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ABSTRACT OF THESIS

GENERALIZED PARTITION CROSSOVER FOR THE TRAVELING SALESMA
PROBLEM

The Traveling Salesman Problem (TSP) is a well-studied doabdrial optimization prob-
lem with a wide spectrum of applications and theoreticali®alWe have designed a new recom-
bination operator known as Generalized Partition Crogs@e X) for the TSP. GPX is unique
among other recombination operators for the TSP in thatnéaang two local optima produces
new local optima with a high probability. Thus the operatan ¢unnel’ between local optima
without the need for intermediary solutions. The operataespectful, meaning that any edges
common between the two parent solutions are present in feprioflg, and transmits alleles,
meaning that offspring are comprised only of edges foundhénpgarent solutions. We design
a hybrid genetic algorithm, which uses local search in &idito recombination and selection,
specifically for GPX. We show that this algorithm outperfer@hained Lin-Kernighan, a state-
of-the-art approximation algorithm for the TSP. We nextlgrathese algorithms to determine
why the algorithms are not capable of consistently findindgoaaly optimal solution. Our re-
sults reveal a search space structure which we call 'fuhbelsause they are analogous to the
funnels found in continuous optimization. Funnels areteitssof tours in the search space that
are separated from one another by a non-trivial distancefindfehat funnels can trap Chained
Lin-Kernighan, preventing the search from finding an optis@ution. Our data indicate that,
under certain conditions, GPX can tunnel between funngfgaming the higher frequency of

optimal solutions produced by our hybrid genetic algoritinsing GPX.
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Chapter 1

Introduction

The Traveling Salesman Problem (TSP) is a well-studied @oandrial optimization problem
with many applications and much theoretical value [AppOBje problem is stated as follows:
given a set of cities with a cost associated with each pair of cities, findua that visits each
city only once and returns to the originating city with thevést total cost.

The TSP is simple to state yet has been the subject of exterssearch in the past one
hundred years. As a result, there is a wide variety of algorit that have been developed to
solve the TSP (e.g., [IM97, LLKS85, App06]). These algonshcan be split into two broad
categories: exact algorithms and approximation algoisthm

Exact algorithms produce a provably optimal solution [ABI3C ABCC98, App06], but
given that the TSP is NP-hard [GJ79], no exact algorithmskaosvn which run in polynomial
time for all problem instances. This can sometimes be amidspending on the application for
which the TSP is being solved. For example, using ConcordJB03], a state-of-the-art TSP
exact algorithm, to solve a 532 city problem takes roughlg prinute on modern hardware. A
1,817 city problem on the same hardware takes over 8 days.ifipwtant application of the
TSP is Very Large Scale Integration (VLSI) [App06], a praces creating integrated circuits.
Problems with over 10,000 cities are common in V’r_SBy the time an exact solver could
produce a solution to such a problem, the technology beisggded by the VLSI would be
obsolete.

Approximation algorithms run much faster than exact athons but are not guaranteed to
produce the optimal solution. Approximation algorithmsynb@ broken down further into two
categories: tour construction and tour improvement algors. Tour construction algorithms
begin with only a description of the particular TSP instamezebe solved and incrementally
construct a valid tour. Tour construction algorithms ariéegiast but do not produce high quality
solutions on their own; the constructed tour must be furthmaroved by a tour improvement
algorithm if a tour with a cost close to the global optimumeguired.

The vast majority of tour improvement algorithms use sommfof a local search heuristic
at their cores. Although the solutions produced by tour apment algorithms are not optimal,

See http://www.tsp.gatech.edu/visi/



the best approximation algorithms typically produce sohg with costs within one percent or
less of the optimal solution. The best performing class gf@ximation algorithms for the TSP
is iterative local search [Hel00, ACRO3, JM97].

Iterative local search heuristics traditionally work bypraving only a single tour. Other
classes of approximation algorithms work on an entire ctib@, or population, of solutions.
One such class of approximation algorithms is the genegiordhm (GA) [Whi94]. Although
strict definitions of a GA exist, such as the original modelgwsed by Holland [Hol92] or the
canonical GA of Vose [V0s99], in this work a GA is defined to lg algorithm which iteratively
improves upon a population of solutions usmregombinationandselection In this sense, many
GAs have been developed for the TSP with much focus on thenigioation operator [NK97,
Nag06, TM98, Bra91, MGSK88]

Historically, GAs have not been as successful as local Bdzsed techniques for the TSP.
Local search has been incorporated into GAs to form a HybAqM@F97, WRE"98]. For the
TSP, Hybrid GAs typically outperform GAs that do not use la=arch, but are still not compet-
itive with iterative local search algorithms. The choiceaefombination operator is of particular
importance when designing a hybrid GA. The operator canadbb disruptive and undo the
gains found by the local search heuristic but it must alsmthice sufficient change to prevent
the search from becoming stuck in local optima. In this thegt present our recombination
operator, called Generalized Partition Crossover (GPXHI[W#9, WHH] and a study of its per-
formance in a hybrid GA alongside Chained Lin-Kernighangi@bd-LK) [ACRO03], one of the
best performing iterative local search algorithms.

The solutions produced by GPX are guaranteed to containikey between cities that are
common in the input tours. GPX will also not introduce any rlawks that are not found in
the input tours. This helps to maintain subpaths found bydbal search heuristic while also
providing sufficient disruption to prevent the search froetdming stuck. GPX also has a
unique ability we refer to aminneling Given two input tours that are locally optimal, there is a
very high probability that the output tours will also be lbgaptimal. In this way, GPX is able
to tunnel directly to new local optima.

To take advantage of the unique properties of GPX, we degdigrigybrid GA (GPX-GA).
We isolated the various design decisions and made thessiaecin response to the specific
properties of GPX. Of these decisions, one of the most inapbit the local search heuristic. In
this study, we chose the Lin-Kernighan local search (LKreeg[LK73a].

Lin-Kernighan search is perhaps the most powerful locaicbefar the TSP [JM97]. A num-
ber of improvements to LK-search have been proposed siadstibduction in [LK73a]. The
majority of these have been incorporated into the impleatemt used in Chained-LK [App06].
We use this same implementation of LK-search in GPX-GA fay teasons. One, it is highly
efficient, and two, it gives us a straightforward way to comegaPX-GA and Chained-LK. This
implementation of LK-search has a computational compjexdtO(n?). The other components
of each algorithm have linear time complexity, making LkassE# the dominant factor in the
running time of either algorithm. When given the same nundidrK-search calls, we show
that GPX-GA outperforms Chained-LK in terms of the qualifysolutions found.

We note that although GPX-GA is able to find better tours thhai@ed-LK with similar
amounts of computation, neither algorithm can consistdinttl the global optimum. While this
is not a surprise, given that both algorithms are approxonadlgorithms, we investigate what
might cause the algorithms to fail to find the global optima.



Chained-LK uses Lin-Kernighan search to find a locally oplitour and then uses an op-
erator known as thdouble bridgemove to perturb the local optimum. The double bridge move
pseudo-randomly selects four links between cities, bréfagse links and replaces them with
four new links chosen so that a valid tour is formed (See Eidut in Chapter 3).

We find that iterative local search frameworks using the tobiidge move can become
‘stuck’ in search space structures we term funnels. Furarelstructures in the search space
that form a type of gradient, guiding the search to theirdyo#. The depiction in Figure 1.1(a)
shows two funnels. These structures are similar to the farfoand in continuous optimization
[DMW99] in that once an approximation algorithm finds thetbot of one funnel, it is very
difficult to escape. We show that if Chained-LK becomes stackfunnel that does not contain
the globally optimal solution, it is extremely unlikely thdéne global optimum will be found
without restarting the search or employing some other nréshato escape the funnel.

(@) (b)

Figure 1.1: Two different search space structures: (a.) giatien of a search space with two
funnels. Smaller basins in each funnel can trap local selaeciistics but can be escaped by
meta-heuristics such as iterated local search. (b.) A tepiof the Big Valley hypothesis.
The search space consists of a single central valley formmgverall gradient to the optimal
solution.

We hypothesize that funnels are formed due to the break dowheiBig Valley hypothesis
[BKM94a, KT85] close to the globally optimal solution. ThegBValley hypothesis states that
there is one large central valley where tours are correla¢dgeen evaluation and distance (See
Figure 1.1(b)). This hypothesis implies that a gradienstsxieading directly to the global opti-
mal solution; a solution closer to the global optimum in terofievaluation should also be closer
in distance.

We find the central valley splinters into distinct funnelslanChained-LK when the evalua-
tion values approach that of the global optimum, counteh¢oBig Valley hypothesis described
in previous literature [BKM94a, KT85]. Non-optimal funsetontain tours within01% of the
global optimal evaluation value but can be more than a quaftthe maximum distance in the
search space from the globally optimal tour, much furthentvould be expected under the Big
Valley hypothesis. We find that the distance between funiselso large for Chained-LK to
escape.

Although Chained-LK cannot escape funnels, we show that (SR¥pable of recombining
tours from different funnels and producing tours locateahémw funnels. As the local search
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heuristics used in Chained-LK and GPX-GA are identical GfX recombination operator can
be thought of as an alternative perturbation operator toltluble bridge move used in Chained-
LK. Because GPX can escape funnels and the double bridge caawet, this can in part explain
the performance difference between the two algorithmsedddthe same analysis applied to
Chained-LK to find the funnel structure is applied to toursduced by GPX-GA and we find
the funnel structure is smoothed out, enabling GPX-GA tariel” between funnels, preventing
the search from getting stuck in a single funnel as it doeswising Chained-LK. This is again
analogous to the funnels of continuous optimization whemmmon approach to escaping
funnels is to transform the energy landscape so the funwodisnger exist [DW98, PP95].

This still leaves open the question of why GPX-GA sometina!s o find the global op-
timal. We find under certain conditions GPX is unable to reloim@ tours to find the global
optimum mainly as a result of the way in which the recombgrationstructs new tours. Further
analysis reveals in a large percentage of trials that ahefgiobally optimal edges are present
in the population after a very small number of iterationshef lhybrid GA. This suggests an even
more powerful use of GPX-GA: quickly creating an edge pooiciitould be used to initialize
an exact TSP algorithm, greatly reducing thé:!) search space.

1.1 Summary of Contributions
The contributions in this document are as follows:

1. The presentation and analysis of Generalized Partitiossover (GPX) [WHH09, WHH],
arecombination operator for the TSP. We design a hybrid GAX&A, to take advantage
of the properties of GPX and show that GPX-GA is capable opedibrming Chained-
LK, one of the best performing approximation algorithmswnas of this writing.

