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ABSTRACT

MECHANISM-ENABLED POPULATION BALANCES

AND

THE EFFECTS OF ANISOTROPIES IN THE COMPLEX GINZBURG-LANDAU EQUATION

This paper considers two problems. The first is a chemical modeling problem which makes

use of ordinary differential equations to discover a minimum mechanism capable of matching

experimental data in various metal nanoparticle nucleation and growth systems. This research

has led to the concept of mechanism-enabled population balance modeling (ME-PBM). This is

defined as the use of experimentally established nucleation mechanisms of particle formation to

create more rigorous population balance models. ME-PBM achieves the goal of connecting reliable

experimental mechanisms with the understanding and control of particle-size distributions. The

ME-PBM approach uncovered a new and important 3-step mechanism that provides the best fits

to experimentally measured particle-size distributions (PSDs). The three steps of this mechanism

are slow, continuous nucleation and two surface growth steps. The importance of the two growth

steps is that large particles are allowed to grow more slowly than small particles. This finding of

large grow more slowly than small is a paradigm-shift away from the notion of needing nucleation

to stop, such as in LaMer burst nucleation, in order to achieve narrow PSDs.

The second is a study of the effects of anisotropy on the dynamics of spatially extended systems

through the use of the anisotropic Ginzburg-Landau equation (ACGLE) and its associated phase

diffusion equations. The anisotropy leads to different types of solutions not seen in the isotropic

equation, due to the ability of waves to simultaneously be stable and unstable, including transient

spiral defects together with phase chaotic ripples. We create a phase diagram for initial conditions

representing both the longwave k = 0 case, and for wavevectors near the circle |k| = µ using the

average L2 energy.
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Chapter 1

Mechanism-Enabled Population Balance Modeling

This chapter begins with background material and motivation for the problem of determining

a minimal chemical mechanism to model the nucleation and growth of iridium nanoparticles. The

current ideology and approaches are given. The concept of mechanism-enabled population balance

modeling (ME-PBM) is introduced and used to test a dozen potential mechanisms. The mecha-

nisms are fit to cyclohexene hydrogenation catalytic reporter reaction (CHCRR) kinetic data and

to transmission electron microscopy (TEM) size histograms. The winning mechanism is a newly

discovered 3-step mechanism which accurately recreates experimental PSDs with continuous nu-

cleation. Some applications and an extension to the model are given.

A majority of the work in this chapter comes directly from the published paper [24] and the

soon to be submitted paper [25]. This work was supported at Colorado State University revised

by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences,

Division of Chemical Sciences, Geosciences & Biosciences, Catalysis Program, via DOE grant

SE-FG402-02ER15453 under PI Richard Finke.

1.1 Chemical Background and Motivation

The process under which iridium nanoparticles increase in size remains unclear. Classically,

nucleation and growth have been used to describe nanoparticle formation. Nucleation is the process

by which a given number of small precursor molecules bind together to form a nucleus. This

nucleus then acts as a seed for growth, whereby it attracts other precursor molecules and increases

in size.

To date nucleation has usually been handled by classical nucleation theory (CNT). LaMer [35]

extended CNT to the study of colloids where it is coupled with either coalescence of particles or

Ostwald ripening for the growth step. This has been seen as the standard model for nucleation

and growth of colloids for over 60 years. However, classical LaMer theory fails to capture both
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the induction period and sigmoidal decrease of precursor, as well as the particle-size distributions

[51, 66, 73].

Knowledge of nucleation and growth mechanisms is desirable since the physical properties

and applications of particles typically depend strongly on their sizes. The evolving time series

of particle-size distributions (PSDs) are difficult to obtain experimentally, but contain all of the

kinetic information about how the particles are formed. As such, having a time series of PSDs

for a given system is critical to test the validity of any proposed model of that system. Figure 1.1

shows a time series for a well-studied, prototype Ir(0)n nanoparticle formation system [41,42,71].

These evolving measurements of particle sizes allow us to test various mechanisms via what we

will call mechanism-enabled population balance modeling (ME-PBM). Mechanism here means

a collection of pseudoelementary steps, such as continuous nucleation (A → B), autocatalytic

growth (A + B → 2B), or agglomeration (B + B → C). Our objective is to test as many

mechanisms as possible in a disproof-based manner to obtain a minimal mechanism capable of

reproducing the experimental PSDs.

Figure 1.1: Time series of histogram particle counts from TEM images at times 0.918, 1.170, 2.336, and
4.838 hours. Finding a minimal mechanism that recreates this experimental data is our goal.

Historically, cyclohexene hydrogenation catalytic reporter reaction (CHCRR) kinetic data has

been used to fit and test the validity of proposed mechanisms. This reporter reaction follows the

kinetics of nanoparticle formation in real-time, albeit indirectly. The reporter reaction method re-

lies on there being an excess of cyclohexene and H2 compared to precursor and on the cyclohexene

hydrogenation rate being fast compared to that of nucleation and growth. Usually only the first half

2



or less of the CHCRR curve is used for fits since the initial zero-order dependence on cyclohexene

breaks down as particle formation continues.

In addition to fitting to the TEM data, we also fit to this CHCRR data. This involves fitting

the actual precursor concentration from simulations to the entire measured CHCRR data. This is

perhaps not ideal, since it is not known exactly where the CHCRR curve becomes separated from

precursor concentration, but it is reasonable given the available data. The breakdown in CHCRR

accuracy as particle formation proceeds should be remembered when comparing simulated pre-

cursor time-series concentrations to the measured CHCRR values. Some amount of precursor

should remain when cyclohexene is depleted, and the results from our histogram fits may predict

the deviation of the precursor from reporter reaction in the second half of the reaction.

1.1.1 Classical Nucleation Theory (CNT) and LaMer Burst Nucleation

Nucleation is the foothold by which a phase transition proceeds. CNT gives a prediction for the

rate of nucleation which is seen as the dominating process that determines the speed of the phase

transition. The rate of nucleation as predicted by CNT is partially determined by the relationship

between the interfacial free energy and the bulk free energy. For homogeneous nucleation, where

the particle is assumed to be a sphere, the interfacial free energy is proportional to r2 and the

bulk free energy is proportional to r3. The difference of these two energies gives the free energy

barrier which is used in the predicted rate of nucleation. For heterogeneous nucleation the particle

is partially in contact with a surface which decreases the interfacial free energy and therefore the

free energy barrier. This causes an increase in the rate of nucleation.

LaMer and Dinegar [35] applied CNT to the study of colloids to account for the formation of

monodispersed hydrosols. Their idea is that there are three phases to nanoparticle formation: (I) a

build-up of precursor; (II) nucleation; (III) growth by diffusion. First (I) the precursors accumulate

until they become supersaturated. Once supersaturated they (II) rapidly nucleate which lowers the

supersaturation which makes the rate of nucleation zero. The particles then (III) grow. Nucleation

and growth are treated as separate, independent steps. Nucleation is rapid and transient.

3



Figure 1.2: LaMer-type burst nucleation proposes a monodispersed population by having all particles nu-
cleate essentially at once and then grow at the same rate.

Evidence for the lack of applicability of burst nucleation has been gathered in a review of the

nearly 2000 citations of LaMer’s 1950s paper [73]. This paper found that only 10% (191 papers)

of the citations have any in depth discussion of the LaMer model and a mere 3.3% (65 papers)

claim that the model applies to their system. Remarkably, this review shows that the only time the

differential equation corresponding to the LaMer model has been used to fit nucleation and growth

kinetics data is in the original 1950 LaMer paper [73].

1.1.2 Continuous Nucleation and the Finke-Watsky Mechanism

The Finke-Watzky (FW) mechanism [71] was the first new mechanism for particle growth in

over 45 years at the time of its publication. It consists of a slow, continuous nucleation step, and a

fast, autocatalytic growth step. It is given by the pseudoelementary steps (see [21, 48] or chapter 6

of [46] for some classic pseudoelementary mechanisms)

A
k1−→ B

A+B
k2−→ 2B,

(1.1)

where A denotes the precursor and B denotes all other size particles. The slow, continuous nu-

cleation of the FW mechanism stands in stark contrast to the often cited work by LaMer of burst

nucleation. It appears that the LaMer model of burst nucleation is incorrect [73] and the FW model

of continuous nucleation offers an alternative route to nanoparticle formation. The 2-step mecha-

nism in Mechanism (1.1) is able to follow the induction period and sigmoidal shape of a reporter

reaction approximation of the precursor concentration, which the LaMer model cannot do. How-

4



ever, the FW 2-step model is not able to match the first few moments (mass, mean, variance, etc.)

of the size distributions [50]. The FW mechanism gives better results than the LaMer model but

its flaws means that it doesn’t tell all of the story and needs to be either extended or improved.

We present here a new 3-step mechanism based on the 2-step that includes slow, continuous nu-

cleation that is able to qualitatively match experimentally collected TEM size distribution data,

demonstrated in Figure 1.3.

Figure 1.3: Total number of particles (left) and size distribution at 4.838 hours (right) produced by the
new 3-step mechanism with alternative termolecular nucleation (1.30). The number of particles continues
to increase throughout the simulation demonstrating that narrow, near-monodispersed size distributions are
possible in spite of continuous nucleation. Here "particle" does not include monomers.

1.2 Population Balance Modeling Background

The population balance equation (PBE) [29,52,62] is the de facto way to model the nucleation

and growth of particles. The equation has been in use for over 50 years and together with its various

solution methods is capable of modeling and predicting growth processes across nature. It is used

across engineering, biology, physics, chemistry and medicine to model such phenomena as crystal

formation, nanoparticles, cell division and proliferation, aerosols, and chemotherapy [52, 54, 63].

It is useful whenever there is some conserved population and is sophisticated enough to handle

multiple internal particle coordinates such as size, temperature, and volume as well as the external
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coordinates of where particles are located spatially. The PBE is statistical and probabilistic using

distributions, moments, and averages over bins.

The general form of the PBE is







∂tf +∇x · Ẋf +∇r · Ṙf = h

f(x, r, 0) = N0g(r)δ(x− x0),

(1.2)

with appropriate boundary conditions [52]. This formulation allows for the modeling of scenarios

by means of the internal coordinates x ∈ R
n and external coordinates r ∈ R

3 which together

make up the particle state space (x, r). The internal coordinates are any characteristic of the

particles that need to be measured such as density, mass, volume, temperature, or size. The external

coordinates give where a particle is in physical space. The continuous phase, i.e. what the particles

are suspended in, may also be modeled via the continuous phase vector Y (r, t). The dotted, capital

letters Ẋ(x, r,Y , t) and Ṙ(x, r,Y , t) are, in typical dynamical systems notation, the velocities

of the internal and external coordinates. Equation (1.2) can be derived via a conservation law, aka

number balance, and Reynolds transport theorem to bring the derivative inside the integral [52].

In many instances the external coordinates r and continuous phase vector Y can be ignored

simplifying the equation. For example, the spatially uniform PBE for nucleation and growth with

particle volume as the only internal coordinate and no external coordinate dependence is given by

∂n(ν, t)

∂t
+

∂

∂ν
[G(ν, t)n(ν, t)] = Ṅ(t)δ(ν − νc), (1.3)

where n(ν, t) is the number of particles, G(ν, t) is the growth rate, Ṅ(t) is the nucleation rate, and

νc is the assumed critical nucleus size. This is an advection equation with a point source term that

represents nucleation and where the wave travels in the internal coordinate of number of particles

instead of in physical space. In this set up, the precursor entities that undergo nucleation are not

considered particles. Instead, the smallest particle is the critical, or effective, size given by νc.
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We give a derivation of the one-dimensional PBE, a short history of the PBE, and an overview of

methods to solve it.

Derivation of the Spatially Uniform PBE with One Internal Coordinate

The PBE (1.3) can be derived from the integral form of the balance law

d

dt

∫ ν2

ν1

n(ν, t)dν = φ(n(ν1, t))− φ(n(ν2, t)) +

∫ ν2

ν1

σ(ν, t)dν, (1.4)

which says that the change in time of the number of particles in the range of volumes ν1 ≤ ν ≤ ν2

is equal to the incoming flux on the left boundary φ(n(ν1, t)) plus the incoming flux on the right

boundary φ(n(ν2, t)) plus the total source over the region,
∫ ν2
ν1
σ(ν, t)dν. Note that we will say

positive flux is to the right and negative flux is to the left. So, both φ terms in Equation (1.4) are

into the cell.

We can rewrite equation 1.4 using the fundamental theorem of calculus to get

d

dt

∫ ν2

ν1

n(ν, t)dν = −
∫ ν2

ν1

∂

∂ν
φ(n(ν, t))dν +

∫ ν2

ν1

σ(ν, t)dν. (1.5)

Now we can bring the time derivative inside the integral and move everything to one side to get

∫ ν2

ν1

∂

∂t
n(ν, t) +

∂

∂ν
φ(n(ν, t))dν − σ(ν, t)dν = 0. (1.6)

The integral over an arbitrary region equals zero. Hence, the integrand must be equal to zero,

which yields
∂

∂t
n(ν, t) +

∂

∂ν
φ(n(ν, t))dν − σ(ν, t) = 0, (1.7)

then
∂

∂t
n(ν, t) +

∂

∂ν
φ(n(ν, t))dν = σ(ν, t). (1.8)

Replacing the flux and sources terms with φ(ν, t) = G(ν, t)n(ν, t) and σ(ν, t) = Ṅ(t)δ(ν − νc)

yields Equation (1.3). The growth term can be set to depend on volume, surface area, or some
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other measure. For example, if growth is proportional to volume, then

G(ν, t) = k2[A]ν.

The rate of nucleation of order m can be given as

Ṅ(t) =
AvνIr
νc

k1[A]
m

, whereAv is Avogadro’s number νIr is the volume of an iridium atom, and νc is the so-called

critical volume. As noted in [50], this is also the time derivative of the first moment of n. It should

be noted that some of the steps in the above derivation of Equation (1.8) require that the functions

n and φ are smooth enough to allow bringing the derivative inside the integral [39].

History of the PBE

There are several excellent review articles on the population balances including Ramkrishna

and Mahoney [53], Sporleder et al. [63], and Ramkrishna and Singh [54]. The latter has particu-

larly nice tables on the applications of PBM and further review articles. Sporleder et al. [63] give

a nice derivation of the population balance equation and mentions that while the equation gives

more detailed results than macroscopic equations it operates above the kinetic level. The models

in this paper are derived on the kinetic level.

In 1916 Smoluchowski, see [61] for the original German article, or [10] for a summary in

English, created a discrete model for the pure agglomeration of particles whereby two particles

would coalesce if they entered each other’s sphere of influence. This system which can be modeled

by the mechanism

Ni +Nj → Ni+j (1.9)

is the origin and ancestor of the PBE. If the growth kernel between two particles in this system is

defined as Γi,j and the concentration of particles Ni of size i at time t is ni(t), then the law of mass

action gives the system

8



dni

dt
=

1

2

i−1∑

j=1

Γj,i−jnjni−j −
∞∑

j=1

Γi,jninj. (1.10)

The initial state for Equation (1.10) consists of a concentration of similarly sized precursor parti-

cles. These particles, more often then not, then proceed to agglomerate into a particle of infinite

size, called a gel, in process called gelation. Essentially, for most aggregation kernels the sys-

tem does not conserve mass. Instead, there is a flux out of the system into what is know as the

gel. Forming a gel can be an unrealistic final state for nanoparticles in systems which stay poly-

dispersed or near-monodispersed as seen in experiments. For an example where nanoparticles do

not form one large particle (a gel) see Figure 1.4. Instead, they form a polydispersed (or near

monodispersed) range of sizes. The nanoparticles in this figure remain separated from each other

and do not form a bulk metal. The surface ligands are responsible for this separation.

Figure 1.4: Transmission electron microscopy (TEM) image of near-monodispersed iridium(0) clusters
from . Reprinted with permission from [71]. Copyright 1997 American Chemical Society.
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For certain growth kernels (1.10) has exact solutions [70]. These kernels are the constant kernel

Γi,j = 1, the additive kernel Γi,j = (i+ j)/2, and the product kernel Γi,j = ij. For a more general

kernel Γi,j = Γ(iµjν + iνjµ) considered in the large particle limit i → ∞ or j → ∞ gelation will

occur whenever ν < 1− µ.

A similar system to the Smoluchowski equations are the Becker-Döring equations from 1935

[3, 4, 70]. This system of equations come from the mechanism

N1 +Ni ⇋ Ni+1 (1.11)

where fragmentation is now allowed via the breakage kernel β. Note that unlike the Smoluchowski

equation (1.9), the Becker-Döring equation (1.11) only involves monomer-particle interactions and

not more general particle-particle interactions for which the sums are required in (1.10). Again

using the law of mass action the governing system for (1.11) is

dni

dt
= Ji−1 − Ji (1.12)

where the fluxes Ji = Γin1ni − βi+1ni+1 and i ≥ 2 since n1 is constant. The first flux term in

(1.12) is then how much is gained from and lost to a particle one size smaller, and the second flux

term is how much is lost and gained from growth to and breakage from a particle of one size larger.

In its original formulation (1.11) was modeled with a constant monomer concentration (i.e. an

open system), but has also been modeled with constant mass (i.e. a closed system). The situation

with constant mass is more complicated since each equation in System (1.12) becomes nonlinear

in ni. There are also versions of (1.9) and (1.11) that have more complicated, nonbinary fragmen-

tation processes where a single breakage event can result in more than two daughter particles.

The continuous form of the Smoluchowski coagulation equation is called the general dynamic

equation (GDE) and was initially used primarily by the atmospheric sciences to study topics such

as aerosols and cloud formation. There is also a discrete version of the GDE [22]. In 1964 Hulburt

and Katz [29], and Randolph [55] simultaneously extended the GDE to the PBE.
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When the terms ODE or discrete are attached to population balance modeling they typically

mean some sort of discretization of the PDE form of the PBE, such as in Bajcinca et al. [2] or Liao

et al. [40]. The models presented in this paper will not follow this norm. They are derived at the

discrete kinetic level and are wholly ordinary differential equations similar to (1.9) and (1.11), and

not ODE approximations of a PDE.

1.2.1 Solution Methods for the PBE

The method of moments (MoM) is currently a popular solution scheme for doing population

balance modeling due to its comparatively low computational cost compared to other methods.

The paper by Falola et al. [20] gives an overview of different methods to solve population balance

equations. These can be divided into direct methods and methods of moments. The method of

moments works on the assumption that only the average information of the distribution is relevant.

The MoM transforms the partial differential equation of the PBE into a series of ordinary differen-

tial equations for a select number of low-order moments. The information in these moments, such

as number of particles, mean, etc., is then used to estimate the actual particle property distribution.

However, since only a few moments are used, the actual distribution cannot usually be computed.

See [20] for an exception.

1.3 Mechanism-Enabled Population Balance Modeling

Instead of modeling what is a physically discrete process in a continuous manner using a PBE,

and then discretizing the continuous problem to solve it, we can stay entirely in the discrete do-

main similar to the original Smoluchowski system. For many applications this is computation-

ally infeasible, but is not for the formation of nanoparticles in the systems studied here. Iridium

nanoparticles in particular have a maximum size of around 4 nm which is approximately only 2500

particles (see Figure 1.6). This leads to what is in some regards a large system of ODEs compared

to say the Lotka-Volterra equations or an SIR model. However, a system of 2500 ODEs is easily

solvable on current (circa 2019) laptop/desktop hardware and allows us to start and stay entirely
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within the discrete domain without the need to resort to any continuous statistical, stochastic, or

binning arguments. Once we derive the particle interactions from the mechanism we can write our

ODE system for the individual particle sizes. This process can be related to using a bin size of

one in the various discretization methods for the PBE. Which, again, is most often not possible in

typical PBM applications due to the sheer number and sizes of interacting particles.

To determine how to model how the particles interact with each other we will use various

elementary-step mechanisms. We will start with the simplest known mechanism [71] and add

complexity or variety as needed with the goal of best matching the experimental size distribution

data. This procedure of adding new steps and testing different versions of steps should hopefully

result in a minimum mechanism to explain nanoparticle formation while simultaneously disproving

other conjectured mechanisms. An increase in complexity from one mechanism to another may not

be the smallest possible, for example going from our 2-step to 4-step mechanisms below. However,

the general method of adding complexity and trying out the resulting, new mechanism has proven

useful in that it lead to the discovery of our main result Mechanism 1.22.

