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"start-up" time, after which only much slower tracking will be
sufficient. This can be achieved by using a) smaller size blocks
at the start and then gradually increasing the block length
ancl/or b) smaller soft-constrained parameter at the beginning
and then increasing this parameter. The latter algorithm is
referred to as "growing memory tracking" in [3]. However,
due to the modifications to the block-LS cost function, the
optimality is traded in favor of information transfer between
the data blocks.

We will begin by showing how the soft-constrained term in
[3] can be chosen to guarantee a near optimal solution. Then, a
new modified block FTF algorithm is suggested that provides
a more efficient means of weight transferring between the data
blocks while maintaining the optimality of the solution. The
implementation of this scheme using the original block FTF
structure is then suggested. The effectiveness of our algorithm
is tested on the underwater target identification problem from
acoustic backscattered signals.

Various signal processing schemes [4]-[8] have been pro
posed in the literature to extract resonance information from
the acoustic backscatter from objects of regular shapes such
as thin spherical or cylindrical shells submerged in water. In
[4], a joint time-frequency analysis of the impulse response
of a spherical shell has been studied for characterization of
the surface waves on an elastic shell using the Wigner-Ville
distribution. The wavelet transform using five-cycle cosine
modulated Gaussian wavelet approximations was applied to
the impulse response of a spherical shell of differing thickness
to examine resonance characteristics of the target [5]. A
wavelet-based classifier that uses an artificial neural network to
adaptively compute discriminatory information on a target in
the form of locations, sizes, and weights of Gaussian patches in
time scale is described in [6]. The method in [7] uses a short
time Fourier transform to determine the resonance spectrum
of submerged elastic cylindrical wires.

In [8], an RLS-based adaptive filtering scheme for the sep
aration of resonant and specular components in the backseat
tered signal from objects of arbitrary shape is developed.
The test results in this reference indicated that unlike the
previous methods, no underlying model assumptions on the
elastic return, and no a priori knowledge on the signal statistics
would be required. In addition, this method offers excellent
robustness in presence of noise and great performance for
relatively stationary backscattered signals and is ideally suited
for on-line processing situations. However, these results also
revealed the interesting fact that for certain aspect angles,
where the backscattered signal exhibits highly nonstationary
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Abstract-s- In this paper, the problem of weighted block re
cursive least squares (RLS) adaptive filtering is formulated in
the context of block fast transversal filter (FTF) algorithm. This
"modified block FTF algorithm" is derived by modifyingthe con
strained block-LS cost function to guarantee global optimality.
This new soft-constrained algorithm provides an efficient way
of transferring weight information between blocks of data. The
tracking ability of the algorithm can be controlled by varying the
block length and/or a soft constrained parameter. This algorithm
is computationally more efficient compared with other LS-based
schemes. The effectiveness of this algorithm is tested on a real
life problem dealing with underwater target identification from
acoustic backscatter, The process involvesthe identification of the
presence of resonance in the acoustic backscatter from a target
of unknown shape submerged in water.

B LOCK LMS (BLMS) adaptive filtering was studied in
. several papers [1], [2] as an efficient means to perform

adaptive filtering on nonstationary data. Using this scheme,
the filter tap weights are updated once per each block rather
than once per each sample as with the conventional filters.
Among the benefits of this class of filters are: low com
putational requirements, especially when implemented using
fast transform schemes, reduced round-off error effects, high
inherent parallelism, etc [1]. However, the learning rate in
this algorithm is not data dependent, and additionally, LMS
based algorithms typically suffer from speed-accuracy trade
off problems.

In [3], a block FTF structure was developed that can
be used to process either consecutive blocks of data or
discontinuous variable length blocks of data. In this method,
a block-least squares (LS) cost function is minimized in every
block independently. As a result, this algorithm guarantees
a locally optimal solution in each block. This algorithm is
computationally very efficient compared with other LS-based
schemes. To transfer weight information from one block
to the next, a soft constrained method was suggested by
modifying the block-LS cost function. The tracking ability of
this algorithm can be controlled by varying the block length
ancl/or the soft constrained parameter [3]. For example, in
many applications, fast tracking is required only over an initial
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Equation (3) can be solved recursively in every block using
either an RLS-based scheme that requires O(N2

) operations
per sample or an FTF-type algorithm [3] with only O(N)
computational efforts per sample.

A. Geometric Projections and Updating Formulae

To develop a transversal filter structure, the following defini
tions are needed. The operator that projects an L-dimensional
vector onto the subspace spanned by the columns of an
L x n data matrix X is Px = X(X*X)-lX*, and its
orthogonal complement is Yk = 1- X(X* X)-l X*. Note
that pi = Px, and consequently, P5cPx = O. A transversal
filter operator defined in terms of the data matrix X is K x =
X(X* X)-l. All residuals and cross-correlation coefficients
may be expressed in the form u* P5c zv, and all transversal
filters may be written as u* Kx [9], [10]. Updating transversal
parameters involves appending new information to the data
matrix. Thus, the new data matrix will have {X} EB {z} as
its subspace. The quantity PX,z will denote projection on the
subspace {X} EB {z}. spanned by the columns of X and z.
Augmenting a vector z to the collection of vectors X leads to
the following projection updating rule (see [9] and [10]):

behavior, the system attempts to track the variations of the
backscattered. This problem can be circumvented if the track
ing ability of the adaptation algorithm can be controlled. Since
there exists a time delay between the onset of the specular and
resonant components, we start out with fast tracking before the
appearance of the resonant component and slow tracking (or
no tracking at all) when this component has occurred. This is
addressed in this paper by using the proposed modified block
FTF structure.

This paper is organized as follows. In Section II, the neces
sary notation, vector space interpretation of the LS problem,
and analysis of soft-constrained algorithm are introduced. The
modified block FTF is derived in Section III. Generalization
of the modified block FTF is derived in Section IV. The
performance of the algorithm is demonstrated, and the test
results are presented in Section V.

II. BLOCK FTF ADAPTIVE FILTER [3]

The original block FTF problem as stated in [3] is the
determination of the weight vector WNlk that minimizes the
block LS cost function

k

~Nlk = L (d(r) - WNlkXNr)*(d(r) - WNlkXNr) (1)
r=k-I+1

*p-l *p-l *p-l ( *p-l )-1 *p-lU x,zv= U XV - U Xz z Xz z XV. (4a)

where * denotes conjugate transpose, X N r

[x*(r) x*(r - N + 1)]* is the input vector with
x(r) being the input signal at time r , and where

d(r) desired signal
N number of parameters in the weight vector WNlk
1 length of the block
k highest time index in the block.

