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Abstract— Singular value decomposition (SVD) is a common
technique that is performed on video sequences in a number
of computer vision and robotics applications. The left singular
vectors represent the eigenimages, while the right singular vectors
represent the temporal properties of the video sequence. It is
obvious that spatial reduction techniques affect the left singular
vectors, however, the extent of their effect on the right singular
vectors is not clear. Understanding how the right singular vectors
are affected is important because many SVD algorithms rely
on computing them as an intermediate step to computing the
eigenimages. The work presented here quantifies the effects of
different spatial resolution reduction techniques on the right
singular vectors that are computed from those video sequences.
Examples show that using random sampling for spatial resolution
reduction rather than a low-pass filtering technique results in less
perturbation of the temporal properties.

Index Terms— Singular value decomposition, right singular
vectors, spatial resolution reduction, temporal properties.

I. INTRODUCTION

Eigendecomposition-based techniques play an important
role in numerous image processing and computer vision ap-
plications. The advantage of these techniques, also referred
to as subspace methods, is that they are purely appearance
based and that they require few online computations. Variously
referred to as eigenspace methods, singular value decomposi-
tion (SVD) methods, principal component analysis methods,
and Karhunun-Loeve transformation methods [1], they have
been used extensively in a variety of applications such as
robot vision [2]–[4], robot control [5], [6], face characteri-
zation [7], [8] and recognition [9]–[13], lip-reading [14], [15],
object recognition [16]–[19], pose detection [20], [21], visual
tracking [22], [23], and inspection [24]–[27]. All of these
applications are based on taking advantage of the fact that
a set of highly correlated image frames in a video sequence is
typically spanned by the first few temporal frequencies [28].
Once the set of these frequencies is determined, the corre-
sponding principal eigenimages can be determined and on-
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line computation using these eigenimages can be performed
very efficiently. However, the offline calculation required to
determine the appropriate number of frequencies can be pro-
hibitively expensive.

The spatial resolution of the video frames, in terms of the
number of pixels, is one of the factors that greatly affects
the amount of offline calculation required to compute an
eigendecomposition. In particular, many common algorithms
that compute the complete SVD of a general matrix require on
the order of mn2 flops, where m is the total number of pixels
in a single frame and n is the number of frames. Most users
of eigendecomposition techniques would like to use as large a
resolution as is available for the original image frames in order
to maintain as much information as possible; however, this fre-
quently results in an impractical computational burden. Thus
users are typically forced to downsample their image frames
to a lower resolution using a “rule of thumb” or some ad hoc
criterion to obtain a manageable level of computation. The
purpose of the work described here is to provide an analysis
of how different spatial resolution reduction techniques affect
the resulting eigendecomposition, with a particular emphasis
on the temporal properties represented by the right singular
vectors.

The paper is organized as follows. In Section II, the fun-
damentals of applying eigendecomposition to video sequences
are explained. This section also explains how closely the right
singular vectors are associated with the temporal properties of
video sequences and how this property can be used to reduce
the computational cost of the SVD. The effect of different
spatial resolution reduction techniques on these right singular
vectors is then discussed in Section III using artificially
generated video sequences. In Section IV, the performance
of these spatial reduction techniques on a set of arbitrary
video sequences is evaluated. Lastly, the concluding remarks
are given in Section V.

II. OVERVIEW

In this work, a grey-scale image frame is described by an
h × v array of square pixels with intensity values normalized
between 0 and 1. Thus, an image frame will be represented
by a matrix X ∈ [0, 1]h×v . Because sets of related image
frames are considered in this paper, the image vector x of



length m = h× v is obtained by “row-scanning” a frame into
a column vector, i.e., x = vec(X T ). The video matrix of a set
of image frames X 1, · · · , Xn is an m×n matrix, denoted X ,
and defined as X = [x1 · · ·xn].

The SVD of X is given by

X = UΣV T , (1)

where U ∈ �m×m and V ∈ �n×n are orthogonal, and
Σ = [Σd 0]T ∈ �m×n where Σd = diag(σ1, · · · , σn) with
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 and 0 is an n by m − n zero
matrix. The SVD of X plays a central role in several important
imaging applications such as image compression and pattern
recognition. The columns of U , denoted ûi, i = 1, · · · , m,
are referred to as the left singular vectors or eigenimages of
X , while the columns of V , denoted v̂i, i = 1, · · · , n, are
referred to as the right singular vectors of X .