2. An analysis of why the approximation algorithms fail todfithe global optimum. This
analysis yields two major results:

(a) Ananalysis of iterated local search algorithms revaalsucture in the search space
we call funnels. Funnels consist of tours that are corrélateerms of evaluation
and distance. We have found that Chained-LK cannot typgiesitape from a funnel
once the search has found one. The evaluation of the best fimumd within the
funnels of a particular instance of the TSP are within smallies of one another,
yet these tours are separated by large distances in thénsgzace — a contradiction
to the correlation between evaluation value and distanegigted by the Big Valley
Hypothesis. We show that GPX is not as susceptible to furael€hained-LK,
which explains in part its superior performance.

(b) GPX fails to find the global optimum as a result of resiics imposed on the con-
struction of children tours in order to ensure a valid Haomian Circuit is con-
structed. Under certain conditions, due to the properti€sRX, even if the globally
optimal edges are present in the parent tours being receahhinwill be impossible
for GPX to produce the global optimum. This analysis prosideveral directions
for future work.



Chapter 2

Generalized Partition Crossover

A recombination operator takes two or more solutions andtroats new solutions based on the
initial solutions. Because at least two solutions are meguas input, recombination operators
are used in population based search heuristics such agiemaly strategies (ES) [BS02] and
genetic algorithms (GA) [Whi94]. In this chapter we presevit versions of our recombination
operator for the TSP.

The first, partition crossover, uses the union of two sohsito construct a graph and looks
for a specific type of partition in the constructed graph.ults a partition is found, two unique
children are then constructed.

The second, generalized partition crossover, is a gemedaiiersion of partition crossover.
We find that in most cases, the union graph constructed of hitdren contains multiple par-
titions of the specific type partition crossover is lookimg. fGeneralized partition crossover is
capable of finding and using all of these partitions in a gingtombination with no increase to
the computational complexity of the operator.

In the terms of evolutionary computing, the solutions infou recombination operator are
called theparentsand, similarly, the solutions produced by recombinatiankarown as thehil-
drenor offspring According to [RS95], a recombination operatoraspectfulif and only if the
children contain all alleles that are common to both pareltghe case of the solution repre-
sentation used for partition crossover, an allele is a sieglge within a solution. An operator
is said totransmit allelesif each and every edge in a child tour is present in at leastobiiee
parents.

Both partition crossover and the generalized version age@ful and transmit alleles. This
sets apart our operator from other recombination operdtorthe TSP, such as edge recombi-
nation [WSF89], edge assembly [Nag97], maximum presesmvatiossover [GS02] and distance
preservative crossover [FM96], as these operators cavdinte edges which are not found in
the parent solutions.

2.1 Partition Crossover

Partition Crossover (PX) is a recombination operator thatdeveloped for the TSP [WHHO09]
and shares some similarities to the partial transcriptiethod of [MFMS99]. PX makes use of
the fact that a tout can be represented by a Hamiltonian circuit on a graph mitértices where
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Figure 2.1: An example of (a) The union graph of two parentsgane shown by solid lines, the
other by dashed) and (b) The reduced gr&gimade by replacing common paths with surrogate
edges (dotted lines).

there is a one to one mapping between the vertices in the @ragpthe cities in a given instance
of the TSP. A cost is associated with each edge from vertey, denotec:(4, j), which is equal

to the cost between citiesandj specified by the TSP instance. The total cost or evaluation of
the tour, denoted’(t), is the sum of the costs associated with each edge in thatciricould
potentially accept any representation of a Hamiltoniaouiir Our implementation assumes the
tour is represented as a flat array, assuming an edge betie&rst and last elements.

Given two parent tours, andtsy, PX first constructs a grapfi = (V, E) by taking the union
of t; andts so thatV is the set of vertices (i.e., cities) andl’ are the edges found i andt,.

An edge inE can be classified as eithecammonredge or amincommoredge. An edge itk is
acommoredge if it is found in both parent tours; an edge isiascommoredge if it is found in
only one parent.

For example, Figure 2.1a depicts the union grépbf two tours. One parent tour is shown
with solid lines the other with dashed lines. In this exantpke edges:(g, ), e(g, 1), e(h, j),
e(i,j), e(l,m), e(l,n), e(n,m), e(o,m), e(o,a) ande(a, m) are uncommon edges and the rest
are common edges.

After G is constructed, PX constructs a reduced gré&phfrom G. All paths of common
edges are replaced bysarrrogateedge connecting the end points of each path. Figure 2.1b
depicts the reduced gragh* created fromG in Figure 2.1a. The common paths have been
replaced by surrogate edges and are depicted by dotted lines

Graph( is formed by the union of two Hamiltonian circuits and is tleesinected, and by
construction so i€-*. A partition on connected graph is created by removing or cutting edges
until the graph is unconnected. Thest of the partitionis the minimal number of edges that
must be removed to create that partition. Af€ris created, PX will find a partition of cost 2
on G* if one exists. In Figure 2.1b, a partition of cost 2 can be fdrby removing the edges
e(a, g) ande(l, 7).

The following theorem states that if a partition of cost 2séxi we can always form two
children tours distinct from the parent tours and, addéliynthat PX is respectful and transmits
alleles.

The PX Theorem: If a partition of size 2 exists on the union graptx, then we can al-



ways construct two new child tours that are distinct from plagent tours. PX is respectful and
transmits alleles[WHHO09]

The proof in [WHHO09] describes how we can take construct tigtirtct offspring from the
union of two parent tours if a partition of cost 2 exists byaitting the paths taken through the
components created by the partition. In the previous exanmgihg the parent tours in Figure 2.1:

a-o-n-ml-k-j-h-i-g-f-e-d-c-b
and
a-mo-n-l-k-j-i-h-g-f-e-d-c-b
PX would form the tours:
a-o-n-ml-k-j-i-h-g-f-e-d-c-b
and
a-mo-n-l-k-j-h-i-g-f-e-d-c-b

Of course, we cannot guarantee that a partition of cost 2 dgis$ in the union of two
arbitrary Hamiltonian circuits. When a partition of cost @egd exist, we say the recombination
is viable If the recombination is not viable, the operator productspdng identical to the
parents.

2.1.1 Tunneling Between Optima with PX

PX has another interesting ability we term “tunneling”: &mwo locally optimal parent tours,
the children produced by PX are highly likely to be local omias well. For tunneling to occur
the parent tours need to be local optima, and therefore &deasch heuristic is required.

For our initial tunneling experiments, we use a variationtlo@ 2-opt algorithm [Cro58]
known as steepest descent 2-opt. The algorithm works asv@Il Given an initial tour, break
a pair of edges and replace them with two different edges thatha valid tour is formed. The
breaking and replacing of two edges is known &sapt movgSee Figure 2.2). Record the new
evaluation of the tour after the 2-opt move and restore the t its initial state. Repeat this
process for every possible 2-opt move and take the move talisythe most improved tour.
The entire process is repeated until no improving 2-opt n®¥eund, at which point the tour is
locally optimal.

We conduct the following two experiments to assess thetpbiliP X to tunnel between local
optima in different parts of the search space. The first éxymt recombines randomly gener-
ated local optima and the second recombines local optintatbalose to the global optimum.
We examine both sets of optima to determine if the tunnelimgperty is affected by different
areas of the search space. Additionally, we wish to exarmiP¥ is capable of tunneling directly
to the global optimum when recombining local optima knowbéaclose to the global optimum.
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Figure 2.2: A 2-opt move. Edges A and B in (a) are broken anldcep with X and Y (b). Once
A and B are broken, X and Y are the only edges that can be instrtrm a valid tour. The
choice of the edge pair to be broken determines the 2-opt move

Instance rand500| att532| u574 | nrwl379| rand1500( ul817
Viable recombination | 14/45 43/45 | 33/45 | 40/45 37/45 45/45
Locally optimal offspring| 96.4% 100% | 98.5% | 100% 97.3% 91.1%

Table 2.1: Number of recombinations in which a partition@gt2 was found (viable recombina-
tion) and the percentage of offspring produced by PX thakealy optimal when recombining
random local optima.

2.1.1.1 Recombining Random Local Optima

To determine how often PX produces local optima when recoimdpirandom local optima,
we generated 10 unigue local optima by applying steepesede&-opt to randomly generated
tours. We recombined all possible unique pairs of the 10 lopima from each instance using
PX. This resulted in(10 x 9)/2 recombinations and 90 offspring. We counted the number
of offspring from recombinations in which a partition of t@&was found and then reapplied
steepest descent 2-opt to these offspring and counted thbamthat were not improved by the
reapplication of steepest descent 2-opt.

We ran the experiment on six different TSP instances: radd&8@532, u574, nrw1379,
rand1500 and ul817. att532, u574, nrwl379 and ul817 aretfre@SPLIE. The conven-
tion of TSPLIB is that the size of the problem, i.e. the numbfkcities, is represented by the
numerical suffix of the name of the problem. We chose thedaross as they represent two
instances of different sizes from each the three generedodes of TSP instances [JM97]. grid
problems (u574 and ul817), pseudo-random or clusteredepngb(att532 and nrw1379) and
random problems (rand500 and rand1500).

The results of this experiment are shown in Table 2.1 andisathat PX tunnels to new local
optima in at least 90% of recombinations if the parents andam local optima. We also see
that the recombination was viable, i.e. a partition of cos2 present in the union graph, in the
majority of attempts with the exception of rand500. The gahieend is the larger the instance,
the more often recombination is viable. To determine why thithe case, we counted the total

http://comopt.ifi.uni-heidelberg.de/software/TSPLEB9



Instance rand500 att532 us74
Average number of |\ o 79 | 907 +1.36 | 1.27 + 1.08
partitions of cost 2 found
Instance nrwl379 rand1500 ul81l7
Average number of |\ 1 | 16 | 9154177 | 400+ 1.89
partitions of cost 2 found

Table 2.2: Number of partitions of cost 2 found when reconmigiriO random local optima.

Instance rand500| att532| u574 | nrwl379| rand1500( ul817

Viable recombinations | 23/45 36/45 | 29/45 | 29/45 24/45 38/45
Locally optimal offspring | 100% 100% | 100% | 100% 100% 100%
Globally optimal offspring| 100% 77.8% | 89.7% | 37.9% 100% 100%

Table 2.3: Percentage of offspring produced by PX that areadlly optimal.

number of partitions of cost 2 in the union graph of each rdmoation. The average number of
partitions per union graph are shown in Table 2.2.

With the exception of att532, which appears to be somewhatatous, Table 2.2 shows
a correlation in the number of partitions found and the sizthe instance. We can conclude
the larger the instance, the more partitions of cost 2 aredavhen recombining random local
optima. PX will be able to produce offspring more often as itietance size grows and the
offspring will not only be new solutions, but locally optitreolutions a high percentage of the
time.