Figure 1.5: Illustration of particle interaction steps. A → B, A + B → 2B, and B + B → C are shown
with A red, B green, and C blue.
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Figure 1.6: Conversion between number of atoms in a particle and diamter in nanometers. Blue circles are
data. Red curve is d(n) = 0.300082023n1/3.

The modeling done in some papers, for example [75], is mechanism-enabled, but does not

include population balances. There are only a low number of species, say 3, to represent thousands

of populations. The effects of such a reduction in equations benefits computation, but has a likely

quite significant effect on results. The many papers in the chemical engineering literature on

population balance modeling on the other hand are not mechanism-enabled. Two papers come

close to the full ME-PBM approach [16, 18]. The models used [18] are similar to the standard

2-step, and the 2-step with full agglomeration using the Smolochowski equation. A critical point

in this paper is that the rate constants for growth and agglomeration are constant and not at all

size-dependent. In [16] they assume a standard aggregation kernel proportional (r + R)

(

1
r
+ 1

R

)

for spherical particles of radii r and R, but explicitly state and assume that this kernel is instead

constant thereby missing any discovery of small particles growing at different rates than larger

ones being beneficial.

1.4 Mechanisms, Model Derivations, and Simulations

To determine a minimal mechanism that accurately reproduces experimental size distributions

of nanoparticles we start with the FW 2-step and then proceed to include additional steps to create
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new mechanisms. These new mechanisms can then advise what the next will be, and so on. What

the next more complicated mechanism is, or which next step to add is somewhat arbitrary and is

influenced by instinct and experience. At times a step backwards in the simpler direction is needed

after analyzing a more complicated mechanism. As will be discussed later, an explicit example of

this is the formulation of the three-step mechanism from the four-step. This Ockham’s razor based

approach should then elucidate the simplest mechanism capable of modeling experiments.

The main mechanisms studied in this dissertation are the 2-step, 4-step, and new 3-step, each

with and without alternative termolecular nucleation [49]. Evidence suggests that nucleation for

the iridium system under consideration is 3rd order in Ir. This evidence and the reaction scheme

for this alternative termolecular type of nucleation can be seen in [49]. The different levels of

complexity between the mechanisms helped elucidate the key to reproducing suitable particle-size

distributions. The key as it turns out is our main finding, which is that in order to get simulated

particle-size distributions that fit the experimental size histograms the larger particles must grow

more slowly than the smaller particles. This finding is reinforced through simulations of the var-

ious mechanisms. In [51] the author alludes to this conclusion but produces no evidence that this

is the case other than verbal arguments. The paper talks about colloidal stability increasing with

size, which therefore makes the "small" particles more reactive. However, a strictly surface area to

volume ratio decrease in reactivity is not sufficient for a low polydispersity as seen by our simu-

lations for the 2-step mechanism. Our simulations include a function, which we call r, that limits

the reactive atoms to those on the surface. It is only when additional steps to make the "small"

particles more reactive and the "large" particles less reactive do we see simulated PSDs that match

experimental data with a low polydispersity. We also disagree with that paper’s conclusions that

nucleation models are irrelevant. We see from our simulations that having a more correct and

accurate representation of nucleation improves the mechanistic fits. Furthermore, the important

scientific question of whether nucleation is burst or continuous is far from irrelevant.
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Simulations were carried out using MATLAB. Fits were performed using the fitting function

patternsearch which allows for multivariate constrained fitting, unless otherwise noted. For

a more detailed explanation of the methods used in the fitting process see §1.10.

1.4.1 Two-Step Mechanism

The first mechanism we will look at is the Finke-Watzky [71] 2-step. As mentioned above, this

has a nucleation step and a growth step. The nucleation is slow and continuous and the growth is

autocatalytic. The pseudoelementary steps for the mechanism are

A
k1−→ B

A+B
k2−→ 2B.

(1.13)

Derivation of Two-Step ODE Model from the Mechanism

Before we start the derivation of the two-step, or any other, model we need to establish some

notation. The following notation for particles of different sizes can be interpreted as either the

concentration of a given size with dimensions of molarity M = mol/L or as dimensionless numbers

of atoms. Keep in mind that this will affect the dimenions of the rate constants. For our results and

simulations the notation represents concentration, but here for the derivation it is easier to think of

the different particle sizes just as numbers irrespective of moles or any volume.

Let the monomers in a particle of size j ∈ N be denoted by mj with the precursor m1 also

called a. The particles comprised of j number of these monomers are denoted nj . We have the

relationmj = jnj , i.e. the number of monomers in particles of size j is equal to j times the number

of particles. The relationship between the total number of monomers in a particle and the number

that are available to bind is given by the relationship bj = r(j)mj , where bj are the number of

binding sites on a particle, and the function r(j) can represent various effects such as volume or

surface area dependent growth, or ligand capping. These bj monomers are those which can actually

interact with other monomers. For example, those that are on the surface of the particle and not on

the interior. We will see later that the function r(j) will make up part of the growth kernel Γ(j).
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Unlike the PBE, which has no direct particle-particle interactions, our model is based on atom-

to-atom contact. As such, the monomers on the particle surface should be capable of binding while

those on the inside remain unreactive. Therefore, a surface area model is adapted by choosing the

function r(j) = 2.677j.72/j. This is the number of surface monomers divided by the total number

of monomers where the number of surface atoms is taken from Schmidt and Smirnov [57]. It

should be remarked that the surface atom approximation given by Schmidt and Smirnov has more

surface atoms than total atoms for particles smaller than n34. Using this approximation verbatim

makes the function r not directly correspond to a percentage of total atoms that are bindable, at

least for small sizes. This has the effect of making smaller sized atoms more reactive than a strictly

surface area dependent growth model. One could easily modify r to be piecewise with values 1

for nj smaller than n34 and the Schmidt and Smirnov approximation for larger. The r function is

defined as a way to modify the number or effectiveness of the binding sites, but it also essentially

modifies the growth rates, as can be seen in System 1.17, and can serve not only to change between

surface area or volume models, but can also be used for size-dependent growth rates or capping

processes. Together with the rate constants k1, k2, . . ., it is the combined kernel Γ for all size-

dependent process modifiers. The combination of all of these things into one function reduces the

complexity of the model, but there must be careful consideration and interpretation of the chosen

r and Γ, hopefully based on experimentally validated mechanisms.

Özkar and Finke [49] found nucleation to be third order for iridium, but we will use a generic

nucleation order ω in our derivation. From Mechanism 1.13 we see that nucleation can be written

in terms of the monomers as

ωa
k1−→ ωmω. (1.14)

Growth of the nucleus is modeled by a+mω
k2−→ 2mω+1−(ω−1)mω+(ω−1)mω+1 and in general,

growth is a+mj
k2−→ 2mj+1 − (j− 1)mj + (j− 1)mj+1 for a particle of size j. The left-hand side

of these growth relationships indicate that a single monomer of precursor will interact with a single

monomer that is part of a larger particle, as visualized in Figure 1.7. This is the primary reason

for the adoption of surface area growth in this paper. Particle volume may affect growth through
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energy or other means, but surely the assumption that internal atoms are not available to directly

bind and interact with the precursor in this simplified atomistic viewpoint is sound. The right-

hand side of the relationships are the results of the monomer-particle interaction. The first term

represents the precursor monomer and the particle monomer becoming monomers of a particle of

size one larger. The middle term is the loss of the rest of the original monomers, and the final term

is the rest of the original monomers changing to the larger size. Combining terms, we have the

logical result

a+ jmj
k2−→ (j + 1)mj+1, (1.15)

which says that the addition of a precursor monomer to a particle with j monomer units will form

a new particle with j + 1 monomer units.

Figure 1.7: Illustration of interpretation of particle interaction steps for model derivation. The dotted atoms
are those which are actually interacting. A+B → 2B has the red-dotted atom joining with the green-dotted
which makes two green-dotted atoms. B +B → C has the two green-dotted atoms combining to make two
blue-dotted C atoms. This coalescence also has the effect of changing the solid green atoms into solid blues.

Taking relations (1.14) and (1.15), and noting that the prescursor a only attaches to binding

sites, leads to the system

dm1

dt
= −ωk1mω

1 − k2m1

∞∑

i=ω

bi

dmω

dt
= ωk1m

ω
1 − ωk2m1bω

dmj

dt
= jk2m1(bj−1 − bj), ω < j <∞,

(1.16)
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for changes in monomers where j ≥ ω + 1. This system must now be converted into a system

for the particles nj using the mj = jnj and bj = r(j)mj substitutions described above. Using the

substitutions we obtain

dn1

dt
= −ωk1nω

1
︸ ︷︷ ︸

loss from nucleation

− k2n1

∞∑

i=ω

r(i)ini

︸ ︷︷ ︸
loss from growth

dnω

dt
= k1n

ω
1

︸︷︷︸
gain from nucleation

−ωk2n1r(ω)nω
︸ ︷︷ ︸

loss from growth

dnj

dt
= k2n1

(
(j − 1)r(j − 1)nj−1 − jr(j)nj

)

︸ ︷︷ ︸
gain and loss from growth

, ω < j <∞

(1.17)

as our system for particle sizes. From here we can see that if the growth rate k2 is taken to be

a function of particle size, instead of a constant, that it would have to be distributed into the

sum in the n1 equation and the difference in the nj equation. This would give the growth kernel

Γ(j) = k2(j)r(j). We now have a model set of equations that has been mechanistically-enabled

since our system of ODEs comes directly from Mechanism 1.13.

Simulations of the 2-step Model

An attempt to fit the fourth and final time TEM historgram using System (1.17) with third

order nucleation ω = 3 and patternsearch with lower bounds of [0 0] and upper bounds

of [Inf Inf] resulted in values of k1 = 4.0631 and k2 = 0. This made a BFV of approximately

226 which can now be thought of as a benchmark for the worst case scenario fit. The algorithm

found that making the PSD at the final measured time identically zero almost everywhere lead to

a smaller objective function value than any other possible PSD. The numerical approximation to

infinity value of k1 and the zero value of k2 mean that the entire concentration of precursor instantly

nucleates and never grows past the nucleus size. Succinctly, it didn’t work.

Small strictly positive lower bounds and upper bounds were used in all following fits unless

otherwise noted. The first of these can be seen in Figure 1.8 in which (1.17) with first-order

nucleation was used to attempt to fit the CHCRR curve. As we can see from the figure, the resulting
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(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.8: Fit to CHCRR curve using the classic FW 2-step mechanism and first-order nucleation. The rate
constants produced by the fit are k1 = 6.70× 10−3hr−1 and k2 = 2.52× 103M−1hr−1. These were used to
produce the comparison of simulations (red dots) vs. the experimental TEM PSDs (blue histograms). The
best function value (BFV) is 3.92× 10−4.
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simulated CHCRR curve does a fair job of matching the experimental values. There is a slight

overestimate in the lower, second elbow around the 2 hour mark. The simulated histograms in

(a)-(d) show a strictly monotone decreasing PSD which is nowhere near a match to the TEM

histograms.

(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.9: Fit to CHCRR curve using the classic FW 2-step mechanism and second-order nucleation. The
rate constants produced by the fit are k1 = 2.30× 101M−1hr−1 and k2 = 1.71× 103M−1hr−1. These were
used to produce the comparison of simulations (red dots) vs. the experimental TEM PSDs (blue histograms).
The BFV is 6.87× 10−4.

For Figure 1.9 the nucleation order was increased to ω = 2. This resulted in a slightly worse

CHCRR curve match since the induction period is not as well fit and there is more second elbow

overestimation. However, the simulated PSDs at the third and fourth times, (c) and (d) resp., are

now beginning to take on the correct Gaussianesque distributions albeit with much smaller mode

and variance.
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(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.10: Fit to CHCRR curve using the classic FW 2-step mechanism and third-order nucleation
by means of fminsearch. The rate constants produced by the fit are k1 = 9.14 × 102M−2hr−1 and
k2 = 6.70 × 103M−1hr−1. These were used to produce the comparison of simulations (red dots) vs. the
experimental TEM PSDs (blue histograms). The BFV is 2.48× 10−4.
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Third-order nucleation ω = 3 brings us to Figure 1.10 where we have the best fit so far to the

CHCRR curve. The second through fourth PSDs now have well defined shapes that range over the

TEM data. The modes are still much too small as in the second-order nucleation case, but now the

variance is much too large and the simulated PSDs too wide.

(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.11: Fit to CHCRR curve using the classic FW 2-step mechanism and fourth-order nucleation. The
rate constants produced by the fit are k1 = 8.61× 105M−3hr−1 and k2 = 6.93× 103M−1hr−1. These were
used to produce the comparison of simulations (red dots) vs. the experimental TEM PSDs (blue histograms).
The BFV is 3.04× 10−4.

In Figure 1.11 we again have a nice match to the CHCRR curve with a slight second elbow

overestimate. The resulting PSDs are marginally improved over the third-order simulations in that

the mode is slightly larger and there are more larger size particles. With these slight gains the

overall fit is still poor.
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The apparent trend of increasing nucleation order is that the PSDs improve by a certain extent

by the mode moving rightwards, but worsen by having too many larger particles. The first two

nucleation orders see none of the the particles growing fast enough and the third and fourth orders

see the smaller sized particles growing too slowly whereas the larger sized particles grow too fast

resulting in the too wide distributions centered too far left. In all cases the CHCRR fit remains

good, although the second-order CHCRR curve is arguably not excellent. The best fit out of the

four nucleation orders tested was third-order with its BFV of 2.48 × 10−4. While none of the

simulated PSDs for any nucleation order are satisfactory, the best performing 2-step mechanism in

regards to the CHCRR curve is third-order nucleation; a result that is a match to experiment [49].

In addition to fitting the mechanism-enabled population balance model (1.17) to the CHCRR

curve we also fit to the fourth and final TEM histogram taken at 4.838 hours which can be seen in

Figure 1.12. This fit was performed with third-order nucleation. The leading edge of the PSD is

improved over the CHCRR fits. Just as in the previous 2-step fits too much of the particle mass

remains in small sizes. In addition, the associated CHCRR curve suffers from an induction period

that is too short compared to the experimental measurements. This together with a decrease with

too steep of a slope results in a poor CHCRR curve fit.

The simulations performed here for the 2-step mechanism are in agreement with [50] which

says that the mechanism is able to follow the reporter reaction, but is unable to match the size

distribution. We see from our simulations that regardless of the low nucleation order [49] tested

that the 2-step is able to fit well to the CHCRR, but the associated PSDs that come with these fits are

poor. The mechanism also fails to match the PSD even if we attempt to fit to the size distribution

itself while neglecting the time evolution of precursor. Additional evidence for the mechanism’s

inability to fit the PSD comes from fitting with bounds of k1 and k2 as [0,∞). The fitting algorithm

in this case could not find a suitable PSD near the correct shape and instead minimizes to the worst

case scenario of a distribution which is all nucleus and zero elsewhere.
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(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.12: Fit to final histogram curve using the classic FW 2-step mechanism and third-order nucleation.
The rate constants produced by the fit are k1 = 2.46 × 103M−2hr−1 and k2 = 1.18 × 104M−1hr−1. The
BFV is 3.88× 102.
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1.4.2 Four-Step Mechanism

The simulations in §1.4.1 show that the two-step mechanism is incapable of matching the ex-

perimental size distributions for various low nucleation orders. But, is it able to with a modification

that keeps low-order nucleation? In keeping with a disproofed-based approach, a minimal exten-

sion of the model is made in an attempt to find a minimal mechanism capable of matching the

experimental distributions. Further minimal extensions to the working model will be added as nec-

essary with the overall goal of finding a minimal mechanism which can produce accurate PSDs.

This process is not guaranteed to find such a mechanism, but it will help rule out those that do not

work. The first minimal extension of the two-step mechanism is the four-step mechanism [31]

A
k1−→ B

A+B
k2−→ 2B

B +B
k3−→ C

A+ C
k4−→ 1.5C.

(1.18)

The four steps of the mechanism are (i) slow, continuous nucleation, (ii) autocatalytic surface

growth, (iii) bimolecular agglomeration, and (iv) secondary autocatalytic surface growth. This

mechanism was the survivor of 18 disproven others based on fitting to the cyclohexene reporter

reaction [31]. A notable pair of these disproven mechanisms also have four steps. The first is

A → B, A + B → 2B, B + B → C, and B + C → 1.5C which we will call the 4β-step

mechanism. The second is A→ B, A+B → 2B, A+C → 1.5C, and B +C → 1.5C which we

will call the 4γ-step mechanism. A key difference between the 4β- and 4γ-step mechanisms and

the 4-step is in which particles agglomerate. The two previously disproven mechanisms both have

the "small"-"large" autocatalytic agglomeration step of B + C → 1.5C. It is worth mentioning at

this point that this step will result in larger particles growing faster than they otherwise would if

monomer addition was their only method of growth. We will see below that this is the opposite

effect if one wants to achieve accurate size distributions.
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Compared to the 2-step mechanism (1.13), these 4-step mechanisms introduce a third particle

species C which represents "large" particle sizes. This is another aspect that emphasizes the in-

terpretation requirement for going between mechanism and model. At this point, the distinction

between "small" B particles and "large" C particles is arbitrary and needs to be made specific for

creation and computation of an ODE system. The monomer addition growth process is now two

separate steps, one for the "small" B particles and one for the "large" C particles. This splitting of

sizes is morally the 2-step (1.13) where the constant, size-independent growth constant k2 becomes

a size-dependent step function. See the newly developed Mechanism (1.22) in the next section for

further insights related to this step function type growth. In addition to the step function monomer

growth steps, the 4-step mechanism (1.18) also has agglomeration in the model in the form of the

B + B step. Note that this is not complete or arbitrary agglomeration between all particles. This

step only says that two "small" particles may interact, but that if a particle is too large it will not

be allowed to agglomerate and will only increase in size from monomer growth. Only allowing

the smaller particles to agglomerate keeps in line with our minimal extension and disproof ap-

proach. Again, this is in contrast to the 4β- and 4γ-steps which either have "small"-"small" and

"small"-"large", or just "small"-"large" agglomeration respectively. Disallowing "large" particles

to agglomerate is also an assumption that can be made by looking at time series TEM images

of nanoparticle formation in, for example, either Ir [49, 71], or Pd [74, 75] systems. Due to the

very nature of having a near-monodispersed population once the particles achieve certain a size

their agglomeration would produce a particle that exceeds any measured. Using the function de-

scribed in Figure 1.6 we get the following table. Looking at the histograms in Figure 1.1 we

see that 2n500 → n1000 or 2n1000 → n2000 are plausible from the measurements. However, if

2n2000 → n4000 were possible we would have particles with diameter 4.76 nm of which there are

none at any time. At the second time of 1.170 hours we already see diameters just below 4nm. But

this maximum measured particle diameter doesn’t increase in either the third or fourth histograms.

This together with the assumption that missing "large" particles is far more unlikely than missing
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"small" ones while counting from TEM images leads to the conclusion that if agglomeration is

happening in the system, it is not with "large" particles.

It is a straightforward process to create a model if one wants to have a single differential equa-

tion for each pseudoelementary step species. However, it is necessary to fix the ambiguity of the

mechanism with regard to what B and C mean to build an atomistic-based ODE model where

there will be an equation for each particle size. This is done by choosing a cutoff M ∈ N to be the

largest B size so that the explicit sizes for the two species are given by B = {nk | k ≤ M} and

C = {nk | k > M}. M is a parameter and my either be fixed or variable and fit for during the

fitting process and is where the jump occurs in the step function monomer addition growth kernel

comprised of the second and fourth steps of (1.18).

Considering the step function approximation of monomer growth, numerical findings indicate

that a smaller k4 is needed compared to k2 to achieve desirable particle-size distributions giving

further disproof to the 4β-, 4γ-step mechanisms. This revelation will be seen throughout the other

tested mechanisms and leads to one of our main results. In the absence of LaMer-type burst

nucleation, larger particles must react and grow more slowly than smaller particles to reproduce

size distributions that match experiments.

Derivation of Four-Step ODE Model from the Mechanism

The derivation of the 4-step and all other following mechanisms is similar to the 2-step deriva-

tion in §1.4.1. We start with interpreting the mechanism to make the concepts of B and C well-

defined by using the definitions above. This must be done to convert the mechanism into an ODE

system. To see why we must use well-defined versions of the B and C particles refer to the ag-

glomeration step in Figure 1.5. The mechanism says that two "small" particles agglomerate into

one "large" particle. However, two "small particles" may actually form another "small" particle.

