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ABSTRACT OF THESIS

GENERALIZED PARTITION CROSSOVER FOR THE TRAVELING SALESMAN

PROBLEM

The Traveling Salesman Problem (TSP) is a well-studied combinatorial optimization prob-

lem with a wide spectrum of applications and theoretical value. We have designed a new recom-

bination operator known as Generalized Partition Crossover (GPX) for the TSP. GPX is unique

among other recombination operators for the TSP in that recombining two local optima produces

new local optima with a high probability. Thus the operator can ’tunnel’ between local optima

without the need for intermediary solutions. The operator is respectful, meaning that any edges

common between the two parent solutions are present in the offspring, and transmits alleles,

meaning that offspring are comprised only of edges found in the parent solutions. We design

a hybrid genetic algorithm, which uses local search in addition to recombination and selection,

specifically for GPX. We show that this algorithm outperforms Chained Lin-Kernighan, a state-

of-the-art approximation algorithm for the TSP. We next analyze these algorithms to determine

why the algorithms are not capable of consistently finding a globally optimal solution. Our re-

sults reveal a search space structure which we call ’funnels’ because they are analogous to the

funnels found in continuous optimization. Funnels are clusters of tours in the search space that

are separated from one another by a non-trivial distance. Wefind that funnels can trap Chained

Lin-Kernighan, preventing the search from finding an optimal solution. Our data indicate that,

under certain conditions, GPX can tunnel between funnels, explaining the higher frequency of

optimal solutions produced by our hybrid genetic algorithmusing GPX.

ii



TABLE OF CONTENTS

1 Introduction 1

1.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 4

2 Generalized Partition Crossover 5

2.1 Partition Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 5

2.1.1 Tunneling Between Optima with PX . . . . . . . . . . . . . . . . . .. . . . . . 7

2.1.1.1 Recombining Random Local Optima . . . . . . . . . . . . . . . .. . . . . . 8

2.2 Generalized Partition Crossover . . . . . . . . . . . . . . . . . . .. . . . . . . . 10

2.3 Benefits of Generalization . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 12

2.3.1 Tunneling to Local Optima . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 13

2.3.2 Improvements over Parent Tours . . . . . . . . . . . . . . . . . . .. . . . . . . 15

3 GPX-GA: A Hybrid Genetic Algorithm using GPX for the TSP 18

3.1 Designing a Hybrid Genetic Algorithm for GPX . . . . . . . . . .. . . . . . . . . 18

3.1.1 Initial Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 18

3.1.2 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18

3.1.3 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 20

3.1.4 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20

3.1.5 Population Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 21

3.2 GPX-GA versus Chained-LK . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 25

4 Funnels in the Search Space of the Travelling Salesman Problem 29

4.1 The Search Space of the TSP . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 30

4.2 Funnels in the TSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30

4.2.1 Implications for Chained-LK Performance . . . . . . . . . .. . . . . . . . . . . 34

4.3 Escaping Funnels with Generalized Partition Crossover. . . . . . . . . . . . . . . 35

4.4 What Makes Generalized Partition Crossover Fail . . . . . .. . . . . . . . . . . . 37

iii



5 Conclusions 40

5.1 Future Directions for GPX . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 41

References 43

iv



Chapter 1

Introduction

The Traveling Salesman Problem (TSP) is a well-studied combinatorial optimization problem
with many applications and much theoretical value [App06].The problem is stated as follows:
given a set ofn cities with a cost associated with each pair of cities, find a tour that visits each
city only once and returns to the originating city with the lowest total cost.

The TSP is simple to state yet has been the subject of extensive research in the past one
hundred years. As a result, there is a wide variety of algorithms that have been developed to
solve the TSP (e.g., [JM97, LLKS85, App06]). These algorithms can be split into two broad
categories: exact algorithms and approximation algorithms.

Exact algorithms produce a provably optimal solution [ABCC03, ABCC98, App06], but
given that the TSP is NP-hard [GJ79], no exact algorithms areknown which run in polynomial
time for all problem instances. This can sometimes be an issue depending on the application for
which the TSP is being solved. For example, using Concorde [ABCC03], a state-of-the-art TSP
exact algorithm, to solve a 532 city problem takes roughly one minute on modern hardware. A
1,817 city problem on the same hardware takes over 8 days. Oneimportant application of the
TSP is Very Large Scale Integration (VLSI) [App06], a process of creating integrated circuits.
Problems with over 10,000 cities are common in VLSI1. By the time an exact solver could
produce a solution to such a problem, the technology being designed by the VLSI would be
obsolete.

Approximation algorithms run much faster than exact algorithms but are not guaranteed to
produce the optimal solution. Approximation algorithms may be broken down further into two
categories: tour construction and tour improvement algorithms. Tour construction algorithms
begin with only a description of the particular TSP instanceto be solved and incrementally
construct a valid tour. Tour construction algorithms are quite fast but do not produce high quality
solutions on their own; the constructed tour must be furtherimproved by a tour improvement
algorithm if a tour with a cost close to the global optimum is required.

The vast majority of tour improvement algorithms use some form of a local search heuristic
at their cores. Although the solutions produced by tour improvement algorithms are not optimal,

1See http://www.tsp.gatech.edu/vlsi/

1



the best approximation algorithms typically produce solutions with costs within one percent or
less of the optimal solution. The best performing class of approximation algorithms for the TSP
is iterative local search [Hel00, ACR03, JM97].

Iterative local search heuristics traditionally work by improving only a single tour. Other
classes of approximation algorithms work on an entire collection, or population, of solutions.
One such class of approximation algorithms is the genetic algorithm (GA) [Whi94]. Although
strict definitions of a GA exist, such as the original model proposed by Holland [Hol92] or the
canonical GA of Vose [Vos99], in this work a GA is defined to be any algorithm which iteratively
improves upon a population of solutions usingrecombinationandselection. In this sense, many
GAs have been developed for the TSP with much focus on the recombination operator [NK97,
Nag06, TM98, Bra91, MGSK88]

Historically, GAs have not been as successful as local search based techniques for the TSP.
Local search has been incorporated into GAs to form a Hybrid GA [MF97, WRE+98]. For the
TSP, Hybrid GAs typically outperform GAs that do not use local search, but are still not compet-
itive with iterative local search algorithms. The choice ofrecombination operator is of particular
importance when designing a hybrid GA. The operator cannot be too disruptive and undo the
gains found by the local search heuristic but it must also introduce sufficient change to prevent
the search from becoming stuck in local optima. In this thesis we present our recombination
operator, called Generalized Partition Crossover (GPX) [WHH09, WHH] and a study of its per-
formance in a hybrid GA alongside Chained Lin-Kernighan (Chained-LK) [ACR03], one of the
best performing iterative local search algorithms.

The solutions produced by GPX are guaranteed to contain any links between cities that are
common in the input tours. GPX will also not introduce any newlinks that are not found in
the input tours. This helps to maintain subpaths found by thelocal search heuristic while also
providing sufficient disruption to prevent the search from becoming stuck. GPX also has a
unique ability we refer to astunneling. Given two input tours that are locally optimal, there is a
very high probability that the output tours will also be locally optimal. In this way, GPX is able
to tunnel directly to new local optima.

To take advantage of the unique properties of GPX, we designed a hybrid GA (GPX-GA).
We isolated the various design decisions and made these decisions in response to the specific
properties of GPX. Of these decisions, one of the most important is the local search heuristic. In
this study, we chose the Lin-Kernighan local search (LK-search) [LK73a].

Lin-Kernighan search is perhaps the most powerful local search for the TSP [JM97]. A num-
ber of improvements to LK-search have been proposed since its introduction in [LK73a]. The
majority of these have been incorporated into the implementation used in Chained-LK [App06].
We use this same implementation of LK-search in GPX-GA for two reasons. One, it is highly
efficient, and two, it gives us a straightforward way to compare GPX-GA and Chained-LK. This
implementation of LK-search has a computational complexity of O(n2). The other components
of each algorithm have linear time complexity, making LK-search the dominant factor in the
running time of either algorithm. When given the same numberof LK-search calls, we show
that GPX-GA outperforms Chained-LK in terms of the quality of solutions found.

We note that although GPX-GA is able to find better tours than Chained-LK with similar
amounts of computation, neither algorithm can consistently find the global optimum. While this
is not a surprise, given that both algorithms are approximation algorithms, we investigate what
might cause the algorithms to fail to find the global optima.
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Chained-LK uses Lin-Kernighan search to find a locally optimal tour and then uses an op-
erator known as thedouble bridgemove to perturb the local optimum. The double bridge move
pseudo-randomly selects four links between cities, breaksthese links and replaces them with
four new links chosen so that a valid tour is formed (See Figure 3.1 in Chapter 3).

We find that iterative local search frameworks using the double bridge move can become
‘stuck’ in search space structures we term funnels. Funnelsare structures in the search space
that form a type of gradient, guiding the search to their bottoms. The depiction in Figure 1.1(a)
shows two funnels. These structures are similar to the funnels found in continuous optimization
[DMW99] in that once an approximation algorithm finds the bottom of one funnel, it is very
difficult to escape. We show that if Chained-LK becomes stuckin a funnel that does not contain
the globally optimal solution, it is extremely unlikely that the global optimum will be found
without restarting the search or employing some other mechanism to escape the funnel.

(a) (b)

Figure 1.1: Two different search space structures: (a.) A depiction of a search space with two
funnels. Smaller basins in each funnel can trap local searchheuristics but can be escaped by
meta-heuristics such as iterated local search. (b.) A depiction of the Big Valley hypothesis.
The search space consists of a single central valley formingan overall gradient to the optimal
solution.

We hypothesize that funnels are formed due to the break down in the Big Valley hypothesis
[BKM94a, KT85] close to the globally optimal solution. The Big Valley hypothesis states that
there is one large central valley where tours are correlatedbetween evaluation and distance (See
Figure 1.1(b)). This hypothesis implies that a gradient exists leading directly to the global opti-
mal solution; a solution closer to the global optimum in terms of evaluation should also be closer
in distance.

We find the central valley splinters into distinct funnels under Chained-LK when the evalua-
tion values approach that of the global optimum, counter to the Big Valley hypothesis described
in previous literature [BKM94a, KT85]. Non-optimal funnels contain tours within.01% of the
global optimal evaluation value but can be more than a quarter of the maximum distance in the
search space from the globally optimal tour, much further than would be expected under the Big
Valley hypothesis. We find that the distance between funnelsis too large for Chained-LK to
escape.