The properties of local optima found in the search spacedimghe global may be different
than those when sampling random local optima. We wish tofgbe viability of recombination
and the tunneling property is maintained when recombinpigrea close to the global optimum.
It may be possible for PX to tunnel directly to the global opim if the search has reached a
point close enough to the global optimum.

To produce local optima close to the global optima, we ddaftem the globally optimal
solution and modified it by making a random 2-opt move. Aftertandom 2-opt move, the same
2-opt steepest descent heuristic used in the previous imgdr was applied. If the resulting
local optimum was different from the global optimum, we §tegd. Otherwise, another random
2-opt move was made to the tour before steepest descentvZagpe-applied. The process was
repeated until a local optimum distinct from the global optm was found.

We found 10 unique local optima for each instance using theshod. PX was then ap-
plied to each unique pair of these 10 local optima for a totad®recombinations. Of these
recombinations, we count the number of recombinations iiclwé partition of cost 2 was found
and, of the offspring produced by viable recombinationsy htany were globally optimal. This
experiment was conducted on the same instances as theyz@&xperiment.

Table 2.3 shows that PX tunnels to new local optima in evesg ¢hat the recombination
was viable. This is most likely due to a higher concentratiblocal optima in the search space
surrounding the global optimum then when sampling randaralloptima. Not only is PX able



Instance rand500 att532 us74
Average number of
partitions of cost 2 found

Instance nrwl379 rand1500 | ul817
Average number of
partitions of cost 2 found

0.93+£096 | 1.22+0.88 | 1.24 £1.05

1.00 £0.85 | 0.78 £ 0.82 | 1.56 = 0.76

Table 2.4: Number of partitions of cost 2 found when reconmigjri0 local optima close to the
global optimum.

to tunnel to new local optima, but it is sometimes able to &lmlirectly to the global optimum.
In the case of att532, PX was able to find an optimal solutidieréint from the optimum tour
provided by TSPLIB.

These results also show that, in general, the number ofevi@bbmbinations is reduced from
those when recombining random local optima. We hypothdsises due to greater similarity
between tours close to the global optimum. As we are generaii the tours from the same
solution (the global optimum), they will share more commalges than randomly generated
local optima. Thus more edges will need to be removed to makeimion graph disconnected
causing partitions to have cost higher than 2.

Table 2.4 shows the counts of partitions of cost 2 when reauindp local optima close to
the global optimum. We see a decrease in the number of paditf cost 2 from those reported
in Table 2.2 with the exception of rand500. The rand500 it#ais also the only instance
in Table 2.3 in which the number of viable recombinationsréased from that in Table 2.1.
This shows a clear correlation in the number of partitiongadt 2 and the number of viable
offspring. Furthermore, we can see that the average nunilgarttions of cost 2 decreases,
with the exception of rand500, when recombining local optitiose to the global optimum.

2.2 Generalized Partition Crossover

In our implementation of PX, only one partition of cost 2 idizéd in a single recombination
even if there are multiple ways to partition G. For examplguFe 2.3a shows the union graph of
two tours which have two partitions of cost 2, depicted byhbavy dark lines marked A and B.
PX could construct two children using partition A in Figur@& by taking the solid edges from
the left of A and the dashed edges from the right, and a sedatdilry taking the dashed edges
from the left of A and the solid edges from the right (and irtirey all the common edges). Two
different children would be constructed if PX used pantit®in a similar manner.

In this example, although there are four possible childremfa single application of PX,
only two will actually be produced. To make use of all paotis between two parents, PX must
be re-applied to the offspring. No edges are added becausaRsfnits alleles and is respectful,
therefore any partitions not utilized in the parents wilfbend when recombining the offspring.
If PX produces two children using partition A in Figure 2.&rfition B will be present if the
children are recombined. In our implementation of PX if rijlét partitions of cost 2 are present,
PX will randomly choose one.
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(b)

Figure 2.3: An example of (a) The graghcreated from the union of two parent tours with two
partitions of cost 2 shown by the heavy dark lines and (b) Taphy~,,, constructed by deleting
the common edges edges between the two parent toursfrom

In general, if there aré partitions of cost 2 when recombining two tours there Zre- 2
possible offspring. We find that as the instance size grdwesntimber of partitions found in a
single union graph also grow. Our implementation of PX cay ase one of these partitions in
a single recombination, creating at most two distinct e¢kitdout of a potentia®® — 2.

Generalized partition crossover (GPX) utilizab partitions in a single recombination. Fur-
thermore, using the greedy construction method describmhvito generate two children, one
of the two is guaranteed to be the best solution out dt’al+ 2 possible offspring.

GPX works by creating a union gragh = (V, E) of two parent tours just as PX. GPX then
creates a subgraph ¢, G,, = (V, E,), whereV is the vertex set of7 and E,, is the set of
uncommon edges iR. Typically, G, is made up of multiple disconnected subgraphs as shown
in Figure 2.3b. In fact, it7,, is not disconnected, there is no way to partit@ty only removing
common edges.

We use breadth first search (BFS)@p to find each subgraph (i.e., connected components)
of G,,. The BFS has &(n) computational cost, because the degree of any vertex is stt4no
and each vertex is processed only once. We will use the pamition componento refer to a
connected component @, . A feasible partition componeiit a partition component which can
be separated from the graph by a partition (or partitiongjost 2.

For example, in Figure 2.3b, the left most partition compuifeonsisting of vertices, b, ¢, d)
would be one side of a partition of cost 2 by cutting across lis partition component is feasi-
ble. The partition component consisting of vertiges, 4, j, k is also a part of a partition of cost
2 formed by cutting across B and is likewise considered fasi

After identifying the components to the left of A and to thghti of B, edges(d, e), e(a, n),
e(f,g) ande(l, k) would be marked as cut edges. GPX would then identify thetjossrcompo-
nent between A and B as feasible as all the common paths ggadirfrom that component are
also cut points in partitions of cost 2 @x,.

Once no additional components are identified as feasit@estiiidren tours are constructed.
There are a number of possibilities for constructing ckitdat this point. Our implementa-
tion begins by merging any remaining partition componentgty have not been identified as
feasible into one large partition component. Children $cane then formed using the feasible
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components and the large partition component. One childritththe dashed edges from the
large component and the other the solid edges. Both chittiemminherit the common edges and
the shortest cost path through each of the feasible comfnen

As both children have the shortest cost path through eacheofetasible components and
only differ by the path through the largest component, orilel chust also have the shortest cost
path through the largest component. This child will not dnéwe a better evaluation then the
other offspring produced in the recombination, but will &alve best evaluation of all tie& — 2
tours possible. Thus, GPX is capable of producing the béstiso of all possible offspringn
a single recombinatiomvith no increase to the running time of PX.

Although our implementation produces only two offspring?Xscan theoretically produce
all possible offspring. We now present the GPX Theorem [WHiHpwing that GPX is respect-
ful and transmits alleles and can produce all possible 2 offspring in a single recombination.

The GPX Theorem:

Let graph G be constructed by taking the union of the verticebedges found in two Hamil-
tonian Circuits for some instance of the TSP. If graph G casdygarated intd: partition com-
ponents of cost 2, then GPX genera®s— 2 distinct offspring; every recombination is both
respectful and transmits allele§WHH]

The proof in [WHH] shows that GPX is respectful, transmitelas and can generate all
possible offspring. The number of possible offspring is acfion of the number of feasible
partition components (i.e., the number of partitions oft@dound in the union graph. While
we have shown in theory that GPX can make use of all feasilstéipa components in a single
recombination, we now wish to explore the benefits of gereiabn.

2.3 Benefits of Generalization

We will first look at the number of feasible partition compatewhen recombining local optima
in different areas of the search space. If only two partitomponents are used by GPX, GPX
will perform no different than PX. We count the number of fiemhs of cost 2 found during
recombination when recombining random local optima geedrasing three search heuristics:
2-opt [Cro58] and 3-opt [IM97]. 3-opt is similar to 2-opt baplaces three edges instead of two
in a single move. As a result, 3-opt can find higher qualityigohs than 2-opt [JM97]. Using
both heuristics will allow us to sample different parts of gearch space.

Two groups of 50 random tours were generated. Steepestriesopt was applied to one
group and steepest descent 3-opt was applied to the otheh I&ml search heuristics were
applied until a local optimum was found. If a tour was dugkchwithin a group, a new random
tour was generated and local search applied until each grangisted of 50 unique local optima.

GPX was applied to all unique pairs within each group. Tabfeshows the number of
feasible partition components found in each recombination

These results show that more partition components arergresen recombining 3-opt local
optima than 2-opt local optima because 3-opt local optimatrelsare more common edges that
can be used to partition the union graph. This makes sensauge the Big Valley Hypothesis
[BKM94b] suggests an inverse correlation between the evialu of local optima and the num-
ber of common edges shared with other local optima with sin@l/aluations. 3-opt finds local
optima with lower evaluations than 2-opt, so by the Big \Valldypothesis we would expect
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Instance|| rand500 att532 us74 nrwl379 rand1500 | ul817
2-opt 2.6=+0.1 3.3+0.2 3.1+0.2 3.2+0.2 3.7+0.3 5.0+0.3
3-opt 9424+04 | 10505 | 10.7+05 | 11.3+£0.5 | 24.9+0.2 | 26.2+0.7

Table 2.5: Average number phrtition componentsised by GPX in 50 recombinations of ran-
dom local optima found by 2-opt and 3-opt.

more common edges between 3-opt local optima than 2-opit dptiana.

In general, Table 2.5 tells us there are more than two gartéomponents of cost 2 in most
recombinations. But how does the use of multiple partitiomponents impact the performance
of the operator? We answer this question in part by lookirigyatdifferent metrics: the tunneling
ability of the operators and the improvement of the offspraver the parent tours when using
PX and GPX.

Our goal of the following experiments is to examine the dffifcusing multiple partitions.
We will again use 2-opt and 3-opt to generate the local optifaale 2.5 shows that recombining
2-opt local optima generates a smaller number of partitmmmonents than using 3-opt local
optima. This will allow us to contrast our results in termgle number of partition components
used.

We generated 10 random local optima using 2-opt and 10 ratofmahoptima using 3-opt by
applying the local search algorithms to 10 random tourshBdgorithms are steepest descent.

We also generate 10 local optima near the global optimumlbggaandom walks from the
global optimum as described previously. In the case of 2wptuse a random 2-opt move as a
single step in the walk; in the case of 3-opt, we use a randampt 3aove.

