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ABSTRACT

BALANCED AND TRANSIENT ASPECTS OF THE INTERTROPICAL CONVEBRENCE

ZONE

The Intertropical Convergence Zone (ITCZ) is one of the jamyndrivers of tropical circu-
lations and because of its interactions with the extrag®pcontributes significantly to Earth’s
general circulation. This dissertation investigates ayital aspects of the ITCZ using a variety of
analytical and numerical models.

In the first chapter, we learn that deep and shallow balan@etiy circulations are forced by
deep diabatic heating and Ekman pumping at the top of thedasyrayer, respectively. Also,
when the ITCZ is located off of the equator there is an inheasgmmetry between the winter and
summer Hadley cells due to the anisotropic nature of theialestability.

The second study examines shallow and deep vertical motagrsthe eastern Pacific Ocean
(80*W-150W) using the Year of Tropical Convection reanalysis (YOT®&&rtical motions in
the eastern Pacific tend to be bimodal, with both shallow asepdsertical motions occurring
throughout the year. Shallow vertical motions are typicathirrow and restricted to low latitudes
(ITCZ-like) while deep vertical motions tend to be broad ard located poleward of shallow
regimes, except during El Nifilo conditions.

The study of balanced Hadley circulations is also extendedviestigate the role of transient
aspects of the Hadley circulation. The solutions illugttagt inertia-gravity wave packets emanate
from the ITCZ and bounce off a spectrum of turning latituddsew the ITCZ is switched on at
various rates. These equatorially trapped wave packetsecte Hadley cells to pulsate with

periods of 1-3 days.



In the last part of this dissertation, we focus on boundaygiaspects of the formation of the
ITCZ. Since the ITCZ boundary layer is a region of significar@ridional convergence, meridional
advection should not be neglected. Using a zonally symmsiab boundary layer model, shock-
like structures appear in the form of near discontinuitieshie horizontal winds and near singu-
larities in the vorticity and Ekman pumping after 1-2 dayBehumerical model also agrees well
with dynamical fields in YOTC while adding important detalsout the boundary layer pumping
and vorticity.

In closing, we believe that the ITCZ is a highly transientioegvital to the general circulation

of the atmosphere, and many of its features can be explanddylynamics.
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CHAPTER 1

Introduction

The tropical atmosphere is a vital component in Earth’s neaénd climate. It plays a signif-
icant role in transporting energy, momentum, and moistateygard. One of the primary drivers
of tropical-extratropical transport is the Hadley cirdida (Halley 1686; Hadley 1735; Held and
Hou 1980; Hoskins 1996). Until recently, the Hadley cir¢igia was thought to have been mostly
driven by deep convection in the Intertropical Convergengere (ITCZ) (Schneider and Lindzen
1977; Held and Hou 1980; Lindzen and Hou 1988; Hack et al. 1988w we know that shallow
convection and boundary layer processes in the ITCZ plagmifgiant role in the exchange of
energy, momentum, and moisture between the tropics andxtretrepics (Lindzen and Nigam
1987; Stevens et al. 2002; Zhang et al. 2004; Zhang and H&§& Back and Bretherton 2009a).

Chapter 2 of this dissertation explores analytical sohgitor deep and shallow Hadley circu-
lations in a zonally symmetric framework. The results sgt¢feat both Hadley circulations can be
described by the same patrtial differential equations withdame shaping parameters. Therefore,
the asymmetries between the winter and summer hemisphelieyHeells are a part of the same
dynamical system, with the main difference being their ifegc In the deep Hadley circulation
diabatic heating in the ITCZ is the main forcing, while Eknyfammping at the top of the ITCZ
boundary layer is the primary forcing for the shallow Hadb@gulation.

The next chapter focuses on shallow and deep vertical notwar the eastern Pacific Ocean

(80°W-150'W) using the Year of Tropical Convection reanalysis (YOT@QRTC was a two year



project of enhanced satellite coverage, especially owetrtpical oceans, where the transient dy-
namics are not well understood. The analysis that is peddroharacterizes the vertical profile
of the vertical motion as either being shallow or deep. Alanith an analysis of sea surface tem-
peratures and diabatic heating, it appears that shalloticaémotions are typically narrow and
restricted to low latitudes (ITCZ-like) while deep verticaotions tend to be broad and typically
are found poleward of shallow regimes, except during the iBbMonditions of May 2009—April
2010. During the summer months of May—October, deepergisiotions seem to correspond
with warmer sea surface temperatures while the months afuigepp-April exhibit significant dif-
ferences near the equator. In particular, February—Afillustrate a double shallow ITCZ
structure, while February—April 2010 had a single ITCZ jostth of the equator with both shal-
low and deep rising motions.

In Chapter 4, we extend the study of balanced, zonally symertéadley circulations to inves-
tigate the role of transient aspects of the zonally symméteadley circulation. We mainly focus
on the Hadley circulations forced by diabatic heating of élkeernal mode and first two internal
modes. The solutions illustrate the fundamental resuttittextia-gravity wave packets emanate
from the ITCZ and bounce off a spectrum of turning latituddsew the ITCZ is switched on at
various rates. These packets are therefore equatorialypéd and cause the Hadley cells to pul-
sate with periods of 1-3 days. Past studies, such as WunddBii§1976), have shown evidence
of equatorially-trapped oceanic inertia-gravity waveséa level and surface meridional wind data
over the Pacific Ocean. It is possible that the tropical aphese may contain a considerable
amount of inertia-gravity wave activity which our presebservational systems are not capable of
detecting. Therefore, this theoretical work serves asvattin for future observational work on

inertia-gravity waves in the tropics.



