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ABSTRACT OF DISSERTATION

GEOMETRIC METHODS ON SPECIAL MANIFOLDS FOR VISUAL RECOGNITION

Many computer vision methods assume that the underlying geometry of images is Euclidean.

This assumption is generally not valid. Therefore, this dissertation introduces new nonlinear

geometric frameworks based upon special manifolds, namely Graßmann and Stiefel manifolds,

for visual recognition. The motivation for this thesis is driven by the intrinsic geometry of visual

data in which the visual data can be either a still image or video. Visual data are represented as

points in appropriately chosen parameter spaces. The idiosyncratic aspects of the data in these

spaces are then exploited for pattern classification. Three major research results are presented in

this dissertation: face recognition for illumination spaces on Stiefel manifolds, face recognition

on Graßmann registration manifolds, and action classification on product manifolds.

Previous work has shown that illumination cones are idiosyncratic for face recognition in

illumination spaces. However, it has not been addressed how a single image relates to an illu-

mination cone. In this dissertation, a Bayesian model is employed to relight a single image to

a set of illuminated variants. The subspace formed by these illuminated variants is character-

ized on a Stiefel manifold. A new distance measure called Canonical Stiefel Quotient (CSQ)

is introduced. CSQ performs two projections on a tangent space of a Stiefel manifold and uses

the quotient for classification. The proposed method demonstrates that illumination cones can

be synthesized by relighting a single image to a set of images, and the synthesized illumination

cones are discriminative for face recognition. Experiments on the CMU-PIE and YaleB data sets

reveal that CSQ not only achieves high recognition accuracies for generic faces but also is robust

to the choice of training sets.

iii



Subspaces can be realized as points on Graßmann manifolds. Motivated by image perturba-

tion and the geometry of Graßmann manifolds, we present a method called Graßmann Registra-

tion Manifolds (GRM) for face recognition. First, a tangent space is formed by a set of affine

perturbed images where the tangent space admits a vector space structure. Second, the tangent

spaces are embedded on a Graßmann manifold and chordal distance is used to compare sub-

spaces. Experiments on the FERET database suggest that the proposed method yields excellent

results using both holistic and local features. Specifically, on the FERET Dup2 data set, which

is generally considered the most difficult data set on FERET, the proposed method achieves the

highest rank one identification rate among all non-trained methods currently in the literature.

Human actions compose a series of movements and can be described by a sequence of video

frames. Since videos are multidimensional data, data tensors are the natural choice for data

representation. In this dissertation, a data tensor is expressed as a point on a product manifold

and classification is performed on this product space. First, we factorize a data tensor using a

modified High Order Singular Value Decomposition (HOSVD) and recognize each factorized

space as a Graßmann manifold. Consequently, a data tensor is mapped to a point on a product

manifold and the geodesic distance on the product manifold is computed for tensor classification.

The proposed method is geometrically sound and the metric is naturally inherited from the factor

manifolds. Experiments on the Cambridge-Gesture and KTH human action data sets show that

the proposed method outperforms the current state-of-the-art.

The use of special manifolds for visual recognition has just emerged. This dissertation shows

that the underlying geometry of space is an important feature for pattern recognition. The pro-

posed geometric frameworks are particularly suitable for high dimensional data, and will lead to

many possible future work.

Yui Man Lui
Department of Computer Science
Colorado State University
Fort Collins, CO 80523
Spring 2010
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Chapter 1

Introduction

This dissertation studies the intrinsic geometry of image space and proposes novel geometric

frameworks based upon special manifolds, namely Stiefel and Graßmann manifolds, for visual

recognition. The underlying geometry of visual data induces the development for the proposed

frameworks. We realize an image-set as a point in a suitable parameter space and exploit the

idiosyncratic nature in this parameter space for pattern recognition. The utilities of the proposed

frameworks are demonstrated through the applications of face recognition and action classifica-

tion.

This chapter describes the motivation for our studies, the idea of data abstraction, and the

intuition of manifolds, particularly special manifolds. In addition, the main contributions of this

research are highlighted and the subsequent chapters are introduced.

1.1 Motivation

Pattern recognition is one of the key attributes of intelligent behavior. Both humans and animals

rely heavily on this ability for survival, for example, searching for food, avoiding hazard, and

finding a mate for reproduction. All of these activities involve pattern recognition. However,

patterns exhibit a huge amount of variability in nature. This variability could be caused by

deformation, external sources, and / or aging. Hence, pattern recognition signifies a high level

of adaptation and intelligent behavior.

Much of what is studied in the field of computer vision can be reduced to visual pattern

recognition. A computer is viewed as an intelligent machine when it performs some tasks like
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a human does. In computer vision, these tasks include object detection, face recognition, action

classification, etc. Over the years, many efforts have been dedicated to mimicing the human

visual system. These efforts build upon the foundation of mathematics which has played an

important role in advancing the field of computer vision.

Among the mathematics used in computer vision, the geometry of space may be the most

fundamental. Geometry arises naturally in computing the distance or similarity between patterns.

Prior to pattern recognition / discrimination, one needs to represent a pattern in some parameter

space. Previous methods often make an implicit or explicit assumption that the underlying ge-

ometry of patterns is Euclidean. For example, distance is often measured by a L2 norm. This

means that visual data have been characterized in a vector space. This characterization gives rise

to an important question. Are images sampled from a linear space or a nonlinear space?

This question leads to the development of our geometric frameworks. Before we discuss the

proposed paradigm, we discuss the principle of data abstraction and image representation in a

topological space.

1.2 Data Abstraction

Data abstraction is the fundamental concept of our geometric frameworks. It is known that

a point in a three dimensional space can be represented by a vector with three elements,

[x1, x2, x3]T in a Euclidean space depicted in Figure 1.1. Similarly, an image can be vector-

ized and represented by a vector with n elements, one element per pixel. As such, an image can

be identified as a point in some topological space that we call image space. Figure 1.2 illustrates

the association between an image and a point in the image space.

The space where vectors reside is called a vector space. It is a mathematically well-defined

space which is closed under addition and scalar multiplication. Since the field operations are

linear, the vector space is a linear space where the law of superposition applies. Any element

in the vector space can be written as a product sum of other elements in the space, hence the

space is open but the elements in a vector space are closed under linear operations and can be

represented by a finite number of bases.
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Figure 1.1: A point in a three dimensional space

Figure 1.2: Viewing an image as a point in the image space

While the law of superposition holds for illumination spaces under a fixed pose and convex

object assumptions [9], it does not apply to the nonlinear sources of image variability such as

registration or deformation [96]. We argue that image space is generally not Euclidean because

the law of superposition does not hold in this space. For example, there is no linear combina-

tions to form a simple image translation over the field R. Hence, the image space is generally

nonlinear. Therefore, classification algorithms carried out in a Euclidean space may not have

inherent the nonlinear geometric structure, as a result, the classification accuracy may be poor.

To properly represent images in a parameter space, we turn our attention to nonlinear surfaces

called manifolds.
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Figure 1.3: A two dimensional manifold embedded in R3

1.3 What is a manifold

Many years ago, people thought that we were living on a flat surface. Now, everyone knows that

the Earth is a spherical object . Our Earth is a simple example of a compact manifold which is a

globally curved but locally flat surface. Figure 1.3 illustrates that the surface of the Earth is a two

dimensional manifold since it can be represented by a collection of two dimensional flat surfaces

embedded in a three dimensional Euclidean space. Because the manifold is only regionally flat,

the Euclidean geometry is only applicable locally.

It is important that the geometry of space is properly measured such that distances and sizes

are calculated accordingly. Let us take our Earth as another example. Because of the curvature

of the Earth, it takes less time to fly from New York to Hong Kong over the north pole than over

San Francisco. Hence, any measure failing to take the spherical nature of the Earth is going to

make mistakes. Likewise, any approach to pattern recognition neglecting the nonlinear geometry

of the manifold will make mistakes as well.

From the differential geometry perspective, manifolds are sets with coordinate systems and

can be viewed as smooth, curved surfaces embedded in high dimensional Euclidean spaces.
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Furthermore, manifolds are locally similar (homeomorphic) to an open set in a Euclidean space.

The distance is geodesic which is the shortest distance between two points and the geodesic path

stays on the constraint surface (manifold), consequently the curvature of the space is taken into

account.

Special manifolds, Stiefel and Graßmann manifolds, are differentiable manifolds with well-

defined mathematical properties, and often represent natural data in computer vision, particularly

image-sets. The Stiefel and Graßmann manifolds are sometimes referred to as embedded sub-

manifolds of Rn×p and quotient manifolds of Rn×p, respectively [1], where n is the embedded

dimension and p is the manifold dimension. The special manifolds can be viewed as quotient

spaces1 of a special orthogonal group under different equivalence relations. This representation

allows one to characterize certain elements from a set using an equivalence relation, and the set

of equivalence classes2 forms a quotient space. The equivalence classes on special manifolds in-

duce some nice mathematical properties and make geodesic distance computable. Our geometric

frameworks rest upon the properties of special manifolds.

1.4 Challenges

Special manifolds are a set of matrices in Rn×p with orthogonality constraints. The visual appli-

cations of matrix manifolds are naturally related to image-sets where n is the number of pixels

and p is the number images. The image-set based classification on Graßmann manifolds has

been proposed by [18, 67, 11]. Cheng et al. [18] and Beveridge et al. [11] performed image-set

classification in illumination spaces. A collection of face illumination variants taken under a

fixed pose is viewed as an element on Graßmann manifolds. Lui et al. [67] employed geodesic

distance to match image-sets in conjunction with cohort normalization on a Face Recognition

Grand Challenge (FRGC) dataset. Although excellent results have been achieved, these meth-

1Quotient spaces will be introduced in chapter 3.

2Equivalence classes will be introduced in chapter 3.
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ods are restricted to multiple images and they may not be available in some applications. The

challenges therefore arise when we relax the image-set constraint to a single image or extend to

a video containing time information.

This dissertation emphasizes the geometry of visual data for the purpose of classification.

We relax the image-set constraint to a single image. New geometric frameworks called Canoni-

cal Stiefel Quotient (CSQ) and Graßmann Registration Manifolds (GRM) are presented for face

recognition on special manifolds using a single image per set. To achieve this objective, image

perturbation is applied to render a single image set to a multi-image set. In CSQ, a statisti-

cal model is employed to relight a single image to a set of illumination variants. In GRM, a

registration manifold is sampled from a single image.

In addition, we introduce the product manifold to video data for action classification. A

novel geometric framework called Graßmann Product Manifolds (GPM) is proposed for video

classification in a product space. We represent a video as a data tensor and relate it to a product

manifold.

1.5 Contributions

In this section, we summarize the main contributions of this dissertation.

• Formulate visual recognition on special manifolds

• Bridge the gap between a single image and image-set on special manifolds and demon-

strate its utility on face recognition

• Exploit image perturbation in registration and illumination spaces

• Apply a statistical illumination model to relight a novel image

• Propose a novel distance measure on Stiefel manifolds

• Illustrate the geometric interpretation for a novelty filter

• Characterize tangent spaces from local neighborhoods
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• Use both holistic and local features for face recognition

• Introduce a many to few matching strategy

• Characterize human actions on videos as third order tensors

• Introduce an alternative way for high order singular value decomposition

• Represent a data tensor as a point on a product manifold and illustrate its effectiveness on

action classification

• Formulate the geodesic distance on product manifolds

• Emphasize the prominence of the geometry of space and promote novel geometric frame-

works on special manifolds

1.6 Overview of Chapters

This dissertation consists of seven chapters. They are organized as follows:

The literature related to special manifolds for computer vision is reviewed in Chapter 2. The

topics include special manifolds for optimization, the mutual subspace method and its variants,

kernel methods for subspace distances, statistical analysis, variations in distances, and related

applications.

Chapter 3 presents the mathematical background on special manifolds. The mathematics

covered in this chapter include Stiefel manifolds, Graßmann manifolds, canonical metrics, sub-

space metrics, gradient flows, and tensor algebra. These materials provides the necessary back-

ground for our geometric frameworks and will facilitate the discussions in following chapters.

Chapter 4 models the geometry of illumination spaces using a single image. A statistical

illumination model is exploited to relight a single image to a set of illumination variants. A

novel distance measure called Canonical Stiefel Quotient (CSQ) is proposed for classification

on Stiefel manifolds. CSQ performs two projections on a tangent space and the magnitudes of

these projections are measured by the canonical metric. Experimental results on the CMU-PIE

and YaleB datasets are described.
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Chapter 5 introduces our Graßmann Registration Manifolds (GRM) for face recognition. We

illustrate how to characterize a single image on a Graßmann manifold by sampling a registration

manifold. The local neighborhood from a registration manifold is extracted to form a tangent

space. The tangent spaces are then embedded on a Graßmann manifold and the geodesic distance

is computed for discrimination. Experimental results on the FERET datasets are reported.

A new geometric framework called Graßmann Product Manifolds (GPM) is presented for

action classification in Chapter 6. This new framework represents a video as a data tensor and

characterizes it as an element on a product manifold. Action classification is then performed in

this product space. Experiments on the Cambridge-gesture and the KTH-human-action datasets

show excellent results.

Finally, the conclusions of this dissertation and possible future research are discussed in

Chapter 7.
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Chapter 2

Literature Review

In this chapter, we review subjects related to the use of special manifolds for pattern recognition.

The specific topics reviewed in this chapter include optimization, mutual subspace methods, ker-

nel methods for subspace distance, statistical analysis, variations in distances, and related appli-

cations. Recent survey papers on general topics including single image matching and image-set

matching can be found in [102, 122].

2.1 Special Manifolds for Optimization

Since special manifolds are curved spaces, optimization methods defined on vector spaces are not

suitable. Edelman et al. [28] formulated some common optimization techniques including the

gradient descent, Newton’s method, and conjugate gradient method on special manifolds. Later,

Manton [71] introduced optimization methods with unitary constraints on special manifolds.

More recently optimization methods on matrix manifolds, e.g., trust-region methods have been

reported in [1].

In computer vision applications, Ma et al. [68] utilized Newton’s method on Stiefel man-

ifolds for estimating 3D motion. The objective function is defined on an essential manifold

which is a product of Stiefel manifolds. The natural geometric structure on Stiefel manifolds is

considered for 3D motion recovery from image correspondences. The 3D motion estimation on

Riemannian manifolds has also been studied by Lee [60].

Subspace estimation is a common task for many statistical and pattern recognition prob-

lems [66, 64, 13, 100]. The projection matrix can be obtained from Graßmann manifolds. Liu et
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al. [66] employed discriminant analysis for face recognition. An iterative approach is developed

for searching the Graßmann manifold for an optimal projection matrix. This method is further

extended using simulated annealing to avoid local minima. Lin et al. [64] proposed a Maximum

Effective Information (MEI) criterion for face recognition. The MEI criterion essentially seeks

a projection matrix maximizing the mutual information. The projection matrix is iteratively

searched on a Graßmann manifold using the conjugate gradient method. The conjugate gradient

method on Graßmann manifolds has also been exploited for subspace selection [13] where the

objective is to maximize the harmonic mean of the symmetric KL divergences between all class

pairs.

2.2 The Mutual Subspace Method and its Variants

Yamaguchi et al. [118] first employed canonical angles for face recognition in video sequences

in 1998. The authors proposed a method called the Mutual Subspace Method (MSM). The MSM

views a video sequence as a set of images and represents it as a linear subspace. The smallest

canonical angle between linear subspaces is computed as the distance measure.

The MSM was further enhanced by the Constrained Mutual Subspace Method (CMSM) [34].

To reduce the effect of lighting changes, CMSM first projects image data onto an illumination

subspace and applies the MSM to the projected space for classification. Multiple constraints

were considered by Nishiyama et al. [79] in addition to MSM. This method employs ensemble

learning to form the constraint subspaces, as such the input data are projected onto each con-

straint subspace followed by MSM. The similarity scores are combined using a weighted sum

where the weights are learnt from boosting [32]. The CMSM was later extended to multiple

views [36, 69, 70] and incorporated with kernels [35, 37]. The MSM was deployed to a surveil-

lance system to recognize faces from a cluster of moving people [80]. Multiple sets of face

images were acquired using multiple cameras.

Recently, CMSM has been extended to multiple image-sets [61]. The prototype is computed

as a weighted Karcher mean on a Graßmann manifold. The generalized difference subspace

is obtained by computing the difference subspace between each data set and the sum of all
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prototypes. The CMSM is then applied to the generalized difference subspace . Furthermore,

Adaboost is used to enhance the classification performance.

Li et al. [62] employed the MSM to both holistic and local features for face recognition.

Instead of formulating face recognition as a multi-class problem, it is expressed as a two class

problem in which a pair of face images belongs either to the same or different people. Canonical

angles are computed from both holistic and local features, and boosting is applied to weight the

canonical angles.

2.3 Kernel Methods for Subspace Distances

Kernel methods map data to a higher dimensional space, possibly a nonlinear space, through a

nonlinear feature map. In 2003, Wolf and Shashua [115] first applied kernel functions to MSM

in which the distance function remains positive definite. To do so, a kernelized orthogonalization

procedure called kernel Gram-Schmidt was proposed so that the kernelized orthogonal matrices

do not need to be evaluated explicitly. In addition, the chosen kernel has proven to be positive

definite and is related to Fubini-Study.

Since then, kernel methods have become popular additions for subspace distances. Fukui

and Yamaguchi [37] kernelized MSM and applied it to multi-view images. This method employs

kernel PCA followed by the kernel whitening transformation. A similar kernelized framework

was also applied to CMSM [35] in conjunction with the generalized difference subspace. The

generalized difference subspace is characterized as the difference between each subspace and

the sum of all subspaces.

Because canonical angles are related to the geodesic distance on Graßmann manifolds, the

geodesic distances can also be kernelized. Wang and Shi [113] kernelized geodesic distances

including the arc-length and the chordal distance (projection F-norm) for face recognition us-

ing image-sets. Nevertheless, the authors found that kernel subspaces (KPCA) followed by the

Graßmann discriminant analysis [41] outperformed the kernelized geodesic distances.

Hamm and Lee [41] proposed the projection kernel and Binet-Cauchy kernel for discriminant

analysis. In addition, the authors related probabilistic measures to these kernels [40] and showed
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that the KL distance in the limit approaches the projection kernel on Graßmann manifolds. In

this formulation, data are assumed to be i.i.d. and distributions are modeled as the mixture of

factor analyzers. From this observation, the projection kernel was extended to affine and scaled

subspaces.

2.4 Statistical Analysis

Many computer vision applications involve machine learning from exemplars. The techniques

used in machine learning can be broadly divided into two major frameworks. They are discrim-

inant analysis and regression analysis. The aim of these statistical analyses is to learn a robust

projection for pattern recognition.

2.4.1 Discriminant Analysis

Discriminant analysis may be the most widely used framework for pattern recognition. Kim

et al. [49] extended the Fisher discriminant analysis from single images to image-sets using

Canonical Correlation Analysis (CCA). The distances of within-class and between-class are de-

fined in terms of image-set measured by canonical angles. To broaden the discriminant analysis

to nonlinear spaces, Humm and Lee [41] proposed a method called Graßmannian Discriminant

Analysis (GDA). This method introduces the projection kernel and Binet-Cauchy kernel in con-

junction with Kernel Linear Discriminant Analysis (KLDA).

Fan and Yeung [29] proposed an image-set face recognition algorithm based on local lin-

earity, and the intrapersonal and extrapersonal subspaces. The local linear model is constructed

using hierarchical agglomerative clustering. Then, the subspace similarities for intraperson and

extraperson are characterized by the largest canonical angle. The difference between the intrap-

ersonal subspace and the extrapersonal subspace is characterized as similarity measure.

2.4.2 Regression Analysis

Pattern recognition problems can also be formulated using regression analysis. Baklr et al. [6]

expressed a multivariate regression problem on Stiefel manifolds. The predictor matrix is fac-

torized using singular value decomposition. The free gradients with respect to each variables are
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then computed and the gradient descent method is applied to update the projection matrices on

a Stiefel manifold. The authors applied this regression to image restoration.

Pham and Venkatesh [82] introduced a multivariate lasso regression for multi-category clas-

sification. The loss function of the multivariate lasso regression is a quadratic function in addi-

tion to L1 norm regularization. A suboptimal solution is proposed in which the data projection

matrix is found using the steepest descent method on a Stiefel manifold and the regularization

matrix is computed by a L1 solver alternatively.

2.5 Variations in Distances

Just as there are many different ways of formulating distances in Euclidean space, there are

many definitions in distances related to canonical angles [28]. For example, one can express the

geodesic distance based on the intrinsic geometry of a Graßmann manifold, i.e. the arc-length

distance; embedding a Graßmann manifold in the vector space of Rn×p, i.e. the chordal 2-norm

and chordal Frobenius-norm distances; the Plücker embedding, i.e. the Fubini-Study metric; or

viewing Graßmannian as a projective space in a sphere, i.e. the projection F-norm.

Other heuristics have also been introduced for the utilization of canonical angles. Kim et

al. [47] learned a set of weights for canonical angles based on training data. The canonical

angles are computed for the holistic image as well as local patches where the local patches are

determined using probabilistic PCA. Finally, the holistic and the best local patch are fused by

piece-wise linear approximations. Using the canonical angles from both the holistic and local

patches has also been discussed [62] in which the weights are learnt from boosting.