For each set of local optima, we apply GPX and PX to each padptima resulting in 90
offspring for each set of 10. We measure the number of ofigptihat are improved over the
parents and the number of offspring that are locally optifftameasure the tunneling ability of
the operator). When recombining parents near the globahopt, we also measure the number
of offspring produced that are globally optimal.

2.3.1 Tunneling to Local Optima

Because GPX takes the best parts of each feasible partdiopa@nent, we expect that the num-
ber of locally optimal offspring will increase when using %8s compared to that of PX. The
results of random local optima are in the top half of Table&h@ the local optima close to the
globally optimum are in the bottom half.

While there is no clear trend in Table 2.6 that indicates areiase in the capability of GPX
to tunnel to new local optima over that of PX, we can at the Veagt confirm that this property
is not diminished in GPX. However we can see a trend indigadirdecrease in the number of
local optima produced when using 3-opt local optima front firaduced by using 2-opt local
optima.

We also hypothesize that GPX will be able to find the globaptiroal solution more often
than PX as a result of using multiple partitions. We caladathe percentage of successful
recombinations that led directly to the global optimum agplort these results in Table 2.7.

Table 2.7 indicates a clear ability for GPX to find the globaremoften than PX. This is due
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(a) Percentage of local optima when recombining randoniljooptimal parents

u574 | ul817 | rand500| rand1500| att532 | nrw1379
2-opt (GPX)| 97.4% | 95.4% | 94.4% 96.4% 100% 100%
2-opt (PX) | 100% | 91.1% | 100% 97.1% | 98.8% | 97.5%
3-opt (GPX)| 71.1% | 48.9% | 66.7% 50.0% 71.1% | 77.8%
3-opt (PX) | 71.1% | 55.6% | 64.4% 62.2% | 64.4% | 63.3%

(b) Percentage of local optima when recombining local oatitear the global optimum

u574 | ul817 | rand500| rand1500| att532 | nrw1379
2-opt (GPX)| 100% | 100% 100% 100% 100% 100%
2-opt (PX) | 100% | 100% 100% 100% 100% 100%
3-opt (GPX)| 98.7% | 98.9% | 91.7% 77.8% 100% 93.3%
3-opt (PX) | 75.6% | 76.1% | 93.1% 57.1% | 98.4% | 59.8%

Table 2.6: The percentage of children tours that are loagpiymal for different pairings of
recombination and local search operators. Percentagesiaod the total number of successful
recombinations. (a) contains the results from recombirémglom local optima and (b) contains
the results from recombining local optima near the global.

Instance u574 | ul817 | rand500| rand1500| att532 | nrw1379
2-opt (GPX)| 89.6% | 100% 100% 100% 77.8% 100%
2-opt (PX) | 82.8% | 100% 100% 100% 60.6% 100%
3-opt (GPX)| 82.9% | 95.4% | 72.7% 71.4% | 96.8% | 83.3%
3-opt (PX) | 41.4% | 62.9% | 41.4% 21.4% | 58.0% | 63.6%

Table 2.7: Percentage of recombinations that are globallimal. Percentages are out of the
total number of feasible recombinations, starting fromdian walk from global optimum for
different pairings of recombination and local search ofesa
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to the fact that the generalized operator is capable okingiall partitions of cost 2 and con-
structing tours in a greedy manner. If more than one panmtiticcost 2 exists, PX must arbitrarily
choose the correct partition to use to reconstruct the gl@RX will greedily construct the best
child possible of all possible offspring. If it is possibkereconstruct the global optimum using
the partitions in the union graph, GPX will find it. PX will onfind the global optimum if it can
be formed by using only a single partition and PX randomlyodes the correct partition.

We also see a lower percentage of times the global optimumuisdf when using GPX to
recombine 3-opt local optima than when recombining 2-opalloptima. In Table 2.5, we saw a
larger number of partitions of cost 2 when recombining randacal optima generated by 3-opt.
This is because 3-opt is a more powerful search than 2-optamdind better tours.

When performing a random walk out from the global optimung walk must go further
when using 3-opt because 3-opt is capable of finding the bgiianum even when 2-opt can-
not. Therefore, the 3-opt walks are finding on average tdwatshave worse evaluations than the
2-opt walks and share less edges with the global optimum. r@sudt, it is more difficult to find
a combination of partition components that yields the dlgl@ptimal solution. It is impossible
to tunnel directly to the global if all the globally optimadiges are not present in the partitions
or if a common edge is not globally optimal.

This can also explain the greater difference between GPXPafidh the 3-opt results of
Table 2.7 than the 2-opt results. Because the 3-opt locahagre further away from the global
than the 2-opt local optima, it is more likely that a reconaltion must occur across multiple
partitions to discover the global optimum. PX will be ledely to produce the global optimum
as it can only use a single partition of cost 2. GPX is unaffediy the number of partitions of
cost 2. If the globally optimal solution is present in tife— 2 possible offspring, our greedy
implementation of GPX will find it.

2.3.2 Improvements over Parent Tours

We now look to see how the use of multiple partitions affebts improvement in evaluation
values when recombining local optima. Using the offsprimgdpiced by recombining local
optima in the previous experiment, we counted the numbeffgring that were improved over
the parents for each of the recombinations. To count as aroirag offspring, a child must be
improved over both parents. The percentage of improvedrahmilof the total offspring produced
by successful recombinations are shown in Table 2.8.

In Table 2.8, we see th&0.0% is the highest percentage of children that PX can achieve.
PX, if one child is improved over both parents the other mestorse than both parents. Let
C'(p;) denote the cost of parent touandC(¢;) denote the cost of child tour then

C(p1) +C(p2) = C(c1) + Cle2)

by construction of; andc,. Any decrease in evaluation of one child must result in antidel
increase in evaluation of the other. Either both childrem &ithin the bounds of the parent
evaluations and neither is improved over both parents dr &t outside the bounds and one is
improved and one is worse than both parents.

GPX is not restricted in this manner as it has multiple gart& from which it can construct
offspring. As a result, it is capable of improving both offislg. Because GPX always con-
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(a) Percentage of offspring improved over parent tours waeombining random locally optimal
parents

Instance u574 | ul817 | rand500| rand1500| att532 | nrw1379
2-opt (GPX)| 57.6% | 72.2% | 64.3% 75.7% 71.3% | 70.0%
2-opt (PX) | 50.0% | 46.6% | 50.0% 45.7% | 48.8% | 44.9%
3-opt (GPX)| 100% | 100% | 98.9% 100% 98.9% 100%
3-opt (PX) | 50.0% | 48.9% | 50.0% 50.0% | 50.0% | 50.0%

(b) Percentage of offspring improved over parent tours wieeombining local optima near the
global optimum

Instance u574 | ul817| rand500| rand1500| att532 | nrw1379
2-0pt (GPX)| 87.9% | 92.1% | 91.3% | 72.9% | 66.7% | 77.6%
2-opt (PX) | 50.0% | 50.0% | 50.0% 45.7% | 50.0% | 50.0%
3-opt (GPX)| 87.8% | 98.8% | 72.7% 71.4% 100% 100%
3-opt (PX) | 50.0% | 50.0% | 50.0% 36.4% 50.0% 50.0%

Table 2.8: Percentage of children tours that have been wegdrover both parents for different
pairings of recombination and local search operators. &balis of recombining random optima
are shown in (a). The results from recombining optima neagtbbal are in (b).

structs the best offspring of tl¥ possible children it will find at least one improved offsgyin
if possible.

Interestingly, although we saw a decrease in the numberfspririg which were locally
optimal in Table 2.6 when recombining 3-opt local optimahl€a2.8 shows a higher percent of
improved evaluations when recombining 3-opt local optiriiée attribute this to the fact that
GPX has more degrees of freedom when recombining 3-opt tgtatha because of the greater
number of partition components as indicated in Table 2.5.

GPX is able to improve the offspring more often, but we alsanexe if the amount of im-
provement in evaluation is greater than PX. Table 2.9 shbevaterage percent evaluation above
the globally optimal solution for the random local optimarfr each instance before crossover is
applied and after GPX and PX are applied.

We see that the offspring from GPX are generally more imptomell instances than those
from PX. The use of multiple partitions not only increases ttumber of improved offspring,
but also the evaluation of the improved offspring over thoigspring produced from a single
partition. We note the difference between PX and GPX is greahen using 3-opt local optima
than 2-opt local optima. Again, this is attributed to theagee number of partition components
available to the operator when recombining 3-opt localrogti

Partition crossover is a recombination operator that traissalleles, is respectful and is ca-
pable of tunneling to new local optima. By using multipletiieims instead of a single partition,
we retain all the desirable characteristics of the singtétfman version while increasing the num-
ber of improved offspring and the ability of the operatoruariel to the global optimum. In the
next chapter we will outline a hybrid genetic algorithm, GEBA, that we designed specifically
for use with GPX and show that GPX-GA is capable of outperfogra state-of-the-art local
search algorithm for the TSP.
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Instance 2-opt 3-opt
rand500 - Before Recombinatiofy 10.20 + 0.01 | 7.62 4+ 0.01
rand500 - After PX 8.85+0.01 | 7.19 +0.01
rand500 - After GPX 8.79 £0.01 | 6.91 £0.01
att532 - Before Recombination|| 9.04 +£0.01 | 7.17 +0.01
att32 - After PX 8.08 £0.01 | 6.48 +£0.01
att532 - After GPX 8.03 £0.01 | 6.20 +0.01
u574 - Before Recombination || 9.93 +£0.01 | 7.34 +0.01
us74 - After PX 9.224+0.01 | 6.85+0.01
u574 - After GPX 9.15+0.01 | 6.53 +0.01
nrwl379 - Before Recombinatiorn 11.06 +0.01 | 7.86 &= 0.01
nrwl379 - After PX 10.58 £0.01 | 7.66 = 0.01
nrwl379 - After GPX 10.52 +0.01 | 7.49 + 0.01
rand1500 - Before Recombinatign 11.39 4+ 0.01 | 8.23 = 0.01
rand1500 - After PX 10.91 £0.01 | 7.94 £ 0.01
rand1500 - After GPX 10.87 £0.01 | 7.66 + 0.01
ul817 - Before Recombination|| 15.36 +0.01 | 9.76 &= 0.01
ul817 - After PX 14.70 £0.01 | 9.18 £ 0.01
ul817 - After GPX 14.64 +0.01 | 8.60 +0.01

Table 2.9: The mean percentage and standard error abovetthebtour of the children tours
produced by the successful recombinations for PX and EP>adh @xperiment using random
locally optimal parents.
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Chapter 3

GPX-GA: A Hybrid Genetic Algorithm
using GPX for the TSP

3.1 Designing a Hybrid Genetic Algorithm for GPX

The general definition of a genetic algorithm (GA) used irs tthiesis is any search heuristic
which uses recombination and selection to optimize a pdipulaf solutions. A hybrid genetic
algorithm is a GA that, in addition to recombination and s&tm, also uses uses a local search
heuristic. Given that GPX is capable of tunneling when regiming local optima, a hybrid
genetic algorithm is a reasonable choice to leverage tlguarproperties of GPX as a recombi-
nation operator. We designed a hybrid GA (GPX-GA) using tilefing basic structure:

Initialize a population of solutions.
Apply a local search heuristic to each of theplutions.
Apply recombination to the population b§olutions, creating offspring.

