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Studies in Low-Order Spectral Systems

by

F. Baer

e ————

Colorado State Upiversity

ABSTRACT

A low-order system of spectral equations--representing in some measure
the physical properties of the atmosphere--has been shown to apply to both
barotropic and baroclinic flows. The system allows for an arbitrary zonal
flow and one planetary wave with no approximations for spherical geometry.
The analytic solutions in terms of elliptic functions have been described
and the required initial conditions have been clarified. The energetics of
both barotropic and baroclinic flows for the low-order truncation have been
discussed and a Fjortoft (1953) type theorem for baroclinic energy exchange

has been developed. The applicability of linear analysis to the nonlinear

equations has been shown and correspondence to the true solution established.

Some barotropic calculations are described and show a remarkable variety of

energy exchanges, depending on initial conditions and truncation.
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1. Introduction

Over the last two decades, developments in the prediction of atmospheric
events on the planetary scale have followed two trends of thought which are by
no means mutually exclusive. On the one hand, the more pragmatic view toward
prediction--which is ultimately the purpose of science--has stimulated the devel-
opment of models, their numerical integration, and the determination of their
success relative to observation. On the other hand, detailed investigations of
the individual characteristics of the atmosphere which determine the observed
flow -have-been—studiedby = number of téchniques, principal among which is the
method of linearization. There is indeed no gquestion that studies of the latter
type will provide valuable information for the direction in which the former
modelling developments should proceed.

The present study is designed to provide both a method whereby the details
of the nonlinear exchange process which occurs in the atmosphere may be con-
sidered in a simplified form, and also to indicate from some calculations the
complexity of those exchanges. Thus this study falls into the second category
described above; however, since it deals with nonlinear properties, the linear-
ization procedure is clearly inapplicable. The nonlinear exchange under con-
sideration is the physical process whereby atmospheric variables (momentum, heat,
etc.) are transferred from one scale to another by the flow field, and is des-
cribed mathematically by the so-called "advection terms'" in the equations of
motion. The exchange process is envisioned more clearly (at least by the writer)
from a wave space representation; i.e., by allowing the space dependence of the
dependent variables involved to be expressed in a series of orthogonal poly-
nomials. Such a representation, which also necessitates a set of time dependent
expansion coefficients, will result in the ultimate expression for the "advective"
exchange terms as a sum of quadratic products of the expansion coefficients.

The number of such products will be established by -the series truncation, in
effect the number of degrees of freedom desired for representing any space
dependent variable in series form. The multiplicity of such products, however,
again obscures tﬂé exchange process.

It was Lorenz (1960a) who first recognized that the equations representing
the motion, when expressed in terms of a series expansionf, could be signifi-
cantly simplified and yet retain their nonlinearity. The simplifying procedure
was to truncate the expansion series to a few terms. Remarkably, Loxrenz found
that with only three active components (expansion coefficients) the exchange

properties derived showed characteristics in common with atmospheric events;

1-Eq\.\alticns in this form are now commonly called "spectral equations' and
this terminology will be utilized in the sequel.



moreover, the time dependent solutions to the truncated (herein called 'low-
order") equations were given analytically. Unfortunately, Lorenz' system was
expressed in cartesian geometry and had limited applicability to the geometry
of the atmosphere. He had, furthermore, applied the analysis only to baro-
tropic flow.

An expansion which has more general applicability to the geometry of the
earth-atmosphere involves the solid spherical harmonics, and had been utilized
even before Lorenz' effort to represent the barotropic vorticity equation in
spectral (expansion) form by Silberman (1954). Following further studies
wherein this method was applied to the barotropic vorticity equation (BVE) with
many degrees of freedom, (Platzman, 1960; Baer and Platzman, 1961), Platzman
(1962), in common with Lorenz, discussed the various low-order systems which
could be solved analytically in spherical coordinates. The advantage of these
systems--the low-order expression of the BVE--is the accurate inclusion of the
curvature of the geopotential surfaces and the exact incorporation of the
Coriolis effect. It is one such system, categorized by Platzman as 'Class L3"
and involving interactions between an arbitrary zonal field and one planetary
wave, which will be discussed in detail in this study.

Although both Lorenz and Platzman considered the low-order systems with
reference to the BVE, it is a simple matter to extend the systems to a quasi-
geostrophic, baroclinic model with fixed static stability and applicable to
two layers (or levels). In this event, one may represent the flow by a verti-
cal mean and shear (following Lorenz, 1960b) wherein the interacting zonal
flow will describe the shear flow (the zonal mean flow will be seen to be in-
active) and the wave flow will be a combination of both mean and shear.

We shall present, then, a set of low-order equations which will be appli-
cable to both barotropic or baroclinic flow, depending on the definition of
the variables. The solutions to these equations will be given in detail and
their elliptic characteristics made evident. Since we deal here with an initial
value problem, the specification of initial conditions and its possible vari-
ation over atmospheric extremes will be discussed. Furthermore, because of
the profound truncation applied, truncation must also be considered as a per-
tinent variable in the solutions. One of the principal exchange character-
istics, and one which cannot be determined from linearized equations, is the
energy exchange between the zonal flow and the planetary wave. As the solu-
tions to the low-order systems are periodic, the energy exchange properties
over any nonlinear period may be--and are--discussed in detail. A particu-
larly interesting feature of this energy exchange is the observation that an
exchange theorem as stated by Fjortoft (1953) for barotropic motion involving
the exchange between different scale components is also applicable to the

baroclinic model herein considered.
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Although it has been cmphasized that the essential properties to be des-
cribed by the low-order systems are nonlinear, linear analysis does give some
indication of the behavior of the systems when the initial wave energy is of
perturbation amplitude, and stable solutions prevail. The potentialities of
linear analysis to the problem at hand are therefore investigated both with
regard to the information concerning the motions which may be forthcoming, and
also as a check on the nonlinear solutions. Finally, a number of calculations
with the barotropic vorticity equation are described and indicate the variety

of energy exchange which the low-order systems are capable of representing.

2. The Low-Order Equations

From the viewpoint of the earth's atmosphere, perhaps the most interesting
energy exchange process is between the planetary waves and the zonal flow, both
in the vertical mean and shear flow which are frequently defined to describe
barotropic and baroclinic effects respectively. Investigations of these ex-

_ changes by analysis of real data leave strong indications as to the direction
and magnitude of such atmospheric processes; see, for example, Saltzman (1958),
Kung (1966a, b) and Wiin-Nielsen (1967). From a theoretical outlook, such ex-
changes may be conveniently isolated (but clearly not completely described) by
the low-order systems and the corresponding exact solutions obtained therefrom.
Furthermore, by proper selection of the modelling equations, the '"barotropic"
and "baroclinic" effects may be completely isolated. The low-order system
obtained for exchange between the zonal flow and one planetary wave over a
spherical surface is denoted as the "Class L3'" by Platzman (1962) in his dis-
cussion of the spectral vorticity equation.

In the following development, all equations will be represented in their
spectral form. Since we are interested in the exchange between the zonal flow
and a planetary wave, we shall also break the dependent variables into their

zonal and wave components. This may be easily accomplished by the definition,

VO,u,t) = p o+ oyl

{i2. 1)
s 1 27
w(u;t) = -Z_TT‘ ,ro YdA

where ¢ is any dependent variable, A is longitude, and the bar operator denotes
longitudinal averaging. All variables will be non-dimensionaiized, in space
by the mean radius of the earth and in time by the earth's 1:tation rate The
Coriolis parameter will be defined by the variable f which is proportiona! to

u = sin ¢, the sin of latitude.



The procedure whereby the physical equations are converted to spectral
form has been discussed in detail by Platzman (1960) and Baer and Platzman
(1961) and will not be repeated. Very briefly, the technique is as follows:
each dependent variable is expanded in a series of solid harmonics with time
dependent coefficients. Because of the orthogonality of the harmonics over
a spherical surface, a set of ordinary, nonlinear differential equations may
be developed with time as the independent variable, and with the expansion
coefficients as the dependent'variables. Although both the barotropic and
baroctimicequations—to-bediscussed-may be-expressed—immedietely -in identical
spectral form, (see Baer and King, 1967), Qé shall expand somewhat on the

development for added clarity.

Barotropic exchange:

The barotropic processes may be determined from the barotropic vorticity
equation (BVE) which states that in any horizontal (or pressure) surface, the

absolute vorticity associated with a particle is conserved;

v2y = J(V2y + £,0) (2.2)

'm

o

t

In this equation, y represents the stream function and the Jacobian operator
is taken with regard to A and p respectively. The spectral form of the equa-
tion for the time rate of change of the expansion coefficients of the stream

function may be written immediately (Baer, 1964) as,

u,y = -iRmed)Y +aZB q)B\paIYBu (2:+:3)

=

where y ranges over all allowed index values. The indices (y,a,B) may be con-
sidered as vectors or complex numbers describing the ordinal and planetary

number of any component; thus, for example,

For the problem under consideration here, we choose an arbitrary zonal current,

b(u,t) =

< o~z

wY(t)YY(u) (2.4)



and two components in one planetary wave for which we shall usc the index
) =y (Y G +op (1Y G 3) (2.5)

where o, B have the unique values,

o =+ i%; B = ng+ ) (2.6)
It must be recognized that ¢~ is a real function whc;cas the expansion co-
efficients (wa’wﬁ) are complex; therefore in the expansion (2.5), the conjugu
values of the expansion terms must also be included.
Given the representations (2.4) and (2.5), we may extract the required
equations from the more complete set expressed by (2.3). These have been

written by Platzman (1962) and Baer (1964), and are,

dwY
il PR R

dy .

8 ;
— = -ifw P, + ) b by, + ) e vy (2.7)
at &

BYB Yhywﬁ y Yo

dwu
— = =i ¥ + TR - N
dt a’a ,Engd‘Y"a % yyve

The first of Eqs. (2.7) represents a set of equations and there are as many
as there are elements in the sum specified by (2.4). The solution of these
equations will be discussed in the next section, and the coefficients (constant

in time and space) will be defined subsequently.

Baroclinic exchange:

The simplest model which will describe baroclinic energy exchange is a
representation of the vertical structure of the atmosphere by two laycrs with
constant stability. Such a model, in which the quasi-geostrophic approximation
has been made, and in which the product of the divergence times vorticity as it
appears in the vorticity equation is approximated by a mean vorticity (Coriolis
parameter) has been given by Lorenz (1960b) in terms of the vertical mean wind

and shear wind (actually stream functions) and is represented as follows;



0% = 3% s £,9) + J(2T,0)
(2.8)

9
3 (P20 = {220 9%+ £y

In these equations, y represents the mean stream field and t the shear field,
both of which may be determined from the stream fields in the two layers by
addition and subtraction respectively. The Jacobian operator is the same as
for the BVE and r¢ is a parameter which depends on the mean Coriolis parameter

and stability in the form,

Hit

-
o
QFDNH

N

where - is a stability parameter and maintained constant. It is an easy matter
to show that in the model described by (2.8), the mean potential temperature
is linearly proportional to the shear (1) by virtue of the thermal wind equa--
tion.

As in (2.1) we again consider the flow to be given
averaged flow and in one planetary wave component. Rather than allowing two
components in one wave as was done for the BVE, Eq. (2.5), we allow only one
wave component for the mean flow (pressure averaged) and one component for the
shear flow. The zonal distributions of both the mean and shear flow may still

be arbitrary. The dependent variables are thus expressed as follows:

v=0ey Ty

_ N _ _ N

b=y (Y () T= ) (Y 0 (2.9)
X p f

9= v ()Y, () 7= 4 ()Y, (0w

The space dependent functions, Y, are the same as those used in the expansions
for the BVE, but the time dependent expansion coefficients clearly have a
different meaning, although they have intentionally been represented by iden-
tical symbols; the significance of this choice will soon become apparent.
Substitution of Eqs. (2.9) into (2.8), multiplication by an arbitrary
polynomial Y0 and integrating over the unit spherical surface yields the set

of equations for the expansion coefficients Wy, wY, ¢a, ws.



Let us first consider the equations for the coefficients Wy. Any change
of such a component must arise from the interaction of the wave components.
However, from the definition of the wave components (Eq. 2.9), the Jacobian

of the wave components vanishes; i.e.,

n
(=)

J(P27,07) = J(7,07)

"
(=]

IWeroy o) = I (7, T7)
by virtue of the fact that (see for example Hobson, 1955)

v = —eY
a o a
where c, is a constant to be defined subsequently. This result implies that

the zonal components of the vertical mean flow will remain constant with time;
WY = constant {2+10)

The time variation of the zonal components of the shear flow will also be
determined by the wave component interactions; but it can be seen from (2.8)
that these interactions involve Jacobians of the form J(V?t~,y”) which do not
necessarily vanish. The resulting equations for the zonal shear flow are,

from (2.8) and (2.9),

y, =28 1n y v (2.11)

e

The similarity between this equation and the first of (2.7) should indicate
the intent in the choice of symbol notation.