Next, let us define the general aggregate data matrix and
desired vector in (2), which appears at the bottom of the page,
and dlk = [d(k) d(k - 1) d(k -1 + 1)]*.

Defining the error block vector ENlk = d1k - X NlkWN1k,
(1) can be rewritten as ~Nlk = ENlkENlk. Minimizing (1) with
respect to WNlk gives the normal equation ENlkXNlk = 0
from which the block-LS solution can be obtained as

(3)

In addition, we can write ENlk = Pklkdlk, and ~Nlk =
d'lkPklkdlb where KNlk = XNldXNlkXNlk}#, PNlk =
XNldXNlkXNlk}# X N1k, and # represents any generalized
inverse that usually reduces to the standard inverse when the
quantity involved is invertible.

Note that in the multichannel case, x(r) is a p x 1 vector,
and d(r) is a q x 1 vector that makes Wnlk a q x np matrix.

The transversal filters are updated using

u* Kx,z = [u*KxIO] +o: piz(z*piz)-l[-z*KxII], (4b)

u* Ks,x = [Olu*KxJ +u* piz(z*piz)-l[II-z*KxJ (4c)

where u, v, and z are matrices in Cpx L where C is the field of
complex numbers. The choice of the matrices u and v depends
on the parameters to be updated, and z determines the type of
update being performed on the parameters.

In the sequel, the unit vector e; will be used to denote a
vector with all entries as zeros except 1 in the ith position.
The dimension of this vector is conformable with the context
in which it appears.

Let X = [~;] such that Xl is an 1- 1 x n matrix forming
the first 1 - 1 rows of X, and X2 is the lth row of X. Then

[Kt,]= K x + piel(e'lPiel)-l[-e'lKxJ. (5)

Similarly, if we use the decomposition X = L~~], where Xl

is the first row of X and X 2 is a matrix of the last 1- 1 rows
of X, then

[K~2] = K x + piel(eiPied-I[-eiKx]. (6)

Xnlk = [Xlk Xlk-l . .. Xlk-n+l]

[
. ~'(~(~)1) ::i:=g X'~~(~:~) 1). ]

x*(k-l+l) x*(k-l) x*(k-n-l+2)

(2)
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Note that appending e1 or el to the columns of X leads to the
following projection updating rules:

P5E;el = [6 ~;], and Pi;el = [6 ~~]. (7)

The block FTF algorithm is the direct result of certain sub
stitutions for U,V,Z in (4)-(6) that lead to a closed set of
recursions. The original block FTF algorithm is given in [3]
(see Tables II-IV in this reference).

B. Block FTF and Soft-Constrained Algorithm

In the block FTF algorithm, the weights are updated block
wise using an order update procedure, and the filtering is
performed on each block individually. To transfer the weight
information interblockwise, the soft-constrained algorithm [3]
can be used. In this algorithm, the following soft-constrained
block-LS cost function is minimized:

k

~NZk = f-lklIWNlk - Woll 2+ I: (d(r)
r=k-I+1

- WNlkXNr)*(d(r) - WNlkXNr) (8)

called growing memory tracking, fixed memory tracking, and
variable memory tracking. In the growing memory tracking,
the tracking capability of the algorithm is steadily diminished
by increasing the soft-constraint parameter f-lk while the block
length is kept fixed. Fixed memory tracking, on the other
hand, offers better tracking of slow variations in W m«. In
this algorithm, the soft-constraint parameter f-lk and the block
length l take certain fixed values. Finally, in the variable
memory tracking algorithm, both f-lk and l are varied from
block to block. In the next section, we analyze the optimality
properties of the soft-constrained block FTF algorithm.

C. Analysis of Soft Constrained Block FTF Algorithms

In this section, we investigate rigorously the effects of the
parameter f-lk and the initial weight vector Wo on the opti
mality of soft-constrained block-LS solution. For notational
convenience, we will drop the subscripts of X, W, d and use
Xi, Wi, and d; to denote the data matrix, the weight vector,
and desired vector for the ith block. In the soft constrained
block-LS problem, the cost function to be minimized can be
rewritten as

In [3], three different schemes were suggested to control
the tracking capability of block FTF by changing the soft
constraint parameter f-lk and/or the block length l. These are

where f-lk is a nonnegative quantity used to weight the effect of
initial conditions on the cost criterion, and Wo is a 1 x N row
vector that represents some initial setting for WNlk prior to
processing the data from k -l+1 to k. The vector Wo could be
the weight solution from the previous block, in which case, this
algorithm provides a way to transfer information from previous
data blocks to the current data block. The soft constraint term
allows greater flexibility in varying the tracking ability of
the block FTF and, at the same time, avoiding singularity
difficulties. By choosing very large values of f-lk, the tracking
ability of block FTF algorithm can be slowed down.

The updating rules for this algorithm are the same as in
the order update algorithm [3, Table IV], except that the
matrices XNlk and dZk are replaced by XN,Z+N,k and dl+N,k,
respectively, which are defined by (9), which appears at the
bottom of the page, and

d1+N,k = [d(k), d(k - 1)"",

d(k -l + 1), f-l1/2WO,N_1"'" f-l1/2WO,O]*

where Wo = [Wo,o
is

WO,N -1], and the weight solution

(10)

Minimize ~i = f-li(Wi - WO)(Wi - Wo)*

+ (d: - WiXt)(d: - WiXt)*. (11)

The factor f-li allows the control of the influence of the soft
constrained term on the squared error sum. The main purpose
of using soft constraint, besides keeping the weights bounded
and, hence, providing numerical stability, is to give certain
weight to some initial weight vector Wo of previous data block
that might have been obtained by some other methods. It can
easily be checked that the solution that minimizes ~i in (II) is

Wrft = Wo + (d: - WoXnXdf-lJ + xt Xd -1 . (12)

Let Wi
L S = d:Xi(X;*Xi )- l be the LS solution for the ith

block; then, (12) can be rearranged so that

Wrft = Wo + (Wi
L S

- Wo)xt Xi {f-liI + xtXd -1 (13)

or equivalently

Wio ft = Wi
L S

- f-li(Wi
LS

- WO){f-lJ +X; Xd -1. (14)

By examining the equivalent forms (12)-(14), it is obvious
that substituting f-li = 0 in (14) yields the LSsolution, i.e.,
maximum tracking, whereas substituting f-li =00 in (13)
yields the initial weight vector W o, i.e., no tracking. This
implies that the soft-constrained solution for f-li f- 0 is neither
locally nor globally optimal. The following theorem shows the

x*(k)
x*(k - 1)

X Nl+Nk = [XZ+Nk XI+Nk-1 ... Xl+Nk-N+1] = x*(k -l + 1)
o

x*(k - 1)
x*(k-2)

x*(k-l)
o

o

x*(k - N + 1)
x*(k - N)

x*(k-N-l+2)
f-l1/2

o

(9)
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relation between the soft-constrained solution and the global
LS solution of two consecutive blocks.

