with unit Fréchet marginal distributions. This work formulated η,

the coefficient of tail dependence described in Chapter 4. This parameter serves as a measure

of tail dependence in the asymptotic independence setting, and Ledford and Tawn (1996)

provided methodology to distinguish asymptotic independence from independence in the

usual sense.

Following Ledford and Tawn (1996), many papers have offered approaches for estima-

tion of hidden regular variation. Ledford and Tawn (1997) and Ramos and Ledford (2009)

focus specifically on modeling bivariate joint tails in the case that the first-order limit fails

to capture tail dependence. Heffernan and Tawn (2004) offer a conditional approach, while

Coles et al. (1999) examine measures of dependence in the asymptotic independence setting.
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Draisma et al. (2004) and Peng (1999) offer other approaches for estimating tail depen-

dence in the presence of asymptotic independence. Several of these previous approaches are

reviewed in this chapter.

Assuming hidden regular variation which is governed by a parametric form, in this chapter

we develop inference methods for these parameters. Specifically, we propose an estimation

scheme from the sum characterization of Chapter 4 based on the Monte Carlo expectation–

maximization (MCEM) algorithm (Wei and Tanner, 1990). The MCEM algorithm is an

alternative to deterministic expectation–maximization when the E step is not available in

closed form. Here, we present a modification of MCEM for tail estimation from the proposed

sum representation which employs likelihoods for the first- and second-order components

which are assumed to be valid above fixed thresholds. The estimation scheme is demonstrated

on several examples through simulation studies.

The proposed methodology is applied to a bivariate series of air pollution measurements

at Leeds city centre, UK. We examine the tail dependence in daily maximum levels of two

pollutants: nitrogen dioxide and sulfur dioxide. The bivariate series appears to exhibit hidden

regular variation, and we show that the proposed methodology results in improved estimation

of risk set probabilities over approaches which ignore the hidden regular variation.

The remainder of this chapter is structured as follows: in Section 5.2 we review selected

previous hidden regular variation estimation approaches in the literature. We detail an

estimation scheme based on MCEM in Section 5.3. In Section 5.4 we demonstrate the

proposed methodology on simulated data in two studies. An application of the methodology

to the Leeds air pollution data is discussed in Section 5.5. We conclude in Section 5.6 with

a summary and discussion. A portion of this chapter also appears in Weller and Cooley

(2013), which has been submitted for publication.
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5.2 Existing Hidden Regular Variation Estimation Methods

We provide a brief review of selected previous statistical approaches to estimation of

hidden regular variation. Estimation approaches which are most relevant to the work in this

dissertation are presented.

5.2.1 Survivor Function Methods

Ledford and Tawn (1996, 1997) provided a framework for estimation of hidden regular

variation in a special case. Focusing on a bivariate random vector (Z1, Z2)
T with unit Fréchet

marginal distributions, these authors write a model for F̄ (z1, z2) = P(Z1 > z1, Z2 > z2).

They provide the following model, which captures a broad class of distributions with Fréchet

marginal distributions:

F̄ (z1, z2) ≈ L(z1, z2)(z1z2)
−1/2η (30)

for a constant η ∈ (0, 1], and L a bivariate slowly varying function with

lim
t→∞

L(tz1, tz2)

L(t, t)
= g(z1, z2) = g∗{z1/(z1 + z2)} = g∗(w). (31)

The parameter η describes the rate of decay of the joint survivor function: η = 1 corresponds

to asymptotic dependence, η = 1/2 is termed ‘near independence’, and η < 1/2 can be

thought of as negative dependence. In the hidden regular variation framework described in

Chapter 4, the hidden tail index α0 is related to η via α0 = 1/η.

Ledford and Tawn (1996) provided an approach for estimation of η. These authors

reduced the estimation problem to one dimension by defining the ‘structure variable’ T =

min(Z1, Z2). Given independent replicates T1, ..., Tn, Ledford and Tawn (1996) estimated

η as the shape parameter from a generalized Pareto distribution fit to structure variable
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exceedances of a high threshold. A generalization to higher dimensions, from an applied

probability perspective, is given by Mitra and Resnick (2010).

Using the model (30), Ledford and Tawn (1997) develop likelihood-based inference meth-

ods. Specifically, they employ a censored likelihood similar to that of Smith et al. (1997)

to estimate η and parameters of the function g∗ in (31). The methodology was limited to

the bivariate case, and it was later pointed out that the models introduced by Ledford and

Tawn (1997) can lead to improper joint survivor functions (Ramos and Ledford, 2011).

The work of Ramos and Ledford (2009) provided a unified point process framework for

the model (30) of Ledford and Tawn (1997). Considering a bivariate random vector (Z1, Z2)
T

with unit Fréchet marginal distributions, these authors provide models for the distribution

of

(S, T )T = lim
u→∞
{(Z1/u, Z2/u)T | (Z1 > u,Z2 > u)}.

The authors introduce a polar coordinate decomposition and provide necessary conditions

on the resulting angular measure in order to achieve a proper joint tail model. Though not

presented through the hidden regular variation framework directly, the parametric angular

measure model introduced by Ramos and Ledford (2009) for (S, T )T can be thought of as

the hidden angular measure of (Z1, Z2)
T .