In practice, the singular vectors v̂i are not known or com-
puted exactly, and instead estimates e1, · · · , ek which form a
k-dimensional basis are used. One measure for quantifying the
accuracy of a practical implementation of subspace methods
that is used in this paper is the “energy recovery ratio” [28],
denoted ρ, and defined as

ρ(X, e1, · · · , ek) =
∑k

i=1 ‖Xei‖2
2

‖X‖2
F

, (2)

where ‖ · ‖F denotes the Frobenius norm.
The precomputation of the eigenimages of the matrix X can

be a computationally expensive operation when m and n are
very large. To improve this computational efficiency, many
SVD algorithms have been proposed that take advantage of
the fact that only the first k eigenimages are of interest. When
m � n, some of the SVD algorithms rely on computing the
eigenvectors of XT X [29], [30], which are the right singular
vectors of X . These right singular vectors can then be used to
compute the corresponding eigenimages of X . However, the
computation of XT X itself requires mn2 flops, which can be
prohibitively expensive.

To avoid the computation of XT X , Chang et al. [28]
proposed an algorithm that was motivated by the fact that if
the matrix XT X is a circulant matrix then the (unordered)
SVD of X is known in closed form. In particular, consider
a video matrix X where each xi+1 is obtained from xi by a
planar rotation of θ = 2π/n. It is shown in [28] that XT X
is a circulant matrix with circularly symmetric rows and its
eigendecomposition is given by

XT X = HDHT (3)

where D is an n × n matrix given by

D = diag(λ1, λ2, λ2, λ3, λ3, ....) (4)

and H is an n×n matrix consisting of the successively higher
frequencies, starting from zero frequency, as its columns,

which is given by

H =
√

2
n

⎡
⎢⎢⎢⎢⎣

1√
2

c0 −s0 c0 −s0 · · ·
1√
2

c1 −s1 c2 −s2 · · ·
...

...
...

...
... · · ·

1√
2

cn−1 −sn−1 c2(n−1) −s2(n−1) · · ·

⎤
⎥⎥⎥⎥⎦

(5)
where ck = cos(k 2π

n ) and sk = sin(k 2π
n ). From the definition

of the SVD in (1), it can be seen that V = H . This analysis
shows that

1) the right singular vectors are pure sinusoids of frequen-
cies that are multiples of 2π/n radians and

2) the dominant frequencies of the power spectra of the
(ordered) right singular vectors increase linearly with
their index.

To compute U , observe that UΣ = XH , which can be
computed efficiently using Fast Fourier Transform (FFT) tech-
niques [28]. Although the analytical expression in (3) does
not hold true for arbitrary video sequences, Fig. 1 illustrates a
typical case, where the corresponding right singular vectors
approximately satisfy the two properties from the planar
rotation case. Thus it can be observed that the right singular
vectors effectively track the temporal changes in any video
sequence.

In a typical eigendecomposition application, a user will
specify a desired energy recovery ratio, denoted here as µ.
If the columns of H are used as estimates of v̂i in (2), then
the number of columns required to satisfy a given µ will be
denoted by p.1 If the matrix X has the properties described
above, then p (number of required temporal frequencies) will
typically be not much larger than the minimum subspace
dimension, which is obtained when the estimates are the true
right singular vectors. Let Hp denote the matrix comprising
the first p columns of H . Then the first few singular values
and the corresponding left singular vectors of XHp serve as
excellent estimates to those of X . However, the computation of
the true SVD of XHp can be computationally very expensive
due to the highest spatial resolution of the original images
in X . Hence it is desirable to downsample the image frames
and use the correlation within them to approximate their right
singular vectors. These approximated right singular vectors
can then be used to compute the corresponding eigenimages
of X . An overview of the effect of some of the different
spatial resolution reduction techniques that can be used for
this purpose, is provided in the next section.