Wang et al. [111] proposed the use of weighted average between the variation distance and

the exemplar distance as a manifold to manifold distance measure. First, a subset of images

from a set of images is selected based on local linearity where the local linearity is defined as

the ratio between the geodesic distance (from the adjacency graph) and the Euclidean distance.

The reciprocal of the summation of canonical correlations is defined as the variation distance

measure and the correlation between the orthogonal exemplar samples is evaluated as the exem-

plar distance measure. The manifold to manifold distance is finally formulated as the weighted
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average of variation and exemplar distances.

Instead of using canonical angles, Wang et al. [110] proposed a new subspace distance for

image-sets classification where the distance has later proven to be a distance metric in [101]. This

subspace distance is basically computing the summation of correlations between all the basis

vectors. The kernel extension of this metric is also given. Chin and Suter [22] formulated a new

image-set measure based on a matrix perturbation theorem. It turns out that this new distance

measure is the noise term subtracted by the chordal distance where the noise term is related to

the ratio between the the sum of singular values from the null space and the sum of singular

values from the range space. Recently, Zuccon et al. [125] have introduced a subspace distance

formulated by the associated projectors of data matrices. The data matrix of the projector is

constructed using co-occurrence statistics. This method considers the projection of a subspace

into another rather than the intersection.

Much of the work involving distances defined in terms of canonical angles further compli-

cate matters by selecting among the possible canonical angles. Wolf and Shashua [115] used

the first six smallest canonical angles, Fukui and Yamaguchi [36] employed the first three small-

est canonical angles, Maeda et al. [69] applied the third smallest canonical angle, Yamaguchi

et al. [118] and Beveridge et al. [11] used the smallest canonical angle while Oja and Parkki-

nen [81], and Fan and Yeung [29] employed the largest canonical angle, and Cheng et al. [18]

exercised various truncated angles. Finally, Lui et al. [67] utilized all canonical angles.

2.6 Related Applications

Special manifolds have been exploited in many computer vision applications. The following

summarizes these applications, in particular visual tracking, activity and action recognition, and

classification in illumination spaces.

2.6.1 Visual Tracking

Subspace methods are often employed for visual tracking. Wang et al. [112] performed online

face tracking that utilizes a novelty filter as an evaluation function. The projection matrix at
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each time step is found from a Graßmann manifold. The incremental scheme is performed in

conjunction with a Kalman filter and factor sampling.

The Mean Shift (MS) algorithm [20] is a nonparametric density estimator that tracks the

modes of a distribution, and has been widely employed for visual tracking, segmentation, and

clustering. Instead of formulating the MS in Euclidean spaces, Subbarao and Meer [99] formu-

lated the nonlinear counterpart on Graßmann manifolds and Lie groups. This method computes

the mean shift as weighted tangent vectors on tangent spaces and maps it back to the manifold

via the exponential map.

While the construction of tangent spaces is necessary in [99], Cetingul and Vidal [17] have

proposed an alternative method for the nonlinear MS algorithm on Stiefel and Graßmann mani-

folds. This method avoids the involvement of tangent spaces, in other words, no exponential map

is needed. The new nonlinear MS algorithm performs kernel density estimation on the manifold

of interests and locates the modes of a distribution intrinsically via iterative optimization.

2.6.2 Activity and Action Recognition

Activity and action classification have received attentions in recent years [75, 106, 84] due in part

to the potential applications. These applications include human-computer interaction, automatic

annotation of videos, intelligent surveillance, etc. Jia and Yueng [44] introduced a method for

local spatio-temporal discriminant embedding. This method finds an optimal embedding that

maximizes the canonical angles between temporal subspaces associated with different classes.

As such, data points are projected in a local neighborhood where data points of the same action

are close while different actions are far apart.

Linear Dynamic Systems (LDS) can be used to identify activities from videos. Saisan et

al. [90] employed dynamical systems to model image sequences. The Martin distance depicted

by canonical angles is employed to compare the LDS models. Turaga and Chellappa [105] con-

sidered activities as LDS governed by a set of system parameters. The parameters of LDS are

assumed to be varying with time but locally time-invariant. This locally time-invariant LDS is

then modeled as trajectories on Graßmann manifolds and characterized by the Procrustes dis-

tance. Statistical inference on special manifolds for activity recognition has also been investi-
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gated in [107].

Action videos can generally be considered as a 3rd order tensor. Kim et al. [50] introduced

the tensor canonical correlation analysis for action classification. This method seeks projection

matrices that maximize the inner product between tensors on each single-shared mode tensor.

The similarity between videos is the sum of canonical correlations from all single-shared mode

tensors.

2.6.3 Classification in Illumination Spaces

It is known that a set of convex objects under a fixed pose and with a Lambertian reflectance

surface forms a vector space. More specifically, this space is called illumination cone. Since

illumination cones admit vector space structures, they are elements on Graßmann manifolds.

Cheng et al. [18] and Beveridge et al. [11] exploited this principle and performed face recognition

in the context of image-sets where the image-sets are a set of face images collected from various

illumination variants under the fixed pose assumption. This method was further extended to low

resolution in illumination spaces [19].

16



Chapter 3

Mathematical Background

This chapter reviews the mathematical background on special manifolds. The subjects include

special orthogonal groups, Stiefel manifolds, Graßmann manifolds, geodesic flows, and tensor

algebra. These materials serve as a vehicle in our research and will facilitate our discussion in

following chapters. First, we give the mathematical notations in Table 3.1.

Notations Descriptions
A Tensor (calligraphic letters)
A Matrix (upper-case letters)
a Vector (lower-case letters)
M Manifold (a calligraphic letterM)
TxM The tangent space to the manifold at x ∈M
SO(n) An n × n special orthogonal Group (Lie group)
so(n) Lie algebra
bAc Element on a manifold constructed by a matrix A
R(X) The range of a data matrix X
A(n) Mode-n flattened matrix
U (n) Mode-n orthonormal matrix
×n Mode-n multiplication (Mode-n product)
In,p An n × p identity matrix where the bottom n− p × p submatrix is zero
0n,p An n × p zero block matrix
‖ · ‖ The Euclidean norm
‖ · ‖F The Frobenius norm
tr The trace of a matrix
X × Y Cartesian product of sets or manifolds
Vn,p Stiefel manifold (a set of p-dimensional linear subspaces in Rn)
Gn,p Graßmann manifold (a set of p-dimensional linear subspaces in Rn)
⊗ Kronecker product

Table 3.1: Mathematical Notations
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Figure 3.1: Basic geometry of a manifold and its tangent space at a point

The general review materials for manifolds or special manifolds can be found in [28, 71, 58,

21, 1]. Figure 3.1 gives general descriptions of some manifold terminologies. From a differential

geometry point of view [58], geodesic distance is the shortest distance between two points on a

manifold. Every point on a manifold can form a tangent space. Furthermore, a tangent space can

be factorized to a vertical space and horizontal space. When we make a projection on a tangent

space, it yields tangent directions. Details of these topics will be discussed in this chapter.

3.1 Lie Groups and Quotient Spaces

Manifolds related to a group structure are specified as Lie groups in which there exists a group

operation ⊕ such that any element in the group has an inverse and any pair of elements in the

group remains in the group after the group operation X ⊕ Y .

Quotient spaces induced by an equivalence relation define a set of equivalence classes of

points in a topological space. This concept allows us to identify the elements of a set to a point

through a projection map. In this section, we will review these two important concepts for special

manifolds.
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3.1.1 Lie Groups

Let GL(n) be a set of n× n matrices defined as :

GL(n) = {X ∈ Rn×n : det(X) 6= 0} (3.1)

Formally, GL(n) is a set of nonsingular n × n matrices closed under a group operation, i.e.

matrix multiplication. This is because the product of two nonsingular matrices is a nonsingular

matrix. This set of matrices is called general linear group. We can further define the orthogonal

group and special orthogonal group. Let O(n) be a set of n× n orthogonal matrices defined as:

O(n) = {X ∈ Rn×n : XTX = I} (3.2)

This set of matrices is called orthogonal group. Furthermore, orthogonal matrices could have a

determinant either +1 or -1. However, these groups of orthogonal matrices do not connect on a

manifold, thus, a subgroup is usually specified. Let SO(n) be another set of n × n orthogonal

matrices defined as:

SO(n) = {X ∈ Rn×n : XTX = I, det(X) = 1} (3.3)

The additional determinant constraint (det = 1) ensures that all matrices in this group are rotation

matrices. This set of matrices is called special orthogonal group. The space of SO(n) at identity

is commonly referred to as the Lie group and its tangent space is referred to as the Lie algebra,

so(n). It can also be seen that SO(n) ⊂ O(n) ⊂ GL(n).

3.1.2 Quotient Spaces

Let S be a set and a, b, and c ∈ S. A relation ∼ on a set S is called an equivalence relation if it

is reflexive (a ∼ a), symmetric (a ∼ b→ b ∼ a), and transitive (a ∼ b and b ∼ c→ a ∼ c). For

each x ∈ X , the equivalence class of x is the set of all y ∈ X such that x ∼ y.

Let X be a set and ∼ be an equivalence relation on X . Then X / ∼ is the set of equivalence

classes inX . There exists a natural projection, π: X→X /∼, mapping a point to its equivalence

class. The space X / ∼ is called the quotient space of X given by an equivalence relation. In

other words,X /∼ is constructed fromX by representing the equivalence classes ofX to points.

19



The representation of quotient spaces provides a way to abstract certain elements from a

set to a point using an equivalence relation. Points on Stiefel and Graßmann manifolds may be

viewed in terms of quotient space representation.

3.2 Stiefel Manifolds

Every data matrix can be orthogonalized, therefore, every image-set can be mapped to an or-

thonormal matrix ∈ Rn×p where n is the dimension of an image and p is the number of images

in the set. The space of orthonormal matrices is endowed with specific geometry described as

follows. The Stiefel manifold Vn,p is a set of n× p orthonormal matrices such that

Vn,p(Y ) = {Y ∈ Rn×p : Y TY = Ip} (3.4)

where Y is an element on a Stiefel manifold and Ip is a p × p identity matrix. This formulation

is pictorially described in Figure 3.2. The dimensions of Stiefel manifold Vn,p is np - p(p+1)
2

(p(p−1)
2 - p(n− p)) where p(p+1)

2 is the dimension of a normal space. Equation (3.4) reveals that

an element on a Stiefel manifold is a collection of images under some mathematical constraints.

As such, permuting elements of Y would result at different point on Vn,p. Hence, the ordering

of the bases is important on Vn,p. Furthermore, Vn,p can be viewed as a quotient space of SO(n)

so that we can identify an isotropy subgroup H in SO(n). H is a set of matrices which does

not change Y by the right matrix multiplication. Let Q be an element of SO(n) and can be

factorized into [ Y | Y⊥ ] where Y ∈ Rn×p and Y⊥ ∈ Rn×(n−p) is the orthogonal complement

of Y . Then, the isotropy subgroup H in SO(n) can be written as:

H = {Z ∈ SO(n) : QZ ' Q} (3.5)

where ' is an equivalence relation that makes the first p columns of a matrix coincide. Then,

we can consider a point on a Stiefel manifold as an equivalence class bY c with respect to this

equivalence relation described as:

bY c =
{

[Y |Y⊥ ]
[
Ip 0
0 Qn−p

]
: Qn−p ∈ SO(n− p)

}
(3.6)
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Figure 3.2: A point on a Stiefel manifold

Because the equivalence class only concerns the first p columns of a matrix, a point on a Stiefel

manifold is a subset of orthogonal matrices, i.e. bY c = Y Ip, and that leads to Equation (3.4) as:

bY c = {Y ∈ Rn×p : Y TY = Ip} (3.7)

Therefore, the Stiefel manifold Vn,p can be viewed as the quotient space defined by SO(n) / H

= SO(n) / SO(n− p) under a right matrix multiplication.

3.2.1 Tangent Space

The Stiefel manifold Vn,p may be embedded in a Rn×p Euclidean space where every element

on Vn,p is an orthogonal matrix. Let Y (t) be a matrix in Rn×p parametrized by a curve t such

that Y (0) = In,p and Y (t)T Y (t) = I . Differentiating Y (t)T Y (t) with respect to t and using the

product rule, we have

Y (t)T
d

dt
Y (t) +

d

dt
Y (t)TY (t) = 0 (3.8)

To abbreviate the notation, we let ∆ be d
dtY (t) and drop the parameter t in Y (t), and Equa-

tion (3.8) is rewritten as:

Y T∆ + ∆TY = 0 (3.9)

The tangent space at a point Y is a plane tangent embedded on a manifold where the dimen-

sion of tangent space is equivalent to the dimension of a manifold p(p−1)
2 - p(n − p). For a p
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dimensional manifold, the tangent space consists of p tangent vectors describing p directions of

travel from the origin at the point Y . Formally, we denote TY the tangent space at Y and express

the tangent space as:

TY = {∆ ∈ Rn×p : Y T∆ + ∆TY = 0} (3.10)

where Y T ∆ is skew symmetric. To see the skew symmetric property, let K = Y T∆, then ∆ =

Y K. Substituting ∆ back to Equation (3.9), we have

Y T∆ + ∆TY = 0

Y TY K +KT Y TY = 0

K +KT = 0

Thus, K = Y T∆ must be skew symmetric.

3.2.2 Normal Space

The tangent space and the normal space are orthogonal complements and orthogonality de-

pends on the choice of an inner product. Considering the inner product on Rn×p defined by

< M1,M2 > = tr < MT
1 ,M2 >, we denoteNY a normal space at Y andN ∈ NY . For all ∆ in

the tangent space and N in the normal space, we have

tr{∆TN} = 0 (3.11)

Furthermore, N can be written as Y S where S is a symmetric matrix. To see that,

tr{∆TN} = tr{(Y K)TY S} = tr{KTY TY S} = tr{KTS} = 0

tr{(KTS)T } = tr{STK} = tr{KST } = tr{−KTST } = 0

Thus, S is a symmetric matrix. Then, the normal space at Y is defined as:

NY = {N ∈ Rn×p : N = Y S, S = ST } (3.12)

3.2.3 Projection

3.2.3.1 Projection on the Normal Space

We know that a point on the normal space of the Stiefel manifold satisfies N = Y S. Let Z be a

matrix in Rn×p. A projection of Z onto the normal space at Y is defined as:
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ΠN (Z) = Y sym(Y TZ) (3.13)

where sym(X) = (X+XT )
2 . To see Equation (3.13), we have

Z = ∆ +N = ∆ + Y S

ZT = ∆T + STY T = ∆T + SY T

ZTY = ∆TY + S (3.14)

Y TZ = Y T∆ + S (3.15)

Adding Equation (3.14) and Equation (3.15), and using the fact from Equation (3.9), we have

(Y TZ + ZTY ) = 2S + ∆TY + Y T∆ = 2S

S =
1
2

(Y TZ + ZTY ) = sym(Y TZ) (3.16)

and N can be written as Y S, hence, Equation (3.16) agrees with Equation (3.13).

3.2.3.2 Projection on the Tangent Space

Let Z be a matrix in Rn×p. A projection of Z onto the tangent space at Y is defined as:

∆ = Z −NY

ΠT (Z) = Z −ΠN (Z)

= Z − Y sym(Y TZ)

= Z − 1
2
Y (Y TZ + ZTY )

= Z − 1
2
Y (Y TZ + ZTY )− 1

2
Y Y TZ +

1
2
Y Y TZ

=
1
2
Y (Y TZ − ZTY ) + (I − Y Y T )Z

= Y skew(Y TZ) + (I − Y Y T )Z (3.17)

where skew(X) = (X−XT )
2 . The tangent directions at Y have the general form defined as:

∆ = Y A+ Y⊥B (3.18)
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3.3 Graßmann Manifolds

A Graßmann manifold Gn,p is a set of p-dimensional linear subspaces of Rn (p-planes in Rn) for

0 < p ≤ n where the dimension of Gn,p is p(n − p). Similar to a Stiefel manifold, a Graßmann

manifold can also be viewed as a quotient space of SO(n) and its isotropy subgroup can be

represented as:

H =
{[

Qp 0
0 Qn−p

]
: Qp ∈ SO(p) , Qn−p ∈ SO(n− p)

}
(3.19)

Section 3.2 shows that a Stiefel manifold can be identified by a quotient representation Vn,p =

SO(n) / SO(n − p) under a right matrix multiplication by any orthogonal matrix. Let Y be an

element on a Stiefel manifold and Y⊥ be its orthogonal complement in SO(n), then we have

[ Y | Y⊥ ]
[
Qp 0
0 Qn−p

]
= [ Y Qp | Y⊥Qn−p ] (3.20)

where Qp ∈ SO(p) and Qn−p ∈ SO(n − p). Equation (3.20) reveals the equivalence class

wherein the span of the first p columns of Y remains unchanged under a right matrix multi-

plication, and the right n − p columns have no effect on the span of Y . This is the quotient

representation of Graßmann manifolds characterized as Gn,p = SO(n) / (SO(p) × SO(n − p)).

Using the quotient representation of Stiefel manifolds, we can represent Graßmann manifolds

more concisely as Gn,p = Vn,p / SO(p). As such, a Graßmannian can be expressed as a homoge-

neous space [54] which is isomorphic to the quotient space.

The quotient representation of Graßmann manifolds establishes the equivalence relation be-

tween orthogonal matrices. That is, two matrices belong to the same equivalence class if their

columns span the same p dimensional subspace. Hence, from Equation (3.20), the entire equiv-

alence class can be represented as the subspace spanned by the columns of a given matrix Y .

bY c = {Y Qp : Qp ∈ O(p)} (3.21)

In other words, a point on a Graßmann manifold is a linear subspace which may be specified by

any arbitrary orthogonal basis. A Graßmann manifold Gn,p is a collection of all p-dimensional

linear subspaces of a Euclidean space in Rn where the topology of Graßmann manifolds exhibits

nonlinear structure. This interpretation is pictorially described in Figure 3.3.
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Figure 3.3: A point on a Graßmann manifold

3.3.1 Projection on the Tangent Space of Graßmann Manifolds

Recall that ∆ = Y K, and K is skew symmetric. Now, let us consider an orthogonal group On =

{Y ∈ Rn×n : Y TY = I}, then we can express ∆, Y , and K as:

Y = [Y | Y⊥ ] (3.22)

∆ = [ Λ | Λ⊥ ] (3.23)

K =
[
A −BT

B C

]
(3.24)

where A is a p × p skew symmetric matrix, C is a (n − p) × (n − p) skew symmetric matrix,

and B is a (n− p)× p matrix, and ∆ can be rewritten as:

∆ = [Y | Y⊥ ]
[
A −BT

B C

]
(3.25)

= [Y A+ Y⊥B | − Y BT + Y⊥C ] (3.26)

The tangent space can be decomposed into vertical space and horizontal space where the vertical

and horizontal space at a point Y are complementary linear subspaces of the tangent space at Y .

Therefore, we can obtain the following:

∆V = [Y A | Y⊥C ] = Y

[
A 0
0 C

]
(3.27)

∆H = [Y⊥B | − Y BT ] = Y

[
0 −BT

B 0

]
(3.28)
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Since the subspace is spanned by the first p columns, that is expressed in Equation (3.18). Fur-

thermore, according to Equation (3.27), we can see that ∆V does not have any effect on a Graß-

mann manifold. Thus, the horizontal space ∆H on a Graßmann manifold is a representation of

tangents to the quotient space, hence, the projection on a tangent space on a Graßmann manifold

can be written as:

∆ = ∆H = Y⊥B = (I − Y Y T )B (3.29)

3.4 Canonical Metrics

The canonical metric gc : TyM× TyM→ R induces an inner product on tangent spaces which

allows us to measure the length of tangent vectors at Y . In Euclidean space, we have the standard

Euclidean metric defined as:

ge(∆,∆) = tr{∆T∆} (3.30)

However, the canonical metric on a Stiefel manifolds is the restriction of the orthogonal group

metric defined as:

gc(∆,∆) = tr{∆T∆}

= tr{(Y A+ Y⊥B)T (Y A+ Y⊥B)}

= tr{ATA+BTB}

= 2
∑
i≤j

a2
ij +

∑
i=j

b2ij (3.31)

Since A is skew symmetric, the Euclidean metric counts the p(p+1)
2 independent coordinates of

A twice, therefore, we need to divide it by 2. In addition, the canonical metric must be applicable

at all points in the Stiefel manifold so that it needs to vary with Y defined as:

gc(∆,∆) =
1
2

tr{ATA}+ tr{BTB}

= tr{(Y A+ Y⊥B)T (
1
2
Y A+ Y⊥B)}

= tr{(Y A+ Y⊥B)T (I − 1
2
Y Y T )(Y A+ Y⊥B)}

= tr{∆T (I − 1
2
Y Y T )∆} (3.32)
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Equation (3.32) is the canonical metric on the Stiefel manifold. On the other hand, ∆ = Y⊥ B is

on Graßmann manifolds, and it leads to

Y T∆ = Y TY⊥B

= Y T (I − Y Y T )B

= 0 (3.33)

Then, the canonical metric on Graßmann manifolds becomes

gc(∆,∆) = tr{∆T (I − 1
2
Y Y T )∆} = tr{∆T∆} (3.34)

Thus, the canonical metric is equivalent to the Euclidean metric. The canonical metric on Graß-

mann manifolds can be expressed as:

gc(∆,∆)H = tr{((I − Y Y T )B)T (I − Y Y T )B} (3.35)

where B is an arbitrary n× p matrix.

