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ABSTRACT 

A point so.1rce of c.n air-helium mixture was released 

continuously at various positions within a simulated canopy composed 

of 9 cm high pegs, 0. 48 cm diameter, spaced in several arrays 

(2. 54 x 2. 54, 3.55 x 3. 55, and 5. 08 x 5. 08 cm). Variations of the 

vertical location of the source revealed the strongly nonisotropic 

character of diffusion within a canopy with respect to the relative 

diffusion rates i:J. the lateral and vertical directions. When the source 

was placed at various downstream distances from the edge of the can­

opy, it displayec. a tendency to exhale the plume near the front of the 

model canopy and to inhale the plume at distances further downstream. 

Calculations of tile turbulent diffusion coefficient, K, within and above 

the canopy from the experimental data, reveal both a constant region 

and a region of linear increase with height increase as suggested by 

previous author . 
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GASEOUS PLUME DIFFUSION 
CHARACTE RISTICS WITHIN MODE L 

PEG CANOPIES 

by 

R. ~- Meroney >:' , D. Kesic*>:, 
and T . Yamada>:,,:, 

INTRODUCTION 

Agricultura_ meteorologis ts, atmospheric scientists , and 

many hydrologiEts are inte r e sted in the evaporation and exchange 

processes which o c cur in vegetative canopies. Such information 

permits calculation of the efficiency of water, energy, and CO2 

t ransport in plant metabol · sm and the penetration of foreign additives 

into or their escape out of the bulk of a canopy. As early as 1937 

e xperimenters have m ade measurements of velocity, temperature, 

evaporation rates, and energy balance within and above such con-

f . t· 1, 2, 3 , 4 h h ·ct d h 1gura ions T e se measurements ave prov1 e a roug 

p icture of a highly comp-ex and turbulent flow field within the vege­

tation. Today, -::here exi sts a definite need for more elaborate and 

extensive meastrrements for different types of simple geometry crops. 

,:,Assistant Prore ssor of Civil Engineering, Colorado State University 
*>l'Graduate ResEarch Assistants, Department of Civil Engineering, 

Colorado Statie University 
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Past measurements of diffusion from point or line sources in 

such configurations seem to have been limited to measurements of 

an instantaneous line source by Bendix 5 over a tropical rain forest, 

of point and line source distributions over a deciduous for e st by 

Litton Systems, 15 of instanteous point sources in a jungle-like 

deciduous forest by Melpar, 16 and of rates of particulate dispersion 

in a forest canopy at Brookhaven. 6 These measurements are extensive 

and well documented; however, they must be normalized to some 

simplified geometry in order to determine the universal 

characteristics and governing parameters of vegetative penetration 

by a diffusing plume. 

Since field measurements are not easy to obtain because of the 

cost of providing a perfect measuring station and the difficulty of 

obtaining cooperative weather, a laboratory program of modeling 

the flow in and above plant covers has been initiated at the Fluid 

Dynamics and Diffusion Laboratory at Colorado State University. 

Previous results from this program have been published by Quarishi 

d Pl Y H . d N h d . 7, 8, 17, 18 an ate, ano, s1 an at , an Kawatan1. 

The purpose of this report is to discuss some measurements of 

diffusion from a continuous point source in and above a model peg 

canopy. The results of this study will consist of: 

1) A description of the diffusion processes in and above the 

simulated canopy, 
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2) A description of the vertical dispersion of the tracer materials, 

3) A deteroination of the effect of the initial fetch of the peg 

canopy on trace:- dispersion, and, finally, 

4) A deter□ination of the vertical distribution of the eddy 

diffusion coefficients in 3.nd above the modeled canopy. 
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MODELING OF A VEGETATIVE CANOPY 

The wind tunnel, long a research tool of the aerodynamicist, 

has recently proven its worth in atmospheric science through the 

success of an extensive sequence of programs to study modeling 

feasibility for micro-meteorological research. 9, lO As a result, it 

is now possible, for those conditions where Coriolis effects are 

secondary, to model many important features of the atmosphere . 

