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ABSTRACT

DYNAMIC RESPONSE OF PRESSURE TRANSMISSION

LINES TO PULSE INPUT

The dynamic response of pressure transmission lines to pulse input
was investigated experimentally. The most commonly used commercially
available flexible Tygon tubings were examined at a constant 1/2-psi
air pressure with a frequency up to 300 cps. Short tubings, from 1 inch
to 3 feet and inside diameters between .052 inch and 1/4 inch, were
tested in the experiment. Pressure transducers were selected which had
very small internal volume and the reference transducer was kept at a
practical minimum distance from the pressure source. Tubing with and
without inlet restriction has been investigated to determine the
phenomenon of resonant frequency. To determine the effect of the
elastic wall of the tubing on the pressure response, comparison
measurements were taken in rigid wall, flexible Tygon, and rubber
tubings. Phase shift of flexible tubings with various lengths and

inside diameters were determined for the frequency range 0-300 cps.
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Chapter I

INTRODUCTION

In many research and industrial processes 1t is necessary to know
or to utilize the pressure at one or more points in a fluid conduit.
It is not always possible to place an instrument directly into the con-
duit at those points. In the low pressure transducer, the pressure-
sensitive diaphragm is usually made large to increase the output per
unit pressure because of the requirement to measure small pressure
changes. It is quite difficult or impossible to arrange for the
diaphragm to be flush with the surface of the space in which the pres-
sure changes take place. In consequence, the use of the pressure
transmission lines seems to be unavoidably necessary. It is desirable
to use flexible lines especially in research applicatons. Flexible
tubings are made of elastic materials, often with very thin wall;
therefore, the tubing may show elastic properties. Thus, two types of
pressuce lines enter into the problem of defining their response
characzeristics: rigid wall with constant cross section and elastic
wall with external constraints. In dynamic pressure measurements, the
evaluation of response characteristics of connecting systems is required.
Before 1950, the only solution for the dynamic response of pressure lines
was generally based on an elementary theory that considers the system
as equivalent to an R-C electrical network (15, 20). The main defect of
this theory is that it does not provide criteria for the limits of its

applicability. The paper by A. S. Iberall (8) provides the first



complete theoretical solution for response of pressure lines (rigid
wall). At present, Iberall's mathematical treatment of the problem is
the most rigorous and has the best ability to solve the line response
problem.

Several experiments have been undertaken in order to study the
pressure transmission line response. Some of the experimental data,
as mentioned in Refs.(16) and (17), have been compared to Iberall's
theoretZcal calculations. The reported comparisons between Iberall's
theory and experiment have been quite poor. It was presumed that
Iberall's theory was considerably more accurate than these experiments
indicate. The possible reasons for the poor results of the comparison
can be summarized as follows:

1. 1Iberall's theory can be applied only to non-turbulent flow,

i.e., Reynolds number less than 2000.

2. With large lines, considerable distortion of the input signal
is caused near the line resonant frequencies. This distortion
causes considerable difficulty when measuring the amplitude of
input signal.

3. Iberall's equations are valid for an infinite volume at the
input end of the line. Because line resonance implies
reflected waves in the transmission line, the boundary
conditions at the input end, and therefore the response,
depend upon the input volume.

4. The pneumatic pressure transmitter has a pneumatic feedback-
loop with broad resonant peak. The feedback-loop will,
therefore, interact with the reflected signals from the line

and change the line response.
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5. The graphs which Iberall presented in his paper in order to
simplify the solution of the problem will cause some deviation
because of reading and interpolation errors.

Iberall's equations are sufficiently complicated so that they have
not had wide use. In order to obtain a reliable comparison between
the derived equations and experimentally obtained data, an I.B.M.
computer program has been devised which calculates the system behavior
using Iberall's equations. Only the exact version of his equations
was used in the computer program to avoid any possible error during
calculations (computer program generates answers accurate to better
than .1%)(16). Laboratory experiments (17) were conducted using
condenser microphones to measure the response of tubings of different
diameter, containing atmospheric air. The experimental and calculated
results agreed within experimental accuracy for intermediate length
of tubing (4 to 8 ft). Considerable errors were found, however, when
shorter tubings were used.

The second type pressure line, the elastic one, is discussed in
Ref. (21) and is related to the blood flow theory.

According to Refs.(4, 8, 16, 17) the experimental results of
the behavior of rigid pressure transmission lines follow closely the
theoretical predictions from a length approximately 4 ft and longer.
Therefore, in the present experiment the behavior of shorter tubings
(from 1 inch to 3 feet lengths) was investigated.

It gives special meaning to the present study that this length-range
- besides showing deviation from Iberall's equations - for practical
purposes is the most important one because of the frequency of its

application.



Chapter II

REVIEW OF LITERATURE

Solving the problem of response characteristics of the connecting
system in dynamic pressure measurements is a quite complex task and
has been the subject of many intricate analyses and experimental
studies.

In this chapter, the more frequently used theories are briefly
discussed. The available theories can be divided into two main
categories: one which deals with a connecting system where the
connecting passage is assumed to be rigid and the other which treats

it as an elastic one.

A. Theories Concerning Rigid Wall Tubing

One simple theory (4, 5, 6, 7, 20) 1s based on the assumption that
the flow in the connecting tube is laminar and the pressure-sensing
instrument behaves in an elastic manner if the fluid medium 1s liquid.
In this case, the pressure-sensing system consists of a passage and a
volume of the pressure sensing instrument, Figure 1. The spring-loaded
piston represents the flexible diaphragm of the pressure transducer.

If the system is gas filled, the compressibility of the gas 1in the
volume V becomes the major spring effect when the pressure pickup
is at all stiff. Therefore, 1t is assumed that the volume V 1is
enclosed by rigid walls. This setup can be treated as a lumped-

parameter system if the following restrictions are met:



1. The passage length 1s sufficiently short so that the dead
time (length of the tubing divided by the sonic velocity)
can be neglected.

2. The dimensions of the pressure-sensing instrument volume must
be such that the pressure in the volume may be considered
uniform at any time.

3. The volume of the tubing must be small compared to the volume
of the pressure-sensing instrument to assure uniform volume
flow throughout the length of the tubing. This 1s the result
of the compressibility of the gas in the pressure-sensing
instrument.

The analysis consists merely of applying Newton's second law to

the mass of gas in the tubing. Initially, it 1s assumed that

P, =P =P, . The force due to the pressure P2 is:

P2nd2/4 ;
The viscous force due to the wall shearing stress is:
8ﬂuﬂ£

where & 1is the displacement of the mass of the gas in the tubing. If
the mass of gas moves into volume ¥ , an amount « , the pressure P4
will increase. The compression is assumed to occur under adiabatic
conditions. The adiabatic bulk modulus Ea of a gas is given by

E_ = 2L

Pl Al L

The displacement x will cause a volume change

dv = ndx/4 .