3.5 Subspace Metrics

There are several ways to formulate geodesic distances on Graßmann manifolds [28] depending

on how the topology of Graßmannian is defined. However, all these geodesic distances are

related to canonical angles. In this section, we describe the formulation of computing canonical

angles and their geometric interpretation.

3.5.1 Computation of Canonical Angles

Given two data sets X and Y ∈ Rn×p (p images embedded in Rn), we seek two projection

matrices Wx and Wy ∈ Rp×p such that the following objective function [43] is minimized.

min
Wx,Wy

‖ XWx − YWy ‖2F (3.36)

Note that the special case of Equation (3.36) whereWx andWy are orthogonal matrices is known

as the Procrustes problem [39]. Here Wx and Wy act as rotation matrices such that the rotated

data sets XWx and YWy are as closely aligned as possible. From a linear algebra point of view,
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XWx can be considered the range of X , similarly, YWy is the range of Y . Hence, XWx and

YWy are points on a Graßmann manifold and the minimum distance between these two points

is the geodesic distance. When we expand Equation (3.36), we have

tr
{
W T
x CxxWx − 2W T

x CxyWy +W T
y CyyWy

}
(3.37)

where Cxx = XTX , Cyy = Y TY , Cxy = XTY , and Cyx = Y TX . Furthermore, we can fix the

first and third terms of Equation (3.37) and maximize the second term. As such, Equation (3.37)

is expressed as an optimization problem described as follows:

max
Wx,Wy

tr
{
W T
x CxyWy

}
(3.38)

subject to

tr
{
W T
x CxxWx

}
= 1 (3.39)

tr
{
W T
y CyyWy

}
= 1 (3.40)

The constraints in Equation (3.38) ensure that points are on special manifolds in which points are

( W T
x Cxx Wx = (XWx)T (XWx) = I ) orthonormal. Since Equation (3.38) is an optimization

problem with equality constraints, we express it as Lagrangian formulation:

L(Wx,Wy, λx, λy) = W T
x CxyWy + λx(1−W T

x CxxWx) + λy(1−W T
y CyyWy) (3.41)

where λx and λy are the Lagrangian multipliers. The solution can be found by solving the

following generalized eigen-system.[
0 Cxy
Cyx 0

] [
Wx

Wy

]
= λ

[
Cxx 0

0 Cyy

] [
Wx

Wy

]
(3.42)

where λ are the eigenvalues of the generalized eigen-system and are related to canonical angles.

The derivation of this solution is given in Appendix A.

3.5.2 Geometric Interpretation of Canonical Angles

While a cosine angle between vectors is often employed to characterize similarity in a Euclidean

space, canonical angles, also known as principal angles [43], are used to define a subspace
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Figure 3.4: Illustration of an angle between vectors and canonical angles between subspaces.
An angle between two vectors is a scalar (left) while in general orientation between subspaces is
described by a set of angles (right).

distance on a Graßmann manifold. The essential difference is the geometric interpretation. A

cosine angle characterized in a single Rn×p dimension (p = 1) is for vectors while canonical

angles are for p-dimensional subspaces of Rn (p > 1). It should be noted that the angle between

two vectors is a single angle whereas the canonical angles between two subspaces are a vector

of angles. This distinction is illustrated in Figure 3.4 where two planes pass through the origin

exhibiting two angles. Figure 3.4 shows two possible canonical angles between two planes. In

fact, the optimum θ1 is zero in this case since two planes are intersected in R3.

To illustrate the computation of canonical angles between subspaces, let us begin with a

definition of an angle between vectors. Given two vectors x and y ∈ Rn, the angle between

these two vectors is defined as:

∠{x, y} = arccos
〈x, y〉
‖ x ‖‖ y ‖

(3.43)

For subspaces, one can recursively define a set of angles between them which are called canon-

ical angles. Let R(X) and R(Y ) be the range of a data matrix X and Y whose dimensions are

n × p, respectively. The canonical angles, ∠k{R(X),R(Y )}, can be recursively defined for

k = 1, . . . , p as:

cos(θk) = max
x∈R(X)

max
y∈R(Y )

xT y = xTk yk (3.44)

29



subject to

‖ x ‖ = ‖ y ‖ = 1 (3.45)

xTxi = 0, yT yi = 0, i = 1, . . . , k − 1 (3.46)

Clearly, ∠k{R(X),R(Y )} ∈ [ 0, π
2 ], and Θ is a vector of all canonical angles. When k =

1, the constraint given in Equation (3.46) vanishes, otherwise, the computation of canonical

angles needs to recursively satisfy the orthogonal constraint shown in Equation (3.46). These

canonical angles provide characterization of relative subspace positions, and may be used to

compute distances between subspaces. An efficient algorithm for computing canonical angles

can be found in [15].

3.5.3 Geodesic Distances

Because the Graßmannian space is curved, distance measures defined in a Euclidean space may

not be appropriate. There are several natural metrics to measure the subspace distance on Graß-

mann manifolds [28]. As the Graßmannian quotient representation illustrates, a subspace dis-

tance is invariant under different basis representations. It should also be noted that a subspace

distance not only satisfies the metric axioms [58], but also is invariant under any unitary trans-

formation [86].

A geometric structure on a manifold is induced by a metric. Canonical angles between

subspaces have several associated metrics. The choice of a subspace metric plays an important

role in applications. It is known that the shortest distance between points on a curved space is

geodesic. Wong [117] showed that the geodesic distance on a Graßmann manifold is defined

using a set of canonical angles shown as:

dg(R(X),R(Y )) = ‖ Θ ‖2 (3.47)

This geodesic distance is also known as arc-length. However, arc-length is not differentiable

everywhere. For example, when p = 1, θ1 is not differentiable at π2 . This drawback may cause

distances falling in the neighborhood of singular points especially in high dimensional cases

(p > 1). An alternative measure of geodesic distances on Graßmann manifolds is the chordal
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distance [23] defined as:

dc(R(X),R(Y )) = ‖ sin θ ‖2 (3.48)

The chordal distance realizes a projection as a point on the surface of a sphere and the distance

is a line segment connecting a point of a sphere to another. Thus, the chordal distance ap-

proximates the geodesic distance via a projection embedding and is differentiable everywhere.

Bengtsson et al. [10] also pointed out that the chordal distance has advantages over the tradi-

tional geodesic distances and the Fubini-Study in mutually unbiased bases, i.e. bases that span

the ranges completely orthogonal to each other. In this dissertation, we employ dc(R(X),R(Y ))

as our subspace metric.

3.6 Gradient Flows on Special Manifolds

The tangent space admits a vector space structure, and often plays an important role in geomet-

ric frameworks. Many geometric properties of tangent spaces are derived from gradient flows.

This section discusses some related components to tangent spaces including the vertical space,

horizontal space, the space of tangent vectors, and the geodesic flows.

Given a criterion function F parametrized by {D(i), L(i)}mi=1 where D(i) is a data vector ∈

Rn, L(i) is a discrete class label. Let U be a projection matrix ∈ Rn×p such that a data vector

can be projected onto a lower dimensional space, i.e. UTD(i).

Let Q be an n×n orthonormal matrix on SO(n) and J be an n× p identity matrix such that

Q rotates the columns of U to align with the columns of J as follows:

QTU = J (3.49)

U = QJ (3.50)

Therefore, Q can be factorized as:

Q = [U V ] (3.51)

where V ∈ Rn×(n−p) such that UTV = 0, V TU = 0, and V TV = I , therefore, V is an or-

thogonal matrix and is the orthogonal complement of U . In other words, Equation (3.49) can be
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rewritten as:

QTU =
[
UT

V T

]
U =

[
UTU
V TU

]
=
[

Ip
0(n−p)×p

]
= J

3.6.1 Geometry of Quotient Spaces

Recall that both Stiefel and Graßmann can be viewed as a quotient space of SO(n) as such

a point on a Stiefel manifold and a Graßmann manifold can be represented as an equivalence

class. The quotient geometry of the Stiefel manifold is defined as:

bQc =
{
Q

[
Ip 0
0 Q(n−p)

]
: Q(n−p) ∈ O(n− p)

}
(3.52)

The quotient geometry of the Graßmann manifold is defined as:

bQc =
{
Q

[
Qp 0
0 Q(n−p)

]
: Qp ∈ O(p) , Q(n−p) ∈ O(n− p)

}
(3.53)

Considering the tangent space at identity such that Q = I , the differentials for a Stiefel manifold

and a Graßmann manifold are
[

0 0
0 C

]
and

[
A 0
0 C

]
, respectively, where A and C are

skew-symmetric matrices.

3.6.2 Vertical Space

The tangent space at Q can be decomposed into vertical and horizontal spaces. The vertical

space is defined as a set of tangent vectors of bQc. The horizontal space is defined to be the

orthogonal complement of the vertical space.

Let A and C be a p× p and (n− p)× (n− p) skew-symmetric matrices, respectively. The

vertical space on Vn,p is given by

ΦV = Q

[
0 0
0 C

]
= [U V ]

[
0 0
0 C

]
= [0 V C] (3.54)

The vertical space on Gn,p is given by

∆V = Q

[
Q(t)A 0

0 C

]
= [U V ]

[
A 0
0 C

]
= [U A V C] (3.55)

Both Equation (3.54) and Equation (3.55) demonstrate that the vertical space yields no effect on

Stiefel and Graßmann manifolds since the multiplication of UA on Graßmann manifolds has an

equivalent class representation to U , and the multiplication of V C is not in the first p columns.

32



3.6.3 Horizontal Space

Let B be an arbitrary matrix in R(n−p)×p. Then, the horizontal space on Vn,p is given by

ΦH = Q

[
A −BT

B 0

]
= [U V ]

[
A −BT

B 0

]
= [U A+ V B − U BT ] (3.56)

The horizontal space on Gn,p is given by

∆H = Q

[
0 −BT

B 0

]
= [U V ]

[
0 −BT

B 0

]
= [V B − U BT ] (3.57)

From Equation (3.56) and Equation (3.57), we observe that UBT is not in the first p columns,

thus, the effects of horizontal space on Stiefel and Graßmann manifolds are UA+V B and V B,

respectively. They can be further elaborated as:

UA+ V B = Uskew(A) + (I − UUT )B (3.58)

V B = (I − UUT )B (3.59)

which are equivalent to the projections on tangent spaces given in Equation (3.17) and Equa-

tion (3.29).

3.6.4 The Space of Tangent Vectors

Due to nonlinearity of special manifolds, it is common to work with a tangent space where it

varies from point to point on special manifolds. The space of tangent vectors to a Stiefel manifold

Vn,p at U is given by

TUVn,p =
{
Q

[
A −BT

B 0

]
J : A = −AT , A ∈ Rp×p, B ∈ R(n−p)×p

}
∈ Rn×p (3.60)

and the space of tangent vectors to a Graßmann manifold Gn,p at U is given by

TUGn,p =
{
Q

[
0 −BT

B 0

]
J : B ∈ R(n−p)×p

}
∈ Rn×p (3.61)

Furthermore, any tangent vector at J [98] can be written as:[
A 0
0 0

]
=

p∑
i=1

p∑
j=i+1

αijEij (3.62)
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[
0 −BT

B 0

]
=

p∑
i=1

n∑
j=p+1

αijEij (3.63)

where

Eij(k, l) =


1 if k = i and l = j
−1 if k = j and l = i

0 otherwise

whereEij is an n×nmatrix, and (k, l) is a position of an element of a matrix. To better visualize

Equation (3.62) and Equation (3.63), the following R5×3 example is given for both Vn,p and Gn,p

where n is 5 and p is 3.

E12 =

 0 1 0
−1 0 0
0 0 0

 , E13 =

 0 0 1
0 0 0
−1 0 0

 , E23 =

 0 0 0
0 0 1
0 −1 0



E14 =


0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 , E15 =


0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 , E24 =


0 0 0 0 0
0 0 0 −1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0



E25 =


0 0 0 0 0
0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

 , E34 =


0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 0

 , E35 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1
0 0 0 0 0
0 0 1 0 0


Hence, the summation matrix in Vn,p is given by[

A 0
0 0

]
+
[

0 −BT

B 0

]
=

3∑
i=1

3∑
j=i+1

Eij +
3∑
i=1

5∑
j=3+1

Eij

=


0 1 1 0 0
−1 0 1 0 0
−1 −1 0 0 0
0 0 0 0 0
0 0 0 0 0

+


0 0 0 −1 −1
0 0 0 −1 −1
0 0 0 −1 −1
1 1 1 0 0
1 1 1 0 0



=


0 1 1 −1 −1
−1 0 1 −1 −1
−1 −1 0 −1 −1
1 1 1 0 0
1 1 1 0 0
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The summation matrix in Gn,p is given by

[
0 −BT

B 0

]
=

3∑
i=1

5∑
j=3+1

Eij =


0 0 0 −1 −1
0 0 0 −1 −1
0 0 0 −1 −1
1 1 1 0 0
1 1 1 0 0


Both of these summation matrices are a skew-symmetric matrix. In addition, Equation (3.60)

and Equation (3.61) can be rewritten as:

TUVn,p = Q

[
A −BT

B 0

]
J

= Q(
p∑
i=1

p∑
j=i+1

αijEij +
p∑
i=1

n∑
j=p+1

αijEij)J (3.64)

TUGn,p = Q

[
0 −BT

B 0

]
J

= Q(
p∑
i=1

n∑
j=p+1

αijEij)J (3.65)

where

αij = lim
∆t↓0

F (Q exp(∆tEij)J)− F (U)
∆t

(3.66)

where ∆t ↓ 0 means that ∆t approaches to zero from above since t describes the geodesic and

must be positive.

3.6.5 Geodesic Flows on the Orthogonal Group

Since manifolds are curved spaces, the gradient flows must account for its intrinsic geometry. To

ensure the movement on a manifold, points are moved along the geodesic curve. Given a tangent

space X in a Lie group at Q, a point Q can be moved from Q(0) to Q(t) along the geodesic path

expressed as:

Q(t) = Q(0) exp(tX) (3.67)

where exp is an exponential map given as follows:

exp(X) = I +X +
X2

2!
+
X3

3!
+ . . .

= I +
∞∑
k=1

1
k!
Xk (3.68)
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To translate a point from a Lie group back to a special manifold, we perform an embedding

shown as follows:

U = Q exp(tX)J (3.69)

Equation (3.69) illustrates that a point moves along the tangent direction at Q(0) and is mapped

back from a Lie algebra to a Lie group. As such, from Equation (3.60), the geodesic path on

Vn,p is defined as:

U(n+1) = Q(n) exp
{

∆t
[
A −BT

B 0

]}
J (3.70)

where n denotes the iteration step. From Equation (3.61), the geodesic path on Gn,p is defined

as:

U(n+1) = Q(n) exp
{

∆t
[

0 −BT

B 0

]}
J (3.71)

From Equation (3.49), we obtain U = QJ . Furthermore, from Equation (3.69), Q, at step n + 1,

can be updated as follows:

U(n+1) = Q(n) exp(∆tX)J

Q(n+1)J = Q(n) exp(∆tX)J (3.72)

Q(n+1) = Q(n) exp(∆tX) (3.73)

From Equation (3.72), Q can be updated on Vn,p as:

Q(n+1) = Q(n) exp
{

∆t
[
A −BT

B 0

]}
(3.74)

and the update of Q on Gn,p can be written as:

Q(n+1) = Q(n) exp
{

∆t
[

0 −BT

B 0

]}
(3.75)

Note that the closed forms ofA andB depend on the existence of gradient of F . Let the gradient

of F be dF
dU = D ∈ Rn×p, then Equation (3.60) reveals that A and B described in Vn,p can be
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computed as:

D = TUVn,p = Q

[
A −BT

B 0

]
J = [U V ]

[
A −BT

B 0

] [
Ip
0

]
= [UA+ V B − UBT ]

[
Ip
0

]
= V A+ V B (3.76)

UA = D − V B (3.77)

A = UTD − UTV B (3.78)

A =
UTD −DTU

2
(3.79)

Since UTV = 0 and A is skew symmetric, A = UTD = UTD−DTU
2 . Furthermore, we have

V B = D − UA (3.80)

B = V TD − V TUA (3.81)

B = V TD (3.82)

Because V TU = 0, B = V TD. In Gn,p, B can be computed from Equation (3.61) as:

D = TUGn,p = Q

[
0 −BT

B 0

]
J = [U V ]

[
0 −BT

B 0

] [
Ip
0

]
= [V B − UBT ]

[
Ip
0

]
= V B (3.83)

B = V TD (3.84)

In the case of non-existence of dF
dU , A and B can be numerically obtained from Equation (3.62),

Equation (3.63), and Equation (3.66).

3.7 Tensor Algebra

A tensor is high order vector representation, i.e. a vector is a first order tensor and a matrix

is a second order tensor, that induces multilinear mappings over a set of vector spaces. Tensor

algebra is powerful machinery for analyzing image ensembles. In this section, we review some

of the tensor algebra. Recent survey papers of this subject can be found in [53, 2, 26, 85].

37



3.7.1 The order of Tensors

LetA be a tensor. The order of a tensor is the number of indices composed the data. For example,

the order of a tensor A ∈ RI1×I2×···×IN is N . An element of A is denoted by ai1...in...iN where

in is the index of the order In.

3.7.2 Mode k Fibers and Slices

Let A be a third order tensor. The mode-1 fibers of a third order tensor can be defined as a

column vector A(:,j,k). Similarly, slices of a tensor can be defined as a subtensor obtained by

fixing the index of one mode, i.e. A(:,:,k).

3.7.3 Matrix Unfolding

The matrix unfolding operation unfolds a tensor to a matrix. It provides a matrix representation

of a high-order tensor. The mode-n fibers ofA are the columns of a flattened matrix1 denoted by

A(n). The flattened matrix A(n) ∈ RIn×(In+1In+2...IN I1I2...In−1) contains the element ai1i2...iN

at the position with row in and column (in+1 in+2 . . . iN i1 i2 . . . in−1). For example, the

unfolding of a 3rd order tensor A ∈ RI×J×K is defined as:

A(1) ∈ RI×JK : aijk = a(1)
iv , v = j + (k - 1)K

A(2) ∈ RJ×IK : aijk = a(2)
jv , v = k + (i - 1)I

A(3) ∈ RK×IJ : aijk = a(3)
kv , v = i + (j - 1)J

A pictorial description of the mode-k unfolding from an N order tensor is given in Figure 3.5.

3.7.4 Tensor Matrix Multiplication

The mode-k product of a tensor A ∈ RI1×I2×···×IN by a matrix M ∈ RJ×Ik is denoted by A×k

M shown as:

B = A×k M (3.85)

1The terms, flattened matrix and unfolded matrix, are used interchangeably in this dissertation.
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Figure 3.5: The mode-k matrix unfolding from an N order tensor.

where B ∈ RI1×···×Ik−1×J×Ik+1×···×IN and the entries of B are computed as:

(B)i1...ik−1ijik+1...iN = (A×n M)i1...ik−1ijik+1...iN =
Ik∑
k=1

ai1...ik−1ikik+1...iNmijk (3.86)

where ai1...ik−1ikik+1...iN is the entry of A, and mijk is the entry of M. A pictorial description

of the mode-k product is given in Figure 3.6. As Figure 3.6 shows, the mode-k product consists

of three major steps including the mode-k unfolding, matrix the matrix and the mode-k flattened

matrix multiplication, and the mode-k folding. We can see that the mode-k product can be

performed as long as the column dimension of an matrix matches one of the order of a tensor,

and the order of the tensor remains unchanged.

In terms of flattened matrices, the mode-n product has the following properties.

A×m U×n V = A×n V ×m U (3.87)

(A×n U)×n V = A×n (VU) (3.88)

B = A×n M⇐⇒ B(n) = MA(n) (3.89)

Unlike matrices, the order of tensor matrix multiplication can be interchanged shown in Equa-

tion (3.87) and Equation (3.88), respectively.

3.8 Tensor Decomposition

A matrix D ∈ RI1×I2 can be decomposed using Singular Value Decomposition (SVD) into the

following form:

D = U1ΣUT
2 (3.90)
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(a) The mode-k unfolding

(b) The matrix and the mode-k flattened matrix multiplication

(c) The mode-k Folding

Figure 3.6: Tensor matrix multiplication
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where U1 ∈ RI1×J1 , Σ ∈ RJ1×J2 , and U2 ∈ RI2×J2 . In terms of the mode-n product, it can be

rewritten as:

D = Σ×1 U1 ×2 U2 (3.91)

Just as a matrix can be factorized using SVD, a tensor can also be factorized using Higher Order

Singular Value Decomposition (HOSVD). HOSVD operates on the flattened matrices A(k), and

each is factored as follows:

A(k) = U (k)Σ(k)V (k)T
(3.92)

where Σ(k) is a diagonal matrix, U (k) is an orthogonal matrix spanning the column space of

A(k), and V (k) is an orthogonal matrix spanning the row space of A(k). Then, an N order tensor

can be factorized using HOSVD as follows:

A = S ×1 U
(1)×2 U

(2) . . .×n U (N) (3.93)

where S ∈ R(I1×I2×···×IN ) is a core tensor, U (1), U (2), . . . , U (N) are orthogonal matrices span-

ning the column space described in Equation (3.92), and ×k denotes the mode-k multiplication.