Although Chained-LK cannot escape funnels, we show that GPXis capable of recombining
tours from different funnels and producing tours located innew funnels. As the local search

3



heuristics used in Chained-LK and GPX-GA are identical, theGPX recombination operator can
be thought of as an alternative perturbation operator to thedouble bridge move used in Chained-
LK. Because GPX can escape funnels and the double bridge movecannot, this can in part explain
the performance difference between the two algorithms. Indeed, the same analysis applied to
Chained-LK to find the funnel structure is applied to tours produced by GPX-GA and we find
the funnel structure is smoothed out, enabling GPX-GA to “tunnel” between funnels, preventing
the search from getting stuck in a single funnel as it does when using Chained-LK. This is again
analogous to the funnels of continuous optimization where acommon approach to escaping
funnels is to transform the energy landscape so the funnels no longer exist [DW98, PP95].

This still leaves open the question of why GPX-GA sometimes fails to find the global op-
timal. We find under certain conditions GPX is unable to recombine tours to find the global
optimum mainly as a result of the way in which the recombination constructs new tours. Further
analysis reveals in a large percentage of trials that all of the globally optimal edges are present
in the population after a very small number of iterations of the hybrid GA. This suggests an even
more powerful use of GPX-GA: quickly creating an edge pool which could be used to initialize
an exact TSP algorithm, greatly reducing theO(n!) search space.

1.1 Summary of Contributions

The contributions in this document are as follows:

1. The presentation and analysis of Generalized Partition Crossover (GPX) [WHH09, WHH],
a recombination operator for the TSP. We design a hybrid GA, GPX-GA, to take advantage
of the properties of GPX and show that GPX-GA is capable of outperforming Chained-
LK, one of the best performing approximation algorithms known as of this writing.

2. An analysis of why the approximation algorithms fail to find the global optimum. This
analysis yields two major results:

(a) An analysis of iterated local search algorithms revealsa structure in the search space
we call funnels. Funnels consist of tours that are correlated in terms of evaluation
and distance. We have found that Chained-LK cannot typically escape from a funnel
once the search has found one. The evaluation of the best tours found within the
funnels of a particular instance of the TSP are within small values of one another,
yet these tours are separated by large distances in the search space – a contradiction
to the correlation between evaluation value and distance predicted by the Big Valley
Hypothesis. We show that GPX is not as susceptible to funnelsas Chained-LK,
which explains in part its superior performance.

(b) GPX fails to find the global optimum as a result of restrictions imposed on the con-
struction of children tours in order to ensure a valid Hamiltonian Circuit is con-
structed. Under certain conditions, due to the properties of GPX, even if the globally
optimal edges are present in the parent tours being recombined, it will be impossible
for GPX to produce the global optimum. This analysis provides several directions
for future work.

4



Chapter 2

Generalized Partition Crossover

A recombination operator takes two or more solutions and constructs new solutions based on the
initial solutions. Because at least two solutions are required as input, recombination operators
are used in population based search heuristics such as evolutionary strategies (ES) [BS02] and
genetic algorithms (GA) [Whi94]. In this chapter we presenttwo versions of our recombination
operator for the TSP.

The first, partition crossover, uses the union of two solutions to construct a graph and looks
for a specific type of partition in the constructed graph. If such a partition is found, two unique
children are then constructed.

The second, generalized partition crossover, is a generalized version of partition crossover.
We find that in most cases, the union graph constructed of two children contains multiple par-
titions of the specific type partition crossover is looking for. Generalized partition crossover is
capable of finding and using all of these partitions in a single recombination with no increase to
the computational complexity of the operator.

In the terms of evolutionary computing, the solutions inputto a recombination operator are
called theparentsand, similarly, the solutions produced by recombination are known as thechil-
drenor offspring. According to [RS95], a recombination operator isrespectfulif and only if the
children contain all alleles that are common to both parents. In the case of the solution repre-
sentation used for partition crossover, an allele is a single edge within a solution. An operator
is said totransmit allelesif each and every edge in a child tour is present in at least oneof the
parents.

Both partition crossover and the generalized version are respectful and transmit alleles. This
sets apart our operator from other recombination operatorsfor the TSP, such as edge recombi-
nation [WSF89], edge assembly [Nag97], maximum preservative crossover [GS02] and distance
preservative crossover [FM96], as these operators can introduce edges which are not found in
the parent solutions.

2.1 Partition Crossover

Partition Crossover (PX) is a recombination operator that we developed for the TSP [WHH09]
and shares some similarities to the partial transcription method of [MFMS99]. PX makes use of
the fact that a tourt can be represented by a Hamiltonian circuit on a graph withn vertices where
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Figure 2.1: An example of (a) The union graph of two parent tours (one shown by solid lines, the
other by dashed) and (b) The reduced graphG∗ made by replacing common paths with surrogate
edges (dotted lines).

there is a one to one mapping between the vertices in the graphand the cities in a given instance
of the TSP. A cost is associated with each edge from vertexi to j, denotede(i, j), which is equal
to the cost between citiesi andj specified by the TSP instance. The total cost or evaluation of
the tour, denotedC(t), is the sum of the costs associated with each edge in the circuit. PX could
potentially accept any representation of a Hamiltonian circuit. Our implementation assumes the
tour is represented as a flat array, assuming an edge between the first and last elements.

Given two parent tourst1 andt2, PX first constructs a graphG = (V,E) by taking the union
of t1 andt2 so thatV is the set ofn vertices (i.e., cities) andE are the edges found int1 andt2.
An edge inE can be classified as either acommonedge or anuncommonedge. An edge inE is
a commonedge if it is found in both parent tours; an edge is anuncommonedge if it is found in
only one parent.

For example, Figure 2.1a depicts the union graphG of two tours. One parent tour is shown
with solid lines the other with dashed lines. In this examplethe edgese(g, h), e(g, i), e(h, j),
e(i, j), e(l,m), e(l, n), e(n,m), e(o,m), e(o, a) ande(a,m) are uncommon edges and the rest
are common edges.

After G is constructed, PX constructs a reduced graphG∗ from G. All paths of common
edges are replaced by asurrogateedge connecting the end points of each path. Figure 2.1b
depicts the reduced graphG∗ created fromG in Figure 2.1a. The common paths have been
replaced by surrogate edges and are depicted by dotted lines.

GraphG is formed by the union of two Hamiltonian circuits and is thusconnected, and by
construction so isG∗. A partition on connected graph is created by removing or cutting edges
until the graph is unconnected. Thecost of the partitionis the minimal number of edges that
must be removed to create that partition. AfterG∗ is created, PX will find a partition of cost 2
on G∗ if one exists. In Figure 2.1b, a partition of cost 2 can be formed by removing the edges
e(a, g) ande(l, j).

The following theorem states that if a partition of cost 2 exists, we can always form two
children tours distinct from the parent tours and, additionally, that PX is respectful and transmits
alleles.

The PX Theorem: If a partition of size 2 exists on the union graphG∗, then we can al-

6



ways construct two new child tours that are distinct from theparent tours. PX is respectful and
transmits alleles.[WHH09]

The proof in [WHH09] describes how we can take construct two distinct offspring from the
union of two parent tours if a partition of cost 2 exists by alternating the paths taken through the
components created by the partition. In the previous example using the parent tours in Figure 2.1:

a-o-n-m-l-k-j-h-i-g-f-e-d-c-b

and

a-m-o-n-l-k-j-i-h-g-f-e-d-c-b

PX would form the tours:

a-o-n-m-l-k-j-i-h-g-f-e-d-c-b

and

a-m-o-n-l-k-j-h-i-g-f-e-d-c-b

Of course, we cannot guarantee that a partition of cost 2 doesexist in the union of two
arbitrary Hamiltonian circuits. When a partition of cost 2 does exist, we say the recombination
is viable. If the recombination is not viable, the operator produces offspring identical to the
parents.

2.1.1 Tunneling Between Optima with PX

PX has another interesting ability we term “tunneling”: Given two locally optimal parent tours,
the children produced by PX are highly likely to be local optima as well. For tunneling to occur
the parent tours need to be local optima, and therefore a local search heuristic is required.

For our initial tunneling experiments, we use a variation onthe 2-opt algorithm [Cro58]
known as steepest descent 2-opt. The algorithm works as follows. Given an initial tour, break
a pair of edges and replace them with two different edges suchthat a valid tour is formed. The
breaking and replacing of two edges is known as a2-opt move(See Figure 2.2). Record the new
evaluation of the tour after the 2-opt move and restore the tour to its initial state. Repeat this
process for every possible 2-opt move and take the move that yields the most improved tour.
The entire process is repeated until no improving 2-opt moveis found, at which point the tour is
locally optimal.

We conduct the following two experiments to assess the ability of PX to tunnel between local
optima in different parts of the search space. The first experiment recombines randomly gener-
ated local optima and the second recombines local optima that are close to the global optimum.
We examine both sets of optima to determine if the tunneling property is affected by different
areas of the search space. Additionally, we wish to examine if PX is capable of tunneling directly
to the global optimum when recombining local optima known tobe close to the global optimum.

7
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Figure 2.2: A 2-opt move. Edges A and B in (a) are broken and replaced with X and Y (b). Once
A and B are broken, X and Y are the only edges that can be inserted to form a valid tour. The
choice of the edge pair to be broken determines the 2-opt move.

Instance rand500 att532 u574 nrw1379 rand1500 u1817
Viable recombination 14/45 43/45 33/45 40/45 37/45 45/45

Locally optimal offspring 96.4% 100% 98.5% 100% 97.3% 91.1%

Table 2.1: Number of recombinations in which a partition of cost 2 was found (viable recombina-
tion) and the percentage of offspring produced by PX that arelocally optimal when recombining
random local optima.

2.1.1.1 Recombining Random Local Optima

To determine how often PX produces local optima when recombining random local optima,
we generated 10 unique local optima by applying steepest descent 2-opt to randomly generated
tours. We recombined all possible unique pairs of the 10 local optima from each instance using
PX. This resulted in(10 × 9)/2 recombinations and 90 offspring. We counted the number
of offspring from recombinations in which a partition of cost 2 was found and then reapplied
steepest descent 2-opt to these offspring and counted the number that were not improved by the
reapplication of steepest descent 2-opt.

We ran the experiment on six different TSP instances: rand500, att532, u574, nrw1379,
rand1500 and u1817. att532, u574, nrw1379 and u1817 are fromthe TSPLIB1. The conven-
tion of TSPLIB is that the size of the problem, i.e. the numberof cities, is represented by the
numerical suffix of the name of the problem. We chose these instances as they represent two
instances of different sizes from each the three general categories of TSP instances [JM97]: grid
problems (u574 and u1817), pseudo-random or clustered problems (att532 and nrw1379) and
random problems (rand500 and rand1500).