Select tours from thev offspring to form the next generation.

o & w0 dpoE

Repeat from step 2 until some stopping criterion is met.

3.1.1 Initial Population

To create the initial population, we choose to creatandom tours. Other tour construction
algorithms, such as Quick-Boruvka [ACRO03], Christofide§[{®] or nearest neighbor [IM97],

produce better starting tours but as the next step is thécagiph of local search, such gains are
negligible as the local search algorithm used in our GPX-&/uch more powerful than even
the best performing construction heuristics [JM97, App06]

3.1.2 Local Search

Currently, the most powerful local search heuristic as &f #riting for the symmetric TSP is
the Lin-Kernighan local search heuristic (LK-search) [L30]. It is not surprising that modified
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versions of the original LK-search are used in the best pmifay iterative local search algo-
rithms, such as Chained Lin-Kernighan (Chained LK) [ACR@8H Lin-Kernighan-Helsgaun
(LKH) [Hel00]. We conducted pilot studies using 2-opt, 3@nd LK-search in a hybrid GA
with GPX. LK-search consistently produced better resuligmvused in conjunction with GPX
and is the natural choice for use as the local search heuristi

LK-search performs a next descent backtracking search anitel tour, exploring the
neighborhood of tours found by makirigopt moves on the initial tour, as well as those tours
that can be found by making — 1)-opt moves(k — 2)-opt moves, etc. down to the basic 2-opt
move. It explores this neighborhood by first breaking 2 edgebkreplacing them as in the 2-opt
algorithm, but if the 2-opt move does not yield an improvedrtat retains the replaced edges
and continues by breaking and replacing another edge to &8wpt move. This continues
until an improved tour is found dtr edges have been broken and replaced (ie-ppt move has
been performed). If an improved tour is found, the searclestarted from the improved tour,
otherwise the search backtracks by undoing the last brottge and breaking a different edge.
When no improved tours are found within thept neighborhood, the tour is a local optima and
the search is complete.

The LK-search algorithm’s ability to find improving toursdhits efficiency have both been
improved by a number of clever optimizations since its fietaiption in [LK73b]. In this study,
we use an efficient and effective implementation of the LErsk method that is used in Chained
LK [ACRO3] and is part of the Concorde software stit€his particular implementation of LK-
search is described in detail in [App06]. For the remaindeth thesis, LK-search refers
to the particular implementation in version 03.12.19 of @@ncorde software package unless
otherwise noted.

Two important details of this implementation are the useanididate lists and “don’t-look”
bits. Each city has associated with it a candidate ligtaifies that are sorted by their likelihood
of producing an improving move. One common way of sortings¢hbsts is by edge cost;
however, LK-search uses a Delauny graph to construct anthsocandidate lists (See [App06]
for details). The candidate lists are used to decide whicje ¢d break next when performing
the search. By default,is much smaller thafn — 1) , thus not only are edges more likely to
improve the tour chosen first, but the use of candidate listsreaduces the options that must be
considered when backtracking.

LK-search also uses “don’t-look” bits. “Don’t-look” bitsr& used to prevent undoing an
edge replacement that was performed previously in the saarets Even though a city may be
in a candidate list, it will be overlooked if its “don’t-lodkoit is turned on. Because LK-search
takes the first improving move found and the ordering of thaincities involved in the first
step of a variablé-opt move is random, it is possible (and highly likely) tha¢ tandidate lists
will be consulted differently in multiple runs given the saumitial tour.

Because of this stochasticity, a tour returned by LK-se&ciot a true local optimum in the
sense that if a different candidate list is chosen on redegtplications, different search paths
will be considered and the possibility of further improverharises.

Thttp://www.tsp.gatech.edu/concorde.html
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3.1.3 Recombination

Obviously GPX is the recombination operator used in GPX-8#cifically the greedy imple-

mentation described in the previous chapter. We have shiostrGPX transmits alleles and is
respectful. This means that no new edges can be introduted tour via GPX alone. Further-

more, GPX tunnels between local optima, meaning a high ptage of the tours produced by
GPX will also be locally optimal and will not be changed by ISéarch. Without some mecha-
nism to introduce new edges into the population, we find tHRK&A converges prematurely
before a low cost solution is found.

To increase the number of unique edges in the population@aptetent premature conver-
gence, when a recombination is not viable we apply the ddutidige move to the parents. The
double bridge move selects four edges as random, breaks ¢uges and reconnects them as
depicted in Figure 3.1.

(b)

Figure 3.1: A double bridge move. Edges x, y, w and z in (a) amsen randomly. They are
then broken and replaced as shown in (b).

We use the implementation of random double bridge movesfauthe Concorde software
package and used in Chained-LK.

One further question that arises with recombination is wbats should be recombined.
We first considered recombining all unique pairs of soludiam the current population. We
found empirically that this method produced a number of neldint solutions and was not as
effective as simply recombining the best tour of the popaitatvith the remaining — 1 solutions.
Performing recombination in this manner did not significartduce the evaluation of the tours
found after a fixed number of generations and eliminatedgelaumber of recombinations in
each generation.

3.1.4 Selection

In the greedy implementation of GPX used in GPX-GA, only tfsring are generated. One
of the offspring is the greedy offspring: it takes the sheirjgath through each of the smaller
feasible partition components and the shortest path thrtig largest component. The second
offspring also inherits the shortest path in all of the piari components, except for the largest
partition component; in this component the second offgpiirherits the patmot used by the
first greedy offspring. Thus,recombinations produces offspring.

Several options exist for reducing tReoffspring to form the next population of size We
considered two options: 1) truncation selection, in whidh always keep theé best solutions
or 2) diversity selection, in which we try to preserve divisrdy keeping offspring containing
edges that are under-represented in the population.
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Truncation selection is fairly straightforward and onlyadtves the evaluations of each of the
2t tours produced. Thetours with lowest evaluation move forward to the next getena

To maintain diversity, we developed a strategy caliiécersity selectiorthat uses an edge
weighting functiond to quantify the diversity of edges contributed to the popafaby each
tour. For tours; in the population,

1
d(s)) = > NG

e(j.k)€s;

wheree(7, k) is an edge from city to k£ and M (4, k) is the number of times(j, k) appears in
the population. We then retain tours from among the offgprinth the highest summed edge
diversity, d(s;).

The use of diversity selection means that the GA must be ggaeal and that offspring
replace parents, because parents typically have highersitiy than offspring.

To determine which selection method would be best at progulow cost tours and main-
taining diversity, we ran the GA using both truncation angdsity selection for 100 generations
with a population of 10 solutions (1,010 LK-search calls)t each generation we record the
minimum tour evaluation in the population and the numberrofue edges found in the entire
population of solutions. Figure 3.2 shows the average teswier 100 trials on the indicated
instances. The instances are the same from the previouteclaagl represent one large and one
small instance from each of the three categories of TSPriosta grid (U574, ul817), clustered
or psuedo-random (att532, nrw1379) and random (rand500;LE0D0).

The left column shows the average minimum tour found andigfie shows average number
of unique edges in the population.

We see that the minimum evaluation found in both diversitg tmncation selection are
within the standard error (left hand figures of Figure 3.2)owdver, the right hand side of
Figure 3.2 shows that diversity selection is able to mamn&imuch larger number of unique
edges in the population. Because GPX is unable to introdeeeatges into the population,
we use diversity selection in the GA to maintain a larger nendd unique edges without any
significant loss in the minimum tour found.

3.1.5 Population Size

Figure 3.3 lists the pseudocode for GPX-GA, which incorpesdhe various algorithmic deci-
sions described above. We now examine the question of finldelgest value of, or population
size.

We conducted empirical experiments on the population sidedatermined that a population
of size 10 does not perform significantly worse than popoetiof greater size and, in most
cases, performs better. Figure 3.4 shows the results ofmy®P X-GA with various values of
t.

LK-search takes the most computational time in a single igeioa; for every increase in
population, the number of LK-search calls per generati@isis increased. Therefore, a popula-
tion of size 20 has made 120 LK-search calls by generationctu@ing the 20 for initialization).
For the same number of LK-search calls, a population of €0zeolild be run for 21 generations.
We chose a population of size 10 as the results indicate #hige\feads to the best performance
and allows us to carry out more LK-search calls per tour.
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Figure 3.2: Comparing diversity and truncation selectinsia instances. The average minimum
tour found is shown on the left side shows no significant diffiee between selection methods.
However, the right side shows a large increase in the nunfhamique edges in the population
between the two methods.
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Figure 3.2: (cont.) Comparing diversity and truncatioresgbn on six instances. The average
minimum tour found is shown on the left side shows no significifference between selection

methods. However, the right side shows a large increasesindimber of unique edges in the
population between the two methods.
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Figure 3.2: (cont.) Comparing diversity and truncatioresgbn on six instances. The average
minimum tour found is shown on the left side shows no significifference between selection

methods. However, the right side shows a large increasesindimber of unique edges in the
population between the two methods.
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Let P1 be arandomly generated population of size

Let P2 be a temporary child population of size

For each member aP1: apply LK-search and evaluate;

1. Attempt to recombine the best tour Bl with the remaining — 1 tours

using GPX; this generates a set of uptmffspring.

. If recombination was not feasible between the best todteur 7, mutate
parents using a double bridge move and place in populdizin

3. Place the best solution found so far in populatii

4. From the set of offspring, select offspring to fill popidat P2;

5

6

N

. For each member of populatidrR: apply LK-search and evaluate;
. P1 = P2; If stopping condition not met, goto 1;

Figure 3.3: Algorithm for GPX-GA; the GA is generational t lalitist.

3.2 GPX-GA versus Chained-LK

To measure the performance of GPX-GA, we compare it to th@hafined-LK. Chained-LK is
an iterative local search heuristic and is one of the besopeing heuristics for the TSP as of
this writing [JM97, ACRO03]. A high level description of theerative search framework used in
Chained-LK is described in Figure 3.5. For a detailed dption of Chained-LK see [App06].