Chapters 2—4 analyze dynamical aspects of deep and shalenwuming circulations strictly
above the boundary layer. Also, we made a number of simplifssumptions about the dynam-
ical and thermodynamical processes in the ITCZ, which ath@grimary forcing for large-scale
tropical circulations. In the final chapter, we devise a higbolution, zonally symmetric, slab
boundary layer model to study dynamical aspects in the ITG®& main motivation for this work
is recent research showing evidence of shock-like strastur the boundary layer of tropical cy-
clones (Williams et al. 2013; Slocum et al. 2014). Also, kiééeimagery often shows narrow
zonally elongated strips of tropical convection, espégialthe central and eastern Pacific. When
the boundary layer meridional inflow is large enough in th€ZT the neglect of the meridional
advection terms is not justifiable. With the inclusion ofgbderms in the slab boundary layer
model an embedded Burgers’ equation (Burgers 1948) appetns meridional momentum equa-
tion. When the model is forced by a broad low pressure regishgbove the boundary layer, near
discontinuities form in both the zonal and meridional wirdi®r about 2 days. Along with these
near discontinuities, near singularities arise in theigiytand Ekman pumping. The numerical
model also agrees well with dynamical fields in YOTC while imgdmportant details about the

boundary layer pumping and vorticity.



CHAPTER 2

Balanced Dynamics of Deep and Shallow Hadley Circulations

2.1. SYNOPSIS

This chapter examines the dynamics of large-scale oveniicirculations in the tropical at-
mosphere using an idealized zonally symmetric model on tuaterial 3-plane. Under certain
simplifications of its coefficients, the elliptic partialfi¢irential equation for the transverse circula-
tion can be solved by first performing a vertical transfornolbain a horizontal structure equation,
and then using Green’s function to solve the horizontalcstme equation. When deep diabatic
heating is present in the Intertropical Convergence Zoh€Zl), the deep Hadley circulation is of
first order importance. In the absence of deep diabatic igatine interior circulation associated
with Ekman pumping cannot penetrate deep into the tropagsgdiecause the resistance of fluid
parcels to horizontal motion (i.e., inertial stability)sgynificantly smaller than their resistance to
vertical motion (i.e., static stability). In this scenarianly a shallow Hadley circulation exists.
The shallow overturning circulation is characterized byridienal velocities as large as 7 m's
at the top of the boundary layer, in qualitative agreemetti wbservations in the tropical eastern
Pacific. The meridional asymmetry between the winter andsendeep and shallow Hadley cells
is attributed to the anisotropy of the inertial stabilityrpaeter, and as the ITCZ widens merid-
ionally or as the forcing involves higher vertical wavenuerd) the asymmetry between the winter

and summer cells increases.



2.2. INTRODUCTION

Zhang et al. (2004) have presented comprehensive obsersaifi shallow meridional over-
turning circulations in the tropical eastern Pacific. Asislirated in Fig. 2.1, this shallow over-
turning circulation resembles the deep Hadley circulatiomany respects, but its cross-equatorial
return flow is located just above the top of the boundary laystead of just below the tropopause.
Schneider and Lindzen (1977), Tomas and Webster (1997)@mdberth et al. (1997) emphasized
the importance of shallow overturning circulations in thapics before the observations in Zhang

et al. (2004).
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FIG. 2.1. Schematic cross section of the deep (dashed lines}taadtbw (solid
lines) meridional circulations in the tropical easterniRacAdapted from Figure 1

of Zhang et al. (2004)©) American Meteorological Society, and used with permis-
sion.

Schneider and Lindzen (1977) illustrated a large-scaletou@ng circulation confined below
800 hPa forced by a zonally symmetric sea surface temper@®8T) distribution. They explain
that the circulation is confined to the boundary layer duentwertical variation of small-scale
turbulent mixing that they assumed. Tomas and Webster j198jgested that a shallow divergent
circulation exists in all tropical ocean basins, but is mmsiminent in basins such as the eastern

Pacific, where cross equatorial SST gradients are strongésty describe the shallow overturn-

ing circulation as a secondary circulation that acts to atl@bsolute vorticity across the equator,



allowing the Intertropical Convergence Zone (ITCZ) to foaff of the equator. Trenberth et al.
(1997) performed an Empirical Orthogonal Function (EORAlgsis on the divergent part of the
tropical wind field in the National Centers for EnvironmdrRaediction—National Center for At-
mospheric Research (NCEP-NCAR) and European Centre foiuieBange Weather Forecasts
(ECMWEF) global model reanalysis products in the tropicse Tirst EOF mode represented deep
overturning circulations while the second EOF mode represkshallow overturning circulations.
Shallow overturning circulations were present in the easBacific, west Africa, the Atlantic,
North America, and South America. Yin and Albrecht (200@oabrovided observations of shal-
low overturning circulations in the eastern Pacifict4®0° W) using the First Global Atmospheric
Research Program (GARP) Global Experiment (FGGE) dropssndnding data.