The results of this experiment are shown in Table 2.1 and tellus that PX tunnels to new local
optima in at least 90% of recombinations if the parents are random local optima. We also see
that the recombination was viable, i.e. a partition of cost 2was present in the union graph, in the
majority of attempts with the exception of rand500. The general trend is the larger the instance,
the more often recombination is viable. To determine why this is the case, we counted the total

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Instance rand500 att532 u574
Average number of

0.49 ± 0.79 2.07 ± 1.36 1.27 ± 1.08
partitions of cost 2 found

Instance nrw1379 rand1500 u1817
Average number of

1.91 ± 1.16 2.18 ± 1.77 4.00 ± 1.89
partitions of cost 2 found

Table 2.2: Number of partitions of cost 2 found when recombining 10 random local optima.

Instance rand500 att532 u574 nrw1379 rand1500 u1817
Viable recombinations 23/45 36/45 29/45 29/45 24/45 38/45

Locally optimal offspring 100% 100% 100% 100% 100% 100%
Globally optimal offspring 100% 77.8% 89.7% 37.9% 100% 100%

Table 2.3: Percentage of offspring produced by PX that are globally optimal.

number of partitions of cost 2 in the union graph of each recombination. The average number of
partitions per union graph are shown in Table 2.2.

With the exception of att532, which appears to be somewhat anomalous, Table 2.2 shows
a correlation in the number of partitions found and the size of the instance. We can conclude
the larger the instance, the more partitions of cost 2 are found when recombining random local
optima. PX will be able to produce offspring more often as theinstance size grows and the
offspring will not only be new solutions, but locally optimal solutions a high percentage of the
time.

The properties of local optima found in the search space close to the global may be different
than those when sampling random local optima. We wish to see if the viability of recombination
and the tunneling property is maintained when recombining optima close to the global optimum.
It may be possible for PX to tunnel directly to the global optimum if the search has reached a
point close enough to the global optimum.

To produce local optima close to the global optima, we started from the globally optimal
solution and modified it by making a random 2-opt move. After the random 2-opt move, the same
2-opt steepest descent heuristic used in the previous experiment was applied. If the resulting
local optimum was different from the global optimum, we stopped. Otherwise, another random
2-opt move was made to the tour before steepest descent 2-optwas re-applied. The process was
repeated until a local optimum distinct from the global optimum was found.

We found 10 unique local optima for each instance using this method. PX was then ap-
plied to each unique pair of these 10 local optima for a total of 45 recombinations. Of these
recombinations, we count the number of recombinations in which a partition of cost 2 was found
and, of the offspring produced by viable recombinations, how many were globally optimal. This
experiment was conducted on the same instances as the previous experiment.

Table 2.3 shows that PX tunnels to new local optima in every case that the recombination
was viable. This is most likely due to a higher concentrationof local optima in the search space
surrounding the global optimum then when sampling random local optima. Not only is PX able

9



Instance rand500 att532 u574
Average number of

0.93 ± 0.96 1.22 ± 0.88 1.24 ± 1.05
partitions of cost 2 found

Instance nrw1379 rand1500 u1817
Average number of

1.00 ± 0.85 0.78 ± 0.82 1.56 ± 0.76
partitions of cost 2 found

Table 2.4: Number of partitions of cost 2 found when recombining 10 local optima close to the
global optimum.

to tunnel to new local optima, but it is sometimes able to tunnel directly to the global optimum.
In the case of att532, PX was able to find an optimal solution different from the optimum tour
provided by TSPLIB.

These results also show that, in general, the number of viable recombinations is reduced from
those when recombining random local optima. We hypothesizethis is due to greater similarity
between tours close to the global optimum. As we are generating all the tours from the same
solution (the global optimum), they will share more common edges than randomly generated
local optima. Thus more edges will need to be removed to make the union graph disconnected
causing partitions to have cost higher than 2.

Table 2.4 shows the counts of partitions of cost 2 when recombining local optima close to
the global optimum. We see a decrease in the number of partitions of cost 2 from those reported
in Table 2.2 with the exception of rand500. The rand500 instance is also the only instance
in Table 2.3 in which the number of viable recombinations increased from that in Table 2.1.
This shows a clear correlation in the number of partitions ofcost 2 and the number of viable
offspring. Furthermore, we can see that the average number of partitions of cost 2 decreases,
with the exception of rand500, when recombining local optima close to the global optimum.

2.2 Generalized Partition Crossover

In our implementation of PX, only one partition of cost 2 is utilized in a single recombination
even if there are multiple ways to partition G. For example, Figure 2.3a shows the union graph of
two tours which have two partitions of cost 2, depicted by theheavy dark lines marked A and B.
PX could construct two children using partition A in Figure 2.3a by taking the solid edges from
the left of A and the dashed edges from the right, and a second child by taking the dashed edges
from the left of A and the solid edges from the right (and inheriting all the common edges). Two
different children would be constructed if PX used partition B in a similar manner.

In this example, although there are four possible children from a single application of PX,
only two will actually be produced. To make use of all partitions between two parents, PX must
be re-applied to the offspring. No edges are added because PXtransmits alleles and is respectful,
therefore any partitions not utilized in the parents will befound when recombining the offspring.
If PX produces two children using partition A in Figure 2.3, partition B will be present if the
children are recombined. In our implementation of PX if multiple partitions of cost 2 are present,
PX will randomly choose one.
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Figure 2.3: An example of (a) The graphG created from the union of two parent tours with two
partitions of cost 2 shown by the heavy dark lines and (b) The graphGu, constructed by deleting
the common edges edges between the two parent tours fromG

In general, if there arek partitions of cost 2 when recombining two tours there are2k − 2
possible offspring. We find that as the instance size grows, the number of partitions found in a
single union graph also grow. Our implementation of PX can only use one of these partitions in
a single recombination, creating at most two distinct children out of a potential2k − 2.

Generalized partition crossover (GPX) utilizesall partitions in a single recombination. Fur-
thermore, using the greedy construction method described below to generate two children, one
of the two is guaranteed to be the best solution out of all2k − 2 possible offspring.

GPX works by creating a union graphG = (V,E) of two parent tours just as PX. GPX then
creates a subgraph ofG, Gu = (V,Eu), whereV is the vertex set ofG andEu is the set of
uncommon edges inE. Typically, Gu is made up of multiple disconnected subgraphs as shown
in Figure 2.3b. In fact, ifGu is not disconnected, there is no way to partitionG by only removing
common edges.

We use breadth first search (BFS) onGu to find each subgraph (i.e., connected components)
of Gu. The BFS has aO(n) computational cost, because the degree of any vertex is at most 4
and each vertex is processed only once. We will use the termpartition componentto refer to a
connected component inGu. A feasible partition componentis a partition component which can
be separated from the graph by a partition (or partitions) ofcost 2.

For example, in Figure 2.3b, the left most partition component (consisting of verticesa, b, c, d)
would be one side of a partition of cost 2 by cutting across A. This partition component is feasi-
ble. The partition component consisting of verticesg, h, i, j, k is also a part of a partition of cost
2 formed by cutting across B and is likewise considered feasible.

After identifying the components to the left of A and to the right of B, edgese(d, e), e(a, n),
e(f, g) ande(l, k) would be marked as cut edges. GPX would then identify the partition compo-
nent between A and B as feasible as all the common paths leading out from that component are
also cut points in partitions of cost 2 onGu.

Once no additional components are identified as feasible, the children tours are constructed.
There are a number of possibilities for constructing children at this point. Our implementa-
tion begins by merging any remaining partition components which have not been identified as
feasible into one large partition component. Children tours are then formed using the feasible
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components and the large partition component. One child inherits the dashed edges from the
large component and the other the solid edges. Both childrenthen inherit the common edges and
the shortest cost path through each of the feasible components.

As both children have the shortest cost path through each of the feasible components and
only differ by the path through the largest component, one child must also have the shortest cost
path through the largest component. This child will not onlyhave a better evaluation then the
other offspring produced in the recombination, but will have the best evaluation of all the2k − 2
tours possible. Thus, GPX is capable of producing the best solution of all possible offspringin
a single recombinationwith no increase to the running time of PX.

Although our implementation produces only two offspring, GPX can theoretically produce
all possible offspring. We now present the GPX Theorem [WHH], showing that GPX is respect-
ful and transmits alleles and can produce all possible2k − 2 offspring in a single recombination.

The GPX Theorem:
Let graph G be constructed by taking the union of the verticesand edges found in two Hamil-

tonian Circuits for some instance of the TSP. If graph G can beseparated intok partition com-
ponents of cost 2, then GPX generates2k − 2 distinct offspring; every recombination is both
respectful and transmits alleles.[WHH]

The proof in [WHH] shows that GPX is respectful, transmits alleles and can generate all
possible offspring. The number of possible offspring is a function of the number of feasible
partition components (i.e., the number of partitions of cost 2) found in the union graph. While
we have shown in theory that GPX can make use of all feasible partition components in a single
recombination, we now wish to explore the benefits of generalization.

2.3 Benefits of Generalization

We will first look at the number of feasible partition components when recombining local optima
in different areas of the search space. If only two partitioncomponents are used by GPX, GPX
will perform no different than PX. We count the number of partitions of cost 2 found during
recombination when recombining random local optima generated using three search heuristics:
2-opt [Cro58] and 3-opt [JM97]. 3-opt is similar to 2-opt butreplaces three edges instead of two
in a single move. As a result, 3-opt can find higher quality solutions than 2-opt [JM97]. Using
both heuristics will allow us to sample different parts of the search space.

Two groups of 50 random tours were generated. Steepest descent 2-opt was applied to one
group and steepest descent 3-opt was applied to the other. Both local search heuristics were
applied until a local optimum was found. If a tour was duplicated within a group, a new random
tour was generated and local search applied until each groupconsisted of 50 unique local optima.

GPX was applied to all unique pairs within each group. Table 2.5 shows the number of
feasible partition components found in each recombination.

These results show that more partition components are present when recombining 3-opt local
optima than 2-opt local optima because 3-opt local optima most share more common edges that
can be used to partition the union graph. This makes sense, because the Big Valley Hypothesis
[BKM94b] suggests an inverse correlation between the evaluation of local optima and the num-
ber of common edges shared with other local optima with similar evaluations. 3-opt finds local
optima with lower evaluations than 2-opt, so by the Big Valley Hypothesis we would expect
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Instance rand500 att532 u574 nrw1379 rand1500 u1817
2-opt 2.6 ± 0.1 3.3 ± 0.2 3.1 ± 0.2 3.2 ± 0.2 3.7 ± 0.3 5.0 ± 0.3
3-opt 9.42 ± 0.4 10.5 ± 0.5 10.7 ± 0.5 11.3 ± 0.5 24.9 ± 0.2 26.2 ± 0.7

Table 2.5: Average number ofpartition componentsused by GPX in 50 recombinations of ran-
dom local optima found by 2-opt and 3-opt.

more common edges between 3-opt local optima than 2-opt local optima.
In general, Table 2.5 tells us there are more than two partition components of cost 2 in most

recombinations. But how does the use of multiple partition components impact the performance
of the operator? We answer this question in part by looking attwo different metrics: the tunneling
ability of the operators and the improvement of the offspring over the parent tours when using
PX and GPX.