This will cause a pressure change
_ g
P4 nEad x/4V
The force due to this pressure excess is

nZEad“x/z 6V

Newton's law then gives

4 2 b
4 H 16V 4
since
nE’adzx
Py=—3v

The final form is a second order differential equation

4LoV 2 128ulV 2
mE
a

From equation (2.1) the natural frequency w, and the damping ratio

are defined as:

mE
w = i g (2
n 2 V2%V '

=@ \Ee L
Then equation (2.1) reduces to

L B 255 +p, =P, . (2.

w2 T4 w 4 4 2

n n

———EZ-P4 + ;E;ZE—‘P4 + P4 = P2 . (2

1)

2)

3)

4)
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The limitations of this theory are that during pressure changes both Eé
and o vary; therefore, the natural frequency w, and the damping
ratic ¢ are not constants, that is, the system is not linear. The
existence of laminar flow in the tubing during a pulse input is also
questionable. For low pressure measurements the deflection of a
pressure transducer diaphragm is negligible.

When the volume of the passage becomes a significant part of the
total volume of a system, compressibility effects are no longer
restricted to the volume of the pressure-sensing instrument alone and
equations (2.2) and (2.3) become inaccurate. A more refined analysis
is given in Ref. (6) where a simplified second order model is presented
with the following equations for natural frequency w, and damping

ratio ¢

wn =£__—+_V_ (2.5)
2 AL
RR 1 V

C —'20—0 §+A_£ (26)

Thus, the undamped natural frequency w, and damping ratio ¢ are
functions of acoustic velocity ¢ , tube length £ , cross-sectional
area A , instrument volume V , frictional resistance F , and fluid
density o

Analyzing equations 2.5 and 2.6, it is apparent that with a
constant instrument volume, ¢ increases with line length and w,
decreases. Similarly, with a constant length of line, increasing the
instrument volume, ¢ increases and w, decreases. Damping ratio ¢
depends on fluid viscosity and density and on sound velocity, the

undamped natural frequency w, depends only on sound velocity.



A somewhat different approach to calculating the response and lag
in measuring systems subjected to steady-state sinusoidally varying
pressure is discussed in Ref. (15). The pressure system is assumed to
consist of an inlet restriction, tubing length, and connected instru-
ment volume. The response of the pressure transducer is considered
constant throughout the frequency range and the deflection of its
flexible membrane is sufficiently small so that negligible changes
occur in the internal volume. The author used the analogy of
electrical wave propagation in the transmission lines. It is
assumed that the air in a tubing has mass inertia, elasticity, and
can dissipate energy with its motion; therefore, wave motion can be
propagated along its length.

The behavior of the system is defined by the general equations for

a transmission line.

E2 = E4 cosh V7Y L + 14 Zo sinh V7Y & (2.7)
E4
12 = I4 cosh Vi¥ L + E—-sinh V7Y £ (2.8)
1%
where Z =R+ juL
and Y = gwC

The quantity V7Y may be written as
VZY = o + jB (2.9)

where o 1s an attenuation constant determined by the decrement in

pressure amplitude per length of tube and B 1s a propagation constant



of phase angle changes per unit length of tubing as defined by

2nf

- velocity of propagation

Equation (2.7) is rewritten in the form of pressure ratio:

"

Z
£ = aosh VIT L + Eg-sinh V7Y £ (2.10)
4 4

or by substitution of equation (2.9) into (2.10) and simplifying, the

final form of (2.10) is

P

2 _ foinhZ ol + cos“pL /tan—l(tan BL tanh aol)
4
Z
+ EQ-VSinhZ al + sinzB£ /4;n_1 fﬁﬁfﬁﬁ;- " (2.11)
4 tanh ol

Equation (2.11) defines the ratio of the pressure amplitude at the
open end of the tubing to the amplitude existing at the instrument
volume. The equation in this form requires lengthy calculation plus
the attenuation constant o has to be determined experimentally.
Therefore, the author uses a simplified form to calculate the pressure
amplitude ratio and the resonant frequency of the system. Taback
assumes negligible instrument volume and sufficiently large diameter
of tubing, thus, negligible attenuation of the pressure wave occurs in

the tubing; that is, o 1is assumed to be zero. Limitations of this

theory can be summarized as follows:
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1. The lack of any method for calculating o (it can be
determined only experimentally using long tubing with no
restriction and negligible instrument volume).

2. For accurate measurements the pressure transducer volume

cannot be neglected, especially when short tubing is used.

Theory considering the damping of the occurring resonant frequencies
with an inlet restriction in a connecting passage 1is discussed 1in
Ref. (10). The author makes the following assumption in order to
simplify the calculations.

1. The flow in the passage is one dimensional and the flow

resistance can be ignored.

2. The state changes are adiabatic in the passage and the

instrument volume.

3. There is no change in the volume of the pressure sensitive

instrument.

4. The pressure waves in the passage propagate at constant

velocity equal to the sonic velocity.

The author then uses the accoustic theory - based on the
assumption of small pressure changes - to calculate the frequency
response of the system. A simplified form of the system is shown in
Figure 2. The following steps were used to derive the equations.

The pressure change in the reference space is assumed to be

P, =1+ 8P sin 2nft (2.12)
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where P] is the reference atmospheric pressure and AP 1is the
amplitude of periodic pressure change.

The boundary conditions at the passage inlet with throttle are

defined as

aP, = aP, + RU, . (2.13)

The boundary condition at the indicator end of passage is

By taking PS = P4 = 1 - on the assumption of small pressure changes -

another boundary condition is given by

dpP

4 1M
dte /U = a7V Us (2.14)

where a = 2/(x - 1) and U, =u/c
There are two kinds of pressure waves propagating in the passage.
One propagates from the passage inlet to the indicator end and the

other in the opposite direction. Therefore, the pressure P and

velocity U are written as

P=1+4sinlenf (t - =) + eA] + B sin[2nf (t + §—+ eB]
"o 9,
(2.15)

(=]
Il

ad sinlenf (t - £ ) + €Al - aB sin[2nf (t + = ) + eB]
CO CO
(2.16)

Pressure P4 , using equation (2.12), can be written as

P, =1+ COP sin (2nft + cc) . (2.17)



-
[A]

The constants A4 , B, C , =4 , €¢B , ¢ 1in equations (2.15) , (2.16) ,
and (2.17) are solved by introducing the pressure and velocities - at
both ends of the passage (at X = 0, X = 1) which are derived from
equations (2.15) , (2.16) , (2.12) , and (2.17) - 1into equations
(2.13) and (2.14).

The final equations for the magnification of amplitude (C) and the

phase lag of the pressure oscillation in the instrument volume (c¢):

1
§ (Sin2nf£ _ 2nfv cosanﬂ)z P2 4 (cosznﬂi _ 2nfV Sinzwfi_)? .
co cOA co co e,

c A
0
(2.18)
{sénngz - iﬂzv cos2;fZ;R
- \ 0 "o o
= LI 2
6 = W ZifL SnfV .. 2ifL (2:18)
208 - sin
e c A
o o o
and also defines the resonant frequency of connecting passage as:
2nf £ 2nf £
2o —2 AL (2.20)
e ¢ 14
o o

Nagao (9, 10) reports the following important results of his theory

and experimental work.

1. The error, resulting from the passage to the diaphragm of a
pressure-sensitive instrument, increases with the decrease in
the resonant frequency of the connecting passage.