Suggestions concerning the applicable modeling criteria for vege­

tative canopies have been made by Quarishi and Plate. 
7 

The intent of this program was to scale the nature of gaseous 

plume penetration at different points above a model crop, to 

determine the dispersion characteristics of a plume in such circum­

stances, and then to calculate and compare eddy diffusion coefficients 

with prototype data. Rather than model specifically all the complex 

characteristics of a live vegetative cover, it was proposed to retain 

the character of the flow while avoiding its minute complexity. Hence, 

short dowel pegs, approximately 0. 5 cm in diameter and 9 cm long, 

were chosen as model elements and arranged in various geometrical 

patterns. This rough boundary arrangement produced turbulent flow 

at even small velocities; a constant drag coefficient, independent of 

wind speed*i and, hence, a flow independent of Reynolds' number. 

*Measurements of canopy drag force were made by a shear plate 
described in Army Quarterly Report No. 11, 1 Nov 67-31 Jan 68, 
grant DA-AMC-28-043065-G20. 
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A logarithmic vElocity profile similar to that typically found in the 

vertically stratified atmospheric boundary layer was reproduced 

in the wind tunnEl by an upstream fetch of 20 meters of test section 

floor. It has bee n repeatedly shown that such an upstream boundary 

condition is crit::.cal for the quivalent kinematic character of a 

1 fl f
. ]_j 9, 10, 19 

mode ed ow 1e . 

A careful sbldy of the mean velocity profiles, turbulent inten­

sities and shear stress in and above the model peg canopy has been 

. 18 
completed by Kawatam. These data were compared with prototype 

measurements in forests and agricultural crops. The marked func-

tional agreement between the dynamic and kinematic behavior of the 

peg canopies anc: the live vegetative canopies provided a confirmation 

of the assumption of general similarity. 
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EXPERIMENT AL EQUIPMENT AND PROCEDURES 

The experimental data were obtained in the low speed Army 

Meteorological Wind Tunnel in the Fluid Dynamics and Diffusion 

. 11 
Laboratory at Colorado State University. This tunnel was specif-

ically designed to study fluid phenomena of the atmosphere. It has 

a 2 meter square by 26 meter long test section with an adjustable 

ceiling to provide a zero pressure gradient over the canopy crop. 

Model elements consisted of 0. 48 cm diameter by 9 cm long dowel 

pegs inserted in holes in aluminum plate sections and arranged in 

geometric arrays the width of the test section extending for 11 mete:rs 

downstream from the middle of the length dimension of the tunnel. 

All the various arrangements studied are summarized in Fig. 1. 

A single and a cross-wire constant temperature anemomete:r 

was used to measure velocity, turbulent intensity, and shea:r. In 

addition, pitot-static tube measurements were made at each section. 

The sending elements of the anemometer circuit were platinum wire 

O. 2 mil in diameter and approximately O. 25 cm long. The bridge 

circuit utilized was a CSU Solid State Anemometer and the pitot tube 

output went to a Transonic Model A, Type 120 electronic pressure meter. 

Turbulence signals were interpreted by means of a CSU designed sum 

and difference circuit and a Bruel and Kjaer RMS meter, Model 2416, 
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Helium gas \Was used as a tracer for the turbulent diffusion 

experiments. Tte gas was released continuously at a constant rate 

of 630 cc/ min frc,m a 2 rr_m nozzle located in or above the canopy. The 

sampling probe, manufactured from small diameter hypodermic 

tubing, was mounted on a traversing carriage, the horizontal and 

vertical positions of which were controlled remotely from outside the 

tunnel. Helium concentration was measured at ground level along a 

line normal to thz axis of the plume and vertically at the plume 

centerline. 

Samples were drawn into the probe at a constant rate and passed 

over a standard ~eak into a mass spectrometer (Model MS9AB of the 

Vacuum Electronic Corporation). Output of the mass spectrometer 

was an electrica_ voltage proportional to concentration. The mass 

spectrometer was calibrated periodically be a set of pre-mixed 

gases of research grade. Fig. 2 shows the experimental 

arrangment. 

Since a closzd-circuit wind tunnel was used, the ambient 

concentration le -,rel of helium built up in the wind tunnel with time. 

Eventuall:r; most of the gas did leak out; therefore the amount of 

helium in the arr_bient flow was never higher than 60 parts per 

million. Nevertheless, an ambient concentration measurement was 

taken after each profile. The relative concentration was obtained 
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by subtracting the corresponding ambient concentration from the 

absolute concentration. All data presented in the figures or tables 

are relative concentrations. 