The time rate of change of the components by and ws will depend on the
nonlinear interaction between the components themselves and the coefficients
of the zonal mean and shear flows. Since the zonal mean coefficients are
constants (2.10 above), interactions with them will have only a linear effect.
Moreover, because of the earth's rotation, linear effects of the Rossby-
Haurwitz type are allowed. We may therefore consolidate these interactions

and write the following predictive equations:



de )
T -1lmbB + E wawa + g ey¢Y¢u

(2.12)
dy, i
T = iy, ¢ E gYwaa + g wasz

)

Again we note the similarity of Eqs. (2.12) with the corresponding Eqs. (2.7).
The coefficients of these equations, as those of (2.7) will be listed below.
In summary, then, we see from (2.7), (2.11) and (2.12) that the equations
governing the motion of a low-order barotropic or barocliric system, with
variables defined respectively by (2.4-2.5) and (2.9), may be written formally

by identical expressions which are,

wY = 2aY1m wawg

Vg = ~ifwgy, + ) bwawB + ] eywywu (2.13)
Y Y

wu = ~izwawq + g gY¢Y¢u + g fwawB

The dot notation has been used to indicate time differentiation and the asterisk
Tepresents conjugation. Since ¥ and ¥y are complex numbers, two additional
equations can be generated from (2.13) by taking the conjugates of the last two
equations. The significance of the dependent variables and the definitions of
the coefficients are listed in Table 1. Some of the quantities listed in

Table 1 require definition. The eigenvalues of the solid harmonics described

above Eq. (2.10) and defined as c, are calculated as follows:
¢,z na(na+1) i

In the baroclinic equations which involve divergence, the appropriate eigen-

value is given by da where

The quantity @ represents the mean angular velocity of the model atmosphere
above that imparted by the earth's rotation. The parameters w , wg describe,
for the barotropic atmosphere, the Rossby-Haurwitz wave speed. Similar ex-
pressions could be developed for the baroclinic model, but the term represent-

ing @ has not been extracted from sum of the constant WY components.



Table 1. Definition of variables in Egs. (2.13)
[ym— Brotropic  baroclinic
Y 25+#175°055<J Same
a n* iR Same
B n6+ il(nB#nQ) ng* il(nB= or # nu)
wY Zonal expansion coefs. Zonal shear expansion coefs.
WY -—- Zonal mean expansion coefs.
wa Wave expansion coef. Mean wave ecxpansion coef.
wB Wave expansion coef. Shear wave cxpansion coef.
a -c;l(cB-ca) Kty -d;‘(dﬁ-cu)}(uﬁy
w, -2¢;1(140) + 0 etz + J[%‘(cu—cy)k'lmwy)
g -2cé1(1+9) + Q -dél[Z + %g(de-cy)KBﬁywyj
b, icél(cs—cy)KBBY 0
e, icél(cu-cy)KBaY idél(ca-dy)KaBY
g, ic;l(co‘-cy)l(mY 0
fY ico“ll(cB—cY)KaBY Same

Since we deal with complex numbers, i = v -1, and the constants KuBY are pro-
portional to the interaction coefficients IaBY (Eq. 2.3) and have been termed

"'coupling integrals" by Baer and Platzman (1961). The integrals have the form

. dr dp,
Kagy = H_ Pl T - 4Py g3

where the functions Pa(u) are the normalized Legendre polynomials defined by

Platzman (1960).
chosen arbitrarily subject to the constraint that n s be odd, they should

It should be noted that although the indices D, M, may be



nevertheless be so chosen that wa and we are time dependent; otherwise, the
solutions become trivial. The basis for this choice is that the appropriate
coupling integrals do not vanish. The conditions for non-vanishing of the
coupling integrals are detailed by Baer and Platzman (1961).

The formal identity of the equations representing the two models under
evaluation in this investigation is not a unique occurrence. Many physical
systems may be represented in this way (see Baer and King, 1967) and thus the

solution for one will be applicable to all with a simple reinterpretation of

the variables.

Before proceeding to discuss the solutions of the system (2.13), it will
be of interest to see how the divergence in the baroclinic system is related
to the mean and shear variables of the flow. The Eqs. (2.8) have been written
in their compact form by the elimination of divergence from the thermodynamic
equation for convenience in arriving at the solution (2.13). In expanded form,
the equation for shear vorticity and potential temperature (written in terms

of shear) are, respectively,

]

— 721 + J(¥,9%1) + J(1,V%p + £) = foX

oT fo

—_—+ J(v,T) = —X (2.14)
ot r?

X—sz

where y represents the velocity potential of the lower layer. Since X occurs

linearly in (2.14) as does 1, we may assume the spectral expansion,

X=X+ X"

- = * Yk
3 XY, X7= XY+ Xo YR

><
n

The simplest procedure for establishing the values of XY and XB are to sub-
stitute the expansions (2.9) into (2.14), multiply (2.14) by a given Yo and
integrate both equations over the unit sphere. The resulting equations will
then determine the time variation of a given shear coefficient (since %%
exists linearly) which may be eliminated between the two equations, yielding
an equation in a coefficient of X. This procedure, using the orthogonality
properties previously discussed and the properties of the Jacobians, yields

the following results:

&



2 2
2r (cYﬂ:u LB)

z — 3§ 1, *
XY fodY kaBy e wuwb
(2.15)
s p2
5 ol o
X = e 4 b = 4 y
B dsfa [g (CB+Lu Cy)kubY¢Y¢a ($ CYKBﬁYVY ZM)w%]

It will become apparent in the next section, wherein we shall determine the
solution of system (2.13), how (2.15) may be solved as a function of time.

3. Exact Solutions

The general solution to the "Class L3" 3-component system has been shown
by Platzman (1962) to be given in terms of elliptic integrals. In our dis-
cussion, the system has been somewhat expanded in terms of degrees of freedom
by allowing for an arbitrary zonal field. Thus, since the wave components
(2,B) are both complex, they yield four real dependent variables, whereas the
zonal field {represented by (2.4) or (2.9)) yields N dependent variables. All
the N zonal variables need not be active, however, a fact which depends on the
non-zero character of aY as may be seen from the first of Eqs. (2.13). On the
assumption that there are N < N variable zonal coefficients, we see that the
system under consideration has N + 4 degrees of freedom. We shall show that
by a simple integration of the zonal equations, this system can be reduced to
a 3-component system similar to that described by Platzman.

A solution of system (2.13) may be determined through the use of real
variables by describing the complex wave coefficients using amplitude and
phase. Noting that the zonal coefficients are real and thus are represented

by amplitude only, we may make the following definitions:

va,BE Qma’s; v = Vi = vB
B . it
0
s et @8,y =B (3.1)
w8 g Y Y
0 = Oa_ GB

Using the variables Gée as defined in Table 2 and the definitions (3.1), we
may rewrite the system (2.13), after taking real and imaginary parts, in terms

of real variables alone.

11



B =aBB_sin§g
y af

B8 = _GBuBa sin 8
(3.2)

B = GaBBB sin 6

G B G, B
8 ——— ad B Ba
B+v = Gua'GSS + (—EZ——-- —EE—*

) cos 6

It is interesting to note that the solution does not depend on the individual
phase of each wave, but only on the phase difference of the two waves. Thus,
the degrees of freedom in the system are actually one less than previously

specified, or N + 3.

h

5 : . .
Table 2. Evaluation of the variables Gés’ 8500 s

G Gé: se hdc
_ a

i3 -i] b_B 4] b -ijst
v T ¥ o 3 ¥
] = ]

aa -i) g B ~i) — g ~i) s_g
g T y3n Y g 1Y
] I )

ad -i] £ B -] Lf i} s £
- T v Y s T2

. o ] ) a

Bu -i) e B -1y El-ey L0 syeY

y 'Y Y 'n Y

Consider now the zonal component with the smallest index y (because the
zonal coefficients are real, the indices y are also real) for which aY# 0
and denote this value of y by n. This choice is completely arbitrary, but
as will be seen in the sequel, it is also completely general. We then note
from the first of Eqs. (3.2) that each y-equation can be related to the n-

equation by the differential equation,

mt<m-
"
wlzw-

=<
=]

12



or, on integration,

a
B =§lB +'s (3.3)

The quantities SY depend on the initial values of the variables. Since all
amplitudes znd phases are known initially, the constants of integration may
be uniquely determined; we shall dcfer the detailed dependence of these con-
stants on the initial conditions until the end of this section.

““From (3.3) we note the linear dependence of B\ on B . Substituting this
relationship into the equations for Gde (Table 2), we have the linecar depen-

dence of G, on B_ as follows:
e n

se” Bse Bn ] héa (R

G
where the dependence of 85 and hée on the physical parameters of the system
have been defined in Table 2. For a complete evaluation of these parameters,
reference must be made to Table 1.

Substitution of (3.4) and the relations in Table 2 into (3.2) yields the
closed system of first order differential equations in time in the four vari-
ables Bn’ Ba, BB and 8 as follows:

B =aB B, sin 6
n o

n 8

BB - _(h8a+gBaBnJBa s 8

o (3.5)
o (ha8+ga83n)8B sin 6

B B
8 =
8 = -vu+g Bn;+'[(ha6+ga88n) Ba - (h8u+g6aBn) Bg ) cos 6
where
PR~ R ey
g = gaa_gﬁﬁ

If this system is soluble, we should be able, in principle, to reduce it
to a differential equation in one dependent variable alone. Thus, without loss

of generality, we may say that

13



BB = BS(Bn)’ Bu = Bu(Bn)’ 8 = O(Bn).

We then note, for example,

where the prime denotes differentiation with respect to Bn and we have sub-

stituted from the first of Egqs. (3.5). Applying a similar differentiation to

Ba’ substituting into the second and third of Eqs. (3.5) and integrating with

respect to Bn’ we have the quadratic dependence of B, BB on Bn as follows;

B
Do (o s n
By = (b e Bs) 3= * DB
A n
(3.6)
- Bn
e ('h;5+ga8Bn) 5; * Da

In (3.6) the quantities DS’ Da are constants of integration depending on initial
values and will be evaluated sub;equently. If we can now establish e(Bn) ex-
plicitly, we may derive a differential equation in Bn alone from the first of
(3.5). Multiplying the last of (3.5) by sin ¢, and substituting from the second

and third of these equations we get,
(cos 3) = Bn(cos g8)” = ((v—g Bn) - an(BaBB) cos 9]51n ¢}
Using the first of (3.5) and combining terms, we arrive at the equation,

B
n

L]

v-

(BQBB cos 68)7 =

:’W

which may be integrated to yield a solution for 6 in terms of Bn as follows;

a BB cos 6
na

8 G{Bn)

(3.7)
=5 - 8
G(B) = (V- £8)8B +K
where K is a constant of integration.
If we now square the first of Egs. (3.5), replace sin26=1-cos?6 and sub-
stitute for cos 6 from (3.7), we arrive at the differential equation for Bn(t)

in the form,

14



B2 = 22 w2 B? _ 2 -
B = al B2 B, - G DICE (3.8)

Since the right-hand side of (3.8) is a quartic function in Bn’ the solu-
tion may be determined in terms of elliptic functions. With the use of
(3.6) and (3.7), the coefficients bi may be defined as follows:

z g2 - Kl
bf, = anDaDB K

by = 2a (h gDy -hy D )-25K

s . : , o2
by = -4h ch, + a (g D,-g, D )-V2+EK (3.9)

by =gy - z(ha8g6a+ hﬁaguﬁ)

52
5 RV
by 4 gaBgBu

The constants of integration necessary for evaluation of the above co-
efficients are determined from the problem constants (Tables 1 and 2) and
initial values of the dependent variables denoted by zero subscripts, and

are listed below:

a
s, =B -2 Bn
Y Yo a, mo
2 Bn
= 2L 8
DB BBU+ = (gBaBn0+ ZhBa)
2 BnQ
= - -
Da Bao a, (gaBBno+ ZhuB) (3x18)

The general solution of (3.8) depends on the values of the coefficients given
in (3.9). The complete solution is presented in Appendix A. For purposes of
the text, it is only necessary to know that the solution Bn(t) may be written

15



Bn(t) = Bn(A,u,a,Bno,snmt) (3. 11)

The constants A, u, w depend on the problem characteristics and the initial
conditions and are defined in Appendix A; w represents the nonlinear frequency
of the periodic elliptic sine functions (sn) whose properties are described

in many texts (see, for example, Caley, 1961). The solution to Eqs. (3.5) is
compleéed by solving (3.7) for 8,

B - r—
9 = tan-! ([ —=2—) (3.12)

It may be interesting, however, to see the solution to the individual
phase angles 53» ei’ respectively. Since 6 is known, only one of these solu-
tions is necessarv. Writing the imaginary part of the second of Eqs. (2.13)
after substitution of (3.1), we have for OB’

(85,B,* Py, )G

<. Ban__Ba

By = gt Ma¥ Bpoly * 2 (3:13)
aB

n g

Since both G and B. are known functions of Bn, and Bn is given by (3.11) as a
3

function of time, this equation may be integrated formally. However, the in-

tegration involves elliptic integrals of the third kind and a detailed dis-

cussion is therefore deferred to Appendix B; the solution may be written,

nes— w

Sy (t) = By Ay ¥ (chF(;j,wt) + chH(;j,wt)) (3.14)

j=1
In (3.14), the coefficients are described in Appendix B in terms of initial
values and problem constants, the functions F are elementary integrals, and
the functions H are elliptic integrals of the third kind (see Caley, 1961j.
It is of particular interest to note from (3.14) that the phase angles Oy
OB’ do not necessarily havé the same period as the amplitude oscillations
(characterized by the frequency w) but merely have this oscillation super-
imposed on them. If we denote the characteristic period of the amplitude

fluctuation as T, where

and K is the complete elliptic integral of the first kind, then F (wT) and
H (oT) do mot necessarily vanish, and the phase periods may be calculated from
these values and A;. Furthermore, because of the probable disparity between
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these periods and T, the spacial distribution of the flow ficld need never be
repeated although the encrgy in each component is repeated with period T. This
point will be discussed in further detail subsequently.