Theorem 2.1: Consider two consecutive blocks of lengths
h and h with data matrices and desired vectors Xl, d1 and
X 2, d2, respectively. Let WI and W2 be the LS solutions
of the two individual blocks, i.e., Wi = d7 Xi(Xt X i)-l for
i = 1,2. Then, the LS solution for the whole data sequence is

W LS = (d;'Xl +d;X2){X;X1+X~X2}-1 (15a)

or alternatively

W LS = WI + (W2 - WdX~X2{X;X1 + X~X2}-1 (15b)

and the soft-constrained solution is

Additionally, there exists a constant A 2: a such that

Ilwsa ft
- WLsllmin ~ A(Amax(X;Xd - Amin(X;Xd)·

This minimum is achieved when

JL = Amax(XrXd + Amin(XrX1 )

2

for which the soft-constrained solution corresponds to a nearly
optimal solution.

Proof See Appendix A.
Remark: Comparing (15b) and (16) yields that wsoft and

WLS are identical if X; Xl = JLI, which is not practically
feasible. However, this suggests that to minimize the difference
IIwsoft

_ W LS II, we have to choose JL that minimizes IIX;X 1 

JLIII. Note that w soft = W LS if all eigenvalues of XrXl
are equal. In that case, X; Xl = AI = JLI, i.e., the data are
decorrelated and stationary, which rarely occurs in reality as
mentioned before.

The results of Theorem 2.1 can easily be extended to the
general case by considering all the previous data samples to
be contained in the first block. As can be observed from
these results, if the solution is to be near the global optimal
solution for multiple blocks, the soft-constrained parameter
should be chosen, depending on the eigenvalues of the prior
data correlation matrix. Even though there are a number of
algorithms available that allow recursive determination of
these eigenvalues, this is not a particularly feasible scheme.

In the next section, we develop a new class of block
FfF algorithms that allows greater flexibility in tracking by
adjusting the block length, and at the same time, all the
information in the previous blocks are fully transferred to
determine the current block weight. This algorithm differs
from the block FfF algorithm [3] in several aspects. As shown
before, the blockFfF in [3] transfers the useful information
between blocks using weighted initial condition, whereas
this algorithm transfers information using some weighted
correlation matrices of previous blocks, which yields better
tracking, whereas for certain weighting, it guarantees globally
optimal solution; this is a feature that is not present in the
block FfF [3]. Moreover, this algorithm can be used as a time
update algorithm by choosing the block lengt~ to be one.
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III. THE MODIFIED BLOCK FfF ALGORITHM

A. A New Soft-Constrained Block-LS Cost Function

While the soft constrained block FTF algorithm of [3] is
very convenient to use, it does not provide an optimal solution
when needed especially for the first few blocks where fast
tracking is desired. As shown above, the maximum amount
of information that can be transferred from a previous block
X 1 to a current block X 2 is dependent on the quantity
(Amax(XiXI) - Amin(XiXI))/2, which could be very large
in a nonstationary environment and highly correlated data.
In this section, we develop a soft constrained algorithm that
can transfer as much information as needed by weighting
the previous data blocks. To establish a better choice of the
soft constraint term, let us first consider the following soft
constrained LS problem:

Minimize ~i = (Wi - Wi-I)P(Wi - Wi-1)*

+ (d7 - Wi Xn(d7 - WiXn* (17)

where P is a positive semi-definite matrix. Note that (17)
becomes the original soft-constrained problem in (11) if P =
JLil and Wi- l = Woo The solution of (17) can be shown to be

wrft = (d7 Xi + Wi-1P){P + xtXi}-l
= Wi- l + (d7 - Wi-1XnX;{p + xtX;} -1 (18)

or, equivalently,

wrft = Wi-1+(Wi
LS

- Wi-I)Xt Xi{P +X] X;} -1 (19)

where WiLS is the LS solution of the block of data matrix Xi
and desired vector di . Again, if we consider two consecutive
blocks with data matrices Xl and X 2 , then comparing (19)
when i = 2 with the global LS solution given by (15b)
suggests that wsaft = W LS if and only if P = X; Xl, i.e., to
transfer all information from the block X I to the block X 2,

the matrix P must be chosen to be X; Xl. This result is very
interesting as it shows how the soft-constrained LS method can
be modified in order to maximally transfer the data and, more
importantly, generate a globally optimal block-LS solution.
This result is generalized in the following developments.

Now, let us consider M consecutive (not necessarily equal
size) blocks with data matrices Xl,"" X M and desired
vectors d l , " ' , di«, respectively, and define the following
modified block-LS cost functions that must be minimized.

Minimize csa ft = (W _ wsoft )(~lX~x)C,M M-1 L...J JL, , ,
i=r

. (W - WXJ~l)*

+ (d'M - WX~)(d'M - WX~)* (20)

and

Minimize ~kJ = (d'M - WX~ )(d'M - WX~)*
M-I

+ L JLi(d7 - WXn(d7 - wxt)* (21)
i=r

where WM~l in (20) minimizes ~Mr:1 in the block M - 1.
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Where

6 =P,I(W - W 1)XiXl(W - Wd*

+ (d; - WX2')(d; - WX2)* (27)

(25)

h N- 1likJ = d~ikiXNliki

PN-llikJ = X;ikiXNliki' (26)

HNliki = [hOliki

Pru.e; = [POliki

Since an optimal solution is required for each block, the pa
rameters aOliki, POliki, POliki -1, f::!.Oliki' hOl i ki, and POliki are
to be computed and saved for updating the parameters in the
next block. In essence, we are implementing the block FTF
algorithm for the single block XNLMk M' However, this is
done in steps so that we can have access to the weight vector
at the edge of each block for the filtering process. The steps
for implementing the general version of this algorithm when
P,i i- 0 are described in the next section.

It should be observed that this algorithm can be applied to
process any number of consecutive blocks of data. In fact, it is
possible to apply this algorithm for sample by sample filtering
if desired. In this case, h should be set to be equal to N to
ensure optimality; then, Ii = 1 should be chosen for i :::: 2.