A common theme of the estimation approaches of Ledford and Tawn (1997) and Ramos

and Ledford (2009) is the focus on models for the bivariate region {(z1, z2) : z1 > u, z2 > u}

for some large u > 0; the proposed models are not able to simultaneously describe regions

of the form {(z1, z2) : z1 ∨ z2 > u, z1 ∧ z2 ≤ u}. Ramos and Ledford (2011) also note that

their proposed model is unable to accommodate the situation where g∗(w) in (31) is constant

over w; an example of this case is the bivariate Gaussian example discussed in Section 4.6 of

Chapter 4. Additionally, greater complexity is encountered when extending the methodology

of Ramos and Ledford (2009) into dimension d > 2.
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5.2.2 Conditional Approach

An alternative to studying the joint survivor function F̄ (in the bivariate setting) is

to focus on the conditional distribution [Z2 | Z1 = z1]. Starting with a d-dimensional

random vector with Gumbel-distributed marginals, Heffernan and Tawn (2004) study the

conditional distribution of the remaining d − 1 components given that the jth component

is large (j = 1, ..., d). These authors develop likelihood-based inference methods for this

conditional distribution. Further elaboration of this approach and connections to hidden

regular variation are made in Heffernan and Resnick (2007).

5.2.3 Estimators of Dependence in Asymptotic Independence

In addition to estimation of the parameter η of the Ledford and Tawn (1997) model (30),

other measures of dependence in the asymptotic independence setting, as well as various

estimators of these measures, have been proposed. Section 3.4.2 of Chapter 3 introduced

the metric χ̄ of Coles et al. (1999), which also offers an estimator of this parameter. In the

bivariate case, this measure can be related to η via χ̄ = 2η − 1. Peng (1999) introduces a

consistent and asymptotically normal estimator of η. Draisma et al. (2004) generalize the

approach of Peng (1999) and examine other estimators of η.

5.3 Likelihood Inference via Sum Characterization

We now develop an inference method for hidden regular variation based on the sum

characterization introduced in Section 4.5 of Chapter 4. Given independent realizations

{z1, ..., zn} from a random vector Z assumed to be multivariate regular varying on C and

possessing hidden regular variation on a subcone C0 ⊂ C, we leverage the tail equivalence

results (21) and (22) of Chapter 4 to perform maximum likelihood inference for the joint tail

of Z via the MCEM algorithm.
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5.3.1 The Expectation–Maximization Algorithm

Assume we observe n independent realizations of Z, which exhibits hidden regular vari-

ation on a subcone C0. We assume there exists a Y + V which is tail equivalent on both C

and C0. As the corresponding {y1, ...,yn} and {v1, ...,vn} are unobserved, we employ the

expectation–maximization (EM) algorithm (Dempster et al., 1977), which is widely used

to perform inference in such cases. However, EM has not heretofore been employed in tail

estimation problems, and an adaptation is necessary here as we assume only tail equivalence

of Z and Y + V rather than exact equality.

Classical EM assumes we observe realizations from Z but wish to make inference on a

parameter vector θ ∈ Θ governing the ‘complete’ (Z,Y,V). Given some fixed value of the

parameter vector θ(k) and temporarily assuming Z = Y + V, the log-likelihood function for

observed z can be written

log f(z;θ) =

∫
log f(z,y,v;θ)f(y,v | z;θ(k))dydv

−
∫

log f(y,v | z;θ)f(y,v | z;θ(k))dydv

= Q(θ | θ(k))−H(θ | θ(k)). (32)

In standard problems, it can be shown that H(θ | θ(k)) attains its maximum at θ(k) (Wu,

1983), and the algorithm iterates on Q(θ | θ(k)) to achieve the optimum θ̂, which corresponds

to the maximum likelihood estimate. In the EM literature, f(z,y,v;θ) is referred to as the

complete data likelihood, while f(y,v | z;θ(k)) is the conditional likelihood.

5.3.2 Expectation–Maximization for Tail Estimation

The results (21) and (22) imply that inference performed on Z based on a model for

Y + V is only valid for the tails of Y and V, and cannot be assumed to be appropriate

for the entire distribution. In the following text, we introduce probability distributions for
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Y and V components which exist on the entire positive orthant [0,∞) and which give tail

equivalence to the random vector of interest Z. We define a likelihood corresponding to

limiting Poisson point process forms arising from regular variation convergences (16) and

(17) in Section 4.2 of Chapter 4 (see also Definition 3 of Chapter 1). As in typical threshold

exceedance methods for extremes, these are taken to be exact likelihoods for exceedances over

high thresholds, defined in terms of the norm of the components Y and V. The likelihood is

defined such that it does not depend on θ, the parameter of interest, below these thresholds.

At the E step of the algorithm, the expectation of this likelihood is taken with respect to

the distribution of [y,v | z;θ(k)] implied by the chosen Y and V distributions over their

entire supports. The maximization at the M step will then be taken only over the tails of Y

and V. Below we introduce the components of (32) in this modified setup and show that it

obtains the maximum likelihood estimate of θ.

The E step of the algorithm computes the function Q(θ | θ(k)), the expectation of the

complete data log-likelihood. The regular variation conditions (16) and (17) imply that

points of suitably normalized realizations of Z will converge on C and C0 to inhomogeneous

Poisson point processes with intensity measures ν and ν0, respectively (Resnick, 2007, 2002).

Equivalent convergences for Y and V follow directly from their definitions, and the likelihood

employed here arises from these limiting Poisson processes.

We assume parametric, continuously differentiable forms for the angular measure H and

the hidden angular measure H0 introduced in Chapter 4, with associated densities h and h0.

Let θ be a parameter vector governing the tails of Y and V. Fix thresholds r∗Y and r∗V.

Define radial and angular components of Y as rY = ‖Y‖ and wY = ‖Y‖−1Y, where ‖ · ‖ is

the L1 norm, and define radial and angular components analogously for V.

Assume we were to observe n iid realizations {y1, ...,yn} and {v1, ...,vn}. Following, e.g.,

(Coles and Tawn, 1991; Cooley et al., 2010; Ballani and Schlather, 2011), we assume the

limiting Poisson point process models following from (16) and (17) are valid for realizations

of Y and V with norms exceeding the thresholds r∗Y and r∗V, respectively. The log-likelihood
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for ‘large’ realizations of Y can be written

`Y(θ; y1, ...,yn) =
n∑
i=1

log

{
α

(
ryi

b(n)

)−1−α
h(wyi

;θ)

}
I{ryi>r∗Y}

−
(
r∗Y
b(n)

)−α
− log

{(
n∑
i=1

I{ryi>r∗Y}

)
!