2. The resonant oscillation in the connecting passage, which occurs
due to the cross-sectional area of passage, can be avoided by
fitting the passage with a damper such as a throttle,

3. The delay of the measured pressure change due to the damper is

permissibly small,
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4. Tae optimum throttling ratio is found to be 0.4 to 0.5 for
damping the amplitude of resonant pressure oscillation and

increases slightly the delay.

The previously discussed theories have their limitations as were
mentioned before. By far the most detailed and complete theory is
Iberall's (8). In this work Iberall first developed an elementary
theory based on incompressible viscous-fluid flow. The elementary
solution is then modified to take into account compressibility, finite
pressure amplitudes, appreciable fluid acceleration and finite length
of tubing (end effects). Account is also taken of heat transfer into
the tube.

The scheme of the system i1s shown in Figure 3. Oscillatory
pressure from the conduit 1) is applied to the entrance of the
transmission tubing, and 2) the tubing has constant cross-sectional
area (rigid wall) and length. The pressure-sensitive instrument is
characterized by 1ts enclosed volume V . It is assumed that 1) if
the walls enclosing the instrument volume are flexible the enclosed
volume can be replaced by a larger equivalent rigid volume that will
store the same mass amount of fluid per unit pressure change, and
2) the pressure-sensing instrument response 1s independent of the
frequency of expected pressure oscillation.

Deriving the elementary theory, it is assumed that:

1. Poiseuille's law of viscous resistance holds at each point

in the tube.

2. The fluid is incompressible in the tube.
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3. The sinusoidal pressure oscillation at the beginning of the
tube is of small amplitude, compared to the mean absolute
pressure.

4. 1If the fluid is gas it behaves isothermally in the instrument
volume.

For Poiseuille's law, the following equation is written:

u
d—i 9 (2.21)

-y 80 (2.22)

Equation (2.21) is then differentiated with the boundary conditions

(¢ =0 and x = 4£). A new variable is introduced: the fractional

P - Po

7
o

to vary with « and ¢ . The ratio of the amplitude of the pressure

pressure excess (& = The pressure excess is then separated

excess at the end of the tube to that at the beginning of the tube is

given by

= = = - (2.23)

where the attenuation factor X, = TW, the time constant <t 1is

defined as

CL is the maximum amplitude of the pressure excess at the instrument
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volume and &0 is the amplitude of the fractional pressure excess at

i s Ap
the origin Eo = ?;

The real part of equation (2.23) is the attenuation in amplitude of

the pressure excess and the imaginary part is the phase lag. Thus,

equation (2.23) can be written as

€
L 1
T = —_,4 2)1/2 (2.24)
| 7o (14 x5
tan éo = Xo

where 60 is the lagging phase angle.

This simplified theory of Iberall indicates that & transmission
system can be characterized by a time constant 7t (function of tubing
dimensions), the internal volume of pressure-sensing device, the
average condition of the gas in the tubing and an attenuation factor
Xo from which the attenuation and phase lag can be computed.

In the more complex, ''complete', solution Iberall removes the
restrictive assumptions considered in the elementary solution. Never-
theless, a complete solution to the problem is not obtained. All
first-order effects are treated to the point where the solution is
correct. Only an elementary treatment is given for the second-order
distortion effects. A brief discussion of the corrected theory is
given below.

1. Theory corrected for compressibility - A significant difference

can be noticed first in the new time constant Tt: that it 1s based on

the tube volume instead of the instrument volume.

LAt
t V n
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where »n 1s an exponent of ''polytropic'" expansion in tube. In the

corrected theory the attenuation factor 1s defined as

Xto

Comparing this relation to the one in the elementary theory, it
can be seen that Xto needs to be small in order to be valid for the
elementary solution.

The ratio of the fractional pressure excess at the end of the
tube EL to that at the beginning of the tube £, in this case 1is

given by

_ wTo
s wTo cosh wTo + on sinh wTo

mlhm|

where wTo is an attenuation parameter depending on the tube volume
and wlb is an attenuation parameter depending on the instrument
volume. Or, in similar form as in elementary theory (equation 2.24)),

the real part becomes

L 1

(2.25)
L
(1+ x2)*

2. Theory corrected for finite oscillation pressures - In this

section Iberall determines the effect of finite fractional pressure
excess on the attenuation in a tubing. The only assumption is that
the Poiseuille velocity distribution holds. It is shown that the
effect of finite pressure excess 1s to excite higher harmonics,

resulting in a distortion of wave form and raises the mean pressure
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along the tube. The higher harmonics are excited because of the
nonlinearity of the equations.

The method described by Iberall in section 2 is the expansion in
harmonic series. The obtained solutions are only valid for the leading
term of each harmonic. By considering the solution for an infinite
tube (for which only one set of boundary conditions is required), the
question of convergence of the solution is discussed.

3. Theory corrected for acceleration - In the third part of the

corrected section, Iberall removes the main restrictive assumption:
the assumed Poiseuille velocity distribution. In order to do this, he
uses the Navier-Stokes equation (equation of motion) combined with the
continuity and energy equations, which represents a detailed energy
balance among thermal and kinetic energies, to arrive at the
Kirchoff's equation of sound. These equations are valid to first
order. There is no assumption as to the form of equation of state of
the fluid.

However, the result of this part of Iberall's paper is not valid
for finite pressure amplitude. For this the neglected second-order
term in Kirchoff's equations should be used. Therefore, it is con-
cluded that the distortion mentioned in section 2 is valid whenever
the Poiseuille regime holds.

4. Theory corrected for finite length-end effects - The end

effect arises from the fact that it takes an appreciable length of
tubing to set up the Poiseuille velocity distribution in the trans-
mission lines. The character of the entrance flow is that the axial
velocity is flat at the entrance, gradually developing an approximately
laminar boundary layer with a core of uniform velocity until the tube

is filled with laminar viscous flow.
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Iberall makes the following assumption in order to solve the
problem of end effect.

a. The entrance flow is incompressible.

b. The variation of pressure in radial direction 1in the
entrance portion is negligible.

c. The quadratic terms in velocity are negligible in the
boundary layer.

d. The core of the velocity distribution is potential.

Then a simplified version of equation of motion is used to find the
desired result. The final result shows that the approximate effect of
the entrance is to distort each input harmonic. The first-order terms
are uneffected and the only equation requiring modification is the
attenuated second harmonic.

Iberall presents a series of graphs for the purpose of obtaining
a simple graphical solution to the line response. Four of the six
graphs are based on approximate solutions, and probably much of the
apparent disagreement discussed in the literature has been the cause
of this approximate nature of Iberall's graphs.

In general, the restrictions applicable to Iberall's equations can
be summarized as:

a. The minimum Reynolds number must be less than 2000.

b. The tube must be long enough so that the end effect can be
neglected. No criterion is stated which would enable one
to determine when a tube 1s long enough.

Iberall's equations were verified by a digital computer (16, 17)
and laboratory experiments have been conducted (16). During the

experiment described in (16) the restrictions mentioned under a and
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b were completely fullfilled. The final conclusion of the compared
results is that Iberall's equations are valid - when end effects are

insignificant - to an accuracy better than 1%.