The core tensor signifies the interaction of mode matrices and is generally not diagonal when the

tensor order is greater than two. Formally, a core tensor S is iteratively computed as follows:

S = A×1 U
(1)T×2 U

(2)T
. . .×n U (N)T

(3.94)

and the flattened matrix A(n) can be written as:

A(n) = U (n)S(n)(U
(n+1) ⊗ U (n+2) ⊗ . . . U (n) ⊗ U (1) ⊗ U (2) . . . U (n−1))T (3.95)

where ⊗ denotes the Kronecker product defined as:

F ⊗G = (fij G)1≤i≤I1;1≤j≤I2 (3.96)

where f(ij) is an element of matrix F .
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Chapter 4

Canonical Stiefel Quotient

4.1 Introduction

There are several factors commonly associated with the failure of a face recognition algorithm to

correctly identify a person. These factors include changes in pose, expression, and illumination.

For illumination in particular, it has been argued that changes in illumination can make two

images of the same person less similar than two images of different people [76]. In light of

this observation, it is challenging to develop a face recognition algorithm which are robust with

respect to changes in illumination.

Fortunately, over the last decade, face appearance under varying illumination has been ex-

tensively studied and excellent results have been achieved. In particular, the illumination cone

principle [9] and the spherical harmonic theory [7]. The illumination cone principle states that a

set of images of a convex object with Lambertian reflectance under fixed pose is a convex poly-

hedral cone in Rn. Any image in the illumination cone can be reconstructed by a linear com-

bination of extreme rays. Moreover, the spherical harmonic theory shows that the Lambertian

kernel only contains low frequency components and 99% of the reflected energy can be captured

by the first nine spherical harmonics. Many illumination algorithms [38, 45, 59, 95, 121] are

derived based on these two fundamental principles.

However a major problem arises when trying to use this theory to build algorithms that

are robust to changes in illumination. While the illumination cone for any particular person is

relatively stable and well defined, the illumination cone from one person has little in common
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with the illumination cone for another person.

This gives rise to an intriguing and important question. Can a generic illumination model

be used to estimate illumination cones for people seen only under one illumination, and if so,

are these estimated illumination cones useful for face recognition? The short answer is yes.

We introduce a paradigm for face recognition using illumination spaces, where the illumination

spaces are derived based on a generic model built from people other than the person currently

being recognized.

Furthermore, we propose a new distance measure called the Canonical Stiefel Quotient

(CSQ) for image set classification. While previous methods [7, 38, 45, 95, 121] use illumi-

nation models to form a projector from an illumination basis and employ single image matching,

we consider the illumination basis as a set of images and perform image set classification.

When we consider image sets for classification, we need to take the underlying geometry into

account. We exploit the geometric attributes of special manifolds, namely Stiefel and Graßmann

manifolds. These two manifolds often represent natural data in computer vision, especially for

image sets in which data can be expressed by orthonormal bases or subspaces.

The reconstructed illumination basis is regarded as a set of relighted illumination variants.

With this in mind, we can express every probe and gallery image as a set of relighted illumi-

nation variants. From this point forward when considering how to recognize faces, we replace

single images with multiple images each representing the person under a different illumination

condition. Additionally, every gallery illumination set is represented on a Stiefel manifold where

every element is an orthonormal matrix.

To effectively perform image set classification, we first project a probe illumination set on

a tangent space of a Stiefel manifold. This projection exhibits tangent directions of the probe

illumination variants at a gallery illumination set on a Stiefel manifold, therefore, it can be

considered a distance measure when we compute its canonical metric. In addition, we can project

the probe illumination variants to the range of a gallery illumination set. This projection becomes

another set of illumination variants spanned by the gallery illumination basis. We can then

project this new set of illumination variants on the tangent space previously projected. Because
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this new set of illumination variants are spanned by the range of the gallery illumination set, this

projection represents the tangent directions between a gallery illumination set and its spanning

set. Taking the quotient of these two projections on a tangent space with their canonical metrics,

we have a new distance measure for classification.

There are several reasons why the proposed method is novel. 1) We relight a single probe

/ gallery image to a set of illumination variants so that image set matching is possible. 2) We

introduce two projections on a tangent space of a Stiefel manifold such that various tangent

directions are utilized. 3) The proposed CSQ performs well for generic face recognition. 4) Our

CSQ is robust to the choice of training sets.

4.2 Illumination Cone Principle

This section briefly reviews the principle of the illumination cone [9, 7, 87]. The illumination

cone can be constructed under two assumptions. First, the object’s surface has Lambertian re-

flectance functions. In other words, there exists a mapping from surface normal to intensities.

Second, the shape of the surface of an object is convex.

According to the Lambertian model, an image illuminated by a single point light source at

infinity can be expressed as:

x = max(B s, 0) (4.1)

where x is an image ∈ Rn, B is the illumination basis ∈ Rn×p, and s ∈ Rp is the lighting

coefficient. The max operator is used to remove all negative components corresponding to the

shadowed surface that light sources cannot reach. When the object is illuminated by k light

sources at infinity, the image is superposed by the extreme ray given from individual light source

described as follows:

x =
k∑
i=1

max(B si, 0) (4.2)

Equation (4.2) shows that any image in the illumination cone can be reconstructed by a linear

combination of extreme rays (images). Furthermore, the space created by the illumination basis
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Figure 4.1: Representing illumination cones on a special manifold

B may be expressed as:

L = {x : x = B s} (4.3)

L0 = max(L, 0) (4.4)

where L0 is called the illumination cone or illumination subspace. Belhumeur and Kriegman [9]

proved that if both x1 and x2 are non-negative, and x1 and x2 ∈ L, then λx1 + (1 − λ)x2 ∈

L0 where λ ∈ [0, 1]. This means that a set of images in L0 forms a convex cone in Rn. In

addition, Belhumeur and Kriegman showed that an illumination cone can be formed by three

linear independent images when no part of the surface is shadowed. Furthermore, Basri and

Jacobs [7] showed that a nine dimensional subspace is sufficient to characterize the space of

all possible images illuminated from different lighting conditions. Since the illumination cone is

constructed from a finite number of extreme rays, it is a polyhedral cone. From a geometric point

of view, illumination cones can be conceptualized as points on special manifolds as depicted in

Figure 4.1.

Furthermore, the span of illumination spaces can be well-approximated in a low dimensional

space. From a spherical harmonics point of view, the relation between a light source and a Lam-
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bertian surface can be characterized as convolution on the unit sphere, and therefore represented

as multiplication in the frequency domain. In addition, most of the spherical harmonics coeffi-

cients are concentrated in the low frequencies.

The illumination cone principle can be summarized as follows:

• A set of images of a convex object with Lambertian reflectance under a fixed pose is a

convex polyhedral cone in Rn.

• Any image in the illumination cone can be reconstructed by a linear combination of ex-

treme rays.

• The Lambertain kernel only contains low frequency components and 99% of the reflected

energy can be captured by the first nine spherical harmonics.

According to the illumination cone principle, lighting variations can be modeled by approx-

imating the illumination cone. There are two schools of thoughts for modeling the illumination

cone. The first is to estimate the illumination basis B in Equation (4.2). The second is to esti-

mate the first nine coefficients from spherical harmonics images. We discuss how to compute

the spherical harmonics images in the next subsection.

4.2.1 Spherical Harmonic Images

The spherical harmonics [7] are a set of functions that form an orthonormal basis for the set of

all functions on the surface of the sphere. We denote (nx, ny, nz) the surface normal, and λ

the vector of the object’s albedos such that λ is the albedo of an object point. Furthermore, let

nx2=nxnx, ny2=nyny, nz2=nznz , nxy=nxny, nxz=nxnz , and nxz=nynz . Then, the first nine
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harmonic images are defined as [120]:

b00 =
1√
4π
λ

be11 =

√
3

4π
λ⊗ nx

bo11 =

√
3

4π
λ⊗ ny

b10 =

√
3

4π
λ⊗ nz

b20 =
1
2

√
5

4π
λ⊗ (2nz2 − nx2 − ny2) (4.5)

be21 = 3

√
5

12π
λ⊗ nxz

bo21 = 3

√
5

12π
λ⊗ nyz

be22 =
3
2

√
5

12π
λ⊗ (nx2 − ny2)

bo22 = 3

√
5

12π
λ⊗ nxy

where ⊗ denotes an element-wise multiplication operation, the superscript e and o denote even

and odd components of the harmonics, respectively. As Equation (4.5) reveals, the spherical

harmonic images are computed based on the 3D shape characterized by the surface normal. The

estimation accuracy of the 3D geometry plays a vital role in the spherical harmonic images.

However, there are several concerns when we estimate spherical harmonic images. First,

it is difficult to recover the 3D shape from 2D images. Second, there are publicly available

illumination datasets such as CMU-PIE [94] or YaleB [38], such that the illumination basis

can be directly estimated from these datasets. Third, because human faces are neither entirely

Lambertian nor completely convex, spherical harmonic images may not be adequate to model

specular reflection, inter-reflection, or cast shadows. When we estimate the nine point basis

images from real images, these basis images already contain all the complicated reflections.

Therefore, we estimate the illumination basis from a set of real images discussed in the next

section.
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4.3 Illumination Model

The illumination cone principle states that any image in the illumination cone can be recon-

structed by a linear combination of extreme rays defined in Equation (4.2). To approximate an

illumination cone, all we need is to estimate the illumination basis,B, for each person. However,

human faces are not completely Lambertian and convex.

To overcome the non-convex and non-Lambertian assumptions, Sim and Kanade [95] intro-

duced an error term to the standard Lambertian equation and used a Bayesian method to model

the variations. We adopt this statistical illumination model for generic faces whose identities

are distinct between a training set and a test set. First, let us describe how we construct the

illumination model.

To make the illumination model generic, the augmented Lambertian equation that we use is

described as follows:

x = Bs+ e(s) (4.6)

where e(s) is the error term. While Sim and Kanade [95] applied this error term to model shad-

ows and specular reflections, we use this error term to model the difference between a training

image and an average image under a specific lighting condition.

4.3.1 The Bayesian Model

A Bayesian framework is employed to formulate the illumination model. For a novel image x̂,

its new illumination basis can be estimated using the maximum a posterior (MAP) estimate.

B∗ = argmax
B

P (B|x̂) ∝ argmax
B

P (x̂|B)P (B) (4.7)

We can further assume that the illumination basis B is Gaussian distributed. Then, we have

P (B) =
1√

(2π)M |
∑
|
exp(−1

2
(B − µB)C−1

B (B − µB)T ) (4.8)

P (x̂|B) =
1

σe(ŝ)
√

(2π)
exp(−1

2
‖ x̂− x ‖2

(σe(ŝ))2
) (4.9)

Using Equation (4.6), we have

P (x̂|B) =
1

σe(ŝ)
√

(2π)
exp(−1

2
‖ x̂−Bŝ− µe(ŝ) ‖2

(σe(ŝ))2
) (4.10)
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where B is the unknown basis for the probe image x̂, µB is the mean basis, and CB is the

covariance basis matrix from the training set. After dropping the constant terms and taking the

logarithm of the expressions, we have

P (B) = −1
2

(B − µB)C−1
B (B − µB)T (4.11)

P (x̂|B) = −1
2
‖ x̂−Bŝ− µe(ŝ) ‖2

(σe(ŝ))2
(4.12)

The mean µB and the covariance matrixC from Equation (4.11) can be easily estimated from the

training data. All we need to estimate from Equation (4.12) are the estimated lighting coefficients

ŝ, the mean error µe given ŝ, and the standard deviation error σe given ŝ. The following two

subsections show how these parameters can be obtained.

4.3.2 Lighting Coefficient Estimation

We denote s(p)
k the lighting coefficient for the subject p under the lighting condition k. Given an

image x, the Lambertian equation becomes the following:

x
(p)
k = B(p)s

(p)
k (4.13)

where x(p)
k is a training image for subject p under a lighting condition k. The lighting coefficient

for the training image x(p)
k , can be computed as:

s
(p)
k = (B(p))−1x

(p)
k (4.14)

In addition, we assume that we have N training subjects and each subject has M images under

different lighting conditions. Let x̂ be a novel image, the associated lighting coefficient ŝ can be

estimated by applying a kernel regression shown as follows:

ŝ =

∑N
p=1

∑M
k=1 αp,ks

(p)
k∑N

p=1

∑M
k=1 αp,k

(4.15)

αp,k = exp(−
‖ x̂− x(p)

k ‖
2

2(σ(p)
k )2

) (4.16)
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and σ(p)
k is defined as:

x̄k =
1

NM

N∑
p=1

M∑
k=1

x
(p)
k (4.17)

σ
(p)
k =

√√√√ 1
NM

N∑
p=1

M∑
k=1

(x(p)
k − x̄k)2 (4.18)

4.3.3 Error Term Estimation

The average lighting coefficient over all training subjects under the lighting condition k can be

computed as follows:

s̄k =
1
N

N∑
p=1

s
(p)
k (4.19)

σ̄k =

√√√√ 1
N

N∑
p=1

(s(p)
k − s̄k)2 (4.20)

where N is the number of subjects in the training set. Note that we have [s̄1 | s̄2 | . . . | s̄M ] and

[σ1 | σ2 | . . . | σM ] in the training set. Putting the s̄k into Equation (4.6), we can obtain the error

term for subject p under the lighting condition k as follows:

ep(s̄k) = x
(p)
k −B

(p)s̄k (4.21)

This equation expresses the error term for a training image when we use the average lighting

coefficient s̄k over all subjects. The average lighting coefficient ep(s̄k) can be varied in terms of

p or k. Then, we compute the average error term given the average lighting coefficient s̄k shown

as:

µe(s̄k) =

∑N
p=1 βpep(s̄k)∑N

p=1 βp
(4.22)

βp = exp(−
‖ s(p)

k − s̄k ‖
2

2(σ̄k)2
) (4.23)

where s̄k and σ̄k are defined in Equation (4.19) and Equation (4.20), respectively. The estimated

standard deviation error is calculated as:

σe(s̄k) =

√√√√ 1
N

N∑
p=1

(ep(s̄k)− µe(s̄k))2 (4.24)
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Note that we have estimated [µe(s̄1) | µe(s̄2) | . . . | µe(s̄M )] and [σe(s̄1) | σe(s̄2) | . . . | σe(s̄M )].

Using the error term µe(s̄k) from Equation (4.22), we can apply kernel regression to calculate

the mean and standard deviation expressed as follows:

µe(ŝ) =
∑M

k=1 γkµe(s̄k)∑M
k=1 γk

(4.25)

γk = exp(−‖ ŝ− s̄k ‖
2

2(σ̄k)2
) (4.26)

σe(ŝ) =

√√√√ 1
M

M∑
k=1

(σe(s̄k)− µe(ŝ))2 (4.27)

where ŝ is [ŝ1 | ŝ2 | . . . | ŝM ].

4.3.4 Illumination Basis Estimation

While traditional MAP estimate determines which illumination basis B has the highest proba-

bility, this statistical model seeks a closed-form solution of Equation (4.7) expressed as follows:

J = −1
2
‖ x̂−Bŝ− µe ‖2

(σe)2
− 1

2
(B − µB)C−1

B (B − µB)T (4.28)

Taking the derivative of Equation (4.28), we have

∂J

∂B
=
−1

(σe)2
(x̂−Bŝ− µe)ŝT + (B − µB)C−1

B (4.29)

Setting ∂J
∂B = 0, we have

B = (
ŝŝT

(σe)2
+ C−1

B )−1(
x̂− µe
(σe)2

ŝ+ C−1
B µe) (4.30)

Using the Woodbury’s identity1, we have

B = (
x̂− µB ŝ− µe

(σe)2 + ŝTCB ŝ
)CB ŝ+ µB (4.31)

As Equation (4.31) reveals, the estimated basis is composed with the mean basis µB and the

characteristic term ( x̂−µB ŝ−µe

(σe)2+ŝTCB ŝ
CB ŝ). The numerator of the characteristic term, (x̂−µB ŝ−µe),

describes the difference between the probe image and the reconstructed image using the mean

basis images. Equation (4.31) is pictorially shown in Figure 4.2

1(A + UCV )−1 = A−1U(C−1 − V A−1U)−1V A−1
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Figure 4.2: Image relighting using a statistical illumination modal

As Figure 4.2 depicts, the relighted images are the combination between the mean images

obtained from the training set and the characteristic images. The characteristic image indicates

the weight between the novel image and the mean image associated with the variation from the

training set. As a result, the illumination model accounts for the person specific information

from the novel image and the general illumination from training data.

4.4 Illumination Basis Selection

Before building an illumination basis, we need to determine the lighting configuration. So long

as our training data is sufficiently rich in lighting variations that ii effectively spans the entire

illumination cone, we may select the nine point subspace [7] and adopt nine illumination im-

ages as our illumination basis. These nine images represent the illumination directions that are

reconstructed for the probe and gallery images.

When the number of available illumination directions is more then nine, we have the free-

dom to select the illumination basis. It is known that the Karhunen-Loève basis captures more
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statistical variance than any other basis and minimizes the Shannon’s entropy [51]. The trunca-

tion error of the Karhunen-Loève basis can be computed using the eigenvalues of a covariance

matrix. We use a backward selection to choose the illumination basis that has the maximum of

total energy. This operation can be expressed as follows:

B∗n−1 = B∗n \ Ek (4.32)

Ek = argmax
k∈1...|B∗n|

n−1∑
i=1

λi (4.33)

where \ is the set difference operator, n is the number of illumination images in the current set,

and λ is the eigenvalues of the illumination covariance matrix excluding the kth illumination

image where the illumination image is the average image over all training subjects under the

specific illumination direction. Thus, Equation (4.32) is a recursive process and is terminated

when n reaches nine and {B∗1 , B∗2 , . . . , B∗9} are the selected illumination directions.

4.5 Canonical Stiefel Quotient

Traditional methods [7, 45, 95, 121] project a novel image to the reconstructed illumination

basis and compute the Euclidean distance between the novel image and the projected subspace.

These methods do not account for the underlying geometry of illumination spaces. An alternate

approach is to use the reconstructed illumination basis as a feature representation and employ

the entire illumination cone for classification. This alternative approach takes advantage of the

idiosyncratic aspects of illumination cones and undertakes classification using multiple images

instead of a single image.

One straight forward approach to performing image-set comparison is to project the illu-

mination basis on a Graßmann manifold and compute the geodesic distance [67]. However, a

geodesic method is limited to matching spanning sets, and discards the specific order of the il-

lumination basis which may be vital for classification. Alternatively, one can explore the use

of tangent directions on a Stiefel manifold between illumination variants. This is the proposed

approach, and it proceeds as follows.

First, all illumination bases for probe and gallery images are reconstructed using Equa-
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tion (4.31). Let Z ∈ Rn×p be a probe illumination basis and Y ∈ Rn×p be an orthonormal

gallery basis which represents a point on a Stiefel manifold. Since the geodesic requires re-

traction on a Stiefel manifold [28] and no differentiable function is available [30], there is no

closed-form solution for computing a geodesic distance. We therefore turn our attention to its

tangent space. When we project Z on a tangent space at Y of a Stiefel manifold, we have the

tangent directions between Z and Y . The length of the tangent directions can be computed using

the associated canonical metric. According to Equation (3.18) and Equation (3.32), the tangent

directions and the canonical metric on a Stiefel manifold are expressed as:

∆ = ΠT (Z) = Y skew(Y TZ) + (I − Y Y T )Z

gc(∆,∆)S = tr{∆T (I − 1
2
Y Y T )∆}

The canonical metric induces the inner product of tangent directions on a Stiefel manifold, thus

it can be used as a distance measure.

Additionally, we can project Z to the range of Y and let Q be Y Y TZ. When we project Q

on a tangent space at Y of a Stiefel manifold, we have

Λ = ΠT (Q) = Y skew(Y TQ) + (I − Y Y T )Q

= Y skew(Y TZ) (4.34)

and its canonical metric becomes

gc(Λ,Λ)Q = tr {ΛT (I − 1
2
Y Y T )Λ}

=
1
2

tr {ZTY skew(Y TZ)} (4.35)

Because Q is in the spanning set of Y , the canonical metric gc(Λ,Λ)Q describes the length of

tangent directions between Y and the spanning set of Y on a Stiefel manifold. A new distance

measure is inspired by using these two projections on a tangent space defined as:

CSQ(Z, Y ) :=
gc(∆,∆)S

1
2 + gc(Λ,Λ)Q

=
2 gc(∆,∆)S

1 + tr {ZTY skew(Y TZ)}
(4.36)
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The 1
2 augments the denominator to prevent an ill-defined condition2. Since we compute the

canonical metric for the projections on a Stiefel manifold, and use the quotient for classifica-

tion, we call this measure the Canonical Stiefel Quotient (CSQ). The recognition process is

performed as follows:

k∗ = argmin
k∈gallery

{
2 gc(∆k,∆k)S

1 + tr {ZTYk skew(Y T
k Z)}

}
(4.37)

where ∆k = ΠT (Z)k is defined in Equation (3.17) and k∗ is the identity of the probe subject.

