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ABSTRACT

DESIGN AND CONTROL OF KINEMATICALLY REDUNDANT ROBOTS FOR

MAXIMIZING FAILURE-TOLERANT WORKSPACES

Kinematically redundant robots have extra degrees of freedom so that they can tolerate a

joint failure and still complete an assigned task. Previous work has defined the “failure-tolerant

workspace” as the workspace that is guaranteed to be reachable both before and after an arbitrary

locked-joint failure. One mechanism for maximizing this workspace is to employ optimal artificial

joint limits prior to a failure. This dissertation presents two techniques for determining these opti-

mal artificial joint limits. The first technique is based on the gradient ascent method. The proposed

technique is able to deal with the discontinuities of the gradient that are due to changes in the

boundaries of the failure tolerant workspace. This technique is illustrated using two examples of

three degree-of-freedom planar serial robots. The first example is an equal link length robot where

the optimal artificial joint limits are computed exactly. In the second example, both the link lengths

and artificial joint limits are determined, resulting in a robot design that has more than twice the

failure-tolerant area of previously published locally optimal designs. The second technique pre-

sented in this dissertation is a novel hybrid technique for estimating the failure-tolerant workspace

size for robots of arbitrary kinematic structure and any number of degrees of freedom performing

tasks in a 6D workspace. The method presented combines an algorithm for computing self-motion

manifold ranges to estimate workspace envelopes and Monte-Carlo integration to estimate orien-

tation volumes to create a computationally efficient algorithm. This algorithm is then combined

with the coordinate ascent optimization technique to determine optimal artificial joint limits that

maximize the size of the failure-tolerant workspace of a given robot. This approach is illustrated

on multiple examples of robots that perform tasks in 3D planar and 6D spatial workspaces.
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Chapter 1

Introduction

Failure-tolerant robots are frequently used for applications in hazardous and remote environ-

ments where performing routine maintenance and repair are not possible. Example applications

include handling radioactive materials [3, 4], inspecting nuclear reactors [5, 6], gathering samples

near potentially active volcanoes [7], and exploring space [8, 9] or the deep sea [10]. There have

been studies on assessing a robot’s reliability using fault trees [11, 12]. Other studies, focused

on enhancing a robot’s tolerance to failure, include faults diagnosis [13, 14], detection and isola-

tion [8, 15], and identification [16], e.g., identifying the locked position of the failed joint [17].

Most previous studies have assumed a locked-joint failure model, where the joint is locked due

to the failure itself or because brakes are employed when some other failure occurs, e.g., for a

free-swinging joint failure where the actuator torque is lost [18, 19].

Because kinematically redundant robots have the ability to perform their task even if one or

more joints fail due to the extra degree(s) of freedom, many failure-tolerance techniques have been

developed for optimizing the local and/or global properties of a redundant robot after a locked

joint failure. The local properties are frequently quantified by the singular values of the redun-

dant robot’s Jacobian [20, 21]. Optimizing these measures can be used to design failure-tolerant

robots [20–22] and determine optimal configurations during their control [23]. Global measures of

fault tolerance refer to the robot’s workspace, e.g., where the reachability of critical task locations

can be guaranteed because they have large self-motion manifolds [24] or identifying an entire re-

gion that is reachable before and after joint failure, referred to as the failure-tolerant workspace

(WF ) [25, 26].

One approach to guarantee the existence of a WF is increasing the degree of redundancy

(DOR). Unfortunately, it has been shown that for every single locked-joint failure, at least two

DORs are required to guarantee the existence of a WF [27], if one does not restrict the configura-

tions of the robot prior to a failure. For manipulators with only one DOR, one way to guarantee the
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existence of a WF is applying the method of artificial joint limits [28]. This method guarantees

a WF by judiciously using artificial joint limits that are applied prior to a failure and released

after a locked-joint failure occurs. To evaluate the workspace size before and after a joint failure,

a number of methods have been developed to determine the workspace boundaries [29] and com-

pute the workspace size by generating symbolic equations of these boundaries [26] or estimating

the workspace sizes, e.g., using Monte-Carlo integration [22, 30–32]. The optimization of WF ,

for planar 3R and 4R robots, has been discussed for one and two arbitrary locked joint failures,

respectively [33].

This dissertation presents a technique for maximizing WF after an arbitrary single locked-joint

failure for arbitrary planar robots. In this work, the optimal artificial joint limits are determined by

using the gradient ascent method on the symbolic area equations derived from applying Green’s

theorem using the WF boundaries. One contribution of this work is resolving the discontinuity

in the gradients that is caused when WF boundary curves change. The proposed approach is

able to duplicate previous results to a higher precision and determine an entirely new WF with

significantly higher area.

Computing WF for high-dimensional workspaces is problematic because voxelization meth-

ods suffer from exponential growth in the dimension of the workspace and there is no known way

to symbolically express the boundaries of such workspaces. The second technique presented in this

dissertation addresses these limitations by developing a hybrid approach that uses a combination

of discretization in two dimensions, Monte-Carlo integration for estimating orientation volumes,

and an efficient numerical procedure for computing workspace envelopes. This method is applica-

ble to fully general six-dimensional workspaces for robots with an arbitrary number of degrees of

freedom (DOFs). This approach for efficiently computing WF is then used to determine optimal

artificial joint limits that maximize WF by applying a coordinate ascent method.

This dissertation is organized as follows. In chapter 2, maximizing the failure-tolerant workspace

area for planar redundant robots is discussed [1]. This chapter presents a gradient-based method to

maximize the failure-tolerant workspace area along with a technique for resolving issues caused by
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changes in the workspaces boundary curves. The proposed technique is illustrated using two ex-

amples. Chapter 3 presents a novel hybrid technique for estimating the failure-tolerant workspace

size [2]. The proposed technique is applicable for any serial robot with arbitrary kinematics where

the robot’s joints are either revolute or prismatic. The method presented combines an algorithm

for computing self-motion manifold ranges to estimate workspace envelopes and Monte-Carlo in-

tegration to estimate orientation volumes to create a computationally efficient algorithm. This

algorithm is then combined with the coordinate ascent optimization technique to determine opti-

mal artificial joint limits that maximize the size of the failure-tolerant workspace of a given robot.

This approach is illustrated on multiple examples of robots that perform tasks in 3D planar and 6D

spatial workspaces. Finally, the conclusions of this dissertation are presented in chapter 4.
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Chapter 2

Maximizing The Failure-Tolerant Workspace Area

For Planar Redundant Robots3

2.1 Introduction

Kinematically redundant robots have more than the minimum number of joints required to

execute a specific task. These robots have the ability to tolerate joint failures and still complete

the assigned task. Robots with this ability are useful when deployed for tasks in hazardous and/or

remote environments, for example, when inspecting nuclear reactors [34], gathering samples near

active volcanoes [7], or exploring space [9] or the deep sea [10].

Because of the importance of these applications, many different aspects of failure tolerance for

robots have been studied. For example, fault trees have been used to assess their reliability [11,12].

Other work has focused on fault diagnosis [13,14], detection and isolation [15], identification [16,

17], and control strategies for recovery from failures [35]. The most common failure mode assumed

by the majority of previous work is that of a locked-joint failure, due to the failure itself or to brakes

being employed [18, 19, 36].

Many fault-tolerance techniques have been developed for optimizing the local and/or global

properties of a redundant robot after a locked joint failure. The local properties are frequently

quantified by the singular values of the post-failure Jacobian to determine measures of local fault

tolerance [37]. Optimization of these measures can be used to design the kinematics of fault-

tolerant robots [20–22] and to determine optimal configurations during their control [23]. In con-

trast, global measures focus more on the effect of failures on a robot’s workspace. For example,

focusing on completion of a point-to-point task [38,39] or identifying the boundaries of its failure-

3This chapter has been published in [1]
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tolerant workspace (WF ), i.e., the workspace that is reachable after any arbitrary locked-joint

failure [26].

One approach to guarantee the existence of WF is increasing the degree of redundancy (DOR).

Unfortunately, it has been shown that for every single locked-joint failure, at least two DORs are

required to guarantee the existence of WF [27], if one does not restrict the configurations of the

robot prior to a failure. However, by judiciously applying artificial joint limits that are released after

a failure, one can guarantee the existence of WF with only a single DOR [28]. Previous researchers

have computed the area of WF using Monte-Carlo integration [27] or Green’s theorem [26], and

tried to maximize its size for planar 3R and 4R robots [33]. Our work and [33] have the same

goal of maximizing the area of WF , however, they differ in two fundamental ways. First, by

symbolically computing the gradient we are able to guarantee an accurate locally optimal solution.

Second, by properly dealing with the discontinuities of the gradients, instead of applying restrictive

assumptions, we are able to identify significantly better solutions.

This current work presents a technique for exactly determining the artificial joint limits that

maximize WF using the gradient ascent method on the area equations determined from Green’s

theorem. Our contributions include identifying and resolving the discontinuous change in the gra-

dient of the area due to changes in the boundary equations of WF . We apply this computationally

efficient technique to exactly determine the maximum area of WF for planar 3R serial robots

of arbitrary link lengths. In the next section, we review the mathematical definition of WF and

summarize how its boundaries are identified. In Section 2.3, we formally define our optimization

problem and then describe our method for solving it in Section 2.4. We then illustrate our tech-

nique on two examples of planar 3R robots in Section 2.5. Finally, we present our conclusions in

Section 2.6.
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2.2 Background on Computing Failure- Tolerant Workspace

2.2.1 Overview

In this section, the definition of a failure-tolerant workspace and the identification of its bound-

aries are summarized as previously discussed in [26]. In that work, artificial joint limits were

imposed prior to a failure in order to increase the size of the post-failure workspace. After a locked-

joint failure, the artificial limits on the remaining working joints are released. Even though the ar-

tificial limits decrease the pre-failure workspace, if chosen appropriately, a post-failure workspace

can be guaranteed. In this work we show how to compute the optimal artificial joint limits that

maximize the size of the workspace reachable both before and after a failure.

2.2.2 Definition of Failure-Tolerant Workspace

The forward kinematic function, x = f(q), maps a robot configuration q in the joint space C,

i.e., q ∈ C ⊂ R
n, to a location x in the workspace W , i.e., x ∈ W ⊂ R

m where n is the number

of joints and m is the dimension of workspace. For kinematically redundant robots, n > m and

n−m is the DOR. In this work, it is assumed that the robots have one DOR, i.e., n−m = 1.

Prior to a failure, each joint i, denoted qi, is bounded by lower ai and upper ai artificial limits

where ai ≥ ai and ai, ai ∈ [−π, π]. If we denote the range of qi when bounded by the artificial joint

limits as Ai = [ai, ai] then the pre-failure configuration space is CA = A1 × · · · × An. Therefore,

the pre-failure workspace denoted W0 is given by

W0 = f(CA) = {x = f(q) | q ∈ CA}. (2.1)

After joint i fails and is locked at qi = θi where ai ≤ θi ≤ ai, the artificial limits are released

on the remaining joints. In this work, without loss of generality, we assume that the physical limits

on all joints are −π to π. This yields a reduced configuration space that is given by

i
C(θi) = {q ∈ C | qi = θi}. (2.2)
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Therefore, the post-failure workspace Wi, which is the guaranteed workspace after a failure in

joint i between the artificial limits, i.e., ai ≤ θi ≤ ai, is given by

Wi =
⋂

ai≤θi≤ai

f(iC(θi)). (2.3)

Finally, the failure-tolerant workspace WF , which is the workspace that is guaranteed to be reach-

able both before and after an arbitrary single locked-joint failure, is given by

WF =
⋂

i∈F∪{0}

Wi (2.4)

where F ⊂ {1, 2, . . . , n} is the set of all joint indices for joints that are likely to fail.