III. EFFECT OF SPATIAL REDUCTION TECHNIQUES ON

TEMPORAL PROPERTIES

This section studies the effect of different spatial resolution
reduction techniques on the temporal properties of the video
sequences. These spatial reduction techniques include tradi-
tional low-pass filtering, interpolation techniques, the nearest

1The value of p computed for the original video matrix X will be referred
to here as “true” p.
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Fig. 1. This figure shows the eigendecomposition of the video matrix X for
an arbitrary video sequence. The first row shows five equally spaced frames
from the 150 images of the video matrix X . The second row shows the
first seven right singular vectors of X , while the plot in the third row shows
the frequency at which the power spectra of the corresponding right singular
vectors achieves a maximum (i.e., the “dominant” frequencies). It can be seen
that the dominant frequencies of the power spectra of the right singular vectors
increase approximately linearly with their frequency index.

neighbor method and random sampling. To study the effect
of these techniques, two artificially generated sets of video
sequences are considered in this section. The first set consists
of small image frames to illustrate the fundamental issues
involved and the second set consists of larger image frames
with the typical spatial properties of real image frames. The
simplest low-pass filtering technique, i.e., box filtering, is
evaluated with the first set, while Gaussian filtering (which is
more commonly applied in image processing applications) is
evaluated with the second set. Random sampling is evaluated
with both sets of video sequences and it is compared with both
the above low-pass filtering techniques.

Fig. 2(a) and 3(a) show two very simple artificial video
sequences consisting of 4 × 4 image frames and four frames
each for the purpose of illustration. Consider reducing these
image frames down to 2 × 2 using box filtering and random
sampling. The first video sequence in Fig. 2(a) has the
image frames corresponding to a checkerboard with all pixels
changing their intensity between the two extreme values from
one frame to the next. Hence all four temporal frequencies
are required to attain any user-specified reconstruction ratio
for this sequence (true p = 4). Now consider the box-filtered
image frames for this video sequence shown in Fig. 2(b). It
is easy to observe that this low-resolution sequence requires
only the zero frequency to attain any reconstruction ratio
(pb = 1).2 Hence there is a major loss of information as far
as the temporal properties of the first sequence is concerned
when the image frames are reduced using box filtering. This
is an example of a worst-case sequence for the box filtering
approach. Now consider reducing this sequence using random
sampling. Because the same permutation of four pixels is used
over all four image frames, the reduced video sequence will
have the same temporal properties as in the original sequence
and will also give pr = 4. Thus the worst-case sequence for

2The values of p for box-filtered and randomly sampled sequences are
referred to as pb and pr , respectively.

(a)

(b)

Fig. 2. Part (a) of this figure shows the first artificial video sequence
consisting of four frames of size 4 × 4 each. All the image frames have
a checkerboard pattern with each pixel changing its intensity between the two
extreme values from one frame to the next. Part (b) shows the image frames
of size 2 × 2, when the original image frames in this sequence are reduced
using box filtering.

(a)

(b)

Fig. 3. Part (a) of this figure shows the second artificial video sequence
consisting of four frames of size 4× 4 each, while part (b) shows the image
frames of size 2 × 2, when the original image frames in this sequence are
reduced using box filtering.

box filtering actually turns out to be the best-case sequence
for random sampling.

Consider the second artificial video sequence in Fig. 3(a).
Fig. 4(a) shows the corresponding values of true p when µ is
varied from 0.8 to 0.99 in steps of 0.01. Now consider the box-
filtered image frames for this sequence in Fig. 3(b). Because
all the pixels in these reduced image frames are changing their
intensity from one frame to the next, all four frequencies will
be required (pb = 4) to attain any reconstruction ratio. As it
overestimates the values of the true p for some values of µ, this
sequence is arguably the best-case sequence for box filtering.
Now consider reducing this sequence using random sampling,
in which any four out of sixteen pixels can be selected for
a single realization. There are

(
16
4

)
= 1820 such realizations

and the corresponding pr values are plotted in Fig. 4(b). These
results show that the median pr is equal to the true p for all
values of µ.