For example, if the cutoff between "small" and "large" is say 40, two particles n15 will agglomerate

to form an n30 which is still "small". We believe that our implementation is a fair interpretation of

the mechanism and captures its main idea at the kinetic level.
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As there is neither aB+C nor aC+C term in (1.18) we have that agglomeration only involves

"small"-"small" particle interaction. Let the growth rate function be

kg =







k2 if "small"

k4 if "large".

With the assumption of 3rd order nucleation we have everything we need to create the ODE system

for monomers which is

dm1

dt
= −3k1m

3
1 −m1

∞∑

k=3

kgbk

dm3

dt
= 3k1m

3
1 − 3k2m1b3 − 3k3bj

M∑

k=3

bk

dm4,5

dt
= jk2m1

(
bj−1 − bj

)
− jk3bj

M∑

k=3

bk

dmj

dt
= jk2m1

(
bj−1 − bj

)
− jk3bj

M∑

k=3

bk + jk3

∞∑

i=0
⌊j/2⌋−i≥3

⌊j/2⌋+i+(j mod 2)≤∞

b⌊j/2⌋−ib⌊j/2⌋+i+jmod2, 6 ≤ j ≤M

dmM+1

dt
= (M + 1)m1

(
k3bM − k4bM+1

)
+ jk3

∞∑

i=0
⌊(M+1)/2⌋−i≥3

⌊(M+1)/2⌋+i+((M+1) mod 2)≤∞

b⌊(M+1)/2⌋−ib⌊(M+1)/2⌋+i+(M+1)mod2

dml

dt
= lk4m1

(
bl−1 − bl

)
+ jk3

∞∑

i=0
⌊j/2⌋−i≥3

⌊j/2⌋+i+(j mod 2)≤∞

b⌊j/2⌋−ib⌊j/2⌋+i+jmod2, M + 2 ≤ l <∞

(1.19)

The first equation for the precursor monomers m1 sees that they are lost to third-order nucleation

via the first term and lost to monomer growth via the second. There are no particles of size 2 so

we jump to the equation for m3 which gains particles from nucleation and loses to both monomer

growth by the second term and to agglomeration by the third summation term. The equations for

j = 3, 4, 5 are special since the smallest particle that can be formed by agglomeration is 6 which
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occurs when two nuclei combine. Thus, these have no gain from agglomeration terms. The mj

equation represents the remaining B particles of size 6 to M that can be both gained and lost via

agglomeration. The ml equation represents particles that are too large that they can be formed

from agglomeration, but they can not be lost to agglomeration since there are no "small"-"large"

or "large"-"large" interactions. Since 1.18 only has B + B agglomeration the maximum particle

that can be formed via this process is n2M . To reiterate, the m1 equation represents the precursor

A, the m3, m4,5 and mj equations together represent the "small" B particles and the ml equation

represents the "large" C particles.

The sums that represent the gain from agglomeration use an index i which starts at zero and

increases as usual but only as long as the two constraints are met. The first is that half the current

particle size minus the index can only be as small as the nucleus while second is thatcan be no

larger than the maximum C particle size one wishes to model (here set to ∞). For example, for

j = 21 the first few terms of the sum are b10b11 + b9b12 + b8b13 + . . . which will give all the

particle-particle combinations that form m21 without any overcounting. This agglomeration gain

is essentially Smoluchowski’s equation (1.9) and (1.10) and we could we could write the sums in

(1.19) instead as

jk3
1

2

j−3
∑

i=3

bibj−i

where the bounds have been modified to reflect the nucleus n3 being the smallest sized particle

available for agglomeration and where we have switched the roles of i and j. Again for the case

j = 21, the terms in the sum would be b3b18 + b4b17 + · · · + b17b4 + b18b3. This notation is nicer

and more compact, however if there is an odd number of terms in the sum the middle term will be

unnecessarily and incorrectly be halved. For example, using (1.10) with i = 4 to make n4 we have

1
2

∑i−1
j=1 njni−j =

1
2
(n1n3+n2n2+n3n1) =

1
2
n2n2+n1n3. This is not a problem for the continuous

formulation of Smoluchowski’s equation, see for example [44, 45], since the unnecessary halving

will occur on a set of measure zero. The discrete version loses this characteristic as we go from

integrating over points to summing over essentially integer sized bins, which are not measure zero.

Perhaps a better notation for the sum in question can be seen in [72] which uses i + j = k for the
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dnk

dt
equation. In the end, one must be careful to either count everything twice and halve the result

or just count everything once.

Using the same mk = knk and bk = r(k)mk substitutions as in the two-step, we can transform

the monomer system (1.19) into the system for particle size

dn1

dt
= −3k1n

3
1

︸ ︷︷ ︸
loss from nucleation

−n1

∞∑

k=3

kgr(k)knk

︸ ︷︷ ︸
loss from growth

dn3

dt
= k1n

3
1

︸︷︷︸
gain from nucleation

− k2n1r(3)3n3
︸ ︷︷ ︸
loss from growth

− k3r(3)3n3

M∑

k=3

r(k)knk

︸ ︷︷ ︸
loss from agglomeration

dn4,5

dt
= k2n1

(
r(j − 1)(j − 1)nj−1 − r(j)jnj

)

︸ ︷︷ ︸
gain and loss from growth

− k3r(j)jnj

M∑

i=3

r(i)ini

︸ ︷︷ ︸
loss from agglomeration

dnj

dt
= k2n1

(
r(j − 1)(j − 1)nj−1 − r(j)jnj

)

︸ ︷︷ ︸
gain and loss from growth

− k3r(j)jnj

M∑

i=3

r(i)ini

︸ ︷︷ ︸
loss from agglomeration

+ k3

∞∑

i=0
µ≥3
ν≤M

r(µ)µnµr(ν)νnν

︸ ︷︷ ︸
gain from agglomeration

, 6 ≤ j ≤M

dnM+1

dt
= n1

(
k2r(M)MnM − k4r(M + 1)(M + 1)nM+1

)

︸ ︷︷ ︸
gain and loss from growth

+ k3

∞∑

i=0
µ≥3
ν≤M

r(µ)µnµr(ν)νnν

︸ ︷︷ ︸
gain from agglomeration

dnl

dt
= k4n1

(
r(l − 1)(l − 1)nl−1 − r(l)lnl

)

︸ ︷︷ ︸
gain and loss from growth

+ k3

∞∑

i=0
µ≥3
ν≤M

r(µ)µnµr(ν)νnν

︸ ︷︷ ︸
gain from agglomeration

, M + 2 ≤ l <∞.

(1.20)
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Where we make the substitutions µ = ⌊j/2⌋ − i and ν = ⌊j/2⌋ + i + (j mod 2), respectively

for l, and where M is the cutoff between the "small" particles B and the "large" particles C. The

"small"-"large" cuttoff M also serves as the cutoff for which particles agglomerate, since the class

of "large" particles does not agglomerate in this model because there are no B+C or C+C steps.

The j sizes are both formed and consumed by the agglomeration process. The l sizes are larger

than the maximum agglomeration size M and therefore cannot be consumed by agglomeration,

but may potentially still be formed via it up to size 2M . A separate equation is needed for nM+1

since it is formed and lost by monomer addition at different rates.

The sums representing the gains from agglomeration in (1.19) or (1.20) are most easily ex-

plained with an example. Say that we want to sum the combinations that make n50. In order to

avoid double counting each two number combination and dividing by two we instead only count

each pair once, thus also avoiding the incorrect halving of a single term above. The µ and ν

particles can be given labels such as left and right or red and blue. We start in the middle with

n50 = n25+n25. Then the left is decreased and the right is increased to n50 = n24+n26, and so on

until the left number µ reaches 3, or the right number ν reaches M . The sum will always stop with

the µ ≥ 3 condition for B sized particles. For the larger C size particles the ν ≤ M condition is

necessary. For example, if we take a "large" C particle n100 with M = 40 we have that n100 cannot

be formed from the combination of two "large" n50’s since 50 > M and only B particles smaller

than M are agglomerating in this model.

Simulations of the 4-step Model

Because of the results in §1.4.1 and [49] we use third-order nucleation for simulations of the

4-step model. In Figure 1.13 we see that (1.20) is able to match the CHCRR curve very well doing

better than any nucleation order attemped with the 2-step mechanism. However, the associated

four PSDs are quite poor. They have too much mass in the smaller sized particles like the results

from the 2-step simulations. A new characteristic that is seen starting in (c) and pronounced in (d)

is a second peak making the PSD bimodal, a non-obvious characteristic of the TEM measurements.
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The PSDs have a discontinuity in them now due to the step function growth between the B and C

species.

Results from fitting (1.20) to the final time histogram are seen in Figure 1.14. Not only are

these are remarkable and substantial improvements over the 2-step histogram fits, they also do

an objectively great job capturing the shape of the TEM measurement at the fourth measured

time. The three earlier time PSDs, which are merely side-effects, match the overall shape of the

distributions, but have modes shifted to the right compared to data. The first also has a substantial

tail of the smallest particle sizes. The associated CHCRR curve seen in (e) has a considerably

shorter induction time and the shape of its second elbow does not match the data. The A + C →

1.5C rate constant k4 produced by the fit is an order of magnitude smaller than the A + B → 2B

rate k2.

The 4-step model produces both better CHCRR fits and better histogram fits compared to the

2-step model. Not only are the histogram fits better, but they actually produce PSDs that are

qualitatively similar to the measured data. The models differ by agglomeration and how monomer

growth is treated. It would seem then that at least one of these is important to getting the correctly

shaped PSDs.

A Second Four-Step Mechanism Tested

The 4β-step mechanism mentioned above was also tested. The four steps in this mechanism

are (i) nucleation, (ii) monomer growth of small particles, (iii) small-small agglomeration, and (iv)

small-large agglomeration, producing the mechanism

A
k1−→ B

A+B
k2−→ C

B +B
k3−→ C

B + C
k4−→ 1.5C.

(1.21)
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Table 1.1: Table showing the effect doubling the particle size has on diameter. There are no measured
particles larger than 3.83 nm during any time. As the experiment duration increases and the nanoparticles
reach a low polydispersity they stop increasing in size significantly. This means that agglomeration of
"large" particles does not occur. At least, that it does not occur on the time scale of the experiments.

Particle size Diameter d(n) (nm)

n500 2.38
n1000 3.00
n2000 3.78
n4000 4.76

(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.13: Fit to CHCRR curve using the 4-step mechanism and third-order nucleation. The rate constants
produced by the fit are k1 = 1.06 × 103M−2hr−1, k2 = 5.61 × 103M−1hr−1, k3 = 5.16 × 103M1hr−1,
k4 = 8.69× 103M−1hr−1 with the B vs C cutoff M = 394. The BFV is 1.45× 10−4.The jumps that now
appear in red PSDs result from the step function growth separation of the B and C species.
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(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.14: Fit to final histogram using the 4-step mechanism and third-order nucleation. The rate con-
stants produced by the fit are k1 = 2.71×103M−2hr−1, k2 = 2.00×104M−1hr−1, k3 = 9.36×102M1hr−1,
k4 = 3.94× 103M−1hr−1 with the B vs C cutoff M = 331. The BFV is 4.63× 101.
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This mechanism is the same as the 5-step mechanism (1.33) but with the rate constant for the

large particle monomer growth step A+ C → 1.5C set to zero.

The CHCRR fit for the 4β-step mechanism is seen in Figure (1.15). The fit yields poor matches

to both the PSDs and CHCRR curve. Because there is no monomer growth for large particles,

and because small particles are used quickly by both growth and agglomeration, this mechanism

has difficulty matching the CHCRR curve. Computation time for this mechanism is significantly

increased over the 2-step and first 4-step mechanism due to having agglomeration for all sizes.

The increase in computation time is fine for a single simulation but makes the fitting process of

repeated simulations rather long and a histogram fit was not performed.

(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.15: Fit to CHCRR curve using the second 4β-step mechanism (1.21) with third-order nucleation.
The rate constants produced by the fit are k1 = 3.34 × 104M−2hr−1, k2 = 2.86 × 103M−1hr−1, k3 =
1.44× 102M1hr−1, k4 = 1.44× 102M−1hr−1 with the B vs C cutoff M = 225. The BFV is 2.40× 10−3.
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1.4.3 Three-Step Mechanism

The next mechanism tested is the 3-step mechanism which was discovered as a reduction of

the 4-step mechanism (1.18) in which the middle two steps of "small"-particle growth and "small"-

"small" particle agglomeration are combined. The growth step isA+B → 2B. The agglomeration

step is B +B = 2B → C. The resulting combined step is then A+B → C. This effectively says

that agglomeration can be instead modeled just as monomer growth. The bimolecular agglomera-

tion step, i.e. n3 + n3 = n6, which can in general move more particle mass to the right faster than

monomer addition, can be thought of as monomer addition, i.e. (((n3 + n1) + n1) + n1) = n6,

albeit with perhaps an increased rate constant to account for the increase in number of reaction

steps. The idea to add these two elementary steps together came from numerical fits where the ag-

glomeration rate k3 of (1.18) was trending towards zero. The resulting 3 pseudoelementary steps

of the mechanism are

A
k1−→ B

A+B
k2−→ C

A+ C
k3−→ 1.5C,

(1.22)

or rewritten as

A
k1−→ B

A+B
k2−→ 2B

A+ C
k3−→ 1.5C.

(1.23)

to maintain an explicit autocatalytic second step. Mechanisms (1.22) and (1.23) will result in

different model systems if the only chemical species are A, B, and C. In our ME-PBM approach

the A+ B → X steps are converted into n1 + ni → ni+1 where the distinction between what a B

and what a C is comes not the right-hand side term ni+1, so-called 2B or C, but from the left-hand

side term ni.

36



The origins of the 3-step lie within the 4-step, however is arguable more like the 2-step mech-

anism. Like the 2-step mechanism (1.13), the 3-step (1.22) is comprised of (i) slow, continuous

nucleation A → B and (ii) fast autocatalyic growth. However, now we include in the model the

idea of "small" and "large" sized particles each of which capable of different growth rates. As seen

below, the 3-step mechanism is able to reasonably reproduce particle-size distributions matching

those from experimental data. Since, in essence, the 3-step is identical to the 2-step mechanism

(processes (i) and (ii)), which cannot produce good distributions, except that the growth kernel is

a step function instead of a constant, we have further evidence that the large particles must grow

slowly compared to the small particles.

Derivation of Three-Step ODE Model from the Mechanism

Like the previous derivations, the derivation of the 3-step mechanism starts with an ODE sys-

tem in terms of the monomers which is transformed into a system for particle sizes. The derivation

of 3-step model equations follows closely the derivation of the 2-step model. The difference is that

the 3-step has separated the non-unitary sized particles into distinct species for "large" and "small"

particles like what has been done for (1.18). These two species B and C grow with rate constants

k2 and k3. Compared to (1.16) and (1.17) this causes an extra sum term to appear in the equations

for m1 and n1 and the last equations of (1.16) and (1.17) to be split.

The monomer system is

dm1

dt
= −ωk1mω

1 − k2m1

M∑

i=ω

bi − k3m1

∞∑

i=M+1

bi

dmω

dt
= ωk1m

ω
1 − ωk2m1bω

dmj

dt
= jk2m1(bj−1 − bj), ω + 1 ≤ j ≤M

dmM+1

dt
= (M + 1)k2m1bM − (M + 1)k3m1bM+1

dml

dt
= lk3m1(bl−1 − bl), M + 2 ≤ l <∞

(1.24)

which in turn yields the system for particle sizes
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dn1

dt
= −ωk1nω

1
︸ ︷︷ ︸

loss from nucleation

− k2n1

M∑

i=ω

ir(i)ni − k3n1

∞∑

i=M+1

ir(i)ni

︸ ︷︷ ︸
loss from growth

dnω

dt
= k1n

ω
1

︸︷︷︸
gain from nucleation

−ωk2n1r(ω)nω
︸ ︷︷ ︸

loss from growth

dnj

dt
= k2n1

(
(j − 1)r(j − 1)nj−1 − jr(j)nj

)

︸ ︷︷ ︸
gain and loss from growth

, ω + 1 ≤ j ≤M

dnM+1

dt
= k2n1Mr(M)nM − k3n1(M + 1)r(M + 1)nM+1

︸ ︷︷ ︸
gain and loss from growth

dnl

dt
= k3n1

(
(l − 1)r(l − 1)nl−1 − lr(l)nl

)

︸ ︷︷ ︸
gain and loss from growth

, M + 2 ≤ l <∞

(1.25)

after using the correct substitutions (see either derivation in §1.4.1 or §1.4.2). The equation for n1

represents the precursorA. The equation for the nucleus nω together with the nj equation represent

"small" particles B. Finally, the nM+1 equation and the nl equation represent "large" particles C.

The nj and nl both model only monomer addition and are identical other than the first using k2

and the second k3. The species for the first "large" particle nM+1 garners its own equation since it

gains mass with rate constant k2 but loses mass with k3. Similarly for the m equations.

Simulations of the 3-step Model

Fitting the 3-step mechanism (1.25) to the CHCRR curve results in Figure 1.16. Not only is

(1.25) capable of fitting the CHCRR kinetics curve it produces the best match out of the mecha-

nisms tested so far.

To determine the ability of (1.25) to match the TEM measurements we again fit to the fourth

and final histogram. The results are seen in Figure 1.17. While the first time PSD still has a

somewhat significant tail of small particles, the PSDs do a nice job of fitting at all times. The first

three time PSDs would match better if they were shifted slightly to the left. Similarly to the prior

histogram fits, the CHCRR curve is a poor match. It has too short of an induction time and there is

a less sudden decrease in precursor resulting in a softer second elbow.
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The 3-step mechanism continues the trend of being able to fit the CHCRR curve, but then

making poor PSDs seen in the 2- and 4-step mechanisms. Like the 4-step, the 3-step can also

match qualitatively the final PSD to the TEM data. Using the BFV as a comparison, the 3-step

does a slightly better job at this. The CHCRR curve produced from the histogram fit is close to

that produced by the 4-step. Both have a brief induction time and have slopes that become less

negative over a longer period of time compared to the measured data. The peaks of the PSDs

produced from histogram fitting by the 3-step are smoother compared to those made by the 4-step,

but otherwise Figures 1.14 and 1.17 are very similar. Both mechanisms result in a step function

monomer growth model and in each case the two growth parameters that come from fitting k2 and

k4 in (1.20) or k2 and k3 in (1.25) see the A+C rate constant being an order of magnitude smaller

that the A+B constant.

1.4.4 Two-Step Alternative Termolecular Nucleation

When they showed that nucleation is termolecular, Özkar and Finke [49] included a fast dis-

sassociative step wherein the precursor reacts with a solvent to produce a ligand. The ligand, POM

in this case, serves to slow down nucleation.

The two-step mechanism, see Mech. 1.13, with the alternative termolecular nucleation is

2
[
A+ 2S

KDiss−−−⇀↽−−− Asolv + POM
]

2Asolv + A
k1−→ 3B + POM + 4S

A+B
k2−→ 2B + POM.

(1.26)

A fast dissociative step with equilibrium constant Kdiss = k+/k− has been added and the nucle-

ation step of A→ B has been replaced with the second step above that includes solvent. The three

new species involved in alternative nucleation are the ligand POM , the solvent S, and precursor

with attached solvent Asolv. The nucleation and growth steps produce POM which then changes

the balance of the dissociative step and slows nucleation. We skip the system for monomers and

go right to the ODE system for the number of particles, which is
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(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.16: Fit to CHCRR curve using the 3-step mechanism and third-order nucleation. The rate constants
produced by the fit are k1 = 9.78 × 103M−2hr−1, k2 = 6.19 × 103M−1hr−1, k3 = 1.57 × 104M1hr−1

with the B vs C cutoff M = 1068. The BFV is 1.15× 10−4.
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(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.17: Fit to final histogram using the 3-step mechanism and third-order nucleation. The rate con-
stants produced by the fit are k1 = 1.95×103M−2hr−1, k2 = 2.24×104M−1hr−1, k3 = 3.63×103M1hr−1

with the B vs C cutoff M = 308. The BFV is 4.43× 101.
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(1.27)

where the new species ns represents the amount of Asolv, and p represents POM .

Simulations of 2-step Model with Alternative Nucleation

The CHCRR fit seen in Figure 1.18 shows that when the experimentally correct alternative ter-

molecular nucleation is added to the 2-step mechanism the resulting alternative 2-step mechanism

(1.26) is still capable of matching the reporter reaction. The PSDs are more accurately shaped

compared to the standard termolecular nucleation of Figure 1.10, but like the standard nucleation

case, the alternative nucleation PSDs have too many small particles and a variance which is too

large.