2.2.3 Identification of Failure-Tolerant Workspace Boundaries

The authors in [26] have identified two conditions to determine if a workspace location x

belongs to WF . Both conditions are based on the pre-image of x, denoted f−1(x), where

f−1(x) = {q ∈ C | f(q) = x}, (2.5)

i.e., the set of configurations that correspond to x. Condition 1 is that x be reachable prior to a

failure, i.e., x ∈ W0, so that

CA ∩ f−1(x) 6= ∅. (2.6)

Condition 2 is that x is reachable after a failure, i.e., x ∈ Wi, so that

Ai ⊂ Pi[f
−1(x)] for i ∈ F (2.7)

where Pi is the projection onto the i-th joint axis, i.e., the range of qi for all q that satisfy x = f(q).

Condition 2 states that when joint i is locked at any angle within Ai, the end effector can still reach
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x because that angle is contained in the i-th component of f−1(x). If both conditions are satisfied

for x, then x ∈ WF .

Fortunately, it is relatively straightforward to identify sets of equations that can determine

all potential boundaries of WF . The potential boundaries of W0 are located at f(q) where the

configuration q ∈ CA is a kinematic singularity or when one or more joints are at an artificial joint

limit, i.e., qi = ai or qi = ai. The potential boundaries of Wi are the workspace locations where

the end effector is on the verge of violating condition 2. This can occur in two ways, i.e., either

the projection of the pre-image for this workspace location becomes disjoint within Ai or it fails

to contain an endpoint of Ai. The first way will occur at f(q) where q ∈ iC(θi) is a kinematic

singularity. The second situation can be identified by computing the null vector associated with

the robot’s Jacobian. In particular, let n(q) represent the null vector of the robot at configuration

q and ni be the i-th element of n. Then the potential boundaries of Wi occur when ni = 0 and

qi = ai or ai [26].

Once all potential boundaries of W0 and all Wi’s are determined, one can use the two condi-

tions to identify the actual boundaries of WF . To do this, one must first divide up all boundaries

into simple non-intersecting pieces. For each separated non-intersecting potential boundary, two

workspace locations on opposite sides of the boundary are evaluated. If they are both reachable

before and after a failure, then this is not an actual boundary of WF . After the actual boundaries

of WF are identified, these boundaries can be used to write an equation for the size of the failure

tolerant workspace by using the Gauss-Ostrogradsky’s theorem. In this work, we illustrate this on

maximizing the area of WF for a planar manipulator, denoted AWF
, by using Green’s theorem.

2.3 Problem Statement

The problem solved in this work is maximizing the area of the failure-tolerant workspace AWF

for any planar 3R robot with joint variables denoted by θ. All possible 3R robots can be defined by

their link lengths, l1, l2, and l3. However, the link lengths are not independent because having the

same ratio of link lengths results in a geometrically similar, i.e., scaled version, robot. Therefore,

8



we normalize all robots to be of total length 3 m, i.e., we add the constraint that l1 + l2 + l3 = 3 m.

In addition to the link lengths design parameter one can also select the artificial joint limits ai and

ai that are used while the robot is in operation. However, a1 and a1 are not independent, because

AWF
is rotationally invariant to q1, i.e., only the difference between a1 and a1 affects its value.

Therefore, we add the constraint that a1 = −a1 in the optimization.

If one denotes L = {l1, l2, l3} and A = {a1, a1, a2, a2, a3, a3}, then the optimization problem

for designing a 3R robot with a maximum failure tolerant area can be formulated as:

maximize
L, A

AWF

subject to l1 + l2 + l3 = 3

a1 = −a1.

For the case where one is given a specific 3R robot, the above optimization problem would be

solved for A as the only decision variable. The above optimization can be problematic because the

gradient of AWF
with respect to L and A is discontinuous. Our proposed approach to computing

this optimization is discussed in the next section.

2.4 Technique

2.4.1 Overview

In this section, we use the gradient ascent method [40] to maximize AWF
. To do this, we first

compute AWF
for a given L and A by applying Green’s theorem on the boundary curves of WF .

The technique for identifying the boundary curves of WF was summarized in subsection 2.2.3.

Then a step along the gradient of AWF
with respect to L and A is used to determine a new L and

A and the process is repeated until the local maximum is achieved. However, there are two issues

that one must consider when computing the gradients. First, there will be a change in the number

of boundary curves. Second, and more serious, is when the gradients become discontinuous. In

9



both cases it is important to consider the critical points where these changes occur. These issues

will be discussed in the following subsections.

2.4.2 Green’s Theorem

The equation for the area of WF , i.e., AWF
, is determined by applying Green’s theorem to the

boundary curves of WF . The area of a region D, D ⊂ R
2, bounded by a closed curve C, denoted

gA(D), can be computed using

gA(D) =

∫ ∫

D

dA =
1

2

∫

C

(x1 dx2 − x2 dx1) . (2.8)

To compute AWF
, let curve j be a boundary curve of WF and jx = [x1, x2] be its workspace

coordinates, i.e.,

jx = f(jθ), (2.9)

where f = [f1(
jθi), f2(

jθi)] is the forward kinematic function and jθi is the variable joint i in the

curve j.

Let jθ be the vector that includes the variable jθi and where the jθk’s, k 6= i, are specified.

The center of curve j, denoted jC = (jcx1
,j cx2

), is the workspace location of joint axis i and the

radius, denoted jR, is the distance from joint axis i to the end effector. The end points of curve j

are identified by the intersection of curve j with the two adjoining boundary curves, denoted jx

and jx. The notation jθi and jθi will be used for the values of jθi at these endpoints, i.e., jθi ≤
jθi

≤ jθi,

j
θ = f−1(jx)

j
θ = f−1(jx) (2.10)

with jθk where k 6= i are specified.
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Once jθi and jθi are determined, then the area under the curve j is

Aj =
1

2

∫ jθi

jθi

([

f1(
jθi)

df2(
jθi)

djθi
− f2(

jθi)
df1(

jθi)

djθi

]

djθi

)

. (2.11)

The failure-tolerant workspace area is the summation of the areas under the boundary curves, i.e.,

AWF
=

N
∑

j=1

Aj (2.12)

where the number of boundary curves N varies.

2.4.3 Gradient Method

Once AWF
(L,A) is computed for an initial (L,A)0 using (2.12), the gradient ascent method

is used to compute the next value of (L,A)(k+1) to increase the area using

(L,A)(k+1) = (L,A)(k) + α∇AWF
((L,A)(k)) (2.13)

where ∇AWF
is the gradient of AWF

, i.e.,

∇AWF
(L,A) =

(

∂AWF
(L,A)

∂L
,
∂AWF

(L,A)

∂A

)

(2.14)

and α is a positive step size. A constant value of α, i.e., α = 0.02, is used until a step results in a

decrease in the computed area, AWF
. This will be due to one of two causes, i.e., either the gradient

is near zero or a change in the gradient equation has occurred due to changes in both N and the

boundary curves that compose WF . At this point a binary chop on α is performed to identify the

exact location of the gradient being zero or discontinuous.

We illustrate these issues with a simple example for a planar 3R robot with equal link lengths,

i.e., L = {1, 1, 1}, and with artificial joint limits of A = { −30◦, 30◦, −120◦, 60◦, −130◦, 130◦}.

The boundary curves and two additional near boundary curves of WF for this value of A are

shown in Fig. 2.1 with the joint values, i.e., jθ, for each curve given in Table 2.1. The dashed

11



Figure 2.1: A simple example that illustrates some of the issues with computing the gradient of the area of

the guaranteed failure-tolerant workspace. Depending on how A changes, boundary curve 2, shown in red,

may disappear. Likewise, curve b, shown in green, may appear. Also, the boundary curve 3, shown in blue,

could be replaced by curve a. This particular value of A also results in identical boundary curves, i.e., 8 and

8′.

circle in the figure has a radius of 3 m, i.e., the maximum reach of the robot when there are no

constraints on the joint angles.

There are two issues associated with maximizing AWF
that need to be considered:

Issue 1: Changes in the number of boundary curves N .

While the size of WF is increasing, the value of N may change due to either the disappearance

of existing boundary curves or the generation of new ones. As the values of A are changed to

increase AWF
, the boundary curves will change, for example, if a1 and a2 are increased then curve

12



Table 2.1: Boundary Curves of WF for Fig. 2.1

Curve θ1 θ2 θ3 Workspace

1 a
1

[1.98, 2.59] 0 W1

2 a1 a2 [1.82, 2.09] W0

3 [0.35, π/2] 0 (π) π (0) W2 (W3)

4 a
1

[0.02, 0.87] a3 W0

5 a1 [-0.87, -0.02] a
3

W0

6 [-2.61, -0.35] 0 (π) π (0) W2 (W3)

7 a1 [-π, -1.98] 0 W1

8 [-0.93, 0.93]
−a

3

2
a
3

W3

8′ [-0.93, 0.93] −a3

2
a3 W3

a [-0.52, 0.52] a2 a3 W0

b a
1

a
2

[-2.09 , 0] W0

2 will disappear because curves 1 and 3 will intersect before reaching curve 2. The point at which

this occurs can be easily identified due to 2x= 2x and the summation in (2.12) needs to be updated

appropriately. Likewise, if one increases the a1 and a2 values then the new boundary curve b

will appear between curves 6 and 7. Once again, the summation in (2.12) needs to be updated

appropriately. Fortunately, in both of these cases of disappearing and appearing boundary curves,

the gradients are continuous. However, there are cases where boundary curves can overlap and

switch back and forth, which results in a discontinuous gradient. This is discussed next.

Issue 2: Switching between identical boundary curves.

For this simple example, curve 6 consists of two identical boundary curves due to the specific

value of L. This is also true for curve 3. If one is only interested in optimizing AWF
by adjusting

the artificial joint limits, then L will stay constant and the two boundary curves will stay identical.

This is not true for other identical boundary curves. For example, as the area was increased, curve

a changed continuously from being a boundary curve, to being identical to curve 3, and then no

longer being a boundary. For cases like this, the gradient does change discontinuously, due to

the different equations for the different boundary curves, however, the gradients for the boundary

curves are both still in the same direction, so this does not cause a problem. Unfortunately, this is

not always the case.
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Consider the case of curves 8 and 8′. The gradient ascent algorithm will cause these curves to

switch back and forth as the boundary curve, because their area equations result in gradients that

oppose each other. This occurs whenever a3 6= −a3, which numerically will always be true. To

deal with this situation, one must enforce the constraint that

a3 = −a3 so that the curves remain identical. Doing so makes the area equations, and gradi-

ents, for curve 8 and 8′ identical. This greatly improves the convergence of the gradient ascent

algorithm. It should be noted that there can be switching between multiple boundary curves, as

will be illustrated in section 2.5.

2.5 Examples of Maximizing Failure-Tolerant Workspace

2.5.1 Overview

This section presents two illustrative examples that use the technique presented above. Exam-

ple 1 represents the case where one has a robot with a given set of link lengths and one would like to

know the optimal values for the artificial joint limits that maximize the failure-tolerant workspace.

Without loss of generality, we select a robot with link lengths L = {1, 1, 1} to illustrate this

case. Example 2 represents the case where one is designing a robot and so can select both the link

lengths and the artificial joint limits. For example 2, we show what happens when the gradient

ascent optimization to maximize the failure-tolerant workspace area is performed from different

starting designs. We first start the optimization with the final values from example 1, and show that

it converges to a locally optimal design. We then perform the optimization from multiple random

starting designs and show the designs with a significantly larger failure-tolerant workspace area.

In both examples, the first step is computing the failure-tolerant area, AWF
, which requires

identifying the boundary curves. We briefly review the algorithm for computing these boundaries

for a 3R planar robot, with the complete details in [23]. The forward kinematics for planar 3R

manipulators are given by
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f(θ) =







l1 cos(θ1) + l2 cos(θ12) + l3 cos(θ123)

l1 sin(θ1) + l2 sin(θ12) + l3 sin(θ123)






(2.15)

where θ12 = θ1 + θ2, and θ123 = θ1 + θ2 + θ3 and the associated null vector is given by

n =













l2l3 sin(θ3)

−l2l3 sin(θ3)− l1l3 sin(θ23)

l1l2 sin(θ2) + l1l3 sin(θ23)













. (2.16)

The boundary curves for W0 occur at the kinematic singularities and the joint limit singularities.