}
, (33)

where I{·} is the indicator function. For the observed realizations of V, the log-likelihood is

`V(θ; v1, ...,vn) =
n∑
i=1

log

{
α0

(
rvi

b0(n)

)−1−α0

h0(wvi
;θ)

}
I{rvi>r∗V}

−
(

r∗V
b0(n)

)−α0

− log

{(
n∑
i=1

I{rvi>r∗V}

)
!

}
. (34)

In practice, α is often assumed known due to choice of marginal distributions, while α0, the

tail index of V, is likely to be a parameter of interest.

The Poisson point process likelihoods (33) and (34) admit parametric forms of the un-

conditional densities of Y and V, given that these components exceed their respective radial

component thresholds r∗Y and r∗V. Denote these densities by fY(y;θ) and fV(v;θ). Consider

densities gY(y;θ) and gV(v;θ) each defined on [0,∞), which are tail equivalent to f ; that

is,

gY(y;θ) ∼= fY(y;θ) for ‖y‖ > r∗Y

gV(v;θ) ∼= fV(v;θ) for ‖v‖ > r∗V.

A way to think of the above tail equivalence conditions is that ‘large’ realizations from g are

approximately equivalent in law to realizations of f . Extend the complete likelihood below

the chosen thresholds by defining

`Y(θ; y) = log gY(y;θ(k)) for ‖y‖ ≤ r∗Y
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`V(θ; v) = log gV(v;θ(k)) for ‖v‖ ≤ r∗V,

noting these are functions of θ(k) but not of θ. By independence, the complete log-likelihood

for (Z,Y,V) is

`(θ; z,y,v) = `Y(θ; y) + `V(θ; v) + log I{zi=yi+vi,i=1,...,n}. (35)

At the M step of the algorithm, we maximize the expected value of this likelihood with

respect to θ.

The conditional distribution with respect to which we take the expectation of the com-

plete log-likelihood at the E step is only assumed to be tail equivalent to the true distributions

of Y and V. Specifically, given a value of the parameter θ(k), we construct the conditional

distribution

g(y,v | z;θ(k)) =
gY(y;θ(k))gV(z− y;θ(k))∫
gY(y;θ(k))gV(z− y;θ(k))dy

∝ gY(y;θ(k))gV(z− y;θ(k)), (36)

where the densities g are given above. While this conditional density is defined on the entire

supports of Y and V, its crucial property is its tail equivalence to the densities of interest

fY and fV. Define the objective function

Q(θ | θ(k)) =

∫
`(θ; y,v, z)g(y,v | z;θ(k))dydv. (37)

In standard EM problems, the maximum likelihood estimate of θ is obtained because

the function H(θ | θ(k)) in (32) attains its maximum at θ(k). In the modified setup here,

it remains to show that this property holds. Let the densities fY, fV, gY, gV be as defined
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above. The complete likelihood function of (z,y,v) is

L(θ; y,v, z) = I{y+v=z} ×
{
fY(y;θ)fV(v;θ)I{‖y‖>r∗Y,‖v‖>r∗V}

+ fY(y;θ)gV(v;θ(k))I{‖y‖>r∗Y,‖v‖≤r∗V}

+ gY(y;θ(k))fV(v;θ)I{‖y‖≤r∗Y,‖v‖>r∗V}

+ gY(y;θ(k))gV(v;θ(k))I{‖y‖≤r∗Y,‖v‖≤r∗V}
}

.

Define the conditional likelihood L(θ; y,v | z) = L(θ; y,v, z)/L(θ; z), where

L(θ; z) =

∫
fY(y;θ)fV(z− y;θ)I{‖y‖>r∗Y,‖z−y‖>r∗V}dy

+

∫
fY(y;θ)gV(z− y;θ(k))I{‖y‖>r∗Y,‖z−y‖≤r∗V}dy

+

∫
gY(y;θ(k))fV(z− y;θ)I{‖y‖≤r∗Y,‖z−y‖>r∗V}dy

+

∫
gY(y;θ(k))gV(z− y;θ(k))I{‖y‖≤r∗Y,‖z−y‖≤r∗V}dy. (38)

Define

H(θ | θ(k)) =

∫
log{L(θ; y,v|z)}g(y,v | z;θ(k))dydv,

and for any θ ∈ Θ, consider

H(θ(k) | θ(k))−H(θ | θ(k)) =

∫
log

{
L(θ(k); y,v | z)

L(θ; y,v | z)

}
g(y,v | z;θ(k))dydv

≥ − log

{∫
L(θ; y,v | z)

L(θ(k); y,v | z)
g(y,v | z;θ(k))dydv

}
,

which follows from Jensen’s inequality. Assuming equality of f and g above thresholds, the

integral can be written

L(θ(k); z)

L(θ; z)g(z;θ(k))
×
{∫

fY(y;θ)fV(z− y;θ)I{‖y‖>r∗Y,‖z−y‖>r∗V}dy
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+

∫
fY(y;θ)gV(z− y;θ(k))I{‖y‖>r∗Y,‖z−y‖≤r∗V}dy

+

∫
gY(y;θ(k))fV(z− y;θ)I{‖y‖≤r∗Y,‖z−y‖>r∗V}dy

+

∫
gY(y;θ(k))gV(z− y;θ(k))I{‖y‖≤r∗Y,‖z−y‖≤r∗V}dy

}
.

It follows from (38) that L(θ(k); z) = g(z;θ(k)), and the sum of the four integrals above is

L(θ; z) by definition. Thus H(θ(k) | θ(k))−H(θ | θ(k)) ≥ 0.