Due to the slow response of the mass spectrometer, a period 

of one to two minutes was allocated for the stabilization of each 

reading before it was recorded. Usually, the concentration signal 

itself was averaged over at least 60 seconds. This method gave 

results that compared favorable with the average of signals taken 

over a period as long as 250 seconds by graphical means. 
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EXPERIMENTAL RESULTS 

All measurEments were taken at a free stream velocity of 

12 m/ sec. The eeiling of the test section was adjusted for zero 

pressure gradient, and the upstream velocity profile was measured 

and found to be bgarithmic. And, because the temperature condition 

was constant, nEutral stability existed. 

1. Typical Velo,~ity, Streamline, and Shear Results 

Velocity anc shear measurements have been compiled for pegs 

positioned in 1. 2'/ x 1. 27 cm diagonal, 2. 54 x 2. 54 cm square, 2. 54 x 

2. 54 cm d:i.agonal and 5. 08 x 5. 08 cm square arrays. In the downwind 

direction, the typical transformations of the wind profiles in the 

vertical directi()(l are shown in Figs. 3 and 4 for flow in and above 

the crop respectively. Velocity profiles within the canopy agree 

1
. . l . . 1, 2, 3, 4 . 

qua itative y wit.~ prototype measurements, and approximate 

the exponential profiles suggested by Inoue, Saito and Cionco, ( ~ al). 

2 12 13 . 
' ' The profiles above the canopy are logarithmic and follow the 

displacement lav u/ u:.:~ = 1/ k l n [ (y-d) / z
0

] utilized for rough surfaces 

since the time o: Rossby and Montgomery (1935). 

Typical intensity and shear profiles shown in Figs. 5, 6 and 7 

indicate the growth of the inner boundary layer over the rough surface. 

The shear profile growth compares favorably with the measurements 

of transition maje by Schlichting for flow from a . smooth to a rough 
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surface. 
14 

Values of intensity from 0. 5 to 0. 8 within the canopy 

correspond to field measurements in crops and forests but suggest 

that a linearized interpretation of the hot-wire anemometer output 

is extremely doubtful. Hence, measurements of velocity, intensity 

or shear may err as much as 20% at the lower velocities. 

Streamline calculations over the model canopy as shown in Fig. 

8 indicate the tendency for the approach flow to initially accelerate 

upward away from the floor and then to subsequently re-penetrate 

the canopy ceiling. This flow behavior was also evidenced in the 

diffusion measurements. It was concluded that the flow field was 

probably quasi-established within 60 h of the inception of the canopy. 

The dynamic behavior of the flow over the peg canopies is described 

in greater detail in Reference 18. 

2. Diffusion Plume Results 

Diffusion measurements were made over pegs positioned in the 

2. 54 x 2. 54 cm square, 2. 54 x 2. 54 cm diagonal (3. 60 x 3. 60 cm) 

and 5. 08 x 5. 08 cm square arrays (see Table I). The plume source 

was located either at the canopy inception (xs = 0) or six meters 

downstream (x = 6 m). It was located at various times at heights 
s 

of 1cm, 4. 5 cm, 9 cm and 13. 5 cm (z = 1 cm, h/2, h, 3/2 h). 
s 

Vertical and horizontal traverses along the plume were made at 

varying distances downstream. 
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Source and sampling tube locations studied are summarized in 

Table 1. The mo.:;t extensive data are available for the 2. 54 x 2. 54 

diagonal (or cente c filled square) matrix. Unfortunately, the program 

of diffusion measurements was instituted some time after the inception 

of the dynamic m e asurement s (mean velocity, turbulence, etc.), and 

therefore only a limited number of data are presented for the other 

peg matrices. 

Figures 9 to 8 display the longitudinal variation of the vertical 

profiles for the 2. 54 x 2. 54 cm peg matrix. Figures 15 to 27 display 

the longitudinal variation of the vertical profiles for the 2. 54 x 2. 54 

cm diagonal peg matrix. The lateral profiles for the 2. 54 x 2. 54, 

2. 54 d x 2. 54 d and the 5. 08 x 5. 08 cm peg matrices are displayed 

as isoconcentraticn lines on Figs. 37-38, 39-40 and 41-42, respectively. 