The curves associated with the kinematic singularities are given by the values of f(θ) for all θ

where n = 0. The curves associated with the joint limit singularities are given by the values of

f(θ) for the values of θ that satisfy certain conditions when joints are at their limits. If a single

joint i is at its limit, then the condition is given by

ni = 0 and θi = ai or ai.

If two joints, i and j, are at their limits then the conditions are given by: ni and nj are opposite in

sign and

θi = ai and θj = aj or

θi = ai and θj = aj,

or ni and nj are of the same sign and

θi = ai and θj = aj or

θi = ai and θj = aj,
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Table 2.2: Boundary Curves of WF for Fig. 2.2(a)

Curve θ1 θ2 θ3 Workspace

1 a
1

[1θ
2
, 1θ2] 0 W1

2 a1 a2 [2θ
3
, 2θ3] W0

3 [3θ
1
, 3θ1] π 0 W3

4 a
1

[4θ
2
, 4θ2] a3 W0

5 a
1

a
2

[5θ
3
, 5θ3] W0

6 [6θ
1
, 6θ1]

−a
3

2
a
3

W3

where i 6= j. The boundary curves for Wi, when there are no joint limits, are given by the

kinematic singularities, i.e., the same equations as for W0, and by the values of f(θ) for all θ

where

ni = 0 and θi = ai or ai.

2.5.2 Example 1: Optimization of Artificial Joint Limits

For example 1, one is interested in determining the optimal artificial joint limits for a robot

with link lengths L = {1, 1, 1}. In Fig. 2.2 (a), we show an initial starting point for the gradient

ascent algorithm where A = {−25◦, 25◦, 40◦, 90◦, −60◦, 120◦} and N = 6. These six boundary

curves are given in Table 2.2 where each curve has one variable joint and the other two joints are

specified. These curves are identified by the algorithm described in subsection 2.2.3.

The first step is to determine the symbolic expression for AWF
. This requires determining the

area under each curve, Aj . We illustrate this process using curve 1. To compute the area under

curve 1, i.e., A1, we need to determine the symbolic equation for the center and radius of curve

1. The center of curve 1, i.e., 1C = (1cx1
,1cx2

) is the workspace location of its variable joint, i.e.,

joint 2, and is given by

(1cx1
,1cx2

) = (l1 cos(a1), l1 sin(a1)) (2.17)

and the radius, i.e., 1R, is the distance from the joint 2 axis to the end effector, and is given by
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Figure 2.2: This figure depicts an example of optimizing AWF
for a robot with L= {1, 1, 1} that illustrates

appearing, disappearing, and identical boundary curves. The gradient ascent algorithm starts with the initial

artificial joint limits shown in (a) and as it progresses to (b), the red boundary curves disappear. As it

continues on to (c) the green boundary curves appear. The most challenging part of the gradient ascent

algorithm is when there are multiple identical boundary curves that have opposing gradients, which occurs

frequently, i.e., the blue boundary curves in (b) and (c). If appropriate constraints are employed, the gradient

ascent algorithm will converge to the optimal value of A as shown in Fig. 2.3.
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1R =

√

(l2 + l3 cos(1θ3))
2 + (l3 sin(1θ3))

2. (2.18)

The center-radius form of the circle equation is then used to determine the intersection points of

curve 1 with curves 6 and 2, i.e., 1x and 1x, respectively. For example, 1x is the intersection point

of curve 1 with curve 6 and it can be determined by simultaneously solving the following two

equations using the centers and radiuses of curves 1 and 6:

1R2 = (1x1 −
1Cx1

)2 + (1x2 −
1Cx2

)2

6R2 = (1x1 −
6Cx1

)2 + (1x2 −
6Cx2

)2.

(2.19)

This will result in two solutions, however, one can identify the correct symbolic solution by substi-

tuting the given 1θ1 = a1 = −25◦ and 1θ3 = 0◦. An analogous set of equations for the intersection

of curve 1 and 2 can be solved for 1x. Once the symbolic equations for 1x and 1x are known,

equation (2.10) can be applied to compute the limits on the integral in Green’s theorem for the

variable joint 2, i.e., [1θ2,
1θ2], so that (2.11) becomes

A1 =
1

2

∫ 1θ2

1θ
2

([

f1(
1θ2)

df2(
1θ2)

d1θ2
− f2(

1θ2)
df1(

1θ2)

d1θ2

]

d1θ2

)

(2.20)

where

f1(
1θ2) = l1 cos(a1) + l2 cos(a1 +

1θ2) + l3 cos(a1 +

1θ2 + 0◦)

f2(
1θ2) = l1 sin(a1) + l2 sin(a1 +

1θ2) + l3 sin(a1 +

1θ2 + 0◦)

df1(
1θ2) = −l2 sin(a1 +

1θ2)− l3 sin(a1 +
1θ2 + 0◦)

df2(
1θ2) = l2 cos(a1 +

1θ2) + l3 cos(a1 +
1θ2 + 0◦).

(2.21)
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1θ2 = a1+π− cos−1((cos(a1)− 4 cos(a3/2) cos(a1)+ cos(a1) cos(0
◦)2− 4 cos(a3/2)

2 cos(a1)−

sin(a1) (8 cos(a3/2) + 4 cos(0◦)− 2 cos(0◦)2 − 4 cos(0◦)3 − cos(0◦)4 + 16 cos(a3/2) cos(0
◦)− 8

cos(a3/2)
2 − 32 cos(a3/2)

3 − 16 cos(a3/2)
4 + 8 cos(a3/2) cos(0

◦)2 + 16 cos(a3/2)
2 cos(0◦) + 8

cos(a3/2)
2 cos(0◦)2 + 3)(1/2) + 2 cos(a1) cos(0

◦))/(2 (cos(0◦) + 1))).

1θ2 = a1 + cos−1(−(cos(a1 + a2 − 0◦) + cos(a1 + a2 - 0◦)/4+ cos(a1 + a2+ 0◦)/4− cos(3a1 +2

a2)+ (7 cos(a1+ a2))/2+ cos(a1+ a2+0◦)− cos(a1− a2)+ cos(a1+2 a2)− cos(3 a1+ a2)+ 2

sin(a1) (6 cos(2 a1) − 2 cos(2 a2) − 2 cos(4 a1) + cos(0◦)/2 − cos(0◦) − cos(0◦)/8 − 4 cos(2

a1+a2+0◦)+4 cos(2 a1−a2)+4 cos(2 a1+2 a2)−2 cos(4 a1+2 a2)−4 cos(2 a1−0◦)−cos(2

a1− 0◦)− cos(2 a1+ 0◦) + 4 cos(a2 + 0◦)− 4 cos(2 a1 + a2 − 0◦)− cos(2 a1 + a2− 0◦)− cos(2

a1 + a2+ 0◦)− 6 cos(a2) + 9 cos(0◦) + 6 cos(2 a1 + a2)− 4 cos(4 a1 + a2) + 4 cos(a2 − 0◦)− 4

cos(2 a1 + 0◦) + cos(a2− 0◦) + cos(a2+ 0◦) − 19/8)(1/2) + sin(a1 + a2) (6 cos(2 a1) − 2 cos(2

a2)−2 cos(4a1)+cos(0◦)/2− cos(0◦)− cos( 0◦)/8−4 cos(2 a1+a2+0◦)+4 cos(2 a1−a2)+4

cos(2 a1 + 2 a2) − 2 cos(4 a1 + 2 a2) − 4 cos(2 a1 − 0◦) − cos(2 a1− 0◦) − cos(2 a1+ 0◦) + 4

cos(a2 + 0◦)− 4 cos(2 a1 + a2 − 0◦)− cos(2 a1 + a2− 0◦)− cos(2 a1 + a2+ 0◦)− 6 cos(a2) + 9

cos(0◦) + 6 cos(2 a1 + a2) − 4 cos(4 a1 + a2) + 4 cos(a2 − 0◦) − 4 cos(2 a1 + 0◦) + cos(a2−

0◦) + cos(a2+ 0◦) − 19/8)(1/2))/(4 cos(2 a1) + 2 cos(2 a1 + a2 + 0◦) + 2 cos(2 a1 − 0◦) − 2

cos(a2+0◦)+2 cos(2 a1+a2−0◦)−4 cos(a2)−6 cos(0◦)+4 cos(2 a1+a2)−2 cos(a2−0◦)+2

cos(2 a1 + 0◦)− 6)).

(2.22)

The actual integration of (2.20) must be performed symbolically, and the result is lengthy

(See Appendix A.2). To evaluate (2.12), the process is repeated for curves 2-6 that are shown in

Fig. 2.2(a) resulting in AWF
. Once the equation of AWF

is obtained, the gradient is the partial

derivative of AWF
with respect to L and A as given in (2.14)4. Once again, this must be done

symbolically, which results in very long equations, i.e., hundreds of pages, that are available in

4In this example only A is variable.
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the supplementary material. We should note that, despite the fact that generating these expressions

takes several minutes (using MATLAB Symbolic Math Toolbox), they can be evaluated in seconds

so that the gradient ascent algorithm is computationally efficient.

As we move along the gradient to increase the failure-tolerant workspace area, the red bound-

ary curves 2 and 5 eventually disappear so that N = 4. As we continue to follow the gradient,

we arrive at the situation in Fig. 2.2(b), that illustrates a critical point, as curve a just becomes a

boundary curve when A = {−34.2149◦, 34.2149◦, −51.1152◦,

111.1152◦, −60◦, 111.1152◦}. This is followed by curves b, c, d, and e, each being added as new

boundary curves until N = 9 as we approach the situation shown in Fig. 2.2(c). In Fig. 2.2(c)

we arrive at a different type of critical point, when A = { −21.2854◦, 21.2854◦, −79.8991◦,

100.1008◦, −100.1008◦, 100.1008◦ }. At this point, curves 6 and f become identical, however,

curve f simply takes the place of curve 6 in the area calculations. The more complicated case of

identical boundary curves occurs when the gradients of two (or more) boundaries have competing

gradients as discussed in subsection 2.4.3. This occurs three times, i.e., with the curves labeled 4

and 4′ in Fig. 2.2(b); curves 9, 9′, and 9′′ in Fig. 2.2(c); and curves 9, 9′, 9′′, and 9′′′ in Fig. 2.3.

Each time this occurs, one must include a constraint so that both curves are simultaneously con-

sidered. The three additional constraints are: a2 = a3, −a3 = a3, and −a2 = a2. With these

three constraints being applied, the gradient ascent algorithm ultimately converges to the optimal

solution where the gradient is zero5, as shown in Fig. 2.3 with the boundary curves given in Table

2.3. This solution is consistent with the approximated value of AWF
in [33].

We now summarize the computations required in this example. First the symbolic expressions

for AWF
and ∇AWF

(A) are obtained for the boundary curves shown in Fig. 2(a). Then (2.13)

is repeatedly applied, to increase the area until boundary curve 2 disappears. At this point new

symbolic expressions for AWF
and ∇AWF

(A) are employed and (2.13) continues to be applied.

This process occurs multiple times as curve 5 disappears and curves a, b, c, d, and e are added,

5The critical points, i.e., where the gradients are zero, are evaluated to make sure that they are local maxima and

not points of inflection.
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Figure 2.3: This depicts the optimal value of AWF
= 3.5621 m2 for a robot with link lengths L= {1, 1, 1}

that occurs when A = { −18.2074◦, 18.2074◦, −111.3415◦, 111.3415◦, −111.3415◦, −111.3415◦} and

where ∇AWF
(A) = 0. Note that there are four identical boundary curves at the optimal solution, i.e., the

blue curves labeled 9, 9′, 9′′, and 9′′′.

with each time new symbolic expressions for AWF
and ∇AWF

(A) being computed. When curves

4 and 4’ become identical, they have competing gradients so that the constraint a2 = a3 must be

applied in order to make the two area equations, and their corresponding gradients, to be equal.