Motivated by the observations of Zhang et al. (2004), Nolaal.g2007) interpreted the shal-
low overturning circulation in the eastern Pacific as a lesgale sea breeze circulation, driven by
anomalously large north-south SST gradients when deepection is absent in the ITCZ. The
ITCZ of the eastern Pacific is an area of relatively low sufacessure and warm SSTs com-
pared to the area near and just south of the equator, leadiagtoss-equatorial southerly flow
in the boundary layer. The ITCZ region has larger thicknedsetween pressure levels since it is
warmer, which leads to a reversal in the meridional presguadient and an associated shallow
northerly return flow just above the boundary layer. Equatasegions with significant large-scale
cold tongues, such as the eastern Pacific, and coastal segitinland-ocean contrasts, such as
west Africa, exhibit large enough surface temperature igrédd to have this meridional pressure
gradient reversal. Zhang et al. (2008) classify shallowrtoweing circulations into two types: (i)

the maritime ITCZ type (e.g., the eastern Pacific) and (& shhmmer monsoon type (e.g., west



Africa). They also note that shallow overturning circuteits have a seasonal cycle, can be located
on either side of the ITCZ, and have distinct vertical stuues.

The purpose of the present chapter is to discuss severaldyhamical aspects, which, in ad-
dition to surface temperature gradients, appear to playmgoitant role in understanding shallow
overturning circulations. The main dynamical aspectsudised here are: (i) diabatic heating in
the inviscid interior of the ITCZ; (ii) Ekman pumping out df¢ boundary layer in the high positive
vorticity region of the ITCZ; (iii) low inertial stability m the equatorial region, causing the winter
Hadley cell to be stronger than the summer cell in responbettodiabatic and frictional forcings.

Such ideas are similar to those considered by Schubert aridoMyg (2010), who studied
Ekman pumping at the top of the boundary layer in tropicalayes. They illustrated the existence
of shallow overturning circulations with return flow justale the top of the boundary layer in
tropical cyclones of varying strengths using an axisymioetodel on thef-plane. The analogous
model in the ITCZ is a zonally symmetric model on the equatgtiplane, which will be used in
this study.

As we will see, the zonally symmetric model equations helpar both shallow overturning
circulations and the deep Hadley circulation, therefoeythre useful in discussing both circu-
lations in the context of one theory of large-scale flows i@ FIhRCZ. There are two schools of
thought in modeling flows in the ITCZ. The first involves anwasption of monthly or longer
time scales, as shown by Schneider and Lindzen (1977), HheldHau (1980), Lindzen and Hou
(1988), and Hou and Lindzen (1992). The model used in thdysiocuses on the second school
of thought, in which the zonal velocity and temperature 8edde transient, as explored by Hack
et al. (1989), Hack and Schubert (1990), Nieto Ferreira afuiBert (1997), and Wang and Mag-

nusdottir (2005). If the zonal flow is balanced in the sensg ithis continuously evolving from



one geostrophically balanced state to another, then thielimeal circulation is determined by the
solution of a second order partial differential equatiothe(y, z)-plane (Eliassen 1951). Accord-
ing to this “meridional circulation equation,” the stream€ttion for the meridional and vertical
motion in the inviscid interior is forced by the meridionard/ative of the diabatic heating and the
Ekman pumping, and is shaped by the static stability, bamedly, and inertial stability. Although
solutions of the meridional circulation equation gengrgield meridional and vertical velocities
that are much weaker than the zonal velocity, the meridiandlvertical directions are the direc-
tions of large gradients, so the relatively weak meridiatiedulation is crucial for the temporal
evolution of the zonal flow.

The chapter is organized in the following way. In section #h& balanced zonally symmetric
model and the associated meridional circulation equatrerpaesented. Section 2.4 introduces
a vertical transform that converts the meridional circglatequation into a differential equation
for the y-structure of the circulation. In section 2.5, the diffetiahequation iny is solved using
the Green’s function. Section 2.6 discusses the deep omarturesponse associated with diabatic
heating in the ITCZ. Section 2.7 discusses the shallow ox@rtg response due to Ekman pumping
at the top of boundary layer in the absence of diabatic hgalinsection 2.8, solutions describing
the asymmetry between the winter and summer Hadley cellprasented. Concluding remarks

are made in section 2.9.

2.3. MODEL EQUATIONS

Consider zonally symmetric balanced motions in a stratidied compressible atmosphere on
the equatorials-plane. Only the flow in the inviscid interior (i.e., aboveetB00 hPa isobaric
surface) is explicitly modeled. Frictional effects arenegented through the specification of the

Ekman pumping at the top of the boundary layeg: 0. This nonzero lower boundary condition



will be discussed later in this section. As the vertical clioate,z = H In(py/p) is used, where

po = 900 hPa, 7, = 293 K, and H = RTy/g = 8581 m. This study considers the case of
weak horizontal flow and weak baroclinicity (i.e., th&du/0y) andw(du/dz) terms in the zonal
momentum equation and theoT'/0y) term in the thermodynamic equation are neglected). These
simplifications allow us to construct analytical solutiafsthe problem. As will be seen, these
analytical results agree well with the numerical resultsoted by Hack et al. (1989), who did not
assume weak horizontal flow and weak baroclinicity and wieslygtic equation coefficients for
static stability, baroclinicity, and inertial stabilityochot contain approximations.