Our goal of the following experiments is to examine the effect of using multiple partitions.
We will again use 2-opt and 3-opt to generate the local optima. Table 2.5 shows that recombining
2-opt local optima generates a smaller number of partition components than using 3-opt local
optima. This will allow us to contrast our results in terms ofthe number of partition components
used.

We generated 10 random local optima using 2-opt and 10 randomlocal optima using 3-opt by
applying the local search algorithms to 10 random tours. Both algorithms are steepest descent.

We also generate 10 local optima near the global optimum by taking random walks from the
global optimum as described previously. In the case of 2-opt, we use a random 2-opt move as a
single step in the walk; in the case of 3-opt, we use a random 3-opt move.

For each set of local optima, we apply GPX and PX to each pair ofoptima resulting in 90
offspring for each set of 10. We measure the number of offspring that are improved over the
parents and the number of offspring that are locally optimal(to measure the tunneling ability of
the operator). When recombining parents near the global optimum, we also measure the number
of offspring produced that are globally optimal.

2.3.1 Tunneling to Local Optima

Because GPX takes the best parts of each feasible partition component, we expect that the num-
ber of locally optimal offspring will increase when using GPX as compared to that of PX. The
results of random local optima are in the top half of Table 2.6and the local optima close to the
globally optimum are in the bottom half.

While there is no clear trend in Table 2.6 that indicates an increase in the capability of GPX
to tunnel to new local optima over that of PX, we can at the veryleast confirm that this property
is not diminished in GPX. However we can see a trend indicating a decrease in the number of
local optima produced when using 3-opt local optima from that produced by using 2-opt local
optima.

We also hypothesize that GPX will be able to find the globally optimal solution more often
than PX as a result of using multiple partitions. We calculated the percentage of successful
recombinations that led directly to the global optimum and report these results in Table 2.7.

Table 2.7 indicates a clear ability for GPX to find the global more often than PX. This is due
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(a) Percentage of local optima when recombining random locally optimal parents

u574 u1817 rand500 rand1500 att532 nrw1379
2-opt (GPX) 97.4% 95.4% 94.4% 96.4% 100% 100%
2-opt (PX) 100% 91.1% 100% 97.1% 98.8% 97.5%

3-opt (GPX) 71.1% 48.9% 66.7% 50.0% 71.1% 77.8%
3-opt (PX) 71.1% 55.6% 64.4% 62.2% 64.4% 63.3%

(b) Percentage of local optima when recombining local optima near the global optimum

u574 u1817 rand500 rand1500 att532 nrw1379
2-opt (GPX) 100% 100% 100% 100% 100% 100%
2-opt (PX) 100% 100% 100% 100% 100% 100%

3-opt (GPX) 98.7% 98.9% 91.7% 77.8% 100% 93.3%
3-opt (PX) 75.6% 76.1% 93.1% 57.1% 98.4% 59.8%

Table 2.6: The percentage of children tours that are locallyoptimal for different pairings of
recombination and local search operators. Percentages areout of the total number of successful
recombinations. (a) contains the results from recombiningrandom local optima and (b) contains
the results from recombining local optima near the global.

Instance u574 u1817 rand500 rand1500 att532 nrw1379
2-opt (GPX) 89.6% 100% 100% 100% 77.8% 100%
2-opt (PX) 82.8% 100% 100% 100% 60.6% 100%

3-opt (GPX) 82.9% 95.4% 72.7% 71.4% 96.8% 83.3%
3-opt (PX) 41.4% 62.9% 41.4% 21.4% 58.0% 63.6%

Table 2.7: Percentage of recombinations that are globally optimal. Percentages are out of the
total number of feasible recombinations, starting from random walk from global optimum for
different pairings of recombination and local search operators.
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to the fact that the generalized operator is capable of utilizing all partitions of cost 2 and con-
structing tours in a greedy manner. If more than one partition of cost 2 exists, PX must arbitrarily
choose the correct partition to use to reconstruct the global. GPX will greedily construct the best
child possible of all possible offspring. If it is possible to reconstruct the global optimum using
the partitions in the union graph, GPX will find it. PX will only find the global optimum if it can
be formed by using only a single partition and PX randomly chooses the correct partition.

We also see a lower percentage of times the global optimum is found when using GPX to
recombine 3-opt local optima than when recombining 2-opt local optima. In Table 2.5, we saw a
larger number of partitions of cost 2 when recombining random local optima generated by 3-opt.
This is because 3-opt is a more powerful search than 2-opt andcan find better tours.

When performing a random walk out from the global optimum, the walk must go further
when using 3-opt because 3-opt is capable of finding the global optimum even when 2-opt can-
not. Therefore, the 3-opt walks are finding on average tours that have worse evaluations than the
2-opt walks and share less edges with the global optimum. As aresult, it is more difficult to find
a combination of partition components that yields the globally optimal solution. It is impossible
to tunnel directly to the global if all the globally optimal edges are not present in the partitions
or if a common edge is not globally optimal.

This can also explain the greater difference between GPX andPX in the 3-opt results of
Table 2.7 than the 2-opt results. Because the 3-opt local optima are further away from the global
than the 2-opt local optima, it is more likely that a recombination must occur across multiple
partitions to discover the global optimum. PX will be less likely to produce the global optimum
as it can only use a single partition of cost 2. GPX is unaffected by the number of partitions of
cost 2. If the globally optimal solution is present in the2k − 2 possible offspring, our greedy
implementation of GPX will find it.

2.3.2 Improvements over Parent Tours

We now look to see how the use of multiple partitions affects the improvement in evaluation
values when recombining local optima. Using the offspring produced by recombining local
optima in the previous experiment, we counted the number of offspring that were improved over
the parents for each of the recombinations. To count as an improved offspring, a child must be
improved over both parents. The percentage of improved children of the total offspring produced
by successful recombinations are shown in Table 2.8.

In Table 2.8, we see that50.0% is the highest percentage of children that PX can achieve. In
PX, if one child is improved over both parents the other must be worse than both parents. Let
C(pi) denote the cost of parent touri andC(ci) denote the cost of child touri, then

C(p1) + C(p2) = C(c1) + C(c2)

by construction ofc1 andc2. Any decrease in evaluation of one child must result in an identical
increase in evaluation of the other. Either both children are within the bounds of the parent
evaluations and neither is improved over both parents or both are outside the bounds and one is
improved and one is worse than both parents.

GPX is not restricted in this manner as it has multiple partitions from which it can construct
offspring. As a result, it is capable of improving both offspring. Because GPX always con-
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(a) Percentage of offspring improved over parent tours whenrecombining random locally optimal
parents

Instance u574 u1817 rand500 rand1500 att532 nrw1379
2-opt (GPX) 57.6% 72.2% 64.3% 75.7% 71.3% 70.0%
2-opt (PX) 50.0% 46.6% 50.0% 45.7% 48.8% 44.9%

3-opt (GPX) 100% 100% 98.9% 100% 98.9% 100%
3-opt (PX) 50.0% 48.9% 50.0% 50.0% 50.0% 50.0%

(b) Percentage of offspring improved over parent tours whenrecombining local optima near the
global optimum

Instance u574 u1817 rand500 rand1500 att532 nrw1379
2-opt (GPX) 87.9% 92.1% 91.3% 72.9% 66.7% 77.6%
2-opt (PX) 50.0% 50.0% 50.0% 45.7% 50.0% 50.0%

3-opt (GPX) 87.8% 98.8% 72.7% 71.4% 100% 100%
3-opt (PX) 50.0% 50.0% 50.0% 36.4% 50.0% 50.0%

Table 2.8: Percentage of children tours that have been improved over both parents for different
pairings of recombination and local search operators. The results of recombining random optima
are shown in (a). The results from recombining optima near the global are in (b).

structs the best offspring of the2k possible children it will find at least one improved offspring
if possible.

Interestingly, although we saw a decrease in the number of offspring which were locally
optimal in Table 2.6 when recombining 3-opt local optima, Table 2.8 shows a higher percent of
improved evaluations when recombining 3-opt local optima.We attribute this to the fact that
GPX has more degrees of freedom when recombining 3-opt localoptima because of the greater
number of partition components as indicated in Table 2.5.

GPX is able to improve the offspring more often, but we also examine if the amount of im-
provement in evaluation is greater than PX. Table 2.9 shows the average percent evaluation above
the globally optimal solution for the random local optima from each instance before crossover is
applied and after GPX and PX are applied.

We see that the offspring from GPX are generally more improved in all instances than those
from PX. The use of multiple partitions not only increases the number of improved offspring,
but also the evaluation of the improved offspring over thoseoffspring produced from a single
partition. We note the difference between PX and GPX is greater when using 3-opt local optima
than 2-opt local optima. Again, this is attributed to the greater number of partition components
available to the operator when recombining 3-opt local optima.

Partition crossover is a recombination operator that transmits alleles, is respectful and is ca-
pable of tunneling to new local optima. By using multiple partitions instead of a single partition,
we retain all the desirable characteristics of the single partition version while increasing the num-
ber of improved offspring and the ability of the operator to tunnel to the global optimum. In the
next chapter we will outline a hybrid genetic algorithm, GPX-GA, that we designed specifically
for use with GPX and show that GPX-GA is capable of outperforming a state-of-the-art local
search algorithm for the TSP.
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Instance 2-opt 3-opt
rand500 - Before Recombination 10.20 ± 0.01 7.62 ± 0.01

rand500 - After PX 8.85 ± 0.01 7.19 ± 0.01
rand500 - After GPX 8.79 ± 0.01 6.91 ± 0.01

att532 - Before Recombination 9.04 ± 0.01 7.17 ± 0.01
att532 - After PX 8.08 ± 0.01 6.48 ± 0.01

att532 - After GPX 8.03 ± 0.01 6.20 ± 0.01

u574 - Before Recombination 9.93 ± 0.01 7.34 ± 0.01
u574 - After PX 9.22 ± 0.01 6.85 ± 0.01

u574 - After GPX 9.15 ± 0.01 6.53 ± 0.01

nrw1379 - Before Recombination 11.06 ± 0.01 7.86 ± 0.01
nrw1379 - After PX 10.58 ± 0.01 7.66 ± 0.01

nrw1379 - After GPX 10.52 ± 0.01 7.49 ± 0.01

rand1500 - Before Recombination11.39 ± 0.01 8.23 ± 0.01
rand1500 - After PX 10.91 ± 0.01 7.94 ± 0.01

rand1500 - After GPX 10.87 ± 0.01 7.66 ± 0.01

u1817 - Before Recombination 15.36 ± 0.01 9.76 ± 0.01
u1817 - After PX 14.70 ± 0.01 9.18 ± 0.01

u1817 - After GPX 14.64 ± 0.01 8.60 ± 0.01

Table 2.9: The mean percentage and standard error above the optimal tour of the children tours
produced by the successful recombinations for PX and EPX in each experiment using random
locally optimal parents.
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Chapter 3