Using (1.27) to fit to the final histogram gives Figure 1.19 where it seems that the mechanism

is unable to produce PSDs with small enough polydispersity. CHCRR curve is also very poor. The

rapid depletion of precursor seen in the simulated CHCRR curve is also apparent in the PSDs since

they do no suffer from the common fault of having too many smaller particles.

1.4.5 Four-Step Alternative Termolecular Nucleation

The 4-step mechanism (1.18) with standard nucleation replaced with alternative nucleation is
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(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.18: Fit to CHCRR curve using the 2-step mechanism and alternative nucleation. The rate constants
produced by the fit are k1 = 4.80×104M−2hr−1, k2 = 6.50×103M−1hr−1. The BFV is 1.04×10−3. The
initial solvent amount is 11.3 M. The dissociative rate constants are k+ = 3.60×10−2 and k− = 7.27×104.
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(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.19: Fit to fourth histogram using the 2-step mechanism and alternative nucleation. The rate
constants produced by the fit are k1 = 4.80 × 104M−2hr−1, k2 = 3.99 × 104M−1hr−1. The BFV is
2.53× 102. The initial solvent amount is 11.3 M. The dissociative rate constants are k+ = 3.60× 10−2 and
k− = 7.27× 104.
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2
[
A+ 2S

KDiss−−−⇀↽−−− Asolv + POM
]

2Asolv + A
k1−→ 3B + POM + 4S

A+B
k2−→ 2B + POM

B +B
k3−→ C

A+ C
k4−→ 1.5C + POM.

(1.28)

The POM ligand is created whenever the precursor A is involved in a step so is not present in

the agglomeration step. Similarly to the standard four-step, the alt-termol four-step has the same

nucleation as the two-step, has an additional small-small agglomeration step, and the growth step

is split into large and small.

We again omit the derivation of the monomer model due to similarity to the previous deriva-

tions. The ODE system for the alternative 4-step mechanism in terms of particle size is
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where the n1 equation is for the precursor species A, the ns equation is for the Asolv species, p is

for POM, the n3, n4,5, and nj equations are for "small" particles B, and finally the nM+1 and nl

equations are for the "large" particles C.

Simulations of 4-step Model with Alternative Nucleation

The CHCRR and histogram fits using (1.29) are seen in Figures 1.20 and 1.21. The CHCRR

fit is adequate but has difficulty matching the induction phase. The PSDs from the CHCRR, in

addition to the now common trend of having too many small particles, become bimodal with time.

This behavior is not seen in the apparent unimodal TEM data.

The histogram fit shows that the addition of the correct alternative nucleation to the 4-step

does not remove its capability of producing accurate unimodal PSDs. The companion CHCRR

simulation is better than the standard termolecular 4-step simulation, but still uses too much pre-

cursor during the early times. The peaks of the PSDs are smoother and the overall shape is better

compared to the standard nucleation case in Figure 1.14.

1.4.6 Three-Step Alternative Termolecular Nucleation

Adding the alternative nucleation steps and needed extra species to the best performing new

three-step Mechanism (1.22) gives Mechanism (1.30). The associated system of ODEs is seen in

(1.31) where each term is labeled with a short description. Again, the intermediate size between

"large" and "small" particles grows and loses with two different rate constants and requires its own

equation.

2
[
A+ 2S

KDiss−−−⇀↽−−− Asolv + POM
]

2Asolv + A
k1−→ 3B + POM + 4S

A+B
k2−→ C + POM

A+ C
k3−→ 1.5C + POM.

(1.30)
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(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.20: Fit to CHCRR curve using the 4-step mechanism and alternative nucleation. The rate constants
produced by the fit are k1 = 5.99 × 104M−2hr−1, k2 = 4.21 × 103M−1hr−1, k3 = 6.24 × 102M−1hr−1,
k4 = 1.68× 104M−1hr−1, and B vs. C particle size cutoff M = 225. The BFV is 9.55× 10−4. The initial
solvent amount is 11.3 M. The dissociative rate constants are k+ = 3.60× 10−2 and k− = 7.27× 104.
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(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.21: Fit to fourth histogram curve using the 4-step mechanism and alternative nucleation. The
rate constants produced by the fit are k1 = 6.40 × 104M−2hr−1, k2 = 1.61 × 104M−1hr−1, k3 = 1.20 ×
101M−1hr−1, k4 = 5.45×103M−1hr−1, and B vs. C particle size cutoff M = 265. The BFV is 2.96×101.
The initial solvent amount is 11.3 M. The dissociative rate constants are k+ = 3.60 × 10−2 and k− =
7.27× 104.
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(1.31)

The results from fitting (1.31) to the CHCRR curve are in Figure 1.22. Similarly to the alter-

native nucleation 4-step results, the CHCRR curve is a fair match with a slight overshoot on the

induction period. The associated PSDs are centered too far to the left since they do not contain

large enough particles.

Figure 1.23 has the histogram fit results for (1.31). The fourth time histogram shows an excel-

lent match to the TEM measurements. The earlier time PSDs are slightly more advanced than the

data, but all have nice shapes. The corresponding CHCRR curve is similar in shape to the data but

does not have a long enough induction period.

The previous two fits were done using the standard polling option for patternsearch.

Using the complete polling option, see §1.10.1, results a final histogram that is nearly identical to

the standard polling method as seen in Figure 1.24. This similarity is seen in both the corresponding

figures and also in similar BFVs. The parameters resulting from the two polling methods are the

same to 3 significant digits. In this instance, the choice of polling method was inconsequential.
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(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.22: Fit to CHCRR curve using the 3-step mechanism and alternative nucleation. The rate constants
produced by the fit are k1 = 4.97 × 104M−2hr−1, k2 = 4.97 × 103M−1hr−1, k3 = 1.12 × 104M−1hr−1,
and B vs. C particle size cutoff M = 196. The BFV is 9.54× 10−4. The initial solvent amount is 11.3 M.
The dissociative rate constants are k+ = 3.60× 10−2 and k− = 7.27× 104.
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(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.23: Fit to the final histogram using the 3-step mechanism and alternative nucleation. The rate
constants produced by the fit are k1 = 6.45 × 104M−2hr−1, k2 = 1.63 × 104M−1hr−1, k3 = 5.57 ×
103M−1hr−1, and B vs. C particle size cutoff M = 274. The BFV is 2.93 × 101. The initial solvent
amount is 11.3 M. The dissociative rate constants are k+ = 3.60× 10−2 and k− = 7.27× 104.
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(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.24: Fit to the final histogram using the 3-step mechanism and alternative nucleation using the
complete polling option in patternsearch. The rate constants produced by the fit are k1 = 6.45 ×
104M−2hr−1, k2 = 1.63 × 104M−1hr−1, k3 = 5.56 × 103M−1hr−1, and B vs. C particle size cutoff
M = 274. The BFV is 2.93× 101. The initial solvent amount is 11.3 M. The dissociative rate constants are
k+ = 3.60× 10−2 and k− = 7.27× 104.
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Most of the model fits to the TEM histogram measurements result in reporter reaction curves

with short induction times. It was noticed from changing the forward and backward Kdiss values

while keeping the same ratio could result in no qualitative change is PSDs, but a precursor con-

centration that better followed the reporter reaction. This led to an attempt to fit for these k+ and

k− values. The fit was performed by fixing the k1, k2, and k3 values from Figure 1.23 for the

alternative termolecular 3-step model and minimizing the CHCRR objective function by changing

k+ then deriving the appropriate k− value from Kdiss. The results from this fit are seen in Figure

1.25. With the rate constants for nucleation and growth fixed, changing the Kdiss constants makes

the simulated precursor curve match very well to the reporter reaction, especially during the first

half of the reaction. The PSDs maintain overall shapes that are adequate matches to the TEM data,

but have a higher polydispersity than before, and "lean back" towards the "small" particles. Bet-

ter experimental knowledge of the concentration of precursor A, or fitting the simulated precursor

curve only the first third or half of the CHCRR curve is worth exploring.

3β-Step Mechanism

The 4-step mechanism (1.18) is capable of obtaining qualitatively correct PSDs by adding

agglomeration to, and splitting the monomer growth step of, the 2-step mechanism (1.13). The

3-step (1.22) is also capable of qualitatively correct PSDs while having only size dependent split

monomer growth with no agglomeration. It is then important to check the mechanism which has

agglomeration but no size dependence for monomer addition. This mechanism we call the 3β-step

and is given by the pseudoelementary steps

A
k1−→ B

A+B
k2−→ 2B

B +B
k3−→ C.

(1.32)

We forgo presentation of the ODE systems as they can easily be created from slight modifications

to (1.19) and (1.20). This mechanism needs to have size independent monomer addition across all
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(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.25: Fit to the final histogram using the 3-step mechanism and alternative nucleation using the
complete polling option in patternsearch and optimizing over Kdiss. The rate constants produced by
the fit are k1 = 6.45 × 104M−2hr−1, k2 = 1.63 × 104M−1hr−1, k3 = 5.57 × 103M−1hr−1, and B vs.
C particle size cutoff M = 274. The BFV is 7.87 × 10−4. The initial solvent amount is 11.3 M. The
dissociative rate constants are k+ = 2.09× 10−3 and k− = 4.18× 103.
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sizes of particles and a "small"-"small" agglomeration step so as to properly isolate the differences

between the 2, 3, and 4-step mechanisms. In this regard, the B species in (1.32) plays double duty

since in A + B it refers to all sizes, while in B + B it refers only to "small" sizes. In effect, what

we have is (1.18) with k2 = k4.

Fitting (1.32) to the CHCRR curve gives a decent fit as seen in Figure 1.26. The accompanying

PSDs are similar to those in Figure 1.10 for the 2-step mechanism. The small-large particle cutoff

is very small which means that for all but the smallest 0.48 percent of particles we essentially have

the behavior of the 2-step mechanism so the similarities between the PSDs produced by the 3β-step

and the 2-step fits in unsurprising.

(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.26: Fit to the final histogram using the 3β-step mechanism using the complete polling option in
patternsearch. The rate constants produced by the fit are k1 = 2.33 × 103M−2hr−1, k2 = 4.99 ×
103M−1hr−1, k3 = 2.00×103M−1hr−1, and B vs. C particle size cutoff M = 12. The BFV is 3.23×10−4.
The initial solvent amount is 11.3 M.
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Fitting (1.32) to the fourth TEM histogram results in a trimodal PSD with very a precursor

concentration that is a very poor fit to the reporter reaction which can be seen in Figure 1.27. The

rapid use of the precursor is explained in the PSDs by how many large particles are already formed

at the first time of 0.918 hours. Since the precursor rapidly becomes depleted both the nucleation

and monomer addition steps stop very early. The first bump of the wide part of the distribution is

caused by the sizes of particles that form from the B + B agglomeration step. These particles are

then unable to grow since there is no remaining monomer.

(a) 0.918 hours. (b) 1.170 hours. (c) 2.336 hours.

(d) 4.838 hours. (e) CHCRR.

Figure 1.27: Fit to the final histogram using the 3β-step mechanism using the complete polling option in
patternsearch. The rate constants produced by the fit are k1 = 6.50 × 104M−2hr−1, k2 = 4.00 ×
104M−1hr−1, k3 = 9.87×103M−1hr−1, and B vs. C particle size cutoff M = 296. The BFV is 1.56×102.
The initial solvent amount is 11.3 M.
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1.4.7 Five-Step Mechanism

A proposed 5-step mechanism consists of the 4-step mechanism (1.18) with the additional step

of "small"-"large" agglomeration B + C → C given by the steps

A
k1−→ B

A+B
k2−→ 2B

B +B
k3−→ C

A+ C
k4−→ 1.5C

B + C
k5−→ C

(1.33)

which consist of nucleation, monomer growth, and agglomeration. The monomer growth and

agglomeration steps are size-dependent. A monomer is added to "small" particles and "large"

particles at different rates. Similarly, agglomeration has "small" particles joining with other "small"

particles and "large" particles at different rates. There is no "large"-"large" agglomeration in this

mechanism. The lack of this is plausible given the reasoning behind Table 1.1. The effect of

having all particles participate in agglomeration takes it toll numerically in the form of significantly

increased computation times over the other mechanisms. Some inconclusive simulations with ad

hoc parameter choices were run, but a systematic patternsearch fit was not performed due

to CPU time limitations. It is likely that this mechanism is perfectly capable of producing PSDs

that are accurate matches to the experimental data based on the results from the 3-step and 4-step

mechanisms.

1.5 Comparison of Results

A table of CHCRR curves and the final measured histogram for various tested mechanisms fit

to the CHCRR curve is given below in Figure 1.28 and to the final histogram in Figure 1.29. The

CHCRR fits summary clearly shows how each mechanism is able to match the reporter reaction,

but that they are not simultaneously able to produce qualitatively accurate PSDs.
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The histogram fitting comparison shows that the 4-step and 3-step mechanisms are able to

reproduce PSDs with similar polydispersity and mean as the TEM data while the 2-step cannot.

These simulations all result in similar CHCRR curves which have a shorter-than-measured induc-

tion period compared to the reporter reaction.

(a) 2-step 1st (b) 2-step 2nd (c) 2-step 3rd

(d) 2-step 4th (e) 2-step alt (f) 4-step

(g) 4-step alt (h) 3-step (i) 3-step alt

Figure 1.28: A side-by-side comparison of the fourth and final histogram and CHCRR curves for some of
tested models fit to the CHCRR curve. See previous figures for appropriate axes labels. This demonstrates
that regardless of the mechanism or model fitting to the reporter reaction is easily accomplished. It also
demonstrates that just knowing when precursor is consumed via the reporter reaction does nothing to show
where it goes in the size distributions.

1.6 Comparison of Growth and Nucleation Rates

Figure 1.30 details how the number of particles, nucleation rate, and growth rate change over

time for the 3-step mechanism with alternative nucleation (1.30). The nucleation and growth rates

are the nucleation and growth terms in the dn1/dt equation in (1.25).
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(a) 2-step (b) 2-step alt (c) 4-step

(d) 4-step alt (e) 3-step (f) 3-step alt

Figure 1.29: A side-by-side comparison of the fourth and final histogram and CHCRR curves for some of
tested models fit to the final histogram. See previous figures for appropriate axes labels. Similar CHCRR
curves between fits with different PSDs shows again that knowing when the precursor is used does not say
where it is used. The 4-step and 3-step models produce very similar and well fitting PSDs. The two models
both have smaller particles growing faster than larger particles.

The number of particles looks to plateau, but is monotonically increasing when looking at

the derivative. The increase in the number of particles reiterates the continuous nucleation of

the model. Interestingly, the nucleation rate appears to be burst-like, but this is not the case.

The mechanism and model both implement continuous nucleation. Nucleation and growth have

significant overlap and are not completely separated in time. Continuous nucleation can appear

burst-like.

1.7 Open Flow Reactor Simulations

The first ODE in the best performing 3-step model in System (1.25) or (1.31) can be modified

to simulate an open flow chemical reactor in which precursor is continuously fed into the system

by adding a constant term to the dn1

dt
equation. Open reactors [26, 64] are used in chemistry and

the study of nanoparticle formation, so it is important to test the mechanisms ability to produce

realistic PSDs in this scenario. The available TEM data was produced in a closed batch with no

incoming source of precursor after the initial seeding, so there is no appropriate data to compare

the simulations to. However, we can see how the PSDs are affected by a source term in the model.

60



(a) (b) (c)

(d) (e) (f)

Figure 1.30: The number of particles a) increases throughout the reaction, but the effective nucleation rate
b) appears burst-like. The growth rate is seen in c). The unscaled nucleation and growth rates are in d) and
show how much larger the growth rate is. The unscaled versions are in e) where their changes over time
can be compared. The nucleation and growth rates have significant overlap and are not separated in time.
Normalized number of particles and the two rates are compared in f).
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Figure 1.31 show the simulation results of using the 3-step model with alternative nucleation

where the dynamical equation for the precursor has a constant source term. The source term is

such that after 5 hours the total concentration of monomers in all particles as increased by around

one mM. This constant increase in monomer concentration is shown in the figure in addition to

PSDs at now familiar times. The concentration [A], the sum of both the A and Asolv species, is

also given. The simulation shows an increase in [A] at early times due to the source term, and then

similar behavior to the closed experiment once growth becomes dominant. The inflow of precursor

is not high enough here so as to overwhelm the systems ability to consume it. Experimental data

in an open flow system is needed to definitively validate this simulation. However, the simulation

seems to behave in an expected manner and should be able to predict such an experiment.

Figure 1.31: Simulation of an open flow reactor with a constant source of precursor A such that the total
monomer concentration increased by approximately 1mM after 5 hours. PSDs are shown at the times given,
but there is not experimental data to match to. The simulations were done with the 3-step mechanism with
alternative termolecular nucleation using the best values obtained from histogram fitting with the closed
system TEM data.

1.8 Extension to Larger Systems via Binning

The iridium system modeled via ME-PBM in this dissertation is a relatively small system with

a maximum particle size of 2500 leading to ODE systems of 2500 equations. For larger particle

systems with maximum particle sizes potentially in the millions, it is not feasible to use a single

equation for each size.
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The standard monomer ODEs for the 2-step mechanism are given in (1.16). These have a

single equation for each individual particle size which becomes prohibitive to compute when the

maximum particle size becomes large. To overcome this, we will bin multiple sizes together to

reduce the overall number of equations. This binning or grouping is usually done by

d

dt

∫ xj

xi

m(x, t)dx = f(xi, t)− f(xj, t) (1.34)

where the change of mass over an interval is equal to the flux in from the left and right boundaries

and the particle size x is continuous. The number of monomers is integral and not continuous and

is being studied on a scale where it is not necessarily require. So, to keep things discrete we can

write
d

dt

∫ xj+1

xi

m(x, t)dx =
d

dt

( j
∑

k=i

mk

)

=
dmi

dt
+
dmi+1

dt
+ · · ·+ dmj

dt
, (1.35)

where the indices are arranged as

xi−1 xi xi+1 xj xj+1

mi−1 mi mi+1 mj

.

Equation (1.16) can now be used in the right-hand side of (1.35). For example with the nucleation

order ω = 3 and using bin groups of size 3 starting with mω+1 we get for the first bin

d

dt

∫ x7

x4

m(x, t)dx =
d

dt

( 6∑

k=4

mk

)

=
dm4

dt
+
dm5

dt
+ · · ·+ dm6

dt

= k2m1(4b3 − 4b4 + 5b4 − 5b5 + 6b5 − 6b6)

= k2m1(4b3 + b4 + b5 − 6b6).

(1.36)

The form for a bin over an arbitrary interval is then given by

d

dt

∫ xj+1

xi

m(x, t)dx =
dMi,j

dt
= k2m1

(

ibi−1 +

j−1
∑

k=i

bk − jbj

)

, (1.37)
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where the interval monomer concentrations are denoted Mi,j . The right-hand side of (1.37) is still

in terms of the individual monomer species. The leftmost term is the gain from growth where i

monomers are gained from a monomer combining with with mi−1. The middle term is the gain

from particles that stay in the bin. The coefficient on these terms is 1 from the additional precursor

monomer. Finally, the rightmost term is loss from growth where we lose the largest size in the bin.

We are concerned with the total number of monomers in a given bin Mi,j =
∑j

k=imk. If

we assume an odd number of monomer species in each bin with size β we have that Mi,j ≈

βm(i+j)/2. We also say that Ri,j = r(i+j)/2. The number of bindable spots in each bin is then

Bi,j = βr(i+j)/2m(i+j)/2 = βb(i+j)/2 = Ri,jMi,j .

Let us also assume that every species in a bin is approximately the average size species in the

bin so mi ≈ mi+1 ≈ · · · ≈ mj ≈ m(i+j)/2. We can now approximate (1.37) and obtain

dMi,j

dt
≈ k2m1

β

(

iBi−β,j−β + (β − 1)Bi,j − jBi,j

)

=
k2M1

β

(

iRi−β,j−βMi−β,j−β + (β − 1− j)Ri,jMi,j

)

.

(1.38)

Combining this with the equations for the precursor and nucleus we arrive at the system

dM1

dt
= −ωk1Mω

1 − k2M1Bω − k2M1

∑

i,j

Bi.j

dMω

dt
= ωk1M

ω
1 − ωk2M1Bω

dMi,j

dt
=
k2M1

β

(

iBi−β,j−β + (β − 1)Bi,j − jBi,j

)

.