B. Theory Concerning Elastic Wall Tubing

The behavior of the pressure transmission line assuming elastic
wall is discussed in Ref. (21). Womersley treats the blood vessels as
a thin-walled, isotropic, elastic tube with external constraints. The
analysis of the unsteady flow through a distensible vessel requires
that the equations which describe both the flow and the movements of
the vessel wall to be solved simultaneously. The basic flow equations
for cylindrical symmetry is given by the continuity equation and the
Navier-Stokes equations for an incompressible fluid. Womersley
assumed: 1) under no excess internal pressure the tube has a constant
radius A and wall thickness % , 2) the density of the material is
0, 3) h/R << 1 , and 4) that the radial displacements £ and
longitadinal displacements ¢ at the wall and their derivatives are
small to admit linear relationship. The properties of wall material
are expressed by elastic modulus Ec and the Poisson's ratio v
Since the longitudinal wall displacements are extremely small,
Womersley introduced a longitudinal elastic constraint characterized
by a natural frequency wn/2n . The equations for the fluid and those
for the wall are coupled by the condition that the fluid does not slip
along the surface of the wall:

_ 9& _ 9L
W= and w = Py

Q

Il
>s}
+
Y

for r
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Solving the prescribed equations and boundary conditions is not
feasible at this time; therefore, some simplification must be curried
out.

Womersley's solutions are based on the linearized equations. He
considered an infinitely long tube with sinusoidal waves travelling
in one direction. He neglected the nonlinear term on the basis that
the velocity components are much smaller than the wave velocity in the

circulatory system. He also neglected the second order term

32u 32w
922 2 332

conditions are satisfied with » = R , instead of r = R + g , because

being very small. It is also assumed that the boundary
g 1s small compared to R . Then he obtained the solution for the
pressure as

P = B exp. [iw(t - z/c)] (2.26)
for longitudinal wall displacement

Lt =D exp. [tw(t - z/c)] (2.27)
and for radial wall displacement
g =F exp. [tw(t - z/c)] (2.28)

where B , D and F are integration constants.

The final equation for the complex wave velocity ¢ 1is given as

e /e =X - 1Y (2.29)

where c, is the pulse wave velocity for perfectly elastic tubes and
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is defined as
B L
e, = (hE/2Rp ) (2.29)

and X and Y are real and imaginary values of wave velocity ratio.

The phase velocity of the waves given by ¢/X and Y represents
the damping of the wave amplitude.

The above analysis has been restricted to waves propagating in one
direction. Actually, reflected waves are also present, and the pressure
measurements record superposition of advancing and receding waves. The
solution for the receding wave is obtained by replacing ¢ by -c¢ ;

therefore, the pressure is given by
P= B] exp. [tw(t - z2/c)] + B2 exp. [tw(t + z/c)]

where BZ and 32 are the pressure amplitude of advancing and

receding waves.
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Chapter III

THEORETICAL ANALYSIS

The measurements of rapidly varying pressures require in most
cases that the pressure sensing instrument be connected to the measuring
point through a finite length of connecting tubing. The tube opening
may be restricted by a connector of smaller inside diameter either
because two different size tubing need to be coupled or because the
response of the measuring system to the oscillating pressures must be
adjusted. In most cases, exposing the pressure-measuring diaphragm to
a reference pressure is necessary. This procedure requires that the
diaphragm be installed so that it is exposed to a reference pressure
volume which may be connected by means of tubing to a reference pres-
sure source. The reference volume and connecting tubings is hereinafter
referred to as the reference pressure system.

It will be considered that

1. The response of the pressure-sensing instrument is constant
throughout the measured frequency range.

2. The deflection of diaphragm is sufficiently small so that
negligible changes in internal volume occur and no energy
is transferred to the reference pressure system.

In this paper the response characteristic of short transmission
lines for small amplitude pressure variation is investigated. Because
of the complexity of Iberall's equations, an analysis of the problem
based on propagation of electrical waves on transmission lines (15, 20)

is presented in this chapter.
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The air column in a tube has mass inertia, elasticity, and can
dissipate energy with its motion; consequently, wave motion can be
propagated along its length. The behavior of the pressure system will
be described in terms of the analogous electrical system by use of the
electrical notations. The electrical term and the equivalent acoustical

terms used herein are shown in the following table.

ELECTRICAL EQUIVALENT ACOUSTICAL
Term Unit Symbol Term Unit Symbol

Voltage Volts 14 Pressure Psi p

Current Amperes I Volume flow ft?/sec Q

Resistance Ohms R Flow resis- lb-sec/ft® R
tance

Capacity Farads c Volumetric ft°/1b c
capacity

Inductance Henries L Inertance 1b-sec?/ft?> L

e
In acoustical terms the inductance per unit length of line is L = —%23
the capacitance per unit length 1s ( = Ké , and the resistance per
AP av
unit length is R = 7
The behavior of the system can then be defined by the general
equations for a transmission line (15)
E, = E4 cosh VZYL + I4Z0 sinh YZYR (3.1)
E4
I, = I, cosh VZYl + 7 8inh VZYR (3.2)
o

In equations (3.1) and (3.2), Z represents the sum of flow resistance

and inertance or by electrical analogous the series impedance of the
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system:
Z =R+ juL

and Y represents the volumetric capacity of the system or by

electrical analogous
Y = jwC

The quantity VZY therefore is a complex number and can be written as
VZY = o + jB (3.3)

where o 1s an attenuation constant, determined by the decrement in
pressure amplitude per length of tube and B 1s a propagation con-
stant or a phase-angle change per unit length of tube and can be defined
as

g = 200

(e}

The quantity Zo indicates the characteristic impedance of the tube

and can be written in the form

~fz_ /7Y _ o+ 48
z, :\/C:i- 7 = 7 (3.4)

For computation convenience, equation (3.1) can be rewritten as

E2 I4Z
— = cosh ViYL + © sinh VZYL
E E
4 4
E4
and 7 can be defined as the instrument impedance Z4 ; thus,

<
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equation (3.1) becomes:

E Z
-E,ﬁ = cosh VITR + ;% sinh VITL . (3.5)
4 4

Substituting equation (3.3) into equation (3.5),

Y/

= cosh (ok + gBL) + Zg-sinh (el + GBL)
4 4

D:1|R:1
Qo

or, in. another form,

E2 P2
7 =35 = Ysinh? ol + cos”Bl Jtan=1(tan BL tanh ol)
4 P4
Z
- - t L
+ Zi-/étnhz ol + szniBZ./Qan"l(E%%zéaz ‘ (3.6)

Equation (3.6) is the general form (15) for defining the ratio of
the pressure amplitude at the open end of the tube to the amplitude
existing at the pressure-sensing instrument volume. The reciprocal of
this ratio is defined as the response of the system.