Similarly, one can project Z onto a tangent space of a Graßmann manifold which is equiv-

alent to projecting Z onto its horizontal space. According to Equation (3.29), the tangent direc-

tions on a Graßmann manifold are formulated as:

∇ = ΠH(Z) = (I − Y Y T )Z

and the canonical metric on a Graßmann manifold is equivalent to the Euclidean metric defined

as:

gc(∇,∇)H = tr {∇T∇}

= tr {((I − Y Y T )Z)T (I − Y Y T )Z} (4.38)

It is easy to see that the projection Q (Y Y TZ) at Y on the horizontal space of a Graßmann

manifold is zero. Therefore, there is no canonical Graßmann quotient. It is worth mentioning

that Kohonen and Oja discovered a special case of Equation (4.38) known as the novelty fil-

ter [52] where the dimension p is equal to one. The geometric interpretation for the general case

(p ≥ 1) is a projection onto the horizontal space of a Graßmann manifold. We call this general

formulation the Canonical Graßmann Horizontal Projection (CGHP). The CGHP measures

the length of tangent directions on a tangent plane of a Graßmann manifold and can be employed

for classification.

2An ill-define condition, 0
0

, occurs when Z = Y , i.e., when the probe image is identical to the gallery image.
In practice, this instance is never encountered, indeed, the denominator was actually never close to zero in our
experiments.
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Figure 4.3: The proposed CSQ algorithm where the blue color represents the training phase and
the green color represents the test phase.

4.6 Algorithm Summary

To summarize our CSQ algorithm, a system diagram is depicted in Fig. 4.3 where the blue

color represents the training phase and the green color represents the test phase. In the training

phase, a set of training images is employed to determine a set of illumination directions as

described in Section 4.4. Then, the same set of training images and the selected illumination

directions are used to build an illumination model described in Section 4.3. At this point, the

illumination model is constructed and may be used to relight a set of images from a novel image.

In the test phase, a single probe image and a gallery image are compared. The comparison

procedure is outlined as follows. First, both the probe and the gallery images are relighted to a

set of probe images and gallery images using the trained illumination model. Then, the gallery

set is orthogonalized such that it is represented as a point on a Stiefel manifold. The probe set

is projected on the tangent space at a given gallery set on the Stiefel manifold. The projections

are carried out using Equation (3.17) and Equation (4.34). Finally, the CSQ is computed as a

distance between the probe image and the gallery image using Equation (4.36). In summary, our
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Figure 4.4: Example images of PIE database (light on)

CSQ matches image-sets on a Stiefel manifold through a set of relighted images created by an

illumination model.

4.7 Experiments

This section describes the data sets, experiment design, baseline algorithms, experimental re-

sults, and our findings.

4.7.1 Data Sets

The CMU-PIE [94], YaleB [38], and Extended-YaleB [38] are popular public illumination

databases. They have been widely used to evaluate face recognition algorithms. In our experi-

ments, we adopt these databases and assess our algorithm using the frontal pose images (pose 27

for CMU-PIE and pose 0 for YaleB and Extended-YaleB). Examples of these images are shown

in Figure 4.4, Figure 4.5, and Figure 4.6. First, we will briefly describe these data sets.

4.7.1.1 CMU-PIE

The CMU-PIE data set consists of 68 subjects and each subject has 48 illumination variants.

Furthermore, 24 illumination variants are sampled with the room lights on and the other 24
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Figure 4.5: Example images of PIE database (light off)

(a) Subset 1

(b) Subset 2

(c) Subset 3

(d) Subset 4

(d) Subset 5

Figure 4.6: Example images of YaleB database
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illumination variants are sampled with the room lights off3. All experiments here use the more

extreme room lights off images.

4.7.1.2 YaleB and Extended-YaleB

The YaleB data set consists of 10 subjects and each subject has 64 illumination variants. In

addition, these 64 illumination variants are further divided into five subsets where the numbers

of illumination samples are 7, 12, 12, 14, and 19 for subsets 1 through 5 respectively. The

Extended-YaleB data set has the same configuration as the YaleB data set with additional 28

subjects.

4.7.2 Experiment Design

In this work, we are interested in generic face recognition such that the subject identity between

training images and test images do not overlap. In addition, we adopt cross-database configura-

tion between training and test sets. The following four protocols are used in our experiments.

I. Train on the CMU-PIE and test on the CMU-PIE . We divide the CMU-PIE data set into

four partitions, additionally, we train on one partition and test on the other three partitions.

As such, 17 subjects are employed for training and 51 subjects are used for testing.

II. Train on the Extended-YaleB (subset 3 + subset 4 + subset 5) and test on the CMU-PIE .

We use the Extended-YaleB data set for training and test on the entire CMU-PIE data set.

III. Train on the Extended-YaleB (subset 3 + subset 4 + subset 5) and test on the YaleB. The

Extended-YaleB data set is employed for training and the YaleB data set is used for testing.

IV. Train on the CMU-PIE and test on the YaleB+Extended-YaleB. We use 68 subjects from

the CMU-PIE data set for training, and combine the YaleB and Extended-YaleB data sets

for testing. Thus, the test data set has 38 subjects.

3There are three illumination variants (00, 01, and 23) exhibiting no dynamic range when the room light is off.
Hence, we remove these three illumination variants in our experiments.
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4.7.3 Baseline Algorithms

One of the naive ways to apply the relighted images is to perform image sets comparison using

the Frobenius norm on the difference between two image sets described as follows:

k∗ = argmin
i 6=j

‖ Zi − Zj ‖F (4.39)

where k∗ is the identity index and Zk is the set of relighted images (reconstructed illumination

basis). This method considers its canonical topology as a Euclidean space and we refer this

approach as a Naive method.

Another baseline algorithm adopted in our experiments is the novelty filter [52] which is a de

facto [7, 45, 121] face recognition algorithm used widely in reconstructed illumination spaces.

The novelty filter can be expressed as:

k∗ = argmin
k∈gallery

‖ x̂− YkY T
k x̂ ‖2 (4.40)

where k∗ is the identity index, Yk is the orthonormal reconstructed basis, and x̂ is a novel image.

The other two baseline algorithms are the Canonical Graßmann Horizontal Projection

(CGHP) given in Equation (4.38) and the geodesic method [67]. Both of these methods are

for image set matching on a Graßmann manifold but consider different aspects of geometry. The

CGHP measures the length of tangent directions on the tangent plane of a Graßmann manifold

whereas the geodesic method projects a set of images on a Graßmann manifold and computes a

geodesic distance.

4.7.4 Results and Findings

Using the illumination model described in Section 4.3, every probe and gallery image is relighted

to create nine illuminated images. The recognition results are obtained using the leave-one-out

protocol in which one image is considered as a probe image and the rest of the images are treated

as gallery images. Results are reported for the portions of the data sets generally considered to

be harder. Specifically, the room lights off of CMU-PIE and subsets 3, 4 and 5 of the YaleB and

Extended-YaleB data sets. Note that the CSQ, Geodesic, CGHP and Naive algorithms match

sets of images whereas the Novelty algorithm matches single images.
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Method P1 P2 P3 P4
CSQ 100% 100% 100% 100%
Geodesic 100% 100% 100% 100%
CGHP 100% 100% 100% 100%
Naive 100% 99.44% 99.63% 99.63%
Novelty 99.91% 99.16% 99.63% 99.72%

Table 4.1: Rank One Recognition: Train on the CMU-PIE and test on four CMU-PIE partitions.
(Protocol I, Section 4.7.2)

Method CMU-PIE∗ CMU-PIE+

CSQ 100% 100%
Geodesic 100% 99.93%
CGHP 100% 100%
Naive 99.58% 99.65%
Novelty 99.79% 15.97%

Table 4.2: Rank One Recognition: Train on the Extended-YaleB and test on CMU-PIE where *
indicates using subset 3 and subset 4 for training, and + indicates using subset 3, subset 4, and
subset 5 for training. (Protocol II, Section 4.7.2)

Method Subset 3 Subset 4 Subset 5
CSQ 99.17% 97.86% 85.79%
Geodesic 95.00% 84.29% 74.21%
CGHP 100% 92.86% 78.95%
Naive 81.67% 62.86% 60.00%
Novelty 53.33% 9.29% 10.53%

Table 4.3: Rank One Recognition: Train on the Extended-YaleB and test on the YaleB. (Protocol
III, Section 4.7.2)

Method Subset 3 Subset 4 Subset 5
CSQ 99.78% 97.88% 51.78%
Geodesic 78.60% 63.71% 29.30%
CGHP 54.28% 32.63% 15.65%
Naive 62.62% 50.00% 33.14%
Novelty 9.23% 5.79% 11.67%

Table 4.4: Rank One Recognition: Train on the CMU-PIE and test on the Combined-YaleB.
(Protocol IV, Section 4.7.2)
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Tables 4.1, 4.2, 4.3 and 4.4 present results for the experiments defined in Section 4.7.2.

Table 4.1 shows all methods perform well when trained and tested on CMU-PIE. The other

cases are more interesting and lead us to the following observations.

First, the results from Table 4.2 reveal that a novelty filter is sensitive to the selection of

illumination bases while other methods are robust and perform well when trained on portions of

the YaleB data and tested on the CMU-PIE data set. A similar finding can be obtained when we

train on the Extended-YaleB and test on YaleB data set.

Second, the CGHP algorithm outperforms the novelty filter. This is interesting because

CGHP can be considered a high dimensional extension of a novelty filter, using the whole set of

a reconstructed basis to perform recognition whereas the novelty filter applies the projection of

a novel image to the space spanned by the reconstructed basis. This finding gives an indication

that a set-to-set matching is superior to a single image matching.

Third and surprisingly, the naive method does not perform that poorly. The experimental

results given in Table 4.2, Table 4.3, and Table 4.4 reveal that the naive method actually outper-

forms the novelty filter which is considered as a standard way [7, 45, 121] of using the recon-

structed illumination basis. While the naive method treats the topology as a Euclidean space, it

is still an image set matching method. This finding further supports that image set matching may

carry more discriminative information for classification.

Fourth, the observations from Table 4.3 and Table 4.4 reveal that the performance between

CGHP and the geodesic method depends on the training set. The CGHP outperforms the

geodesic method when similar illumination conditions reside on the training set, otherwise, the

geodesic method is more resilient than the CGHP.

Fifth, results in Tables 4.2 and 4.4 suggest an interesting asymmetry when the illumination

model is built from one data collection and then performance is tested on the other. Table 4.2

shows that a lighting model trained on YaleB gives rise to perfect results when testing on CMU-

PIE for CSQ. Table 4.4 shows that a lighting model trained on CMU-PIE and then tested on

YaleB subsets yields CSQ results between 51.78% and 99.78%. We speculate that there is a

greater variety of illumination conditions presented in the YaleB data set which gives rise to a
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Figure 4.7: Overall performance: average rank one recognition

more powerful lighting model and finally better recognition performance when YaleB imagery

is used to construct the lighting model.

It should be noted that the images of subset 5 in YaleB and Extended-YaleB are extremely

severe. Most algorithms [38, 45, 59, 121] tested on YaleB and Extended-YaleB do not test this

subset. Although our method does not achieve satisfactory results on the subset 5 when we train

on the CMU-PIE data set, it is still the best algorithm tested in this work.

To sum up the overall performance, we average all the experimental results from Table 4.1,

Table 4.2, Table 4.3, and Table 4.4. The averaged results given in Figure 4.7 provide an indication

of the overall performance. As Figure 4.7 shows, CSQ is the top performing algorithm followed

by the geodesic method. The reason is related to the characteristic of the chosen manifold and

how we set up the illumination variants.

While the order of relighted images does not change the geodesic distance on Graßmann

manifolds, it plays a significant role on Stiefel manifolds. The reason why CSQ performs better

is that the order of the relighted images matters on Stiefel manifolds. Since we relight an image

to a set of fixed order illumination variants, CSQ takes advantages of this fact and outperforms

the geodesic distance method. To illustrate the importance of ordering, one more experiment
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Figure 4.8: The ordering effect on our CSQ and the Geodesic method

was conducted on protocol III and protocol IV using the subset 5 data set where lighting bases

were randomly permuted. The results are show in Figure 4.8, and reveal that the recognition

rate decreases when we randomly order the relighted images. This observation suggests that

whenever the advantage of ordering is presented, CSQ is the choice of representation.

Finally, the proposed canonical Stiefel quotient (CSQ) not only outperforms all other meth-

ods tested here, but it is robust to the choice of training sets as well. This finding emphasizes the

importance of techniques that account for the underlying geometry of illumination spaces and

illustrate that the proper utilization of geometry results in superior face recognition performance.
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Chapter 5

Graßmann Registration Manifolds

5.1 Introduction

Registration, registration, and registration [46] has been quoted as being the three greatest chal-

lenges in face recognition. Making face recognition algorithms less sensitive to registration

errors has received considerable attention [123]. With so much effort paid to registration as a

problem, comparatively little work has investigated the structure of face patterns under small reg-

istration perturbations. A collection of these perturbed images exhibits an underlying geometric

structure which is highly nonlinear and may be discriminative.

In general, face images reside in an abstract image space called a manifold. The nature of

the manifold depends fundamentally upon what is assumed to be varying. Small perturbations in

registration give rise to high dimensional data points, expressions of the original images, that lie

on what is best described as a registration manifold. We will show how a registration manifold

may serve as the basis for face recognition and offer levels of performance comparable to the

best, often highly trained, algorithms.

Recently, many manifold related algorithms have been proposed. There are two main schools

of thought for making use of manifolds. The first is to unfold a manifold whereas the other is

to model the manifold directly. Many manifold learning techniques like ISOMAP [104] and

LLE [89] attempt to unfold the curved manifold onto a flat surface. Although these manifold

learning techniques can be effective in learning the intrinsic structure of a manifold, they require

a large amount of training data and dense sampling on the manifold. Such rich training data may
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not be available in some real-world applications. It is also not entirely clear how to apply these

manifold learning techniques to the task of comparing pairs of still face images.

Another school of thought is to model image manifolds directly. For example, prior work

has used image perturbation to synthesize a set of registration images starting from a single

image and then used these samples to support modeling of the underlying nonlinear image man-

ifolds [96] [31] [77] [5]. A key distinction between our approach and these methods is that

previous methods only seek a single point from a registration manifold for recognition and dis-

regard the underlying geometric structure.

To be more precise, an image with n pixels typically resides in Rn and distance is measured

between pairs of elements in Rn. So, for example, when using the tangent distance [96] or

the joint manifold distance [31], the elements may locally shift on the manifold, but ultimately

comparison is still between pairs of images drawn from Rn. In contrast, the approach developed

in this chapter compares local tangent planes which reside in Rn×p where p is the number of

samples used to characterize the local geometry of the registration manifold.

This distinction is critical in at least two ways. First, we perform recognition in a high di-

mensional Rn×p space rather than in Rn. Second, the underlying topological assumptions are

different. The earlier work uses an L2 norm which regards the canonical topology as Euclidean.

Our work embeds the entire tangent plane on a Graßmann manifold and uses the geodesic dis-

tance accordingly. Therefore, the underlying geometry of the registration manifold is exercised.

These distinctions set us apart from previous methods and provide remarkable discriminative

power for face recognition.

Since the samples on the registration manifold are derived from a single image, our algorithm

works on problems where only a single image per person is available in the probe and gallery

sets. In general, recognition given only a single image per person is still challenging [102]. To

assess the performance of our method, we compare our approach to eight well-known and recent

algorithms using the FERET protocol [83]. The results suggest our algorithm is competitive

with the best, achieving a rank one identification of 84.6% on theDup2 probe set. There are two

algorithms performing better than our method at 85% and 88.9% on theDup2 data set. However,
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unlike our algorithm, both of these algorithms require training. While of course training may be

valuable, it also introduces a set of concerns about generalization that non-trained methods avoid.

Our peak performance is achieved using a set of local image features in a fashion similar to

that employed by many state-of-the-art algorithms. What happens when the local features are

not used and only a holistic representation is applied suggests just how much useful information

is captured by the local geometry of the registration manifold. We are not aware of any prior

work using a holistic representation that has done better than ours on either Dup1 or Dup2. We

also compare our approach to that of using tangent distances [96] as already mentioned above

and our results support further our claim that using the underlying geometry of the registration

manifolds yields advantages when performing face recognition.

5.2 Graßmann Registration Manifolds

Image perturbation has been explored and proven to be useful in pattern recognition. What

makes our proposed method different from other algorithms is our use of image perturbation.

While traditional approaches regard misalignment as noise and correct it through perturbing the

original image, our method exploits a set of perturbed images and their underlying geometry such

that the representation of an image translates to a tangent space. In this section, we discuss how

a registration manifold is formed and embedded on a Grassmann manifold. First, we illustrate

the key assumptions for modeling a registration manifold.

5.2.1 Assumptions

The construction of our Graßmann registration manifolds is based upon two assumptions. First,

the image space is globally curved but locally Euclidean. This means that the topology of the

registration manifold is generally a curved space but locally looks like Rn. More precisely, a

point in this space has a neighborhood which is homemorphic to an open set. This space is

characterized as locally Euclidean. This assumption allows us to form a tangent space from a

registration manifold which exhibits a vector space structure.

The open set property leads to the second assumption that a registration image set is open.
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This property implies that every point in the space is an interior point, and that a point can be

moved in any direction by a small amount and remains inside the registration image set. This

assumption allows us to sample any image on a registration manifold.

5.2.2 Registration Manifolds Formation

Sampling and characterizing a registration manifold are the key steps in our proposed approach.

Given a pair of eye coordinates, we determine a set of affine parameters for geometric normal-

ization. The affine transformation maps the (x, y) coordinate from a source image to the (u, v)

coordinate of a normalized image. The transformation can be written as follows:

 u
v
w

 =

 cos(θ) − sin(θ) dx
sin(θ) cos(θ) dy

0 0 1

 1 q 0
0 1 0
0 0 1

 1 + sx 0 0
0 1 + sy 0
0 0 1

 x
y
z

 (5.1)

where the first matrix describes rotation and translation, the second matrix represents skew, and

the third matrix denotes scaling. These transformed coordinates can be rewritten more compactly

as: [
u
v

]
=
[
p1 p3 p5

p2 p4 p6

] x
y
1

 (5.2)

Equation (5.2) reveals that there are six control parameters for the affine transformation. In this

chapter, a set of registration images are sampled by perturbing these six affine parameters as

shown in Equation (5.3).

[
u
v

]
=
[
p1 + ∆p1 p3 + ∆p3 p5 + ∆p5

p2 + ∆p2 p4 + ∆p4 p6 + ∆p6

] x
y
1

 (5.3)

Specifically, we perturb the initial affine parameters with ∆p in a ± range, such that we syn-

thesize 36 (729) perturbed images. These 729 images reside on an affine registration manifold

M. In our experiments, we employ bilinear interpolation for sampling the registration manifold,

and set ∆p1, ∆p2, ∆p3, and ∆p4 as {-0.03, 0, 0.03}, and ∆p5 and ∆p6 as {-3, 0, 3}. From a

geometric point of view, we sample the registration images onto a registration manifold, and this

registration manifold has a topology associated with it as illustrated in Fig. 5.1.
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Figure 5.1: Illustration of registration manifold sampling. The cube on the left illustrates the
36 = 93 = 729 distinct registration samples and the picture on the right illustrates how samples
are then arrayed upon a curved registration manifold.

5.2.3 Registration Manifolds Formation

The affine registration manifold has a nonlinear structure [96, 92]. One way to utilize the sam-

pled registration manifold is to assume local linearity and explore its tangent space. This is

essentially a local linear approximation of a hypersurface. By the mean value theorem [97], we

can approximate a tangent vector using a nearby secant. A collection of these approximated

tangent vectors at a point x ∈ Rn forms a tangent space.

A tangent plane could be centered on any interior point on a registration manifold, but

given our problem formulation, the logical choice for the base point x is the canonical sam-

pled image (∆pi = 0 in Equation (5.3)). The selected base point x is assumed to be an interior

point that has a neighborhood homeomorphic to an open ball. Then, given k nearest neighbors

{x∗1, x∗2, . . . , x∗k} where x∗i ∈ M , a tangent space centered at x on a registration manifoldM

may be represented as:

TxM : x+ span{x− x∗1, x− x∗2, . . . , x− x∗k} (5.4)
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Figure 5.2: The use of local Euclidean distance to form a tangent space. A tangent space of a
registration manifold is formed using a local neighborhood centered around the canonical image.
In the illustration, six neighbors are shown in orange surrounding the canonical image which is
indicated by the green cross. It is important to note that this figure is simplified for the sake of
illustration, and in practice we take hundreds of samples on the registration manifold and what
is here shown as a plane is in practice a linear subspace of many dimensions - upwards of 100 in
most cases.

where {x− x∗1, x− x∗2, . . . , x− x∗k} are the approximated tangent vectors around x. These ap-

proximated tangent vectors are the direction vectors from the affine transformations. In addition,

the tangent space TxM has a vector space structure and any point on this tangent space can be

reconstructed as:

x+
k∑
i=1

αi(x− x∗i ) (5.5)

Generally, a manifold is globally curved but locally Euclidean. We use this property to guide

our choice of k nearest neighbors. Specifically, we assume local linearity about x in order to

select the k nearest neighbors using Euclidean distance:

x∗k = x∗k−1

⋃
argmin
xj 6∈x∗k−1

‖ x− xj ‖22 (5.6)

where x∗0 = {} and x∗k is the set of k nearest neighbors. Thus, a tangent space is a set from a

local neighborhood centered around x of a registration manifold as depicted in Figure 5.2.
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Figure 5.3: The effect of varying the number of nearest neighbors used to define the tangent
plane. The horizontal axis is laid out by categories, one for each value for k tested. The vertical
axis is the rank one identification rate for the FERET Dup2 probe set.