(1.39)

It is important to note that β is a function of the bin it is referring to. The precursor and nucleus

bins have a size β = 1 which means that the first Mi,j equation bin can not have the 1/β factored

out since the first term refers to the previous nucleus bin which a different size. The number of

particles in a bin is given by the total number of monomers divided by the average particle size or

Ni,j =
1

αi,j

∑j
k=imk =

1
αi,j

Mi,j where the average size in a bin αi,j =
i+j
2

. This in (1.38) gives
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αi,j
dNi,j

dt
=
k2N1

β

(

iαi−β,j−βRi−β,j−βNi−β,j−β + αi,j(β − 1− j)Ri,jNi,j

)

, (1.40)

then
dNi,j

dt
=
k2N1

αi,jβ

(

i(αi,j − β)Ri−β,j−βNi−β,j−β + αi,j(β − 1− j)Ri,jNi,j

)

(1.41)

where we have used αi−β,j−β = αi,j − β. If we have a bin size of β = 1 where i = j (1.41)

becomes
dNj

dt
=
k2N1

j

(

j(j − 1)Rj−1Nj−1 − j2RjNj

)

, (1.42)

then
dNj

dt
= k2N1

(
(j − 1)Rj−1Nj−1 − jRjNj

)
, (1.43)

which is identical to the originally derived equations (1.17).

Letting the precursor and nucleus comprise their own bins we can combine their equations

from (1.17) with (1.41) giving the system

dN1

dt
= −ωk1Nω

1 − k2N1

∞∑

i=ω

RiNi

dNω

dt
= k1N

ω
1 − ωk2N1RωNω

dNi,j

dt
=
k2N1

αi,jβ

(

i(αi,j − β)Ri−β,j−βNi−β,j−β + αi,j(β − 1− j)Ri,jNi,j

)

,

(1.44)

for the binned particle species. This system can be used to simulate populations of particles that

contain too many atoms to use a single equation for each size.

1.9 On the Growth Kernel

The growth kernel Γi,j which determines the growth rate between particles sized i and j is

difficult to determine. The work in this paper uses a surface-area-dependent, atom-to-atom contact

model for the kernel. For example, monomer addition in the 3-step model (1.25) with "small"

particles gives
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Figure 1.32: Pictorial description of how the binning process works. Each box represents the bin M4,6

formed of m4, m5, and m6. In a) there are three particles, one of each size. When we bin these particles we
no longer have any knowledge of the individual sizes, we only know the total number of atoms. In this case
there are 15 atoms, so we effectively have 3 N4,6 particles as demonstrated in b). In c) we have various sizes
which do not lead to an integer number of average size particles. The result of binning this case is seen in
d) where the 24 total atoms are now 4.8 average sized particles. In each case the total number of precursor
atoms is conserved.
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Γ1,j =







k2jrj, j ≤M

k3jrj, j > M.

(1.45)

while the kernel in the 2-step model (1.17) is

Γ1,j = k2jrj, ∀j. (1.46)

Recall that r(j) = 2.677j.72/j which is the number of surface monomers NS divided by the total

number of monomers NΣ where NS is from [57]. The above kernels then are just a rate constant

times the number of surface atoms kiNS . While the ratio of surface atoms to total atoms NS/NΣ

is a decreasing function of size, NS is obviously increasing. In Figure 1.33 we see the effect of the

step function kernel in the 3-step mechanism compared to two 2-step mechanism kernels. From

this figure, we see that the conclusion of large particles needing to grow more slowly than small

ones should really be interpreted as the binding sites on large particles are less reactive, and the

binding sites on small particles are more reactive, compared to an increased reactivity just due to

increased particle size. A large particle has more binding sites which makes reactivity increase

with size. But, something needs to dampen the overall ability of each site to grow.

Figure 1.33: The growth kernels (1.45) and (1.46) for the 2-step histogram fit (blue), 3-step histogram
fit (red), and 2-step reporter reaction fit (black) with rate constants taken from Table 1.3. The increased
reactivity of the smallest particles and decreased reactivity of the larger ones is critical to recreating accurate
PSDs.
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There has been some work in finding analytical solutions for the continuous version of Smolu-

chowski’s equation with the constant, additive, and multiplicative growth kernels Γi,j = 2, i + j,

and ij [44,45], and recently for the 2-step model with 2nd-order nucleation with rate constants pro-

portional to particle mass [65]. A typically used kernel for two spherical particles is proportional to

(r+R)(1/r+1/R) which is then (1+j)(1+1/j) = 2+j+1/j for monomer addition. This kernel

is approximately given by Γ1,j = kj for large particles where k is some constant. The ME-PBM

shows that the addition of dust to this system dramatically increases the rate of nucleation.

1.10 Experimental Methods

The ODE system models of the mechanisms in this paper were coded in MATLAB. Due to the

inherent stiffness of the solution wave in size space ode15s was chosen as the solver. Even using

the stiff ode solver, the relative and absolute tolerances needed to be made substantially smaller

than the default. These were chosen to be 10−13, but larger values are possible without the creation

of unphysical oscillations. No large effort was made to optimize computation time by maximizing

the tolerances. These small tolerance values increase the computation time, but this remains under

five minutes except in the mostly unstudied five-step mechanism. The two-step mechanism takes

around 30 seconds. The simulations were mainly done on a late 2013 MacBook Pro with a 4th

generation Intel Core i7 processor at 2.3 Ghz and 16 GB 1600 Mhz DDR3 RAM.

The ODEs are in terms of particle size while the experimental data is grouped into particles of

similar diameter in nanometers. To compare the simulations to experiment a conversion function

was needed and d(n) = 0.300082023n1/3 was picked. This is the result of a fit from measurements

taken for particles with a number of atoms between approximately 12 and 300 as provided by

chemists. See Figure 1.6. The exponent of d(n) was picked based on volume arguments. Others

were also tested but resulted in fits that were both worse looking and had constant terms.

The mechanisms were fit to the data in two ways. The first was minimizing the L2-norm dif-

ference between the experimental cyclohexane reporter reaction curve and the simulated precursor

curve calculated via the norm function. The second way was to match the experimental data his-
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togram at the fourth time step of 4.838 hours to the simulated population distribution. To compare

the simulations to the experimental histograms MATLAB ’s histfit function was used on the

TEM data. The result was normalized and compared to the normalized simulation distribution.

Both of the distributions were interpolated onto the same domain for comparison and the L1-norm

of their difference was minimized. The L1 norm was computed via the trapz function. The

minimization was done via the function patternsearch.

Figure 1.34: Red curve from MATLAB’s histfit function together with TEM data histogram. The red curve
is interpolated and normalized, and compared to the normalized simulated distribution

1.10.1 The Pattern Search Algorithm

The pattern search algorithm implemented by MATLAB in the function patternsearchwas

chosen since it is capable of bounded, multivariate optimization. It works by starting at an initial

point and then polling a potential 2N number of points whereN is the number of parameters being

minimized over. Each of these points is the same distance away from the staring point but in 2N

orthogonal directions creating a mesh. If a poll is successful whereby the algorithm finds a point

with a smaller objective function value it will move to this better point and create a new, larger

search mesh. If the poll is unsuccessful it will refine the mesh. The default polling behavior is to

move to the first better point. Complete polling may be enabled which searches all points along

the mesh and picks the best one before going to the next iteration. Using complete polling can help
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minimize objective function that have many local minima at the expense of more function calls. A

few iterations of the standard and complete polling behaviors can be seen in Figure 1.35.

(a) Standard polling. (b) Complete polling.

Figure 1.35: Different polling methods for the pattern search algorithm. The default behavior (a) which
sequentially searches around the point and moves on when the first better point is found, and (b) com-
plete polling where each potential point is polled before picked the best. Red-filled diamonds are starting
locations, blue-filled are successful polls, and unfilled are unsuccessful polls.

Further examples of the pattern search algorithm polling process can be seen in Figure 1.36

with functions f1(x, y) = (x−1)2+(y−1)2 with one minimum, f2(x, y) = (x−1)2+y2(y2− 2
3
y−1)

one local and one global minima, and the Rosenbrock function f3(x, y) = (1−x)2+100(y−x2)2

with global minimum at (1, 1).

1.10.2 The Objective Function for Pattern Search

There were two different objective functions used to get the rate constants above. The first was

for fitting to the CHCRR curve and the second was for fitting to the fourth and final particle size

histogram. The former was a very straightforward use of the L2 norm via MATLAB’s built in norm

function. The latter was more complicated.
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(a) f1(x, y). (b) f2(x, y).

(c) f3(x, y). (d) f3(x, y) zoomed in.

Figure 1.36: Illustrative example of the pattern search algorithm polling process. Red-filled diamonds are
initial values, blue-filled are successful polling locations, and unfilled are unsuccessful polling locations. (a)
f1(x, y) = (x− 1)2 + (y − 1)2 with its only minima at (1, 1), (b) f2(x, y) = (x− 1)2 + y2(y2 − 2

3y − 1)
with a global minimum at (1, 1) and a local minimum at (1,−1

2), (c) the Rosenbrock function f3(x, y) =
(1 − x)2 + 100(y − x2)2 with global minimum at (1, 1), and (d) zoomed-in version of (c). The first two
functions were run for 20 iterations of patternsearch and reached their global minimums, while the
Rosenbrock function was run for 60 and failed to converge. All with complete polling.
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First, a curve was generated from the histogram using the histfit function. Next, this curve

and the simulated PSD generated by an ODE system for a mechanism were interpolated onto the

same grid via griddedInterpolant. Having the data values for each curve on the same grid

points was necessary in order to take the norm between them. For this the trapz function was

used to compute the L1 difference.

1.11 Summary and Conclusions

The concept of mechanism-enabled PBM has been introduced. This is using PBM with an ex-

perimentally determined nucleation mechanism together with experimentally determined growth

and agglomeration mechanisms. The definition of mechanism here comes from physical-organic

chemistry and means a minimal, disproof-based, experimentally determined reaction mechanism

which is well supported by, at least, a balance reaction and experimental kinetic studies. Our

ME-PBM was implemented via systems of ODEs which allowed for the direct computation of

particle size distributions. The simulated PSDs could then be directly compared to experimental

size histograms in order to fit rate constants. Mechanistically enabling the ODEs with the exper-

imentally established alternative termolecular nucleation for the Ir(0)n nanoparticle system under

study improved the histogram fits of each mechanism by yielding lower BFVs and was done with

experimentally established nucleation rates.

A previously unknown 3-step mechanism was discovered that is a simple extension of the

well established FW 2-step mechanism. This 3-step mechanism has "small" and "large" particles

grow by monomer addition at different rates. Under conditions where agglomeration is kinetically

noncompetitive particle growth is fundamentally monomer addition. This is the best evidence to

date that the A + B → 2B autocatalytic pseudoelementary step of the FW 2-step mechanism

represents the summation of the individual A + Bi → Bi+1 single monomer addition steps. This

is physically expected but previously was not strongly experimentally supported.

There is now compelling evidence that the continuous nucleation of the FW 2-step and the new

3-step mechanisms constitute a paradigm shift in the understanding of particle formation in the
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69 years since the LaMer model was introduced in 1950. The application of the FW 2-step and

new 3-step mechanism is across a wide variety of systems in nature ranging from homogeneous

catalyst formation, protein aggregation, solid-state kinetics, dye aggregation, and other areas of

nature which show "coorperative", autocatalytic phenomena. These two mechanisms provide slow,

continuous nucleation and autocatalytic surface growth as replacements for CNT.

Given the inapplicablity of LaMer’s model of burst nucleation [73] to the formation of narrow

size distributions in strong-bond systems our new insight that smaller particles grow faster than

larger particles offers an alternative. If the growth of large particles slows down it gives the small

particles an opportunity to catch up in size so that the end size distribution is narrow. This result

is summarized in Table 1.2 which shows the results of the possible combinations of turning off

or leaving on nucleation and growth. Two of the choices are ineffective. The third choice, cor-

responding to burst nucleation and a separation of the nucleation and growth phases has been the

standard assumption for nearly 70 years. We have shown that this long-held belief is not neces-

sary for the production of near-monodispersed populations. The combination of slow, continuous

nucleation coupled with a decreasing reactivity with particle size should be valid for any physical

system where the final product is a collection of particles and not a bulk metal or complete phase

change.

The ME-PBM was possible due to having sufficient experimental data to fit model parameters.

Without accurate experimental size distributions, other indirect methods such as the reporter re-

action which follows the precursor concentration must be used. However, as we have seen, the

sigmoidal decrease of precursor can be quantitatively matched seemingly with any mechanism.

The reporter reaction does give helpful insights into the underlying chemical mechanism, but it is

inadequate. As an analogy, it is like trying to determine where people live by watching the rate at

which they leave a sports stadium. This rate determines how fast they leave, but tells nothing about

where they go.

Table 1.3 is given as a reference to easily compare the rate constants between the various fits

performed. This table readily shows that the rate constants for "large" particles are an order of
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magnitude smaller than those for "small" particles in mechanisms where such a size distinction is

made when fitting to the TEM histograms. It also shows that having and using the experimentally

correct nucleation mechanism and rates improves the performance of the overall mechanism.

ME-PBM, together with the paradigm shift away from burst nucleation, should be used in

any further modeling efforts of systems whose mean particle size limits to a finite value (e.g., for

nanoparticles, but not for say bubbles which will coalesce into one large bubble). ME-PBM was

used here on a closed system with particle sizes sufficiently small to simulate an equation for each

particle size. The binning process described can be used to extend ME-PBM to systems too large

to model each particle size individually, and there is evidence that the models are well suited to

open flow systems.

Table 1.2: The four possibilities for keeping nucleation or growth on or shutting them off.

Nucleation Growth Status

Off Off Nothing happens
On On Size-broadening
Off On LaMer burst nucleation
On Off New 3-step
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Table 1.3: Table of rate constants and BFVs for each tested mechanism. See original figures for units.
Each mechanism capable of producing qualitatively accurate PSDs has larger particles growing an order of
magnitude more slowly than smaller particles.

CHCRR fit k1 k2 k3 k4 M BFV

2-step 1st 6.70× 10−3 2.52× 103 · · · 3.92× 10−4

2-step 2nd 2.30× 101 1.71× 103 · · · 6.87× 10−4

2-step 3rd 9.14× 102 6.70× 103 · · · 2.48× 10−4

2-step 4th 8.61× 105 6.93× 103 · · · 3.04× 10−4

2-step alt 4.80× 104 6.50× 103 · · · 1.04× 10−3

4-step 1.06× 103 5.61× 103 5.16× 103 8.69× 103 394 3.92× 10−4

4β-step 3.34× 104 2.86× 103 1.44× 102 1.44× 102 225 2.40× 10−3

4-step alt 5.99× 104 4.21× 103 6.24× 102 1.68× 104 225 9.55× 10−4

3-step 9.78× 102 6.19× 103 1.57× 104 · 1068 1.15× 10−4

3-step alt 4.96× 104 4.97× 103 1.12× 104 · 196 9.54× 10−4

5-step · · · · · ·
Histogram fit k1 k2 k3 k4 M BFV

2-step 2.46× 103 1.18× 104 · · · 3.88× 102

2-step alt 4.80× 104 3.99× 104 · · · 2.53× 102

4-step 2.71× 103 2.00× 104 9.36× 102 3.94× 103 331 4.63× 101

4-step alt 6.40× 104 1.61× 104 1.20× 101 5.45× 103 265 2.96× 101

3-step 1.95× 103 2.24× 104 3.63× 103 · 308 4.43× 101

3-step alt 6.45× 104 1.63× 104 5.57× 103 · 274 2.93× 101

5-step · · · · · ·
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Chapter 2

Anisotropies in Spatially Extended Systems

This chapter begins with background and an introduction to pattern formation. The methods

of linear stability, weakly nonlinear analysis, amplitude and phase equations are discussed. These

methods are applied to the complex Ginzburg-Landau equation (CGLE) and an overview of the

CGLE is given. A stability and weakly nonlinear analysis of the anisotropic complex Ginzburg-

Landau equation (ACGLE) are performed and a set of phase equations are derived. The phase

equations are used to recreate solutions to the ACGLE. The effects of the anisotropy are studied

by comparing solutions of the CGLE to solutions of the ACGLE, and by using the L2 energy to

create a phase diagram for two different initial conditions of the ACGLE. The linear stability of

the ACGLE is numerically verified and uniquely anisotropic solutions are presented.

This work was supported by Colorado State University, revised by National Science Foundation

Division of Mathematical Sciences, via NSF grant DMS-1615909 to PI I. Oprea and Co-PIs G.

Dangelmayr and P. Shipman.

2.1 Background and Introduction

There are many natural and experimental examples of pattern formation such as sand ripples,

animal coats, fish skin, convection rolls, ion bombarded surfaces, snowcups, icebergs, and chem-

ical systems. Two well known pattern forming systems in fluid mechanics are Rayleigh-Bérnard

convection and Taylor-Couette flow. In Rayleigh-Bérnard convection, fluid is placed between two

horizontal plates and a temperature gradient is induced between them creating a buoyancy effect.

The fluid heated by the bottom plate will rise and cool fluid near the top plate will fall. This will

lead to a pattern of vertical rolls as the control parameter is increased. For Taylor-Couette flow,

fluid is placed between two vertical cylinders which are each rotated at different velocities creating

a velocity gradient between the inside and outside walls. This leads to a complicated phase dia-

gram of possible patterns as a function of the inner and outer Reynolds numbers, a dimensionless
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number that relates the fluid’s inertial and viscous forces. General overviews of pattern formation

and pattern forming systems can be found in [13, 14, 27, 28].

The patterns in these systems form as some control parameter is varied which controls how far

the system is from equilibrium. For example, in Rayleigh-Bérnard convection the control parame-

ter is the Rayleign number R = αdg3∆t/νκ. The Rayleigh number can be varied experimentally

by increasing or decreasing the temperature gradient ∆t between the top and bottom plates. The

other parameters in R relate to gravity, the distance between the plates, and the fluid properties of

thermal expansion and diffusivity, and viscosity.

The basic pattern states are stripes, squares, and hexagons. These patterns are linear combi-

nations of one, two, or three Fourier modes respectively, see Figure 2.1. Stripes, also known as

rolls, and their traveling wave counterparts, are the easiest to study since there is only one critical

wavenumber.

Figure 2.1: Basic patterns of combinations of Fourier modes. a) stripes with one mode, b) squares with two
modes, and c) hexagons with three modes.

Different underlying physical systems can produce similar patterns, e.g. zebra stripes and sand

ripples, for example Figure 2.2. The universality of these patterns can be studied by amplitude

equations. Amplitude equations describe the slow modulation of the pattern near the threshold of

instability. They can be derived via symmetry arguments or through a multiple-scales analysis. The

same amplitude equation can be derived from different underlying equations up to some unknown

coefficients that determine the length and time scales, and the effect of the nonlinearity. The
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underlying equations can be used to determine the correct coefficients of the amplitude equation

or they can be scaled out completely. The ability to completely remove the system-dependent

coefficients from the equation demonstrates the universality of amplitude equations. The main

amplitude equations of concern here are the complex Ginzburg-Landau equation (CGLE) (2.8),

and its anisotropic version the ACGLE (2.31).

Figure 2.2: Sand ripples and zebra stripes display the same behavior although the physical systems that
create the patters are quite different. Photo credit (sand ripples): Sophia Potoczak Bragdon.

The slow modulations of an amplitude equation yield phase equations which describe the ex-

tremely slow variation of the phase of the underlying system equations. The phase equation of the

CGLE is a fourth-order diffusive equation called the Kuramoto-Sivashinsky (KS) equation [34,60].

The KS equation has been studied in its own right as a model for phenomena such as flame fronts

and the leading edge of a viscous fluid flowing down an inclined plane as well as its spatiotemporal

chaotic behavior.

When a system consists of more than one spatial dimension it, and thus the amplitude and phase

equations, can be either isotropic or anisotropic. Nematic liquid crystals, ion bombardment, surface

erosion, and growth are examples of physical scenarios that can be described by anisotropic phase

equations. The anisotropic Kuramoto-Sivashinsky (aKS) equation models surface sputter erosion

and epitaxial growth [56].
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Due to the assumptions used in the derivation of amplitude and phase equations, it is important

to consider the regions and circumstances in which they are valid. In the parameter regime where a

1D, periodic traveling wave solutionA(X, T ) = Aqe
i(qX+ωqT ) is stable to perturbations (Benjamin-

Feir or Eckhaus stable) the validity has been looked at in [23, 43]. In the Benjamin-Feir unstable

regime validity of the KS phase equation as a description of the phase dynamics for the CLGE has

been shown in [67].