Information is passed from one block to an
other using correlational quantities accumulated in

aOLiki, fJOLiki' fJoLik i ~1, f::!.OLik i, HNliki and P N Liki'

Tracking in this algorithm can be controlled by varying
the lengths of individual blocks or the number of consecutive
blocks used. The main d~awback of this algorithm is that
it cannot be used to solve (20) or (21) with the p,/ s
being different from 1 due to the fact that the data matrix
involved does not satisfy the shifting property. However,
generalization of this algorithm in this case can be established
to accommodate the changes of the data matrix at the edges of
individual blocks. This will be addressed in the next section.

where

X 1 data matrix for the first block
X 2 data matrix for the second block
d2 desired vector for the second block

IV. GENERALIZATION OF MODIFIED BLOCK FTF ALGORITHM

Let us re-examine (20) and consider two blocks of data of
lengths hand 12 (with II + 12 = I). We shall later discuss
the transfer of information from one block to another. Now,
this two-block problem can be stated as the determination of
a vector W that minimizes

and c.; is the desired vector for the Mth block.
As in [3, Table II], the correlator quantities Pnliki and

h-a,», for a block with data matrix Xnliki are, in our case,
defined as Pnl·k· = x l* k _ xi.» and b-a.» = xl*k _ dlk,

t 1. i: i n t z. t t tin t t

where dliki = (d~iki - WnLi_lki_l X~likJXnliki' which for
convenience can be written collectively in matrix form as

where L M = Ef!r Ii, and Ii is the size of the ith block Xi.
This L M x N matrix XNLMkM satisfies the shifting property
for each M if only if P,i = 1, i = 1"", M, in which case,
the block LS solution can be obtained recursively by applying
the fast block FTF algorithm stated in [3, Table IV].

As shown in Theorem 3.1, the updating equation for the
weight vector can be rewritten as

XNLMkM = [X!tt- ylP,M~IX!tt-_l ylIJ,M-2 X!tt--2

~X;]*

B. Implementation of Modified Block FTF

To be consistent with the notation of'Section II, the ith block
with data matrix Xi will be denoted by X m, k" where k; is
the highest time index in Xi and I, is the size of the block.

One can view the block FTF algorithm in [3, Table IV] as a
method of computing d~ikiXNliki{XNlikiXNlik,}-I, where
XNliki is any matrix of the form given in (2). Let {Xdf!r

be as in Theorem 3.1, and let

with initial condition W10ft = Wrs = d~Xl(XiXd-l.

b) The two solutions are equal if and only if P,i = 1 for
i = 1"", M - 1. Note that p,M = 1.

Proof' See Appendix B.
Note that in the modified soft-constrained block-LS case

in (20), tracking can be controlled by varying the number of
blocks processed and the block lengths. The case r = 1, IJ,i = 1
for i = 1, ... , M yields the optimal solution for the whole data
set up to the upper edge of the M th block, whereas the case
P,i = 0 for i = 1, ... ,M - 1 yields the block FTF algorithm
of [3].

To implement the results of Theorem 3.1 using the original
block FTF, the following algorithm for the modified block
FTF algorithm is given.

Note that the first cost function represents the cost function
for a soft-constrained block-LS problem while the second one
is the weighted block-LS problem. The next theorem shows
that these problems can lead to the same solution if the IJ,i' s
are properly chosen.

Theorem 3.1: Consider the LS minimization problems de
fined in (20) and (21):

a) The solutions W~ft and wkf, of these are, respectively,
given by
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(30)

(32)

(31b)

and

1,-1

R nl,l2 k = L Xnk-iX~k_i
i=O

In order to determine a recursive solution for .6.W Nl,l2 k,

relationships between K nl,-1l2 k and K nl,12- 1k and Pnl,-112 k
and Pnl,12- l k are required, which can be established as
follows. Let R nl,12k be defined by Rnl,l2k = X~l,12kXnl,12k.

Then

12-1

+ ttl L Xnk-l, -iX~k-l,-i
i=O

Applying the matrix inversion lemma to (33) yields

tc: - R- l
nl,12-lk - nl , -1l2k

R- I X X* R- l
nl,-112k nk-l,+l nk-l,+1 nl,-Ibk

_1_ X* . tc: X
1 + nk-l,+l nl,-1l2k nk-l,+l·- ttl

are as defined before.
Note that the updating rules in (5) become

[
K nl,012- lk ] K + pi- ( ir: )-1= nl,12k nl,bke1 el nl,bkel

and

(34)

and

Since

WI some initial weight vector that, in this case, can be the
weight vector for the first block.

Using the notation of Section II, matrices Xl, X 2 and the
desired vector d2 can be written as X 2 = X Nl2k' Xl =
X nt, k-1 2 , and d2 = dl2k. where k is the highest time index
in the second block. As shown in Theorem 3.1, the solution to
the minimization problem in (27) is W = WI + .6.WI, where

.6.Wl = (d; - WIX;)X2(ILlXrXI +X;X2)-1.

The main purpose of this section is to develop a fast algorithm
for computing .6.WI. Using the above notations, the cost
function (27) can be rewritten as

~Nl,12k = ttl (WNl,12k - Wr)X~n,k_12XNl,k-12

. (WNl,l2k - Wr)* + (db k - W Nl,bk XNl2k)*

. (dl2k - WNl,12kXNl2k) (28)

where ttl ;::: 0, d(r) and X N r are defined as in Section II.
In the multichannel case, x(r) is a p x 1 vector, and d(r) is
a q x 1 vector, which makes Wnl, l2k a q x np matrix. The
derivation of the multichannel case is similar to that of the
single-channel; therefore, the derivation here is stated for the
multichannel case.