Although we apply the same image perturbation to generate each registration image, the

k nearest neighbors for different face images are usually different. This is because every face

image has distinct facial structures so that transforming the face image may change the relative

Euclidean distances between different perturbed images. This process allows us to capture the

local structure of a registration manifold and makes the local neighborhood adaptive. In early

experiments, we used a fixed set of registration images always derived from the same alignment

parameters and hence did not capture this person-by-person local variation. When the associated

tangent spaces were used for recognition, the results were inferior to those presented here.

Selecting the number of nearest neighbors to approximate the tangent space has significant

implications. At the extreme low end, k = 1, minimizing the chordal distance equates to maxi-

mizing the correlation between pairs of images (Equation (3.43)). At the other extreme, taking

hundreds or thousands of samples is not only computationally burdensome; at some point the

local linearity assumption is stretched beyond the breaking point, and the discriminative power

starts to decrease. The effect of different choices for k on the FERET Dup2 data set is shown

in Figure 5.3. As Figure 5.3 depicts, the rank 1 identification starts to decrease when k is larger
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Figure 5.4: Examples of a holistic face and local regions

than 128. In our experiments, we choose k = 100. The value of k was initially set to 81 which

came from our initial eye perturbation experiments (34 = 81). Subsequently, we changed the

value of k to 100. As Figure 5.3 suggests, any value around 100 can be expected to perform

well. It should be noted that the value of k is related to how curved a registration manifold is

and how we sample the registration manifold.

To review what we have developed so far, recall that a Graßmann manifold Gn,p is a set of

p-dimensional linear subspaces of Rn. Because a tangent space admits a vector space structure,

and the approximated tangent vectors are the bases spanning the subspace, we use these tangent

vectors to embed a linear subspace on a Graßmann manifold. Thus, our proposed method per-

forms recognition in Rn×p dimensions while most existing algorithms performs recognition in

Rn. The benefits of embedding a tangent space on a Graßmann manifold are that the properties

and distance metrics are well studied. Since we embed the registration images on a Graßmann

manifold, we call the resulting manifold the Graßmann Registration Manifold (GRM).

5.3 Image Features and Image Preprocessing

A holistic image is regarded as the whole face represented by a single high dimensional vector

whereas local regions are derived from regular sampling patterns, for example a grid laid over

the face. In this chapter, we employ a holistic image and local regions for face recognition. Local
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Figure 5.5: Examples of original face chips and Gabor processed face chips

regions are extracted from a 5 × 5 facial window.1 Examples of a holistic face and local regions

are given in Figure 5.4.

For each probe and gallery image, the 729 registration variants are sampled using eye co-

ordinates provided with the FERET data and using the perturbation process described in Sec-

tion 5.2.3. In addition, an elliptical mask is applied to remove the background. Histogram equal-

ization and a Gabor filter [55] are then applied to the holistic image. To create a greater degree

of independence, the local regions are used without histogram equalization or the application of

the Gabor filter.

Gabor filters have a long history of use in face recognition, and while most algo-

rithms [93, 103, 124] apply filters tuned to multiple scales and orientations, we have found using

a single filter sensitive to horizontal features on the face yields very good results. We think this

makes sense because much of the facial structure that is useful for identification is dominated by

1Since most of the lower left and lower right regions are covered by a mask in the 5 × 5 facial window, we
eliminate these two regions from our feature set.
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Algorithm 1 : Image Matching using Graßmann Registration Manifolds

1: Determine initial registration parameters p1, . . . , p6 for each image using the eye coordi-
nates. (Equation (5.2))

2: Sample the affine registration manifold by perturbing the affine parameters. (Equation (5.3))
3: Find the k nearest neighbors {x∗1, x∗2, . . . , x∗k} from the registration manifold. (Equa-

tion (6.11))
4: (Optional) Apply histogram equalization and a Gabor filter. (Equation (5.7))
5: Construct the tangent space. (Equation (5.4))
6: Embed the approximated tangent space and compute canonical angles. (Equation (3.44))
7: Compute the chordal distance. (Equation (3.48))

horizontal components.

In general, a DC-free Gabor filter is defined as follows:

ψu,v(z) =
‖ ku,v ‖2

σ2
e(−‖ku,v‖2‖z‖2/2σ2)

[
eiku,vz − e−σ2/2

]
, ku,v =

kc
fv
eiφu (5.7)

where u and v are the control parameters for orientations and scales, respectively, and z is the

position. In our experiments, we set the f =
√

2, kc = 4π
5 , σ = 3π

2 , v = 0, and φu = 0.

Examples of Gabor processed face chips are given in Figure 5.5.

5.4 The Graßmann Registration Manifold Algorithm

Our face recognition algorithm includes seven major elements enumerated in Algorithm 1. To

summarize, for all probe and gallery images the affine parameters are perturbed to sample the

registration manifold. Next the k nearest registration images, neighbors, of the original image

are found. Optionally, histogram equalization and a Gabor filter may be applied to these images.

Tangent vectors are then computed from the selected k nearest neighbors and a tangent space

is formed using the tangent bases. The probe tangent space and the gallery tangent space are

projected onto the Graßmann manifold where the distance between these two tangent spaces is

computed using the chordal distance.

This embedding process in general and the use of geodesic distance on a Graßmann mani-

fold in particular are depicted in Figure 5.6. To reiterate what we have mentioned before, each

element embedded on a Graßmann manifold represents a tangent space in Rn×p of a registra-
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Figure 5.6: The embedding process for the proposed method. Tangent spaces of registration
manifolds are embedded on a Graßmann manifold where the geodesic distance, specifically the
chordal distance, is computed.

tion manifold. Consequently, recognition is performed in a higher dimensional space rather than

using a single image in Rn.

5.5 Many to few Matching Strategy

Initial studies of cumulative match curves indicate that 95% of the correct identifications are

included in the top 10% of gallery candidates using just the holistic image matching and k = 16,

i.e. 16 registration manifold samples. Consequently, considerable time can be saved with our

proposed many to few matching strategy. This matching strategy uses a small number of nearest

neighbors to form tangent planes and compare a probe image to the entire gallery. The number

of nearest neighbors is then increased at the same time that the number of gallery candidates

considered is decreased. As a consequence, only a small number of gallery candidates need be

compared using tangent planes derived from the full k = 100 set of registration variants. Since

we apply the many to few matching strategy to a holistic representation, we call this algorithm

the GRM-Holistic depicted in Algorithm 2.
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Algorithm 2 : The GRM-Holistic Algorithm

1: Construct a tangent plane for every probe and gallery using k = 16 nearest neighbors.
2: Embed tangent planes on a Graßmann manifold.
3: Compute chordal distances between all probe and all gallery images.
4: for each probe image pi do
5: Sort the gallery by increasing chordal distance.
6: Retain in Gk16

i the 10% of the gallery closest to pi.
7: Construct tangent planes for pi and gallery images in Gk16

i using k = 32 neighbors.
8: Sort Gk16

i by increasing chordal distance using k = 32 tangent planes.
9: Retain in Gk32

i the 5% of the gallery closest to pi (50% of Gk16
i ) .

10: Construct tangent planes for pi and gallery images in Gk32
i using k = 100 neighbors.

11: Sort Gk32
i by increasing chordal distance using k = 100 tangent planes.

12: Return in Gk100
i the ranked gallery matches to pi.

13: end for // Returns for each probe image a ranked portion of the gallery.

Algorithm 3 : The GRM-Local Algorithm

1: for each local feature Lj summarized in Figure 5.4 do
2: for each probe image pi do
3: Use as the gallery Gij the gallery Gk100

i created by Algorithm 2.
4: Construct tangent planes for Lj of pi and gallery images Gij using k = 100.
5: Compute the chordal distances between pi and gallery images Gij .
6: Return in Gij the ranked gallery matches to pi of Lj .
7: end for // Returns for each probe image a ranked portion of the gallery.
8: end for // Return the top rank for a local feature
9: Apply a majority voting scheme using all features.

As Algorithm 2 illustrates, a probe image is initially compared to the entire gallery using

tangent spaces derived from just 16 registration samples. The comparisons are carried out by

computing chordal distance between tangent planes of 16 dimensions. The 10% of the gallery

candidates found to be most similar to the probe in this first pass is then compared using 32

registration variants. Finally, the top 5% gallery candidates are compared using 100 registration

samples. Note that each probe image has its own gallery candidates. Because we perform

recognition in a Rn×p dimension, reducing the dimension p allows us to perform a full search

efficiently. As the dimension p increases, the number of gallery candidates reduces to only 5%.

Consequently, considerable time can be saved. At this point, the holistic algorithm stops and the

resulting top ranked gallery candidate is taken as the rank one match for each probe image.
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The local feature algorithm is an extension to the GRM-Holistic algorithm that first carries

out all the steps already described for the GRM-Holistic algorithm (Algorithm 2). Then, utilizing

the gallery candidates found by the GRM-Holistic algorithm, for each local feature described

in Figure 5.4, we form the tangent planes using 100 registration samples for a probe and its

associated gallery candidates. The chordal distances between these tangent planes are computed

and become the basis for comparing the local features in probe and gallery images. We call this

matching algorithm GRM-Local and it is described in Algorithm 3.

Applying the many to few matching strategy to the holistic image and subsequently to all

local features offers a dramatic reduction in run-time. Overall, the proposed matching strategy

speeds up the classification process by roughly a factor of 500, (20 × 25).2 The final classifica-

tion is determined by a majority voting scheme [56] using all features.

5.6 Comparative Evaluation to The-State-Of-The-Art

5.6.1 Data Collection

The performance of our proposed algorithm is compared to well-known and recent algorithms

on the FERET database [83]. The frontal view imagery of the FERET database is divided into

5 categories: Fa, Fb, Fc, Dup1, and Dup2, containing 1,196, 1,195, 194, 722, and 234 faces,

respectively. Both Fa and Fb are taken in the same day with the same illumination condition

but with different facial expressions. Fc is taken at the same day as Fa but with different

illumination condition. Dup1 is acquired on different days from Fa. Dup2 is acquired at least

one year apart from Fa. Following the FERET protocol, Fa is always the gallery and Fb, Fc,

Dup1, and Dup2 are used as probe sets.

5.6.2 Prior Art on the FERET Database

The Elastic Bunch Graph Matching (EBGM) algorithm [114] was one of the top algorithms for

the FERET database for more than half of a decade until the Local Binary Pattern (LBP) [3]

25% candidates and 25 features
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was introduced. Since then, many LBP-like algorithms have been reported and continue to push

the performance envelope for FERET. Zhang et al. [119] applied Gabor filters to extract local

patterns and encoded them as phase-quadrant and XOR patterns. Tan and Triggs [103] proposed

to combine 40 Gabor responds and LBP features, and projected it on a discriminant space using

kernel discriminative common vectors. Shan et al. [93] employed 40 Gabor filters for feature

extraction and constructed an ensemble piecewise LDA classifier for each LBP segment. Zou et

al. [124] used a large set, 4, 172, of Gabor jets and achieved excellent results.

Liu et al. [65] created 9 images by horizontally and vertically shifting samples (left/right

and up/down). The authors view these images as the basis for linear spatial filters because the

9 translated images make up a filter mask. Subsequently, the subspace distance between local

patches is computed and the aggregated score is used for final classification. We include this

algorithm in our comparison because it involves subspaces defined by different registration sam-

ples, and is thus related to our own work. However, Liu et al. only presented their approach in

the context of linear spatial filters, whereas we consider the underlying geometric interpretation.

As such, we make use of local linearity and do not choose the same image set all the times.

Table 5.1 summarizes the published results of the above algorithms and three variants of our

proposed method for the FERET database. The GRM-Holistic uses only a holistic representa-

tion, the GRM-Local exploits all local features, and the GRM-Combined employs the holistic

representation and all local features. The rightmost column indicates whether an algorithm re-

quires training. As Table 5.1 reveals, many algorithms perform very well on the Fb and Fc data

sets where the probe and gallery images are taken in the same day. The performance of our GRM

method on these two data sets is about 98%. On the other hand, the Dup1 and Dup2 probe sets

are more challenging even for the most modern algorithms. To better visualize the ranking for

Dup1 and Dup2, the results are shown from worst to best in Figure 5.7.

5.6.3 Results with the Holistic Representation

Using the entire face image, our GRM-Holistic achieves 94.1%, 92.8%, 70.8% and 76.9% rank

one identification for Fb, Fc, Dup1, and Dup2, respectively. These results already outperform

half of the top algorithms and are among the best for non-trained algorithms. It should be noted
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Table 5.1: Rank 1 identification on the FERET database
Methods Fb Fc Dup1 Dup2 Trained

EBGM [114] 95.0 82.0 59.0 52.0 Yes
Weighted LBP [3] 97.0 79.0 66.0 64.0 Yes
EPFDA-LBP [93] 99.6 99.0 92.0 88.9 Yes
Gabor-LBP-KDCV [103] 98.0 98.0 90.0 85.0 Yes

Non-Weighted LBP [3] 93.0 51.0 61.0 50.0 No
HGPP [119] 97.6 98.9 77.7 76.1 No
GaborJets [124] 99.5 99.5 85.0 79.5 No
SIS [65] 91.0 90.0 68.0 68.0 No
GRM-Holistic 94.1 92.8 70.8 76.9 No
GRM-Local 97.2 97.4 78.2 80.8 No
GRM-Combined 97.7 97.9 79.9 84.6 No

that our GRM-Holistic is the only holistic method presented in Table 5.1. To our knowledge,

these results are the best on the FERETDup1 andDup2 data sets for any holistic representation.

This contribution suggests that our method can perform well without specific domain knowledge,

thus it is extensible and generic. Additionally, the proposed GRM-Holistic ranks second among

all non-trained algorithms for the Dup2 data set shown in Figure 5.7b, the probe set for which

most algorithms have the greatest difficulty. The only non-trained method performing better than

our GRM-Holistic is the GaborJets method [124] which employs a large amount of local features

(4,172 Gabor jets).

Given the sizes of these probe sets and making the relatively simple assumption that rank

one identification success/failure may be modeled as a binomial, it is possible to put confidence

intervals on these rank one identification rates [72, 12]. Specifically, the average confidence

intervals given the α value as 0.05 for the rank one identification are about ±1%, ±4%, ±3%,

and ±5.5% for the Fb, Fc, Dup1, and Dup2, respectively.

5.6.4 Results with Holistic + Local Representations

There is a general agreement that peak performance is typically achieved using local features.

This finding can also be observed from our GRM-Holistic and GRM-Local in Table 5.1 and

Figure 5.7. However, the reasons are less consistent. It has been argued that local features
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(a)

(b)

Figure 5.7: Rank 1 Identification on the FERET Dup1 (a) and Dup2 (b) data sets for the selected
algorithms (Non-Weighted LBP [3], EBGM [114], Weighted LBP [3], SIS [65], HGPP [119],
GaborJets [124], Gabor-LBP-KDCV [103], and EPFDA-LBP [93]) where * indicates trained
methods
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are generally less sensitive than global features to appearance changes [102, 124]. We stress

an additional reason why the use of local features can achieve better recognition results in face

recognition. Recall that we described our local features in Section 5.3. Figure 5.8 shows the rank

one identification achieved when a GRM algorithm is constructed using each individual feature.

The associated feature index is given in Figure 5.9.

Neither space allows us to identify each feature, nor is it actually that important. What is

important is first to note that the left most column in Figure 5.8 is the holistic image as a feature,

and it is consistently one of the best individual features. Hence, we can dismiss any thought

that a single local feature consistently does much better than the holistic representation. Second,

there is a fair amount of apparently random variation between features and between probe sets.

More specifically, a careful study of Figure 5.8 reveals that no single local feature consis-

tently ranks in the top three for all data sets. Consequently, the strength of using local features

comes from the combination of independent decisions boosting recognition performance [56].

A good example is our Dup1 results shown in Figure 5.8. As the Dup1 results in Figure 5.8

shows, all local features perform worse than the holistic image, nevertheless, combining all these

features boosts the recognition result from 70.8% to 79.9% (a green dash line). A similar obser-

vation has been reported using weighting subspaces [24]. In this chapter, we use the majority

voting rule [56] to combine all the feature outcomes.

Using the whole image plus local features, the GRM-Combined algorithm achieves 97.7%,

97.9%, 79.9% and 84.6% rank one identification for Fb, Fc, Dup1, and Dup2, respectively.

As Figure 5.7a shows, our GRM-Combined obtains 79.9% rank one identification which ranks

second among all non-trained methods on the Dup1 data set. As the Dup2 data set, to our

knowledge, the 84.6% rank one identification is the best result for all non-trained algorithms and

third among all algorithms depicted in Figure 5.7b.

5.7 Registration Problem Revisited

There are many ways to use registration variants. Most of the traditional techniques [123] apply

registration variants to easing registration errors. Considering registration variants as a source
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Figure 5.8: Identification results for individual feature (Blue : Holistic, Orange : Local regions,
Green : Combined) where the horizontal axis is the feature number and the vertical axis is the
rank one identification 82



Figure 5.9: The indices of GRM features (holistic face and local regions)

for classification may seem odd since they all come from the same image. Why is using the reg-

istration variants for recognition better than finding one alignment image? The answer may lie in

the distinction between the two paradigms. In this section, we will emphasize the discrepancies

between our method and the alignment methods.

There are two families of techniques for image alignment. The first is to search the most

probable registration images while the other employs the registration variants to reconstruct an

alignment image. First, we briefly describe these alignment algorithms as follows.

5.7.1 Brute Force Approach

Perhaps, the most straight forward approach to overcome an alignment error is to try all plausible

registration images. If the algorithm tries enough possibilities, it will stumble upon the correct

one at some point. We will call this method a brute force registration algorithm and it will return

the best score achieved over a range of typically hundreds of alternative registration variants.

Indeed, for the experiments that follow the 729 registration samples already defined will be

used.

Formally, the scoring operation for the brute force algorithm can be expressed as:

Scor(x, y) = max
1≤i≤q

max
1≤j≤q

{Corr(x(i), y(j))} (5.8)

where x, y ∈ Rn are the probe and gallery images, Corr denotes the normalized correlation3, q

3We use Corr because it is a de facto standard. Other similarities or distance measures can also be applied.
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is the number of registration images (729 in our experiments), and i and j are the indices for the

registration variants.

As Equation (5.8) shows, each probe and gallery pair has q × q matching scores: 531, 441 in

our experiments. Undoubtedly, the brute force approach is computationally expensive, and our

motivation for considering it rests in what it can tell us about registration as a source of errors. In

other words, if we can match a large amount of registration variants, how much can an algorithm

improve?

5.7.2 Tangent Distances

Another family of techniques for the registration problem is to reconstruct an alignment image

using a set of registration variants. One such method is the well-known tangent distances [96].

Tangent distances have found a number of successful applications including handwritten digit

recognition [96] and face recognition [108]. While both tangent distances and our GRM make

use of tangent spaces, there are some fundamental differences. These differences yield signifi-

cant improvement on face recognition performance. First, let us briefly review the key ideas of

tangent distances. Given a gallery image x ∈ Rn and a probe image y ∈ Rn, and their associated

tangent vectors, tangent distances can be computed as one sided tangent distance as well as two

sided tangent distance. We review these two methods in the following subsections.

5.7.2.1 One Sided Tangent Distance

The one sided tangent distance employs the first order Taylor expansion to approximate a tangent

plane at a gallery image. Every element of this tangent plane is a linear combination of tangent

vectors. The key idea of the one sided tangent distance is to seek a point from this tangent plane

such that the Euclidean distance from this point to a probe image is minimized. Formally, the

one sided tangent distance can be formulated as follows:

TD1(x, y) = min
α
‖ x+ Txα− y ‖22 (5.9)

where Tx is the matrix containing tangent vectors of x, and α is the weighted coefficient. As

Equation (5.9) shows, the one sided tangent distance computes a Euclidean distance between
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a point from a tangent plane (x + Txα) and an image y. The coefficient α is determined by

minimizing this Euclidean distance. The illustration of the one sided tangent distance is given in

Figure 5.10.

Figure 5.10: Illustrations of the one sided tangent distance : Euclidean distance from a point to
a tangent plane

5.7.2.2 Two Sided Tangent Distance

While the one sided tangent distance utilizes a tangent plane typically derived from a gallery

image, the two sided tangent distance makes use of tangent planes from both a gallery image

and a probe image. In other words, the two sided tangent distance forms two tangent planes

and seeks points from these tangent planes such that the Euclidean distance between a point of

a probe tangent plane and a point of a gallery tangent plane is minimized. Figure 5.11 depicts

the use of the two sided tangent distance. Mathematically, the two sided tangent distance can be

defined as follows:

TD2(x, y) = min
α,β
‖ x+ Txα− y − Tyβ ‖22 (5.10)

where Tx and Ty are the matrices containing tangent vectors of x and y, and α and β are the

associated weighted coefficients, respectively. As Equation (5.10) reveals, the two sided tangent

distance computes a minimum Euclidean distance between two points from two tangent planes.

85



Since the two sided tangent distance exercises two tangent planes, it has some similarity to our

GRM. Next, we stress the distinction between our GRM and the two sided tangent distance.