2.1.1 Methods

There are certain methods that have become standard when studying pattern-forming systems.

Modulation equations for the amplitude or phase are useful to characterize pattern-forming insta-

bilities near the onset of instability. A linear stability analysis can be used to describe the dynamics

of perturbations when the control parameter is small such that any nonlinear effects can be ignored.

As the control parameter is increased the first nonlinear term will start to balance the linear insta-

bility in what is termed the weakly nonlinear regime. A multiple-scales analysis is used to formally

derive both amplitude equations from the governing physical equations and phase equations from

amplitude equations.

Linear Stability Analysis

As a system is driven out of equilibrium it can become unstable to small perturbations. Pat-

terns initially form when a spatially-uniform solution to the system first becomes unstable to these

perturbations. The perturbations are small at this initial point and their dynamics are therefore

dominated by the linear terms. As such, we can perform a linear stability analysis to analyze the

onset of pattern formation.

By assuming translational invariance one can eliminate the effect of the boundary in the ex-

tended directions. The allows the dynamic equations for small perturbations of the homogeneous

state to solved with a single Fourier mode eσqt+iq·x. Translational invariance can be achieved by

assuming either infinite extended directions or by finite extended directions with periodic boundary

conditions. Any wave number is possible with infinite boundaries while the periodic boundaries
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restricts the wave numbers to integer multiples of 2π/L. Infinite boundaries are also rotationally

invariate whereas periodic boundaries are not.

The growth rate σq(q) of the perturbations is a function of the wave vector q. The associated

uniform state is linearly stable if Re σq < 0 for all choices of wave vectors q. As a control

parameter is varied the growth rate may become neutrally stable at a critical wave vector qc when

Re σq = 0. As the control parameter is further increased, if considering a supercritical bifurcation,

there becomes a band of unstable wave vectors around qc. The magnitude of the critical wave

vector qc is used to determine the characteristic length scale and critical frequency that determines

the characteristic oscillatory time scale of the perturbations. The characteristic length scale is

2π/qc, and the critical frequency is ωc = − Im σqc .

The linear growth rate Re σq < 0 can be classified in three groups called type-I, type-II, and

type-III [13, 14]. Each type can be either stationary or oscillatory in nature depending whether ωc

is zero and is designated with either an ’s’ or ’o’ suffix.

The three types are distinguished by the wave number at which the growth rate maximum Re σq

passes through zero as the control parameter is increased. In a type-I instability the real part of

the growth rate becomes positive at a positive critical wave number qc > 0. A band of unstable

wave numbers will then develop around qc and the characteristic length is 2π/qc. When the control

parameter p is equal to its critical valuepc the growth rate can be described by

σq ≈ −ξ
2
0

τ0
(q − qc)

2, (2.1)

where ξ0 is the coherence length which describes the length over which a local perturbation effects

the pattern, and τ0 is the characteristic time scale.

In a type-II instability Re σq is always zero at q = 0 which leads to patterns with long charac-

teristic wave lengths when p > pc. This type of instability growth usually occurs when the field

obeys a conservation law. When the control parameter is near its critical value

Re σq ≈ D

(

εq2 − 1

2
ξ20q

4

)

. (2.2)
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A type-III instability has a maximum growth rate at q = 0. The band of unstable wave numbers

that appears around q = 0 leads to structure on long length scales. These types of instabilities

are often seen as type-III-o oscillatory instabilities. Near the critical control parameter value the

growth is described as

Re σq ≈ 1

τ0

[
ε− ξ20q

2
]
. (2.3)

Pattern forming systems that share an instability type will have similar behavior near onset

regardless of the governing physical system or equations. The growth rates for type-I, type-II, and

type-III instabilities can be seen in Figure 2.3 each with control parameter values under, at, and

above the critical value.

(a) Type-I (b) Type-II (c) Type-III

Figure 2.3: Linear instability types according to Cross and Hohenberg [14] with images from [13]. The
type-I instability (a) has a nonzero critical wave number and is locally parabolic with an unstable band of
wave numbers from q−N to q+N . The type-II instability (b) is always zero at q = 0 and has a band of instability
starting at 0 that grows as p increases. The type-III instability (c) has its maximum at q = 0 and is often the
oscillatory type-III-o version.

An example of a type-I instability is the Swift-Hohenberg (SH) equation ∂tu = ru − (∂2x +

1)2u − u3 which has growth rate σSH
q = r − (q2 − 1)2 where r is the control parameter. The

Kuramoto-Sivashinsky (KS) equation ∂tu = −∂2x−∂4x− 1
2
|∂xu|2 is a type-II instability with growth

rate σKS
q = q2−q4. The version of the KS equation given here has had the control parameter scaled

out. The complex Ginzburg-Landau (CGL) equation ∂tA = µA+ (1 + iα)∂xA
2 − (1 + iβ)|A|2A

has a type-III-o instability with growth rate Re σCGL
q = µ − q2 with µ as the control parameter.

These growth rates can be seen in Figure 2.4.
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q

Reσq

(a) Swift-Hohenberg.

q

Reσq

(b) Kuramoto-Sivashinsky.

q

Reσq

(c) Complex Ginzburg-Landau.

Figure 2.4: Examples of the three linear instability types according to [13, 14]. (a) The Swift-Hohenberg
equation with various r values, (b) the Kuramoto-Sivashinsky equation with the control parameter scaled
out. (c) The complex Ginzburg-Landau equation with various µ values. The CGLE has nonzero wc and is
type-III-o.

These linear instabilities will grow exponentially unless they are saturated by a nonlinearity.

Weakly Nonlinear Analysis

The linear analysis assumed a small perturbation and ignored nonlinear terms of the perturba-

tion. The exponential growth of the linear instability is physically unrealistic for long times. It is

the role of the nonlinear terms to balance the linear growth. When the nonlinear and linear terms

are balanced the solution is said to be saturated. For a stationary instability this results in constant

patterns, like stripes or hexagons. For oscillatory instabilities the linear and nonlinear terms only

balance on average which leads to time-dependent patterns.

A simple example of the saturating effect of the nonlinearities can be seen using the normal

forms for bifurcations in ODEs. The normal form of a transcritical bifurcation is

dtu = ru− u2 (2.4)

which has fixed points u = 0 and u = r. For negative values of r the solutions decay without

bound away from the lower unstable fixed point. If we add in a higher-order nonlinear term to

(2.4) so that
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u
(a)

r

u
(b)

Figure 2.5: Bifurcation diagrams for (a) the standard transcritical bifurcation, and (b) transcritical with a
higher-order term. The higher-order term causes the exponentially decaying solutions below the unstable
fixed point to saturate into a stable fixed point.

dtu = ru− u2 − u3, (2.5)

we get that the fixed points are u = 0 and ±1
2

(√
4r + 1∓1

)
. The bifurcation diagrams for (2.4) and

(2.5) are plotted in Figure 2.5. Near the origin (2.5) has the same behavior as (2.4), but the extra

nonlinear term that was added causes the u = r fixed point to bend in on itself so that solutions

approach a stable fixed point for all values of r.

Amplitude Equations

A physical system described by u(x, t), with the vector x describing fields such as temperature,

velocity, or concentration, of potentially many equations ui can be described by a single complex-

valued field A(x, t). This amplitude field is valid near the onset of instability and captures the

main characteristics of pattern formation: (i) the growth of the perturbation around the base state,

(ii) the linear growth saturation by the nonlinearity, and (iii) the effects of spatial distortions. This

amplitude formalism is valid near the onset of pattern formation and for period patterns whose

characteristics vary slowly in space. Near threshold the amplitude equation is able to capture the

time-dependent distortions of an idealized pattern. A pattern usually only locally resembles an

idealized pattern like stripes or squares, and the idealized state may distort on long length and

time scales. It is on these long scales and near the instability threshold that amplitude equations

are valid. This is since they are derived by an expansion of the governing equations with the

dimensionless control parameter ε = p−pc
pc

. The restriction to long length and time scales means
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x

Figure 2.6: The modulation of the carrier wave u(x) = cos(13x) by the amplitude A(x) = 0.2 cos(2x+1).

that quickly varying modulations of an ideal pattern can not be studied by amplitude equations.

The long scale requirement also holds true for any boundary conditions which also need to change

on the long length and time scales.

Amplitude equation can be derived from symmetry arguments or by a multiple-scales expan-

sion and examples include both the real and complex Ginzburg-Landau equations, Helmholtz equa-

tion, and nonlinear Schrödinger equation. An amplitude equation is also called a modulation equa-

tion since it describes the modulation of the amplitude of some more general pattern wave. This

is similar to how AM (amplitude modulation) radio works. The amplitude modulation of a carrier

wave can be seen in Figure 2.6. The amplitude has a much smaller wave number than the carrier

wave and therefore varies on a much longer length scale.

For the type-I-s instability, see Figure 2.3, near onset there is a narrow band of unstable wave

numbers between q−N and q+N centered at qc. Using a trig identity we have for two unstable wave

numbers q1 and q2 that

cos(q1x) + cos(q2x) =

[

2 cos

(
q1 − q2

2
x

)]

cos(qcx), (2.6)

where qc = (q1 + q2)/2 is the mean wave number. So then, for pairs of wave numbers centered at

the critical value qc we get that their superposition is a slowly varying amplitude modulation of the

wave at critical wave number. Near onset q1 and q2 are near qc so that |q1 − q2| ≪ qc which means

that the amplitude in (2.6) has a much longer wave length and varies over a larger scale than the

carrier wave.
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The amplitude description for 1D pattern formation was introduced by Newell and Whitehead

[47], and Segel [58] to study patterns in convection. Newell and Whitehead used a continuous

band of wavenumbers instead of a discrete band of modes of previous works, and made note of

the diffusive spread of perturbations. Segel used the slow modulation of the amplitude to study the

effects of side walls on the patterns.

Multiple-scales Analysis

Amplitude equations can be derived from symmetry and phenomenological arguments, but

also more rigorously via a multiple-scales analysis. The governing equations u have the fast time

scales x, y, and t, but from the discussion of amplitude equations we know that there is the slow

space and time scale of the slowly varying amplitude. These slow space and time variables are

X = εpxx, Y = εpyy, T = εptt where the exponents of ε for each variable can be deduced from

the governing equation itself or from the expansion.

For example, for the Swift-Hohenberg equation

∂tu = [µ− (∆ + q2c )
2]u− u3, (2.7)

near threshold when the control parameter scales as µ→ ε2µ, the correct scalings of time and space

are T = ε2t, X = εx, and
√
εy. These lead to the substitutions ∂x → ∂x + ε∂X , ∂y → ∂y +

√
ε∂Y ,

and ∂t → ∂t+ ε2∂T . Using these in (2.7) together with the expansion u = εu1+ ε2u2+ · · · gives a

set of equations for the ui’s. There will be resonant terms which will grow unbounded unless their

coefficients are set to zero. Setting the coefficient to zero results in the amplitude equation.

Phase Equations

The phase of the complex amplitude gives the position of the pattern and captures symmetry

aspects of the pattern. Similarly to how an amplitude equation can be derived for the slowly varying

amplitude of a perturbation to a set of governing equations, a perturbation to the phase φ of the

amplitude A = aeiφ is also slowly varying. Perturbations to the magnitude a of the amplitude have
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relaxational dynamics and can be adiabatically eliminated to recover a phase diffusion equation

that describes the slow variation in the phase of the amplitude.

2.1.2 The Complex Ginzburg-Landau Equation (Isotropic)

One example of an amplitude equation is the complex Ginzburg-Landau equation (CGLE)

∂tA = µA+ (1 + iα)∆A− (1 + iβ)|A|2A, (2.8)

whose anisotropic version features significantly in this dissertation. The CGLE is the canonical

equation describing the dynamics of the slowly varying amplitude near the onset of a supercritical

Hopf bifurcation in spatially extended systems. It can be derived via a multiple-scales analysis

from many physical systems, but can also be derived independently of any physical system such

as from either a reaction-diffusion system [33], or as the amplitude equation of a modulated stripe

near a type-I-s instability in the language of [13]. In the limit as the parameters α → 0, β → 0 the

CGLE reduces to the real Ginzburg-Landau equation (RGLE). In the limit as α → ∞ and β → ∞

the CGLE becomes the nonlinear Schrödinger equation [1, 11, 33].

Coherent Structures

In addition the the methods previously described, coherent structures have been used to study

the CGLE and its solutions, as their use often results in a more tractable system of ODEs which

describes the behavior of solutions to the CGLE. Coherent structures are solutions, or features

of solutions, that are localized in space. These include fronts, pulses, sources, and sinks in one

spatial dimension, and targets, spirals, dislocations, and grain boundaries in two dimensions [69].

A dynamical system in terms of the wave variable ξ = x− ct can be derived from a PDE in certain

cases. For example, the uniformly translating solutionA(ξ) = a(ξ)eiφ(ξ) yields a set of three ODEs

when plugged in the CGLE. The heteroclinic solutions of the dynamical system are the coherent

structures. As an example, in one dimension the heteroclinic solution connecting one with zero is

a front.
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Bohr et al. [5, 6] were able to approximate the shock wall positions that surround the spiral

domains in the BFN stable region by a hyperbola if the distance between two spirals is significantly

larger than the wavelength in which case the phase of the spiral is given by a simple formula.

In [68] the author found that coherent structures called homoclinic holes describe spatiotempo-

ral intermittency and are connected to phase slips. The authors take a uniformly propagating ansatz

A(x, t) = a(z)eiωt to get a system of ODEs whose fixed points are plane waves. Homoclinic orbits

connecting two of the fixed points the correspond to the sought after intermittent solutions with

ql = qr. They determined heteroclinic Nozaki-Bekki holes and homoclinic holes are two distinct

types of hole solutions of the CGLE. The authors say that, loosely speaking, homoclinic holes are

unstable equilibria between plane waves and phase slips.

In [8, 9] Brusch et al. used the pulse-like periodic coherent structure

A(x, t) = a(x− vt)eiφ(x−vt)e−iωt (2.9)

with period P to investigate the transition from phase to defect chaos in the 1D CGLE. Plugging

(2.9) into the CGLE gives a system of three ODEs in the variables a, b = da/dz, and ψ = dφ/dz

where z = x−vt. They call the periodic coherent structures modulated amplitude waves (MAWs);

these are the limit cycles of the ODE system. For the case where the average phase gradient is zero,

or in other words when A(x, t) = e−iβt, MAWs bifurcate from unstable plane waves. As the linear

and nonlinear dispersion coefficients α and β, are increased the MAWs undergo a saddle-node

(SN) bifurcation. This happens when the period of the MAW becomes larger than the period at the

saddle-node.

In [36] the authors recast the 1D CGLE in a finite box with periodic boundary conditions as a

fourth-order ODE in terms of the modulation of the amplitude squared of a plane wave solution.

This is used to prove the existence of MAWs in two cases: bifurcation of the trivial solutionA = 0,

and bifurcation of the plane wave solution with zero wavenumber.

Sherratt et al. [59] looked at patterns of sources and sinks in the CGLE without linear dis-

persion. This allows the CGLE to be transformed into a reaction-diffusion for u and v by using
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A = u+ iv. The source-sink patterns are similar to homoclinic hole solutions in that they are both

localized disturbances to wavetrains, but the source-sink patterns contain a band of oppositely

moving wavetrains. Homoclinic holes are connect via a wavetrain while source-sink patterns are

instead connected around a heteroclinic cycle. MAWs are distinct from the repeating patterns of

sources and sinks.

Phase diagram

Similar to the well know stability or Busse ballon analysis which plots the control parameter

against the wavenumber to study the stability of solutions, the phase diagram bounds different solu-

tion types into regions based on the non-control parameters of linear and nonlinear dispersion. The

phase diagram of the 2D CGLE given by Chaté and Manneville in [11], see Figure 2.7, is broken

into regions by several lines: BF , S1, S2, L, and T . The BF line represents the Benjamin-Feir-

Newell instability. The S1 and S2 lines denote where plane waves become linearly or absolutely

unstable respectively. Between the two S lines perturbations are amplified and convected away

from the spiral core. To the left of the L line is when phase chaos (turbulence) is transient. The

T line is the division between phase chaos (to the right) and defect chaos (to the left). As the

parameters are varied a the solution crosses one of these lines it undergoes a "phase" transition.

The form of the CGLE used [11] requires the transformation A→
√
iA to get to (2.8). Their b1 is

unaffected by this transformation and directly relates to α1, but the nonlinear coefficient −(b3 − i)

becomes our −(1 + iβ).

Linear Stability Analysis

We perform a linear stability analysis on the CGLE (2.8). Let

A = R0(1 + r)ei(k·X−ωT+φ), R2
0 = µ− k2, ω = βR2

0 + αk2. (2.10)

where k = (kx, ky), X = (X, Y ), and r, φ ≪ 1 are small perturbations to the amplitude and

phase of a uniform traveling wave solution. Substituting this into (2.8) then separating real and
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Figure 2.7: Phase diagram given by Chaté and Manneville. Reprinted from [11], Copyright 1996, with
permission from Elsevier.

imaginary parts yields dynamic equations for the two perturbations.

∂T r = −2R2
0 − 3R2

0r
2 −R2

0r
3 − 2α

(
k1∂Xr + k2∂Y r + ∂Xr∂Xφ+ ∂Y r∂Y φ

)
+ ∂2Xr + ∂2Y r

− (1 + r)
[
2(k1∂Xφ+ k2∂Y φ) + α(∂2Xφ+ ∂2Y φ) + (∂Xφ)

2 + (∂Y φ)
2
]
,

(2.11a)

∂Tφ = 2k1∂Xr − 2αk1∂Xφ+ 2∂Xr∂Xφ− α(∂Xφ)
2 + α∂2Xr + ∂2Xφ

+ 2k2∂Y r − 2αk2∂Y φ+ 2∂Y r∂Y φ− α(∂Y φ)
2 + α∂2Y r + ∂2Y φ

+ r
[
− 2R2

0β − 2k1∂Xr − 2∂Xr∂Xφ− α∂2Xr − 2k2∂Y r − 2∂Y r∂Y φ− α∂2Y r
]
+O(r2).

(2.11b)

We now linearize the above equations about the solution (r, φ) = (0, 0) to get
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∂T r = −2R2
0 − 2α

(
k1∂Xr + k2∂Y r) + ∂2Xr + ∂2Y r − 2(k1∂Xφ+ k2∂Y φ)− α(∂2Xφ− ∂2Y φ),

(2.12a)

∂Tφ = −2R2
0βr + 2(k1∂Xr + k2∂Y r) + α(∂2Xr + ∂2Y r)− 2α(k1∂Xφ+ k2∂Y φ) + ∂2Xφ+ ∂2Y φ.

(2.12b)

Setting r = r̂eσT+iq·X and φ = φ̂eσT+iq·X where |q| ≪ |k|, we can get the eigenvalues

σ1 = −2R2
0 +O(q), (2.13a)

σ2 = 2i(β − α)(k1q1 + k2q2)− (1 + αβ)(q21 + q22)

+
1 + β2

R2
0

[2k21q
2
1 + 2k22q

2
2 + 4k1k2q1q2] +O(q3).

(2.13b)

The first eigenvalue σ1 decays exponentially and is always stable. For instability we need Re(σ2) >

0. This will happen when

− (1 + αβ)(q21 + q22) +
1 + β2

R2
0

(2k21q
2
1 + 2k22q

2
2 + 4k1k2q1q2) > 0. (2.14)

For the 1D case, say along the x-direction when q2 = 0, we recover the condition

− (1 + αβ) +
2k21(1 + β2)

R2
0

> 0. (2.15)

From (2.15) we see that the Benjamin-Feir instability will happen when k1 = 0 and the Eckhaus

instability will happen when α = β = 0 [38].