GPX-GA: A Hybrid Genetic Algorithm
using GPX for the TSP

3.1 Designing a Hybrid Genetic Algorithm for GPX

The general definition of a genetic algorithm (GA) used in this thesis is any search heuristic
which uses recombination and selection to optimize a population of solutions. A hybrid genetic
algorithm is a GA that, in addition to recombination and selection, also uses uses a local search
heuristic. Given that GPX is capable of tunneling when recombining local optima, a hybrid
genetic algorithm is a reasonable choice to leverage the unique properties of GPX as a recombi-
nation operator. We designed a hybrid GA (GPX-GA) using the following basic structure:

1. Initialize a population oft solutions.

2. Apply a local search heuristic to each of thet solutions.

3. Apply recombination to the population oft solutions, creatingo offspring.

4. Selectt tours from theo offspring to form the next generation.

5. Repeat from step 2 until some stopping criterion is met.

3.1.1 Initial Population

To create the initial population, we choose to createt random tours. Other tour construction
algorithms, such as Quick-Boruvka [ACR03], Christofides [CG76] or nearest neighbor [JM97],
produce better starting tours but as the next step is the application of local search, such gains are
negligible as the local search algorithm used in our GPX-GA is much more powerful than even
the best performing construction heuristics [JM97, App06].

3.1.2 Local Search

Currently, the most powerful local search heuristic as of this writing for the symmetric TSP is
the Lin-Kernighan local search heuristic (LK-search) [LK73b]. It is not surprising that modified
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versions of the original LK-search are used in the best performing iterative local search algo-
rithms, such as Chained Lin-Kernighan (Chained LK) [ACR03]and Lin-Kernighan-Helsgaun
(LKH) [Hel00]. We conducted pilot studies using 2-opt, 3-opt and LK-search in a hybrid GA
with GPX. LK-search consistently produced better results when used in conjunction with GPX
and is the natural choice for use as the local search heuristic.

LK-search performs a next descent backtracking search on aninitial tour, exploring the
neighborhood of tours found by makingk-opt moves on the initial tour, as well as those tours
that can be found by making(k− 1)-opt moves,(k− 2)-opt moves, etc. down to the basic 2-opt
move. It explores this neighborhood by first breaking 2 edgesand replacing them as in the 2-opt
algorithm, but if the 2-opt move does not yield an improved tour, it retains the replaced edges
and continues by breaking and replacing another edge to forma 3-opt move. This continues
until an improved tour is found ork edges have been broken and replaced (i.e., ak-opt move has
been performed). If an improved tour is found, the search is restarted from the improved tour,
otherwise the search backtracks by undoing the last broken edge and breaking a different edge.
When no improved tours are found within thek-opt neighborhood, the tour is a local optima and
the search is complete.

The LK-search algorithm’s ability to find improving tours and its efficiency have both been
improved by a number of clever optimizations since its first description in [LK73b]. In this study,
we use an efficient and effective implementation of the LK-search method that is used in Chained
LK [ACR03] and is part of the Concorde software suite1. This particular implementation of LK-
search is described in detail in [App06]. For the remainder of this thesis, LK-search refers
to the particular implementation in version 03.12.19 of theConcorde software package unless
otherwise noted.

Two important details of this implementation are the use of candidate lists and “don’t-look”
bits. Each city has associated with it a candidate list ofl cities that are sorted by their likelihood
of producing an improving move. One common way of sorting these lists is by edge cost;
however, LK-search uses a Delauny graph to construct and sort the candidate lists (See [App06]
for details). The candidate lists are used to decide which edge to break next when performing
the search. By default,l is much smaller than(n − 1) , thus not only are edges more likely to
improve the tour chosen first, but the use of candidate lists also reduces the options that must be
considered when backtracking.

LK-search also uses “don’t-look” bits. “Don’t-look” bits are used to prevent undoing an
edge replacement that was performed previously in the same search. Even though a city may be
in a candidate list, it will be overlooked if its “don’t-look” bit is turned on. Because LK-search
takes the first improving move found and the ordering of the initial cities involved in the first
step of a variablek-opt move is random, it is possible (and highly likely) that the candidate lists
will be consulted differently in multiple runs given the same initial tour.

Because of this stochasticity, a tour returned by LK-searchis not a true local optimum in the
sense that if a different candidate list is chosen on repeated applications, different search paths
will be considered and the possibility of further improvement arises.

1http://www.tsp.gatech.edu/concorde.html
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3.1.3 Recombination

Obviously GPX is the recombination operator used in GPX-GA,specifically the greedy imple-
mentation described in the previous chapter. We have shown that GPX transmits alleles and is
respectful. This means that no new edges can be introduced into a tour via GPX alone. Further-
more, GPX tunnels between local optima, meaning a high percentage of the tours produced by
GPX will also be locally optimal and will not be changed by LK-search. Without some mecha-
nism to introduce new edges into the population, we find that GPX-GA converges prematurely
before a low cost solution is found.

To increase the number of unique edges in the population and to prevent premature conver-
gence, when a recombination is not viable we apply the doublebridge move to the parents. The
double bridge move selects four edges as random, breaks those edges and reconnects them as
depicted in Figure 3.1.

x y

wz

(a) (b)

Figure 3.1: A double bridge move. Edges x, y, w and z in (a) are chosen randomly. They are
then broken and replaced as shown in (b).

We use the implementation of random double bridge moves found in the Concorde software
package and used in Chained-LK.

One further question that arises with recombination is whattours should be recombined.
We first considered recombining all unique pairs of solutions in the current population. We
found empirically that this method produced a number of redundant solutions and was not as
effective as simply recombining the best tour of the population with the remainingt−1 solutions.
Performing recombination in this manner did not significantly reduce the evaluation of the tours
found after a fixed number of generations and eliminated a large number of recombinations in
each generation.

3.1.4 Selection

In the greedy implementation of GPX used in GPX-GA, only two offspring are generated. One
of the offspring is the greedy offspring: it takes the shortest path through each of the smaller
feasible partition components and the shortest path through the largest component. The second
offspring also inherits the shortest path in all of the partition components, except for the largest
partition component; in this component the second offspring inherits the pathnot used by the
first greedy offspring. Thus,t recombinations produces2t offspring.

Several options exist for reducing the2t offspring to form the next population of sizet. We
considered two options: 1) truncation selection, in which we always keep thet best solutions
or 2) diversity selection, in which we try to preserve diversity by keeping offspring containing
edges that are under-represented in the population.
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Truncation selection is fairly straightforward and only involves the evaluations of each of the
2t tours produced. Thet tours with lowest evaluation move forward to the next generation.

To maintain diversity, we developed a strategy calleddiversity selectionthat uses an edge
weighting functiond to quantify the diversity of edges contributed to the population by each
tour. For toursi in the population,

d(si) =
∑

e(j,k)∈si

1

M(j, k)

wheree(j, k) is an edge from cityj to k andM(j, k) is the number of timese(j, k) appears in
the population. We then retain tours from among the offspring with the highest summed edge
diversity,d(si).

The use of diversity selection means that the GA must be generational and that offspring
replace parents, because parents typically have higher diversity than offspring.

To determine which selection method would be best at producing low cost tours and main-
taining diversity, we ran the GA using both truncation and diversity selection for 100 generations
with a population of 10 solutions (1,010 LK-search calls). At each generation we record the
minimum tour evaluation in the population and the number of unique edges found in the entire
population of solutions. Figure 3.2 shows the average results over 100 trials on the indicated
instances. The instances are the same from the previous chapter and represent one large and one
small instance from each of the three categories of TSP instances: grid (u574, u1817), clustered
or psuedo-random (att532, nrw1379) and random (rand500, rand1500).

The left column shows the average minimum tour found and the right shows average number
of unique edges in the population.

We see that the minimum evaluation found in both diversity and truncation selection are
within the standard error (left hand figures of Figure 3.2). However, the right hand side of
Figure 3.2 shows that diversity selection is able to maintain a much larger number of unique
edges in the population. Because GPX is unable to introduce new edges into the population,
we use diversity selection in the GA to maintain a larger number of unique edges without any
significant loss in the minimum tour found.

3.1.5 Population Size

Figure 3.3 lists the pseudocode for GPX-GA, which incorporates the various algorithmic deci-
sions described above. We now examine the question of findingthe best value oft, or population
size.

We conducted empirical experiments on the population size and determined that a population
of size 10 does not perform significantly worse than populations of greater size and, in most
cases, performs better. Figure 3.4 shows the results of running GPX-GA with various values of
t.

LK-search takes the most computational time in a single generation; for every increase in
population, the number of LK-search calls per generation isalso increased. Therefore, a popula-
tion of size 20 has made 120 LK-search calls by generation 5 (including the 20 for initialization).
For the same number of LK-search calls, a population of size 10 could be run for 21 generations.
We chose a population of size 10 as the results indicate this value leads to the best performance
and allows us to carry out more LK-search calls per tour.
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Figure 3.2: Comparing diversity and truncation selection on six instances. The average minimum
tour found is shown on the left side shows no significant difference between selection methods.
However, the right side shows a large increase in the number of unique edges in the population
between the two methods.
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Figure 3.2: (cont.) Comparing diversity and truncation selection on six instances. The average
minimum tour found is shown on the left side shows no significant difference between selection
methods. However, the right side shows a large increase in the number of unique edges in the
population between the two methods.
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Figure 3.2: (cont.) Comparing diversity and truncation selection on six instances. The average
minimum tour found is shown on the left side shows no significant difference between selection
methods. However, the right side shows a large increase in the number of unique edges in the
population between the two methods.
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Let P1 be a randomly generated population of sizet;
Let P2 be a temporary child population of sizet;
For each member ofP1: apply LK-search and evaluate;

1. Attempt to recombine the best tour ofP1 with the remainingt − 1 tours
using GPX; this generates a set of up to2t offspring.

2. If recombination was not feasible between the best tour and touri, mutate
parents using a double bridge move and place in populationP2;

3. Place the best solution found so far in populationP2;
4. From the set of offspring, select offspring to fill population P2;
5. For each member of populationP2: apply LK-search and evaluate;
6. P1 = P2; If stopping condition not met, goto 1;

Figure 3.3: Algorithm for GPX-GA; the GA is generational, but elitist.