For reference to the ensuing discussion, we now reiterate that the complete
solution to Egs. (2.13) for either the barotropic or baroclinic model are given

by (3.11), (3.3), (3.6), (3.12) and (3.14).

4. TInitial Conditions and Truncation

~ Characteristic properties of the solution (3.11) and consequently the
behavior of the system (2.13) as it reflects the true atmosphere will be des-
cribed in terms of the initial configuration of the system to be studied, since
(2.13) is represented as an initial value problem. However, sincc we are deal-
ing with a highly truncated system, the character of the truncation applied will
also affect the solution. We may therefore state that the following parameters

are necessary as initial conditions for solution of (2.13).

(a) Total available kinetic energy

(b) Kinetic energy in the wave

(c) Latitudinal distribution of zonal flow
(d) Wave number and profile

These parameters may be varied, thereby yielding solutions to (2.13) for differ-
ent atmospheric conditions. Aside from the specification of these initial
parameters, however, it is necessary--as indicated above--to establish trun-
cation by determining the wave vectors «, B and the allowed range of y. For
consistency in establishing different solutions, we shall always use for trun-
cation the wave vectors given by the initial representation together with a
zero initial phase angle for both wave components o and 8. The latter con-
dition may be made completely general if the initial specification of the zonal
field includes components which may be active but begin with zero amplitude.
The wave truncation is directly related to the initial specification, parameter
(d), and cannot be altered.

Let us now consider the initial representaticn in somewhat more detail.

Following the presentation used by the writer (1964), we will define the stream

field as,
wg = gQFﬂ(u) cos 2
= P = 4.
P () 2=0 (4.1)
¥
= 9 J
= _(qua+pBP8] cos £r L0
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where g, represents an amplitude factor for the zonal motion or the wave, and
Fg(u) describes the initial latitudinal distribution. The stream coefficients
in (4.1) may be determined by applying the orthogonality condition for the
Legendre Polynomials and result in the values,

T A0

, 4.2)
[ pPF

& L y Q(u).du

where v will represent «, 3 for 2#0. The kinetic energy in the zonal field and

the wave may be written

4.3)

= 20 95 + 26,0% 2#0
A <

The details of the energetics are discussed in Section 5. Finally, if the
energy and truncation are specified, the amplitude factors may be computed

as follows:

(4.4)

It should be noted that the zonal energy represents the shear flow and the a
and 2 coefficients represent mean and shear in the wave for the baroclinic
problem, whereas the «u and 8 coefficients represent two separate wave compo-
nents for barotropic flow.

In terms of (4.1) - (4.4), we may now discuss the details of the initiali-
zation. The process outlined is chosen so that systematic variation of para-
meters is easily achieved. It should be noted, however, that the numerical
specification of all the required stream coefficients is sufficient as initial

conditions.

(a) Total available energy

We have chosen to represent the total available energy to the system by

assuming that all the initial energy resides in the zonal flow described by a
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specified profile and an amplitude such that
u(t=0) = ugG(n) (4.5)

The distribution G in effect determines the factors AY from the relationship

between the stream field and the zonal wind
Fo(u) = f‘g (1-12) 26 (1) du
and the second of Egqs. (4.2). 1If we now set

go = -Ug

we may compute the initial zonal stream coefficients from the first of (4.2)
and the zonal kinetic energy (here the total energy) from the first of (4.3).

Thus we state that the kinetic energy of the system will be given as,
K = K(4p,G) (4.6)

following the calculation procedure outlined above. For the baroclinic prob-
lem, the profile and amplitude specified by (4.5) are for the shear flow, and
the zonal mean flow (not active in time) may be arbitrarily specified. Depend-
ing on the function G, some of the energy computed from (4.6) may not be avail-
able for energy exchange, as may be seen from (2.13) when ayso. Thus we may

define the initial available kinetic energy,

K = K-K
a u

4.7

K =7 cy? only for a =0

W= Le¥l  yonly £
Y

For the baroclinic problem, it would be more appropriate to include the avail-

able potertial enmergy also, since the available kinetic energy may change by

transfer of potential energy (see Section 5). Such a computation may be easily

achieved with the informaticn presented above.

(b) Kinetic energy in the wave

With the determination of the total available energy computed from the
specification of the zonal wind amplitude U, and profile G, we may describe the

kinetic energy in the wave relative to the total energy by the parameter p,
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g B (4.8)

For fixed K the energy may be partitioned initially between the zonal flow
and the wave, differently for different values of p. Once p is specified, K2
is easily calculated from (4.8). Given the wave profile (Aa’AB) we may then
calculate the wave amplitude from (4.4) and finally the wave stream coeffi-
cients from (4.2). Furthermore, since the zonal kinetic energy is given from

the totdl emergy-and that in the wave,
Ko = K(ug,6) - Kl

the zonal amplitude gp(p) and the zonal stream coefficients are computed in a
manner identical to the calculation of the wave coefficients, using the known

values of the Ay.

(c) Latitudinal distribution of zonal flow

The latitudinal distribution of zonal flow implies a specification of the
function G(p) as may be seen from (4.5). There are a number of ways in which
this may be accomplished, but perhaps the most general form would be a poly-
nomial in u=sin ¢. Since, however, we wish the zonal field to be symmetric
about the equator (an even function) and since we furthermore wish to have a
series which is easily represented by a finite series of Legendre Polynomials,

we choose the form,

M

GG = (1-u2)"igoa.1u2i (4.9)

The coefficients éi may be chosen so that the series represents the desired
zonal flow data. Integrating G as indicated in the equation following (4.5),
we find

M .
21+1

.y b
Fo = iZO% 241

Now since p?1*! pay be represented in terms of a series of normalized Legendre

Polynomials (see Platzman, 1960),

i
2i+12 (25417 2j+1 Y4j+3  (i+j+1)!
H (21+1)~j§02 (1‘])'(21*‘2]"‘3)! P21+1(U)
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the function Fy may also be represented as a series of Legendre Polynomials

of the form
M
Fo(n) = ZbJ.PY
j=0 j
v = 2541 ' (4.10)
Y M C s Iy
= 2 AT ¥ s (i)l
S S TR S e e LT T Ere e

i1=)

Finally we have from (4.2) that the parameters which specify profile, are

given as

A =28, (4.11)

Two zonal profiles have been studied and both apply for the barotropic
problem. One has been designed to conform to the observed, normal wind profile
for January at 500 mb and the other represents a split-jet. The observed jet
and the representations used are presented on Figure 1. To establish the ob-
served jet, it has been more convenient to use a less general representation of

the form,

GWp_g= (sin"3¢ cos?¢ + sin“2¢ - acos?é)cos ¢

(4.12)

where the conversion of (4.12) from (4.9) may be achieved by direct expansionf.
The distribution (4.12) allows for a jet with maximum around 30°N, and a choice
of 0=0.2 will establish the equatorial easterly with magnitude one-fifth that
of the maximum westerly jet, comparable-to the observed profile. The coeffi-
cients éi'for this profile (denoted A-J) are listed in Table 3.

The double jet (D-J) profile has been chosen from the representation
G(“)D—J= (sin?4¢ + 2sin?¢) cos ¢ (4.13)

and is described in Figure 1. The coefficients ﬁj for this profile are listed

in Table 3.

"The writer has developed a general formula for conversion of involved
trigonometric formulas to series of the form (4.9), but the details of this con-
version are irrelevant here.
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Fig. 1 Zonal wind profiles for a 500 mb distribution and two
distributions selected for computation, plotted on a relative
scale vs. latitude.

Table 3. Coefficients éj for the atmospheric-jet and split-jet profiles.

j A-J D-J
0 - 0.2 0
1 0.2 18
2 97 -80
3 - 545 128
4 1312 -64
5 -1632
6 1024
7 - 256

(d) Wave number and profile

The constraint imposed by the low-order system allows interaction between
only one planetary wave and a zonal flow. However, the selection of planetary

wave number is arbitrary and must be set as an initial condition. We must



furthermore specify the profilc paramcters A and A cither direc 1y or through
13

"
a profile function 1fk(p); thelr interpretation with regard to the barotrupic or
baroclinic problem has already been made evident. The profile furxction may be
interpreted physically as the latitudinal distribution of the meri dional wind
component at the longitude where the wave zonul wind component vam ishes.

It is immediately apparent that the wave representation is considerably
more constrained than that for the zonal wind field. Moreover, since the com-

ponents for the baroclinic problem are essentially independent, on< needs only

to determine the components A —and—A—for—the profTITS WHITH 4f¢ TO be investi-
gated. A somewhat greater degree of freedom is available for the barotropic
problem, wherein one may adjust profiles by a combination of the « and £ con-
tributions. Consider, for example, the profile

Ty 4y =
F (u) = sin "2¢ cos ¢ (4.14)

a representation used by the writer in a previous study (Baer, 1964 ). Such a
profile, with specification of T, and qy, may be easily varied for different
planetary wave numbers. On the assumption that we wish to investigate the non-
linear interaction of the longest allowed waves in the latitudinal direction
(given the planetary wave number £), that the wave should interact with the-
lowest active component of the zonal field (y=3), and that, furthermore, (4.14)
can indeed be represented by no more or less than two associated Legendre
Polynomials, we find from the definition of the polynomials (Jahnke and Emde,
1945) that the following restrictions must be imposed;

T, +q, = L+ ZSQ
(4.15)

2 =
,frg+qg L3

where s, may take on the values 0 or 1, as desired. Solving for rz‘and q,

from (4.15) in terms Vof“th‘e known quantities s, and %, we find for the profile

function,

3-25.)
F=2( L

/2 S
, H(I-12) (s, (4) Me?) (4.162

Expressing (4.16) in terms of Pa and PB and substituting into the second of

(4.2), the integration yields

o
o
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A= () “ep, (4.17)

(2+5-2s ) 2+1)! =
p,: 2 v L (o200 (2009)1)
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Fig. 2 Wave profiles for wave 2=3 including different combina-
tions of the polynomials Pi, Pg, presented on a relative scale
vs. latitude.
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To understand the limitations placed on the profile (4.16), several other
profiles have been tested by barotropic calculation. Figure 2 describes vari-
ous profiles for wave 2=3 including Fl (4.16) for s£=0, and variable coeffi-
cients for na=4, n6=8. The amplitudes of the coefficients are listed on the
figure and need not be duplicated in the text. It is noteworthy, however, that
(4.16) describes the longest wave--as intended--and that other allowed profiles
can be remarkably different, possibly leading to different solutions of (2.13).
Other profiles have also been used for calculation and will be discussed sub-

sequently. ‘

5. Energy Considerations

We have seen from Section 3 that the entire solution is dependent only on
the time variation of the lowest active zonal component, Bn' Thus it should be
possible to describe the energy (both kinetic and potential) as well as the
energy changes and the transfer processes in terms of this variable also, and
consequently in terms of time.