To compare GPX to Chained-LK, we ran GPX-GA with a fixed numtfeavailable LK-
search calls for the entire population. When these calldepéeted, the algorithm is terminated.
Chained-LK is run with the same number of available LK-skarallson a single tour Both
algorithms use the same implementation of LK-search wigtstime default parameters.

In the results presented here we ran GPX-GA with a populatiohO tours. Since the
population size is 10, GPX-GA uses 10 applications of LKrsleaach generation; therefore,
Chained-LK is allowed to do 10 double bridge moves and applyskarch 10 times for every
generation that GPX-GA is allowed to execute.

This means that each algorithm is allowed to call LK-seandcly the same number of
times. The GPX-GA has the additional cost of recombinatior this cost i) (n) with a small
constant (of 4 or 5) and the computation is very small conp&reone iteration of LK-search.
Furthermore, applying LK-search after a double bridge mevaore expensive that applying
LK-search after recombination: the solutions are madegyday the double bridge move, and
improved by recombination.

We then compare the minimum tour found using GPX-GA agahlesninimum tour found
using Chained-LK. Table 3.1 lists the average percentagfeeatost of the minimum tour found
compared to the cost of the global optimum for each problestaince. GPX-GA was allowed
to run for 50 generations in these experiments.

After 510 calls each to LK-search (50 generations plus dializiation step), GPX-GA yields
better results on all of the problems except nrw1379. Thisrisarkable because GPX-GA must
optimize 10 solutions and the best solution must be optichif&times faster than Chained-LK
to obtain a better result.

If each algorithm is run longer, the performance of GPX-GAnisreasingly better than
Chained LK. Table 3.2 shows how many times (out of 50 atte)rthtt each method finds the
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Figure 3.4: (cont.) The average minimum evaluation valusébfor various population sizes
averaged over 100 trials.

\ Generation— \ 5 \ 10 \ 20 \ 50 \
Instance | Algorithm 60 LK calls | 110 LK calls | 210 LK calls | 510 LK calls
rand500 | GPX-GA 0.29+0.01 | 0.17+0 0.14+0 0.05+0

Chained-LK | 0.30 +0.01 | 0.19 +£0.01 | 0.13+0 0.09+0
att532 GPX-GA 0.29+0 0.18+0 0.12+0 0.07+0
Chained-LK | 0.30 +0.01 | 0.21 +0.01 | 0.13+0 0.08£0
us74 GPX-GA 049+0 0.33+0 0.19+0 0.15+0
Chained-LK | 0.54 20.01 | 0.34 +0 0.19+0 0.15+0
nrwl379 | GPX-GA 0.63+0 0.48+0 0.34+0 0.23+0
Chained-LK | 0.62 +0.01 | 0.46 +0.01 | 0.32+0 0.19+0
rand1500| GPX-GA 0.714+0.01 | 0.524+0.01 | 0.36 £0 0.22+0
Chained-LK | 0.73 +0.01 | 0.54 +0.01 | 0.39+£0.01 | 0.254+0
ulsiz GPX-GA 1.61 +£0.01 | 1.26 £ 0.01 | 0.95+0.01 | 0.63 +0.01
Chained-LK | 2.08 £0.02 | 1.61 +0.02 | 1.194+0.01 | 0.83 £0.01

Table 3.1: Average percentage of the cost of the minimumftaurd above the globally optimal
cost averaged over 500 experiments using Chained LK and GRX-
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Lett be a valid tour;

1. Lets=t
2. Apply double bridge move to
3. Apply LK-search tos

4.1fC(s) < C(t), lett =s
5. Goto 1 until stopping criterion is reached.

Figure 3.5: High level overview of the iterated local seafigmework used by Chained-LK.
The default stopping criterion is to run the main loop foiterations where is the number of
cities in the TSP instance being searched.

rand500| att532 | u574 | nrwl379| rand1500| ul817
Hybrid GA | 50/50 26/50 | 43/50 | 1/50 12/50 1/50
Chained-LK | 38/50 16/50 | 32/50 | 1/50 2/50 0/50

Table 3.2: This data reports the number of times the glob@inoymn is found by each algorithm

after 1010 calls to LK-search. The results are report ovendg@riments.

global optimum after 1010 calls to LK-search (which is 10@emtions for GPX-GA).

We have shown that when given similar computational reesyrGPX-GA is capable of
finding better tours faster than Chained-LK and finding trebgl optima more often. In this
chapter, we have concentrated on the performance of thgsathins and how often they find
the global optimum. In the next chapter, we will explore whappens when these algorithms

fail to find the global optimum.
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Chapter 4

Funnels in the Search Space of the
Travelling Salesman Problem

The neighborhood of the TSP has been described as havingvallgyg structure [BKM94a] in
that the evaluation of a tour is positively correlated to distance of the tour from the global
optimal and to other locally optimal tours (see Figure 41h)[BKM94a], many local optima
were generated by Lin Kernighan search (and other locatldsguristics). It was found that
local optima of evaluations closer to that of the globallyimal evaluation tended to be closer
together than local optima of worse evaluations. This |eeithé Big Valley Hypothesis which
states the search space of the TSP consists of a a singlalagtiiey of solutions, at the bottom
of which are the global optimum (or optima). In this coarsewyithe big-valley structure is
conceptualized as a landscape where many local optima nisty lext are easy to escape, and
the gradient leads to the global optimum.

This would imply that if an approximation algorithm with awerful local search heuristic
and a method by which to escape local optima, such as Chalkedets close enough to the
global optimum, it should almost always find the optimal solu as the gradient leads directly
to it. However, we find this not to be the case. The results efffevious chapter indicate
that Chained-LK does not find the global optima all the tinnefaict, it finds a globally optimal
solution in much less than half the trials in most instanested.

In Table 3.2, Chained-LK was run for 1010 iterations. Totertillustrate the point that
Chained LK is getting “stuck” we ran the algorithm on the a&5Snstance for 1,000 trials. In
each trial, Chained-LK was allowed to run until the best fbtwur was not improved for at least
10,000 iterations. As a point of reference, when the glopéihoum is found, it is often found
in as few as 1,000 iterations of Chained-LK. Out of these @ f@i@ls, only 4 unique evaluations
were found. Of these, one was the global optima which wasdd@f9% of the time and the
other three tours had evaluations wittii6% of the optimal evaluation. By the Big Valley
hypothesis, the three non-optimal solutions should be glerge to the global optimum as they
are within only0.06% of the optimal evaluation. If this were the case, Chainedshiguld have
found the global optimal solution in all 1,000 trials.

We will first conduct experiments to explore why Chained-ls<getting stuck in a handful
of tours that are very close in evaluation to the global optima result counter-intuitive to the
Big Valley hypothesis. We will then perform a similar anagyen GPX to determine the cause
of its inability to consistently find the global optima. Thesults of this analysis provide exciting
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Figure 4.1: A pictorial representation of the big-vallesusture.

directions for future research.

4.1 The Search Space of the TSP

In this chapter we discuss structures in the search spabe ai3P. It is important to realize that
the search space depends on several factors and changirg #wege factors can result in an
entirely different space. To formalize the concept of deamace, we will use the definition of a
combinatorial landscape of [RS02], which consists of tlingeedients. Specifically for the TSP
we have:

(n—1)!

1. AsetX of all possible solutions. For the symmetric T§P| = ~—;

2. A notion of distance orX .

3. Afitness functionf : X — R. This is the typical cost function: a summation of the cost
associated to each edge in a solution.

For the distance metric, in keeping with the earlier worklunhig valley in the TSP, we will
use the bond distance of [BKM94a]: Given two toursandts, the bond distancé(t;,t2) is
equal ton minus the number of edges present in bigtindt,, wheren is the number of cities
in a particular instance.

In [BKM944a] it was shown that the bond distank@, t2)/2 < d(t1,t2) < b(t1,t2) where
d(t1,t9) is the minimum number of 2-opts needed to transfeyrmto ¢,. Because LK-search
builds a sequence of 2-opt moves that are bounded by thehsdapth parameter, the bond
distance is still meaningful in context of LK-search andiaightforward to compute. Indeed, no
polynomial time algorithm is known to compute the minimumther of 2-opt moves required
to move fromt; to to [BKM94a].

4.2 Funnelsinthe TSP

We conjecture that the reason Chained LK becomes “stuckdmaptimal solutions is that the
big-valley structure breaks down as search approachesabal @ptimum, making the optimum
harder to discover. The clustering of low cost solutionétsikes place as stated in the Big Valley
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hypothesis, but instead of a single cluster there are a nupflEusters of low cost solutions
separated by a non-trivial distance.

We term these clusters of solutiofusinelsas they are analogous to the funnels found in en-
ergy landscapes [WMW98] associated with Lennard-Jonesdfuster problems. The equation

5 A . 12 o 6
— 4e - I
£ ()]
is the Lennard-Jones potential and describes the interasfiatoms in an LJ cluster. A solution
to an LJ cluster problem is a three dimensional configuratiom atoms, the number of atoms
in a cluster is denoted b¥.J,,. The optimal solution is a configuration of atoms which mirzien
the total energy of the system. The evaluation of the Lerdareks potential over all possible
configurations is known as the potential energy surfacenergy landscape.

In [DMW99], it was observed that some clusters, suchl.ds;, have a potential energy
surface which contains a single deep funnel which leadsetglidbal minimum while others have
more than one funnellJ3s has two. In the case di.Jsg, the bottom of one funnel corresponds
to the global minimum, and the bottom of the other funnelegponds to the configuration with
the second lowest energy.

It was found that global optimization is more difficult on riiple funnel landscapes such as
L.J3g than on larger problems with a single funnel, suclidss. This relationship between diffi-
culty in global optimization and the presence of funnels firasshown in [DMW99]. Although
the L.Jsg cluster has been successfully optimized globally, thertiegles used [DW98, PP95]
involve transformations of the energy landscape whichgedaisingle funnel.

The difficulty that arises in global optimization on energydiscapes with multiple funnels
is due to the large barriers between the funnels. Theseetmm@re large enough that once a
configuration at the bottom of a funnel is reached, the semrecimable to escape the funnel
[DMW99]. Thus, once the search enters a funnel, it can beedrie the bottom of the funnel,
but if that funnel does not contain the globally optimal cgufation, the search will be unable
to reach the globally optimal energy configuration.

In the TSP we find that, similar to the behavior of continuogarsh heuristics on multiple
funnel potential energy surfaces, once Chained-LK entéurargel and reaches a solution corre-
sponding to the bottom of a non-globally optimal funnelsihighly unlikely that the search will
find the global optimum.