3.2 GPX-GA versus Chained-LK

To measure the performance of GPX-GA, we compare it to that ofChained-LK. Chained-LK is
an iterative local search heuristic and is one of the best performing heuristics for the TSP as of
this writing [JM97, ACR03]. A high level description of the iterative search framework used in
Chained-LK is described in Figure 3.5. For a detailed description of Chained-LK see [App06].

To compare GPX to Chained-LK, we ran GPX-GA with a fixed numberof available LK-
search calls for the entire population. When these calls aredepleted, the algorithm is terminated.
Chained-LK is run with the same number of available LK-search callson a single tour. Both
algorithms use the same implementation of LK-search with the same default parameters.

In the results presented here we ran GPX-GA with a populationof 10 tours. Since the
population size is 10, GPX-GA uses 10 applications of LK-search each generation; therefore,
Chained-LK is allowed to do 10 double bridge moves and apply LK-search 10 times for every
generation that GPX-GA is allowed to execute.

This means that each algorithm is allowed to call LK-search exactly the same number of
times. The GPX-GA has the additional cost of recombination,but this cost isO(n) with a small
constant (of 4 or 5) and the computation is very small compared to one iteration of LK-search.
Furthermore, applying LK-search after a double bridge moveis more expensive that applying
LK-search after recombination: the solutions are made poorer by the double bridge move, and
improved by recombination.

We then compare the minimum tour found using GPX-GA against the minimum tour found
using Chained-LK. Table 3.1 lists the average percentage ofthe cost of the minimum tour found
compared to the cost of the global optimum for each problem instance. GPX-GA was allowed
to run for 50 generations in these experiments.

After 510 calls each to LK-search (50 generations plus an initialization step), GPX-GA yields
better results on all of the problems except nrw1379. This isremarkable because GPX-GA must
optimize 10 solutions and the best solution must be optimized 10 times faster than Chained-LK
to obtain a better result.

If each algorithm is run longer, the performance of GPX-GA isincreasingly better than
Chained LK. Table 3.2 shows how many times (out of 50 attempts) that each method finds the
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Figure 3.4: The average minimum evaluation value found for various population sizes averaged
over 100 trials.
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(e) rand1500
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Figure 3.4: (cont.) The average minimum evaluation value found for various population sizes
averaged over 100 trials.

Generation−→ 5 10 20 50

Instance Algorithm 60 LK calls 110 LK calls 210 LK calls 510 LK calls
rand500 GPX-GA 0.29 ± 0.01 0.17 ± 0 0.1 ± 0 0.05 ± 0

Chained-LK 0.30 ± 0.01 0.19 ± 0.01 0.13 ± 0 0.09 ± 0

att532 GPX-GA 0.29 ± 0 0.18 ± 0 0.12 ± 0 0.07 ± 0
Chained-LK 0.30 ± 0.01 0.21 ± 0.01 0.13 ± 0 0.08 ± 0

u574 GPX-GA 0.49 ± 0 0.33 ± 0 0.19 ± 0 0.15 ± 0
Chained-LK 0.54 ± 0.01 0.34 ± 0 0.19 ± 0 0.15 ± 0

nrw1379 GPX-GA 0.63 ± 0 0.48 ± 0 0.34 ± 0 0.23 ± 0
Chained-LK 0.62 ± 0.01 0.46 ± 0.01 0.32 ± 0 0.19 ± 0

rand1500 GPX-GA 0.71 ± 0.01 0.52 ± 0.01 0.36 ± 0 0.22 ± 0
Chained-LK 0.73 ± 0.01 0.54 ± 0.01 0.39 ± 0.01 0.25 ± 0

u1817 GPX-GA 1.61 ± 0.01 1.26 ± 0.01 0.95 ± 0.01 0.63 ± 0.01
Chained-LK 2.08 ± 0.02 1.61 ± 0.02 1.19 ± 0.01 0.83 ± 0.01

Table 3.1: Average percentage of the cost of the minimum tourfound above the globally optimal
cost averaged over 500 experiments using Chained LK and GPX-GA.
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Let t be a valid tour;
1. Lets = t
2. Apply double bridge move tos
3. Apply LK-search tos
4. If C(s) < C(t), let t = s
5. Goto 1 until stopping criterion is reached.

Figure 3.5: High level overview of the iterated local searchframework used by Chained-LK.
The default stopping criterion is to run the main loop forn iterations wheren is the number of
cities in the TSP instance being searched.

rand500 att532 u574 nrw1379 rand1500 u1817
Hybrid GA 50/50 26/50 43/50 1/50 12/50 1/50
Chained-LK 38/50 16/50 32/50 1/50 2/50 0/50

Table 3.2: This data reports the number of times the global optimum is found by each algorithm
after 1010 calls to LK-search. The results are report over 50experiments.

global optimum after 1010 calls to LK-search (which is 100 generations for GPX-GA).
We have shown that when given similar computational resources, GPX-GA is capable of

finding better tours faster than Chained-LK and finding the global optima more often. In this
chapter, we have concentrated on the performance of these algorithms and how often they find
the global optimum. In the next chapter, we will explore whathappens when these algorithms
fail to find the global optimum.
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Chapter 4

Funnels in the Search Space of the
Travelling Salesman Problem

The neighborhood of the TSP has been described as having a big-valley structure [BKM94a] in
that the evaluation of a tour is positively correlated to thedistance of the tour from the global
optimal and to other locally optimal tours (see Figure 4.1).In [BKM94a], many local optima
were generated by Lin Kernighan search (and other local search heuristics). It was found that
local optima of evaluations closer to that of the globally optimal evaluation tended to be closer
together than local optima of worse evaluations. This lead to the Big Valley Hypothesis which
states the search space of the TSP consists of a a single central valley of solutions, at the bottom
of which are the global optimum (or optima). In this coarse view, the big-valley structure is
conceptualized as a landscape where many local optima may exist, but are easy to escape, and
the gradient leads to the global optimum.

This would imply that if an approximation algorithm with a powerful local search heuristic
and a method by which to escape local optima, such as Chained-LK, gets close enough to the
global optimum, it should almost always find the optimal solution as the gradient leads directly
to it. However, we find this not to be the case. The results of the previous chapter indicate
that Chained-LK does not find the global optima all the time, in fact, it finds a globally optimal
solution in much less than half the trials in most instances tested.

In Table 3.2, Chained-LK was run for 1010 iterations. To further illustrate the point that
Chained LK is getting “stuck” we ran the algorithm on the att532 instance for 1,000 trials. In
each trial, Chained-LK was allowed to run until the best found tour was not improved for at least
10,000 iterations. As a point of reference, when the global optimum is found, it is often found
in as few as 1,000 iterations of Chained-LK. Out of these 1,000 trials, only 4 unique evaluations
were found. Of these, one was the global optima which was found 55.9% of the time and the
other three tours had evaluations within0.06% of the optimal evaluation. By the Big Valley
hypothesis, the three non-optimal solutions should be veryclose to the global optimum as they
are within only0.06% of the optimal evaluation. If this were the case, Chained-LKshould have
found the global optimal solution in all 1,000 trials.

We will first conduct experiments to explore why Chained-LK is getting stuck in a handful
of tours that are very close in evaluation to the global optimum, a result counter-intuitive to the
Big Valley hypothesis. We will then perform a similar analysis on GPX to determine the cause
of its inability to consistently find the global optima. The results of this analysis provide exciting
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Figure 4.1: A pictorial representation of the big-valley structure.

directions for future research.

4.1 The Search Space of the TSP

In this chapter we discuss structures in the search space of the TSP. It is important to realize that
the search space depends on several factors and changing anyof these factors can result in an
entirely different space. To formalize the concept of search space, we will use the definition of a
combinatorial landscape of [RS02], which consists of threeingredients. Specifically for the TSP
we have:

1. A setX of all possible solutions. For the symmetric TSP,|X| = (n−1)!
2 .

2. A notion of distance onX.

3. A fitness functionf : X 7→ R. This is the typical cost function: a summation of the cost
associated to each edge in a solution.

For the distance metric, in keeping with the earlier work on the big valley in the TSP, we will
use the bond distance of [BKM94a]: Given two tourst1 and t2, the bond distanceb(t1, t2) is
equal ton minus the number of edges present in botht1 andt2, wheren is the number of cities
in a particular instance.

In [BKM94a] it was shown that the bond distanceb(t1, t2)/2 ≤ d(t1, t2) ≤ b(t1, t2) where
d(t1, t2) is the minimum number of 2-opts needed to transformt1 into t2. Because LK-search
builds a sequence of 2-opt moves that are bounded by the search depth parameter, the bond
distance is still meaningful in context of LK-search and is straightforward to compute. Indeed, no
polynomial time algorithm is known to compute the minimum number of 2-opt moves required
to move fromt1 to t2 [BKM94a].

4.2 Funnels in the TSP

We conjecture that the reason Chained LK becomes “stuck” at non-optimal solutions is that the
big-valley structure breaks down as search approaches the global optimum, making the optimum
harder to discover. The clustering of low cost solutions still takes place as stated in the Big Valley
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hypothesis, but instead of a single cluster there are a number of clusters of low cost solutions
separated by a non-trivial distance.

We term these clusters of solutionsfunnelsas they are analogous to the funnels found in en-
ergy landscapes [WMW98] associated with Lennard-Jones (LJ) cluster problems. The equation

E = 4ǫ
∑

i<j

[

(

σ

rij

)12

−

(

σ

rij

)6
]

is the Lennard-Jones potential and describes the interaction of atoms in an LJ cluster. A solution
to an LJ cluster problem is a three dimensional configurationof n atoms, the number of atoms
in a cluster is denoted byLJn. The optimal solution is a configuration of atoms which minimize
the total energy of the system. The evaluation of the Lennard-Jones potential over all possible
configurations is known as the potential energy surface, or energy landscape.

In [DMW99], it was observed that some clusters, such asLJ55, have a potential energy
surface which contains a single deep funnel which leads to the global minimum while others have
more than one funnel.LJ38 has two. In the case ofLJ38, the bottom of one funnel corresponds
to the global minimum, and the bottom of the other funnel corresponds to the configuration with
the second lowest energy.

It was found that global optimization is more difficult on multiple funnel landscapes such as
LJ38 than on larger problems with a single funnel, such asLJ55. This relationship between diffi-
culty in global optimization and the presence of funnels wasfirst shown in [DMW99]. Although
the LJ38 cluster has been successfully optimized globally, the techniques used [DW98, PP95]
involve transformations of the energy landscape which induce a single funnel.