This allows (2.13) to continue to be applied without chattering. Likewise, the additional constraints

of −a3 = a3, and −a2 = a2 must be applied when curves 9, 9′, and 9′′ coincide and curves 9,

9′, 9′′, and 9′′′ coincide, respectively. All of the symbolic expressions for AWF
and ∇AWF

(A) are

quite complicated, and so are included in the supplementary material.
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Table 2.3: Boundary Curves of WF for Fig. 2.3

Curve θ1 θ2 θ3 Workspace

1 a
1

[1θ
2
, 1θ2] 0 W1

2 a1 a2 [2θ
3
, 2θ3] W0

3 [3θ
1
, 3θ1] 0 (π) π (0) W2 (W3)

4 a
1

[4θ
2
, 4θ2] a3 W0

5 a1 [5θ
2
, 5θ2] a

3
W0

6 [6θ
1
, 6θ1] 0 (π) π (0) W2 (W3)

7 a
1

a
2

[7θ
3
, 7θ3] W0

8 a1 [8θ
2
, 8θ2] 0◦ W1

9 [9θ
1
, 9θ1] a2

−a2

2
W2

9′ [9
′

θ
1
, 9

′

θ1]
−a3

2
a3 W3

9′′ [9
′′

θ
1
, 9

′′

θ1]
−a

3

2
a
3

W3

9′′′ [9
′′′

θ
1
, 9

′′′

θ1] a
2

−a
2

2
W2

2.5.3 Example 2: Optimal Robot Design

For example 2, one is interested in determining both the optimal link lengths and the artificial

joint limits. We will perform the gradient ascent optimization from two different starting values,

the first of which is that shown in Fig. 2.3. At this starting point we have the three constraints

discussed above in example 1, however, because the link lengths are now variable, one must add a

fourth constraint of l1 = l3. This keeps W2 = W3, and prevents their identical boundary curves,

shown in blue in Fig. 2.4, from having opposing gradients. With these constraints imposed, the

algorithm converges to the optimal solution where W0 = W1, as shown in Fig. 2.4 and Table 2.4.

This locally optimal value of AWF
is approximately 3.5% larger than that shown in [33], due to an

approximately 18% difference in l1. However, this is not the globally optimal value of AWF
.

To identify the optimal value of AWF
one must start from multiple random initial values. If

one starts at L = {0.7, 1.2, 1.1} and A = {−130◦, 130◦,−60◦, 150◦, 90◦, 120◦}, then the gradient

ascent algorithm will converge to a optimal solution as shown in Fig. 2.5 and Table 2.5, where a1 =

−a1 = 180◦ so that all of the workspaces are annuluses. However, there are multiple constraints

that need to be employed as the optimization progresses, i.e., we use a3 = a3, l2 = l3, and

a3 = cos−1 ((17l22 − 36l2 + 18)/l22). It is important to note that there is an infinite set of optimal
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Figure 2.4: This figure illustrates the locally optimal value of AWF
= 3.8435 m2, i.e., ∇AWF

(L,A) = 0,

if one attempts to use the gradient ascent optimization with the starting values from Fig. 2.3. The value of

L and A at the locally optimal AWF
are L = {1.2538, 0.4923, 1.2538} and A = {−0◦, 0◦, −180◦, 180◦,

−180◦, 180◦}. The blue curves indicate multiple identical boundary curves.

solutions that can be characterized by the relationships between the link lengths and artificial joint

limits. In particular, the link lengths must satisfy the following relationship:

l1 = 0.5,

1 ≤ l2 ≤ 1.5,

l3 = 2.5− l2

(2.23)

and the artificial limits of joint 2 must satisfy the following inequalities when a3 > 0:
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Table 2.4: Boundary Curves of WF for Fig. 2.4

Curve θ1 θ2 θ3 Workspace

1 a1 [1θ
2
, 1θ2] 0 W0

1′ a1 [1
′

θ
2
, 1

′

θ2] 0 W1

2 [2θ
1
, 2θ1] a

2
π W2

2′ [2
′

θ
1
, 2

′

θ1] a2 π W2

2′′ [2
′′

θ
1
, 2

′′

θ1] π a
3

W3

2′′′ [2
′′′

θ
1
, 2

′′′

θ1] π a3 W3

3 [3θ
1
, 3θ1] = 2π 0 π W2

3′ [3
′

θ
1
, 3

′

θ1] = 2π π 0 W3

4 a1 [4θ
2
, 4θ2] = 2π π W0

4′ a1 [4
′

θ
2
, 4

′

θ2] = 2π π W1

− π ≤ a2 ≤ − cos−1 (β)

π ≥ a2 ≥ − cos−1 (β) + π

otherwise, i.e., a3 < 0:

− π ≤ a2 ≤ cos−1 (β)− π

π ≥ a2 ≥ cos−1 (β)

(2.24)

where β = (5l2 − 4)/3l2, i.e., 38.9424◦ ≤ cos−1 (β) ≤ 70.5288◦, and

a3 = a3 = π ± cos−1

(

2l22 − 5l2 + 4

−2l22 + 5l2

)

. (2.25)

Thus one has a choice in both l2 and the artificial joint limits for joint 2. However, in practice, one

would pick l2 = 1.25 and the values of a2 and a2 with minimum absolute values as in Fig. 2.5

because this will maximize the areas of both W1 and W2 without affecting WF .

2.6 Summary

This paper presented a technique for maximizing the area of a failure-tolerant workspace after

an arbitrary single locked-joint failure for planar 3R robots of arbitrary link lengths. The technique
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Figure 2.5: This figure shows a significantly larger optimal value of AWF
= 9.4247 m2, i.e.,

∇AWF
(L,A) = 0, when the proposed algorithm is started at random values of L and A. The optimal

solution converges to L = {0.5, 1.25, 1.25} and A = {−180◦, 180◦, −53.1301◦, 126.8698◦, 106.2602◦,
106.2602◦}. The blue curves are identical boundary curves of WF .

is based on the gradient ascent method and can be used to determine the optimal artificial joint

limits for an existing robot, or to design a robot with optimal link lengths and artificial joint limits.

It was shown how to deal with the numerical issues associated with gradient-based techniques

due to discontinuities of the gradient caused by changes in the boundary curves of the failure-

tolerant workspace. The technique was illustrated on two examples, and resulted in a more accurate

computation of a previous result, as well the identification of a previously unknown optimal failure-

tolerant workspace area.
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Table 2.5: Boundary Curves of WF for Fig. 2.5

Curve θ1 θ2 θ3 Workspace

1 [1θ
1
, 1θ1] = 2π a

2
a
3

W0

1′ [1
′

θ
1
, 1

′

θ1] = 2π π 0 W1

1′′ [1
′′

θ
1
, 1

′′

θ1] = 2π a
2

a3 W3

2 [2θ
1
, 2θ1] = 2π a2 a3 W0

2′ [2
′

θ
1
, 2

′

θ1] = 2π a2 a
3

W3
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Chapter 3

A Hybrid Approach for Estimating the

Failure-Tolerant Workspace Size of Kinematically

Redundant Robots6

3.1 Introduction

Failure-tolerant robots are frequently required for applications in hazardous and remote envi-

ronments where performing routine maintenance and repair are not possible. Example applications

include handling radioactive materials [3], inspecting nuclear reactors [6], gathering samples near

potentially active volcanoes [7], and exploring space [9] or the deep sea [10]. There have been

studies on assessing a robot’s reliability using fault trees [12]. Other studies focused on enhancing

a robot’s tolerance to failure, including fault diagnosis [14], detection and isolation [15], and iden-

tification [16], e.g., identifying the locked position of the failed joint [17]. Most previous studies

have assumed a locked-joint failure model, where the joint is locked due to the failure itself or

because brakes are employed.

Because kinematically redundant robots have the ability to perform their tasks even if one or

more joints fail, many failure-tolerance techniques have been developed for optimizing the local

and/or global fault-tolerant measures of a redundant robot. Locally, optimizing the singular values

of the Jacobian matrix for redundant robot is frequently used to design failure-tolerant robots [21,

22] and determine optimal configurations during their control [23]. Global measures refer to the

robot’s workspace, e.g., where the reachability of critical task locations can be guaranteed because

they have large self-motion manifolds [24]. It also refers to identifying an entire region that is

6This chapter has been published in [2]
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reachable before and after an arbitrary single locked-joint failure, referred to as the failure-tolerant

workspace (WF ) [25], [26].

A number of methods have been developed to compute the workspace size before or after a

joint failure. One approach is to determine expressions for the workspace boundaries [29] and then

integrate between these boundaries to determine the size of the workspace [26]. Other approaches

include estimating the workspace size numerically, e.g., using Monte-Carlo integration [22, 30] or

voxelization methods on three- and six-dimensional workspaces [41].

One study has shown that in the worst case, one can guarantee the existence of WF for a single

locked-joint failure by having two degrees of redundancy (DOR) [27]. However, by restricting the

joints prior to a failure, i.e., employing artificial joint limits that are released after the failure,

one can guarantee a WF with only a single DOR [28]. Determining the artificial joint limits

that maximize WF for planar 3R and 4R robots after one and two arbitrary locked-joint failures,

respectively has been discussed in [33]. In our previous work [1], we maximized WF for planar

3R robots by using the gradient ascent method on the symbolic expressions of the WF area and

its gradient with respect to the artificial joint limits. All previous approaches to maximizing WF

have been limited to two-dimensional workspaces due to the computational complexity.

Computing WF for high-dimensional workspaces is problematic because voxelization meth-

ods suffer from exponential growth in the dimension of the workspace and there is no known way

to symbolically express the boundaries of such workspaces. This work addresses these limita-

tions by developing a hybrid approach that uses a combination of discretization in two dimensions,

Monte-Carlo integration for estimating orientation volumes, and an efficient numerical procedure

for computing workspace envelopes. This method is applicable to fully general six-dimensional

workspaces for robots with an arbitrary number of degrees of freedom (DOFs). We then use our

approach for efficiently computing WF to determine optimal artificial joint limits that maximize

WF by applying a coordinate ascent method.

The remainder of this work is organized as follows. In the next section, we review a mathe-

matical definition of the failure-tolerant workspace. In Section 3.3, we formulate our method of
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estimating the failure-tolerant workspace size. In Section 3.4, we combine our method with an op-

timization technique to identify artificial joint limits that maximize the failure-tolerant workspace

size. We then present two illustrative examples in Section 3.5. Finally, the conclusions are pre-

sented in Section 3.6.

3.2 Background on Computing Failure-Tolerant Workspace

3.2.1 Overview

In this section, the definition of a failure-tolerant workspace and the conditions to check if a

workspace location x belongs to WF are reviewed as discussed in [1, 26, 28]. In those works,

the concept of artificial joint limits was used to obtain a WF . Artificial joint limits are software-

imposed limits on the range of the joints prior to any failure. Their purpose is to prevent the robot

from failing in a configuration that would result in a very restrictive workspace, i.e., one that does

not guarantee any WF . Once a joint failure does occur, the software limits on the remaining

joints are released so that only the physical joint limits affect their range of motion. Applying

artificial limits will typically decrease the pre-failure workspace, however, if chosen appropriately,

it guarantees a post-failure workspace. In this work, the proposed technique is applicable for any

serial robot with arbitrary kinematics where it is assumed that its joints, either revolute or prismatic,

have no physical limits and one would like to be failure tolerant to a single arbitrary locked-joint

failure. The robot must be kinematically redundant, i.e., n > m where n is the number of joints,

m is the workspace dimension, and the DOR is equal to n−m.