Weakly nonlinear analysis for long-wave instability

A linear phase equation can be extracted from the second eigenvalue in (2.13b) if we expand

to fourth-order in q. Then after picking the appropriate nonlinear term we can use Kuramoto’s

method [32] to find its coefficient. We will use another approach here based on [17], and again in

the section on the anisotropic CGLE.
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Since we are looking for a long-wave instability where k = 0, the ansatz in (2.10) becomes

A =
√
µ(1 + r)ei(−βµT+φ). (2.16)

From the linear stability we know that amplitude perturbations decay rapidly compared to phase

perturbations. Using this insight we can use a multiple-scales analysis to get a phase-diffusion

equation. From [17], we use the scalings

r(x, y, t) = δ6W (δx, δy, δ4t), ψ(x, y, t) = δ3Ψ(δx, δy, δ4t), (2.17)

and let ψ = ∇φ = (ψx, ψy) = (∂Xφ, ∂Y φ) be the phase gradient. Plugging (2.16) into the CGLE

(2.8) results in

∂T r = −2µr − 3µr2 − µr3 + ∂2Xr + ∂2Y r − (1 + r)
(
(∂Xφ)

2 + (∂Y φ)
2
)

− α(1 + r)(∂2Xφ+ ∂2Y φ)− 2α(∂Xr∂Xφ+ ∂Y r∂Y φ),

(2.18a)

∂Tφ = −2µβr − µβr2 − α
(
(∂Xφ)

2 + (∂Y φ)
2
)
+ ∂2Xφ+ ∂2Y φ

+
2(∂Xr∂Xφ+ ∂Y r∂Y φ) + α(∂2Xr + ∂2Y r)

1 + r
.

(2.18b)

Which may be written as

∂T r = −2µr − 3µr2 − µr3 +∆r − 2α∇r · ∇φ− (1 + r)(|∇φ|2 + α∆φ), (2.19a)

∂Tφ = −2µβr − µβr2 − α|∇φ|2 +∆φ+
2∇r · ∇φ+ α∆r

1 + r
. (2.19b)

Using the phase gradient substitution gives

∂T r = −µ(2r + 3r2 + r3) + ∆r − 2α∇r · ψ − (1 + r)(|ψ|2 + α∇ · ψ), (2.20a)

∂Tψ = ∇
(

− µ(2βr + βr2)− α|ψ|2 +∇ · ψ +
2∇r · ψ + α∆r

1 + r

)

(2.20b)

= ∆ψ +∇
(

− µ(2βr + βr2)− α|ψ|2 + 2∇r · ψ + α∆r

1 + r

)

. (2.20c)
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We can now using the scalings (2.17) in the above equations to obtain

δ10∂TW = −µδ6(2W + δ63W 2 + δ12W 3) + δ8∆W

− 2δ10α∇W ·Ψ− δ6(1 + δ6W )(|Ψ|2 + δ−2α∇ ·Ψ),

(2.21a)

δ7∂TΨ = δ5∆Ψ+ δ∇
(

− µδ6(2βW + βδ6W 2)− δ6α|Ψ|2 + δ102∇W ·Ψ+ δ8α∆W

1 + δ6W

)

,

(2.21b)

and divide the two equations by δ6 and δ7 respectively to obtain

δ4∂TW = −µ(2W + δ63W 2 + δ12W 3) + δ2∆W

− 2δ4α∇W ·Ψ− (1 + δ6W )(|Ψ|2 + δ−2α∇ ·Ψ),

(2.22a)

∂TΨ = δ−2∆Ψ−∇
(
2µβW + α|Ψ|2

)
+ δ2∇

(
2δ2∇W ·Ψ+ α∆W

1 + δ6W
− µβδ6W 2

)

. (2.22b)

At leading order in W and Ψ the first equation is

W = − α

2µδ2
∇ ·Ψ+O(1). (2.23)

Using this in the first equation at O(1) gives

0 = −µ2W − |Ψ|2 − α

δ2
∇ ·Ψ− δ2∆

α

2µδ2
∇ ·Ψ+O(δ), (2.24)

resulting in a solution

W = −|Ψ|2
2µ

− α

2µδ2
∇ ·Ψ− α

4µ2
∆(∇ ·Ψ) +O(δ). (2.25)

This can now be substituted into the Ψ equation yielding
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∂TΨ = δ−2∆Ψ−∇
(
2µβ

[

− |Ψ|2
2µ

− α

2µδ2
∇ ·Ψ− α

4µ2
∆(∇ ·Ψ)

]

+ α|Ψ|2
)

+ δ2α∇3

[

− |Ψ|2
2µ

− α

2µδ2
∇ ·Ψ− α

4µ2
∆(∇ ·Ψ)

]

+ h.o.t.

(2.26)

Simplifying gives

∂TΨ =
1 + αβ

δ2
∆Ψ+

α(β − α)

2µ
∆2Ψ+ (β − α)∇(|Ψ|2) +O(δ). (2.27)

Near the instability we can set 1 + αβ = κδ2 giving the equation

∂TΨ = κ∆Ψ+
α(β − α)

2µ
∆2Ψ+ (β − α)∇(|Ψ|2) +O(δ). (2.28)

Defining q := Ψ|δ=0 gives the 2D Kuramoto-Sivashinsky equation

∂T q = κ∆q +
α(β − α)

2µ
∆2q + (β − α)∇(|q|2) (2.29)

for the wave number q in derivative form. Using Φ =
∫ x

−∞ q · ds gives the integrated form of the

KS equation for the scaled phase

∂TΦ = κ∆Φ+
α(β − α)

2µ
∆2Φ + (β − α)(|∇Φ|2). (2.30)

Example Solutions of the CGLE

Some examples of the variety of solutions the CGLE produces are seen in Figure 2.8. Amongst

these are frozen states characterized by a cellular structure with spiral defects surrounded by shock

wall boundaries, defect chaos, and phase chaos. The frozen and chaotic states depend on the

initial conditions provided. The spiral defects are demonstrated in Figure 2.9 where the phase

clearly shows the spiral structure. Figure 2.9 has a side-by-side of phase and defect chaos. Phase

chaos is characterized by the amplitude of A being bounded away from zero. In defect chaos, the

amplitude is zero at defects which leads to the phase being undefined. The parameter region for
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phase chaos is considerably smaller than that of defect chaos. For some some parameter values,

phase chaos exists for early times but is only transient and the solutions evolve into defect chaos.

In 1D MAWs [9] have been used to describe this transition and it occurs when the peak-to-peak

distance becomes too large. A similar behavior is seen in 2D where defects appear when the cells

in the phase chaotic solution grow too large. Interesting fronts develop around the defects and

spread out, turning the entire domain into a defect chaotic state, see Figure 2.11. The nucleation of

these defect chaos containing fronts is reminiscent of the vortex class solutions described in [11],

but in that case stable spirals of the kind in Figure 2.9 nucleate out of defect chaos, whereas ours

are unstable spirals nucleating out of phase chaos.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.8: Various numerical solutions of the CGLE. (a-d) Frozen cellular states where defect spiral cores
are separated by shock wall boundaries. For a fixed β value, From left to right corresponds to an α value
that starts unstable and is then brought closer and crosses the BFN stability boundary. (e-f) Defect chaos.
(g-h) Phase chaos. The phase chaotic solution in (h) started from a single stripe aligned vertically whose
influence can been seen in the cellular structure. For a fixed β value phase chaos occurs for an α value well
in the BFN unstable regime. As α is brought closer to BFN stability the solution in (e) changes to (f), then
in a small region near the boundary to the phase chaos seen in (g).
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(a) |A|. (b) Phase of A.

Figure 2.9: Hole and shock-wall solution to the CGLE. (a) The magnitude of the solution and (b) a contour
plot of the phase showing the spiral structure.

(a) Phase chaos in the CGLE. (b) Defect chaos in the CGLE.

Figure 2.10: Chaotic solutions to the CGLE. (a) Phase chaos where the amplitude is bounded away from
zero |A| > 0 and (b) defect chaos which has regions of vanishing |A|.
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(a) |A|. (b) ReA.

Figure 2.11: A transient vortex glass like state with propagating regions emanating from defects. The
interior of the region is chaotic unlike the inside of the cells in true vortex glass. This solution connects an
initial phase chaotic state to defect chaos.

2.2 Anisotropic Complex Ginzburg-Landau

There has been much less research into the anisotropic complex Ginzburg-Landau equation

(ACGLE) compared with the CGLE. A limited investigation of phase chaos in the ACGLE was

done in [19]. A study of a perturbed amplitude in the longwave case was done in [7]. The authors

of this paper used a perturbed ansatz of the form A(x, y, t) =
√
µ(1+ r(x, y, t))e−iβµt which lacks

any phase perturbation as in (2.47). A globally coupled system of Ginzburg-Landau equations was

used to study the modulational stability of traveling waves in anisotropic systems in [15], but the

form of Equation (2.31) was only mentioned.

In this section we look at the solutions, linear stability, and phase equations for the ACGLE

where the anisotropy presents itself in the linear dispersion terms. The two-dimensional ACGLE

is

∂tA = µA+ (1 + iα1)∂
2
xA+ (1 + iα2)∂

2
yA− (1 + iβ)|A|2A. (2.31)

A traveling plane wave, see Figure 2.14, solution to the ACGLE in the k-direction and frequency

ω is given by
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A = R0e
i(k·x−ωt), (2.32a)

R2
0 = µ− (k21 + k22), (2.32b)

ω = βR2
0 + α1k

2
1 + α2k

2
2, (2.32c)

where k = (k1, k2) and x = (x, y). The requirements (2.32b) and (2.32c) are found by substituting

(2.32a) into the ACGLE (2.31).

(a) Phase chaos in the ACGLE. (b) Defect chaos in the ACGLE.

Figure 2.12: Chaotic solutions to the ACGLE where plane waves are stable in the y-direction and unstable
in the x-direction. (a) Phase chaos where the amplitude is bounded away from zero |A| > 0. The celluar
structure of the phase chaotic solution of the CGLE has been replaced with a ripple structure. The stability
in the y-direction is also apparent in the defect chaos parameter regime (b) which shows partial coherence
in the stable direction. The regions of defects appears to travel horizontally along the unstable direction.

The ACGLE is capable of producing any CGLE solution by setting α1 = α2, but the added

anisotropy allows for solutions that are not possible in the isotropic case. Not only can traveling

plane waves have different degrees of stability or instability in the x and y directions, they can now

be both stable and unstable to perturbations depending on direction. For example, in the CGLE

phase chaos demonstrates itself as an evolving cellular structure. This type of phase chaos can

exist in the ACGLE, but as one of the linear dispersion parameters is adjusted so that traveling
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(a) CGLE |A|. (b) ACGLE |A|.

Figure 2.13: Hole and shock-wall solutions: (a) The isotropic case α1 = α2 produces a stable cellular
structure wherein spiral defects are confined by shock walls; (b) The anisotropic case α1 < 0 < α2 sees
the spiral defects break free of their cells, convect, and annihilate similarly to the isotropic case, but now the
spiral centers have an obvious slant depending on which way they are rotating. The spiral centers appear
radially symmetric in the isotropic case, see Figure 2.8(c-d).

waves become BFN stable in one direction the isotropic cellular behavior gives way to a phase

chaotic structure of ripples which are aligned along the stable direction, see Figure 2.12a. A

similar behavior also happens for parameter values which yield defect chaos in the CGLE. As one

direction is made BFN stable, ripples appear aligned along the stable direction. Defects appear and

travel mostly along the unstable direction, see Figure 2.12b.

2.2.1 Linear Stability Analysis

To determine the stability of the traveling wave solution (2.32) we can perturb it and see how

the perturbations evolve in time. Perturbing the amplitude and phase we get

A(x, y, t) = R0(1 + r(x, y, t))ei[k·x−ωt+φ(x,y,t)]. (2.33)

Plugging (2.33) into (2.31) then separating real and imaginary parts leads to dynamic equations for

the perturbations
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(a) k = (4, 4). (b) k = (−8, 5).

Figure 2.14: Examples of traveling waves of the form ei(k·x−ωt). The real part is shown. The red arrow
denotes the k-direction along which the wave moves.

∂tr = −R2
0 + µ− 3R2

0r
2 −R2

0r
3 − (k2 + ∂yφ)(k2 + 2α2∂yr + ∂yφ)

+ ∂2yr − α2∂
2
yφ− (k1 + ∂xφ)(k1 + 2α1∂xr + ∂xφ)

+ ∂2xr − α1∂
2
xφ− r

(
3R2

0 − µ+ (k2 + ∂yφ)
2 + α2∂

2
yφ+ (k1 + ∂xφ)

2 + α1∂
2
xφ

)
,

(2.34)

∂tφ =
1

1 + r

[

−R2
0β + ω − 3R2

0βr
2 −R2

0βr
3 − (k2 + ∂yφ)(−2∂yr + α2(k2 + ∂yφ))

+ α2∂
2
yr + ∂2yφ− (k1 + ∂xφ)(−2∂xr + α1(k1 + ∂xφ))

+ α1∂
2
xr − r

(
3R2

0β − ω + α2(k2 + ∂Y φ)
2 − ∂2yφ+ α1(k1 + ∂xφ)

2 − ∂2xφ
)
+ ∂2xφ

]

.

(2.35)

After expanding and and using the requirements (2.32b) and (2.32c) for R2
0 and ω, the equation for

the amplitude perturbation r is

∂tr = −2R2
0r − 3R2

0r
2 −R2

0r
3 + ∂2xr + ∂2yr − (∂xφ)

2 − (∂yφ)
2 − r(∂xφ)

2 − r(∂yφ)
2

− 2k1α1∂xr − 2k2α2∂yr − 2k1∂xφ− 2k2∂yφ− 2k1r∂xφ− 2k2r∂yφ

− α1∂
2
xφ− rα1∂

2
xφ− α2∂

2
yφ− rα2∂

2
yφ− 2α1∂xr∂xφ− 2α2∂yr∂yφ.

(2.36)
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A useful substitution to use in expanding to get (2.36) is

−R2
0β − 3R2

0βr − 3R2
0βr

2 −R2
0βr

3 = −R2
0β −R2

0βr − 2R2
0βr − 2R2

0βr
2 −R2

0βr
2 −R2

0βr
3.

After expanding and simplifying, the equation for the phase perturbation φ becomes

∂tφ = ω −R2
0β − 2R2

0βr −R2
0βr

2 − k21α1 − k22α2 − α1(∂xφ)
2 − α2(∂yφ)

2

+ ∂2xφ+ ∂2yφ− 2k1α1∂xφ− 2k2α2∂yφ

+
1

1 + r

[

α1∂
2
xr + α2∂

2
yr + 2k1∂xr + 2k2∂yr + 2∂xr∂xφ+ 2∂yr∂yφ

]

.

(2.37)

Using the requirement (2.32c) for ω, this becomes

∂tφ = −2R2
0βr −R2

0βr
2 − α1(∂xφ)

2 − α2(∂yφ)
2 + ∂2xφ+ ∂2yφ− 2k1α1∂xφ− 2k2α2∂yφ

+
1

1 + r

[

α1∂
2
xr + α2∂

2
yr + 2k1∂xr + 2k2∂yr + 2∂xr∂xφ+ 2∂yr∂yφ

]

.
(2.38)

Upon linearizing around the base state (r, φ) = (0, 0) of the unperturbed traveling wave, (2.36)

and (2.38) become

∂tr = −2R2
0r+∂

2
xr+∂

2
yr−2k1α1∂xr−2k2α2∂yr−2k1∂xφ−2k2∂Y φ−α1∂

2
Xφ−α2∂

2
Y φ (2.39)

∂tφ = −2R2
0βr+∂

2
xφ+∂

2
yφ−2k1α1∂xφ−2k2α2∂yφ+α1∂

2
xr+α2∂

2
yr+2k1∂xr+2k2∂yr. (2.40)

Using the modes r = r̂eσt+iq·x and φ = φ̂eσt+iq·x for the perturbations where the wavenumber of

the perturbation is much smaller than the wavenumber of the base state, |q| ≪ |k|, we can get the

eigenvalues
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σ1 = −2R2
0 +O(q), (2.41)

σ2 = 2ik1(β − α1)q1 + 2ik2(β − α2)q2 + (
2k21
R2

0

+
2β2k21
R2

0

− α1β − 1)q21

+ (
4k1k2
R2

0

+
4β2k1k2
R2

0

)q1q2 + (
2k22
R2

0

+
2β2k22
R2

0

− α2β − 1)q22 +O(q3).

(2.42)

The first eigenvalue always has negative real part which results in the exponential decay and elim-

ination of the amplitude perturbation. Looking at the real part of the second eigenvalue we see that

it will be unstable if

Dxq
2
1 +Dxyq1q2 +Dyq

2
2 > 0, (2.43)

where

Dx =

(
2k21(1 + β2)

µ− (k21 + k22)
− (α1β + 1)

)

, (2.44a)

Dxy =

(
4k1k2(1 + β2)

µ− (k21 + k22)

)

, (2.44b)

Dy =

(
2k22(1 + β2)

µ− (k21 + k22)
− (α2β + 1)

)

(2.44c)

which are in agreement with the linear stability analysis of the isotropic CGL equation [37]. The

rational parts of (2.44a) and (2.44c) are non-negative inside the µ unit circle and as required by

R2
0 = µ − (k21 + k22). The crossterm coefficient (2.44b) will be non-negative as long as k1 and k2

are not of opposite sign. Also, note that the choice of wavevector k for the base stripe state must

lie inside a circle with radius of the control parameter µ. This help to emphasize the validity of the

linear stability as only near onset. Inequality (2.43) will then be met if (α1 + α2)β + 2 < 0, which

reduces to the standard Benjamin-Feir criterion in the isotropic case when α1 = α2.

Expanding the eigenvalue (2.42) to fourth order in q for the long-wave base state k1 = k2 = 0

yields the linear phase equation

∂tφ = (1+α1β)∂
2
xφ+(1+α2β)∂

2
yφ−

α2
1(1 + β2)

2R2
0

∂4xφ−
α2
2(1 + β2)

2R2
0

∂4yφ−
α1α2(1 + β2)

R2
0

∂2x∂
2
yφ.

(2.45)
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Figure 2.15: The shaded region is where (α1 + α2)β + 2 < 0.

Adding in the appropriate nonlinearity we get

∂tφ = (1 + α1β)∂
2
xφ+ (1 + α2β)∂

2
yφ− α2

1(1 + β2)

2R2
0

∂4xφ− α2
2(1 + β2)

2R2
0

∂4yφ

− α1α2(1 + β2)

R2
0

∂2x∂
2
yφ+ g(k1, k2)(∂xφ)

2 + h(k1, k2)(∂yφ)
2

(2.46)

where the coefficients g(k1, k2) and h(k1, k2) for the nonlinear terms are to be solved for later.

From the phase equation (2.46) we see that the Benjamin-Feir instability αβ + 1 < 0 manifests

itself in each of the diffusion terms with different αi values because of the anisotropy in (2.31).

This demonstrates the unique possibility of the traveling wave ansatz (2.32) to be stable in one

direction and unstable in the other, which is not possible in the isotropic version (2.8).

2.2.2 Weakly Nonlinear Analysis for long-wave instability

To look at the behavior of the long-wave instability for the ACGLE (2.31) we substitute k = 0

into the traveling wave solution (2.32). This leads to the ansatz with perturbed amplitude and phase

A(x, y, t) =
√
µ(1 + r(x, y, t))ei(−βµt+φ(x,y,t)). (2.47)
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For the slow space and time scalings we use

r(x, y, t) = δ6W (δx, δy, δ4t), φ(x, y, t) = δ2Φ(δx, δy, δ4t) (2.48)

from [17]. After separating real and imaginary parts, scaling, and dividing the W and Φ equations

each by δ6 we get that

δ4∂TW = δ2(∂2XW + ∂2YW )− 2δ4(α1∂XW∂XΦ + α2∂YW∂YΦ)

+ (1 + δ6W )(−2µW − δ6µW − (∂XΦ)
2 − (∂YΦ)

2 − δ−2α1∂
2
XΦ− δ−2α2∂

2
YΦ),

(2.49)

∂TΦ = −2βµW − δ6βµW 2 − α1(∂XΦ)
2 − α2(∂YΦ)

2 + δ−2(∂2XΦ + ∂2YΦ)

+
δ2(α1∂

2
XW + α2∂

2
YW ) + 2δ4(∂XW∂XΦ + ∂YW∂YΦ)

1 + δ6W

(2.50)

Balancing the leading order terms in the W equation leads to

W =
−(α1∂

2
XΦ + α2∂

2
YΦ)

2δ2µ
+O(1). (2.51)

Plugging this back into the full W equation (2.49) gives

W =
−(α1∂

4
XΦ + α2∂

2
X∂

2
YΦ + α1∂

2
Y ∂

2
XΦ + α2∂

4
YΦ)

4µ2

− (∂XΦ)
2 + (∂YΦ)

2

2µ
− α1∂

2
XΦ + α2∂

2
YΦ

2δ2µ
+O(δ),

(2.52)

or slightly more succinctly as

W =
−(α1∂

4
XΦ + (α1 + α2)∂

2
X∂

2
YΦ + α2∂

4
YΦ)

4µ2
− (∂XΦ)

2 + (∂YΦ)
2

2µ
− α1∂

2
XΦ + α2∂

2
YΦ

2δ2µ
+O(δ).