The more ext ::msive concentration data for the 2. 54 x 2. 54 diagonal 

peg matrix have b =en converted into isoconcentration profiles for a 

longitudinal secticn along -:he plume centerline. Figures 30 to 32 

indicate the tende cy of a ?Dint source to exhale out of the canopy 

when the source is located at half canopy height or above and near the 

inception of the vEgetative cover. Farther downstream, the plume 

tends to dip down into the vegetative cover when released above the 

canopy, as is sho""'\Tn in Figures 33 to 36. 

Figures 28 ar:d 29 show how the plume maximum concentration 

rises abruptly upvrard at t~'le canopy inception and subsequently is 
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displaced downward slightly as the flow re-penetrates the canopy 

ceiling. In the same figures, the maximum concentration line is 

compared with the meandering of the streamlines passing through 

the source position. 
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TABLE I 

Su:o.mary of Data Colle ction Program 

Longitudinal 
Vertical profiles distances 

Source Source at longitudinal at which 
Relec.se x Release z distances lateral profiles 

Peg Array 
s s measured m cm X m m 

2. 54 X 2. 54 0 0 o. 3, o. 6, o. 9 
cm 4.5 0.3,0.6,0.9 

9.0 o. 3, 0. 6, o. 9 

6 LO 0.3,0.6 0.3 
9 .0 0.3,0,6 0.3 

18 .0 0.3,0.6 

3 • 60 X 3. 60 0 LO o. 25, o. 5, o. 75, 
(2. 54 X 2. 54 1.0,1.5,7.0,7.5 
diagonal) 4.5 o. 25, o. 5, o. 75, 

l.0,1.5,7.0,7.5 
9 .0 o. 25, o. 5, o. 75, 

1.0,1.5,7.0,7.5 

6 LO o. 25, o. 5, o. 75, 
1.0,1. 5, 7.0, 7. 5 0.25 

4.5 o. 25, o. 5, o. 75, 
1.0,1.5,7.0,7.5 

9.0 o. 25, o. 5, o. 75, 
1. 0,1. 5, 7. 0, 7. 5 0.50 

13. 5 o. 25, o. 5, o. 75, 
1.0,1.5,7.0,7,5 

5. 08 X 5. 08 0 LO 0.3,0.6 0.3,0.6 
9.0 0.3,0.6 0.3,0.6 
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The consequences of this effect on crop dusting penetration are 

obvious. Yano has suggested this effect may be accelerated by 

differences in eddy d iffusion coefficient profiles; however, calculations 

of K from velocity data do not suggest that any large changes do 

occur. 
8 

It was found that the vertical position of the maximum 

concentration of plumes r eleased at x = 6 m tended t o drift downward. 
s 

This is probably a joint effect of stream1.ine repenetration and the 

gradient in K. 

The growth in the characteristic width of the vertical dispersion 

of a continuous point source plume has frequently been found to be 

proportional to a power function of the longitudinal downstream dis­

n 
tance, x . Similarly, it is generally observed that the maximum 

concentration at ground level decreases at a rate proportional to 

-m 
x . For a plume dispersing in or above the vegetative canopy, the 

rate of dispersal appears to be a function of the fetch distance from 

the canopy inception position (see Table II). This marked variation 

is evident near the canopy edge as is shown in Figs. 43 and 44. 

These rates of di spersion may be compared with values of x O. 
7 

and 

-1. 5 20 
x for plumes dispersing over a smooth surface. 

The nonisotropic character of the horizontal versus vertical 

plume dispersal is evident in cross-sections of the plume plotted as 

isoconcentration lines (see Figs. 37 to 42). For a source located 
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TABLE II 

Coefficients of Concentration Dispersal Rate for Canopy* 

X 
s 

0 

6 

*2. 54 x 2. 54 diag:mal cas2 

z = 1 cm only 
s 

n 

1. 66 

1. 42 

-m 

3.6 

2.5 
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within the canopy, lateral diffusion is very strong, while for a source 

at the top of the canopy, vertical dispersion predominates. Rapid 

diffusion in the vertical direction. is very evident within the canopy 

since gradients in concentration are quickly reduced to a uniform 

vertica l distribution. 

3 ~ Eddy Diffusion Coefficient 

The concept of a macroscopic equation of turbulent dispersion 

of some property C results generally in the equation 

ac a a (K ac ) - +- (u.C) =--at ax. 1 ax. X. ax. 

where K 
X. 