Before we proceed, we introduce the following notations,
which are convenient for geometric interpretation of the block
LS problem (27). The geometric interpretation of the block
LS problem (27) can be established within the vector space
c', where C is the field of complex numbers, by defining the
following vectors (or collection of vectors in the multichannel
case):

dl,l2k = (d72k - WNl,k-12XlVI2k), 0)*,
Xl,l2k = [x(k) x(k -lr + 1) Viilx(k -lr)

Viilx(k -l + I)J*

and the l x np data matrix of the two blocks is defined
as (29), which appears at the bottom of the page. Clearly,
Xnl,12k = Al,hXnlk and Xl,12 k = Al,,12Xlk. where A l,,12 is
a diagonal matrix defined by

Al,,12 = [I~i ~II2]'
Therefore, .6.W I or .6.W m, 12 k is

.6.WN1,12k = d~,12kKN1,l2k

where

x*(k)
x*(k - 1)

x*(k - n + 1)
x*(k - n)

x*(k -lr + 1)
VJilx*(k -lr)

VJilx*(k - II - 1)

VJilx*(k - l + 1)

x*(k-n-lr+2)
VJilx*(k - n -lr + 1)

VJilx*(k - n -lr)

VJilx*(k - n - l + 2)

(29)



2178 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO.9, SEPTEMBER 1996

it follows that

It can also easily be verified that Xnl,lz-lk = FXnl,-llzb

where F is an identity matrix, except it is 1IVfIl in the
II - 1 x II - 1 position or, equivalently, F = Iz-l + (1 
VfIl/VfIl)el,-le l,-1. Premultiplying both sides of (34) by
Xnl,lz-lk and simplifying the results gives

/{nl,I,-" ~ P { Knl, _H,I

_ Pnl,-112~el,-lell_lKnll-112k}. (35)

-1-- - inl, -llzk
- IJI

Postmultiplying both sides of the last equation by X~l, 1
2
-lk

yields

Pnl, I,-" ~ F { Pnl, - H,'

_ Pnl,-112~el,-lell-lPnI1-112k }F. (36)

-1-- - inl, -llzk
- IJI

Equations (35) and (36) are all that is required to derive
equations that relate quantities with index nh 12 - 1k to
those with index nlI - 112k, in which case, we typically
pre or postmultiply (35) and (36) by vectors of the form
U = Fv. This means that the quantities between brackets
including Knl l -ii,» and P n 1j -112 k in the right-hand side of
these equations are multiplied by F2v . It can easily be verified

TABLE I
SUBSTITUTIONS FOR GENERALIZED BLOCK FTF DERIVATION

# u X z

49a Xl,lzk Xnl,lzk-l Xl,lzk-n-l
49b Xl,lzk-n-l Xnl,lzk-l Xl,lzk
49c ei Xnlllzk Xl,lzk-n
49d ei X nl ,12k-l XI,12k-n-l
4ge el, Xnl,12k Xl ,12k-n

49f Xl jI 2k-n-l X n+ 1I,12k ei

49g Xl jI 2k-n-2 )(n+1I, 12k- 1 ei

49h dll12k Xn+ll,12k Xl ,12k-n-l

49i XZlI2k-n-l Xn+1I11zk-l, ei

that F
2 = 1+ (1 - IJdIIJlel,-lel,-1, By defining a new

quantity Gn l, 12k = -el, K n 1,l2 k and premultiplying (~5) by
ul = viF, we obtain

uiKn1,l2-1k = vi Knl, -112k

*p..L
VI nl,.-112kel, -1 (37)+ 1 Gn l, - 112k .

-1-- - fn1l1z-lk
- IJl

Similarly, premultiplying (36) by ui = viF and postmul
tiplying by u; = FVi for i = 1,2, respectively, yields (38a),
which appears at the bottom of the page, or, equivalently,
(38b), which is also at the bottom of the page.

To develop a block FTF-like algorithm, a recursion for
Wn+ll,12k in terms of Wnl,lzk has to be determined. This
recursion is the direct result of substitutions for u, v, X, and
z in (37) and (38). By making the substitutions of Table I in
(3la) and (31b), we obtain eight transversal-filter recursions
as follows:

An+1l,/zk = [Anl,12k 0] - f:::"nl,lzkf3;;1~12k-l

· [0 B nl,12 k- 1] (39a)

Bn+1l,lzk = [0 Bnl,lzk-l] - f:::,,~l,12kCX;;I~lzk

· [Anlllzk 0] (39b)

C n+1l ,12k = [Cnll12k 0] - r~l,lzkf3;;1~12kBnl,l2k

(39c)

Dn+ll,12k-1 = [Dnlllzk-l 0] - b~l,lzk-l

· f3;;IL zk-l Bnl,12k-l (39d)

1
-1-- - i n 1,-112k

- IJl

(38a)

(38b)



HASAN AND AZIMI-SADJADI: MODIFIED BLOCK FfF ADAPTIVE ALGORITHM 2179

TABLE II
BLOCK FTF PARAMETERS

Using the right substitution, we obtain

The following scalar parameters can be updated making the
substitutions of Table III in (4) with u = v

The ninth substitution of Table I into (37) yields the ninth
transversal filter

Filter Definitions

Anlllzk = [I -xl,lzkKnl,12k-d

Bnlllzk =[-xl,lzk-nKnl,lzk II
Cn l l 12k = -eiKnll12k

Dnlllzk = -el Knlllzk

Gnlllzk = -el, Knlllzk

6.Wn ll lz k = d7,lzkKnll12k

Pnl,zzk =Xr,12kXl,12k-n = Xr,+lzkAl,,12Xl,+12k-n

-* -*
hnll12k =dl,lzkXl,lzk-n = dll+ZzkAl,,12Xl,+12k-n

-*
= dlzkXrzk-n

where All h is defined before. The computations of h n il io k and
Pnl,lZk require O(N) operations per sample. Table III presents
the definition and computation of all parameters required in
the algorithm.

It should be mentioned here that this algorithm reduces to
that in [3, Table IV] if J.11 = 1 since then, Bn+1l, -llzk-l =

Bn+ll,lz-lk-1, Gnl,lzk-l 1, and hn+1l,lz-lk-l

r n+ll ,12-1k-l' This block FTF method is numerically stable
since the finite-precision error does not accumulate from
block to block as the only quantities carried from the previous
block is Wnl,lzk> and its effect decays as more blocks are
processed.

In the multichannel case, DOnl,lok and (3nl,lzk are P x P

matrices, and their inversion is left to the choice of the reader.

All quantities used in the recursive solution of (27) are listed
with their definitions in Table III. This concludes the derivation
of the algorithm. The relevant equations of the modified block
FTF algorithm are shown in Table IV. The sample lags Pn l , 12 k

and hnl, lz k are defined by

.6.* -1
rn+llllzk = r nl ,12k-1 - nl,lzkDOnl,hkenl,lzk

en+ll,12k = enl,lzk - .6.nl,lzk(3;;I~lzk_1rnII12k-1
* (3-1 *En+2l,hk = En+ll,lzk - Wnl,lzk n+1l,12krn+1l,lzk.