5.3.3 Implementation via Monte Carlo Sampling

In the modified expectation–maximization algorithm proposed here, the integral (37) is

generally not available in closed form. In such cases, Wei and Tanner (1990) propose the use

of Monte Carlo integration to approximate Q(θ | θ(k)). Instead of computing Q directly, at

the E step of the algorithm we construct

Q̂m(θ | θ(k)) =
1

m

m∑
j=1

`(θ; z,yj,vj), (39)

where the {(yj,vj)} are independent draws from g(y,v | z,θ(k)) and the likelihood, defined

in (35), employs only large simulated realizations of Y and V. At the M step, we find

θ(k+1) = argmax
θ

Q̂m(θ | θ(k))

and return to the E step. The cycle is repeated until convergence. The estimated Q̂m is not

guaranteed to increase from each iteration to the next; however, the procedure still converges

to the maximum likelihood value (Booth and Hobert, 1999).

The choice of the Monte Carlo sample size m in (39) involves a trade-off between the

precision of the approximation of Q and the computational burden. Booth and Hobert (1999)

proposed an automated strategy which uses small values of m at the start of the algorithm

and increases m as the algorithm nears convergence. Specifically, they provide a formula for
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the Monte Carlo error of the estimated parameter values, and increase the value of m by

m/r if a (1−α)100% confidence interval for θ(k+1) contains θ(k). Suggested values are r = 3

and α = 0.25.

A number of stopping strategies exist for both deterministic and Monte Carlo EM (Givens

and Hoeting, 2005). A common strategy is to stop the algorithm when

max
i

(
|θ(k+1)
i − θ(k)i |
|θ(k)i |+ δ1

)
< δ2 (40)

for predetermined constants δ1 and δ2. For the Monte Carlo version, Booth and Hobert

(1999) suggest using δ2 = 0.002 or 0.005. In this work, we will employ the automated

strategy of Booth and Hobert (1999) using the above stopping criterion and strategy for

increasing m.

We employ Louis’ method (Louis, 1982) for uncertainty estimation about estimates of θ.

This approach uses the ‘missing information principle’ to rewrite the negative Hessian of the

observed log-likelihood as ÎZ(θ) = ÎZ,Y,V(θ)− ÎY,V|Z(θ), where

ÎZ,Y,V(θ) = −Q′′(θ|ω)|ω=θ and ÎY,V|Z(θ) = var

{
d logL(θ; y,v | z)

dθ

}
.

After we determine our algorithm has converged, we use the numerically estimated Hessian

of −Q̂m to estimate IZ,Y,V(θ̂). Using the m simulated ‘complete’ datasets, we then use the

sample variance of the

{
d logL(θ; yj,vj | z)

dθ

∣∣∣∣
θ=θ̂

}

as an estimate of IY,V|Z(θ̂). Confidence intervals for parameters are constructed via a normal

approximation.
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5.4 Simulation Studies

5.4.1 Finite Hidden Measure Example

We begin by applying the proposed methodology of Section 5.3 to simulated data of

dimension d = 2 which exhibit asymptotic independence and hidden regular variation with

finite hidden angular measure. We generate n independent realizations of Zsim = Ysim +

Vsim, where Ysim = [RW,R(1−W )]T and Vsim = [R0W0, R0(1−W0)]
T , with

FR(r) = 2/r, r > 1 W ∼ Bernoulli(0.5)

FR0(r) = r−1/η, r > 1 W0 ∼ H0(·),

all mutually independent, with H0 the integrated measure density associated with the bi-

variate logistic dependence model (Gumbel, 1960). The angular density of this dependence

model is given by

h0(w; β) =
1

2

(
1

β
− 1

)
{w(1− w)}−1−1/β{w−1/β + (1− w)−1/β}β−2,

for β ∈ (0, 1). As β → 1, h0 degenerates to point masses at w = 0 and w = 1, while the

limiting case β → 0 corresponds to a single point mass at w = 1/2. We fix η = 0.75 and

assume it is known, and we aim to estimate β via the proposed estimation procedure.

While the full density of Zsim could be written as a convolution in this case, we aim

to study the effects of misspecification of the model for non-extreme realizations of Ysim

and Vsim. Although the true radial component densities of Ysim and Vsim follow Pareto

distributions, here we let gYmod
and gVmod

be densities associated with the same angular

component distributions as in Ysim and Vsim, but Fréchet-distributed radial components

‖Ymod‖ and ‖Vmod‖ with scale parameters 2, 1 and shape parameters 1, 1/η, respectively.

These densities differ from true densities of Ysim and Vsim for small ‖y‖ and ‖v‖ but rapidly

converge to these as the magnitude grows, despite having differing supports.
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To illustrate the performance of the proposed algorithm over different parameter values,

threshold settings, and sample sizes, we perform the estimation scheme on 500 replications

of n realizations of Zsim, with three different settings:

1. n = 2500, β = 0.5, r∗Y = 18.98, r∗V = 5.41

2. n = 5000, β = 0.7, r∗Y = 38.99, r∗V = 9.28

3. n = 10000, β = 0.25, r∗Y = 199.00, r∗V = 31.50

The dependence parameters chosen signify moderate, weak, and strong ‘hidden’ tail de-

pendence, respectively, while the thresholds chosen correspond to the 0.9, 0.95, and 0.99

theoretical quantiles of the imposed Fréchet distributions of radial components. In each

case, we choose an initial value of m = 250 for the number of Monte Carlo replications, and

implement the scheme of Booth and Hobert (1999) for increasing m as described in Section

5.3.3 with α = 0.25 and r = 3. We determine the algorithm has converged when criterion

(40) is met for three successive iterations, with δ1 = 0.001 and δ2 = 0.002. Initial values

β(0) ∼ U , with U following a uniform distribution centered at β and of widths 0.5, 0.4, and

0.3 for settings 1, 2, and 3, respectively. Simulations were performed using R on the Lynx

computing system at the National Center for Atmospheric Research in Boulder, CO USA.