1 

1 1 1 1 

is the coefficient of turbulent diffusion. 

(1) 

The coefficient 

K 
X. 

1 

incorporates within itself the complexities of the act ual trans-

port process. Hence, most analytical studies of fluid mechanics 

require some theoretical or empirical expression for the variation 

of ~- with other parameters. Several scientists have studied the 
1 

nature of Kx. for plant communities, but further data are still 
1 

d d 
1, 2, 3, 8, 12, 13 

nee e . 

The eddy diffusion coefficient for transport of the injected gas 

in the model canopy has been determined utilizing concentration and 

velocity profiles and a finit e difference interpretation of Equation (1). 

In orde r to accomplish the calculations with the limited data, it was 

assumed that K and K were equal at all levels. Calculations were y z 

performed on a CDC 6400 computer at Colorado State University 
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using input data taken from lines fared through the concentration 

measurements, from vertical velocities calculated from the slope 

of streamlines, and from the following equation: 

u( ~~) + 1 :: ) + ( 4K(x. z-~z) - K(x. z - 2AzH ~;) 
K(x. z) = -----~-----------------( ::;J + ~; ( ~; ) (2) 

The resulting profiles in K(z) are displayed on Fig. 45. 

Three distinct reg:.ons of variation of K are noticeable. Immedi­

ately adjacent to t t.e wall is a zone where K increases exponentially. 

In the area from 2 to 5 cm, K remains essentially constant; and, 

finally, K increaEes linearly with z in the region beyond 5 cm. 

A number of authors have suggested that K should remain 

constant in vegeta ive cover; others have suggested that K should 

vary linearly. 
2

' 
3 

It is interesting to note that for the case of the 

model peg canopy, both conditions of K exist, although in different 

regions. Figure 47 compares the distribution of K within the canopy 

with typical results of the distribution of K for a corn crop as 

measured by Uchi: ima and Wright. 
3 

The momentum vertical eddy transport coefficient K has 
m 

been calculated from the velocity and shear data found in Reference 

18 by use of 

K = 
m 

- u' -n' 
( 3) 
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Figure 46 compares the variation of the momentum, K and mass . m 

K eddy diffu s ion coefficie nt s in and above the artificial canopy. 
C , 

Above the canopy, K becomes proportional to { z-d ) where d is 

a displacement height . Similar behavior has been observed for 

. 1, 2, 3, 12, 13, 21 
prototype canop1e s. 

As a re cult of calculations by Denmead, the eddy diffusivity in 

a pine forest might also be interpreted to behave in a similar man­

ner. 
21 

Wright and Lemon reported K distributions in a canopy of 

corn; however, they report ed results in terms of a wind profile 

classification which does not permit direct comparison. 
22 

Finally, 

these K profiles may also be described as qualitatively similar to 

the peg da t a . 
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CONCLUSIONS 

It is appare~ that the general character of flow in and above 

vegetative canopie:3 may be satisfactorily simulated in the meteorolog­

ical wind tunnel. :::n addition, these new data suggest that even the 

micro-sctucture transport phenomena behave in a manner similar to 

that of the prototype. Therefore, it is possible to conclude that: 

1) The basic trends of the dynamic and kinematic behavior of a 

complex vegetative cover may be simulated by a simple porous 

geometry in a wind tunnel. 

2) The initic.l fetch of the peg canopy affects tracer dispersion 

of a continuous point source in a unique manner: Vertical convective 

motions exhale the gases released at the beginning of the canopy, and 

subsequently, the ~anopy appears to re-inhale the products farther 

downstream. 

3) The dispersive characteristics of the canopy are non­

isotropic. For a source near ground level, lateral mixing is strong; 

for a source located at the top of the canopy, vertical transport 

predominates. 

4) The eddy diffusion coefficient varies linearly as (z-d) 

above a vegetative cover and has a growth rate proportional to ku*. 

5) The eddy diffusion coefficient, K , within the artificial 

vegetative cover, 3.ppears to develop into three regions: Initially K 
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grows exponentially, next it remains constant, and, finally, K grows 

at a linear rate. 

6) The experimental law for attenuation of boundary concen­

tration was obtained as x -
2

· 
5 

for gas source releases far from the 

canopy inception. (Rates of dispersion are somewhat larger near the 

edge of the vegetative cover.) 
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