The kinetic energy per unit mass for the models considered herein and

described by (2.2) and (2.8) may be written as,
K = -[yv2ydA - [tv2tdA (5.1)

where dA represents an element of area on the unit sphere. Although t, which
describes the shear stream field for the baroclinic problem (see also 2.9), is
undefined for the barotropic problem, we may redefine the barotropic variables
so that (5.1) will be applicable to both cases. With reference to (2.4) and
(2.5), let ¢y in (5.1) represent the a-wave and the inactive zonal components
(those components for which aY=O). If we now let t represent the 8-wave and
the remaining (active) zonal components, (5.1) will describe also the energy
in the barotropic case except for nu=n8, a disallowed truncation (see Table 1).
The available potential energy necessary to satisfy the energy conserva-

tion conditions applicable to (2.8) is given as
P = r2f72da (5.2)

where r? has been defined in Section 2. Since there is no available potential
energy in the barotropic case, we define r? (barotropic) = 0.

Not only is the energy distributed between potential and kinetic, but in
each of these categories some of the energy is in the zonal flow and some in
the planetary wave. The distribution of the energy in all éategories may be

determined by introducing the expansions for the stream field, given by (2.4),

[}



(2.5) or (2.9) into (5.1) and (5.2) and performing the integration. The

results are as follows:

P=P + P (5.3)
K + P = const

In (5.3), K represents the kinetic energy in the zonal flow which does not
change with time (the mean zonal flow for the baroclinic case), KZ represents

the KE of the changing zonal flow (the zonal shear flow for the baroclinic

case), Ku and Kﬁ represent the KE in the o- and B-waves respectively, Pz Tepre-
sents the PE in the zonal shear flow and PB is the PE in the B-wave (shear flow).
Clearly the last two quantities do not exist for the barotropic case. Apply-

ing the relations for amplitude dependence on Bn from (3.3) and (3.6), we have,

K= cywi (y's for which a =0, the barotropic case)

K =) cB?=2¢C (t)] B2 =c_(kpzB? + k2B + k

5 é ¥ iyt )L o b22B] 128+ Koz2)
i w2 B2 = < = 2 k i

lZ =T 2 BY = (—_:: KZ =T (k?_an + 128n+ OZ)

(5.4)
K, = CEB; = c (k?ﬂB; + klan+ kog)

=
1}

. c B2 = cu(kyuBg + k1B * koa)

‘The cocfficients used in (5.4) which depend on the truncation and initial con-
ditions arc listed in Table 4.

We notc, immediately, that the potential and kinetic energies in the B-wave
(wave cnergy in the shear flow) are related to each other by a fixed constant,
r*c;‘, for all time. Similarly, by defining a mean eigenvalue for the zonal
flow, c¢(t), we may show that there is a relationship between the zonal kinetic
and potential encrgics. Although this relationship is time dependent, we may

establish limits on the ratio. From the definition of the eigenvalues cY



(Section 2), we note that they are positive and monotonically increasing for

increasing n_. Thus éY is bounded by tie values
c_(min) < c_(t) < c_(max
miay 2 (2] e lmax]

which is readily verified from (5.4). Thus the potential energy in the zonal
shear flow is confined by the kinetic energy in the shear flow. We shall dis-

cuss the significance of this result later in this section.

Table 4. Evaluation of the coefficients k’e

:\f 2 1 0

z T al)al 2] s_a_/a Y g2
¥ Y n Y YY n Y ¥

B “8ga/ % “Zhg, /3, Dg

@ gaB/an ZhaB/an Da

If we are interested in the combined energy in different components (zonal
or wave) it is simply necessary to replace the eigenvalue cY by dY' Thus, for
example,

K +P, = E dYB$ = ayg Bi

The formulas for the energy components (5.4) all depend on the dependent
variable Bn which in turn has been described in Section 3 as a periodic function
of time. It can be seen that the energy components have their maxima and minima
at the same times as the function Bn' They have, moreover, other possible ex-
tremes which are listed in Table 5.

For initial conditions appropriate to the earth's atmosphere, the extremes
listed in Table 5 do not seem to be attainable. Therefore, in the following
discussion, we shall concentrate our attention on the energy extremes which
correspond to the extremes of B, . Since we shall suggest in Section ¢ that
the initial phase angle between the o- and $-wave may be chosen as +p=0 with-

out loss of generality, for this condition the first of (5.2) shows that Bn
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must have an extreme at t=0 and, since it is periodic with period 4K/w=T,
it will also have an extreme at t=T/2 (see Appendix A for a detailed dis-

cussion of the constants).

Table 5. Extremes of energy components.

Component . Bn for Extreme
. 2
- x: —an c¥s¥a¥/z c\;fy
P -K12/2Kpg
K.,P. -k18/2kzg
K -K1a/2kog

The unique property of the nonlinear solution available here is the time
variation of the amplitudes of the individual components (or, equivalently,
energy components), a property not available from the linearized equations.
The maximum changes of these amplitudes may be found by calculating the dif-
ference between their maximum and minimum points. With reference to energy
components, such a calculation will specify the amount of energy which any
component can exchange with the other active components. For precision we
shall define energy range of any component as the value at its first extreme
minus the value at its second extreme. Since we have already seen that the
energy components have their extremes at the same times as Bn, and furthermore

that Bn has extremes at t=0 and t=T/2, we have for any energy component E,
_6E = E(B (t=0)) - E(B (¢=1/2)) (5.5)

Let us now define the mean and difference of the variable Bn at its extremes,

as well as similar quantities for the time dependent eigenvalue EY(t) as
B = Bn(O) + Bn(T/Z)
48 = B (0) - B_(T/2)
(5.6)

= EY(O) + EY(T/Z)

(= cy(O) - cY(T/Z)
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The latter two definitions are necessary to describe the range of the zonal
kinetic energy. If we now apply the range operator (5.5) to the different
energy components (5.4), we may express the maximum energy exchange in each
component in terms of the mean and difference of the basic variable Bn

(5.6) as follows:

2 . K. _—
8K = S8 (kpzB + kiz) + 25 (52 ((8B)2+ B2)+ KizB + ko)

ky2)

+

oP,= r?20B(kyzB
(5.7)

C
& B
AKB= CBAB(kZBB & le) = -—-rz APB

+

8K = ¢ 8B(kyaB + kig)

Since the maximum exchange of energy described by (5.7) depends on the coeffi-
cients kée defined in Table 4, we see that the initial values and the system
truncation are of primary importance in determining what these exchanges will
actually be. Furthermore, one may normalize the exchange values listed above
by the initial value of the time-dependent energy, thereby determining the per-
cent of activity of each component. Because of the relatively different magni-
tudes of the kinetic and potential energies, it is preferable to normalize the
kinetic energies by the total initial KE and the potential energies by the
total initial PE. The interchange between the different components of energy
and its magnitude may then be readily studied as a function of the initial
values and the spectral truncation.

As an example, as AB approaches zero, we see that the energy ranges approach
zero (except for the zonal kinetic) and thus the system under which this con-
dition prevails (AB - 0) may be described by linear processes. The non-vanish-
ing of the zonal kinetic energy implies a nonlinear transfer amongst the indi-
vidual zonal components. If, however, only one zonal component is allowed to
exist, Ac will vanish and AKZ will be proportional to AB. Furthermore, under
this last assumption, the kinetic and potential energies of the zonal flow will
be proportional by a time independent constant since EY(t)=cy=constant.

By using standard atmosphere temperature values, one finds that the non-
dimensional constant r?2 = 200. To measure the relationship of kinetic to
potential energy, we must compare r? with g for the wave energy and with Ey
for the zonal energy. Recalling that the eigenvalues (cy) are given approxi-
mately by the square of the latitudinal index of the solid harmonics ("Y)’ we

see that the two forms of energy are roughly equivalent for indices nr'13-14.

29



Characteristic zonal profiles of the atmosphere including jets are well
represented by coefficients with eigenvalues less than Cr=nr(nr+1) and hence
we may conclude that since cY<cr, the zonal potential energy will always have
more energy than the zonal kinetic. More specifically, it is rarely necessary
to include zonal indices nY>9. Thus we may say that in the models considered

in this paper,

Kz s %pz

o

which is also observed in the atmosphere (Wiin-Nielsen, 1967) and in less
truncated general circulation models (Phillips, 1956; Smagorinsky, 1965, etc.).

For the planetary waves, we See that the potential energy of the longest
waves will be considerably greater than the kinetic, whereas for shorter waves,
2>12, the kinetic energy will exceed the potential. For very short waves, the
kinetic energy will dominate, but the approximations made in deriving this
system (Section 2) may not be appropriate to such small scales.

The average properties of the energy exchange are described by (5.7).
However, since we know the solution for all time, it is possible to describe
the instantaneous exchange at any time. For convenience of notation, we shall

define a time dependent variable, RY such that

R =2K_. BBB sino=—ELp3}
Y aBy a By a, Y n
. (5.8)
-2B d a2 das
= n ( YYR 4+ XYY )
d,-c 2 n a
B a a4 n

where the dependence of RY on Bn has been established by use of (3.3). On

summation over all y we have that

-2B d a?
A(t)=ZR——-——“ZYaY(B-B ) (5.9)
- y d,- a2 n  zex :

Y B "oy “a

where Bzex represents the value of Bn at the time when the total zonal energy
(PE plus KE) would have an extreme value, not including the points ﬁn=0. This

extreme value,

zex ~ Z 4. 42
YYY

3Q



has already been discusc: = (see Tablc of cnergy extremes.

Thc function A(t) is clearly a period o function of time with period T
and changes sign where Bn=0. From limitced computations which show that the
energy does not reach extremes other thon at extremes of B”, we may assume for
the subsequent discussion that I)n docs not generally take on the value l':,ux
and hence that A(t) cianges sign only once during 2 period (provided that

én(0)=U). Let us further define the sum,

}‘ c R, ,___Q;_(t).»\{f\ R ~t5710)
Y

T
where c;(t) is an averaged value of the ¢ weighted by the RY and is not
4
necessarily bounded. We shall, however, concer: ourselves primarily with

times at which

£ ehit) 2 ¢ (5.11)
Y

To discuss the instantaneous energy exchange, we now write the time rate

of change of the energy components listed in (5.4):

g o Cote -¢
KZ =cA - CBA -r< T RY
¥
o Lo €7, 7C
P = _r2A +r;2 a B p
z § d ¥
¥
. (c,-c_-c*)
K, = -c A +C*A - i i Y
8 o Y d
B
. (c,-c -c*)
P = r2A . B o vy A
B - - . d
B
l.( = A ~C*A )
.- S <., S b S
(5:12)

These equations are derived by differentiation of (5.4) and substitution of
(3.2). The barotropic exchanges may be seen clearly simply by setting r=0.
The contributions from divergence listed as the last terms in (5.12) and
describing the exchange between potential and kinetic energies in the zonal
and wave separately, may be calculated from the vorticity equation and thermo-
dynamic equation as represented by (2.14). If the first of (2.14) is multi-
plied by t, the second by r?t, both integrated over the unit sphere and (2.15)

substituted for the divergence coefficients, the divergence terms of (5.12)



become apparcnt. To cxamine the nature of this exchange in more detail, let
us assume that

(cv+cu~ce)
2y S G HR e * -
x5 3 RY (cy +c, CB)A (5.13)

4 ¥
based on our earlier observation that we may truncate y with reasonable fidelity
to atmospheric zonal wind profiles such that cY sk r?/2. Recalling the con-
straint on active y-components given by Baer and Platzman (1961),

“

‘n-n.! ~n < n_+n,
R

thereby establishing the maximum and minimum values of nY as

noo_. in_-n,]|
v min i -
n n +n
max a o
Wi may write
t + for n >n
<
€ ~c. % 2(¢ c . a
52 ( yomax oy mln) B

- for n <n
a B
(5.14)

)

c +c., = z(c o +C .
I ¥ max Y min

Substitution of (5.14) and (5.13) into the divergence terms of (5.12)
now allows us to establish the exchange of energy within the zonal and wave
separately. Subject to the condition that c;>0 (considerably weaker than
5.11) and A(t)-0 which occurs during half the time period, Table 6 describes
the direction of this energy flow. Clearly for the other half period when
A(t)<0, these directions are reversed.