Under these assumptions, the governing equations for @aderonal flow are of the form

ou

ov 0o

99 g

2 Tl (2.3)
ov OJw w
8_y+$_ﬁ_0’ (2.4)
or + ENzw = Q, (2.5)
ot g p

whereu andv are the zonal and meridional components of veloeitys the log-pressure vertical
velocity, ¢ is the perturbation geopotentidl is the perturbation temperaturg, = 2(2/a is the
constant northward gradient of the Coriolis paramefeganda are the Earth’s rotation rate and
radius,( is the diabatic heating, and?(z) = (g/Ty)[(dT/dz) + (xT/H)] is the square of the
buoyancy frequency, which is computed from the specifiedmemperature profilé'(z). Equa-

tions (2.1)—(2.5) constitute a system of five equations endix unknowns, v, w, ¢, T, ), SO an



additional “parameterization” relating to the other unknowns is required for closure. In order to
simplify the problem() will be prescribed.

Equations (2.1)—(2.5) can be combined in such a way as taonoataingle equation for the
streamfunction of the meridional overturning circulatiofle begin the derivation by multiplying
the zonal wind equation (2.1) byy and the thermodynamic equation (2.5) by'7,), and we

make use of the meridional momentum equation (2.2) and tbeoktatic equation (2.3), thereby

obtaining
9 (09 0% | o
Y - = 2.
ay(&)+(at2+ﬁy v=0, (2.6)
0 (0¢ 2o 9
P (8t) + N“w = CpTOQ. (2.7)

Eliminating (0¢/0t) between (2.6) and (2.7) results in

ow 0 v g 9Q
QOW (07 9\ OV oy
N dy (0152 5%y ) 0z ¢, Ty 0y’ (2.8)

Equations (2.4) and (2.8) can now be regarded as a closeehsysty andw. One way of pro-
ceeding from this system is to make use of (2.4) so that thédinaal circulation(v, w) can be

expressed in terms of the streamfunctionThe formulas that relate, w) andq are
v=—— and e w=—. (2.9)

In order to obtain a single equation iny, z,t), we substitute (2.9) into (2.8). This procedure
yields the partial differential equation given below in}@). Assuming that — 0 asy — +oo and
thatw vanishes at the top boundary € z7), the boundary conditions given below in (2.11) and
(2.12) are obtained. Since this study is concerned with Elpouanping effects on the fluid interior,

the actual vertical velocity (i.e., the physical heighttieal velocity) is specified at the lower

10



isobaric surfacee = 0. Even though the lower boundary condition should be appiea fixed
physical height, Haynes and Shepherd (1989) suggest thartbrs associated with assuming a
value for the physical height vertical velocity on an isabdower boundary are minor compared
to those associated with assuming a value for the log-pregsu just pressure) vertical velocity
on an isobaric lower boundary. The appropriate linearizagion of the lower boundary condition
used here is

9o Oy _
at+ga gWat z =0,

whereW(y, t) is the specified physical height vertical velocityat= 0. Equation (2.6) must
be used to eliminatéd¢/0t) and thereby express the lower boundary condition in ternthef

streamfunction. From (2.6),

a (0¢ 0? 2 2\ OV B
a—y<§> (atQ—‘—ﬁ 5—0&‘62—0.

Eliminating (0¢/0t) from these last two relations, we obtain the lower boundarydition given
below in (2.13). Concerning the initial conditions, we asguthat the meridional circulation and

its tendency both vanish at= 0. In summary, the meridional circulation problem is

0 AN z/Haw 2 z/H821/)_ g 0Q
(g 0) 5 (50 ) + e G = Sy @19

with boundary conditions

Y — 0 as y — +o0o, (2.11)

=0 at z = zp, (2.12)

02 0 32 ow
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and with the initial conditions

=0 and %—szattzO. (2.14)

Note that the diabatic forcing appears through the righdrside of the interior equation (2.10),
while the Ekman pumping appears through the right hand sideeolower boundary condition
(2.13). Also, note thalv? is a measure of the static stability afél/? is a measure of the inertial
stability, which both act as shaping parameters. Baramtinis also a shaping parameter, but it
does not appear because of the simplifications introducgdif—(2.5). The meridional circulation
problem (2.10)—(2.14) can be written in a slightly simpkenfi by defining) (v, z, t) andQ(y, z, t)

as

Dy, z,t) = Y(y, 2, t) e/,

(2.15)
Qly, 2, t) = Q(y, z,t) e */*.
Using (2.15) in (2.10)—(2.14) the meridional circulatiamplem is written in the form
o 2 2 0212 26212 Q/A) g 8@
— N — = — 2.16
<8t2 +5 y) <822 TN T T ooy (2.16)
with boundary conditions
¥ — 0 as y — oo, (2.17)
b =0 at 2=z, (2.18)

(5_2 . 52y2) (8_6 s i) SIS (2.19)
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and with the initial conditions

15:0 and 88—t:0att:0. (2.20)

Note that (2.16) has a convenient form because of the abséiicec/ factors. We shall solve
(2.16)—(2.20) analytically using transform methods. Thet &tep involves a vertical transform that
converts our(y, z, t) partial differential equations to partial differentialwetions in(y,t). Hori-
zontal transforms are used after the vertical transformyeding our partial differential equations
n (y,t) to a system of ordinary differential equations in time. Themare able to compute the

analytical solution of the original meridional circulatiproblem.