3.2.2 Definition of Failure-Tolerant Workspace

The generalized m-dimensional vector x represents the position and/or orientation of the robot’s

end-effector in the workspace, x ∈ W ⊂ R
m, and the n-dimensional vector θ represents the robot

joint angles in the configuration space, C, θ ∈ C ⊂ R
n. The forward kinematic function, denoted

f , maps joint angles to workspace position and/or orientation,
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x = f(θ). (3.1)

Prior to failure, the angle of joint i, denoted θi, is bounded by lower ai and upper ai artificial

joint limits where ai and ai ∈ [−2π, 2π], and i = {1, 2, . . . , n}. The range of joint angles

between ai and ai is defined as Ai = [ai, ai]. This yields in the pre-failure configuration space

CA = A1 × · · · × An. Mapping CA into the workspace result in the pre-failure workspace,

W0 = f(CA) = {x = f(θ) | θ ∈ CA}. (3.2)

After joint i fails and is locked at θi = qi where ai ≤ qi ≤ ai, the artificial limits are released on

the remaining working joints. This results in the reduced configuration space that is a hyperplane

at θi = qi in the configuration space C,

i
C(qi) = {θ ∈ C | θi = qi}. (3.3)

The guaranteed reachable workspace after joint i fails at qi between ai ≤ qi ≤ ai is the post-failure

workspace, denoted Wi, and given by

Wi =
⋂

ai≤qi≤ai

f(iC(qi)). (3.4)

The guaranteed reachable workspace both before and after an arbitrary single locked-joint failure

is the failure-tolerant workspace,

WF =
⋂

i∈F∪{0}

Wi (3.5)

where F ⊂ {1, 2, . . . , n} is the failure index for the joints that are prone to failures.

3.2.3 Identification of a Failure-Tolerant Workspace Point

Previous work [26] has identified two conditions for determining if a workspace location x

belongs to WF . The pre-image of x, denoted f−1(x), that is given by
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f−1(x) = {θ ∈ C | f(θ) = x} (3.6)

is used to formulate both conditions. Condition 1 is that x be reachable prior to a failure, i.e.,

x ∈ W0, so that

CA ∩ f−1(x) 6= ∅. (3.7)

The above condition states that there must be an intersection between the pre-failure configuration

space, CA, and the pre-image of x, f−1(x), for at least one configuration. Condition 2 is that x is

reachable after a failure, i.e., x ∈ Wi for i ∈ F, so that

Ai ⊂ Pi[f
−1(x)] for i ∈ F (3.8)

where Pi is the projection onto the i-th joint axis, i.e., the range of θi for all θ that satisfies x = f(θ).

Condition 2 means that after joint i is locked at θi = qi where ai ≤ qi ≤ ai, the workspace point x

can still be reached because qi is contained in the i-th component of f−1(x).

3.3 Formulation for Estimating the Failure-Tolerant Workspace

3.3.1 Calculation of a Three-Dimensional Volume Element

The proposed technique is first illustrated for the workspace of general spatial 4 DOF robots,

because they are the simplest spatial redundant robots possible, i.e., robots with only one DOR

and that do not include orientation of the end effector. Assume that joint 1, i.e., the base joint, is

a revolute joint7 where Fig. 3.1 is the three-dimensional (3D) workspace of that robot. The pre-

image of a workspace point x, i.e., the set of configurations that correspond to x, is given by (3.6).

If one rotates x about the rotation axis of joint 1, i.e., the z-axis in Fig. 3.1, by β ∈ [−π, π], then

the pre-image of the rotated x, denoted x′, is computed by evaluating (3.6) for x′ where x′ = Rzx,

and

7If the first joint is prismatic, an analogous procedure can be performed.
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Figure 3.1: A simple example that illustrates how the 3D failure-tolerant workspace volume of a 4 DOF

spatial robot is estimated. This figure shows the reachable grid centers in the half-plane. The pre-image of

each grid center, cg, is computed to determine the rotation angles, β
F

and βF , at the endpoints, c′g and c
′
g,

of arc CF where CF ⊂ WF . The volume of the failure-tolerant workspace of one grid is the integration

under the grid area over the arc length of CF .

Rz =













cos(β) − sin(β) 0

sin(β) cos(β) 0

0 0 1













. (3.9)

The pre-image of x′ is identical to that of x except that every configuration’s joint one value is

related by θ′1 = θ1 + β. This simple relationship means that one does not have to compute the

pre-images for the entire workspace, i.e., one of the dimensions can be easily inferred.

In a 3D workspace, one can discretize a half-plane into equal-square grids where the normal of

the half-plane is perpendicular to the rotation axis of joint 1. Without loss of generality, consider

the half-plane where x ≥ 0 and y = 0 as shown in Fig.3.1. A grid center is denoted cg and c′g

denotes a grid center that has been rotated about the z-axis by an angle β.
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After computing the pre-image for a reachable cg, one can determine the rotation angle βF ,

where c′g belongs to WF , i.e., when the two conditions in Section 3.2.3 are satisfied. Moreover,

one can determine a range of rotation angles, βF = [β
F
, βF ], for a set of points that form a circular

arc, denoted CF , where the endpoints of CF are denoted c′g and c′g. The computation of the rotation

angles, β
F

and βF , is discussed in detail later in this section.

To compute the volume of a single volume element, denoted vF , one needs to integrate the grid

area over the arc length CF , i.e.,

vF ≈

∫ βF

β
F

r ∆g dβF , (3.10)

where r is the shortest distance from cg to the joint 1 axis, i.e., the radius of CF , and ∆g is the

grid area. It is important to note that the pre-image of a grid center may consist of a union of

disjoint self-motion manifolds (SMM). The ranges of [β
F
, βF ] for these disjoint SMMs may, or

may not, overlap. If two ranges overlap, then they are replaced with the union of those two ranges,

until no overlapping ranges remain. Let B denote the set of non-overlapping ranges of [β
F
, βF ]

for a given grid center. Therefore, to compute the volume associated with a grid center one must

compute (3.10) for each range in B. Finally, the failure-tolerant workspace volume, denoted VF ,

is the summation of all the volumes for all grids, i.e.,

VF ≈

Ncg
∑

i=1

|B|
∑

j=1

vF (i, j), (3.11)

where Ncg is the number of reachable cg.

3.3.2 Calculation of a Six-Dimensional Volume Element

To extend the 3D workspace volume calculations to a 6D workspace (position and orientation)

hypervolume, one can estimate the orientation volume over CF using Monte-Carlo integration and

then modify the integrand in (3.10). To estimate the orientation volume, one can use the technique

described in [22, 42] for uniform random sampling of orientations at a workspace point. If one

denotes the total number of randomly selected orientations as No, then an estimate for the failure-
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tolerant orientation volume, VFo
, at a failure-tolerant workspace point is given by

VFo
≈

NF

No

π2 (3.12)

where NF is the number of failure-tolerant orientations and π2 is the maximum orientation volume

when NF = No.

A 6D hypervolume element is the hypervolume along a single CF where every point in CF

has the same number of failure-tolerant orientations, i.e., NF is constant. Therefore, one can

compute the 6D hypervolume by simply including the estimate of the orientation volume within

the integrand of (3.10), which results in

vF ≈

∫ βF

β
F

(r ∆g)

(

NF

No

π2

)

dβF . (3.13)

Then, to compute an estimate of the entire 6D hypervolume, one can apply (3.11). Note that the

number of elements in the set B will likely be much larger because a new range is created for every

change in NF .

3.3.3 Computation of the Rotation Angle Range

The Rotation Angle Range of CF

The rotation angle range, [β
F
, βF ], for a single SMM of cg is defined by the limits of where c′g

is reachable both before and after a failure, i.e., when the pre-image of c′g satisfies condition 1 and

condition 2, respectively, for all failures. Our approach to determining these limits is to compute

these ranges for all possible failures and then take the intersection of these ranges, along with the

pre-failure range. Prior to a failure, while the artificial joint limits are in place, the pre-failure

rotation angle range is denoted [β
0
, β0] and the arc of reachable points is denoted C0, where C0 ⊂

W0. After joint i is locked, the rotation angle range is denoted [β
i
, βi], and the arc of reachable

points is denoted Ci, where Ci ⊂ Wi and i = {1, 2, . . . , n}. Therefore, the range of rotation

angles, [β
F
, βF ], for a single SMM of cg for the guaranteed set of reachable points, CF , both
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(a)

(b)

(c)

Figure 3.2: This figure shows the intersection points (IP) and critical points (CP) that are located on a SMM

of cg, i.e., a 3D or 6D grid center. The IPs, shown in blue in (a), are determined to compute the pre-failure

rotation angle range of C0 ⊂ W0. The dashed portion of the SMM is the intersection with the red-dashed

hyperbox, C′

A
. In (a), the IPs are the minimum, θ1, and maximum, θ1, values of θ1 where θ ∈ C′

A
. The CPs

are shown in blue in (b) and (c). These CPs are used to compute the post-failure rotation angle ranges of Ci

⊂ Wi. In (b) and (c), the CPs are the minimum, θimin
, and maximum, θimax , values of θi over the entire

SMM, i.e., where the null space has no component of θi.
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before and after an arbitrary single locked-joint failure are given by

[

β
F
, βF

]

=
n
⋂

i=0

[

β
i
, βi

]

(3.14)

and CF is given by

CF =
n
⋂

i=0

Ci. (3.15)

It is important to note that [β
F
, βF ] in (3.14) is computed for each SMM of its associated cg.

Therefore, these ranges of [β
F
, βF ] should be combined into non-overlapping ranges before being

included in the set B when computing (3.11). Furthermore, for a 6D cg, one must perform these

calculations for every one of the No orientations at this position. To compute [β
i
, βi], one needs

to identify the intersection points of the SMM of cg with the planes associated with artificial joint

limits, as well as the critical points of an SMM with respect to each θi, which is illustrated in

Fig.3.2 and discussed next.

The Rotation Angle Range of C0

To determine if the range [β
0
, β0] is nonempty, one needs to find at least one β that satisfies

condition 1, i.e., there is at least one configuration in common between CA and a SMM of c′g. To

compute [β
0
, β0] of cg, one needs to determine the intersection points of the SMM with C′

A
, where

C′

A
= [−π, π]×A2 ×A3 × . . .×An, i.e., CA with the artificial joint limits on θ1 released. These

points are indicated in blue in Fig. 3.2(a) with the portions of the SMM inside of C′

A
shown with a

dashed line. Denote the θ1 values of these intersection points as θ1 and θ1, whose values are given

by

θ1 = min θ1 ∀ θ ∈ {θ | f(θ) = cg,θ ∈ C
′
A}

θ1 = max θ1 ∀ θ ∈ {θ | f(θ) = cg,θ ∈ C
′
A}.

(3.16)

Once θ1 and θ1 are computed, the rotation angle range, [β
0
, β0], of C0 is determined by

[

β
0
, β0

]

=
[

a1 − θ1, a1 − θ1
]

. (3.17)
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In practice, to solve (3.17), one needs to compute θ1 and θ1 in (3.16) as follows. The end

effector must be at cg, i.e., f(θ) = cg, while computing the extremal values of θ1 with θ ∈ C′

A
,

i.e., θ1 or θ1. This can be done by applying the following inverse-kinematic equation

θ̇ = J
+ẋ+

(

n−m
∑

i=1

n̂Ji · n̂
⊺

Ji

)

z (3.18)

where J
+ is the n by m pseudoinverse of the manipulator Jacobian, the m-dimensional vector ẋ

is the end-effector velocity that drives the robot to cg and maintains it there, the n−m vectors n̂Ji

represent a basis for the n−m-dimensional null space of J , and n-dimensional vector z represents

the desired joint velocity to achieve the secondary goals.

One can start with a random configuration in C′

A
and then use (3.18) to drive the manipulator

to cg while maintaining the joints within C
′
A by using the method described in [43]. Once the

end effector reaches cg with θ ∈ C
′
A, one can determine the extremal values of θ1 by setting the

first component in vector z to z1 = ±1. By projecting this modified version of z onto the null

space of J , this allows one to increase (or decrease) the value of θ1 while staying on the SMM and

satisfying any hard joint constraints to stay within C
′
A.