We note from this table that if the shear wave is longer than the mean
wave (na>na), the direction of flow does not depend on the magnitude of c;,
but only on the sign of A(t). If, however, the shear wave is shorter, we see
that the direction of flow from PE to KE is the same for the zonal and wave
except for the restricted range where

s

c. . . ¢ < e* < 4(c . (<
y min y max % y max y min



Table 6.

c;>0 and A(t)»0

Energy flow within zonal and wave for different values of

Range Zonal B-wave
n,>ng ng>n
*</__———_—_ = - e P 12
Y -Symin®y max 1 Yool K . 5Py
Cy maxcy min
* D ' 5
Cy Kz_)pz Kz+lz l,\B‘Pb
<
%(CY max+cy min)
c*>z(c +c_ L) K_-P K_»>P K P
Y Y max "y min zZ 'z z2 z B

The entire energy flow diagram, listing all five energy terms defined in

(5.4) may be seen from Fig. 3.

The direction of

flow shown in the figure is

based on the condition that A(t)>0, c;>0, and the choice of transfer within

the zonal and wave can be established from Table 6.

is described by simply ignoring the boxes for available potential energy.

2
R r‘A P,
<5
Cy A
K, =
&
Ka

Fig. 3 Energy transfer diagram for all possible energy forms
based on the conditions that A(t) > 0 and c; > 0 (see text).

33

The barotropic exchange



Applying the following replacements to Fig. 3,

K. *K+P

Z zZ 2z
'KB + KB+ PB (5.15)
¢ +c*.z ¢ -2

[¢] o} a
the lower three boxes will also describe the exchange of total energy without
listinguishing between potential or kinetic.

When approximation (5.13) is substituted into (5.12) and one considers the

cycle during which A(t)>0, it is easily seen that the zonal kinetic energy de-

creases whereas the shear wave kinetic energy (KB) increases. By combining the

kinetic and potential energies, the following equations result:

Ez = Kz + 11'z = (c; - CB)A H (c;)

E = i p = T 5

EB 5 W PB (CY ca)A (CB) (5.16)
£ = K & e . *

Eu = Ka ((:B CY)A : (ca)

The quantities in parentheses after the colon in (5.16) may be considered as
"modified eigenvalues" associated with the energy function which each follows.
Equations (5.16) then state that energy will flow into or out of the component
whose "modified eigenvalue' is of intermediate value, at the expense of the

other two components. This result is identical to one derived by Fjortoft

(1953) for the two dimensional barotropic model and compares here to the case

where r=0 and c*=¢c . Certain observations may be drawn from this result.
a o y

(a) When the energy-of the wave mean flow is in a long wave, i.e.,
ca<r2, c; will be negative and on the assumption that c;>0, the mean wave
energy will neyer be the sole recipient of energy fromthe other two (shear
energy) sources, or vice versa. - B

(b) If the shear wave energy resides in a wave shorter than or equal to
the mean wave energy, the "modified eigenvalue" of the shear wave will always
be greater than that of the mean wave, cB>c;.

(¢) In application to typical atmospheric zonal wind profiles, if the
energy in the shear wave is not in too long a wave, both the mean wave and the

shear wave will feed the zonal energy and vice versa; i.e., cZ<c;<cB.

The above results, especially with regard to maximum energy transfer dur-
ing a half period between extremes of B(t), may also be derived by invoking

the concept of conservation of potential vorticity appropriate to the baro-
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clinic model discussed herein and following the technique utilized by

Fjortoft (1953).

6. Linear Analysis

One means of linearizing system (2.13) which has real physical signif-
icance, and whereby some of the characteristics of the system may be simpli-
fied, is to assume that the energy in the wave components (a,B8) is of per-
turbation amplitude in comparison with the zonal energy. Since we have shown
in Section 5 that the potential energy is roughly proportional to the kinetic
energy, no loss of generality will ensue if we confine our discussion to

kinetic energy. In symbolic form, we may say that

V¥ ¥ ¥ Y ¥
v =V by << by (6.1)
Vg = v by << 0,

where the barred zonal coefficients may be represented by the initial con-
figuration and the primed quantities will be considered perturbations. It is
important to note that the perturbation wave coefficients are small with regard
to any of the zonal coefficients allowed by the truncation (see Section 4).
Following customary linearizing procedures, we shall neglect all second order
or higher terms (products of primed quantities) on substitution of (6.1) into
(2.13). It is immediately evident that the perturbation changes of the zonal
coefficients cannot be calculated directly from the differential equations,
since the change is of second order, but we shall see that the first order
changes (implied) can be established from the energy relations. The wave per-

turbation equation may be written
Vg = -ing¥gt 1Gg ¥,
Yo = -in vt 16 g¥, (6.2)

n8 £ vB-GBB’ etc.

The barred quantities, GBB’ etc. can be established from Table 2 by substi-

tuting the initial values of the zonal coefficients and holding the terms

constant,
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System (6.2) is a linear homogeneous set having two frequencies

Y o= elot) which satisfy the quadratic equation,

2 EE -
0% + (n tnglo + n ng- G G =0 (6.3)
he two frequencies are therefore

Ua b=01 * 0y
3
(6.4)
n_+n _ i
oy = - “2 2 3 Op = %((nu—ne)2 + 4GaaGBu)2

le first observe that this system is capable of instability which depends on
he initial zonal configuration and the wave number and wave profile. The

:ondition in terms of the problem parameters is

{ stable

e T I e A
46,5054 2 ~(ny-np) unstable

‘or the barotropic problem, this stability criteria should be contrasted to
chat given by Kuo (1949), which may be written in terms of spherical geometry

is

& (A-u®)%u)-2 = 0
dy?
there yj Tepresents the initial zonal wind distribution. The disparity be-
:ween the two conditions is apparent in that Kuo's condition depends only on
:he zonal configuration and not on the wave.
The condition for instability with regard to the baroclinic problem may
be compared with that established by Phillips (1954) for a 2-layer mode. and

written
*
V2(aa*)2(4-( 5-12) > (552
2
where V represents zero-order value of the zonal wind shear and o« is a char-

acteristic wave vector as defined in Table 1 (Phillips deals with only one

wave number in each of the two horizontal dimensions).+ The stability

TThe asterisk denotes conjugation throughout this manuscript unless
otherwise defined.



properties of the low-order systems (both linear and nonlinear) are currently
under investigation and will be discussed in a subsequent report.

We shall, for the remainder of this section consider only stable solu-
tions with the implied condition that o, is real. The complete solutions for
the wave components wa‘ ws require a specification of their initial values
and must depend on both frequencies; they may be written as

- eiclt(Aeiozt+Be-i02t)
(6.5)
iojt io,t -iost
vg = € 71 (a1ae” 72 g, B0 2"

Substituting these equations into (6.2) and evaluating the equations at t=0
when wu= wao’ w6= wﬁo’ we find that the coefficients q do not depend on the

initial values of the dependent variables,

q; = EEE__ - a"y
°a+"B Gus
(6.6)
. b0 _ %"
%*g  Gyg

whereas the amplitude factors A and B depend on the initial values as follows;

Q2wao-w ie

= 8o [ale 2
q2-9q1
£6:..7)
Qv ¥ i6
s a0 B0 = ]Ble b
q2-91

The latter definitions for A and B imply that the initial phase angles need

w0t vanish. More specifically,

Im(qzwuo- weo)

a” Re(azv, - ¥g,)

tan ©

>t us now use (6.5) to establish the energy variations with time for the

.nearized system. We have for the a-component,
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K =2cypyp*
a’a'o (6.8)

= ZCQ(IA]2+|B]2+2]A]]Bl cos (205t + 6 - eb)]

If we now create a new time variable which is linearly related to t by the

equation

202

we find the equation for the energy in the a-wave,

K, = 2¢ (|a]2+|B|2+2]A[ [B] cos 20,t7) (6.87)
Since fhe frequency (20,) is the sare in both (6.8) and (6.87), and since
(6.8) has an identical form to (6.9) for zero initial phase angles, we must
conclude that except for a shift in time of the maximum and minimum of the
a-energy, the selection of non-zero phase angles does not contribute infor-
mation to the solution of (6.2) different from the more simple condition of
zero initial phase angles. We shall see subsequently that the other energy
components (8,y) have the same time dependence as (6.8) and thus need not be
considered in detail in this discussion. Our selection of zero initial
phase angles as initial conditions to the nonlinear problem (Section 4) and
our confidence in the generality of those conditions is based on the above
results from the linear solution. A complete proof would, of course, re-
quire direct analysis of the nonlinear equations.

Returning to the discussion of energy variations, we note from the defi-
nition of the 3-wave energy in terms of wﬁ, Eqs. (5.4) and (6.5), that the
time dependence is identical to (6.8) which describes the o-wave energy. For
the zonal energy, multiplying the first of (2.13) by 2¢Y, ignoring the vari-
able part on the right-hand side (pr-h}Y), and integrating, the variation may
be given as

KY = 4cyaYﬁyfIm Y Edt + const. (6.9)
which is a second order variation. Assuming now that A and B are real--based
on our observation that zero initial phase angles are completely general--and

substituting (6.5), (6.6) and (6.7) into (6.9), we find

K =4) cad éﬁ_ cos 2a,t + const. (6.10)

Z
: L Gap
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" With this presentation of the different energy components, we may investigate
the range of energy variation (maximum energy exchange) as defined by (5.5).
Since the extremes occur at t=0 and t=r/20,, we have from (6.8), (6.10) and
the B-energy relation,

Jcia
OK = -8 —Y Y Y g
4 G
af
Cﬁu
BKg = Bog ==— AB . (6.11)
- af
AK = -8c AB
o o

The dependence of the exchange on the level of total energy (Ugp) and the rel-
ative energy in the wave (p) may now be established from the product AB. The
initial stream coefficients used in A and B may be represented in terms of an

amplitude g, and profile parameters Aa, A, as seen from (4.2). Combining this

B
form with the definition of p, Eq. (4.8), and the dependence of K% on g, from

(4.4), we find
g
7% ¢

7<l N?(

2 2
G0 ¥ Sk

such that

AB = -pS
(6.12)

2
GaB K

8 & et oo B2 w88 Dyvugih A
AN D (010242 + AZ - (q1+q2)A A,)

In (6.12), K represents the zero order energy initially placed into the system
and does not change for variation in p. Therefore we see that the maximum
energy exchange among the components is linearly proportional to the relative
amount of energy in the wave components. In the limiting case of no initial
snergy in the wave--i.e., p=0--no motion would occur, a result which is evi-
lent also from Egs. (2.13).

Whereas the energy range (AK) is linearly proportional to p with zero
ntercept, the slope of the line is dependent on the amplitude up. Noting
Tom (4.2) that the initial zonal coefficients (@Y) are proportional to Ug
nd the profile parameters Ay, and from Table 2 that EuB’ CBa are propor-
ional to the ﬁy, we may observe from (6.11) that the variation of slope with

y is incorporated entirely in the function S (Eq. 6.12). The definitions of
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q; and q, from (6.6) yield required coefficients in the function S, (6.12),

in terms of known quantities as follows:

i V+GBB'€au st s,up
q; * q2 = z = o
ol Yo
C\u Z e A
1B e L
G Vra
e Y Y
(6.13)
g : L o )D+ & B = Eéi ( o) -?)
: sl g 28%0” 332 (s1+spup)°- 4q192up
a3 C
KN = T .« \'\
where
P Z (g ~b )A
$.f ;5 s — L1 (6.14)
Pif A L £A
L YooY Y'Y
We consider ., as defined by (3.1), to be independent of Uy because it does

not depend on the energy available for exchange. Substituting the results of

(6.13) into (6.12), the u; dependence of S is shown to be

: 2 5 ®D . 2.
g | L Gy =3 (419247 + Az - S2A Ag)uo- S1AAg
= 0

T 2(c AT 4 c.A)
a2 @ 2B

(s1+s200)2 - 4q;q205
(6.15)

This is not a simple formula. We may, however, note that since we have
chosen to consider only stable solutions, o% will not change sign and there-
fore the denominator will also be of one sign for all allowed values of ug.
The slope will change sign, however, about the critical value of ug,
ug(c) = ?IAGAB =
QIQZAé + Aé - s2A A

When p=up(c), the linear system is inactive, independent of the value of p.
Such initial conditions have been observed in calculations of the nonlinear
system and will be discussed in the sequel.

To describe the comparison between linear and nonlinear solutions, Table
7 has been prepared, based on calculations with a given initial state but

variable p. The initial configuration applies to the barotropic problem with
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the atmospheric jct described in Fig. 1, for wave £=3 and profile given by
(i.17) with 5.-0. ‘Three amplitude valucs (ﬁo)+ have been chosen to show the
var.dation oi solutions both with ¢ gﬂg ﬁg. We have chosen to describe the
ciergy rarge in the o-component; the ranges of the other components are avail-
:b1e gand computable from 6.11) and show similar variations. The linear

“'ope dJdescribed in the Table is proportional to S and is given as

8¢ S

Lincar Slope =
K

The error in the linear solution, described as the difference between the
exact and linear values normalized by the exact value and represented as a
percent, follows an expected pattern. For increasing values of p, the lin-
eariczation hypothesis becomes less and less valid. Although the activity of
the .-wave increases for increased energy in the system--larger u --the errors
decrease slightly. We may conclude, therefore, that for p<<l, linear calcu-

lations give a reasonable approximation to the nonlinear solutions.