(2.53)

Equation (2.53) can be used to eliminate W from the Φ equation (2.50). Doing so yields
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∂TΦ = −2βµ

[−(α1∂
4
XΦ + (α1 + α2)∂

2
X∂

2
YΦ + α2∂

4
YΦ)

4µ2

− (∂XΦ)
2 + (∂YΦ)

2

2µ
− α1∂

2
XΦ + α2∂

2
YΦ

2δ2µ

]

− (α2
1∂

4
XΦ + 2α1α2∂

2
X∂

2
YΦ + α2

2∂
4
YΦ)

2µ

+ δ−2(∂2XΦ + ∂2YΦ)− α1(∂XΦ)
2 − α2(∂YΦ)

2 + h.o.t.

(2.54)

where the fourth-order terms on the second line come from the first-order series approximation for

δ2α1∂2
XW

1+δ6W
and similar Y term. Cleaning up results in the phase equation

∂TΦ =
(1 + α1β)∂

2
XΦ + (1 + α2β)∂

2
YΦ

δ2

+
(βα1 − α2

1)∂
4
XΦ +

(
β(α1 + α2)− 2α1α2

)
∂2X∂

2
YΦ + (βα2 − α2

2)∂
4
YΦ

2µ

+ (β − α1)(∂XΦ)
2 + (β − α2)(∂YΦ)

2.

(2.55)

We have now found the coefficients for the nonlinear terms in Equation (2.46). The linear coeffi-

cients of (2.46) and (2.55) are equal at the BFN neutral stability curve 1+α1β = 1+α2β = 0 and

match the form from our derivation of the isotropic phase equation (2.30) and from [38].

Just as in (2.46), the anisotropy allows for the possibility of a Benjamin-Feir type instability

to occur the X or Y directions individually while the other is stable, or for both directions to

become unstable simultaneously. This leads naturally leads to codimension one and codimension

two phase equations.

The solutions of the phase equation can be compared to the solutions of the phase of solutions

of the ACGLE as seen in Figures 2.16 and 2.17 which show isotropic and anisotropic phase chaos.

The phase of A computed with angle(A) should look similar to the solution of the phase equa-

tion Φ. We can use the approximation (2.51) for W (Φ) after solving the phase equation for Φ and

recreate solutions of the ACGLE by substituting W (Φ) and Φ into the ansatz (2.47).
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Figure 2.16: A solution to the ACGLE with parameters α1 = α2 = −0.22, β = 5 was simulated on
a square domain [−100, 100] × [−100, 100] to time t = 150. (a) The absolute value of a solution to the
ACGLE |A| and (b) its phase angle(A). (c) The solution Φ of the phase equation (2.55) using the same
parameters at time t = 50. Φ from the phase equation displays the same behavior as the phase of the
ACGLE with isotropic parameters. The phase equation solution Φ can be used to approximate a solution to
the ACGLE by using W (Φ) and Φ in A = (1 +W (Φ))eiΦ

Figure 2.17: A solution to the ACGLE with parameters α1 = 2, α2 = −1.2, β = 1.1 was simulated
on a square domain [−100, 100] × [−100, 100] to time t = 600. (a) The absolute value of a solution to
the ACGLE |A| and (b) its phase angle(A). (c) The solution Φ of the phase equation (2.55) using the
same parameters at time t = 50. Φ from the phase equation displays the same behavior as the phase of the
ACGLE with isotropic parameters. The phase equation solution Φ can be used to approximate a solution to
the ACGLE by using W (Φ) and Φ in A = (1 +W (Φ))eiΦ
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Codimension One Bifurcation

For the codimension one case where w.l.o.g. the y-direction is BFN-stable so that 1+α2β > 0.

This gives the the familiar stability region seen in Figure 2.20. If we set the second-order X

coefficient equal to some arbitrary κ so that 1 + α1β = κδ2 and rescale the slow Y variable back

to the fast variable as y = Y
δ

in the full phase equation (2.55) we get the codimension one phase

equation

∂TΦ = κ∂2XΦ + (1 + α2β)∂
2
yΦ +

(βα1 − α2
1)∂

4
XΦ

2µ
+ (β − α1)(∂XΦ)

2 +O(δ2) (2.56)

with κ as a control parameter. Limiting the bifurcation to κ ≪ 1 we set 1 + α1β = 0 in order

to eliminate the α1 dependence from (2.56). Removing α1 in this manner together with ignoring

higher order terms gives the final codimension one phase equation

∂TΦ = κ∂2XΦ + (1 + α2β)∂
2
yΦ− 1

2µ

(

1 +
1

β2

)

∂4XΦ + (β +
1

β
)(∂XΦ)

2, (2.57)

which retains the nonlinear dispersion parameter β and the y-direction linear dispersion paramter

α2 from the ACGLE (2.31). Again, it is required that 1 + α2β > 0 so that the waves are stable in

the y-direction and the diffusion coefficient stays positive so as not require any fourth-order linear

or nonlinear terms to saturate the instability.

The codimension one phase equation (2.57) is similar to the equation

∂th = −∂2xh− ∂4xh+
1

2
(∂xh)

2 + ∂2yh (2.58)

which Rost and Krug [56] derived and described as an "elastically coupled chain" of one dimen-

sional KS systems. They derived (2.58) to analyze the "pinching length" of the patterns produced

by their version of the aKS equation which was only anisotropic in the 2nd-order derivative terms

and the nonlinear terms, see Figure 2.18. They considered the case where the 4th-order spatial

derivatives were isotropic.
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(a) (b)

Figure 2.18: Real part of ripple solutions for the codimension one phase equation. (a) unpinched and (b)
pinched.

(a) t = 90. (b) t = 120.

Figure 2.19: Real part of cancellation mode solution of the Rost and Krug AKS equation.
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However, upon using the transformations t̂ = −κT
µ̂

, x̂ =
√
µ̂X , ŷ = i

√
κµ̂

1+α2β
y, µ̂ =

− 2κ(
1+ 1

β2

)µ, Φ̂ = 2i2

κ

(
β + 1

β

)
Φ in Equation (2.57) gives an identical equation

∂tΦ = −∂2xΦ− ∂4xΦ +
1

2
(∂xΦ)

2 + ∂2yΦ, (2.59)

where all the hats from the transformations have been dropped. We choose to retain the parameters

in Equation (2.57) so that its solutions may be directly compared to solutions of the CGL with the

same parameters.
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Figure 2.20: (α2, β) parameter space for stabil-
ity in the y-direction in the codimension-one bi-
furcation.
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Figure 2.21: Dispersion relations of Equation
(2.57) for fixed α2 = µ = 1 and varying β with
κ = −1 for codimension-one phase equation.

The parameter β can be kept if the scalings t̂ = −κT
µ̂

, x̂ =
√
µ̂X , ŷ = i

√
κµ̂√

1+α2β
y, µ̂ = −κµ,

Φ̂ = 1
κ
Φ are used in Equation (2.57). The resulting phase equation, after dropping hats, is

∂tΦ = −∂2xΦ− 1

2

(

1 +
1

β2

)

∂4xΦ−
(

β +
1

β

)

(∂xΦ)
2 + ∂2yΦ. (2.60)

We can use this form of the phase equation to explore the phase space near the Benjamin-Feir

bifurcation in the ACGLE when one direction is stable and the other direction is unstable. We have
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removed dependence on both the linear dispersion terms α1 and α2, but have kept the dependence

on the nonlinear dispersion coefficient β. Keeping the relation on β explicit allows a comparison

of phase solutions back to solutions to the ACGLE. The sign on the nonlinear term is switched

under the reflection transformation Φ → −Φ.

Codimension two bifurcation

For the codimension two case we have both of the second-order derivative terms becoming

unstable simultaneously. We can set 1 + α1β = δ2r cos(θ) and 1 + α2β = δ2r sin(θ) where

κ1 = r cos(θ) and κ2 = r sin(θ) to explore the κ1-κ2 parameter space numerically. For the higher-

order linear and nonlinear terms we set 1 + α1β = 1 + α2β = 0 based on begin near onset. All of

this gives

∂TΦ = κ1∂
2
XΦ + κ2∂

2
YΦ−

(

1 +
1

β2

)
∂4XΦ + 2∂2X∂

2
YΦ + ∂4YΦ

2µ
+ (β +

1

β
)
(
(∂XΦ)

2 + (∂YΦ)
2
)
.

(2.61)

Under the assumptions leading to (2.61), cancellation modes are clearly not possible as the nonlin-

ear terms have the same coefficient. Two examples of the codimension two phase equation are in

Figure 2.22 where both θ values are in the third quadrant where both κ’s are unstable.

The codimension two phase equation (2.61) can also be used to recreate solutions of the CGLE.

An example of this is seen in Figure 2.23. The phase of the solution A to the ACGLE and the

solutions Φ of the phase equation display characteristically the same behavior. Using the lowest

order approximation of W together with Φ yields a recreation of a ACGLE solution A. Using the

phase equation gives considerable time savings. The ACGLE was simulated to a time of t = 3000

while the phase equation to only t = 35.

2.2.3 ACGLE Phase Diagram

Using a pseudospectral code based on [12, 30] we’ve numerically explored the (α1, α2, β) pa-

rameter space to investigate the affect of anisotropy in the ACGLE (2.31). The results of the

simulations show a variety of solutions similar to those in the isotropic case [11], including phase
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(a) θ = 1.25π. (b) θ = 1.05π.

Figure 2.22: Two solutions of the codimension two phase equation (2.61). Re(Φ) is plotted where r = 1 in
κ1 and κ2 and the angle θ is given. The angle 1.25π is in the isotropic region with both control parameters
equally unstable. When θ = 1.05π, there is still instability in both directions, but barely any in the y-
direction which leads to the phase chaotic cells becoming elongated along this nearly stable direction. If
made stable we could see phase chaotic ripples instead of stretched cells.

Figure 2.23: A solution to the ACGLE with parameters θ = 1.05π and β = 2 was simulated on a square
domain [−100, 100]× [−100, 100] to time t = 3000. (a) The absolute value of a solution to the ACGLE |A|
and (b) its phase angle(A). (c) The solution Φ of the phase equation (2.55) using the same parameters at
time t = 35. Φ from the codim. two phase equation displays the same behavior as the phase of the ACGLE.
The phase equation solution Φ can be used to approximate a solution to the ACGLE by using W (Φ) and Φ
in A = (1 +W (Φ))eiΦ
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and defect turbulence. There are interesting intermittent transition solutions between the two types

of chaos which are reminiscent of vortex glass.

The (α1, α2, β) parameter space leads to a three-dimensional phase space for which we create

a so-called phase cube. To attempt to automatically distinguish between solutions types we use

the average energy (L2-norm) of A and ∇A which taken together give the Sobolev energy. The

phase cube is displayed as α1-α2 slices with constant β. The range of α1 and α2 is [−3, 3] with a

computational meshsize of 0.2, so that each slice comprises 312 = 961 individual simulations. All

of which have been run to a time t = 600. The energy images are of course symmetric about the

isotropic diagonal.

Choice of Initial Condition

Something should be said about the choice of random initial conditions for the numerical sim-

ulations. An initial solution (2.32) at t = 0 for the longwave k = 0 case gives A(x, y, 0) =
√
µ.

The ACGLE (2.31) usually has the control parameter µ scaled out so that the µA term is replaced

with ±A. In this case A(x, y, 0) = 1, and random noise around the solution A = 1 is a suitable

numerical initial condition. However, if we leave in the µ dependence of (2.31) we see that very

near onset we have µ ≈ 0, so noise around 0 is then an appropriate initial condition.

An IC of a perturbed A = 0 solution can mean that we are near the µ = 0 neutral stability

boundary, as just mentioned. But, having k = 0 and µ = 0 is not the only way to have R2
0 = 0

in condition (2.32b). This will also happen for wavevectors that approach the circle of radius µ in

kx-ky wavevector space.

The choice of which random IC is important, not only for its interpretation, but because each

one also gives different solution types. As we see from our simulations, the cellular frozen state

solutions are seen only when the noise-around-zero initial condition is chosen, and phase chaos

only when the noise-around-one condition is chosen.
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Simulation Results

The average energies for A and ∇A for both the noise-around-one, and noise-around-zero

initial conditions are shown in Figures 2.24, 2.25, 2.26, and 2.27. The two initial conditions result

in a different average energy patterns. The noise-around-one case requires β to be sufficiently

far from zero for the energies to vary significantly. As |β| is increased, there is a high-energy

plateau in the shape of a square which is nearly, but not exactly, bounded by the lines α1 = −1/β

and α2 = −1/β which are the the coefficients of linear stability (2.44) for the longwave case.

The noise-around-zero case has high energy variability across all β values. At β = 0 there is

a hyperbolic high-energy plateau and two low-energy valleys. As |β| increases, the high-energy

region shifts towards a single corner.

The average energies of ∇A are not significant compared to those forA and thus do not heavily

contribute to the combined Sobolev energy. Further, there does not appear to be much information

gained from looking at the ∇A energy, except in small areas for the noise-around-zero case along

the slope of the high-energy plateau. which are not visible in looking at the A energies. Perhaps

also in the noise-around-one case right next to the square-shaped, high-energy plateau. This is

most visible in the lower right β = 3 cases.

A closer look at how the energy relates to solutions is seen in Figures 2.28 and 2.29. In these

figures, parameters are varied along the isotropic diagonal and along an α2 line for fixed α1. The

noise-around-one initial condition sees phase and defect chaos solutions of both their isotropic

and anisotropic varieties. The noise-around-zero initial condition sees the frozen cellular state

transition into isolated vortices as the shock walls vanish along the isotropic diagonal. It also sees

solutions where both spiral defects and phase chaos coexist, a behavior not seen in the isotropic

CGLE. In these solutions phase chaotic ripples are aligned along the BFN stable direction. The

stability in this direction inhibits the formation of the cellular shock structure and the spiral defects

are convective in nature. As the spirals convect around oppositely rotating spirals interact and

annihilate leaving only anisotropic phase chaos. This is is demonstrated in Figure 2.30.
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Figure 2.24: The average energy of A using the noise-around-one initial condition. The top left has β = 0
and the bottom right has β = 3. For the first 6 values of β the average energy is near constant, while
structure emerges as β is increased further.
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Figure 2.25: The average energy of ∇A using the noise-around-one initial condition. The top left has β = 0
and the bottom right has β = 3. The average energy of the gradient does not give much more information
than looking at the average energy of A, but there do appear some small regions where both directions are
BFN unstable that stand out in the ∇A measurements compared with the A measurements.
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Figure 2.26: The average energy of A using the noise-around-one initial condition. The top left has β = 0
and the bottom right has β = 3. The structure of the average energy values is very different here compared
to the values from the noise-around-one initial condition.
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Figure 2.27: The average energy of ∇A using the noise-around-one initial condition. The top left has β = 0
and the bottom right has β = 3. The average energy measurements for ∇A are similar to those for A but
have values that stand out on the slope of the high-energy plateau of A.
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Verification of the longwave stability boundary with noise-around-one initial conditions is done

in Figure 2.31. The neutral stability lines αi = −1/β are plotted in red and dived the space into four

quadrants. The top-left quadrant is doubly BFN unstable, the top-right and bottom-left quadrants

have one stable direction and one unstable direction. The bottom-right quadrant is doubly BFN

stable. Simulations were performed for the marked parameters just outside and just inside the

boundary. The solution with parameters that correspond to a stable x-direction and unstable y-

direction yield phase chaos. The solution with both stable parameters gives a constant solution.

The variance of color is due to the narrow color axis. The energies against the number of simulated

timesteps is also shown. The phase chaos solution loses energy as the chaotic behavior develops.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.28: Solutions for the β = 1.1 slice of the phase cube with noise-around-one initial conditions.
The average energy is shown in (a) along with markings for the locations for the parameter values used
to create the other solutions. The rest of the first row (b-e) corresponds to the dots along the isotropic
diagonal starting from the top left. We see that deep into the unstable upper-left corner, solutions are phase
chaotic. Near the stability boundary, we observe phase chaos. In (e) waves are stable and the solution is
constant. The color axis on (e) is very small. The bottom row of solutions (f-j) correspond to the markings
in anisotropic parameter space for a fixed, stable α1 value. The topmost marking furthest from the stability
boundary corresponds to the solution in (f). The same defect chaos to phase chaos change in solutions in
seen, but now since α1 leads to stability in the x-direction we see characteristically anisotropic behavior.
The decrease in pattern wavelength between (i) and (j) is due to crossing the stability boundary.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.29: Solutions for the β = 0.6 slice of the phase cube with noise-around-zero initial conditions.
The average energy is shown in (a) along with markings denoting the parameters used for the solutions (b-j).
The rest of the first row (b-e) are the first four solutions along the isotropic axis. The second row (f-j) are
the vertical solutions with constant α1 and are anisotropic. The first row sees the stable frozen states of
spiral defects bounded by shock walls transition into convecting spiral defects with no walls. The bottom
row shows the effect of the anisotropy on the angle of the spiral cores. It also shows, for example in (f) that
phase chaos along the stable direction coexists with the spiral defects. The phase chaos is difficult to make
out at this colorscale, but looks like Figure 2.28(i).
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Figure 2.30: Time series of a solution for parameters similar to Figure 2.29(f) for significantly longer
simulation time. Spiral defects convect and annihilate leaving only phase chaos. Average energy vs. time is
shown in (j).

2.3 Summary and Conclusions

In this chapter we examined the effects of anisotropy on the complex Ginzburg-Landau equa-

tion. The addition of anisotropy allows for the study of oscillatory bifurcations in nonhomogeneous

medium. We performed a linear stability analysis and derived dynamic equations for amplitude and

phase perturbations of a traveling wave solution. The amplitude perturbations decay exponentially

and are slaved to the phase. The phase equation solution Φ can then be used to reconstruct the am-

plitude perturbation W (Φ) and thus solutions of the ACGLE. One benefit of this lies in the extra

slow time scaling used to derive Φ. The slow time T = δ4t allows for the very long time behavior

of traveling wave solutions of the ACGLE to be studied much faster via the phase dynamics.

The anisotropy leads to 4 stability quadrants: (I) doubly stable; (II) stable-unstable; (III)

unstable-stable; and (IV) double unstable. The behavior of these quadrants is determined with

the full phase equation and solutions can be directly compared to ACGLE solutions due to re-

taining the linear and nonlinear dispersion coefficients α1, α2, and β. The general behavior of

solutions in the I→II or I→III transitions can be studied via the codimension one phase equation.
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Figure 2.31: Verification of the stability boundary for the noise-around-one initial condition with β = 2.
The stability boundaries αi = −1/β are showing in red in (a). The phase chaos solution (b) corresponds
to the green dot just outside (above) the doubly stable region. Its energy is plotted against computation
timesteps in (c). Just inside the doubly stable region produces the solution (d) with energy (e). This sta-
ble solution quickly approaches, and stays at a constant energy and the magnitude is essentially constant,
although the anisotropy is apparent at this narrow colorscale.
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The codimension two equation allows for study of the I→IV transition. The codimension one and

two phase equations have the unstable linear dispersion αi scaled out and replaced with a new con-

trol parameter κ. Analysis of the three forms of the phase equation demonstrates that cancellation

modes, where the nonlinearities in each direction cancel, are not possible.

The 3-dimensional phase diagram was made for parameter values near 0. The phase diagram

for the ACGLE reveals that choice of random initial condition is important and determines the

behavior of solutions. The the longwave, noise-around-one initial condition, phase and defect

chaos occur. These chaotic states are affect by the anisotropies by forming phase ripples along

the stable direction. For the noise-around-zero initial condition, frozen states of spiral defects

transition into phase chaos due to the anisotropy. Stability in both directions leads to the breakdown

of the shockwall boundaries and spiral-spiral annihilation with an asymptotically constant solution.

The shock wall breaks down if only one direction is stable and the asymptotic states is instead phase

chaos.

Verification of the linear stability boundary was tested and verified numerically. The stability

boundary can roughly be determined from the average energy of solutions. Generally, regions

where A has low energy are unstable in at least one direction, and the doubly stable region consists

of a high-energy plateau. The sides of this plateau encroach into the unstable regions leading to a

small area of high energy in the areas with at least one unstable direction.
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