This process terminates when one of three conditions occur. First, there may be no constraints

on θ1, i.e., it can rotate 2π while staying within C
′
A and keeping the end effector at cg. Second, the

limits of the SMM are reached, i.e., one is at a critical point and the null space has no component

of θ1. Finally, one may reach a point where there is no further motion of θ1 that does not violate

one or more constraints of θ ∈ C′

A
. For high-dimensional SMMs, i.e, robots with high DOR,

these conditions may be encountered prior to a globally extremal value of θ1, i.e., they are locally

extremal values. However, for robots with a single DOR, one can always traverse the entire SMM

by simply stepping along n̂J , which is tangent to the SMM, to find the globally extremal values.

The Rotation Angle Range of Ci

The grid center cg rotated by β, i.e., c′g, is guaranteed to be reachable after joint i is locked at

an arbitrary angle, θi = qi, where ai ≤ qi ≤ ai and i = {1, 2, . . . , n}, if [ai, ai] is contained in the
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projection of the pre-image of c′g onto the ith axis, i.e., condition 2 is satisfied. The post-failure

rotation angle range, [β
i
, βi], of Ci can be determined by computing the critical points on a SMM

for cg that are indicated in blue in Fig. 3.2(b) and (c). Let the range of θi between the two critical

points be denoted [θimin
, θimax

] and the union of all these ranges over all SMMs be denoted, Θi,

i.e.,

Θi =
⋃

# of SMMs

[θimin
, θimax

]. (3.19)

Let the range in Θi that contains Ai be denoted [Θimin, Θimax], i.e.,

[Θimin
, Θimax

] ∈ Θi and Ai ⊂ [Θimin
, Θimax

]. (3.20)

First consider the computation of the post-failure rotation angle range of C1, i.e., [β
1
, β1]. As

described in Section 3.3.1, the pre-image of cg is identical to that of c′g for any β except for a β

offset in θ1. Therefore the range [β
1
, β1] is determined when condition 2 is on the verge of being

violated, i.e., A1 becomes outside the range of [Θ1min
, Θ1max

], which is given by

[

β
1
, β1

]

= [a1 −Θ1max
, a1 −Θ1min

] . (3.21)

Next, the rotation angle ranges, [β
j
, βj], of Cj , where j = {2, 3, . . . , n}, are computed as

follows. The values of θjmin and θjmax in a SMM of c′g are identical to those in cg. Therefore,

once condition 2 is satisfied, i.e., Aj ⊂ [Θjmin
, Θjmax

], for cg, then the rotation angle range of Cj

is given by
[

β
j
, βj

]

= [−π, π] (3.22)

because here it is assumed, without loss of generality, that there are no physical joint limits. As

before, (3.18) is used to compute θimin
and θimax

where z = ±êi and i = {1, 2, . . . , n}, i.e., the

standard basis vectors.
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3.4 Optimizing the Failure-Tolerant Workspace

The proposed technique for estimating the size of the failure-tolerant workspace, WF , can

be employed in an optimization method to maximize the size of WF . This optimization results

in the optimal set of artificial joint limits, denoted A = {a1, a1, a2, a2, . . . , an, an}, that should be

imposed during the control of a kinematically redundant robot before the occurrence of an arbitrary

single locked-joint failure and then released after that failure.

Let the unit of measure for the failure-tolerant workspace size be denoted SF where SF ∈ R≥0.

This general measure, SF , may represent any combination of linear and rotational components,

e.g., the failure-tolerant workspace size for planar robots that perform a task defined as a 2D

position or 3D position and orientation, and spatial robots that perform 3D position or 6D position

and orientation tasks. In cases where SF is a combination of different units, e.g., meters and rads

for position and orientation, a suitable normalization factor should be employed to make sure that

SF is a meaningful measure.

In all cases, the value of SF is rotationally invariant to θ1. Therefore, the artificial limits of

joint 1, a1 and a1, are not independent, so that only the difference between them affects the value

of SF . Thus in the following optimization procedure the constraint of a1 = −a1 is imposed.

The optimization problem of maximizing SF is solved using the coordinate ascent optimization

method. Coordinate ascent search is an iterative process that attempts to increase the value of SF by

performing a one-dimensional search along one variable at a time, i.e., the ais and ais. Fortunately,

SF is periodic with a period of 2π in every ai and ai so the solution space is bounded. The algorithm

converges to a local maximum when there is no change in any of the ais or ais that increases SF .

The iterative process should be applied to multiple random initial As to find the global maximum

of SF .
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3.5 Examples

3.5.1 Overview

This section presents two examples of maximizing SF by determining the optimal set of ar-

tificial joint limits, A. Example 1 illustrates the case of planar robots with revolute joints that

perform tasks in a 3D workspace (2D position and 1D orientation). Example 2 illustrates the case

of spatial robots with revolute joints that perform tasks in a 6D workspace (3D position and 3D

orientation). To perform a comparison between the results in both examples, SF is normalized by

the robot’s S0max
, which is the size of the original workspace (denoted W0max

), of that robot when

no artificial joint constraints are applied. Equation (3.11) is used to estimate S0max
. For position-

only workspace elements, (3.10) is evaluated with integration limits of −π to π. For position and

orientation workspace elements, (3.13) is evaluated with integration limits of −π to π where NF

is replaced by the number of reachable orientations, denoted Nomax
.

It is clear that the size of ∆g and the number of randomly sampled orientations, No, in (3.10)

and (3.13) affect the accuracy of estimating SF , as well as the computational cost. One would like

to automatically determine an appropriate size for ∆g based on the size of the robot. In the planar

case, we set ∆g to be 4% of the robot’s maximum reach. This results in 25 samples for the length

of the arm, so we also select No = 25 samples for the 1D orientation in the 3D planar case. In the

6D workspace case, ∆g is the area of a square grid, whose length we select to also be 4% of the

robot’s maximum reach and No = 200 for the 3D orientation in the 6D workspaces.

3.5.2 Planar Robots

For the planar robot case, where the tasks are 2D position and 1D orientation, we analyze two

kinematically redundant robots of 4 DOF and 5 DOF, i.e., DORs of 1 and 2. Both robots have equal

link lengths, li, where li = 1 m and i = {1, 2, . . . , n}. For the planar case, grid centers are selected

on the discretized line segment from x = 0 to x = n m. One can apply (3.13), after appropriately

adjusting the integrand, to estimate the 3D volume element and then (3.11) is used to estimate SF ,

which in this case is the 3D failure-tolerant workspace volume. In (3.13), ∆g = 0.04n m is the

40



length of the line segment, i.e., 4% of the robot’s maximum reach. The orientation range for the

planar case is 2π so that π2 in (3.13) is replaced by 2π. Note that the units of SF and S0max
are m2

rad, and that comparisons with other robot’s workspaces should be in the same units.

After performing the coordinate ascent optimization method, the maximum SF of the 4 DOF

planar robot is approximately 9.5% of its S0max
as illustrated in Fig. 3.3. The three-dimensional

workspace is given in (a) with the orientation angle shown on an axis that is orthogonal to the

(x, y) position. In addition, color is used to show the percentage of total orientation angles that are

reachable at that (x, y) position. Fig. 3.3(b) shows the top view of the workspaces for WF and

W0max
in order to more clearly see which (x, y) positions are reachable for at least one orientation,

where once again, the color indicates the percentage of total orientations that are reachable at that

position. The same robot has SF = 0 when no artificial joint limits are applied. By increasing

the DOR to 2, i.e., a 5 DOF planar robot, the maximized SF has increased dramatically to 31% as

shown in Fig. 3.4. One impact of increasing the DOR to 2 is that there is now a region where the

robot can reach 100% of the orientations, i.e., the yellow region, as compared to a maximum of

47% of the orientations in Fig. 3.3.

3.5.3 Spatial Robot

To compute the maximum SF for the case of spatial robots where the task is 3D position and

3D orientation, two spatial robots of 7 DOF and 8 DOF, i.e., spatial robots with DORs of 1 and 2,

are analyzed. The kinematic parameters of both robots are given in Tables 3.1 and 3.2 where αi is

the link twist, li is the link length, and di is the link displacement. The fourth kinematic parameter

is the joint angle, θi, that is bounded by the lower, ai, and upper, ai, artificial limits that are the

decision variables of the optimization. These two robots are designed to be failure-tolerant robots

based on local measures, i.e., an optimally fault-tolerant Jacobian [44, 45].

We performed the coordinate ascent optimization on the 7 DOF spatial robot and obtained a

maximum SF of 6.5% of its S0max
. The optimal A is given in Table 3.1 and the workspaces are

shown in Fig.3.5. This robot would only reach 1% of its S0max
if artificial joint limits were not
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Figure 3.3: This figure shows the 3D view (a) and the top view (b) of WF and W0max
for an equal

link length 4 DOF planar robot performing a task in a 3D planar workspace, i.e., orientation along with

2D position. The maximum SF of the 4 DOF planar robot is 16.5 m2 rad at the optimal set of artificial

joint limits, A = {−180◦, 180◦, 90◦, 143◦, 90◦, 143◦ −180◦, 180◦} where the original workspace size is

S0max
= 178 m2 rad.

used. By increasing the DOR to 2, i.e., an 8 DOF spatial robot, the algorithm converged to the

optimal A that is given in Table 3.2. The maximum SF of the 8 DOF robot has increased to 21%

of its S0max
as shown in Fig. 3.6.

For the 6D workspaces, the units for SF and S0max
are m3 rad3. The two figures, 3.5 and

3.6, show the 6D failure-tolerant workspace, WF , and the 6D original robot workspace, W0max
,

using orthogonal cross sections to show more of the internal structure of the workspaces. In a

manner analogous to Figs. 3.3 and 3.4, we use color to show the percentage of the orientations that

are reachable at that (x, y, z) position, however, in this case the range of all possible orientations
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Figure 3.4: This figure shows the 3D view (a) and the top view (b) of WF and W0max
for an equal link

length 5 DOF planar robot performing a task in a 3D planar workspace, i.e., orientation along with 2D

position. The maximum SF of the 5 DOF planar robot is 98 m2 rad where S0max = 317 m2 rad at the

optimal set of artificial joint limits, A = {−111◦, 111◦, −150◦, 25◦, −150◦, 25◦, −150◦, 150◦, 130◦,
275◦}. Note that WF in (b) does not consist of concentric circles, as in Fig. 3.3, because the artificial limits

of joint 1 are not [−180◦, 180◦].

is a three-dimensional volume. These percentages are estimated using the ratio NF/No for WF

and Nomax
/No for W0max

. The outer gray boundary that surrounds WF is the outer boundary of

W0max
.

3.5.4 Evaluation

The technique presented here was compared to the current best approach, which uses a numer-

ical technique to determine the boundary curves of WF along with Green’s theorem to compute

the area inside these boundaries [1]. Because the approach in [1] is only applicable to 3 DOF
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Figure 3.5: This figure shows the maximum SF of a 7 DOF robot (kinematic parameters are given in

Table 3.1) performing tasks in a 6D workspace. The maximum SF = 892 m3 rad3 is at the optimal A (given

in Table 3.1) with S0max
= 13,274 m3 rad3.

Table 3.1: The kinematic parameters of the 7 DOF spatial robot

Linki αi[degrees] li[meters] di[meters]
θi[degrees]

a
i

ai

1 -98◦ 0.17 0 -74◦ 74◦

2 -114◦ 1.42 1.67 -180◦ 180◦

3 -66◦ 1.42 -0.69 -180◦ 180◦

4 50◦ 0.56 -1.77 -113◦ 86◦

5 -92◦ 1.32 2.42 -165◦ 146◦

6 -93◦ 1.27 -0.38 -64◦ 98◦

7 0◦ 1 0.95 -180◦ 180◦
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Figure 3.6: This figure shows the maximum SF of an 8 DOF robots (kinematic parameters are given in

Table 3.2) performing tasks in a 6D workspace. The maximum SF = 4,450 m3 rad3 is at the optimal A

(given in Table 3.2) with S0max
= 20,920 m3 rad3.