7. Phase Characteristics and Other Flow Properties

The phase angles, 33 and 63, may be calculated as functions of time, as
described in Appendix B. These solutions indicate that the angles need not be
periodic with period T, although we can see from (3.12) that their difference
(9) must. If we assume that the phase angle periods differ from T (the non-
linear energy exchange period), then as already proposed, the spatial distri-
bution of a wave component added to the zonal field need not show a repeating
pattern until a modulation cycle between the energy period and the wave period
is completed. This is especially true in the barotropic problem where the
wave configuration may be more complicated.

For the baroclinic problem, the wave tilt with height is immediately
calculated from the phase angle of the shear wave, OB‘ If, moreover, one
assumes that the wave vectors a and B are equal--which does not imply that
Gu and OB are equal--then the wave has only one component, PGL = PB, and no
horizontal exchanges will exist. Such a condition applied to the barotropic
problem would yield trivial solutions.

Although the equations for the individual phase angles are reasonably
complex, we may draw certain conclusions from 6, their difference. For con-

venience we repeat here the variation of 6 with time,

1-All variables in this report have been nondimensionalized using the
earth's rotation rate for time and the mean radius of the earth for space.



e

tan 0 = -% (3.12)

The variation of B has already been established, and since it is periodic
with period T, it has a limited range. There are three possibilities for the
variation of G(Bn) in the range mT < t < (m+l)TT and they depend on whether

G has zero, one, or two roots in the allowed range of Bn. Since we have
selected 8 = 0 at t = mT, it will also be zero at t = (m+})T. The range of

6 may be summarized in terms of the number of roots of G and is listed in
Table 8;' We ha&évnoted tﬁat 6 must pass through zero at t = (m+3)T; thus

6 remains either positive or negative during one half period and reverses its
sign during the other half. The direction of 6 at the beginning of the period
is also specified in the Table. Aside from the information on the position
of the wave components relative to each other during the period which Table 8
yields, we shall see how the variation of 6 is related to the variation of

other flow characteristics.

Table 8. Range of 6 in terms of the number of roots of G in one
nonlinear period and direction of 6 as t increased from mT.

No. of Roots 0 i | 2

< @ < % 0<8<€2n -m <6 <

N =

Range -

Bn(mT) min.; G(mT) > 0

o(mT + €) >0 {

Bn(mT) max.; G(mT) <O

Bn(mT) max.; G(mT) > 0
e(mT +€) <0 {

Bn(mT) min.; G(mT) <O
g << T

Phase frequencies may be calculated directly from (3.13) once Bn is known.
These frequencies include the Rossby-Haurwitz contribution, Vo, & linear con-

tribution, h based on the jet configuration and a nonlinear term. The

aa, BB’
frequencies clearly undergo a periodic variation with the same period as Bn.
They have maximum and minimum values at the same times as Bn’ but they may have

other relative extremes depending on whether or not 0, g™ 0 in the allowed range

+In this discussion, m may take on any integral value.
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of Bn' Differentiation of (3.13) with respect to Bn and setting the result-
ing equation to zero will yield a quartic equation, the roots of which will
represent the values of Bn (or T) at which the phase frequency will have
extremes. These values may then be compared with the allowed range of Bn
to determine whether extra maxima or minima do indeed exist.

Let us now consider the horizontal distribution of the wave at any time.
We shall focus our attention on the barotropic problem since the wave dis-
tribution is more complex, but the results can easily be extended to the mean
wave field of the baroclinic model. We have from (2.5) and (3.1) that

L (,e,t) = V2 (BaPu cos (LA+0) + BoP cos (u+06))

(7.:1)

from which we may determine the meridional velocity component after substi-

tution of the definition,
= in s 8 (7.2)

and recalling the definition of & from (3.1). The resulting equation for

meridional velocity v is,

- .2y~% 3y°
v [l=a5) "
(7.3)

1
- Y ; :
= /2 1(1-19) ((BBP + B P cos 6)sin e + B P sin 6 cos e)

B

Since the trough or ridge line is defined as the longitude at which the motion

is zonal, the trough (ridge) longitude, Atr’ is given from (7.3) by

B P sin 8
a o

tan €. (1st) = - 5 cos 6 + B.P
a o B B

(7.4)

We see immediately that the latitudinal dependence of Aer is related to 6,
for when Bn is at an extreme, and hence 6 = 0 or m, the trough (ridge) is
north-south. The slope of the line is related both to the magnitude and sign
of 6 and can be evaluated as follows. Differentiating (7.4) with respect to

u, solving for the variation of Atr and using the first of (3.2), we find
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dx d tan ¢
&

tr _ o]
du 2 du
2(l+tan Ltr)
(7.5)
B PP, - PP’
__n a B B a
fa 1wsl?

i0
. o
n {BaPue + ngﬁe

Eq. (7.5) indicates that the trough slope goes through a periodic cycle,

béginning with no slope at t = mT (north-south), bending to one side for
one-half period, returning to zero at t = (m+3)T, and then bending to the
other side for the second half period. Since the numerator of (7.5) may
have roots in the allowed range of u, the direction of the trough linec at
any time w1ll be a functlon of latltudc and may Lhange 515n

The transport of momentum across a latltudc circle has becn shown to
depend closely on the slope of troughs and ridges (Starr, 1948) and thus to
the development of jets and barotropic instability. Continuing our dis-

cussion of the barotropic problem, the momentum transport may be defined as

2m
- 2%
M= 5 jo uv(1-p<)* da
(7.6)

1-
_ Q-ps)® u f 5%_3% a

We again use the wave stream function y~ from (7.1) since it is apparent
that the zonal components will make no contribution to the integral. Sub-
stituting e and 6 for CH and 08 and performing the required differentiations
. SRR B R By L) e Ll

B

M= R P - PP (147

[

(7.7)

::l

The momentum transport is therefore periodic with period T, zero at t = mT,
(m+})T, and opposite in direction during the two half cycles. Rather than
discuss the details of (7.7), we shall show that the momentum transport is
directly related to the tilt of the trough. By combining (7.7) with (7.5)

we have,

dxtr
du

M= (»2(1- u?)lePe a+BPe198|?} (7.8)
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The results of this analysis, which show the momentum transport linearly
related to trough slope with the same sign, are in complete agreement with
general theory.

Finally, we may consider the mean square vorticity for both the baro-
tropic and baroclinic models. For the baroclinic problem, the conservation
condition must be converted to conservation of potential vorticity. In
spectral terms, this modification is trivial, implying merely that we sub-
stitute dY for cY as eigenvalues. From the basic Eqs.'(2.13) we find,
therefore, the mean square vorticity (the squared vorticity integrated
over the entire field) to be given by the relation,

F=Zd$B$+c§B§+d§B§ (7.9)
This parameter must be conserved for the flows considered herein, and the
constraint thus imposed has already been implied in our discussion of energy

exchanges in Section 5.

8. Some Barotropic Calculations

The properties of the low-order system (2.13) have been discussed in
general terms by various methods in the preceeding sections. The exact vari-
ation of the system will be described only by applying specific initial con-
ditions to the solution as outlined in Section 3. There are, however, an
infinite variety of initial conditions which could be considered. We con-
sequently confine our attention tc a discussion of the barotropic problem
with a limited range of initial conditions. Those conditions, as we shall
see, confine the energy of the system to the range of atmospheric possibility,
the zonal wind configuration to realistic flows, and the wave configurations
to simple distributions for the long and medium scale waves. In all calcu-
lations, we shall investigate the changes in the system due to variations in
o (the relative energy in the perturbation) while maintaining the other
initial conditions invariant. We may then expect to observe, over the range
of atmospheric conditions, the variability of the model solutions.

In the calculations to be discussed, five different amplitudes (uy) were
used, three with the A-J (see Section 4 for definitions) and two with the D-J.
These amplitudes have been used together with the jet profiles to give an
average energy K (see 4.6) for a layer of 50 mb in units of 10%Joules/m?.

The choice of these units was established to compare with the values given
by Kung (1966) for winter, summer and aznnual mean of 1962, all of which have

been listed together in Table 9.
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Table 9. Mean kinetic energy used in calculations and observed
atgospheric values (Kung, 1966) for 50 mb layer in units of
10°Joules/m?. Observed values have been averaged between 900-

100 mb.
l_lo Jet K
.075 A-J .340
.135 A-J 1.10
R L/ . e A=J 4.57
.067 D-J 1.34
.133 D-J 5.3%
Observed values: Kung (1966b)
Summer 827
Winter 1.46
Annual Mean .948
Layer Extremes .130 - 3.01

"It is evident from the Table that the range of energy chosen for calculation
effectively straddles the values observed in the atmosphere. One could
reasonably extend the range of the calculations, but the results from the
values of energy actually used may be meaningfully compared to atmospheric
events.

The zonal profiles used in the computations have already been described
in Section 4 and depicted on Figs. 1 and 2. The A-J is clearly applicable to
the real atmosphere by definition, whereas the D-J was chosen more for sim-
plicity of representation than for reality. A more realistic D-J would
require too much resolution in the zonal coefficients and consequently work
counter to the low-order concept. Nevertheless, the computations with the
selected D-J should be indicative of the interactions which might take place
in atmospheric flow with a double jet.

Having established the variations on the zonal flow, we now consider the
initial wave profiles. The wave energy will be considered, as suggested pre-
viously, by allowing p to vary over its entire range (0<p<l). We first select
the simple profile given by (4.16) and allow % to vary over the range 1s4<18;
this profile has the virtue of involving only the lowest allowed modes in the
latitudinal direction. From calculations with this function we are able to
establish how the nonlinear properties of our system vary with regard to wave

number. Lest we generalize on these solutions, however, we have selected to
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investigate a number of different wave profiles for a given wave number
(2=3) to determine the variability of solutions in terms of wave profiles.
These profiles allow for arbitrary specification of A , AS’ ng and n, (where
we require, with complete generality, nB>nu). Some of these profiles have
been presented in Fig. 2, together with F of Eq. (4.16) for 2=3.

The low-order truncation for the initial configurations discussed above
may be conveniently represented on an n-& diagram in which the active com-
ponents (represented by y, o, and B values) are described by circles. Figure
4 includes a number of such diagrams and we shall denote the-allowed (circled)
components in each diagram as a spectral configuration. Reference to Table 3
indicates that the A-J has eight zonal components whereas the D-J has only
four. Columns one and two of Fig. 4 show some possible configurations with
either of the allowed zonal jets, using the wave profile given by (4.16) for
several different wave numbers. The last two columns of the figure show the

configurations for the A-J with different wave profiles of wave 2=3.

SPECTRAL CONFIGURATIONS
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Fig. 4 Spectral configurations for a number of truncations used
for calculation. Circled points indicate allowed wave vectors.
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We shall now consider some of the features of the low-order system which
result from the solutions for specific initial conditions and truncation.
Foremost among these features is the nonlinear energy exchange period. Since
the conventional linear theory cannot predict nonlinear periods, their pre-
diction by the low-order equations should add significantly to our understand-
ing of the more general system. Nevertheless, unless the atmosphere is con-
stituted as a highly truncated system (not a frequent occurrence) one should
not anticipate--nor do we find--exact periodicity in nonlinear flow. There
are indicétions fhat some dﬁﬁﬁi—perioéicity ha; exist in the étmosphere

(Namias, 1954; Eliasen, 1958) although data limitations inust be considered
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Fig. 5 Nonlinear energy exchange periods for different initial
configurations for a variety of wave numbers, plotted against p
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in vvaluating such observations. Furthermore, integrations of less trun-
cated models (Bacr, 1964) ualso indicate periodicitics, although the number
of such culculations is severely limited. We must therefore interpret the
observation of cxuact periods as representing atmospheric behavior with a
mixturc of optimism and suspicion.