(39f)

(3ge)

(39g)

(39h)

0] (39i)

Gn+1l, -llzk-l = [Gnl, -llzk-l 0] - h n ll -llzk-l

.(3-1 B
nl , -llzk-l nl,-1lzk-l

Bn+1l, -llzk-l = Bn+1l,lzk - rn+ll,lzk"Y;;~llI12k

· [Cn+ll,lzk 0]

Bn+11,zzk-l = Bn+1l, -llzk-l + b~+ll,lz-lk-l

· [Dn+ll,lzk-l 0]

.6.Wn+2l,hk = [.6.Wn+ll,zzk 0] + Wn+ll,lzk

· (3;;~llllzkBn+llllzk

Bn+ll,zz-lk-l

= Bn+ll,-llzk-l

+ hn+1l, -112 k- 1 [G
1 n+ll, -lhk-l

-1-- - fn+ll, -ll2 k- 1
- J.11

Input Definitions

Pnl,12k = XI,12k-ndl,lzk

hnl,lzk = Xlllzk-nXlllzk
Xnk=[x(k)* ,'" x*(k-n+l)]*

DOn+ll,12k = DOnl,lzk - .6.nl,lzk(3;;I~lzk-l.6.~l,lzk

(3n+ll,lzk = (3nl,l2k-1 - .6.~lllzkDO;;I:lzk.6.nl,hk
* (3-1

'Yn+ll,12k = 'Ynl,12k - r nl,lzk nl,lzkrnl,lzk

bn+ll,lzk-l = bnl,12k-1 - b~l,lzk-l(3;;I~lzk-l bnl,12k-l

(3 (3 -1 *
n+ll,-llzk-l = n+ll,lzk - rn+ll,lzk'Yn+ll,lzkrn+ll,lzk

(3n+ll,lzk-l =(3n+ll,lz -lk-l + b~+ll, -llzk-l b~+ll,lzk-l

rn+ll,lzk-l = Bn+ll,lzk-1Xn+2k-l

A. Initialization

The algorithm is started by computing the weights of the
first block using [3, Table IV], in which certain parameters
must be initialized. Then, depending on how much influence
the previous block should have on the tracking, J.11 is chosen,
and the computed parameters of the previous block will serve
as an initialization for the the current block parameter update
applying Table IV. These initial values are computed directly
from their definitions in Table III as follows:

The parameter (3n+ll,lz-lk-l can be updated using U1

U2 = XI ,-112k-n-1 in (38b). Thus

(3n+ll,12 -lk-1 = (3n+11, -llz -lk-1

+ (1- J.11)x(k - n - h - 1)
.x*(k-n-h-1)

(J.11 - 1)2
- x(k-h-n)

J.11
·x*(k-h-n)

hn+ll l -llzk-1h~+1l, -lhk-l
+ 1

--- - fn+ll,-llz-lk-l.
1 - J.11

AOll12k = BOl,12k = 1, DOOlllzk = POl,lzk = Xrl12kXl,lzkl

(301,1zk-l =POl,lzk-1 = Xr,lzk-1Xl,1Zk-1,

bOl,lzk-1 =x(k -l + 1),

(301,12k = DOlllzk, eOlllzk-1 = ra.i,» = x(k),

rOl,12k-1 =x(k - 1), 'YOl11 2k = bOl,lzk-1 = 1,

601 11 zk =XlllzkXl,lzk-1' .6.Wll,l2k = hOl,lzkPOz~lzk'
(40)

The quantities Cnl,lzk, Dnlllzk, and Gnl,lzk have meaning
only for n 2': 1. The algorithm for the general case of J.1i f=: 1
is given below.
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TABLE III
GENERALIZED BLOCK FTF PARAMETERS

Input Definition Computation

[h~1112k' "', h~dlI2k]B~lll2k

~01112k - WnI112dh~1112k' "', h~-lll12k)*

1 +Gnl,12kXn+lk-l,

Anl,l2kXn+lk

BnlllzkXn+1k

1 +Cnl,12kXnk

1 + JIIlDnlllzkXnk-l+l

d(k) - Wnl,lzkXnk

JIIlBnlli z k X n+lk-/+l

B n l-UXn+1k-I+l

P~1112k]*

"', POI , 12 k ]*

" " Pll ,1 2k-n]*

AnI112k[P~1112k'

Bn1112klPn1112k'

A nl l1 2 k [Pn+ll Il z k,

XI,12kP,~,12k-ler

XI, 12 k-n P;J,12 k el

er P;J,12ke,

e l p;J 112 k ei

d l 112 kP;J,lzk ei

XI,12k-n P;J,12 k e l

Bnl-lkXn+lk-l+l

XI,12kP;J,12k-l Xl jl2k

X I, 12 k-n P;J,IZkXI,12 k-n

XI,12kP,~,12k-lXl,lzk-n-l

d l l 12 k p;J 112 kXI,12 k-n

dI112k.f;J 112 kdlllZ k

el, P;J,12kel,

xl, 12k-n P;J,12 k el,

Enl ,1 2 k

bnlllzk

b~l_lk

C> n 1112k

(3n l , 12 k

6 n l 1 12 k

Wn l ,1 2k

~nlll2k

fnl112k

Algorithm

Step 1: Initialization of Parameters:

i = 1

lc: length of the i-th block

Li: length of the block

[xt y'J.1,i-I Xt-l y'J.1,i-2 Xt-2 y"MlXrJ*
ki : highest time index in the i-th block

L, = t., WNLoko = 0

AOliki = BOliki = BOliki-l = 1,

O:Oliki = POliki = xlikixliki

POliki-1 = Xliki-IXliki-l, 'YOliki = DOl iki-l = 1

H - (t X N l k PNLk" = xl*,k,XNLbNliki - liki i i' , , " "

eOliki = rOlik i = x(ki ) , rOlik i -1 = x(k, - 1),

bOliki-l = x(ki -li)

l:l.oliki = XlikiXliki-l, l:l.Wlli k i = hOlikiPOz~ki

Step 2: Order Updating and Filtering in Each Block:

• Apply steps 1-20 of Table IV for n = 1"", N to deter
mine ~W N t., ki and update the weight using W N u, ki =

WNLi_lki_l + l:l.WNLiki·
• Filter to obtain the output and error signals in the ith

block using W N Liki'

Step 3: Parameter Updating:

i = i + 1, L, = L i - 1 + li

AOLiki = BOLiki = BOLiki-l = 1
- * X*d li k i =dli k i - WNLi~lki_l Nliki '

HNliki =d;ikiXNliki

Pni.;«, =PNLi-lki-l + (J.1,i-l - l)PNli_lki_l

+ X1ikiXNliki

O:OLiki = O:OLi_lki_ I + (J.1,i-l - l)O:Oli_lki_l +X1ikiXliki

POLiki = POLi-1ki-l + (J.1,i-l - l)POli_Iki_l + xlikixliki

POLiki-l = POLi-1ki-l-1 + (J.1,i-l - l)POli_ lki_l-l

+ X1iki-lXliki-l

POLiki =O:OLik i = POLiki, eOL;ki = roi.», = x(ki )

rOLiki-l =x(ki - 1), 'YOLiki = DOLiki_l = 1

bOLiki-l = x(ki - L i ) ,

l:l.OLiki = l:l.oLi_lki_ l + (J.1,i-l - l)l:l.oli_lki_l

+ Xli k iXlik,-1

l:l.W =h .. - 1
. it..», OI,k,POLiki

Go to Step 2.