In order to further explore funnels in the TSP, we took tworapphes to assessing the
structure of the search space near the global optimum, Riestxamined the number of unique
tours found after considerable search effort. We ran Clalirie until at least 10,000 iterations
are performed without finding an improving tour. Chained-Wis run in this manner for 1,000
runs, recording the best tour found from each run. Of theQ.l#%t tours produced from each
run, we only keep unique tours, i.e., a tour must have at [@asdifferent edge from the other
tours that are kept. We collected data on 6 instances, rén@d®32, u574, nrwl379, rand1500
and ul817. These instances represent one small and onénsigiece from each of the three
categories of TSP instances. Table 4.1 shows relativelyufégue evaluations across the 1,000
runs.

Second, we explored the regions around the unique evahgatieor this analysis, we focus
on att532 because it has just four unique evaluations wtdahbe easily displayed graphically.
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Instance || Number of unique tours Number of unique evaluationss
Random Euclidean Instances
rand500 3 2
rand1500 194 151
Clustered or Psuedo-Random Instances
att532 20 4
nrwl379 902 71
Highly Structured or Grid Instances
us74 13 4
ul81l7 967 264

Table 4.1: Number of unique tours and evaluations found aftening Chained-LK for 1,000
runs on 10 instances.

Evaluation| 27686 | 27703 | 27705| 27706
27686 - 66 36 86
27703 - - 76 43
27705 - - - 73
27706 - - - -

Table 4.2: Pairwise distance of each funnel bottom used asitél tour in Figure 4.2. This
shows what appears to be an overlap in funnels in Figure sh@tisecessarily the case.

For att532, each set of unique tours with the same evaluédiomed a connected component in
the search space under 2-opt; so the tours are considereaiodlateaus. One tour from each of
the four plateaus was selected randomly to represent tmeffloottom (the largest plateau was
of size six). 500 local optima were found with the random waicedure starting from each of
the four funnel bottoms. Figure 4.2 plots the distance otdes to the global optimufrversus
the tour evaluations; the majority of local optima are fartway from the global than the tours
associated with the bottoms of each funnel.

These plots concentrate attention on part of the searcle sggg close to the global. The
local optima found in each funnel are correlated in evatuatind distance to their respective
funnel bottoms and other tours in that funnel. However, aetation doesot exist between
evaluation and distance for tours from different funnels.

Each funnel itself is a non-trivial bond distance from thhestfunnels though this is not
evident in Figure 4.2. For example, the funnels with bott@ogesponding to plateaus with
evaluations of 27705 and 27703 seem to be close to one arintRégure 4.2. However, this
is only because we are measuring the distance relative tglohal optima, the bond distance
between the two tours is actually 76. The pairwise distabedseen the funnel bottoms are in
Table 4.2.

1In fact, we found two distinct globally optimal solutionse&use they differ by only two edges, we selected one
for distance computation.
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Figure 4.2: 500 local optima found by LK search when staréibgach of the four funnel bottoms
in att532. Each local optima is shown with a symbol matchiginitial tour of the walk. The
initial tour, i.e. the funnel bottoms, are shown with a stigharger and bolder symbol. The
initial tours have evaluations from left to right of 27686ftonal), 27705, 27703 and 27706.

Instance rand500| att532 | u574 | nrwl379| rand1500| ul817
Minimum distance 28 26 32 46 54 75

Table 4.3: Minimum bond distance between any two funneladidn each of the instances. The
distance between any two funnels must be at least equal togerithan the numbers reported
in this table.

Table 4.2 shows that the funnels corresponding to tours igfuenevaluations were always
separated by a non-trivial distance for instance att532. fobMed this to be the case for all
instances tested.

Table 4.1 shows that the number of funnels tends to grow Wwéhristance size for all prob-
lems. Although impractical to list the pairwise tables afirfiel distances for the large instances
due to the large number of funnels in these instances, wilaésninimum distance between any
two funnels in Table 4.3. We can see a general trend for thémaim distance to increase with
the size of the instance.

Rather than a single big-valley, there are multiple funasisociated with local optima close
in evaluation to the global optimum. Under Chained-LK, tlg-\mlley structure holds within
funnels but not across funnels below a certain evaluation.
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Instance | Mean bond distance Mean length of walk|
rand500 | 27.49 + 1.05 1+0

att532 | 22.5+1.44 1.01 +£0.01

u574 | 24.68 £ 1.57 1.03 £ 0.02
nrwl379 | 13.74 + 1.16 1.07 +0.03
rand1500| 20.04 + 1.29 1.240.04

ul817 | 17.3+1.14 1.26 £ 0.05

Table 4.4: Mean bond distance from the initial local optingao the local optima* found by
LK-search along random double walks from the initial optiamal the mean length of the walk.

4.2.1 Implications for Chained-LK Performance

We now return to the conundrum of why local search is not méiestve at finding the global
optimum in TSP. Chained-LK can move through the search sjpaweo ways: LK-search and
double bridge moves. The lowest bond distance between dhalgbptimum and a non-globally
optimal solution is 36 for att532 (this distance only growighwvinstances of larger size).

To determine the mean bond distance a tour is moved by Lkelseard the double bridge
move, we use a random walk method similar to the one used ipt€ha to explore the space
of local optima near the global.

For a given instance of the TSP, an initial tayrwas found by applying 200 iterations of
Chained-LK to a randomly generated tour. We start the watkwatyy. At stepi of the random
walk, a new tour; is produced by applying a random double moveto;, by breaking four
random edges im;_1, e(a,b), e(c,d), e(w,z) and (y, z), and replacing them with four new
edgese(a,w), e(b,x), e(c,y) ande(d, z), to form the tourv;. After each step, LK-search is
applied tov; until a locally optimal tourv™ is found. Ifv* differs fromwvg, v; has escaped the
basin of attraction surrounding,; 7 is said to be length of the walk and the random walk is
halted.

When LK-search finds a new local optimg, we measure the bond distance betwetand
vY and the length of the walk The mean distances of 100 such walks are reported in Tahle 4.

The only difference between this random walk method and atktised in Chapter 2 is the
use of double bridge moves instead of 2-opt moves. The ramtbwible bridge move is roughly
equivalent to two random 2-opt moves (four edges go out ofabeand four new edges come
into the tour in both a double bridge move and two 2-opt maovEkg double bridge move does,
however, sample a different space than two random 2-opt snoweld. If either of the two pairs
of edges that are replaced by the double bridge move weresrakd replaced individually,
a cycle would be formed, making the resulting solution iidza5o, the random double bridge
move consists of twinvalid random 2-opt moves, moves that would not be performed by our
random 2-opt walk.

The second column of Table 4.4 tells us that most of the tinneggesdouble bridge move was
sufficient to find a local optima with LK-search. When compgrihe average distance between
the new local optima found, in all cases it is smaller thamtii@mum distance between funnels
reported in Table 4.3. Chained-LK applies only a single diidridge move between calls to
LK-search and moves to a new local optima only if the evatuneis better than the current best
tour. If the search is in a funnel bottom and can only move \@name, a distance smaller than
the minimum distance between funnels as indicated by TaBlet4s highly unlikely the search

34



28000
|

27686
27703
27705
27706

X + > o

27950
|

Evaluation
27850 27900
! !

27800
|

27750
|

27700
L
%
®,
g
%
X

Distance

Figure 4.3: 500 local optima found by Lin-Kernighan searétergperturbing the four funnel
bottoms from att532 by double bridge moves.

will escape the funnel.

To illustrate this idea, we plotted 500 tours in Figure 4.3vasdid in Figure 4.2 using the
random double bridge walk instead of the random 2-opt wafkh®500 tours found from each
initial tour, only a handful of unique local optima were faliand they clustered even closer to
the initial tours than in Figure 4.2.

The distance between funnels only grows with instance Siakle 4.4 indicates the distance
of new local optima found by double bridge moves seems torbedess with instance size.
As instance size grows, it will become more and more unlikiet LK-search can hop from a
non-globally optimal funnel bottom to the globally optinsalution (or a solution in the funnel
containing the global optimum) by perturbing a low cost tasing random double bridge moves.

4.3 Escaping Funnels with Generalized Partition Crossover

We now attempt to determine if part of the improved perforoganf GPX-GA over that of
Chained-LK is because the GPX operator escapes funnelsnidpmdy choosing two distinct
funnel bottoms from each instance. Only funnels that weteaesociated with the global opti-
mum were chosen. To generate parent tours associated witinalf the random walk method
starting from the funnel bottoms was used to find 50 localnogtivithin each funnel. When
Chained-LK is applied to these local optima, the search ydvesds back in the funnel bottom
from which the random walk was initiated.

To test the effectiveness of the GPX operator in escapingeiish we apply the operator to

35



Instance| rand500 att532 us74
Escapes| 1288 (51%)| 1129 (45%)| 940 (38%)
Instance| nrwl379 rand1500 | ul817
Escapes| 2254 (91%)| 1655 (66%)| 1502 (60%)

Table 4.5: Number of funnel escapes out of 2500 crossovees ajpplying GPX to two tours in
different funnels.

Evaluation
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o
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Figure 4.4: Distance to optimal (x-axis) vs. cost functimaleation (y-axis) of the 500 tours
produced by the GA using GPX on ATT532 after 10,010 LK seasath ¢

all pairs of tours such that each pair consists of one tounfeach of the two funnels. This
results in 2,500 applications of the GPX operator per ircgaiwo offspring are generated, one
of which is the result of greedy recombination. Chained-Iskihien applied to the two tours
which are produced by GPX until it finds no improving tour foteast 10,000 iterations. If one
of the tours found by Chained-LK is in a different funnel frdhe initial funnels, we conclude
that a single application of the GPX operator was succdgsdble to escape the initial funnels.

The results are presented in Table 4.5. In all instances B dperator displayed the ability
to produce a tour that led to a different funnel than the flrmevhich the parents were found.
GPX s able to tunnel between funnels, something that LKeseand double bridge moves alone
cannot.

We also looked at the results of running GPX-GA with a popaiadf 10 tours until 10,000
LK-seach calls were made. The results of doing this for 1@0stare depicted in Figure 4.4
using the same cost versus distance plot as in Figure 4.ptethad these are the tours found by
GPX-GA at the end of each run.
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The clustering found in Figure 4.3 is not evident in Figuréand Figure 4.4 displays a more
even distribution of tours over the lower part of the seanéice. This seems to indicate that
GPX-GA is not susceptible to the funnel structures foundmiging Chained-LK. The search
space configuration is altered by the use of GPX-GA, simildiné transformation methods used
in continuous optimization to avoid funnels. This then Esmthe question, why does GPX not
find the global optimum more frequently?