Even though equation (3.6) is much less complex than, for example,
equations derived by Iberall (8), in practical instrumentation pro-
blems it would still require elaborate calculations. To simplify the
calculations without loss of accuracy, it can be assumed in most cases
that the pressure-sensing instrument volume is negligible compared to
the volume of connected tubing. In most of the latest model pressure

transducers, the instrument volume is very small.
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With the assumption that negligible air flows at the instrument

end of the tubing, the instrument impedance Z4 approaches infinity

and equation (3.5) reduces to:

= = cosh Vivk

or, in terms of pressure (equation 3.6)

= Vsinh2 ol + cos?BL tan~l(tan BL tanh ol) . (3.7)

”UI*U
I\

4

In order to determine the characteristics of resonant frequencies
existing in the system, the use of a sufficiently large inside
diameter tubing would result in a negligible attenuation of pressure
waves; therefore, in equation (3.7) the attenuation constant o

approaches zero and equation (3.7) simplifies to

= cos BL . (3.8)

*UI*U
Do

In this case, the system response is a function of the applied
frequency, tubing length, and the wave propagation velocity. At

resonance frequencies, equation (3.8) becomes zero and the system
P,
< . s
response —=— becomes infinite.

P

For determination of resonant frequencies, the following simple

relationship can be derived:

if

NI

=cos BL =0

L. cos BL =0
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Jreviously B = ng

then for resonant frequencies:

27Tfp»€

-
) 9 2

[

BL =

where f} is the resonant frequency of the tube with negligible

irstrument volume and can be defined as

_e E se
fl"_47" ar > 42 > ' (3.9)

The wave length of a pressure wave is given by the relation:

5[0

Th=refore, equaticn (3.9) indicates that at resonance frequencies, the
tuse length is an odd multiple of %-wave length.

The problem of evaluating the effect of an added constriction at
the tube inlet when the instrument volume is negligible - so that the
vo_ume flow in the instrument approaches zero - is discussed as follows.
In case of restrictions which are short in length compared to one-
wave length, the flow impedance consists of a resistance caused by
viscous pressure losses and an inertance caused by the mass of air in
the restriction. Thus, the impedance at the inlet restriction is
defined (15) as
Z =£—)’£(§-2—u—+£jwp )

r A d? 3 av
r 7
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This impedance causes a pressure loss

- ! ]
P, - P} = Q2 (3.10)

where PZ is the applied pressure and Pé is the pressure applied to

the tube past restriction. From equations (3.1) and (3.2) when Q4(I4)

approaches zero,

Pé = P4 cosh VIYL (3.11)
and
P4
I, =Q,= Z sinh VIYL . (3.12)

Substituting equations (3.11) and (3.12) into equation (3.10),

P
4 :
- ' = — 7
P2 P2 ZO sinh V7Yl Zr
or
P, - P! Z
2P L = ZE sinh VZYL
4 o
since
i
P2
P4 =
cosh VZYR
_ Tt
P2 P2 Z
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or in more convenient form by use of equation (3.3)

v
o

z
=1+ Zﬁ tanh (ol + FBL) (3.13)
o

o
oo~

Zquation (3.13) defines the ratio of the pressure applied to the inlet
Of the tube to the pressure existing in the tube past the restriction.
The magnitude of the overall response of the tube and restriction can
be obtained if the effectiveness of the restriction equation (3.13) is
nultiplied by the relation for the tube without the restriction

2quation (3.7).

P A L
R ZE tanh (ol + jBL)]1(sinh? ol + 003282)2/%an‘1(tan8£ tanhal)

P4 c

(3.14)

‘rom equation (3.14), it can be concluded that the effectiveness of
—he restriction varies with the applied frequency and the tube
-haracteristics.

For a better visualization of the effect of the restriction in the
~ube to the response of the system, equation (3.13) can be written by

“rigonometric substitution as follows:

ro Y 0a®

Z

=74+ L tanh ol + g tan BL
B Z
2

1+ J tah ol tan 82)' (3.15)

From equation (3.15), at resonance frequencies where gL = %—n "

S, ... tan 8L equals infinity, equation (3.15) therefore reduces to
P. Z
& = 17 +_I’ 1
Pé © T 7 tamh ol ° (3.16)

o
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The inlet restriction needs to be applied mostly when the tubing
diemeter is rather large and has to be reduced to a smaller diameter
tubing. In this case, as discussed previously, the attenuation

constant o  approaches zero and equation (3.14) reduces to

P2 Z
= = (1 + == tanh jBL) cos BL
£ 7
4 o
or
P2 ZP
— =cos BL + § =— sin BL (3.17)
P4 Zo

If the inside diameter of the applied constriction is small, the
impedance is almost pure resistance since the viscous forces which
cause pressure losses are much larger than the inertia forces caused
by the mass of air in the constriction. The ratio of the impedance
— , therefore, closely approaches a real number and equation (3.17)

can be rewritten in polar coordinates

Py Zy 5 .
== = [cos?BL + (== sin BL)2)?[tan (= tan BL) (3.18)
P Y/ Z
4 o 0
Zr
in the special case, when the impedance ratio 7= 1 , equation (3.18)
o
reduces to
P2
7= 1/8L (3.19)
4

Analyzing equations (3.16) and (3.18), the important conclusion can

be seen: the restriction at the tubing inlet 1s extremely effective in
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reducing large amplitude resonances as verified also by Refs. (1, 9,
10, 15). The delay is hardly increasing when the proper restriction
ratio (optimum between 0.4 to 0.5, Ref. (10) is used. A large
diameter tubing with the proper inlet restriction is more effective
in reducing the resonant frequencies and secures a unit response over
a large frequency range, than a small diameter tubing would, which
causes considerable attenuation at higher frequencies. Analysis of
pressure system with instrument volume 1s presented in the appendix.
The remaining part of this chapter discusses the problem of the
elastic property of the tubing. When the system is liquid-filled, it
is quite often possible that the flexibility of the tubing gives rise
to a compressibility comparable to that of the liquid. The simplest
way to take into account the flexibility of the tubing is to define
and replace the compressibility of the liquid by an effective value D

and X (Ref. 8). The effective compressibility factor b for a liquid,

taking into account the elastic property of the tube, becomes then

_ PO - Pa d
b=>b+ 7 (3.20)
and the effective compressibility of a liquid X is
_ Po - Pa d
K=K+?'—E'—E' (3.21)
o
where Po = mean liquid pressure,
Pa = ambient external pressure (usually atmospheric),
E = elastic modulus of the tubing material, and

h = wall thickness of the tubing.
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Equations (3.20) and (3.21) have assumed that the thickness of the
tubing wall is small compared to the tubing diameter. However, the
effect of the tubes' elastic property on the compressibility as

expressed in equations (3.20) and (3.21) are extremely small.
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Chapter IV

EXPERIMENTAL EQUIPMENT AND TECHNIQUE

The pressure transmission lines from the point where the pressure
is being measured to the pressure sensing instrument play an important
role in dynamic pressure measurements. In order to obtain the maximum
dynamic performance, a flush diaphragm pressure transducer mounted
directly at the point of the pressure measurement 1s desired, if at
all possible, since any connecting tubing or volume chamber will
degrade performance to some extent. When this is not possible, the
use of transmission lines cannot be avoided.

Theories discussed in Chapter II describe the behavior of pressure
transmission lines. Those theories have been experimentally verified.
However, tubings of short lengths (less than four feet) show con-
siderable deviation from predicted values. The purpose of this
experiment 1s to provide sufficient and reliable data to clarify the
behavior of short connecting tubings exposed to pulse input,

The use of commercially available and most frequently used
pressure transducers and connecting tubings were emphasized through-
out this research. The experiment also intends to relieve the pro-
blem of calculating dynamic pressure without involving the complex
equations concerning this phenomenon.