The difficulty that arises in global optimization on energy landscapes with multiple funnels
is due to the large barriers between the funnels. These barriers are large enough that once a
configuration at the bottom of a funnel is reached, the searchis unable to escape the funnel
[DMW99]. Thus, once the search enters a funnel, it can be driven to the bottom of the funnel,
but if that funnel does not contain the globally optimal configuration, the search will be unable
to reach the globally optimal energy configuration.

In the TSP we find that, similar to the behavior of continuous search heuristics on multiple
funnel potential energy surfaces, once Chained-LK enters afunnel and reaches a solution corre-
sponding to the bottom of a non-globally optimal funnel, it is highly unlikely that the search will
find the global optimum.

In order to further explore funnels in the TSP, we took two approaches to assessing the
structure of the search space near the global optimum. First, we examined the number of unique
tours found after considerable search effort. We ran Chained-LK until at least 10,000 iterations
are performed without finding an improving tour. Chained-LKwas run in this manner for 1,000
runs, recording the best tour found from each run. Of the 1,000 best tours produced from each
run, we only keep unique tours, i.e., a tour must have at leastone different edge from the other
tours that are kept. We collected data on 6 instances, rand500, att532, u574, nrw1379, rand1500
and u1817. These instances represent one small and one largeinstance from each of the three
categories of TSP instances. Table 4.1 shows relatively fewunique evaluations across the 1,000
runs.

Second, we explored the regions around the unique evaluations. For this analysis, we focus
on att532 because it has just four unique evaluations which can be easily displayed graphically.
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Instance Number of unique tours Number of unique evaluations
Random Euclidean Instances

rand500 3 2
rand1500 194 151

Clustered or Psuedo-Random Instances
att532 20 4
nrw1379 902 71

Highly Structured or Grid Instances
u574 13 4
u1817 967 264

Table 4.1: Number of unique tours and evaluations found after running Chained-LK for 1,000
runs on 10 instances.

Evaluation 27686 27703 27705 27706
27686 - 66 36 86
27703 - - 76 43
27705 - - - 73
27706 - - - -

Table 4.2: Pairwise distance of each funnel bottom used as aninitial tour in Figure 4.2. This
shows what appears to be an overlap in funnels in Figure 4.2 isnot necessarily the case.

For att532, each set of unique tours with the same evaluationformed a connected component in
the search space under 2-opt; so the tours are considered to be on plateaus. One tour from each of
the four plateaus was selected randomly to represent the funnel bottom (the largest plateau was
of size six). 500 local optima were found with the random walkprocedure starting from each of
the four funnel bottoms. Figure 4.2 plots the distance of thetours to the global optimum1 versus
the tour evaluations; the majority of local optima are further away from the global than the tours
associated with the bottoms of each funnel.

These plots concentrate attention on part of the search space very close to the global. The
local optima found in each funnel are correlated in evaluation and distance to their respective
funnel bottoms and other tours in that funnel. However, a correlation doesnot exist between
evaluation and distance for tours from different funnels.

Each funnel itself is a non-trivial bond distance from the other funnels though this is not
evident in Figure 4.2. For example, the funnels with bottomscorresponding to plateaus with
evaluations of 27705 and 27703 seem to be close to one anotherin Figure 4.2. However, this
is only because we are measuring the distance relative to theglobal optima, the bond distance
between the two tours is actually 76. The pairwise distancesbetween the funnel bottoms are in
Table 4.2.

1In fact, we found two distinct globally optimal solutions. Because they differ by only two edges, we selected one
for distance computation.
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Figure 4.2: 500 local optima found by LK search when startingat each of the four funnel bottoms
in att532. Each local optima is shown with a symbol matching the initial tour of the walk. The
initial tour, i.e. the funnel bottoms, are shown with a slightly larger and bolder symbol. The
initial tours have evaluations from left to right of 27686 (optimal), 27705, 27703 and 27706.

Instance rand500 att532 u574 nrw1379 rand1500 u1817
Minimum distance 28 26 32 46 54 75

Table 4.3: Minimum bond distance between any two funnels found in each of the instances. The
distance between any two funnels must be at least equal to or larger than the numbers reported
in this table.

Table 4.2 shows that the funnels corresponding to tours of unique evaluations were always
separated by a non-trivial distance for instance att532. Wefound this to be the case for all
instances tested.

Table 4.1 shows that the number of funnels tends to grow with the instance size for all prob-
lems. Although impractical to list the pairwise tables of funnel distances for the large instances
due to the large number of funnels in these instances, we listthe minimum distance between any
two funnels in Table 4.3. We can see a general trend for the minimum distance to increase with
the size of the instance.

Rather than a single big-valley, there are multiple funnelsassociated with local optima close
in evaluation to the global optimum. Under Chained-LK, the big-valley structure holds within
funnels but not across funnels below a certain evaluation.
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Instance Mean bond distance Mean length of walk
rand500 27.49 ± 1.05 1 ± 0
att532 22.5 ± 1.44 1.01 ± 0.01
u574 24.68 ± 1.57 1.03 ± 0.02

nrw1379 13.74 ± 1.16 1.07 ± 0.03
rand1500 20.04 ± 1.29 1.2 ± 0.04

u1817 17.3 ± 1.14 1.26 ± 0.05

Table 4.4: Mean bond distance from the initial local optimav0 to the local optimav∗ found by
LK-search along random double walks from the initial optimaand the mean length of the walk.

4.2.1 Implications for Chained-LK Performance

We now return to the conundrum of why local search is not more effective at finding the global
optimum in TSP. Chained-LK can move through the search spacein two ways: LK-search and
double bridge moves. The lowest bond distance between the global optimum and a non-globally
optimal solution is 36 for att532 (this distance only grows with instances of larger size).

To determine the mean bond distance a tour is moved by LK-search and the double bridge
move, we use a random walk method similar to the one used in Chapter 2 to explore the space
of local optima near the global.

For a given instance of the TSP, an initial tourv0 was found by applying 200 iterations of
Chained-LK to a randomly generated tour. We start the walk attour v0. At stepi of the random
walk, a new tourvi is produced by applying a random double move tovi−1, by breaking four
random edges invi−1, e(a, b), e(c, d), e(w, x) and (y, z), and replacing them with four new
edges,e(a,w), e(b, x), e(c, y) ande(d, z), to form the tourvi. After each step, LK-search is
applied tovi until a locally optimal tourv∗ is found. If v∗ differs from v0, vi has escaped the
basin of attraction surroundingv0; i is said to be length of the walk and the random walk is
halted.

When LK-search finds a new local optimav∗, we measure the bond distance betweenv∗ and
v0 and the length of the walki. The mean distances of 100 such walks are reported in Table 4.4.

The only difference between this random walk method and method used in Chapter 2 is the
use of double bridge moves instead of 2-opt moves. The randomdouble bridge move is roughly
equivalent to two random 2-opt moves (four edges go out of thetour and four new edges come
into the tour in both a double bridge move and two 2-opt moves). The double bridge move does,
however, sample a different space than two random 2-opt moves would. If either of the two pairs
of edges that are replaced by the double bridge move were broken and replaced individually,
a cycle would be formed, making the resulting solution invalid. So, the random double bridge
move consists of twoinvalid random 2-opt moves, moves that would not be performed by our
random 2-opt walk.

The second column of Table 4.4 tells us that most of the time a single double bridge move was
sufficient to find a local optima with LK-search. When comparing the average distance between
the new local optima found, in all cases it is smaller than theminimum distance between funnels
reported in Table 4.3. Chained-LK applies only a single double bridge move between calls to
LK-search and moves to a new local optima only if the evaluation is better than the current best
tour. If the search is in a funnel bottom and can only move, on average, a distance smaller than
the minimum distance between funnels as indicated by Table 4.4, it is highly unlikely the search
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Figure 4.3: 500 local optima found by Lin-Kernighan search after perturbing the four funnel
bottoms from att532 by double bridge moves.

will escape the funnel.
To illustrate this idea, we plotted 500 tours in Figure 4.3 aswe did in Figure 4.2 using the

random double bridge walk instead of the random 2-opt walk. Of the 500 tours found from each
initial tour, only a handful of unique local optima were found and they clustered even closer to
the initial tours than in Figure 4.2.

The distance between funnels only grows with instance size.Table 4.4 indicates the distance
of new local optima found by double bridge moves seems to become less with instance size.
As instance size grows, it will become more and more unlikelythat LK-search can hop from a
non-globally optimal funnel bottom to the globally optimalsolution (or a solution in the funnel
containing the global optimum) by perturbing a low cost tourusing random double bridge moves.

4.3 Escaping Funnels with Generalized Partition Crossover

We now attempt to determine if part of the improved performance of GPX-GA over that of
Chained-LK is because the GPX operator escapes funnels by randomly choosing two distinct
funnel bottoms from each instance. Only funnels that were not associated with the global opti-
mum were chosen. To generate parent tours associated with a funnel, the random walk method
starting from the funnel bottoms was used to find 50 local optima within each funnel. When
Chained-LK is applied to these local optima, the search always ends back in the funnel bottom
from which the random walk was initiated.

To test the effectiveness of the GPX operator in escaping funnels, we apply the operator to
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Instance rand500 att532 u574
Escapes 1288 (51%) 1129 (45%) 940 (38%)

Instance nrw1379 rand1500 u1817
Escapes 2254 (91%) 1655 (66%) 1502 (60%)

Table 4.5: Number of funnel escapes out of 2500 crossovers when applying GPX to two tours in
different funnels.

0 20 40 60 80 100

27
80

0
28

00
0

28
20

0
28

40
0

28
60

0
28

80
0

Distance

E
va

lu
at

io
n

Figure 4.4: Distance to optimal (x-axis) vs. cost function evaluation (y-axis) of the 500 tours
produced by the GA using GPX on ATT532 after 10,010 LK search call.

all pairs of tours such that each pair consists of one tour from each of the two funnels. This
results in 2,500 applications of the GPX operator per instance. Two offspring are generated, one
of which is the result of greedy recombination. Chained-LK is then applied to the two tours
which are produced by GPX until it finds no improving tour for at least 10,000 iterations. If one
of the tours found by Chained-LK is in a different funnel fromthe initial funnels, we conclude
that a single application of the GPX operator was successfully able to escape the initial funnels.

The results are presented in Table 4.5. In all instances the GPX operator displayed the ability
to produce a tour that led to a different funnel than the funnel in which the parents were found.
GPX is able to tunnel between funnels, something that LK-search and double bridge moves alone
cannot.

We also looked at the results of running GPX-GA with a population of 10 tours until 10,000
LK-seach calls were made. The results of doing this for 100 trials are depicted in Figure 4.4
using the same cost versus distance plot as in Figure 4.3 except that these are the tours found by
GPX-GA at the end of each run.
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The clustering found in Figure 4.3 is not evident in Figure 4.4 and Figure 4.4 displays a more
even distribution of tours over the lower part of the search space. This seems to indicate that
GPX-GA is not susceptible to the funnel structures found when using Chained-LK. The search
space configuration is altered by the use of GPX-GA, similar to the transformation methods used
in continuous optimization to avoid funnels. This then leaves the question, why does GPX not
find the global optimum more frequently?