Table 3.2: The kinematic parameters of the 8 DOF spatial robot

Linki αi[degrees] li[meters] di[meters]
θi[degrees]

a
i

ai

1 71◦ -0.89 0 -60◦ 60◦

2 16◦ 1.41 -2.52 -180◦ 180◦

3 63◦ -1.17 2.35 -180◦ 180◦

4 125◦ -1.46 1.09 -3◦ 340◦

5 82◦ -0.66 -1.83 -180◦ 180◦

6 46◦ 1.56 0.61 -204◦ 58◦

7 108◦ -0.67 1.56 -180◦ 180◦

8 0◦ 1 1.21 170◦ 346◦
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Table 3.3: Accuracy and computational time comparison.

Method Number of samples Accuracy (%) Time [min]

Uniform sampling π 1002 99.3% 361

Random sampling π 1002 99.5% 368

Hybrid approach 100 99.7% 7

planar robots with 1 DOR, we use the results for a robot with three links of equal length that has

an optimal WF area, SF , equal to 3.56 m2. The computation time required by this approach was

seven minutes, where 99% of that time was spent determining the boundary curves.

In Table 3.3, we compare the accuracy and computation time for uniform and random sam-

pling along with our hybrid approach to the exact result of 3.56 m2. It is clear that the hybrid

approach presented here is able to achieve accuracy that is comparable to the exact approach in

the same amount of time, and has the advantage of being applicable to any robot or any workspace

dimension. In addition, one can see that both of the sampling approaches suffer from exponen-

tial growth, i.e., 100m where m is the dimension of the workspace, so they are infeasible for a

three-dimensional workspace that considers both position and orientation.

In Tables 3.4 and 3.5, we illustrate the computational expense of our approach as a function

of sample resolution, dimension of workspace (m), and a robot’s DOF (n). From the first row of

Table 3.4 one can see that the computation time increase linearly with the number of sample points,

i.e., increasing the sample resolution by four from 25 to 100 results in a four-fold increase in the

computation time. The relationships between m and n and the computation time are much more

complicated and interrelated. In general, the computation time grows slowly with an increase in n

for a given m, i.e., going up by a factor of 2 or 3. This means that computing SF for robots with

higher DORs is computationally feasible. The increase in computational expense is more affected

by an increase in m, but less than an order of magnitude per additional dimension. It should also

be noted that the variation in computation time for a given m and n is significantly affected by the

resulting size of SF , e.g., see rows two and five of Table 3.4.
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Table 3.4: Execution time for position workspaces

Workspace DOF Position Normalized Time

dimension [m] [n] samples SF [min]

2D 3 25 (100) 12.6% 1.8 (7)

2D 4 100 26% (43%) 13.5 (17.5)

2D 5 100 52% 23.5

3D 4 1250 19% 28

3D 5 1250 26% (78%) 48 (105)

Table 3.5: Execution time for position and orientation workspaces

Workspace DOF Position Orientation Normalized Time

dimension [m] [n] samples samples SF [min]

3D 4 100 100 9.5% 150

3D 5 100 100 31% 420

6D 7 1250 200 6.5% 2250

6D 8 1250 200 21% 5650

3.6 Conclusion

This work presents a general hybrid technique for estimating the failure-tolerant workspace

size of any serial robot with arbitrary kinematics. The method presented combines an algorithm

for computing self-motion manifold ranges to estimate workspace envelopes and Monte-Carlo

integration to estimate orientation volumes to create a computationally efficient algorithm that can

be applied to high degree-of-freedom robots with any degree of redundancy. Because the proposed

algorithm is computationally tractable, it can be combined with an optimization technique, like

coordinate ascent, to determine optimal artificial joint limits that maximize the size of the failure-

tolerant workspace of a given kinematically redundant robot. Therefore, researchers can evaluate

or modify an existing design to make the robot more fault tolerant. This approach is illustrated on

multiple examples of robots that perform tasks in workspaces that are 3D planar (2D position and

1D orientation) and 6D spatial (3D position and 3D orientation). It is shown how an increase in

the degree of redundancy from one to two can dramatically increase the size of the failure-tolerant

workspace by more than a factor of three.
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Chapter 4

Conclusions

4.1 Summary

This dissertation presented a technique for maximizing the area of a failure-tolerant workspace

after an arbitrary single locked-joint failure for planar 3R robots of arbitrary link lengths. The

technique is based on the gradient ascent method and can be used to determine the optimal artifi-

cial joint limits for an existing robot, or to design a robot with optimal link lengths and artificial

joint limits. It was shown how to deal with the numerical issues associated with gradient-based

techniques due to discontinuities of the gradient caused by changes in the boundary curves of

the failure-tolerant workspace. The technique was illustrated on two examples and resulted in a

more accurate computation of a previous result, as well the identification of a previously unknown

optimal failure-tolerant workspace area.

This dissertation also addressed the limitations of conventional methods for computing the size

of failure-tolerant workspaces. This work resulted in a general hybrid technique for estimating

the failure-tolerant workspace size of any serial robot with arbitrary kinematics. The method pre-

sented combines an algorithm for computing self-motion manifold ranges to estimate workspace

envelopes and Monte-Carlo integration to estimate orientation volumes to create a computation-

ally efficient algorithm that can be applied to high degree-of-freedom robots with any degree of

redundancy. Because the proposed algorithm is computationally tractable, it can be combined

with an optimization technique, like coordinate ascent, to determine optimal artificial joint lim-

its that maximize the size of the failure-tolerant workspace of a given kinematically redundant

robot. Therefore, researchers can evaluate or modify an existing design to make the robot more

fault tolerant. This approach was illustrated on multiple examples of robots that perform tasks in

workspaces that are 3D planar (2D position and 1D orientation) and 6D spatial (3D position and
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3D orientation). It was shown how an increase in the degree of redundancy from one to two can

dramatically increase the size of the failure-tolerant workspace by more than a factor of three.

4.2 Future Directions

The work presented in this dissertation can be extended to design optimal failure-tolerant robots

with higher degrees-of-freedom that perform tasks in 6D workspaces. This would require not

only the artificial joint limits being variables but also the DH parameters of the robot. Also, this

study has focused on rotary joints whereas it would be interesting to achieve optimal results for

robots with prismatic joints as well. Finally, considering multiple simultaneous locked joint fail-

ures would be an interesting research extension.
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Appendix A

A.1 Extension to Spatial Positioning 4R Robots

The technique presented in Section 4 can be extended to the case of 4R spatial positioning

robots to maximize the failure-tolerant workspace volume VWF
. Green’s theorem is a special case

of the more general Gauss-Ostrogradsky’s theorem that can be applied to compute the volume

under surfaces [46]. In this case, the boundary surfaces are all portions of a torus. Let surface k be

a boundary of WF with coordinates

x1 = f1(
kθi,

kθj)

x2 = f2(
kθi,

kθj)

x3 = f3(
kθi,

kθj) (A.1)

where kθi and kθj are the two variable joints i and j for the surface k and the remaining two joints

are at constant joint angles. The volume under surface k can be computed using

VWF
=

1

3

∫

kθi

∫

kθj

(x1 dx2 dx3 + x2 dx1 dx3 + x3 dx1 dx2) . (A.2)

The failure-tolerant workspace volume is the summation of the volumes under the boundary sur-

faces

VWF
=

M
∑

k=1

Vk, (A.3)

where M is the number of boundary surfaces for WF . Once the equations for VWF
are computed,

then the gradient can be determined and one can apply (2.13) to maximize the volume.

A.2 Symbolic Equation for A1

A1 = 2π - 2cos−1(cos(a3/2) cos(a1)−cos(a1)/2+ sin(a1) (cos(a3/2)/2−cos(2 a3)/8−cos((3

a3)/2)/2+1/8)(1/2)+(cos(a3) cos(a1))/2)− 2 cos−1((78 cos(2 a1)+ cos(2 a2)+2 cos(4 a1)+2
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cos(3 a2)−2 cos(2 a1−a2)− cos(2 a1−2 a2)−11 cos(2 a1+3 a2)− cos(2 a1+4 a2)+18 cos(4

a1 + 2 a2) − cos(6 a1 + 2 a2) − 121 cos(a2) + 96 cos(2 a1 + a2) + 72 sin(a1) sin(a1 − a2) + 8

sin(a1) sin(a1−2 a2)+44 sin(a1) sin(a1+2 a2)−20 sin(3 a1) sin(a1+a2)+4 sin(a1) sin(a1+3

a2)− 72 sin(a1) sin(3 a1 + a2) + 4 sin(a1) sin(5 a1 + a2)− 22 sin(3 a1 + 2 a2) sin(a1 + a2)− 4

sin(3 a1+3 a2) sin(a1+a2)+4 sin(5 a1+2 a2) sin(a1+a2)+2 sin(5 a1+3 a2) sin(a1+a2)−80

cos(a2)
2 − 16 cos(a2)

3 + 100 sin(a1)
2 − 36 sin(a2)

2 + 160 sin(a1)
4 − 32 cos(2 a1 + a2)

2 + 112

cos(2 a1) cos(a2)− 64 cos(2 a1) cos(2 a1 + a2)− 16 cos(a2) cos(2 a1 + a2)
2 + 32 cos(a2)

2 cos(2

a1 + a2)− 4 sin(3 a1 − a2) sin(a1)− 44 sin(3 a1 + 2 a2) sin(a1)− 8 sin(3 a1 + 3 a2) sin(a1) + 8

sin(5 a1+2 a2) sin(a1)+4 sin(5 a1+3 a2) sin(a1)−32 cos(2 a1)
2+36 cos(a1+a2) cos(a1)+32

cos(2 a1) cos(a2)
2 − 16 cos(2 a1)

2 cos(a2) + 244 sin(a1 + a2) sin(a1) + 76 sin(a1 + a2)
2 + 112

cos(a2) cos(2 a1+a2)−24 cos(a1+a2) sin(a1) (−(cos(2 a1)−cos(a2)+cos(2 a1+a2)−1) (cos(2

a1)−cos(a2)+cos(2 a1+a2)+3))(1/2)+4 sin(a1+a2) cos(a1−a2) (−(cos(2 a1)−cos(a2)+cos(2

a1 + a2) − 1) (cos(2 a1) − cos(a2) + cos(2 a1 + a2) + 3))(1/2) − 4 sin(a1 + a2) cos(a1 + 2 a2)

(−(cos(2 a1)− cos(a2) + cos(2 a1 + a2)− 1) (cos(2 a1)− cos(a2) + cos(2 a1 + a2) + 3))(1/2) +4

sin(a1+a2) cos(3 a1+a2) (−(cos(2 a1)−cos(a2)+cos(2 a1+a2)−1) (cos(2 a1)−cos(a2)+cos(2

a1 + a2)+ 3))(1/2) +48 cos(a1 + a2) cos(a1) cos(a2)− 48 cos(a1 + a2) cos(a1) cos(2 a1 + a2)+ 8

sin(a1) cos(a1 − a2) (−(cos(2 a1)− cos(a2) + cos(2 a1 + a2)− 1) (cos(2 a1)− cos(a2) + cos(2

a1 + a2)+ 3))(1/2) − 8 sin(a1) cos(a1 +2 a2) (−(cos(2 a1)− cos(a2)+ cos(2 a1 + a2)− 1) (cos(2

a1)− cos(a2)+cos(2 a1+a2)+3))(1/2)+8 sin(a1) cos(3 a1+a2) (−(cos(2 a1)− cos(a2)+cos(2

a1+a2)−1) (cos(2 a1)−cos(a2)+cos(2 a1+a2)+3))(1/2)+4 cos(3 a1+2 a2) sin(a1+a2) (−(cos(2

a1)− cos(a2)+ cos(2 a1+a2)− 1) (cos(2 a1)− cos(a2)+ cos(2 a1+a2)+3))(1/2)− 48 cos(2 a1)

cos(a1+a2) cos(a1)+16 cos(a1+a2) cos(a1) cos(a2)
2+16 cos(a1+a2) cos(a1) cos(2 a1+a2)