Table 5.1 shows mean parameter estimates, their root mean square errors, coverage rates

of 95% confidence intervals constructed via a normal approximation, and the median number

of iterations needed to obtain convergence for each simulation scenario. In each case, the

algorithm converged relatively quickly, with median number of iterations of 20, 12, and

18, respectively. We note the bias in the estimates of β from the EM procedure due to

the misspecification of the model, which is largest in setting 3, corresponding to strong

tail dependence in the Vsim component. Further examination found that this bias is most

severe when β is close to 0 or 1; that is, near the limiting hidden dependence cases. This

bias was reduced by choosing a higher threshold; however, in small samples relatively low

thresholds must be chosen to reduce uncertainty. Confidence intervals constructed via Louis’
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Table 5.1: Mean parameter estimates, root mean square errors, 95% confidence interval
coverage rates, and median number of iterations for proposed estimation procedure applied

to 500 repetitions of simulated data.

Setting β β̂MCEM RMSE Coverage kmed

1 0.50 0.520 0.031 94.4% 20
2 0.70 0.670 0.033 77.6% 12
3 0.25 0.288 0.062 70.2% 18

method were somewhat anticonservative in all cases, with coverage rates decreasing as the

bias increases.

5.4.2 Infinite Hidden Measure

We now illustrate the procedure on the bivariate Gaussian example described in Section

4.6 of Chapter 4; our aim here is to estimate η, which describes the hidden regular variation

in this case. This is a special case of the more general model (30) introduced by Ledford and

Tawn (1997), for which the hidden regular variation is specified by condition (25) in Chapter

4, with b0(t) a function which is regular varying of order η ∈ (1/2, 1]. For the Gaussian

example, the function g∗(w) in (31) is identically one for all w ∈ (0, 1), and Ramos and

Ledford (2011) refer to the general case where g∗(w) is constant as the ray independence case.

Ramos and Ledford (2011) note that their modeling approach was unable to accommodate

this situation when η ∈ (1/2, 1]. Here, we directly specify this model for the V component

of our sum representation on the restricted subcone Cε0.

We employ Zsum defined in Section 4.6 of Chapter 4, with slight modifications. In order to

more closely match realizations of the bivariate Gaussian dependence structure with Fréchet

marginals, we choose the radial components of Y and V to be Fréchet-distributed, rather

than exactly Pareto. In addition, we drop the slowly varying function L and define the

scale parameter of the distribution of ‖V‖, dε,n = dε = H0(N
ε
0). The resulting Zsum is

tail equivalent on C and Cε0 to Z, a random vector with Fréchet marginals and Gaussian

dependence structure. We employ the Poisson point process likelihoods (33) and (34) and
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conditional density (36) in the EM context to estimate η. Note that in this setup, η = 1/α0

is a parameter of the model for both the radial component and the angular component of V.

In addition to the choice of thresholds r∗Y and r∗V, in this case one must also choose ε,

which restricts the support of V to a compact subcone. As described in Section 4.6.3 of

Chapter 4, the choice of ε involves a trade-off between bias in the resulting limit measure,

and the threshold level at which the sum representation is a useful approximation to the

random vector Z. In estimation problems, the latter is of critical importance, as one has

fewer observations upon which to make inference as the threshold increases. To illustrate

this, we examine a range of values for r∗V and ε. In each case, we initialize the algorithm at

η(0) = 0.75; it was found that the algorithm displayed no sensitivity to starting values. We

begin with the Monte Carlo sample size m = 100 and increase as needed via the Booth and

Hobert (1999) procedure.

Table 5.2 shows results of our estimation procedure applied to replicates of n = 10000 re-

alizations from the bivariate normal dependence structure with correlations ρ = 0.2, 0.5, 0.9.

The values in each cell are mean estimates of η, root mean square errors, and coverage rates

of 95% confidence intervals. Values were computed from 200 replications, and replicates

across different cells were independent. Clearly, mean estimates of η are dependent on the

choice of ε, with estimates of η increasing as we increase ε. This dependence appears to be

reduced as the chosen threshold is increased. In general, increasing the threshold r∗V appears

to reduce the bias in estimation of η. For any chosen ε, confidence interval coverage rates

improve as r∗V is increased. Coverage rates for the largest threshold setting when ρ = 0.2

were conservative, perhaps because the estimation procedure employs very few data points,

and the normal approximation may not be valid.

The results in Table 5.2 illustrate the tradeoff involved in the choice of ε and r∗V. While it

is preferable to choose a very high threshold and small ε, in finite-sample estimation problems

the analyst is forced to choose a lower threshold to reduce uncertainty in the estimation

prcedure. The scaling factor in (29) must then be reduced by increasing ε in order to obtain
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Table 5.2: Summary of results of estimation procedure applied to 200 replicates of
n = 10000 data points from a bivariate random vector with unit Fréchet margins and

bivariate Gaussian dependence structure with correlations ρ = 0.2, 0.5, 0.8. Values in each
cell are (top to bottom) mean estimate of η, root mean square error, and 95% confidence

interval coverage based on a normal approximation.