V, TEST RESULTS

The modified block FTF algorithm in Sections III and IV
developed in this paper was examined on the actual acoustic
backscatter data. This data set consisted of an incident signal
and the backscattered data for a submerged cylindrical elastic
target and an irregularly shaped cement chunk of similar
size and for different aspect angles. The incident signal was
wideband linear frequency modulated (FM). The adaptive
block.FTF system had 32 tap weights. The reference input
to the adaptive system was the incident waveform, whereas
the desired signal was the backscattered signal. The goal was
to produce an accurate estimate of the specular component at
the output of the adaptive filter so that the resonant return,
which is typically present for elastic targets, can be separated
at the error signal. There are two principal assumptions behind
the development of this scheme: 1) The specular part is
more correlated with the incident part, and 2) there is a
time lag between the onset of the specular and that of the
resonant part. These characteristics, which are dependent on
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TABLE IV
GENERALIZED BLOCK FfF ALGORITHM

2181

Steps

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Updating Equations

i:>. n ll l2 k = [prl ,1 2k' "', P~+lllI2k]B~llI2k-l

C n+ll l1 2k = [Cnlll2k 0] - r~llI2k(3;:1~12kBnllI2k

Bn+lll12k = [0 B nl ,1 2k-,] - i:>.~1112kCl:;:/,12dAnI112k 0]

(3n+1l 112k = (3nl,12k-l - i:>.~1112kCl:;:/,12ki:>.nllI2k
w n + 1l , 12k = [h~llI2k' h~+lll12k]B~+lll12k

i:>.Wn+21,12k = [i:>.Wn+1l ,1 2k 0] +Wn+1l,12k(3;:~'1,12kBn+1l,12k
An+1l112k = [An1112k 0] - i:>.nllI2k(3;:1~12k_l[0 B nl , 12k-l]

Dn+ll,12k-1 = [Dnl,12k-1 01- b~llI2k-l(3;:1~12k-l Bnl,12k-l

rn+1l ,1 2k = rnl,12k - r~llI2k(3;:1~12krnllI2k

Dn + 1l , 12 k - l = Dn l l l2 k '- 1 - b~llI2k-l(3;:1~12k-l bnl ,12k-l

r n+1l ,1 2k = r nl ,1 2k-l - i:>.~llI2kCl:'--;1~12kenl,12k

e n+1l ,1 2k = enl,l2k - i:>.nl,12k(3;:1~12k_l rnl,12k-1

Bn+ll,-112k-1 = Bn+ll,12k - rn+ll,12k'I;:~'I,12k[Cn+ll,12k 0]

Cl:n+ll,12k = Cl: nl,12 k - i:>.nl,12k,B;:I~12k_l i:>.~1112k

j3n+ll,-112k-l = ,Bn+1l 112k - rn+1l112k'I;:~'I,12kr~+1l112k
hn+ll,12-1k-1 = Bn+1l,12-1k-l"\n+2k-l, -n+l

Gn+1l,-1l2k-l = [Gnl,-1121k-l 01 + hnl, -1l2k-lj3;:1~-lI2 k- l B nl ,-112k-l

h n+ 11,-1l2k-l = 1 + Gn+1l,-1l2k-,Xn+1k-I,+,

h n+1l,- 1l2k-l
Bn+1l,12-1k-l = Bn+1l,-112k-l + 1 [Gn+1I,-112k-1 0]

-1-- - fn+1l ,-1l2k- 1
bS B-/l 1 v-
n+1l,-112 k- 1 = n+1l,-112 k- 1""n+2k-1

the physical nature of the object, are discussed in [11]-[13].
The latter property would enable the adaptive filter to generate
a "good" estimate of the specular component prior to the
appearance of the resonant, and the former property guarantees
that the system continues to provide a reasonable estimate
of the specular part, even after the resonance has appeared.
Consequently, the adaptive scheme should have fast tracking
at the beginning, whereas after the resonance has occurred,
slow tracking would be more desirable.

To study the effects of varying the block length on the
overall performance of the modified block FTF algorithm, two
different choices for the block length were considered. In the
first case, a fixed block length of 300 samples was employed,
whereas in the second case, variable-length blocks of sizes
100, 200, 300, and L, where L represents a block length
containing the rest of the samples in the backscattered signal,
were used. The weight updating rule generated a weight vector
for each block, and then, the filtering was performed in each
block in one pass. The overall performance of the variable
block length scheme was substantially better than those of
the fixed-size cases as the tracking ability can be controlled

by varying the block sizes. This can be attributed to the fact
that the first few hundred samples of the backscattered signal
mostly contain the specular part, after which, the resonant
part may appear. Thus, using smaller blocks at the beginning
generally would provide a better tracking capability for the
specular part, whereas after resonance has appeared, switching
to bigger block lengths would reduce the tracking of the
backscattered signal.

Finally, the results of the modified block FTF algorithm
developed in this paper were benchmarked against those of the
standard RLS scheme in [8]. This comparison indicated that
block FTF with variable block length as described above pro
vided substantially better results for the target cases, whereas
the RLS results for the nontarget cases were -slightly better.
However, overall the winner was the modified block FTF
algorithm with variable block length. The results for aspect
angle 55° are shown in Figs. 1-4. Note that 0° corresponds to
broadside incident. These plots show the backscattered signals
in Figs. 1(a)-4(a), estimates of the resonant in Figs. 1(b)-4(b),
and specular components in Figs. l(c)-4(c) and their corre
sponding spectra, respectively. As can be seen in the results
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Fig. 1. Backscattered signal, error, and output of the RLS-based adaptive
system and their spectra (target at aspect angle 55°).