Figure 5.11: Illustrations of the two sided tangent distance : Euclidean distance from a point of
a tangent plane to a point of another tangent plane

5.7.3 Brute Force, Tangent Distances, and Graßmann Registration Manifolds

The commonality between the brute force approach, tangent distances, and our GRM is that

they all employ registration variants. The differences between these methods are summarized as

follows:

• Both the brute force approach and tangent distances perform recognition in Rn×1 while

our GRM performs recognition in Rn×p (p is the number of tangent vectors). Therefore,

our GRM performs recognition in a high dimensional space.

• Both the brute force approach4 and tangent distances perform recognition using a Eu-

clidean distance5 while we consider local linearity, project the tangent planes onto a Graß-

4The normalized correlation is related to a Euclidean distance.

5Because images reside on a manifold, only nearby images exhibit a Euclidean structure.
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Table 5.2: GRM vs Brute Force Approach and Tangent Distances (FERET database)
Methods Fb Fc Dup1 Dup2

Brute Force Approach (Holistic) 69.0 60.3 55.0 54.7
One Sided Tangent Distance (Holistic) [96] 68.2 33.0 39.2 33.3
Two Sided Tangent Distance (Holistic) [96] 81.3 18.0 44.5 41.9
GRM-Holistic 94.1 92.8 70.8 76.9

mann manifold, and compute a geodesic distance. Hence, the underlying geometry is

exercised.

• While both the two sided tangent distance and our GRM employ two tangent planes, the

two sided distance considers a point on a tangent plane and computes a Euclidean distance

between points on two tangent planes whereas our GRM utilizes the entire tangent plane

and computes a geodesic distance between two tangent planes.

• Both the brute force approach and tangent distances apply the registration variants to cor-

rect the image alignment while our GRM uses registration variants to form a feature rep-

resentation (tangent space).

To show the advantages of our GRM over the brute force approach and tangent distances,

we assess the face recognition performance using the holistic image on the FERET database.

To have consistent comparisons, all images are preprocessed by our Gabor filter discussed in

Section 5.3. We employ 729 registration variants for the brute force approach and the same 100

tangent vectors as our GRM method to form a tangent space for the tangent distances.

The rank one identification results are summarized in Table 5.2. Our proposed GRM method

outperforms the brute force approach as well as the one sided and two sided tangent distances.

These experiments reveal the importance of using the underlying geometry on manifolds that

could result in significant enhancement in face recognition performance. While methods aimed

at overcoming registration errors are important, further study of registration variants and their

underlying geometry may provide us with new insights for how characterizing image variability

and construct more effective recognition algorithms.
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Chapter 6

Graßmann Product Manifolds

6.1 Introduction

Human-computer interaction has attracted great attention in recent years [75, 106, 84] due in

part to many potential applications. Action classification is one key aspect of human-computer

interaction, and a variety of methods have been proposed to construct action classifiers. Bissacco

et al. [14] employed an ARMA model for human gait recognition. Schüldt et al. [91] combined

local features and SVMs for human action classification. Turaga et al. [107] applied Procrustes

distances on special manifolds for activity recognition. Recently, Laptev et al. [57] proposed

a method using spatio-temporal bag-of-features combined with multi-channel SVMs for action

classification. Despite these efforts, reliable action classification remains a hard problem because

of the complexity of human motions. To address this concern, more powerful tools are needed,

and one such tool is multilinear algebra.

Multilinear algebra is a mathematical framework for high order tensors which capture mul-

tiple factor variations and interactions. Tensor computing has been successfully applied to many

computer vision applications such as face recognition [109, 42, 33, 88], visual tracking [63],

and action classification [48]. However, the advantages of representing a tensor on a product

manifold in the context of classification have not been explored. In this chapter, we represent a

video as a 3rd order tensor and demonstrate that the geometric structure of the tensor space is

discriminative for action classification.

It is known that multidimensional data can be considered as a high order tensor. Previous
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methods [109, 42, 33, 88, 48] often learn a projection to characterize a lower dimensional tensor

subspace and apply discriminant analysis. Such techniques are usually complicated due to the

nature of the learning algorithms. In addition, they require a large amount of training data and

may suffer from generalization problems. With so much effort paid to the learning algorithms,

comparatively little work has investigated the underlying geometry of the tensor space.

The method proposed in this chapter employs tensors to perform action classification from

a different perspective. First, it is a non-trained method, and so avoids training data and gener-

alization problems. Second, we focus attention on the geometric structure of the tensor space,

and this in turn provides insight into the existing multilinear algebra, its underlying geometric

interpretation, and how this geometry provides a robust basis for classification.

Our approach begins by abstracting an N order tensor as a point on a product manifold

where the number of factors is given by the order of the tensor. Because each factor of the tensor

can be characterized as an orthogonal matrix via a decomposition procedure, it is represented

on a Graßmann manifold. However, traditional Higher Order Singular Value Decomposition

(HOSVD) [27] does not factorize a space which preserves the geodesic distance in the context

of video classification. It is therefore helpful to modify the common definition of HOSVD, and

with the modified HOSVD, each factor manifold is related to a single order of the tensor spanned

by the column space. As such, an N order tensor yields N factor manifolds.

The proposed approach draws upon the fact that the geodesic on a product manifold is equiv-

alent to the Cartesian product of geodesics from multiple factor manifolds. In other words,

elements of a product manifold are from the set of all elements on factor manifolds. Action clas-

sification is then performed on the basis of geodesic distance on a product manifold associated

with an action video.

The most important contribution of this chapter is the presentation of a new way of relating

data tensors and the product manifold geometry to the practical task of action video classifi-

cation. Using the geodesic distance on a product manifold to compare videos, we show that a

simple nearest neighbor classifier can perform very well: a match for the best highly trained

algorithms in the literature.
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Figure 6.1: An example of matrix unfolding of a 3rd order tensor

6.2 Tensor Representation

A tensor is a high order generalization of multi-dimensional data where a vector and a matrix

are regarded as a first order tensor and a second order tensor, respectively. A video contains

both spatial and temporal information and can be naturally represented as a third order tensor ∈

RX×Y×Z where X , Y , and Z are the image width, image height, and video length, respectively.

Tensors can be regarded as a multilinear mapping over a set of vector spaces. Generally, useful

information can be extracted using tensor decompositions, in particular, a Higher Order Singular

Value Decomposition (HOSVD) [27] which has been proven to be useful in statistical data anal-

ysis [74] and dimensionality reduction [25]. The tensor algebra used in this chapter is reviewed

in chapter 3.

Just as a matrix can be factorized using Singular Value Decomposition (SVD), a tensor can

also be factorized using HOSVD. Let A be an order N tensor ∈ RI1×I2×···×IN . A can be

converted to a set of matrices via a matrix unfolding operation. Matrix unfolding maps a tensor

A to a set of matrices A(1), A(2), . . . , A(N), where A(k) ∈ RIk×(I1×···×Ik−1×Ik+1···×IN ) is a

mode-k matrix ofA. An example of matrix unfolding of a 3rd order tensor is given in Figure 6.1,

90



where the rows are represented by a single order of the tensor and the columns are composed by

two orders of the tensor. A tensor can be unfolded N times where N corresponds to the order of

the tensor.

HOSVD is a method for tensor decomposition and is the heart of many applications [53].

HOSVD first unfolds a tensor to a set of matrices and performs factorization on all unfolded

matrices. Similar to matrix decomposition, the mode-k matrix A(k) ∈ Rn×m is factored using

SVD as follows:

A(k) = U (k)Σ(k)V (k)T
(6.1)

where Σ(k) ∈ Rn×m is a diagonal matrix, U (k) ∈ Rn×n is an orthogonal matrix spanning the

column space of A(k) associated with nonzero singular values, and V (k) ∈ Rm×m is an orthogo-

nal matrix spanning the row space of A(k) associated with nonzero singular values. Then, an N

order tensor can be factorized using HOSVD as follows:

A = S ×1 U
(1)×2 U

(2) . . .×n U (N) (6.2)

where S ∈ R(I1×I2×···×IN ) is a core tensor, U (1), U (2), . . . , U (N) are orthogonal matrices span-

ning the column space associated with nonzero singular values described in Equation (6.1), and

×k denotes the mode-k multiplication. The order of a tensor is preserved by HOSVD. Equa-

tion (6.1) and Equation (6.2) show that the HOSVD is a generalization of the matrix SVD and

the variation in the mode-k matrix is captured independent to the other modes.

6.3 Product Manifolds

A product manifold can be recognized as a complex compound object in a high dimensional

space composed by a set of lower dimensional objects. For example, a line whose elements y in

R1 × a circle whose elements x in R2 becomes an infinite cylinder whose elements (x, y) in R3

shown in Figure 6.2. Formally, this product can be expressed as:

D2 = {x ∈ R2 : |x| < 1} (6.3)

I = {y ∈ R : |y| < 1} (6.4)

D2 × I = {(x, y) ∈ R2 × R : |x| < 1 and |y| < 1} (6.5)
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Figure 6.2: An example of an infinite cylinder: a circle cross an interval

where D2 and I are viewed as topological spaces. Figure 6.2 reveals that a cylinder is a product

of a circle and an interval where the dash line represents the concept of infinity. This open

cylinder is both a circle of intervals and an interval of circles. The product manifold may be

viewed as the cross section of lower dimensional objects. Formally, letM1,M2, . . . ,Mq be a

set of manifolds. The setM1 ×M2 × . . . ×Mq is called the product of the manifolds where

the manifold topology is equivalent to the product topology. Thus, a product manifold is defined

as:

M = M1 ×M2 × · · · ×Mq (6.6)

= {(x1, x2, . . . , xq) : x1 ∈M1, x2 ∈M2, . . . , xq ∈Mq} (6.7)

where × denotes the Cartesian product,Mk represents a factor manifold (a topological space),

and xk is an element inMk. Note that the dimension of a product manifold is the summation of

all factor manifolds.

Product manifolds allow us to generalize classification problems to higher dimensional

spaces. The hypothesis is that these higher dimensional spaces would yield better discriminabil-

ity for classification. In our geometric framework, the embedding on product manifolds is via

high order factorization.
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6.3.1 Factorization in Product Spaces

As discussed in Section 6.2, HOSVD is built up from the unfolded matrices (modes) via matrix

unfolding. The variation of each mode is captured by HOSVD. However, as we are about to

make clear, the traditional definition of HOSVD will cause difficulties for us as we attempt to

use HOSVD to relate a tensor on a product manifold.

Note that the column of every unfolded matrixA(k) is composed by multiple orders from the

original tensor A ∈ RI1×I2×···×IN . This fact can also be observed in Figure 6.1. Let m be the

dimension of the columns, I1 × I2 × . . . Ik−1 × Ik+1 · · · × IN , and n be the dimension of the

rows, Ik, for an unfolded matrix A(k). We can then assume that the dimension of the columns is

greater than the dimension of the rows, i.e. m > n. This implies that the unfolded matrix A(k)

only spans n dimensions.

According to the SVD Equation (6.1), U (k) ∈ Rn×n is the orthogonal matrix spanning the

column space associated with nonzero singular values. Because the number of columns is larger

than the number of rows, i.e., m > n, U (k) is actually a point on a special orthogonal group

SO(n) and there is no closed-form solution for computing the geodesic distance on SO(n).

Furthermore, the geodesic distance would always be zero when we view points on SO(n) as

Graßmannian. This is due to the fact that Graßmannian can be represented as the quotient space

of SO(n). In other words, we can always find a rotation matrix (a mapping) to rotate a point

to the other in SO(n). As such, traditional HOSVD employed U (k) for factorization is not the

appropriate choice to form a product manifold.

On the other hand, V (k) in Equation (6.1) is the orthogonal matrix spanning the row space

and it only spans n dimensions because m > n. Therefore, V (k) can be represented by an m ×

n orthogonal matrix and it is a point on a Graßmann manifold. This observation motivates us to

form a product manifold by modifying the HOSVD.

The modification for the existing HOSVD is simple. Since the V (k) is the orthogonal matrix

spanning the row space, all we need is to make it span the column space because a point on

a Graßmann manifold represents a subspace spanned by the column space of an orthogonal

matrix. To do so, we can simply take the V (k) from Equation (6.1). Alternatively, we can change
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the matrix unfolding of A(k) from RIk×(I1×···×Ik−1×Ik+1···×IN ) to R(I1×···×Ik−1×Ik+1···×IN )×Ik .

Therefore, we need to transpose the unfolded matrix and the modified HOSVD can then be

written as:

A = Ŝ ×1 V
(1)×2 V

(2) . . .×N V (N) (6.8)

where the dimension of the core tensor Ŝ is R(I2×I3×···×IN )×(I1×I3···×IN )×···×(I1×I2×...I(N−1)).

One can easily verify that the core tensor Ŝ along with V (k) would perfectly reconstruct the

tensor A.

Because V (k) is an orthogonal matrix, every such matrix has an associated point on a Graß-

mann manifold. Furthermore, a set of orthogonal matrices V (1), V (2), . . . , V (N) forms a set

of Graßmann manifolds M1, M2, . . . , MN where the dimension of each factor manifold is

different. In other words, V (k) is the component for a product manifold.

Interestingly, using the modified HOSVD, we are able to factorize each order of the tensor

into a factor manifold. Each factor manifold spans one order of a tensor in a column space

(Recall that every point on an Gn,p represents a subspace spanned by the column space) whereas

the traditional HOSVD spans multiple factors. Hence, the modified HOSVD can have a one-to-

one factorization between the order of a tensor and a factor manifold.

6.4 Graßmann Product Manifolds

To exploit the idiosyncratic nature of the geometry of visual data, we choose Graßmann man-

ifolds as the factor manifolds because the space of Graßmannian is well-defined, in particular,

there are closed-form geodesic distances.

A product manifold composed by a set of Graßmann manifolds is called Graßmann Product

Manifolds (GPM) described as:

M = G1 × G2 × · · · × GN (6.9)

where Gk is a factor manifold which is a Graßmann manifold in our case. The Graß-

mann manifold Gk consists of a sets of Ik-dimensional linear subspaces embedded in
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R(I1×I2...Ik−1×Ik+1...IN−1×IN ). As such, the Graßmann product manifold represents the Carte-

sian product space of Graßmannian.

The topology of a product manifold is expressed as the Cartesian product of lower dimen-

sional manifolds. The composition law allows a product manifold to be topologically decoupled

and the intrinsic elements can be computed on each factor manifolds. This decoupling provides

a means for computing the geodesic distance on a product manifold.

6.4.1 Geodesic Distance on Graßmann Product Manifolds

The space of a Graßmann manifold is curved, and the shortest path between two points on a

manifold is geodesic. Moreover, the space of a product manifold composed by a set of Graßmann

manifolds is also curved. Thus, the distance between two points on a product manifold should

also be geodesic.

It is known that the geodesic in a product manifoldM is the product of geodesics inM1,

M2, . . . , MN [68, 8]. As such, for any differentiable curve γ parametrized by t, we have

γ(t) = (γi(t), γj(t)) where γi and γj are the geodesics onMi andMj respectively. From this

observation, a geodesic distance on a product manifold can be formulated as:

dM(A,B) = ‖ sin Θ ‖2 (6.10)

whereA and B areN order tensors, and Θ = (θ1, θ2, . . . , θN ) where θk ∈ Gk is a list of canonical

angles and are computed separately on each factor (Graßmann) manifold. The geodesic distance

on GPM is defined as chordal distance [23]. Nevertheless, other distance metrics [28] can also

be considered. As Equation (6.10) shows, the canonical angles on product manifolds can be ex-

pressed as a Cartesian product of canonical angles computed by factor manifolds. Consequently,

the geodesic distance is formulated on product manifolds.

This development of geodesic distance on the product manifold can be related back to our

cylinder example where a circle in R2 and a line in R1 form an open cylinder in R3 in a product

space. Recall that a Grassmann manifold is a set of p-dimensional linear subspaces. In analogous

fashion, the product of a set of p1, p2, . . . , pN linear subspaces forms a set of product subspaces

whose dimension is (p1 + p2 + . . . + pN ). The product subspaces are the elements on a product
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manifold. This observation is consistent with the Θ in Equation (6.10) where the number of

canonical angles agrees with the dimension of product subspaces on the product manifold.

Note that canonical angles θk are measured between V (k)
A and V (k)

B where each is an or-

thogonal matrix spanning the row space associated with nonzero singular values from a mode-k

matrix. As such, an N order tensor in RI1×I2×···×IN would span N row spaces in I1, I2, . . . ,

IN , respectively, and the dimension of product subspaces on a product manifold is the sum of

each order of a tensor, i.e., (
∑N

i=1 = I1 + I2 + . . . + IN ).

6.5 Classification on Graßmann Product Manifolds

Putting all the components together for video classification, we employ a simple nearest neighbor

classifier. Let A and Bj be 3rd order tensors where A is a query video and Bj is a target video.

Then, the classification can be performed as follows:

j∗ = argmin
j∈target

dM(A,Bj) (6.11)

The tensor representation on a product manifold for a video models the variations in both space

and time. Each video is explicitly formulated as multiple effects and the geometry of the space

is properly considered. The geodesic distance on a product manifold is not only geometrically

sound, but is also very useful.

6.6 Experimental Results

We will test our method on the Cambridge-Gesture database [50]1 and the KTH human action

database [91]2. The Cambridge-Gesture database includes nine types of gestures taken under

five different illuminations. The video frame size is 320 × 240 and video lengths are diverse.

The KTH human action database has six categories of human actions and is the largest action

1ftp://mi.eng.cam.ac.uk/pub/CamGesData/

2http://www.nada.kth.se/cvap/actions/
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GPM GM TCCA [48] DCCA [49]
Set1 89% 77% 81% 63%
Set2 86% 70% 81% 61%
Set3 89% 76% 78% 65%
Set4 87% 77% 86% 69%

Average 88% 75% 82% 65%

Table 6.1: Classification rates for gesture action classification on the Cambridge-Gesture
database

data set publicly available. Each video frame is scaled to 160 × 120 and the number of frames

for each video sequence also varies.

For comparison purpose, we also view a video as a set of images. This set of images is pro-

jected on a Graßmann manifold and the geodesic distance between image-sets is computed for

action classification. We call this method Graßmann Manifolds (GM). This baseline algorithm

contrasts the merit of the geometry between a tensor on a product manifold and a tensor on a

Graßmann manifold.

6.6.1 Gesture Action Classification

The Cambridge-Gesture database includes 900 video sequences, 100 for each of nine gestures.

Each of the 100 videos per gesture class is further broken down into five illuminations (Set1,

Set2, Set3, Set4, and Set5) and ten motions from each of two subjects. Examples of these

gestures are given in Figure 6.3.

All video sequences are resized to 20×20×32. Note that our method can handle varied video

lengths, but the standardized procedure is simply for computational convenience. To standardize

the video length, we collect the middle 32 frames from a video sequence. Furthermore, no

space-time alignment is performed on this data set.

Following the experimental protocol of [48], the data set is partitioned into a number of

illumination sets where Set1, Set2, Set3, and Set4 are the test sets, and Set5 is the training set.

Furthermore, the training set is randomly divided into training and validation sets (10 sequences

for training and the other 10 sequences for validation). Since we do not perform prior training,

we discard the validation set.
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Figure 6.3: Hand gesture action samples. Each row depicts a class of hand gesture actions.
(Flat-Leftward (FL), Flat-Rightward (FR), Flat-Contract (FC), Spread-Leftward (SL), Spread-
Rightward (SR), Spread-Contract (SC), V-Shape-Leftward (VL), V-Shape-Rightward (VR), and
V-Shape-Contract (VC))
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Figure 6.4: The bar chart for gesture action classification on the Cambridge-Gesture database

The gesture action classification results are reported in Table 6.1 and our method (GPM)

outperforms the baseline algorithm, Graßmann manifold (GM), and the current state-of-the-art

methods, tensor CCA (TCCA) [48] and discriminative CCA (DCCA) [49], on all illumination

data sets3. As Table 6.1 suggests, the GPM is able to capture more discriminative information

from videos than GM where the GM uses the spatial but ignores the temporal information. The

gesture action classification results are also depicted as a bar chart given in Figure 6.4 where the

average accuracy is highlighted in the blue color. The key distinction between these methods

is that the GPM and TCCA account for all orders of a tensor while the GM and DCCA only

consider the tensor as an image set. In addition, both TCCA and DCCA require prior training

data whereas the GPM and GM are non-trained methods.

The classification results for GPM and TCCA are further divided into categories and pre-

sented in confusion matrices in Figure 6.5. Each cell in the confusion matrix is the average

classification rate from four illumination sets. The confusion matrices show that our method and

3We do not include Wong and Cipolla’s results [116] here because their results were reported using the leave-one-
out cross validation protocol.
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GPM TCCA [48]

Figure 6.5: Confusion matrices for gesture action classification

TCCA handle individual gestures differently, with GPM doing better on five actions (FC, SR,

VL, VR, and VC) and TCCA doing better on four actions (FL, FR, SL, and SC). Furthermore,

the worst TCCA performance for a gesture is 68%, compared to 78% for our method. The best

performance of TCCA for a gesture is 98%, compared to 96% for our method. Hence, GPM has

better overall recognition results.