η = 0.6 (ρ = 0.2) η = 0.75 (ρ = 0.5) η = 0.9 (ρ = 0.8)
ε \ r∗V 22 45 100 200 22 45 100 200 22 45 100 200

0.185
0.532 0.565 0.578 0.597 0.671 0.704 0.721 0.725 0.880 0.896 0.900 0.895
0.069 0.039 0.033 0.025 0.080 0.050 0.035 0.038 0.028 0.020 0.023 0.031
0.5% 43% 86.5% 99% 0% 26% 80.5% 88.5% 82.5% 94% 96.5% 93%

0.20
0.542 0.571 0.584 0.596 0.688 0.713 0.725 0.729 0.906 0.912 0.917 0.909
0.060 0.033 0.032 0.027 0.063 0.041 0.033 0.036 0.022 0.025 0.031 0.030
0.5% 62% 89.5% 99% 2.5% 48.5% 82% 92% 96% 91.5% 91% 96.5%

0.215
0.552 0.576 0.591 0.603 0.705 0.727 0.736 0.737 0.930 0.933 0.929 0.920
0.049 0.029 0.027 0.028 0.047 0.030 0.027 0.032 0.036 0.039 0.040 0.037
6% 73.5% 95.5% 99% 24% 72.5% 92% 94.5% 79% 76% 79.5% 91.5%

0.23
0.565 0.587 0.592 0.608 0.724 0.735 0.742 0.742 0.957 0.954 0.940 0.931
0.037 0.022 0.027 0.030 0.031 0.025 0.027 0.034 0.060 0.059 0.049 0.044
30% 87.5% 96% 98% 68.5% 85% 91.5% 94.5% 34.5% 43% 73% 85.5%

a model Y +V which is a useful approximation at the chosen threshold level. This difficulty

is not unique to the methodology proposed here; the estimation method of Ledford and Tawn

(1996) found bias in estimation of η as well. In practice, a range of ε and r∗V values can be

examined, and the simulation results from the Gaussian example in Table 5.2 can be used

as a guide for their selection.

5.5 Application: Air Pollution Data

5.5.1 Exploratory Analysis

We apply the proposed MCEM methodology to data on air pollution measurements from

a monitoring station at Leeds city centre, UK. Heffernan and Tawn (2004) analyze the tail

behavior of five pollutants for the years 1994-1998; here, we restrict our analysis to nitrogen

dioxide and sulfur dioxide, denoted by the bivariate pair (NO2, SO2). We examine daily

data from the winter months (November - February) from January 1, 1994 to December 11,
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Figure 5.1: Left: daily maximum air pollutant measurements for winter months 1994-2012
at Leeds city centre. Center and right: after transformation to Fréchet scale. Dashed lines
are drawn to points outside the plotting window. Left and right plots show boundaries of

risk regions A1 (solid), A2 (dashes), and A3 (dots).

2012. Days for which the record was incomplete were excluded; this resulted in a sample

of n = 1988 observations. The data exhibit some temporal dependence due to short-term

persistence of weather patterns; we do not attempt to account for this dependence in this

analysis.

A plot of the bivariate data is given in the left panel of Figure 5.1. There is clear

dependence in the data, as we estimate the Spearman correlation to be 0.42; furthermore,

this dependence appears to extend somewhat into the joint tail. Asymptotic independence is

demonstrated, as the very largest values of NO2 and SO2 do not tend to occur simultaneously.

A conclusion of asymptotic independence of this pair was also reached by Heffernan and Tawn

(2004).

5.5.2 Marginal Estimation

A first step in describing tail dependence is to account for marginal effects, and we ac-

complish this by fitting a generalized Pareto distribution (GPD) to the tails of each margin

separately. After examining diagnostics (Coles, 2001, Chapter 4), we select thresholds cor-

responding to the 0.93 empirical quantile of each margin, and fit the GPD via maximum
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Table 5.3: Threshold selected and maximum-likelihood parameter estimates (standard
errors) from generalized Pareto distributions fit to exceedances of the 0.93 quantiles of

pollution measurements.

Margin Threshold ψ̂ (se) ξ̂ (se)
NO2 109 24.07 (3.03) 0.09 (0.09)
SO2 80 51.82 (6.63) 0.10 (0.10)

likelihood. A summary of parameter estimates is given in Table 5.3. The shape parameter

for SO2 is similar to that obtained by Heffernan and Tawn (2004) using data from 1994-1998,

while for NO2 our shape parameter estimate is larger than that reported in Heffernan and

Tawn (2004) (−0.03).

5.5.3 Dependence Modeling

To model tail dependence, we apply probability integral transformations to the data,

using the fitted GPD above the selected thresholds, and the empirical distribution function

below (Coles and Tawn, 1991), so that each margin follows a unit Fréchet distribution. A

plot of the transformed data is given in the middle panel of Figure 5.1. Note that the largest

values in each margin fall near the axes of the plot, providing further evidence of asymptotic

independence of the two quantities. We proceed assuming this bivariate random vector,

which we denote by Z, is regular varying, and we explore the following three approaches to

modeling the tail dependence in these data:

1. Assume asymptotic dependence is present; that is, the resulting first-order limiting

measure ν has mass on the full interior of C. We fit the bivariate logistic model of

Gumbel (1960) to model the tail dependence.

2. Assume asymptotic independence holds, and disregard any hidden regular variation.

3. Assume asymptotic independence and hidden regular variation with an infinite hid-

den measure of the form (25); estimate η through the ε-restricted sum representation

introduced in Section 4.6 of Chapter 4.
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We assess the three approaches through their estimation of three risk set probabilities.

Define the region A1 by the set of (NO2, SO2) such that SO2 + (4/3)NO2 > 266. When

SO2 = 0, this region corresponds to a level of NO2 in Index Band 4 (of 10) or higher on the

air quality scale defined by the UK Department for Environment, Food and Rural Affairs9.