4.4 \What Makes Generalized Partition Crossover Fail

We analyzed the populations in the final generations of them@xents in Chapter 3 in which the
global optimumwas notfound after GPX-GA had been run for 100 generations with aufadion
of size 10. We found thatll the edges found in the globally optimal tour were found indtiges
of the entire population, albeit not in the best found tauthie majority of trials for all instances
tested. Why then is GPX unable to recombine tours to find thkeajloptimum if the edges are
present?

Recall that in GPX-GA we recombine the best tour with the rieing tours in the popula-
tion. Those globally optimal edges that are not found in &t lbour are found somewhere in at
least one other tour in the population, therefore they vélclassified as uncommon edges in at
least one recombination.

To ensure that GPX always produces a valid Hamiltonian itinhen constructing off-
spring, edges cannot be selected on an individual basisrwptrtition components. That is,
the edges used to construct a child tour from within a pdeicpartition component must all
come from one parent or the other. During recombinatiorpnfis globally optimal edges which
are found in one parent appear in the same partition compasatifferent globally optimal
edges from the other parent, it will be impossible for GPXdoambine the two tours and find
the globally optimal edges as it cannot construct a child tming the edges from both parents
within a single partition component.

Because of this we wish to determine whether the globallyn@tedges that aren’t found in
the best tour appear in a single component during reconibimat if they are spread out among
different components. We checked this by running GPX-GAlfad generations and analyzing
each component of every recombination that produced thegiemeeration.

We found that in all the recombinations prior to the final X0§eneration, the majority of
globally optimal edges fell into a single partition compohéhat was larger than the rest. In
table 4.6 we report the number of uncommon globally optintges that fell into this large
partition component, the size of this component, and thebminof uncommon global edges
that are found in other components; we also report the nuwfsrared common global edges
observed during recombination.

As can be seen from Table 4.6, the majority of edges that a@rfonod in the best solution
but that are found in the global optimal solution appear asoommon edges that are largely
contained in the largest component during the recombingirocess. For this reason GPX is
unable to recombine tours to find the global optimum.

As a final experiment, we examine how quickly the global edgedound in the population.
The results of this experiment lead to speculation on areiffestrategy for using GPX-GA to
avoid the problem of recombining to find the global optimume W#ned off the double bridge
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rand500 | att532 us74
Common global edges 392.39 | 406.75 | 440.86
Uncommon global edges in largest componeis0.5 87.39 56.15
Uncommon global edges not in largest componeft04 0.04 0.81
Total edges in the largest componen67.17 102.11 80.15
nrwl379 | rand1500| ul817
Common global edges 995.52 | 1120.50 | 1407.90
Uncommon global edges in largest componeni60.78 | 171.47 268.62
Uncommon global edges not in largest componet80 1.05 0.96
Total edges in the largest componegn222.83 | 223.86 289.12

Table 4.6: Percentages were averaged over 50 trials. Tessksrwere captured during recom-
bination during the last generation. Common edges can apyséde of components, or between
components of Grapfy,,. Uncommon edges appear only inside of component, of

mutation in step 2 of the GPX-GA as described in Figure 3.3 limer 3. Without double
bridging, the population converges quickly, and we only thenGA to 5 generations.

We ran 50 trials of the modified GPX-GA. At generation 5 we rdcthe minimum tour
found, the number of unique edges in the population and thebeu of edges in the population
that also appear in the global optimum. When there is no noutdie., double bridge moves)
not only does the GA converge very fast, but it also losesrslitgeand gets “stuck” after about
5 generations.

Nevertheless, GPX-GA is already finding very good solutiafter only 5 generations: for
rand500 and att532, it found the global optimum in 2 out ofridlg, using only 50 recombina-
tions and only 50 calls to LK-search. The convergence to blead) optimum is extremely fast
in these exceptional cases.

As the data show in table 4.7, the edges found in the globamopt are all present in
the population in the majority of the runs. On instances 580 att532 and rand1500 all of
the globally optimal edges were present in the populatioewary single run. The population
therefore contains all of the edges needed to constructidhalty optimal solution after only 5
generations. Furthermore, the results for all of the TSRmtes show that the total number of
unique edges in the population was always less thaafter 5 generations.

These results suggest a different use of GPX-GA: using GPRXea=quickly create a pop-
ulation of tours to be used in a strategy known@g merging Tour merging [App06, CS03]
is a strategy which involves merging together a number afsttaicreate a graph which is then
passed to an exact solver for the TSP. This merging is sinalarhat happens when taking the
union of two tours in partition crossover, but typically atves more than two tours. The end
result is a graph with a greatly reduced search space thajothplete graph of a TSP instance
and can , theoretically, be searched in a much shorter tineewM/discuss this and other future
work in the next chapter.
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Global Edges Global Edges Unique Edges
Instance . ; . . . .
in Population | in Minimum Tour | in Population
rand500 5004+ 0 449.684 1.98 941.56+ 1.56
att532 532+ 0 464.1+ 2.11 979.54+ 1.47
us74 57440 502.63+ 2.58 1017.12+1.87
nrwl1379 1378.9+ 0.04 | 1162.3+ 3.44 2709.344- 2.25
rand1500 1500+ 0 1301.02+ 4.15 2871.9+ 3.14
ulg1l7 1815.124-0.18 | 1562.444 3.22 3616.924+4.71

Table 4.7: Results obtained by running GPX-GA for only 5 gatiens andvithout mutation
(double-bridge moves). “Global Edges in Population” istilienber of edges found in the global
optimum that are also present in the population. “Globaldsdg Minimal Tour” is the number
of edges shared in common between the best solution fountharglobal optimum. “Unique
Edges in Population” is the total number of distinct edgesbin the population at the end of
generation 5. The number of edges in each instance is iedidat the numerical suffix of the

instance name.
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Chapter 5

Conclusions

In this work we have presented a new recombination operaithedc Generalized Partition
Crossover /citewhitley-hybrid for the Traveling SalesnRanblem, designed a hybrid genetic al-
gorithm, which outperforms Chained-LK, and conducted ys&d revealing search space struc-
tures that help explain the difference in performance.

GPX makes use of multiple partitions of cost two on the unicapy of two initial tours.
The number of partitions of cost two are found to affect théqrenance of the operator, namely
there is correlation between the number of partitions fobpdhe operator and the number
of offspring that are improved over the parents. Although dperator will be unsuccessful if
no partitions of cost two are present, we have shown that pleeator achieves a high rate of
successful recombinations.

We have found that GPX possesses several interesting tfidsdcs, namely: it transmits
alleles, it is respectful and it exhibits a property we réteas tunneling. These characteristics
play an important role in designing GPX-GA. Because the aipertransmits alleles and is re-
spectful, it cannot introduce new edges into a populatiosadfitions. We therefore utilize a
diverse selection method and the double bridge move as dionutgerator to increase diver-
sity in the population. Tunneling occurs when the parergshath local optima, and the quality
of the offspring of GPX are shown to be correlated to the guali the parents. We therefore
incorporated the use of LK-search, the most powerful loealsh heuristic known for the TSP,
into GPX-GA.

The end result is an algorithm that is capable of outperfogn@hained LK, one of the best
performing approximation algorithms for the TSP as of thiging. Analyses of why Chained-
LK becomes stuck reveal search space structures that wienwadlls after a similar phenomenon
found in energy landscapes. Funnels are tours in the sepack shat are correlated in distance
and evaluation, but are themselves separated from oneexrimtta non-trivial distance.

A gradient is formed within funnels that draws Chained-LKatéunnel bottom and, once
there, it is highly unlikely to escape to another funnel. 8ee GPX is not limited to changing
a small number of edges as is the double bridge move, thehsspace at low evaluations is
smoother out and the funnel structures are not as evidentcohecture that this is in part a
reason why GPX is capable of outperforming Chained LK.

Having conducted an analysis on why Chained-LK fails, wdquar a similar analysis on
GPX-GA. We find that when GPX-GA fails to find the global optimyit is because the globally
optimal edges are spread out among different tours butrfdl the same partition component
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during recombination. This makes it impossible for GPX toomabine two tours to find the
global optima.

We also find that the globally optimal edges are entirely gmes the population after only
five generations in the majority of trials. For some instantieey were present in every trial we
ran. These final experiments give rise to several ideas tarduesearch directions involving
GPX.

5.1 Future Directions for GPX

One direction for future research is investigating ways Imolvy GPX can select edges from both
parents within a single partition component. We have shdvan the globally optimal edges
are contained within the largest partition component inynaases. One possibility is allowing
the algorithm to run until GPX is unable to recombine to forettér tours. At this point, GPX
can be used to find the partition components but instead aftaarting offspring at this point,
a search algorithm may be applied to each component, tgeatioh partition component as a
sub-problem.

As each partition component has a partition cost of 2 (afterécursive cut point reduction
step) there are two easily identified cut points at which aaynitonian circuit on the entire
problem must enter and exit the partition component. Thiamaghe component can be op-
timized independently of the rest of the problem and all teeessary information to do so is
provided from GPX with no extra work.

It may also be possible to perform a different type of recaration in which the edges are
selected one by one in such a way as to not form a cycle. We wélyi&now that there is at least
one other way to form a path through this component, the giobptimal path. However, this
problem does seem to be difficult to solve without increadimegrunning time of the operator.

Other influences may be applied during the search, such datidone search of [ZL05],
before GPX-GA reaches a point where it is incapable of redoimi to find the global. From
our analysis, we know GPX is sometimes able to recombinedwsto find the global optimum
and GPX-GA does so in many cases. A study of the search wajestaken from the first to
last generation may yield some insight into what types otigrices may be applied to guide
the search to favorable tours. This may not be a straightafaiwndertaking as the popula-
tion of GPX-GA makes such a study more complicated than aroappation algorithm which
maintains only a single tour.

Perhaps the most exciting possibility is running GPX-GA doty a few generations and
merging the tours in the resulting population. Our resuitsasthat in as few as five generations
the globally optimal edges were represented across thdgimpuin the majority of instances.
GPX-GA could be run with mutation (double bridge moves) &gtroff until convergence. We
can then merge all 10 members of the population into a singlphg This reduced graph can
then be searched for a minimal Hamiltonian circuit using sace algorithm which can take
advantage of the reduced space, such as those describegop@dland [CS03].

The search space is dramatically smaller than that of tiggnati TSP instances. This means
that the optimization problem has been reduced to findingrtimémal Hamiltonian Circuit of
lengthn in a graph with at mostn edges wheré is the size of the population. Such a strategy
utilizes the ability of GPX-GA to quickly produce a poputati of diverse, high quality tours.
These tours may then be used to construct an instance whichec&urned over to an exact
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solver. If the optimal edges are present, the solver wilehagreatly reduced space to explore
and will still be able to find the optimal solution.
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