The two artificial example sequences considered in Fig. 2
and 3 do not represent the properties of real video sequences.
Hence to generate a video sequence with typical spatial
properties, the following procedure was performed:

1) Randomly select different images of the same size.
2) Add these images and intensity normalize the resulting

image.
3) Use this normalized image as the first frame in a

synthetic video sequence.
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Fig. 4. This figure shows the results for the artificial video sequence shown
in Fig. 3(a). Part (a) plots the true p values against µ, while part (b) plots the
values of pr for different values of µ for all 16C4 = 1820 realizations using
random sampling. (The value of pb for box filtered sequence in Fig. 3(b)
always remains four for all values of µ.)
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Fig. 5. This figure shows the results for one of the realizations of the
synthetically generated video sequences. Part (a) shows the first frame (size
64×64) of the video sequence, while part (b) shows its FFT. An additional 63
image frames are generated by adding Gaussian random noise with zero mean
and a standard deviation of one to the previously generated image frames. All
the frames are renormalized to have intensity values in the range [-1,1]. The
plot in part (c) shows the variation of true p when the reconstruction ratio, µ
is varied from 0.8 to 0.99.

4) Add a random perturbation to the current frame and
renormalize to generate the next frame.

5) Repeat Step 4 until all the frames are generated in the
video sequence.

In particular, 180 different real images of size 64 × 64 were
randomly selected. These images were added together and
the resulting image was intensity normalized between −1
and 1. This image was used as the first frame in the video
sequence. Steps 4 and 5 in the above procedure were then
performed to generate the remaining frames by adding a
random perturbation (with fixed statistics) to each previously
generated frame. Fig. 5 shows one such realization that is
used here as a representative example. The remaining section
studies this example in detail to evaluate the effect of different
reduction techniques on the temporal properties of the original
video sequence. The nearest neighbor method, which can be
considered as a special case of the random sampling technique
is also evaluated. In this method, instead of random sampling
of the pixels, they are selected from pre-specified locations in
the original image frames based on the reduction factor.

All low-pass filtering techniques take a weighted average of
several pixels, at some stage or the other, to find the value of
one pixel in the reduced image frames. Hence the first few tem-
poral frequency components become more dominant than they
actually are in the original video sequence and thus a fewer
number of frequencies are required to achieve the desired
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Fig. 6. This figure shows the results for the synthetically generated video
sequence in Fig. 5, when the original image frames are reduced using box
filtering, Gaussian filtering and nearest neighbor method. Reduction indices
1, 2, 3, and 4 indicate that the resolutions of the reduced frames are 32×32,
16 × 16, 8 × 8, and 4 × 4, respectively. All the plots show the difference
between the true p and the values of p for all three reduction techniques,
when the user-reconstruction ratio, µ is varied from 0.8 to 0.99. The values
pb, pg , and pn indicate the values of p obtained for box filtering, Gaussian
filtering, and nearest neighbor method, respectively.

energy recovery ratio. This is evident from Fig. 6, which shows
that box filtering and Gaussian filtering both results in a poor
approximation of the true p. Hence the loss of important high
temporal frequencies makes low pass filtering an undesirable
option for spatial reduction. The nearest neighbor method, on
the other hand, directly selects the pixels out of the original
image frames and hence does not significantly change the
temporal properties of the original video sequence. This can
also be observed from Fig. 6, as the corresponding values
of p track the true p very closely.3 However, pre-specified
pixel selection may result in poor performance for some video
sequences, which motivates the random sampling technique.

Fig. 7 shows that the random sampling technique tracks
the temporal properties of the original video sequence almost
perfectly, even with reduced frames of size 4×4, as it does not
tend to selectively eliminate temporal frequencies. There are
very few realizations out of 1000 that had smaller values of
pr than the true ones for the given values of µ. This property
is evident from Fig. 8, which shows that the median of all the
values of pr is always equal to the true value of p.