Similarly, when NO2 = 0, the region A1 corresponds to SO2 levels falling in Index Band 4

or higher. At these marginal levels, recommendations are issued to at-risk groups to reduce

strenuous outdoor activity. In addition to capturing hazardous levels of the individual pol-

lutants, this region also captures events with large observations of both pollutants. Studies

in the medical and phytology literatures have found enhanced negative effects of exposure

to a large combination of these two pollutants on both plants (Wellburn et al., 2006) and

at-risk humans (Devalia et al., 1994). We also examine a more extreme region A2, for which

SO2 + (443/335)NO2 > 443. This region has the same interpretation as A1, replacing Index

Band 4 by Index Band 6. As a goal of an extreme value analysis is often extrapolation, we

examine a third risk set in which no data were observed in the time period studied. Define

the region A3 = {(NO2, SO2) : NO2 > 200, SO2 > 266}. This region corresponds to levels

of both pollutants falling in Index Band 4 or higher simultaneously. The boundaries of the

three regions are shown on the original scale, and after transformation to the Fréchet scale,

in Figure 5.1. There were 58 and 5 observations in the regions A1 and A2, respectively,

among the n = 1988 observations in the study period. Finally, we note that the methods

introduced by Ledford and Tawn (1997) and Ramos and Ledford (2009) are unable to es-

timate probabilities of sets A1 and A2, as they provide models only for regions of the form

(z,∞]. We first describe details of the fitting procedure for each of the three approaches;

estimates of the risk set probabilities obtained from each are then compared.

To implement modeling approach 1, we employ the techniques of previous works (Coles

and Tawn, 1991; Cooley et al., 2010; Ballani and Schlather, 2011) and transform to radial and

angular components under the L1 norm. We then take the regular variation limit condition

9http://uk-air.defra.gov.uk/air-pollution/daqi

137



(16) as an equality for points exceeding a high radial component threshold, and estimate

the parameter β of the bivariate logistic angular measure via numerical maximization of a

Poisson point process likelihood. Through exploratory analysis, it was found that estimates

β̂ → 1 as the threshold increases, indicating asymptotic independence. Nonetheless, we

select a threshold corresponding to the 0.9 empirical quantile of radial component values,

and we estimate β̂ = 0.713, indicating relatively weak extremal dependence in these data.

We compute an associated 95% confidence interval for β of (0.685, 0.742). The estimates

P̂(Z ∈ Aj), j = 1, 2, 3 can be computed from the fitted model via numerical integration.

As modeling approach 2 assumes asymptotic independence and no hidden regular vari-

ation, no dependence estimation procedure is needed. The probabilities of the risk sets A1

and A2 correspond to the sum of marginal probabilities which can be computed directly.

The asymptotic independence assumption implies P(Z ∈ A3) = 0.

As described in Section 5.4.2, implementation of approach 3 involves selection of both

r∗V and ε. While the relatively small sample size (n = 1988) here does not allow us to

choose r∗V as large as examined in the simulation study in Section 5.4.2, a range of choices

for r∗V and ε were examined. To maintain some comparability with modeling approach 1,

we select r∗V = 7.5, which results in approximately 10% of observations being used in the

estimation of η. We select ε = 0.3; while this choice is somewhat ad hoc, it was chosen based

on guidance provided by the simulation study in Section 5.4.2. We initialize the algorithm

at η(0) = 0.75 and m = 100. The algorithm converged after 6 iterations to an estimate of

η̂ = 0.748. We employ Louis’ method to compute a 95% confidence interval of (0.645, 0.851)

for this parameter. Risk set probabilities are estimated via simulation.

5.5.4 Results

Table 5.4 displays the estimates of P(Z ∈ Aj), j = 1, 2, 3 for each of the three modeling

approaches, as well as the one-sided p-value of the observed data, assuming the estimated

probability is the true probability. The reported p-values were computed via the binomial
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Table 5.4: Risk set probability estimates and associated one-sided p-values of observed
Z ∈ Aj, j = 1, 2, 3, for modeling approaches 1-3 described in Section 5.5.

Model P̂(Z ∈ A1) p-val P̂(Z ∈ A2) p-val P̂(Z ∈ A3) p-val
1 0.0297 0.480 0.0044 0.132 0.0010 0.130
2 0.0120 8.17× 10−5 0.0002 0.009 0 1
3 0.0261 0.210 0.0018 0.274 0.0002 0.704

(empirical) 0.0292 − 0.0025 − 0 −

distribution; for example, approach 2 estimates P̂(Z ∈ A1) = 0.0120, implying an expected

23.86 observations in a sample of n = 1988. The p-value reported is the binomial probability

of observing 58 or more of the 1988 realizations in the set A1, if the true probability is

0.0120. We see that approach 1, assuming asymptotic dependence, estimates P(Z ∈ A1)

quite well. This approach overestimates the probability of the more extreme set A2, although

the overestimation is not severe. It estimates P(Z ∈ A3) to be 0.0010; however, zero of the

1988 observations fall in this set, which has a p-value of 0.13 if this were the true probability.

Approach 2 suffers from the opposite problem: it underestimates the risk of sets A1 and A2,

particularly the less extreme set A1. Approach 2 assumes that P(Z ∈ A3) = 0; while no

observations were seen in the set A3, this assumption may be unreasonable.

Modeling approach 3 based on the proposed Y + V performs best, as it accounts for

the hidden regular variation in the presence of asymptotic independence. The estimates of

P(Z ∈ A1) and P(Z ∈ A2) are quite plausible given the observed data. Furthermore, this

model estimates the event Z ∈ A3 to occur about once every 5000 observations, in which

case the probability that zero such events would be observed in a sample of this size is 0.70.

The three approaches to risk set estimation described here illustrate the advantages of the

Y + V representation for estimating hidden regular variation. An approach which assumes

asymptotic dependence when asymptotic independence is actually present will overestimate

probabilities of extreme sets. On the other hand, a simple modeling approach assuming

asymptotic independence will tend to underestimate tail risk sets at finite levels if hidden

regular variation is present. The representation presented here allows flexibility to account for
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hidden regular variation in the presence of asymptotic independence and provides reasonable

estimates of risk set probabilities at high but observable levels, as well as extrapolation

further into the joint tail.