Fig. 2. Backscattered signal, error, and output of the RLS-based adaptive
system and their spectra (nontarget at aspect angle 55°).

of Figs. 1 and 3, for the target cases, the output of the adaptive
system, which provides the estimate of the specular part, has
a broad-band spectrum, whereas the error signal, which gives
an estimate of the resonant part, generally contains one or
more narrowband components, indicating the presence of an
elastic target. This separation of broadband and narrowband
components is not so evident in the results of Figs. 2 and 4,
for the nontarget cases, which is typically due to absence of
resonance. Additionally, comparing the results in Fig. I for
the RLS case with those in Fig. 3 for the modified block FTF

clearly indicates the superiority of the signal separation for
the latter scheme. This can especially be seen in the results
of Fig. 3(c) for the output of the modified block FTF, which
shows close resemblance of this specular return estimate to
the linear FM incident. Overall, the classification rates of the
block FTF method with variable block length for both the
target and the nontarget cases measured based on the data from
seventy two aspect angles from 0 to 360° with 5° in between
were measured approximately to be 86 and 79%, respectively.
These rates are determined based on the evaluation of the
characteristics of the spectra of the output and error signals.
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Fig. 4. Backscattered signal, error, and output of the modified BFTF system
and their spectra (nontarget at aspect angle 55°).
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Fig. 3. Backscattered signal, error, and output of the modified BFTF system
and their spectra (target at aspect angle 55°).
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VI. CONCLUSION

The problem of block RLS adaptive filtering of nonstation
ary data is addressed. In many nonstationary environments,
it is essential to control the tracking ability of the adaptation
process while maintaining the optimality of solution. This is
accomplished in this work by developing a modified block
FfF adaptive algorithm that can process independent variable
length blocks of data or consecutive blocks of data with a
better information transfer between the blocks. This modified

block FTF adaptive algorithm provides optimal solution to
certain types of soft-constrained LS problems. Additionally, it
allows variable tracking by changing the number of blocks,
their lengths, and/or a soft constrained parameter. The main
feature of this approach is that it can provide exact imple
mentation of LS solution by a proper choice of the soft
constrained parameter. Consequently, it can be considered to
be a modification and generalization to the original block FfF.
The performance of this algorithm is tested on real data, which
involved variable tracking of nonstationary data.
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1,=r

1,=r

i=r

M-2

Wl1
S_1L;M

=d~_lXM-l+ I: P,id:Xi

(B.2)
M-l

WkfL;M = d'lvrXM + 2: P,id: x;
i=r

In addition

from which it follows that

Therefore

WnftL;M = d~XM + Wn~I(L;M - XlvIXM)

from which it follows that

(Wnft - Wn~I)L;M

= d'lvrXM - WR~~IXlvIXM

= (d'lvr - Wn~lXlvI)XM'

Next, let Wkl be the optimal solution of (21). Then

O~LS
~ = -2(d* - W LSX* )XoW M M M M

M-l

- 2 2: P,i(d: - wkf XnXi = 0

M-2

Wl1S_1L;M_1 = d~_IXM-1 + 2: P,id:Xi. (B.3)

Since L;M-l = L;M - X1JXM + (P,M-l - l)XlvI_l X M- 1,
then (B.3) becomes

ApPENDIX B
PROOF OF THEOREM 3.1

a) Let WR1'ft be the optimal solution of (20); then

oi:soft M-1
~ = 2(.wsoft _ wsoft ) ""' f1'X~XoW M M-1 ~ r" " ,

M i=r

- 2(d~ - Wnft XlvI )XM = O. (B.1)

Let t: = X; x, +L;r::; P,iXt Xi be the weighted autocorrela
tion matrix; then, L;j+l = L;j + X;+l Xj+l + (P,j - 1)X;X j.
Thus, (B.1) simplifies to

WnftL;M =d~XM+ Wn~1 (~1 P,iXt Xi)

=d~XM+ Wn~l(L;M - XlvIXM).

+ Wl1S_1 X1J XM - (P,M-1 - 1)

. Wkf_lXlvI_IXM-1. (B.4)

Subtracting (B.3) from (B.2) yields

(wl1s - Wl1S_1)L;M

= (d'lvr - wl1s_1 XlvI)XM

+ (P,M-1 - l)(d'lvr_l - wl1s_1 xlvI_dXM-1

which is equivalent to (23).
b) Since Wfo ft = wfs, it follows from (22) and (23) that

W:aft = Wi
LS if and only if P,i = 1 for i = 1, ... , M. In this

case, we obtain the standard LS solution for both cases.
Q.E.D.

II(X;X1 - p,I)11

= IAm ax(X;X1 - p,I)1 = maX{IAi - p,1}

= max{I Al - p,1,IAN - p,1}·

This implies that the minimum of IIXi Xl - p,III occurs at p, =
(AI + AN)/2, in which case, IIXiX1 - p,III = (A1 - AN)/2,
i.e., proportional to the eigenvalue spread of Xi Xl.

On the other hand

11{p,I + X~X2} -111 SAmin(~2'X2)

provided that Amin(X2'X2) i- O. Therefore, if the constant A
is chosen as

A = IIW2 - W1111IX2'X21111{Xi Xl + X2'X2}-111

2Amin(X2'X2)

then

Ilwsoft _ WLSII

S IIW2 - WIIIIIX~X21111{p,I + X~X2} -IIIIIX;X1

- p,IIIII{X;X1 + X~X2}-III. (A.6)

To determine IIXiXl - p,III, let

)'1 :2: A2 :2: ... :2: AN :2: 0

Thus

ApPENDIX A

PROOF OF THEOREM 2.1

From the following matrix inversion formulae

{X;X1+X~X2}-1

= (X;Xd- 1 - (X;Xd-1(X~X2){X;X1 +X~X2}-1

(A.l)

{X;X1+X~X2}-1

= (X~X2)-1 - (X~X2)-1(X;Xd{X;X1 +X~X2}-1

(A.2)

be the eigenvalues of the positive semi-definite matrix Xi XI.
Then

and (15), it follows that

W LS = W1+ (W2 - W1)X~X2{X;Xl +X~X2}-I. (A.3)

Thus, subtracting (A.3) from (16) and using (A.4), we obtain

w soft - W LS = (W2 - WdX~X2{p,I + X~X2rl

. (X;X1 - p,I){X;X1 + X~X2} -1: (A.5)

Ilwsoft
- WLsl1 S 2AIIX;X1 - p,III·

The conclusion of the theorem follows by setting p, = (AI +
AN) /2. Q.E.D.

It can easily be verified, using the identity A-I - B- 1

A-1(B - A)B- 1, that

{pJ + X~X2} -1 - {X;X1+ X~X2}-1

= {pJ + X~X2} -1(X;X1 - p,I){X;X1 + X~X2} -1.

(A.4)
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