Thus it can be observed that if the random sampling tech-
nique is performed several times, then it is almost guaranteed
to result in a value of pr > p. These realizations can be
obtained quickly and once the desired low-resolution video
sequence is obtained, the SVD can be computed much more
efficiently than that for the original video sequence to find an
excellent approximation of the high-resolution right singular

3pn (the value of p for nearest neighbor method) is truncated to the true
value of p if pn > p for simplicity of representation.
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Fig. 7. This figure shows the effect of random sampling on the temporal
properties of the original video sequence in terms of the value of p. A total
of 1000 different realizations of the reduced video sequences are obtained
from the original sequence in Fig. 5. The first graph gives the results for the
reduced frames with 1024 (32 × 32) pixels each, while the second graph
gives the results for the reduced frames with 16 (4 × 4) pixels each. The
variable pr denotes the value of p obtained for one of the realizations of
the reduced video sequence. The bar graphs are plotted as the probability
distribution functions (PDF’s) for p − pr for different values of µ.

vectors. The next section validates this property by evaluating
all the reduction techniques using real video sequences.

IV. EXPERIMENTAL RESULTS

The problem of computing the right singular vectors of
images representing successive frames of arbitrary video se-
quences is considered here. Specifically, 20 video sequences
(with n = 150) that are used in [28] are evaluated for this
purpose. For µ = 0.95, the true p values of these 20 video
sequences range from 1 to 68. The two video sequences (7
and 17) with true p values of 68 and 65, respectively, are
considered as the representative examples here. Fig. 9 shows
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Fig. 8. This figure shows the results for the synthetically generated video
sequence in Fig. 5, when the original frames are reduced using random
sampling. Reduction indices 1, 2, 3, and 4 indicate that the resolutions of
the reduced frames are 32× 32, 16× 16, 8× 8, and 4× 4, respectively. All
the plots show the difference between the true p and median and mean values
of pr , when the user-reconstruction ratio µ is varied from 0.8 to 0.99.

that even with the reduction indices 1 and 2,4 Gaussian filtering
gives poor approximation of the temporal properties of the
original video sequences. On the other hand, the random
sampling technique gives a very good approximation of these
temporal properties even when the images are reduced to only
150 out of a total of 84480 pixels.5

Because low-pass filtering techniques severely degrade the
approximation of high-resolution right singular vectors, they
will likewise not produce a good approximation of the high-
resolution eigenimages and hence they should not be used to
compress the images in the eigenspace. On the other hand, the
random sampling technique can be efficiently used to compute
the full eigendecomposition as illustrated in [31].

V. CONCLUSION

Different spatial resolution reduction techniques were evalu-
ated to quantify the error associated with computing the right
singular vectors of video sequences at lower resolutions in
order to mediate the high computational expense of performing
these calculations at high resolutions. It was indicated that
none of the traditional low-pass filtering techniques preserved
the temporal properties of the original video sequences. The
nearest neighbor method outperformed the filtering techniques,
but it was shown that the pre-selected pixels may result in
errors for certain video sequences. Downsampling using ran-
dom sampling was shown to be typically much more effective
than the other spatial reduction techniques in preserving the

4Original images of size 240×352 each are reduced to 120×176 (reduction
index = 1) and to 60 × 88 (reduction index = 2).

5It is shown in [28] that p ≤ n. Hence more than n pixels are not needed
in the reduced image frames to preserve the original temporal properties.
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Fig. 9. This figure shows the results for the two video sequences (7 and
17) used in [28]. (The original images in these video sequences are of size
240×352 pixels.) The first row shows the values of p at different resolutions,
when the image frames are reduced using Gaussian filtering. (The reduction
indices 1 and 2 correspond to the reduced images of size 120 × 176 and
60×88, respectively.) The second row shows the plots for the values of p for
ten different realizations of the reduced frames, when the images are reduced
to 150 pixels using random sampling. The solid plot with the legend “Index
= 0” gives the true p as µ increases.

temporal properties of the video sequences and hence gave
excellent approximations of the high-resolution right singular
vectors.

Computing the eigenimages of X using random sampling
as illustrated here, is more computationally efficient than
computing the eigenvectors of XT X for several reasons. First,
forming XT X requires an overhead of mn2 flops. Next,
computing the eigenvectors of XT X is an O(n3) operation,
whereas estimating p is only O(n2). Finally, multiplying to
compute the eigenimages using all the columns of X requires
mn2 flops whereas using our temporally compressed version
of X allows us to reduce n significantly.
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