5.6 Summary and Discussion

This chapter presents novel methodology for tail estimation in the presence of hidden

regular variation, employing the sum characterization of hidden regular variation introduced

in Chapter 4. The likelihood-based estimation scheme proposed here is a novel version of the

MCEM algorithm which has been modified for tail estimation. The conditional distribution

from which we sample for the E step of the algorithm needs only to be tail equivalent to

the tail dependence structure which we wish to estimate. The likelihood which we maximize

at the M step is a Poisson point process likelihood which follows from the regular variation

conditions (16) and (17) in Chapter 4.

The examples in this chapter demonstrate the ability of our method to estimate tail

dependence in the case of asymptotic independence. Using the proposed estimation strategy,

we are able to estimate probabilities of general tail risk sets on the cone C. This approach

differs from the joint tail estimation methods proposed by Ledford and Tawn (1997) and

Ramos and Ledford (2009), which focus on estimation of probabilities of risk sets of the

form (z,∞]. In the bivariate infinite hidden measure case, we are able to obtain the ray

independent hidden angular measure discussed in Section 4.6 of Chapter 4 on the restricted

subcone Cε0; the model of Ramos and Ledford (2009) is unable to accommodate this case,

which includes the bivariate Gaussian tail dependence structure.

Through the application to air pollution data from Leeds, UK, we demonstrated the

ability of the Y + V representation to estimate risk sets at both observable levels as well

as further extrapolation into the joint tail. In estimating these risk set probabilities, we are

able to model the presence of both asymptotic independence and hidden regular variation.
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The sum representation accounts for both the limiting regular variation structure and the

‘residual tail dependence’ in the data.

Finite-sample estimation of η (or α0 = 1/η) remains an inherently difficult problem.

The estimation scheme using the ε-restricted infinite hidden angular measure representation

presented in Section 4.6 is useful in that it employs both the radial and angular component

of V to estimate η, as opposed to the Hill estimator (Hill, 1975) and the ‘structure variable’

approach of Ledford and Tawn (1996), which only use the radial component for estimation.

The focus of this work was estimation of parameters of the hidden regular variation

represented by V. In general, the EM approach employed here could also be used to estimate

parameters of Y, or of both Y and V. Increasing complexity is encountered in estimating

hidden regular variation in higher-dimensional problems (Mitra and Resnick, 2010), and

implementing the methodology in such problems would likely require simplifying assumptions

on the supports of Y and V.

141



CHAPTER 6

CONCLUSION AND FUTURE WORK

This dissertation presents applied, theoretical, and methodological advances in the statis-

tical modeling of extreme values, employing multivariate regular variation as an underlying

mathematical framework. This framework provides a probabilistic characterization of the

joint tail of a random vector, is useful for describing multivariate threshold exceedances, and

can be linked to classical results from extreme value theory.

Chapter 2 extended existing methodology based on the regular variation framework in

a novel study in climate science. Focusing on a particular atmospheric phenomena, we

modeled the tail dependence in daily precipitation amounts as produced by a deterministic

climate simulation model and seen in observational data. For the first time, a connection

was drawn between large-scale atmospheric processes and localized extreme precipitation

events, and the fitted tail dependence model was employed to study uncertainties in future

extreme precipitation events produced by a regional climate model, given output of a general

circulation model which provides its boundary conditions.

Further exploration of regional climate simulation models’ representation of extreme pre-

cipitation events was provided in Chapter 3. Focusing on a suite of six particular regional

climate models, it was found that these models are able to adequately reproduce past ob-

served extreme precipitation events over a Pacific coast region in winter. When examining

summer precipitation over a central region of North America, however, it was found that

the climate models produced poor representations of past observed precipitation extremes.

Employing the regular variation framework, we were able to assess the ability of these de-

terministic models to simulate these weather extremes.
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Chapter 4 introduced a new probabilistic characterization of hidden regular variation.

This characterization is defined in arbitrary dimensions and for arbitrary hidden regular

variation structures. It was proven via a tail equivalence theorem that this characterization

satisfies the necessary asymptotic properties on all joint tail regions. Through simulation of

a canonical example, we demonstrated that this characterization also possesses more realistic

finite-sample properties than previous characterizations.

The finite-sample properties of the sum characterization make it amenable for inference,

and novel methodology for inference from hidden regular variation structures was presented

in Chapter 5. The expectation–maximization (EM) algorithm, a classical method in the field

of Statistics, was employed for the first time in a tail estimation problem. Using a modified

EM setup and Monte Carlo sampling, we are able to perform maximum likelihood inference

for parameters governing hidden regular variation. The method was applied to air pollution

data, with improved results over alternative tail modeling approaches.

As the climate science literature devotes increasing attention to the study of extremes,

the work presented in Chapters 2 and 3 offers opportunities for further use of the regular

variation framework to study multivariate extremes in climate and to explore connections

between climate extremes and underlying atmospheric processes. For one example, regular

variation might be employed to examine possible teleconnections: links between climate

extremes at long distances. Multivariate extremes techniques might also be employed to

study extremal dependence across space in climate.

The theoretical and methodological developments in Chapters 4 and 5 offer new advances

in the statistical modeling of multivariate tails. However, it remains difficult to distinguish

a weak level of asymptotic dependence from asymptotic independence with hidden regular

variation in finite samples. The estimation procedure introduced in Chapter 5 may lead

to the development of likelihood-based model selection criteria for extremes. Ramos and

Ledford (2009) introduce a likelihood-based test of asymptotic independence; these methods

might be incorporated into the estimation procedure presented in Chapter 5.
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While the applications presented in this dissertation have focused on climate and en-

vironmental studies, the methodology employed here could be more broadly applied. The

characterization introduced in Chapter 4 might be used to study hidden regular variation in

returns of financial instruments. The methodology may be extended to time series or spatial

settings as well.

Exciting challenges remain in the study of multivariate (and spatial) extremes. The

growing availability of data offers more opportunities to study extremes and presents more

challenging problems which demand the development of new statistical methodologies. Much

work remains to be done.
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