The experiment discussed in this chapter was made in the Fluid

Dynamics and Diffusion Laboratory at Colorado State University.
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A. Production of Pulsating Pressure

For higher accuracy of the measurements, the usage of precisely
controlled pressure pulse was desirable. A mechanical device which
generates such a pulse was constructed from delrin and is shown in
Figure 6. Its frequency range 1s limited, of course, but was suf-
ficient for this experiment. This pulse generator consists of a valve
housing with a pressure inlet- and outlet-port and a rotating valve
with the shaft supported by two ball bearings. The disc, which served
as the rotating valve to control the air flow, has four intercrossing
passages drilled precisely at 457 from each other. The line of the
(inlet + outlet) ports lies in the plane of these passages, thus,
assuring perfect alignment of the ducts in the proper phases of the
rotation, yielding eight pressure pulses per revolution.

Care was taken to keep the air gap between rotor and valve
housing down to a minimum for smallest possible air leakage. Escaping
pressure could cause a disturbance and amplitude variation in the
delivered pressure pulses. The rotating valve turns freely in the
housing, thus, avoiding heat build-up in the system which would affect
the output signal of the pressure transducer.

The shaft of the rotating valve was connected to a Barber Colman
permanent magnet D.C. motor. This motor is equipped with a gear box,
reducing the motor speed to 2250 RPM at full voltage. The motor was
powered from a 30V D.C. variable voltage power supply. The construc-
tion of the motor enables it to vary its speed by altering the input

voltage, thus obtaining the desired frequencies.
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The wave form from the pulse-function generator is shown in
Figures 6b and 6¢c as it appeared on the dual beam oscilloscope
(Tektronix Type 502A) which was used throughout this experiment. At
low frequency, the oscilloscope trace shows the true output of the
pulsator; however, from approximately 120 cps the output wave form is

sinusoidal.

B. The Pressure Detecting System

The arrangement of the pressure detecting system and the scheme of
experiment setup is illustrated in Figures 7 and 5, respectively.

Two identical Statham unbonded strain gage type pressure transducers
Model P22 with a range of 0-1 psi was used for this experiment. The
inner construction of this type of pressure transducer consists of a
flexible diaphragm mechanically connected to a movable frame with four
filaments of strain sensitive resistance wire and an instrument volume
(0.073 cu. inch). The filaments are of equal lengths and are arranged
in the form of a Wheatstone bridge. High resonant frequency did not
appear in the response of the pressure transducers to pulse input within
the frequency range 0-300 cps. Therefore, it was concluded that the
natural frequency of pressure transducers were above the tested frequency
range.

The inlet ports of the pressure transducer were connected to a
manifold made of the same size brass tubing as the inlet ports, keeping
the distance from the center of manifold to the pressure transducer at
a practicable minimum (about 1 inch, Figure 37). The manifold is
connected through a 5/16-inch I.D., 6-inch long heavy wall Tygon tube

to a 1/16-inch DIA. inlet port embedded in a vertical wall. The
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5/16" x 6'" tube served as a pressure equalizing chamber to make
certain that equal pressure passes through the manifold to the pressure
transducers.

In order to assure that the two pressure transducers' output are
identical throughout the frequency range, a control unit was built for
each transducer, Figure 4, Nos. 9, 10. The schematic diagram is shown
in Figure 8. A 3V D.C. power supply, Figure 4, No. 7, excites the
transducers' strain-gage bridge. With no pressure the bridge output
can be zero balanced by adjusting the variable resistor of zero adjust.
The pressure transducer output can be controlled by adjusting the
variable resistor of sensitivity adjust. This enables one to balance
the two transducers to deliver identical output signals when connected
to the same pressure source.

Proof of identical functioning of the two adjusted pressure
transducers connected directly to the manifold is illustrated in
Figures 9 and 10 by the super imposed signal waves on the dual beam
oscilloscope for several frequencies.

During the experiment the transducer kept as reference was
attached directly to the manifold and the other was connected with the
tubings to be tested (Figure 12).

The pressure transducers were calibrated with a Meriam water
manometer (type W, model 30 EB 25) and a pitot static tube served as
a pickup. The calibration curve is shown in Figure 11.

The 1/16-inch diameter inlet hole in the wall was chosen
arbitrarily. Several different sizes from 1/32-inch to 1/8-inch DIA.

were tested and no effect on the quality of wave output was found.



37

C. Readout Instruments

The output voltage of the pressure transducers was fed directly
into a dual beam oscilloscope (Figure 5, No. 5) Tektronix model 502 A;
thus, the two output wave forms were observed simultaneously. The
traces were photographed by a polaroid camera and the pictures were
used to calculate the phase shift.

The output signals from the pressure transducers, led through a
distributor switch, were fed into a preamplifier (Figure 5, No. 3)
Tektronix, type 122 having a gain of 1000. The signal from the pre-
amplifier then was fed into a RMS voltmeter (Figure 5, No. 2) and into
an electronic counter (Figure 5, No., 6), HP 523 B for the exact deter-
mination of the frequency. The RMS voltmeter measured the RMS values
of the pressure transducers ouput signals. The introduction of the
high gain amplifier was needed to trigger the electronic counter. The
output voltage of the pressure transducers was in the order of milli-
volts; therefore, the waves observed on the oscilloscope and recorded

in the pictures were unamplified.

D. Measurement Procedure

The scheme of the complete test setup is shown in Figure 5 and the
instruments used in Figure 4. The test procedure was as follows. The
air pressure was regulated to generate waves with amplitude identical
to one shown in Figures 9 and 10 each time a run was started; therefore,
in all measurements the pressure input was constant. The pulse genera-
tor outlet port was held against the 1/16-inch DIA. inlet port of the
pressure chamber (Figure 4, No. 13 and Figure 7). The gap was 0.020

inches.
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During the adjustment of two pressure transducers for the same
output at various frequency ranges, it was found that the construction
of the manifold was extremely important in order to obtain two identi-
cal outputs. The slightest asymmetry caused considerable difference in
the pressure transducers output. Therefore, before each run the pres-
sure transducer #2 (Figure 4, No. 11) was calibrated against the
reference pressure transducer #1 (Figure 4, No. 12). After calibration,
the tube to be tested was placed between the manifold outlet port and
pressure transducer inlet port (Figure 12).

Various lengths and I.D. of flexible '"Tygon' tubings formulation
R3603, manufactured by U. S. Stoneware Co., were tested. Tubings
1/8-inch I.D. and up were connected by using couplings with constant
I.D. (0.035 inch), length (.565), and variable 0.D.'s to fit the test
tubings. The other end of the coupling was made the same 0.D. as the
pressure transducer inlet port; thus, the connection with a piece of
flexible tubing was easily obtained.

Tubings less than 1/8 -inch I.D. were connected directly over the
manifold and pressure transducer ports.