4.4 What Makes Generalized Partition Crossover Fail

We analyzed the populations in the final generations of the experiments in Chapter 3 in which the
global optimumwas notfound after GPX-GA had been run for 100 generations with a population
of size 10. We found thatall the edges found in the globally optimal tour were found in theedges
of the entire population, albeit not in the best found tour, in the majority of trials for all instances
tested. Why then is GPX unable to recombine tours to find the global optimum if the edges are
present?

Recall that in GPX-GA we recombine the best tour with the remaining tours in the popula-
tion. Those globally optimal edges that are not found in the best tour are found somewhere in at
least one other tour in the population, therefore they will be classified as uncommon edges in at
least one recombination.

To ensure that GPX always produces a valid Hamiltonian circuit when constructing off-
spring, edges cannot be selected on an individual basis within partition components. That is,
the edges used to construct a child tour from within a particular partition component must all
come from one parent or the other. During recombination, if some globally optimal edges which
are found in one parent appear in the same partition component asdifferent globally optimal
edges from the other parent, it will be impossible for GPX to recombine the two tours and find
the globally optimal edges as it cannot construct a child tour using the edges from both parents
within a single partition component.

Because of this we wish to determine whether the globally optimal edges that aren’t found in
the best tour appear in a single component during recombination or if they are spread out among
different components. We checked this by running GPX-GA for100 generations and analyzing
each component of every recombination that produced the final generation.

We found that in all the recombinations prior to the final 100th generation, the majority of
globally optimal edges fell into a single partition component that was larger than the rest. In
table 4.6 we report the number of uncommon globally optimal edges that fell into this large
partition component, the size of this component, and the number of uncommon global edges
that are found in other components; we also report the numberof shared common global edges
observed during recombination.

As can be seen from Table 4.6, the majority of edges that are not found in the best solution
but that are found in the global optimal solution appear as uncommon edges that are largely
contained in the largest component during the recombination process. For this reason GPX is
unable to recombine tours to find the global optimum.

As a final experiment, we examine how quickly the global edgesare found in the population.
The results of this experiment lead to speculation on a different strategy for using GPX-GA to
avoid the problem of recombining to find the global optimum. We turned off the double bridge
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rand500 att532 u574
Common global edges 392.39 406.75 440.86

Uncommon global edges in largest component50.5 87.39 56.15
Uncommon global edges not in largest component0.04 0.04 0.81

Total edges in the largest component67.17 102.11 80.15
nrw1379 rand1500 u1817

Common global edges 995.52 1120.50 1407.90
Uncommon global edges in largest component160.78 171.47 268.62

Uncommon global edges not in largest component1.80 1.05 0.96
Total edges in the largest component222.83 223.86 289.12

Table 4.6: Percentages were averaged over 50 trials. These results were captured during recom-
bination during the last generation. Common edges can appear inside of components, or between
components of GraphGu. Uncommon edges appear only inside of components ofGu.

mutation in step 2 of the GPX-GA as described in Figure 3.3 in Chapter 3. Without double
bridging, the population converges quickly, and we only runthe GA to 5 generations.

We ran 50 trials of the modified GPX-GA. At generation 5 we record the minimum tour
found, the number of unique edges in the population and the number of edges in the population
that also appear in the global optimum. When there is no mutation (i.e., double bridge moves)
not only does the GA converge very fast, but it also loses diversity and gets “stuck” after about
5 generations.

Nevertheless, GPX-GA is already finding very good solutionsafter only 5 generations: for
rand500 and att532, it found the global optimum in 2 out of 50 trials, using only 50 recombina-
tions and only 50 calls to LK-search. The convergence to the global optimum is extremely fast
in these exceptional cases.

As the data show in table 4.7, the edges found in the global optimum are all present in
the population in the majority of the runs. On instances rand500, att532 and rand1500 all of
the globally optimal edges were present in the population onevery single run. The population
therefore contains all of the edges needed to construct the globally optimal solution after only 5
generations. Furthermore, the results for all of the TSP instances show that the total number of
unique edges in the population was always less than2n after 5 generations.

These results suggest a different use of GPX-GA: using GPX-GA to quickly create a pop-
ulation of tours to be used in a strategy known astour merging. Tour merging [App06, CS03]
is a strategy which involves merging together a number of tours to create a graph which is then
passed to an exact solver for the TSP. This merging is similarto what happens when taking the
union of two tours in partition crossover, but typically involves more than two tours. The end
result is a graph with a greatly reduced search space than thecomplete graph of a TSP instance
and can , theoretically, be searched in a much shorter time. We will discuss this and other future
work in the next chapter.
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Instance
Global Edges Global Edges Unique Edges
in Population in Minimum Tour in Population

rand500 500± 0 449.68± 1.98 941.56± 1.56
att532 532± 0 464.1± 2.11 979.54± 1.47
u574 574± 0 502.63± 2.58 1017.12±1.87

nrw1379 1378.9± 0.04 1162.3± 3.44 2709.34± 2.25
rand1500 1500± 0 1301.02± 4.15 2871.9± 3.14

u1817 1815.12± 0.18 1562.44± 3.22 3616.92± 4.71

Table 4.7: Results obtained by running GPX-GA for only 5 generations andwithout mutation
(double-bridge moves). “Global Edges in Population” is thenumber of edges found in the global
optimum that are also present in the population. “Global Edges in Minimal Tour” is the number
of edges shared in common between the best solution found andthe global optimum. “Unique
Edges in Population” is the total number of distinct edges found in the population at the end of
generation 5. The number of edges in each instance is indicated by the numerical suffix of the
instance name.
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Chapter 5

Conclusions

In this work we have presented a new recombination operator called Generalized Partition
Crossover /citewhitley-hybrid for the Traveling SalesmanProblem, designed a hybrid genetic al-
gorithm, which outperforms Chained-LK, and conducted analyses revealing search space struc-
tures that help explain the difference in performance.

GPX makes use of multiple partitions of cost two on the union graph of two initial tours.
The number of partitions of cost two are found to affect the performance of the operator, namely
there is correlation between the number of partitions foundby the operator and the number
of offspring that are improved over the parents. Although the operator will be unsuccessful if
no partitions of cost two are present, we have shown that the operator achieves a high rate of
successful recombinations.

We have found that GPX possesses several interesting characteristics, namely: it transmits
alleles, it is respectful and it exhibits a property we referto as tunneling. These characteristics
play an important role in designing GPX-GA. Because the operator transmits alleles and is re-
spectful, it cannot introduce new edges into a population ofsolutions. We therefore utilize a
diverse selection method and the double bridge move as a mutation operator to increase diver-
sity in the population. Tunneling occurs when the parents are both local optima, and the quality
of the offspring of GPX are shown to be correlated to the quality of the parents. We therefore
incorporated the use of LK-search, the most powerful local search heuristic known for the TSP,
into GPX-GA.

The end result is an algorithm that is capable of outperforming Chained LK, one of the best
performing approximation algorithms for the TSP as of this writing. Analyses of why Chained-
LK becomes stuck reveal search space structures that we callfunnels after a similar phenomenon
found in energy landscapes. Funnels are tours in the search space that are correlated in distance
and evaluation, but are themselves separated from one another by a non-trivial distance.

A gradient is formed within funnels that draws Chained-LK toa funnel bottom and, once
there, it is highly unlikely to escape to another funnel. Because GPX is not limited to changing
a small number of edges as is the double bridge move, the search space at low evaluations is
smoother out and the funnel structures are not as evident. Weconjecture that this is in part a
reason why GPX is capable of outperforming Chained LK.

Having conducted an analysis on why Chained-LK fails, we perform a similar analysis on
GPX-GA. We find that when GPX-GA fails to find the global optimum, it is because the globally
optimal edges are spread out among different tours but fall into the same partition component
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during recombination. This makes it impossible for GPX to recombine two tours to find the
global optima.

We also find that the globally optimal edges are entirely present in the population after only
five generations in the majority of trials. For some instances, they were present in every trial we
ran. These final experiments give rise to several ideas for future research directions involving
GPX.

5.1 Future Directions for GPX

One direction for future research is investigating ways in which GPX can select edges from both
parents within a single partition component. We have shown that the globally optimal edges
are contained within the largest partition component in many cases. One possibility is allowing
the algorithm to run until GPX is unable to recombine to form better tours. At this point, GPX
can be used to find the partition components but instead of constructing offspring at this point,
a search algorithm may be applied to each component, treating each partition component as a
sub-problem.

As each partition component has a partition cost of 2 (after the recursive cut point reduction
step) there are two easily identified cut points at which any Hamiltonian circuit on the entire
problem must enter and exit the partition component. This means the component can be op-
timized independently of the rest of the problem and all the necessary information to do so is
provided from GPX with no extra work.

It may also be possible to perform a different type of recombination in which the edges are
selected one by one in such a way as to not form a cycle. We obviously know that there is at least
one other way to form a path through this component, the globally optimal path. However, this
problem does seem to be difficult to solve without increasingthe running time of the operator.

Other influences may be applied during the search, such as thebackbone search of [ZL05],
before GPX-GA reaches a point where it is incapable of recombining to find the global. From
our analysis, we know GPX is sometimes able to recombine two tours to find the global optimum
and GPX-GA does so in many cases. A study of the search trajectories taken from the first to
last generation may yield some insight into what types of influences may be applied to guide
the search to favorable tours. This may not be a straight forward undertaking as the popula-
tion of GPX-GA makes such a study more complicated than an approximation algorithm which
maintains only a single tour.

Perhaps the most exciting possibility is running GPX-GA foronly a few generations and
merging the tours in the resulting population. Our results show that in as few as five generations
the globally optimal edges were represented across the population in the majority of instances.
GPX-GA could be run with mutation (double bridge moves) turned off until convergence. We
can then merge all 10 members of the population into a single graph. This reduced graph can
then be searched for a minimal Hamiltonian circuit using an exact algorithm which can take
advantage of the reduced space, such as those described in [App06] and [CS03].

The search space is dramatically smaller than that of the original TSP instances. This means
that the optimization problem has been reduced to finding theminimal Hamiltonian Circuit of
lengthn in a graph with at mostkn edges wherek is the size of the population. Such a strategy
utilizes the ability of GPX-GA to quickly produce a population of diverse, high quality tours.
These tours may then be used to construct an instance which can be turned over to an exact
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solver. If the optimal edges are present, the solver will have a greatly reduced space to explore
and will still be able to find the optimal solution.
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