Figure 5 describes the nonlinear exchange period, T, as defined by
(A-9) in days for various encrgy levels, both jets, and a selection of wave
numbers (¢ = 1,3,6,12) for the wave configuration given by (4.16); the
periods are plotted against . (ordinate). We first observe that for all
realistic values of :c--values of ->8 are rarely, if ever, observed in the
atmosphere--the periods are relatively insensitive to the initial parti-
tioning of energy between the zonal flow and the wave. For all waves there
appears to be a systematic decrease in the period with increasing total
energy; the curves for those waves not described in the figure show no
erratic behavior and may be interpolated from the given data. The periods
for the [-J appear somewhat longer than for the A-J, but this variation is
not of great significance. We also note a maximum in the period for the
wave three, after which the periods gradually become shorter for shorter
wave lengths. The magnitudes of the periods, however, which run from less
than one to four days are not in close agreement with previous calculation
and observation. hkhereas the three-day period for wave number one is in
agreement with a previous calculation by the writer (Baer, 1964), the value
for wave number three does not compare favorably (previously calculated as
=6 days) nor does it correspond with the observed value of 6-7 days (Namias,
1954, etc.). Although direct observations or calculations are not available
for shorter waves, it is unlikely that waves in the primary energy input
region (. = 5-7) would undergo periodicities as short as four days or less.

Lest one conclude that the low-order system will yield periods only
of the type described by Fig. 5, we consider the nonlinear periods generated
by alternate wave profiles. In Fig. 6 we describe four different wave trun-
cations for wave number three with four independent choices of the profile
parameters A and AB for each truncation. The corresponding periods are again
plotted against p. The first two truncations do not show striking differences
from the results of Fig. 5; however, the latter two, especially for truncation

na=6, n_ =8, show remarkably different periods, which appear to depend con-

siderab?y more on the truncation than on the selection of profile parameters.
Whereas our previous observation suggested that the nonlinear periods are only
weakly dependent on p, for the latter two truncations on Fig. ¢ the period
decreases rapidly with increasing p. We furthermore note that the periods may

be as long as fifteen days.
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Fig. 6 Nonlinear energy exchange periods for wave %=3 with
different initial wave configurations, plotted against p
(ordinate).

The existence of a nonlinear period does not, of course, give an indi-
cation of the nonlinear activity of the system, measured by the amount of
energy actually exchanged during the period. Linear theory indicates (Section
6) that for small p the exchange must also be small, provided that the initial
configuration is stable (a condition which is gemerally satisfied in our cal-
culations). Long periods for small values of p (little energy initially in
the wave) therefore indicate a very slowly and weakly changing system. The
amount of energy exchanged per unit time under this condition must indeed be

small since it will be proportional to ¢ normalized by the period.
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In order to discuss the energy exchanged during the period more knowl-
edgeably, we now present the energy ranges as defined by (5.7) but norma-
lized by the available energy K, (see Eq. 4.7). Figure 7 describes the
maximum energy exchange on a scale -1 < AK/Ka < 1 against p for the total
zonal energy, the lowest active zonal component energy (y=3), the B-wave
energy and the a-wave energy. Our presentation is limited to the results
for £ = 1,3,6 since the variations become reasonably small for shorter waves.
The initial conditions applicable for the calculations described in the
figure are those for which the periods-were -shown in Fig. 5. The purpose
of pré;éﬁEing the y=3 zonal mode is to determine the importance of the lowest
mode in the zonal field. For the conditions represented in Fig. 7, it is
evident, on comparing the upper two diagrams for each wave, that the y=3 mode
dominates the exchange for the total zonal energy. This observation is con-
sistent with the previous calculation by the writer (Baer, 1964) for a less
truncated model. Moreover, from an observational point of view, it is rea-
sonable to expect the least variable (in latitude) part of the zonal field
to vary most with time in order to maintain the moderately smooth zonal
profiles which are actually measured.

A second pronounced feature of the exchange as described in Fig. 7 is
the compensation between the two wave components. In all cases, except for
very large and unrealistic values of p, when the B-energy is increasing the
a-energy is decreasing, which results in a smaller exchange of the zonal
energy. The activity of the system is therefore not uniquely defined simply
by the exchange between the zonal flow and the wave, since the wave may under-
go significant modifications without involving the zonal energy. One obvious
exception to the above conclusion is the behavior of the D-J profile for ¢=1,
wherein both the o- and B-wave energies change with the same sign. The D-J
profile seems, furthermore, to be almost completely inactive for the case
2=3, thereafter following the behavior of the A-J profile for shorter waves.

Although the exchanges are not large for reasonable values of p, a some-
what surprising feature is the influence of the total energy on the exchange
process. Whereas for wave number one the activity of the system increases
for increased energy amplitude--as might be anticipated--this tendency is
reversed as the waves get shorter. Thus for wave number six, as the energy
amplitude in the system increases, the exchange process is inhibited. ‘

The variety of energy exchange which may occur for a single wave (here
chosen as 2=3) due to modifications in wave truncation and profile parameters
is exemplified by Fig. 8. Many possible exchange properties may be noted.
In one case (nu=6’ n8=8) the exchange is small and not strongly dependent on

p; in the others there is a strong dependence on p with a tendency for the
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exchange of zonal energy during the period to change direction as p in-
creases. In one case (nu=4, nB=8), where the zonal energy does not have
any range (o=.7), the wave components are reasonably active; in case na=4,
n8=10, however, at p~.3 the entire system appears to be inert. There does
seem to be an increase of activity with the addition of the component
n6=10; however, in one case the a-wave energy is almost completely inactive
whereas in the other it shows significant activity. The inevitable con-
clusion from this figure is clearly the great variety of exchange possi-
bilit}gs for the low-order system depending on truncation. Ty

The previous discussion has dealt with properties of the flow inde-
pendent of their detailed time characteristics. Since the exact time
variations are known, we now present the time fluctuations of the norma-
lized energy components during an entire period. Fig. 9 shows the solu-
tions in time for the initial configuration given by the A-J and the wave
profile taken from (4.16) for selected values of p. Since each value of
p constitutes a separate problem, the solutions are shown graphically with
p increasing to the right. For each p value, two charts are shown; the
upper one describes the behavior of the zonal energy and its individual
components, and the lower one describes the total wave energy and the a-
and B-wave components. The upper set of charts applies for wave 2=10 and
energy amplitude ug=.135 whereas the lower set applies for #=3 and uy=.27S.
Since both initial states are stable by linear analysis (see Section 6)
the lack of activity with time for small values of p is to be anticipated.
We see for the case 2=10 that the individual wave components are quite
active, but their activity tends to cancel such that the zonal energy does
not have large time fluctuations. This tendency for the short waves has
already been indicated from Fig. 7. On the contrary, for the %=3 case
there is little tendency for cancellation between the wave components and
the consequent zonal energy variations are large. Since the B-wave energy
is reasonably uniform throughout the period for all p values, the dominant
exchange is Carried on by the a-wave. We also note the dominant influence
of the y=3 zonal component in the total zonal wave energy.

The changes in time variation which arise due to the choice of different
prefile parameters and/or different wave truncation are made evident from
Fig. 10. We have selected to describe three different truncations, with
three different sets of profile parameters for each truncation. In all cases,
the initial conditions involve interaction of wave 2=3 with the A-J, for an
energy amplitude of ug=.135 and for initial wave energy given by p=.6. Sev-
eral interesting features appear on this figure. Because of the interaction
of the wave components, we note that a double period in the total zonal energy
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(also total wave energy) evolves. At least one of the cases is almost
entirely inactive, a remarkable result for a specification with more than
half of the energy in the wave initially. Finally, the elliptic nature
of the solution is clearly evident in the case na=8, n8=10 and Au=4, AB=1.
In summary, the most evident observation from these calculations is
the variability of the solutions. Depending on the initial specification,
the solutions may range from a completely inactive system to one with
strongly elliptic variations. They may show highly variable wave components
which may oxr may not _interact to cancel the variations in the total wave
energy. The response of the system does not necessarily depend on its
total energy amplitude. In order to make a satisfactory comparison of
the low-order system to the atmosphere, therefore, it is essential to know
very precisely the configuration of the atmosphere., Should the atmosphere
not be in a configuration which is representable by the-low-order trun-
cation, any comparison between reality and the model may be seriously ques-
tioned. The model and the representative calculations herein described
nevertheless give an indication of the variety of barotropic motions which

might be experienced in the atmosphere.

9. Conclusion

The detailed nonlinear exchange processes (energy and others) are
difficult to isolate and hence to comprehend in any general model of the
atmosphere. By severely truncating atmospheric models, it is possible to
bring these exchange processes into focus. We have chosen to truncate the
spectral form of the barotropic vorticity equation and the two level
potential vorticity equation with constant stability to allow exchange
only between an arbitrary zonal flow and one planetary wave. The result-
ing equations have been termed "low-order spectral equations', although
other truncations lead to equations which may be included in this termi-
nology. IR : - -

The solutions to the low-order equations considered herein, which are
identical in form for both the barotropic and baroclinic cases, are analytic
in time, and have been detailed in the text. Their dependence on intial
conditions has been shown and requires a specification of the total energy
in the system (clearly not a condition for linear problems), the initial
zonal profile, the relative initial energy in the wave and the wave profile.
Since the solutions are periodic, the energy exchanges amongst the components
(both kinetic and potential) may be established at any time during the cycle.
Furthermore, because of the periodicity, the maximum exchanges for any com-
ponent may be ascertained. An interesting feature of this system is the fact
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that the energy exchange in the baroclinic case follows a law simil ar to one
derived by Fjortoft (1953) for barotropic flow.

Although the equations which are solved are nonlinear, if the linearized
form of the equations shows stability (either barotropic or baroclimnic), the
linear solutions-will give a good indication of the behavior of the system
when the initial energy in the wave is small. Indeed, for small initial wave
energy, the linear solution shows that the maximum exchange over one period
is linearl-y propértional to the wave energy, a result which is subs tantiated
by the nonlinear solution.

A number of propertie$ of the system other than energy exchange may be

determined, which include the phase angle variations with time, the wave
speed, and momentum transport across latitude circles. However, all these
calculations require the specification of initial conditions for solution.

To determine how the system responds to variable initial conditions, there-
fore, we calculated for the barotropic model with two zonal jets and a variety
of wave profiles and wave numbers. The results of these calculations indi-
cate, although they cannot be directly compared to atmospheric motions, that
a wide variety of nonlinear processes may be expected. The reader is re-
ferred to Section 8 for details of these calculations.

We may now ask what utility the low-order system serves, since the results
of computation do not appear to compare favorably with observations of atmos-
pheric flow. To begin, atmospheric flow involves a composition of waves, all
interacting, and therefore shows a picture of a more complex phenomenon. The
individual exchanges, as described by the low-order system, must exist, how-
ever. Therefore, we should attempt to expand the low-order system to more
than one wave, and interpret the consequences of such a modification in terms
of the low-order behavior of each wave independently. The low-order system
studied in this report is capable of giving information on the interaction of
more than one wave, but only as that interaction affects the zonal £1low. Thus
we may build up more complex systems which will approach observed motions.

The problem of stability (both barotropic and baroclinic) which has
received wide attention by renown scientists is also amenable to study by
the low-order systems. Whereas previous analyses required linear equations
--thereby limiting the conclusions to the determination of the stabi lity
criterion and possibly growth rates--the nonlinear systems maintain their
conservation conditions and therefore have no such limitations. Cursory
calculations with the low-order equations through the linear stability point
indicate that no sharp transition in processes takes place, contrary to the
indications of linear theory. Analysis of this problem is being und ertaken

currently.
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One might expect that linear effects added to the low-order system
should not alter drastically the nonlinear character of the system and
consequently analytic solutions should ensue from their inclusion. Based
on this assumption, one could then investigate the influence of orography,
friction and heating on a low-order system. Although the conservation con-
ditions would be lost for the latter two effects, it may be possible to
isolate the waves and profiles which are most profoundly influenced by these
most important of atmospheric forces.