By varying the D.C. motor revolution (Figure 4, No. 14), the
desired frequency from the pulse generator was obtained. The pressure
transducer signals were observed on the dual beam oscilloscope (Figure
4, No. 5) and were recorded by a polaroid camera. The signals through
a double pole switch (Figure 4, No. 8) through the preamplifier (Figure
4, No. 3) were read on the RMS voltmeter (Figure 4, No.2) and the
frequency of pulses counted on the electronic counter (Figure 4, No. 6).

The purpose of the switch was to record both pressure transducer

signals on the same RMS voltmeter by switching from one signal to the



59

other, thus, avoiding the chance of error caused by possible
differences between instruments.

No special temperature measurements were taken because the entire
test was made at room temperature thermostatically controlled within
+ 10c,

In the electrical system, only the oscilloscope was grounded. All
cables carrying the signals of pressure transducers were shielded to

avoid the noise pickup.
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Chapter V
ANALYSIS OF DATA

Data obtained by the technique described in Chapter IV 1is
analyzed in this chapter. This analysis emphasizes comparison
between the simplified theory discussed in Chapter III and the result
of this experiment.

The result of this analysis may be used as a reference in most
practical cases when high accuracy of the solution is not absolutely
necessary. The experimental data can be analyzed from the following
points of view:

1. Simple tube system with negligible instrument volume, no

inlet restriction.

2. Tube system with inlet restrictions.

3. Test results of the elastic tubings.

4. Phase shift analysis.

A. Simple Tube System with Negligible Instrument Volume, No Inlet
Restriction

For this test, relatively small inside diameter tubings were
selected to fit over the thin inlet port of the pressure transducer
and the manifold to avoid the use of a coupling which might act as an
inlet restriction.

Three pieces of tubings were tested - all the same length (3 ft)
but different I.D. (3/32", 1/16", and 0.052"). Their amplitude ratio

versus frequency is plotted in Figure 13. The plot of the 3/32" I.D.
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tubing shows clearly the first resonant peak at 15 cps but its
amplitude is only 1.05 magnitude (Figure 24). Due to the larger DIA,
its attenuation is less steep compared to the two smaller DIA tubings.
The 1/16" I.D. showed a high amplitude amplification (1.13) at the
first resonance frequency region, around 30 cps (Figure 25). It has
steeper attenuation until approximately 120 cps compared with the
larger DIA tubing.

I.B.M. computer program was written to calculate a 1/16" inside
diameter, 3-ft long tubing response for different value of o  using
equation (A.2), taking into account the volume of the pressure
transducer. The resonant peaks appearing at low frequency are well
predicted by equation (3.6) (Figure 39) for small diameter tubing with
no inlet restriction.

The low amplitude of the resonance frequency of the tubing with
3/32" I.D. is probably caused by inlet restriction effect due to the
size difference between the manifold outlet (and the pressure trans-
ducer inlet, respectively) and the tubing I.D. even though no extra
coupling was used.

Theories (10, 15) predict that no resonance frequency occurs when
the tubing I.D. 1s sufficiently small. This experiment indicates that
the 1/16" I.D. tubing has a large resonant peak; therefore, i1t cannot
be considered ''small'" enough. The 0.052" I.D. tubing shows very small
(1.01) resonant peak; therefore, it can be considered sufficiently
"small" to damp the first resonant peak.

The occurrence of the first resonant peak in the 1/16" I.D. tubing
can be analyzed more in detail in Figure 14, where the amplitude ratio

of different length tubings are plotted against frequency. Different
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tube lengths produce different amplitude resonant peaks. The

magnitude of the resonance peak is a maximum for a tube length of 12
inches, where the magnification factor is 1.25 (Figure 26). Decreasing
the tube length below 12 inches causes the amplitude of the resonance

frequency to become more and more flat until the pressure P, equals

4

P2 . This amplitude decrease is very gradual and even for a one-inch
tube length an amplitude still exists (Figure 27).

Attenuation of the 1/16'" I.D. tubing is in good agreement with the
predicted values (Figure 39) after the first resonance peak is
increasing rapidly. The frequency where the unity line is crossed
increases as the tube length becomes shorter. Three-ft long tubings
with I.D. less than 1/16" show very rapid attenuation (Figure 13).

It should be noted that the appearance of the resonance peaks at
high frequency is relatively uneffected by the length and I.D. of the
tubing or by any coupling effect (Figures 13 and 14). The magnitude
of the peak shows slight sensitivity towards I.D. of the tubing and
diminishes with the decrease of tube length and with the increase of
I.D. of the tubing. All this resonance peaks start around 240 cps
(Figure 28), reach maximum at approximately 270 cps (Figure 29), and
decrease gradually at higher frequencies. A comparison of -Figures 28

and 29 clearly shows the increased pressure in the tubing between

frequencies 240 and 270 cps.

B. Tube System with an Inlet Restriction

In the test procedure, tubings larger than 3/32" I.D. were
connected to the pressure transducer and the manifold by means of

couplings. Thus, the system could be treated as one with an inlet
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restriction. The length and I.D. of the couplings were kept constant
(ratio of .062) throughout the experiment.

The response of various I.D. tubes with connector, all the same
length (3 ft) are shown in Figure 15. Neither of the plots showed any
first resonance frequency which was predicted in theory equations
(3.16) and (3.18); that 1s, the inlet restriction reduces the first
resonance frequency (Figure 30). However, the coupling effect does
not prevent the occurrence of resonance peaks at higher frequencies
(27C cps). The magnitude of these peaks is a function of the tube
I.D., it is 1inversely proportional to the inside diameter of the
tubing (Figures 31, 32, and 33). The attenuation has an increasing
gradient with increased tubing inside diameter until about 60 cps.
From there on it becomes nearly linear to about 220 cps.

Amplitude ratio is plotted against frequency for several tube
lengths below 3 ft in Figure 16, 1/8'" inside diameter and Figure 17,
for 1/4" inside diameter. These curves do not show a first resonance
frequency, but a peak at high frequency is present in all. Comparison
between Figures 16 and 17 show an important result. The 1/8" inside
diameter tubing is much more suitable for practical application. The
attenuation is hardly effected by the length of the tube and the
curves are very close to each other. The value of the amplitude ratio
approaches one as the length of the tubing becomes shorter (one inch).
The attenuation is very gradual and almost linear up to 220 cps. The
curves on Figure 17 are more dispersed. Due to the larger diameter,
the attenuation 1s much more sensitive to the changes of tube length.
The value of the amplitude ratio is one only for very short tubings

(one inch) until approximately 38 cps.
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The result of the test proves that couplings serving as inlet
restrictions are very effective in reducing the first resonance fre-
quency, while they do not cause any noticeable change to resonance peaks

at high frequency.

C. Test Result of Elastic Tubing

Experiments were run to determine possible effects of the elastic
properties of commercially available tubings on the pressure pulse
response. The setup of the previous experiments was used; the system
was air filled with the pressure kept approximately 1/2 psi. Instru-
ment volume was negligible.

Comparative studies were done on tubings of different materials
but constant inside diameter (1/8") in two different lengths, 3 ft and
10 in.:

1. rigid wall tube

[\

flexible 1/16'" wall, Tygon tubing*

3. flexible 1/32" wall, rubber tubing.

Amplitude ratio versus frequency of the above mentioned tubing is
shown in Figures 18 and 19.