2.4. VERTICAL TRANSFORM

Solutions of (2.16)—(2.20) are computed via the verticahsform pair

[e.e]

Py, z.t) = ), (2.21)

m=0

y.t) = g / Ty 2 ) 22N (2)dz + (. 0, 1) 0 (0). (2.22)

In other words, the streamfunctiai(y, z, t) is represented in terms of a series of vertical structure
functions Z,,(z), with the coefficients),, (y,t) given by (2.22), wheren refers to the vertical
modes. The reason for the last term in (2.22) arises fromawer boundary condition (2.19), as
will become apparent shortly. The vertical structure fims Z,,(z) are solutions of the Sturm-

Liouville eigenvalue problem
&Pz, Z,  NZ,

_ - _ 2.2
dz? 4H? ghy, (2.23)

Zn,=0 at z=zp, (2.24)
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iZn Zw  Zm
dz — E = —m at z = 0, (225)

with eigenvalues (or equivalent depths) denotedhy These equivalent depths correspond to
the solution of the Sturm-Liouville eigenvalue problem2@-—(2.25), where the eigenfunctions
are denoted byZ,,(z). For N?(z) > 0, the solutions of the Sturm-Liouville problem have the
following three properties (Fulton and Schubert 1985)Thg eigenvalues,,, are real and may be
ordered such thdty > h; > -- - h,, > 0 with h,, — 0 asm — oo; (ii) The eigenfunctionsz,,(z)
are orthogonal and may be chosen to be real; (iii) The eigetionsZ,,(z) form a complete set.
A discussion of the transform pair (2.21)—(2.22) is giverAippendix A, along with a proof of
properties (i) and (ii). The derivation of the solutions e teigenvalue problem (2.23)—(2.25) for
the special case of constakitas well as a proof of property (iii) are given in Appendix B.éeftirst
five vertical structure functiong,, (=) for the special case of constahtare plotted in Fig. 2.2.

To take the vertical transform of (2.16), we multiply it I8,(z) and integrate i from 0 to

zr to yield
82 2T
o | 9 s 020 N @) s
y? 0
0 2 2
+ <ﬁ +ﬂ Yy )
0? 5 2\ [ - PZ,(2)  Zn(2)
_'_<@—i_ﬁy)/ov ¢(y727t)< 22 - AH?2 )dZ

g o [T,
[ Qsnzae

Cp

~

Dy, 2, t) - dz,.(2)] "

Bn(5) 2 iy, ) 2

0 (2.26)

Note that the integral originating fror(rzﬂzﬁ/ﬁzz) in (2.16) is integrated by parts twice. In order to
simplify (2.26), we use (2.23) in the third line and then uad4.8) and (2.24) to show that the upper

boundary term in the second line vanishes. To evaluate therlboundary term in the second line,
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FIG. 2.2. Vertical structure functions,, (=) for the external mode: = 0 and the
first four internal modesn = 1, 2, 3, 4. As discussed in Appendix B, these vertical
structure functions are solutions of the Sturm-Liouviltelplem (2.23)—(2.25) with
the constant buoyancy frequendy= 1.2 x 1072 st andz; = 13 km.

we eliminated:) /9= by using (2.19) and then group the resultif@j«)/9y?) term with the first
line of (2.26). Similarly, we use (2.25) to eliminad€,,, /d= and then group the resulting,, /i,

term with the third line of (2.26). This procedure simplif{@&s26) to

&L ; ) }
Oy [g/o Dy, 2,0) Zm(2)N*(2)dz + $(y, 0, 1) 2, (0)

62y2
 ghm,

_ 0| [T Qly 2 )
Ay | Jo cp 1o

1 [T . ) R
{5 AR ENER, <z>dz+¢<y,o,t>zm<o>] (2.27)

Zn(2)dz +W(y,t)Z,(0)

Making use of (2.22), this procedure then simplifies (2.27) t

821;711 82 y2 N 8me
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with boundary conditions

~

Um(y,t) — 0 as y — +o0, (2.29)
and with the initial conditions
Um =0 and 83—?:0 at t =0, (2.30)

where the forcing tern’,, (y, t) on the right hand side of (2.28) is given by

T Qy, 2, 1)

F,(y,t) =
(y,t) i T

Zn(2)dz +W(y,t)2,,(0), (2.31)

and where the equatorial Rossby lengthis given by

ghm e 1/4 @
b = (4—62) =l 7 (2.32)

Lamb’s parameter is defined by, = 49%a%/(gh.,,,). The spectra of equivalent depths, equato-
rial Rossby lengths,,,, and Lamb’s parametets, for m = 0, 1,2, ..., 10 are shown in Table 2.1.
Note that the interior diabatic heatir@(y, z, t) and the boundary layer pumping(y, t), which

were separate forcing effects in (2.16) and (2.19), have manged into the single forcing term

Fo.(y,t).