Finally, the availability of analytic solutions to nonlinear systems
should prove valuable as an aid in studying computationai stability and
truncation. Here again we have the opportunity of following the exact solu-
tion in comparison with those determined from different truncation schemes,
rather than relyving only on the linear forms of the basic equations. A

comprehensive study of this problem is currently being completed.
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Appendix A

Eq. (3.8) may be solved in terms of elliptic integrals since it involves
a general quartic equation on the right-hand side. The solution to such in-
tegrals is well known (see, for example, Bowman, 1961) and we shall therefore
give only a brief review here, outlining the method for reduction to standard

form. For convenience, we rewrite (3.8);

L . 1
ldt = 1y-2
fat = j(g b.B ) TdB (3.8)

If we denote the roots of the equation

as i, 2, », ! respectively, where we shall take the conjugate pairs (if they
exist) as (u,2), (v,3), one may define the following quantities:

243

y+§
v

C.Z &B £° = ¥8

Now choosing “>. as the two roots of the equation

(b-b")3% - (c”-c)6 + cb”-bc” = 0,

we may, by first introducing the transformation

B w2 (A.1)

write the quartic as,

N .
] 5B = (1+x) ™ (px?+ q) (p'x%+ q7) (A.2)
1

where
p = by (A%+2)ib+c) p° = A2+2)b74c”
q = b“(u2+2ub+c) q° = p2+2ub'+c’
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Substituting (A.2) into (3.8), we have
Jat = (a-w) [ ((px2+ q) (p~x%+ q‘))_idx (A.3)

(A.3) may be further simplified by defining the quantities

a2 = min o ‘*’S‘!’ > ‘)%%)
b2 = max (‘E‘i‘ > 'E‘Ti')

(A.4)

and the indices

e jooz24(2- —L), etc.
Jp = z( 1?] t
such that
Si= 3 § = Jq,
} if b2= +ﬂ+ } if a?= Jﬂ— (A.5)
r=j P r=3j_. P
P P

and the primed quantities take on the remaining values. Substituting (A.4)

and (A.5) into (A.3) we have, finally,
fdt = o Ao H((_)IXZ.,,(_)SbZ) ((_)T'xz+(_)5’a2) }-%dx
(A.6)

The final reduction of (A.6) to normal forw requires a knowledge of the dis-

tribution of the indices which we shall denote as group m,

m= (r,s,r’,s”) (A.7)
In terms of m, we may express X(t) as

m*‘ﬂz)’sl (wt+a)

%X =
n3+n4)’§1 (wt+a) (A.8)

(n1, n2, nz, ny) = £(m)
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ym(wt) = sn(wmt)
(A.8)

The variables above, together with their dependence on the allowed values
of the set m are listed in Table Al together with the dependence of Bn on
w;t. Here ey denotes the phase angle which is established from initial values

described by a zero subscript. For completeness, we note that
" .
- 2Nk E2Y) T2
wt jo ((1-2%) (1-k222)) 2dz

where the quarter period (K) is given for ym=1. Thus the period of the elliptic

function in days is given as,

2K
Tm il (A.9)
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Appendix B

To complete the solution of system (2.13), it is necessary to establish
the dependence of one of the phase angles, say 98’ on time. By use of (3.12),
the other angle (ea) will be determined. We shall therefore concentrate in
this discussion on OB, although by merely reversing notation (letting o8 and

8+a) the equations will be applicable to By
The equation of interest is (3.13) which we shall rcpeut here for clarity:

“ (g, B + h, 6 )G
L i Ba'n Bo
05 e hBB+ gdBBn + T E— (3.13)
anBB

where all the terms have been defined in Section 3. If we now make the sub-

stitution Bn=Bn(x) from (A.1) and arrange terms, we have the equation for éB;

x+m3 (xZ+m;x+mg)

¢ A(x+u/2)
8, & ~voE h > 8. -5
3 B8 BB ©BB 1+x 1+x (x2+2n,x+1p)
(B.1)
Eq. (B.1) requires the following definitions:
. h a D
4 =82 4, =28 g -4
834 8ay
u2+2d;u-d,y Ap+d) (u+A) -ds
[ = et H n = —/——————
)\2+2dlk-d2 X2+2d1)\—d2
d3p2+uv+K 2d3Ap+v (u+r) +2K
g, S s 5 my =
d3A2+92+K d3A2+92+K
u+d (A+d1) (d3A2+9A+K)
m3 = T—— 3 Sy =
Ay A2+2d;A-d,

In these definitions, A and p have been determined in Appendix A and the other
constants have been established in Section 3. The quantity K used here comes
from (3.7) and should not be confused with the complete elliptic integral of
the first kind.

The last term of (B.1) may be reduced to simple fractions if we first

note that the roots of the quadratic in the denominator are given as
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x?+2n x40y = (X-ny) (x-ny)
(B.2)
2 i}
npz,3 = -n; + (n] - ng)?
We shall assume the roots real; if they are not, the simplest procedurc is
to calculate Ga. The poles of (B.1) exist at the points (-1,n;,n3) and we
may therefore compute the residues about those points, which are given by

the relations

e

(m3-1) (1-my+mg)
q>l('l) = (ﬁ;:Ij(h3+1)

2
(m3+n3) (ny+mny+mg)

¢y (np) = (m,+1) (np-n3)

2
(m3+n3) (n3+myn3+mg)

(n3+1) (n3-n,)

¢3(n3) =

Introducing these residues into (B.1) and combining terms, we now find that

the equation may be written in the form,

5 € €2 €3

B = Ay # e X-n,  X-nj (Bay
when

Ay = -VB + hSB + gBBX =53

€1 = ggg(u-d) - 519

€y = 8519

€3 = s1%3

If we now complete the squares of the terms in (B.3) and integrate, we arrive
at Eq. (3.14),

3
eB(t) = Bgo+ At + jzl(chF(gj,ut) + chH(Lj,wt))
(8.4)
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Table Bl. Values of c_.., ¢,. and ;j as used in Eq. (B.4).

Fj® "Hj

j ’ Cis Cii

£ % Fj Hj

1 1 C1 ~-C1
2

2 nz -C2 -NpCy
)

5 ns

-C3 -n3c3

The values of ch, ch

taken from t=0 to some arbitrary time t may be expressed as

and Cj are listed in Table Bl. The integrals F and H,

e e iK+wt a o
F(og,-m) = [ 22 = [ 70 3%« NF(c,4K)
J T P ‘o XL j
X Cj 3
(B.5)
T 4 iK+ut g
H(C.,&-T) = f L= = f w t + NH(C,,4K)
J 0 x2_¢ 0 X2t j
J ]
where
wt = (4N+1)K + ot
0<ic<3 (8.6)

0 fwt K

The integer N specifies the number of complete nonlinear periods (T) included
in 1 and the index i represents the quadrant of the last period. Therefore,
t as defined in the limits of (B.5) will range only over a quarter period.
With this representation of F and H, we now see why 98 need not have perio-
dicity of period T; for by substituting the right-hand side of (B.5) into
(B.4), we have

3
; _ 7, iK+wt wt+ikK wt+iK
8(1) = K+ 85 4 +j§1[chF(cj, = e, T
(8.7)
) 4KAIN E
Regg+t—0—+N E (chF(cj,élK) + chH(cj,fiK)]
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For each full nonlinear period T, A is incremented as N increases by an in-
teger.
The remainder of this Appendix will be devoted to the evaluation of the

integrals F and H.

Functional form of F(wt):

In differential form,.ﬁé note from (B.5) that F may be written,

XdtT

dF (g ut) = (8.8)

x%-t,
J

where x has been defined in (A.1l) and cj in Table Bl. The variation of t
with respect to x is given by (A.3) or (A.6) and depends on x?; therefore,
on substitution of (A.6) into (B.8) we see immediately that F is soluble in
terms of elementary integrals. To elucidate this possibility, let us define

the variable Z such that

72 = S:lf:&f:l:lii&i (B.9)
(-)7x2+(-) b2 '

We shall attempt to make Z2<1 and have therefore chosen form (B.9) since
b2>a? by definition (A.4). However, depending on the range of x, it may be
necessary to invert (B.9). Substituting for dt from (A.6) and for x2 from

(B.9) into (B.8), we have for dF,

A
&F = - :)11 _ dZ_
m az2+c
AT (O F TGS (B.10)

m

@ ) g

o

1f we now recall the dependence of x on YpEshe t from (A.8), we may establish
the dependence of Z on wt. This dependence has been listed in Table B2 as a
function of the index set, m. The values of a and c, which also depend on m,
are listed in the same Table, together with some limits on their values which
can be determined from known constants. It should be noted that the quantity
kn’1 used in Table B2 is the complementary modulus defined as kr;12=1—k§l, where
the values of the modulus kxi are listed in Table Al.

Proceeding with the integration of (B.10) we arrive at the two possible

solutions;
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f s - tan if ac>0
(B.11)
_A T
. S Ty s o W B
2u, ¥ -ac az+’ -ac

where the dependence on wt is dpparent from Table B2. In gemeral, the
behavior of F during a nonlinear period given by 4K=wT is similar to trig-
onometric functions over a complete cycle. However, this is not the case
for all values of m; therefore we list in Table B2 the values of F during
one cycle in which, as in (B.6), 0Swt<K and 05i<3 for F=F(iK+wt). In the

event that F is not purely periodic, we list also the value for F(4K).

Functional form of H(wt):

The differential form of H, from (B.5) may be written

dt

x2-z.
;J

(B.12)

dH(;J swt) =

If we substitute for x in terms of y given by (A.8), (B.12) becomes,

dH = A dt + B (1-£.y?)"ldt
Ay (=857
Ny
nz-Cjﬂu
n3n2-Niny
I e B.13
BH no-&.Ny ( )
]
C.Ny=N2
e il
j n1-Cjn3

H* "H
group m, In the subsequent discussion, we shall suppress the j index, al-

The variables A, B, and Ej are listed in Table B3.for the different index

though it will be implied, as we have already suppressed the m subscript.
Let us now define two angles 6 and a (not related to the variables used in

the main text) as follows;
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sin 6 = y = snwt

I (B.14)

sin%a

88 = V1 _k25in2p = Y1-k2sn2et = dnut

The relationship between 6 and wt is evident from (A.8); o is simply computed
“from the modulus -k -listed in Table Al. Integrating (B.13) after transforming
dt to do from (B.14) we have,

ot gt ¢ de ¢ de

wf &= =
o 1-gy? o (1-£5in26)v1-k2sin26 o b8(1-Esin28)

(B.15)

m

n(E;¢\e)

The function Il which represents the required integral in the evaluation of H
is called the elliptic integral of the third kind, and has been evaluated over
the range 0<¢<n/2 (Abramowitz and Stegun, 1964). Since wt Tranges over a
quarteriperiod (X) in this range of ¢ (B.14) we may define the integral

H(E\u) = H(E;ﬂ/z\a)

The value of the integral may be determined in any quadrant from its value in

the first quadrant (where it has been defined) as follows:

wT=wt+K
n(g;e\e) = 2n(e\e) - n(E;m-9\a) {
/254
wt=wt+2K
= 21(g\a) + M(Es9-m\a) {
m<¢<3n/2
wt=wt+3K
= 4n(g\a) - T(E;2m~¢\o){
3n/25¢<2m

For the complete period, T, in which case ¢=27,

n(g;2n\a) = 41(£\a)



On the assumption that Il as given in (B.15) may be evaluated--utilizing the
above information to extend the integral to arbitrary time--the function H

may be expressed in the form,

H(g ,01) = j—J (At + BHn(gJ,,m\u)) (B.16)

when, from (B.14), sin ¢ = snwt. Unfortunately the computation of T varies,
depending on the sign and magnitude of Ej’ and three different functions must
be calculated: I}, NI, and II3. The function appropriate to any m value is
listed in Table B3.

For completeness, we conclude this Appendix with the formal represen-
tation of the three functions (n1,2’3) together with the necessary definitions.

©
q2s
Ty(g;ut\a) = -2q16, § (-)S sin %5 4t sinh 2sB

s=1 s (1-g2s) K
+q)8p tan”!(tanh B tan 5 wt)
- snwtcnwt

+q3 tan™!(py —=)

qiudp2m
+(@z - —g— Jut

Np(g;ut\a) = <265 ) (-)° ——— sin FLut sinh 258
s=1 s (1-92%)

+83 tan~!( tamhg; tan 12‘—K- wt)
-4pd3 LI wt

2K

@
s
N3(g;wt\a) = -283 Z ——~3-jf—-sin 2T ut sin 2sB3
D K
s=1 s(1-q“%)
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e = sin"W1/(1-g) ; €1 = sin"W(1g)/k"2 ; e3 = sin"MVg/k2

B =g Flek) 581 fgpFlek) 5 83 FpFlesk)
. k72 2 X o3
QB t ey e A R i
(1-£) (k?-8) ke-¢
_ k2 .1 = a2
po i | Sﬁ%:E_l T - ; 63 = |al?
) k”“q3
z sq” sinh 2s8
T "
1 +2)q° cosh 2s8
s=1
® 25
W(ss) = cotgs + 4 | ” st 26

s=1 1 - 2925 cos 283 + q*°

q = exp(-1K“/K)
The latter quantity q is defined as the nome. The function F(€,k) is the
incomplete elliptic integral of the first kind, whereas K is the complete

elliptic integral for the modulus k. The complementary complete integral

K* is evaluated using k”. Thus we have,
K = F(n/2,k); K~ = F(n/2,k").

All the above relations have been programmed for digital computation.
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