The result indicates that - under tested pressure (1/2 psi) and
frequency range (0-300) - no significant difference between the most
flexible rubber tubing and the more stiff Tygon tubing. Their curves
are almost identical. However, some deviation from the rigid wall
tubing exists. This 1s probably due to the different coupling solu-
tion which had to be applied to connect the rigid wall tubing to the

pressure transducer and to the manifold.

*Tygon tubings with the thinest available wall (1/32'") were compared
with heavier (1/16") over a large range of tube length and I.D. No
noteworthy difference was found.



D. Phase Shift Analysis

The phase relations were calculated from the traces appearing on
the dual beam oscilloscope. A plot of this phase shift versus fre-
quency for various tubing I.D.'s having the same length (3 ft) is
illustrated in Figure 21. These curves show that the following general
characteristics are common to the response curves (Figure 20). The
phase angle shifts very slowly until the first resonance frequency is
reached. Almost no lag can be detected in the frequency range up to
10 cps (Figure 34). From thereon a rapid change occurs until it
reaches about 70° at approximately 40 cps (Figure 35). Then for a
short frequency range (40-60 cps) the phase shift remains almost con-
stant. The lag from thereon increases. The rate of change of lag-
angle with increasing frequency becomes more and more linear as the
amplitude ratio becomes nearly linear. The second detected resonance
frequency does not affect the linearity of phase lag. In case of a
shorter tubing (approximately 1 ft) (Figure 22), the phase lag shows
more linearity during first resonance frequency; however, it becomes
nonlinear as the frequency increases. During the second resonance

frequency the phase lag decreases (Figure 36).

E. Summary of Analysis

A general plot of the response of all 3-ft long flexible and rigid
wall tubes 1s shown in Figure 20. Tubes with small diameter which were
free from inlet restrictions show first resonance peaks predicted by
the theory. The tube with large I.D. where a coupling had to be used
and thus was treated as a tube system with inlet restriction shows no
first resonance frequency. The coupling, therefore, is very effective

in damping the resonance frequency as mentioned in (1, 8, 10, 15).
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Tubing with inside diameter less than 1/16" are free from first
resonance peaks, but their attenuation is progressing rapidly with the
increase of frequency up to 100 cps. The above experimental results
were well predicted by the simplified theory discussed in Chapter III.

The appearance of resonance peaks at higher (270 cps) frequencies
are not affected by either an inlet restriction or very small diameter
and/or length of the tubing. The response curves which were calculated
from equation (3.6) (Figure 39) indicates no resonance frequency in
this range. These peaks appeared always in the same frequency range
regardless of the tubing geometry. Therefore, it was concluded that
this is the resonant frequency of the system and it is independent of
the tested tubing. Because of the high frequency at which it sets in,
no special investigation was made to define them.

No commercially available tubings, including the most flexible
1/32" walled, showed any elastic property at tested pressure (1/2 psi)

and frequency range (0-300).
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Chapter VI

CONCLUSIONS

The response characteristics of short pressure lines to pulse
input were experimentally investigated. The results of the experi-
ment are summarized as follows:

1. For low air pressure applications commercially available,

flexible tubings can be treated as rigid wall tubes.

2. To obtain flat response, the shortest possible tube should
be used.

3. In order to avoid the phenomenon of low frequency resonant
peak, either small inside diameter tubing less than 1/16 inch
or larger I.D. with inlet restriction, should be employed.

4. Small I.D. tubings, 1/16 inch and less, have considerable
attenuation up to 120 cps. Tubes of large inside diameter of
1/4 inch with inlet restrictions showed progressed attenuation
to approximately 60 cps.

5. For practical applications where various tube lengths are
required, the optimum is found to be 1/8-inch I.D. with inlet
restriction to reduce resonance frequency. The effect of the
length on the response is minimum at this diameter. Slight
attenuation takes place.

6. Pressure is slightly affected by the tube characteristics

between 120 and 220 cps (Figure 24).
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7. The lack of a method for calculating the attenuation constant
o , limits the general application of the equations discussed
in Chapter III. The value of a 1is critical in computation
of the response curves (Figure 39).

8. In case of short length tubing of 1/2 - 3 ft after the first
resonance peak, the phase lag is nearly linear. In case of
very short tubing, 2 inches and less, the lag becomes non-
linear and tends to shift toward zero with the increase of
frequency.

The experiment is of use for dynamic pressure measurements at the

described range where the existing theories are inaccurate.
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APPENDIX

In Chapter III detailed theoretical anlysis is given to determine
the general response of pressure transmission lines to pulse input.
The theory is then simplified, assuming negligible instrument volume.
The response of flexible tubing was determined experimentally using
identical pressure transducers. Even though the reference pressure
transducer was kept at a practicable minimum distance (1 inch) from
the center of the manifold, it did not measure the true pressure
existing in the manifold. It is of interest to know the degree of
pressure change in case of such short connecting passage.

Because of the small volume of the connecting tubing, the internal
volume of the pressure transducer cannot be neglected. The instru-
ment impedance in such cases is a function only of its volumetric

capacity and can be written

i KPav

Z,=5 = =
4 JwC4 ng4

The characteristic impedance of the tubing as given by equation (3.4)
is

o & 55 _ 4(a + JB) ﬂKPav

2o ="y = JwnD2L

The ratio of these impedancies 1is

v, i 8
7> = o7 [(al)2 + (82)2]? {tan-l = (A-1)
4

N
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This impedance ratio appears in equation (3.6) and its value depends on
the ratio of the pressure transducer volume to the total volume of the
passage. Equation (3.6) 1is altered to include equation (A.1l), only the

values of real quantities and phase angles,

8 _ s 2071 :
5 = (sinh* ol + cos*BL) /tan"(tan BL tanh ol)
4
av, 5
* =7 [(al)2 + (BL)2]2 (ginh? ok

> 3 )
+ 8in?pL)™ tan"(zgz—ég—) + tan‘lfgd " (A.2)
tanh ol N

Equation (A.2) defines the ratio of the pressure amplitude at the

manifold end of the passage to the amplitude existing at the pressure
transducer volume.

In order to apply equation (A.2) to the reference pressure system,
the value of o had to be determined experimentally. In Chapter III
a was defined as an attenuation constant determined by the decrement
in pressure amplitude per length of tubing. In this present work a
was determined for a 0.035-inch inside diameter tubing (same I.D. as
the pressure transducer and manifold ports), 1 1/8-inch long. It was
found to vary with the square root of the applied frequency. Its
value is 0.022 /?'. Value of B was calculated from the velocities
of propagation in different I.D. tubings given in Figure 5, Ref. (15).
The value of free-zir velocity was rounded off to 1000 ft/sec. The
pressure transducer internal volume was 0.073 cubic inch, length of
the passage 1 inch and the inside diameter of the passage was 0.035

in ch.
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An I.B.M. computer program was written to calculate the reference
pressure system response, using equation (A.2) for a frequency range
0-300 cps. The result of the calculation is presented in Figure 38.

The computation was accomplished by a C.D.C 6400 computer at

Colorado State University Computer Center.
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Figure 12.

Pressure sensing system with the test tube
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