2.5. SOLUTION OF THE HORIZONTAL STRUCTURE EQUATION VIA THEGREEN' S FUNCTION

In order to solve (2.28)—(2.30), we first assume that if trebdtic forcingQ(y, z, ¢t) and the
boundary layer forcingV(y, t) vary slowly in time, the)? /0t terms in the interior equation (2.28)
and the boundary condition (2.30) can be neglected. By neqgtethese second time derivatives,

¥(y, z,t) has no memory of the past forcing and is diagnostically deitezd by the current forcing
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TABLE 2.1. The spectra of equivalent depths, gravity wave speed&h,,)'/?
(with approximate values in parentheses), equatorial IRodengthss,, =
[ghm/(43%)]Y/4, and Lamb’s parameteks, = 492%a%/(gh,,) for the eleven val-
ues ofm listed in the left column. The values have been computed {®4) and
(B10) usingzr = 13 km, g = 9.8 ms 2, a = 6371 km, Q = 7.292 x 107° s71,
N =12x10"2s"!, andH = 8581 m.

| m | hy (M) | (ghe)? (Ms) [ by (km)| €, |
7099 263.8 (—) 2400 | 12.41
229.8 | 47.46 (48.27)| 1018 | 383.4
61.42 | 24.53 (24.65)| 732.0 | 1434
27.66 | 16.46 (16.50) | 599.7 | 3185
15.63 | 12.38 (12.39) | 519.9 | 5636
10.03 | 9.912 (9.920) | 465.3 | 8787
6.970 | 8.265 (8.270) | 424.9 | 12638
5.125 | 7.087 (7.090) | 393.4 | 17190
3.925 | 6.202 (6.204) | 368.1 | 22442
3.103 | 5.514 (5.515)| 347.0 | 28394
2514 | 4.963 (4.964) | 329.3 | 35046

'SQOOO\IOU‘I-wa\)HO

only. For the rest of this chapter, we will make use of thisuagstion. The Green’s function

G (y,v') is introduced, which is the solution of the ordinary diffetial equation

A C R T 1 (y—y
i g0t ('50), -

with the boundary conditions

Gm(y,y') — 0 as y — +oo, (2.34)

where the Dirac delta function vanishes fp# 3’ and satisfies

1/“ <y—y’)
— ) dy = 1. (2.35)
b Sy b,

The Green’s functior5,,(y, ') is useful in understanding the meridional structure of the

Hadley circulation since the left hand side of (2.33) is ggl&int to that of (2.28). As will be

seen, all of the meridional asymmetry of the Hadley cirgatats built into the Green'’s function.
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The Green'’s functiolir,, (v, y') is constructed from the parabolic cylinder functians(z), which

satisfy

d*D, 1 1

Note that the order = —1/2 parabolic cylinder function®_,>(y/b,,) and D_, o(—y/by,) are
solutions of the homogeneous version of (2.33). The funstio_, /;(x) andD_, »(—x) are plot-
ted in Fig. 2.3.

Only the solutionG,,(y,y') = a1 D_y2(—y/by) is valid for —oo < y < 4/, and only the
solutionG,,,(y,y') = aaD_1,2(y/by,) is valid fory’ < y < oo because of the lateral boundary
conditions (2.34). Note that; anda, depend on/, and are determined by requiring ti@&, (v, ')
is continuous a = ¢’ and that the jump in the first derivative satisfies

dG,, 1"
b [ﬁ} =1, (2.37)
dy 1,_

which is obtained by integrating (2.33) across a narrowaegurrounding; = y’, making use of
the delta function property (2.35), and noting that the marintegral of the first term left of the
equals sign in (2.33) is zero. The two algebraic equationaf@nda, can be solved with the aid

of the Wronskian
— = =2, (2.38)

The Wronskian is derived by multiplying (2.36) Wy, (—z) and multiplying the version of (2.36)

wherex — —z by D, (x), and combining the two resulting equations. Solvingdpanda, using
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FiG. 2.3. Parabolic cylinder function8_, 5(x) andD_; jo(—x) for =3 < z < 3.
The functionD_,;(x), shown by the blue curve, satisfies the— oo boundary
condition and is used to construct the Green'’s functiony, y') north ofy’. Sim-
ilarly, the functionD_, »(—x), shown by the red curve, satisfies the— —oo
boundary condition and is used to construct the Green'stiom¢,,,(y, y') south
of y/. Because these two parabolic cylinder functions are soistdf (2.36) with
v = —1/2, their second derivatives are zero at the equator but betamge away

from the equator. All the calculations presented here uséthathematica function
ParabolicCylinderD}, x].

(2.38) results in

| D_1pp(y' [bm)D-1p2(=y/bm)  if —co<y<y
Gn(y,y) = 7 (2.39)

D_1/5(=y'/bm)D_12(y /b))  if 3y <y < o0

Plots ofG,,,(y, ') for y' = —1500, —750, 0, 750, 1500 km andm = 0, 1, 2 are shown in Fig. 2.4.
Note that, asn increases, the jump in the derivative®@f, (v, v') aty = ¢’ in (2.37) increases since
b,, decreases. Therefore, the Green’s function becomes mafamed to the region neay = v/

and we expect the response of the Hadley circulation to beaoore confined in the meridional
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direction. Also, note the meridional asymmetry of the Giedmnnction between either side gf
wheny' is placed away from the equator. Therefore, we expect thdeyarklls to reflect this

asymmetry when the ITCZ is placed off of the equator.