2−12

cos(a1+a2) sin(a1+a2) (−(cos(2 a1)−cos(a2)+cos(2 a1+a2)−1) (cos(2 a1)−cos(a2)+cos(2

a1+a2)+3))(1/2)+8 cos(3 a1+2 a2) sin(a1) (−(cos(2 a1)−cos(a2)+cos(2 a1+a2)−1) (cos(2

a1) − cos(a2) + cos(2 a1 + a2) + 3))(1/2) − 32 cos(2 a1) cos(a2) cos(2 a1 + a2) + 16 cos(2 a1)
2

cos(a1+ a2) cos(a1)− 32 cos(a1+ a2) cos(a1) cos(a2) cos(2 a1+ a2)− 32 cos(2 a1) cos(a1+ a2)

cos(a1) cos(a2)+ 32 cos(2 a1) cos(a1+ a2) cos(a1) cos(2 a1+ a2)− 72)/(8 cos(a1+ a2) (2 cos(2
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a1)−2 cos(a2)+2 cos(2 a1+a2)−3)2))−(cos(a1) ((4−(2 cos(a3/2) cos(a1)−cos(a1)+2 sin(a1)

(cos(a3/2)/2 − cos(2 a3)/8 − cos((3 a3)/2)/2 + 1/8)(1/2) + cos(a3) cos(a1))
2)(1/2) − (4 − (78

cos(2 a1) + cos(2 a2) + 2 cos(4 a1) + 2 cos(3 a2) − 2 cos(2 a1 − a2) − cos(2 a1 − 2 a2) − 11

cos(2 a1 + 3 a2)− cos(2 a1 + 4 a2) + 18 cos(4 a1 + 2 a2)− cos(6 a1 + 2 a2)− 121 cos(a2) + 96

cos(2 a1 + a2) + 72 sin(a1) sin(a1 − a2) + 8 sin(a1) sin(a1 − 2 a2) + 44 sin(a1) sin(a1 + 2

a2)− 20 sin(3 a1) sin(a1 + a2) + 4 sin(a1) sin(a1 + 3 a2)− 72 sin(a1) sin(3 a1 + a2) + 4 sin(a1)

sin(5 a1 + a2) − 22 sin(3 a1 + 2 a2) sin(a1 + a2) − 4 sin(3 a1 + 3 a2) sin(a1 + a2) + 4 sin(5

a1 + 2 a2) sin(a1 + a2) + 2 sin(5 a1 + 3 a2) sin(a1 + a2) − 80 cos(a2)
2 − 16 cos(a2)

3 + 100

sin(a1)
2 − 36 sin(a2)

2 + 160 sin(a1)
4 − 32 cos(2 a1 + a2)

2 + 112 cos(2 a1) cos(a2) − 64 cos(2

a1) cos(2 a1 + a2)− 16 cos(a2) cos(2 a1 + a2)
2 + 32 cos(a2)

2 cos(2 a1 + a2)− 4 sin(3 a1 − a2)

sin(a1)− 44 sin(3 a1 + 2 a2) sin(a1)− 8 sin(3 a1 + 3 a2) sin(a1) + 8 sin(5 a1 + 2 a2) sin(a1) + 4

sin(5 a1 + 3 a2) sin(a1)− 32 cos(2 a1)
2 + 36 cos(a1 + a2) cos(a1) + 32 cos(2 a1) cos(a2)

2 − 16

cos(2 a1)
2 cos(a2)+244 sin(a1+a2) sin(a1)+76 sin(a1+a2)

2+112 cos(a2) cos(2 a1+a2)−24

cos(a1 + a2) sin(a1) (−(cos(2 a1)− cos(a2) + cos(2 a1 + a2)− 1) (cos(2 a1)− cos(a2) + cos(2

a1+a2)+3))(1/2)+4 sin(a1+a2) cos(a1−a2) (−(cos(2 a1)−cos(a2)+cos(2 a1+a2)−1) (cos(2

a1)−cos(a2)+cos(2 a1+a2)+3))(1/2)−4 sin(a1+a2) cos(a1+2 a2) (−(cos(2 a1)−cos(a2)+cos(2

a1 + a2) − 1) (cos(2 a1) − cos(a2) + cos(2 a1 + a2) + 3))(1/2) + 4 sin(a1 + a2) cos(3 a1 + a2)

(−(cos(2 a1)− cos(a2)+ cos(2 a1+a2)− 1) (cos(2 a1)− cos(a2)+ cos(2 a1+a2)+3))(1/2)+48

cos(a1 + a2) cos(a1) cos(a2) − 48 cos(a1 + a2) cos(a1) cos(2 a1 + a2) + 8 sin(a1) cos(a1 − a2)

(−(cos(2 a1)− cos(a2) + cos(2 a1 + a2)− 1) (cos(2 a1)− cos(a2) + cos(2 a1 + a2) + 3))(1/2) − 8

sin(a1) cos(a1 +2 a2) (−(cos(2 a1)− cos(a2) + cos(2 a1 + a2)− 1) (cos(2 a1)− cos(a2) + cos(2

a1 + a2) + 3))(1/2) + 8 sin(a1) cos(3 a1 + a2) (−(cos(2 a1) − cos(a2) + cos(2 a1 + a2) − 1)

(cos(2 a1) − cos(a2) + cos(2 a1 + a2) + 3))(1/2) + 4 cos(3 a1 + 2 a2) sin(a1 + a2) (−(cos(2

a1)− cos(a2)+ cos(2 a1+a2)− 1) (cos(2 a1)− cos(a2)+ cos(2 a1+a2)+3))(1/2)− 48 cos(2 a1)

cos(a1+a2) cos(a1)+16 cos(a1+a2) cos(a1) cos(a2)
2+16 cos(a1+a2) cos(a1) cos(2 a1+a2)

2−12

cos(a1+a2) sin(a1+a2) (−(cos(2 a1)−cos(a2)+cos(2 a1+a2)−1) (cos(2 a1)−cos(a2)+cos(2

a1+a2)+3))(1/2)+8 cos(3 a1+2 a2) sin(a1) (−(cos(2 a1)−cos(a2)+cos(2 a1+a2)−1) (cos(2
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a1) − cos(a2) + cos(2 a1 + a2) + 3))(1/2) − 32 cos(2 a1) cos(a2) cos(2 a1 + a2) + 16 cos(2 a1)
2

cos(a1+ a2) cos(a1)− 32 cos(a1+ a2) cos(a1) cos(a2) cos(2 a1+ a2)− 32 cos(2 a1) cos(a1+ a2)

cos(a1) cos(a2) + 32 cos(2 a1) cos(a1 + a2) cos(a1) cos(2 a1 + a2) − 72)2/(16 cos(a1 + a2)
2 (2

cos(2 a1) − 2 cos(a2) + 2 cos(2 a1 + a2) − 3)4))(1/2)))/2 − (sin(a1) (2 cos(a3/2) cos(a1) + 2

sin(a1) (cos(a3/2)/2− cos(2 a3)/8− cos((3 a3)/2)/2 + 1/8)(1/2) + cos(a3) cos(a1) + (39 cos(2

a1)+cos(2 a2)/2+cos(4 a1)+cos(3 a2)− cos(2 a1−a2)− cos(2 a1−2 a2)/2− (11 cos(2 a1+3

a2))/2−cos(2 a1+4 a2)/2+9 cos(4 a1+2 a2)−cos(6 a1+2 a2)/2− (121 cos(a2))/2+48 cos(2

a1+a2)+36 sin(a1) sin(a1−a2)+4 sin(a1) sin(a1−2 a2)+22 sin(a1) sin(a1+2 a2)−10 sin(3

a1) sin(a1+a2)+2 sin(a1) sin(a1+3 a2)−36 sin(a1) sin(3 a1+a2)+2 sin(a1) sin(5 a1+a2)−11

sin(3 a1+2 a2) sin(a1+a2)−2 sin(3 a1+3 a2) sin(a1+a2)+2 sin(5 a1+2 a2) sin(a1+a2)+sin(5

a1+3 a2) sin(a1+a2)−40 cos(a2)
2−8 cos(a2)

3+50 sin(a1)
2−18 sin(a2)

2+80 sin(a1)
4−16 cos(2

a1+a2)
2+56 cos(2 a1) cos(a2)−32 cos(2 a1) cos(2 a1+a2)−8 cos(a2) cos(2 a1+a2)

2+16 cos(a2)
2

cos(2 a1+a2)−2 sin(3 a1−a2) sin(a1)−22 sin(3 a1+2 a2) sin(a1)−4 sin(3 a1+3 a2) sin(a1)+4

sin(5 a1 + 2 a2) sin(a1) + 2 sin(5 a1 + 3 a2) sin(a1)− 16 cos(2 a1)
2 + 16 cos(2 a1) cos(a2)

2 − 8

cos(2 a1)
2 cos(a2) + 122 sin(a1 + a2) sin(a1) + 38 sin(a1 + a2)

2 +56 cos(a2) cos(2 a1 + a2)− 12

cos(a1 + a2) sin(a1) (−(cos(2 a1)− cos(a2) + cos(2 a1 + a2)− 1) (cos(2 a1)− cos(a2) + cos(2

a1+a2)+3))(1/2)+2 sin(a1+a2) cos(a1−a2) (−(cos(2 a1)−cos(a2)+cos(2 a1+a2)−1) (cos(2

a1)−cos(a2)+cos(2 a1+a2)+3))(1/2)−2 sin(a1+a2) cos(a1+2 a2) (−(cos(2 a1)−cos(a2)+cos(2

a1 + a2) − 1) (cos(2 a1) − cos(a2) + cos(2 a1 + a2) + 3))(1/2) + 2 sin(a1 + a2) cos(3 a1 + a2)

(−(cos(2 a1)− cos(a2) + cos(2 a1 + a2)− 1) (cos(2 a1)− cos(a2) + cos(2 a1 + a2) + 3))(1/2) +4

sin(a1) cos(a1 − a2) (−(cos(2 a1)− cos(a2) + cos(2 a1 + a2)− 1) (cos(2 a1)− cos(a2) + cos(2

a1 + a2)+ 3))(1/2) − 4 sin(a1) cos(a1 +2 a2) (−(cos(2 a1)− cos(a2)+ cos(2 a1 + a2)− 1) (cos(2

a1)− cos(a2)+cos(2 a1+a2)+3))(1/2)+4 sin(a1) cos(3 a1+a2) (−(cos(2 a1)− cos(a2)+cos(2

a1 + a2)− 1) (cos(2 a1)− cos(a2) + cos(2 a1 + a2) + 3))(1/2) + 2 cos(3 a1 + 2 a2) sin(a1 + a2)

(−(cos(2 a1)− cos(a2) + cos(2 a1 + a2)− 1) (cos(2 a1)− cos(a2) + cos(2 a1 + a2) + 3))(1/2) − 6

cos(a1+a2) sin(a1+a2) (−(cos(2 a1)−cos(a2)+cos(2 a1+a2)−1) (cos(2 a1)−cos(a2)+cos(2

a1 + a2) + 3))(1/2) + 4 cos(3 a1 + 2 a2) sin(a1) (−(cos(2 a1) − cos(a2) + cos(2 a1 + a2) − 1)
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(cos(2 a1) − cos(a2) + cos(2 a1 + a2) + 3))(1/2) − 16 cos(2 a1) cos(a2) cos(2 a1 + a2) − 36)/(2

cos(a1 + a2) (2 cos(2 a1)− 2 cos(a2) + 2 cos(2 a1 + a2)− 3)2)))/2.

(A.4)
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