6.6.2 Human Action Classification

The KTH human action data set [91] has six types of human actions including walking, running,

jogging, boxing, handwaving, and handclapping. Examples are shown in Figure 6.6. Each

type of human actions is performed by 25 people with four different scenarios: outdoors (s1),

outdoors with scale variation (s2), outdoors with different clothes (s3), and indoors (s4). Similar

to Kim and Cipolla’s settings [48], we first perform space-time alignment (location and frame

cropping) on the human action videos manually4. Next, all video sequences are resized to 20×

20 × 32. In order to standardize to a length of 32 frames, we take the middle 32 for longer

4The action is repeated several times on each original video.
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Figure 6.6: Human action samples. Rows from top to bottom are examples of walking, running,
jogging, boxing, handwaving and handclapping
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Average Accuracy = 96.0% Average Accuracy = 84.5%

Average Accuracy = 91.8% Average Accuracy = 71.7%

Figure 6.7: Confusion matrices for human action classification (Schüldt’s protocol): Top Left
(GPM), Top Right (GM), Bottom Left (BOF + SVM) [57], Bottom Right (LF + SVM) [91]

sequences, and recycle frames for videos shorter than 32 frames.

To facilitate comparison with prior work, performance on human action classification is eval-

uated using two protocols. The first is proposed by Schüldt et al. [91]. The KTH human action

data set is divided into three subsets with different people: training set (8 persons), validation set

(8 persons), and test set (9 persons). Like the gesture experiment, we discard the validation set

because no prior training is required for the proposed method. The training set is further divided

into four groups of {s1}, {s1, s4}, {s1, s3, s4}, and {s1, s2, s3, s4}. The test set is always {s1,

s2, s3, s4}.

The results are presented in the confusion matrices shown in Figure 6.7. Each cell in the

confusion matrix is the average result from the four training groups. The results of GPM, GM,

the bag-of-features SVM (BOF + SVM) [57] and the local feature SVM (LF+SVM) [91] are pre-

sented in the top left confusion matrix, top right confusion matrix, bottom left confusion matrix,

and bottom right confusion matrix, respectively. As Figure 6.7 demonstrates, the GPM improves
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GPM GM TCCA [48] DCCA [49] STIP [116] STW [78]
Walking 98% 75% 99% 100% 88% 82%
Jogging 99% 97% 90% 80% 75% 53%
Running 97% 70% 88% 68% 77% 88%
Boxing 97% 99% 98% 97% 92% 98%

Handclapping 98% 95% 100% 99% 100% 86%
Handwaving 95% 100% 97% 99% 88% 93%

Average 97% 89% 95% 90% 87% 83%

Table 6.2: Classification results for human action classification on the KTH human action
database (Leave-one-out cross validation)

the classification accuracies in jogging, running, and handclapping. Overall, the GPM achieves

96% average classification rate whereas the GM achieves 84.5%, the BOF+SVM obtains 91.8%

and the LF+SVM gets 71.7%.

The second experiment protocol, used by [48, 116, 78], is the leave-one-out (LOO) cross

validation. The classification results using LOO for the KTH human actions are reported in

Table 6.2. The first thing to note in Table 6.2 is that no algorithm is universally best. In terms

of top classification rates, STIP, DCCA, TCCA, GM, and GPM has the best recognition result

among the six actions. However, when the GPM is better, it is typically by a larger amount. This

is due to the utilization of underlying geometry on a product manifold and is reflected in the

higher overall average classification rate of 97% versus 95% for TCCA and 90% for DCCA.

Looking at the results for both protocols on the KTH human action data set, GPM achieves

the highest overall classification rate. Interestingly, it is notable that the two actions most com-

monly confused by the other approaches [57, 91, 48, 49, 116, 78] are jogging and running, and

GPM is able to reduce this ambiguity greatly.

Another interesting observation is between GPM and GM. GPM is a product manifold com-

posed by a set of Graßmann manifolds whereas GM is a single Graßmann manifold. Both

Figure 6.7 and Table 6.2 reveal that GPM significantly outperforms GM in the walking and run-

ning categories. This improvement is due in part to the tensor representation and the use of

the underlying geometry of product manifolds where both spatial and temporal information are

exercised.
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6.7 Discussion

The methods tested in this chapter can be logically divided into two categories. They are feature-

based methods [57, 91, 116, 78], and pixel-based methods [48, 49]. The proposed approach is

pixel-based. Conceptually, pixel-based methods are simpler because they do not need additional

human intervention and/or machine learning algorithms to identify the features, and a feature

detector to locate the landmarks. Therefore, they are arguably easier to apply to new action

classification problems.

All the algorithms that we compared against in Section 6.6 require prior training. Note the

LOO protocol in particular, as exemplified by the results in Table 6.2, works strongly in favor of

highly trained methods by maximizing the available training data. Of course, in practice large

amounts of training data are not always available. Whenever training is utilized, the opportu-

nity arises for performance to degrade if there is a mismatch between training and operational

data. Because our method depends upon the intrinsic geometry of the videos expressed through

product manifolds, no prior training is involved.

Not only is our method generic insofar as no parameters need tuning, but also the matching

time is fast. With a non-optimized MATLAB implementation, each match between two videos

takes about eight milliseconds on a standard modern computer. Furthermore, our geometric

framework is not limited to 3rd order tensors but generalizable to N-way tensors. Thus, the

potential applications of our geometric framework would go beyond video classification.

On the other hand, the proposed method inherits a drawback from pixel-based approaches.

Like every pixel-based method, the proposed approach is sensitive to cluttered backgrounds. In

cases where cluttered backgrounds arise, a preprocessing step like video segmentation may be

needed to extract the motion of interest. Nevertheless, the focus of this search is the geometric

framework relating a tensor on a product manifold and video segmentation is outside the scope

of this dissertation.
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Chapter 7

Conclusions

Due to the nonlinearity of image spaces, Euclidean geometry is not sufficient to characterize

the variability among images. In this dissertation, novel geometric frameworks for visual recog-

nition problems are presented. Our geometric frameworks are developed based upon special

manifolds in which the underlying geometry is a curved surface embedded in a high dimensional

Euclidean space. The special manifolds are mathematically well-defined and geometrically well-

understood. By properly choosing a parameter space, the idiosyncratic aspects of visual data are

exploited for pattern recognition. Theoretical considerations from differential geometry have led

in this dissertation to practical frameworks for performing state-of-the-art face recognition and

action classification.

The theme of this dissertation is the development of geometric frameworks for visual recog-

nition and the demonstration of the significance of the geometry of space. Three major research

results have been described including Canonical Stiefel Quotient (CSQ), Graßmann Registra-

tion Manifolds (GRM), and Graßmann Product Manifolds (GPM). GRM and CSQ bridge the

gap from a single still image to image-set by perturbing an image in registration and illumina-

tion spaces. GPM models a video as a 3rd order tensor and relates the tensor representation to a

product manifold.

CSQ exploits the underlying geometry of Stiefel manifolds for generic face recognition in

illumination spaces. An illumination model is used to relight a single image to a set of illumi-

nation variants. These illumination variants are adopted to form two projections on a tangent

space of a Stiefel manifold. The magnitudes of these projections are measured by an appropriate
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canonical metric. The CSQ is computed as a ratio between the canonical metrics of projections.

Our experimental results on CMU-PIE and YaleB datasets conclude that CSQ not only per-

forms well but is robust to the choice of training sets as well. The direct comparison between the

CGHP (the image-set version of a novelty filter) and the standard novelty filter assures the bene-

fits of image set matching. Furthermore, CSQ is not restricted to a particular illumination model.

Instead, any illumination model, or even any general systematic means of obtaining image sets,

could fruitfully employ the CSQ. distance measure.

GRM perturbs a registration manifold using affine transformations and forms a tangent space

from a local neighborhood. Since the tangent space admits a vector space structure, it is embed-

ded on a Graßmann manifold. The geodesic distance is exploited for face recognition. Un-

like many manifold learning algorithms, GRM does not require dense samples or training data.

Therefore, GRM is more generic and flexible. Empirical evidence suggests that approximately

100 local registration variants from the affine registration manifold optimizes recognition per-

formance. To reduce the computational burden, a coarse to fine matching strategy is introduced

that allows GRM to match a small set of gallery candidates.

Using whole face images, i.e. a holistic representation, our proposed GRM algorithm does

very well on the FERET tests. Specifically, the rank one identification rates on the Dup1 and

Dup2 probe sets are the highest for any holistic method. Performance is further boosted with the

introduction of local features. In addition, among all the non-trained algorithms, our algorithm

achieves the best result of the FERET Dup2 data set, which is generally considered the most

difficult data set on FERET.

GPM further demonstrates the value of taking into account the underlying geometry in video

classification. We represent a video as a 3rd order tensor and map it to a product manifold

where each factor manifold is a Graßmannian. The realization of points on these Graßmannians

is achieved by applying a modified HOSVD to a tensor representation of the action video. A

natural metric is inherited from the factor manifolds since the geodesic on the product manifold

is given by the product of the geodesic on the Graßmann manifolds.

This composite geodesic distance is formulated and applied to the problem of action clas-
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sification. Experimental results show that GPM performs very well on the Cambridge gesture

and KTH human-action data sets. Finally, GPM is generic in the sense that no prior training is

required and the matching time is fast.

The geometric frameworks based on special manifolds developed in this dissertation promote

the advantages of the geometry of special manifolds and provide a new perspective for pattern

classification. The fundamental idea of these frameworks is to view a set of images as a point in

some parameter space and perform classification according to the geometry of the chosen space.

Remarkable results on both still images and videos have been achieved for the applications

of face recognition, gesture recognition, and human action classification. Our introduction of

geometric frameworks on special manifolds further advances the research on analytic manifolds

for visual recognition.

7.1 Future Work

The results reported in this dissertation encourage further study of the role that special manifolds

can play in formulating practical solutions to real-world visual recognition tasks. One possible

extension will involve the integration of special manifolds with statistical inference. Machine

learning may be viewed as an optimization problem in addition to some geometric constrained

structure. As such, data are viewed geometrically. This may provide new insights in learning the

structure of patterns.

From a geometric point of view, we can also utilize the concepts of GRM and GPM. While

GRM forms a tangent space from a registration manifold, we can construct a tangent bundle, a

set of tangent spaces. Consequently, the tangent bundle can be related as a point on a product

manifold. We can then employ tangent bundles for classification.

Our geometric frameworks consider a set of images as a point in some parameter space.

While the distance metrics are well-defined, the characterization of image sets has significantly

impact on classification performance. A challenging question arises in the selection of image

sets. What sets of images would yield an optimum class separation and how can we obtain those

images? Further investigation in this area would definitely enrich the field of pattern recognition.
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Appendix A

Derivations and Properties of
Canonical Angles and Canonical
Vectors

A.1 Derivations

Given a constrained optimization problem as follows:

max
Wx,Wy

tr
{
W T
x CxyWy

}
(A.1)

subject to

W T
x CxxWx = I ⇒ ||XWx||2F = 1 (A.2)

W T
y CyyWy = I ⇒ ||YWy||2F = 1

where Cxy = XTY , Cxx = XTX , and Cyy = Y TY . We can express it as the Lagrangian formu-

lation given by

L(Wx,Wy, λx, λy) = W T
x CxyWy + λx(1−W T

x CxxWx) + λy(1−W T
y CyyWy) (A.3)

where λx and λy are the Lagrangian multipliers.

For convenient, we divide the λ by 2, and we have

L(Wx,Wy, λx, λy) = W T
x CxyWy +

λx
2

(1−W T
x CxxWx) +

λy
2

(1−W T
y CyyWy) (A.4)
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Taking derivatives with respect to Wx and Wy, we obtain

∂L

∂Wx
= CxyWy − λxCxxWx = 0 (A.5)

∂L

∂Wy
= CyxWx − λyCyyWy = 0 (A.6)

Note that Cyx = CTxy

Premultiplying W T
x to Equation (A.5), we have

W T
x CxyWy − λxW T

x CxxWx = 0 (A.7)

Premultiplying W T
y to Equation (A.6), we get

W T
y CyxWx − λyW T

y CyyWy = 0 (A.8)

Since the trace operator induces transpose invariant, we have

(W T
x CxyWy)T = W T

y CyxWx (A.9)

Subtracting Equation (A.8) from Equation (A.7), we obtain

λyW
T
y CyyWy − λxW T

x CxxWx = 0 (A.10)

λxW
T
x CxxWx = λyW

T
y CyyWy (A.11)

From Equation (A.2), we know W T
x CxxWx = 1, and W T

y CyyWy = 1, then we obtain

λx = λy = λ (A.12)

Substituting Equation (A.12) into ∂L
∂Wx

and ∂L
∂Wy

, we have

CxyWy − λCxxWx = 0 (A.13)

CyxWx − λCyyWy = 0 (A.14)

From Equation (A.13), we obtain

CxyWy = λCxxWx (A.15)

Wy = λC−1
xy CxxWx (A.16)
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Substituting Wy into Equation (A.14), we have

CyxWx = λCyyWy (A.17)

= λCyy(λC−1
xy CxxWx) (A.18)

= λ2CyyC
−1
xy CxxWx (A.19)

Assuming non-singularity of Cyy,

(CyyC−1
xy )−1CyxWx = λ2CxxWx (A.20)

CxyC
−1
yy CyxWx = λ2CxxWx (A.21)

Similarly,

CyxC
−1
xx CxyWy = λ2CyyWy (A.22)

Note that it is a generalized eigenvalue problem (Ax = λBx). Because the eigenvalues of the

two eigen-systems are identical, we can combine Equation (A.13) and Equation (A.14) into a

single generalized eigen-system given as follows.[
0 Cxy
Cyx 0

] [
Wx

Wy

]
= λ

[
Cxx 0

0 Cyy

] [
Wx

Wy

]
(A.23)

Due to the fact that the matrices Cxx and Cyy are symmetric positive definite, we can utilize the

Cholesky decomposition to factorize these matrices [15]. Let

Cxx = Rxx ·RTxx (A.24)

where Rxx is a lower triangular matrix. Let

ux = RTxx ·Wx ⇒ Wx = R−Txx · ux (A.25)

Then, we can rewrite Equation (A.21) as

CxyC
−1
yy CyxWx = λ2RxxR

T
xxWx (A.26)

R−1
xxCxyC

−1
yy CyxR

−T
xx ux = λ2ux (A.27)
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Likewise for the Equation (A.22), we are therefore with a symmetric eigenvalue problem (Ax =

λx).

If, on the other hand, both Cxx and Cyy are nonsingular matrices, we can directly derive

Equation (A.21) and Equation (A.22) as an eigenvalue problem by taking the inverse of Cxx and

Cyy, and it becomes

C−1
xx CxyC

−1
yy CyxWx = λ2Wx (A.28)

C−1
yy CyxC

−1
xx CxyWy = λ2Wy (A.29)

where λ2 are the eigenvalues of C−1
xx CxyC

−1
yy Cyx which are the maximum correlations.

The canonical angles (canonical correlations) and the canonical vectors are associated by

cos(θk) = λk, U = XWx, V = YWy (A.30)

where λk are the eigenvalues, and Wx and Wy are the eigenvectors of the generalized eigen-

value problem. Note that maximizing the canonical correlations is equivalent to minimizing the

canonical angles. Furthermore, Akaike [4] showed that the mutual information between two

time series is given by

I(T1 ‖ T2) =
p∑
i=1

log
(

1
1− λ2

i

)
(A.31)

where T1 and T2 are time sequences.

A.2 Properties

A.2.1 Invariance to Linear Transformations

One important property is that canonical angles are invariant to linear transformations of data

matrices [16]. LetX and Y be the mean centered data matrices whose dimensionality is n×p and

n×q, respectively. Consider two nonsingular projection matricesU and V whose dimensionality

is also n× p and n× q, respectively. Then, a linear transform can be written as

X̂ = UTX (A.32)

Ŷ = V TY (A.33)
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Then, the sample covariance matrices can be expressed as

Ĉxx = X̂X̂T = UTX(UTX)T = UTXXTU = UTCxxU (A.34)

Ĉyy = Ŷ Ŷ T = V TY (V TY )T = V TY Y TV = V TCyyV (A.35)

Ĉxy = X̂Ŷ T = UTX(V TY )T = UTXY TV = UTCxyV (A.36)

Ĉyx = Ŷ X̂T = V TY (UTX)T = V TY XTU = V TCyxU (A.37)

According to Equation (A.30), we have two generalized eigen-system written as

ĈxyŴy = λ̂ĈxxŴx (A.38)

ĈyxŴx = λ̂ĈyyŴy (A.39)

Substituting Equation (A.34), Equation (A.35), Equation (A.36), and Equation (A.37) into Equa-

tion (A.38) and Equation (A.39), we have

UTCxyV Ŵy = λ̂UTCxxUŴx (A.40)

V TCyxUŴx = λ̂V TCyyV Ŵy (A.41)

Premultiplying Equation (A.40) and Equation (A.41) by U−T and V −T , respectively, we obtain

CxyV Ŵy = λ̂CxxUŴx (A.42)

CyxUŴx = λ̂CyyV Ŵy (A.43)

As a matter of fact, these two equations also represent two generalized eigen-systems and can be

rewritten as

CxyWy = λ̂CxxWx (A.44)

CyxWx = λ̂CyyWy (A.45)

where

Wx = UŴx ⇒ Ŵx = U−1Wx (A.46)

Wy = V Ŵy ⇒ Ŵy = V −1Wy (A.47)
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Then, the canonical variates are

Ŵ T
x X̂ = (U−1Wx)TUTX = W T

x U
−TUTX = W T

x X (A.48)

Ŵ T
y Ŷ = (V −1Wy)TV TY = W T

y V
−TV TY = W T

y Y (A.49)

Equation (A.48) and Equation (A.49) show that the canonical variates are identical. It means

that all the necessary components would remain unchanged described as follows.

Ŵ T
x X̂(Ŵ T

x X̂)T = W T
x X(W T

x X)T = W T
x CxxWx (A.50)

Ŵ T
y Ŷ (Ŵ T

y Ŷ )T = W T
y Y (W T

y Y )T = W T
y CyyWy (A.51)

Ŵ T
x X̂(Ŵ T

y Ŷ )T = W T
x X(W T

y Y )T = W T
x CxyWy (A.52)

Thus, transformed versions of canonical correlations would be the same as the original canonical

correlations such that λ̂ = λ.

A.2.2 Orthogonality of Generalized Eigenvectors

Another important property is that any pairs of canonical vectors belonging to different canon-

ical correlation is uncorrelated. Following the derivations from [16], we consider a generalized

eigenvalue problem as

AW = λBW (A.53)

where A and B are symmetrical matrices whose dimensionality is n× n. Now, let us consider a

single eigenvector, wk, whose dimensionality is n× 1 and we have

Awi = λiBwi (A.54)

Awj = λjBwj (A.55)

Premultiplying Equation (A.54) and Equation (A.55) by wTj and wTi , respectively, we obtain

wTj Awi = λiw
T
j Bwi (A.56)

wTi Awj = λjw
T
i Bwj (A.57)
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Since wTi Awj is a scalar andA andB are symmetrical, we can transpose it such that (wTi Awj)
T

= wTj Awi.

wTi Awj = λiw
T
i Bwj (A.58)

wTi Awj = λjw
T
i Bwj (A.59)

Subtracting Equation (A.58) from Equation (A.59), it becomes

(λj − λi)wTi Bwj = 0 (A.60)

Because λi and λj are distinct, wTi Bwj must be equal to zero. Likewise, we can move the λ to

the left side and we have

(
1
λj
− 1
λi

)(wTi Awj) = 0 (A.61)

and, due to the same fact, wTi Awj is also equal to zero. From this observation, we get

wTxiCxxwxj = 0 (A.62)

wTyiCyy wxj = 0 (A.63)

wTxiCxy wyj = 0 (A.64)

wTyiCyxwxj = 0 (A.65)

where index i is not equal to index j. This property demonstrates the orthogonality of the

canonical vectors.

A.2.3 Canonical Vectors as Linear Combinations of Data Matrices

In terms of canonical vectors, we note that Wx ∈ span(X) and Wy ∈ span(Y ) [73]. Recall that

the solution of Equation (A.1) can be found in a generalized eigenvalue problem. Let us consider

the following generalized eigenvalue equations.

AW = λBW (A.66)[
0 XTY

Y TX 0

] [
Wx

Wy

]
= λ

[
XTX 0

0 Y TY

] [
Wx

Wy

]
(A.67)
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If we factorize a matrix B, we get

B = EΛET =
p+q∑
i=1

λieie
T
i (A.68)

where E is an orthonormal matrix, ei are the eigenvectors of B, and Λ is a diagonal matrix

consisting of the corresponding eigenvalues. Let

E =
[
Ex
Ey

]
(A.69)

then, we have

BE =
[
XTX 0

0 Y TY

] [
Ex
Ey

]
=
[
XTXEx
Y TY Ey

]
(A.70)

Writing it as an eigen-equation, we have

BE = ΛE (A.71)[
XT (XEx)
Y T (Y Ey)

]
= Λ

[
Ex
Ey

]
(A.72)

Equation (A.72) indicates that Ex and Ey are linear combinations of X and Y , respectively.

Assuming B is a nonsingular matrix, then applying Equation (A.68), we obtain

B−1AW = λW (A.73)

(EΛ−1ET )AW = λW (A.74)

E(Λ−1ETAW ) = λW (A.75)

Equation (A.75) indicates that W is a linear combination of E. Since E is linear combinations

of data matrices X and Y , this implies that Wx and Wy lie in the span of X and Y , in other

words, Wx ∈ span(X) and Wy ∈ span(Y ).
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