—4000 —2000 0 2000 4000

FIG. 2.4. Green’s function&,,(y,y’) for y/ = —1500, —750, 0, 750, 1500 km and
for m = 0 (top panel),n = 1 (middle panel), andn = 2 (bottom panel). These
curves have been computed from (2.39). Note that, becauee 6f, factors in
(2.39), the Green'’s functions become more confined as thiealemode indexn
becomes larger.

To express the solutiodm(y,t) in terms of the Green’s function, we multiply (2.28) by

G (y,y'), multiply (2.33) byz/?m(y,t), and then take the difference of the resulting equations

to obtain

(2.40)

20



We now integrate (2.40) ovey, apply the boundary conditions (2.29) and (2.34), use thia de
function property (2.35) and the Green'’s function symmetrgperty G,..(v',y) = Gn(y,y),

resulting in (2.42). In summary, the solution of the meridibcirculation problem is

Dy, 2,t) = e PN "y, 1) Zm(2), (2.41)
m=0
where
N *® OF,,(y,t N
Um(y,t) = —bm /_OO #Gm(y,y)dy- (2.42)

The solution for the streamfunction is obtained by first aldting F,,,(v/, t) from (2.31), then
calculatingi), (y, t) from (2.42), and finally calculating(y, z, t) from (2.41). Although this pro-
cedure generally involves the calculation of two integeadd an infinite sum, there are two special
cases where the formulas (2.41)—(2.42) are considerahlyigied. One corresponds to prescribed
diabatic heating in the ITCZ, and the other corresponds ¢s@ibed Ekman pumping at the top
of the boundary layer. Making these prescribed fields stegtfons iny allows for analytical

solutions. These idealized ITCZ forcings are introducethenext two sections.

2.6. DEEP OVERTURNING CIRCULATIONS

Now consider the response to a constant forcing that pomdly onto the first internal mode

and is constant in time. We begin by using (2.30), along withassumption of constant, to

write
5 (4.0
Fn(y) = igoﬁg + (W(y) — f]{gm)> Z,.(0), (2.43)
where
Qo) = [ Q212021 + Q.02 (0) (2.44)
g Jo
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We assume tha@(y, z) vanishes everywhere except in the latitudinal rapge: vy < y», where
11 andy, are constants that specify the south and north boundaribe éTCZ. Within the ITCZ,
the diabatic heating is assumed to be independentawid to have a vertical profile proportional
to Z,(z2), i.e.,

QZi(2) if y1 <y < ys
Qy,2) = (2.45)

0 otherwise,

where @ will be given later. In addition, we assume that the vertiealocity at the top of the

boundary layer is given by

~

W(y) = gc %?NO; (2.46)

Since we would like to use the vertical structure of only th&t finternal modeZ; (z) as the vertical
structure of the prescribed diabatic heating and the \&rsitucture of the first internal mode is
nonzero at the top of the boundary layer (Fig. 2), there hhgta nonzerdV atz = 0.

Using these assumptions in (2.43) and (2.44), and then maisgea of the orthonormality rela-

tion (A.2) we obtain

90 1 it m=1and y; <y < yo,

Fn(y) = Ty N?

(2.47)

0 otherwise.

Many tropical regions have more complicated vertical diebheating profiles, such as the
eastern Pacific, where heating profiles are more “bottomyievan the Z, (z) profile, as illus-
trated in the studies of Wu et al. (2000), Wang and Magnusd2@05), Zhang and Hagos (2009),
Takayabu et al. (2010), and Ling and Zhang (2013). Due to thesassumption that the diabatic

heating is deep and made up of only the first internal mode lisraeant to represent one aspect
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of heating in the tropical atmosphere, and it is the simpiase since it can be represented using
only one vertical mode.

Use of (2.47) in (2.42) now yields

: / ~oh) Gi(y,y') dy’

P1(y) = — b oy

Y1+ aFl (y/)

oy’ dy’

=—0b Gl(@/,yl)/

Yyi—

Y2+ aF / ,
—b Gl(y,yz)/ alé;y) dy

Yy2—

(2.48)

———= [G1(y,12) — G1(y,11)] ,

where the final line in (2.48) follows from the fact that thernosv integral across) = y; is
[9Q/(c,ToN?)], while the narrow integral across = ¥, is —[9Q/(c,ToN?)]. Use of (2.48) in
(2.41), yields the final solution

95162

—z/2H .
 ToN2° Z1(2) [G1(y, y2) — Gy, )], (2.49)

Y(y,2) =

where the Green’s functiors; (v, y;) andG(y, y») are given in (2.39). Equation (2.49) is quite
powerful. It states that only two Green’s functions are reekid order to understand the meridional
structure of the deep Hadley circulatiots; (v, y») gives the meridional structure of the stream-
function attributed to the jump in the diabatic heating atiibrth edge of the ITCZ, whil& (y, 1)

gives the meridional structure of the streamfunction ladiied to the jump in the diabatic heating
at the south edge of the ITCZ. All of the information about ii@nal asymmetries between the

winter and summer deep Hadley cells is contained in theseGwen’s functions. The solution
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(2.49) can also be written in the form

_ 9@ —z/2H
0. = iz
[D_1/2(y2/b1) — D_1/2(y1/b1)]D_1/2(—y/b1) if —oco<y<uy,
(2.50)

XY D-1/2(y2/b1)D_1/2(—y/b1) — D_12(—y1/b1)D_1/2(y/b1) it y1 <y <uys,

[D_1/2(=y2/b1) — D_1/2(—y1/b1)]D_1/2(y/b1) if yo <y <oo.

\

With these assumptions, tH8Q /dy)-term on the right hand side of (2.15) vanishes every-
where except along the edges of the ITCZ, where it becomestaifi large over an infinites-
imally thin layer. Thus, the circulation in th@, z)-plane consists of a counterclockwise over-
turning cell on the southern edge of the ITCZ and a clockwigertarning cell in the northern
edge of the ITCZ looking from east to west. Figure 2.5 shoveséhcirculation cells via iso-
lines of ¢ (y, z) computed from (2.50) using the parametefs= 13 km, N = 1.2 x 1072 s7},
(y1,92) = (0, 500), (500, 1000), (1000, 1500), (1500, 2000) km, and assuming th& = (c,/B;) 5
K day!, whereB; is derived in Appendix B. The cross-equatorial cell, or wintell, is signifi-
cantly stronger than the summer cell, which is limited toshenmer hemisphere. As the ITCZ is
displaced further away from the equator, the meridionahasgtry between the winter and sum-
mer cell increases in Fig. 2.5a)— 2.5c), and decreaseslglighrig. 2.5d). The asymmetry between
the two cells is attributed to the meridional asymmetry @fitiertial stability paramete®y?. The
winter cell is located in a region whef#y? is either zero or close to zero, minimizing the turning
due to the Coriolis force. When the ITCZ is far enough fromeleator, the winter cell is mostly

located off of the equator and can no longer efficiently edt@to the low inertial stability near the
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Fic. 2.5. Contoured streamfunctian(y, z) and shaded)(y, 2)e=*/# /c, fields

for four deep diabatic heating cases: (8),v2) = (0,500) km, b) (y1,42) =
(500, 1000) km, ¢) (y1,%2) = (1000, 1500) km, and d)(y, y2) = (1500,2000) km.
The contour interval for)(y, ) is 400 n¥ s~1, the maximum (magnitude) of(y, 2)

is 2852 nt s7!, and the zero line is of double thickness. Th), 2)e=*/# /c, shade
interval is 0.5 K day!, and the maximum (magnitude) of the diabatic heating is
3.496 K day'.

equator. Therefore, the mass flux of the winter cell begirdettrease. These results are in general

agreement with the numerical model results of Hack et aB9)9
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The meridional asymmetry between the two cells is also appan Fig. 2.6, where 0-3 day
parcel trajectories are computed frarty, z) andw(y, z). The parcel trajectories agree well with
Schubert et al. (1991). The effects of inertial stabilitg also apparent in this figure since parcels
on the northern edge of the ITCZ travel relatively high in tegtical direction and parcels on the
southern edge of the ITCZ travel relatively far in the mesithl direction, even though the diabatic
heating is constant in the ITCZ. Parcels in the southerngdaite ITCZ feel lower inertial stability
than parcels on the northern part of the ITCZ.

The approximate time scale it takes a parcel to complete olheyfcle in either the winter
or summer Hadley cell is two to three months. This time scalatileast an order of magnitude
larger than the time it takes for the Hadley cells to equdlibrto the diabatic heating. Note that the
zonal velocity is much larger than the meridional velocthgrefore by the time a parcel makes
one meridional revolution it will be located at a differepnbitude, possibly having traveled an
entire circle of latitude. Also, calculating such a timelsaaay be a bit more complicated since
combined barotropic and baroclinic instability tends towrcas the zonal winds evolve.

Figure 2.7 shows contours of t1é(y, z) andw(y, z) fields. It is not surprising thab(y, z)
is discontinuous in the meridional direction because tlesgibed diabatic heatir@(y, z) is dis-
continuous in the meridional direction. Althoudh{y, z) is positive and smooth in the meridional
direction, even across the edges of the ITCZremains positive due to diabatic warming asso-
ciated with concentrated rising motion in the ITCZ and aditabwarming associated with broad
subsidence outside of the ITCZ. The smooth nature of the éestyre tendency field agrees with
the idea that temperature gradients are small in the tropitso, notice the slight poleward dis-

placement of the peak thermodynamic response in the ITCZtedsymmetric changes in both
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FiG. 2.6. Parcel trajectories and shadety, z)e=*/# /¢, field (same as Fig. 2.5)
during the first three days for the four deep diabatic heatiilsgplacements men-
tioned in Fig. 5. The arrows indicate the direction of thgetctories inside and
outside of the ITCZ.

Ti(y, z) andw(y, z) as the ITCZ is moved away from the equator. These resulteaged with

past studies, such as Hack et al. (1989) and Lindzen and F&38)1
Figure 2.8 shows contours of théy, =) andw,(y, z) fields. Thev(y, z) field shows low-level

convergence and upper-level divergence in and near the IR0, the asymmetric response of
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FIG. 2.7. Contoured perturbation temperature tendefi¢y, =) and shaded log-
pressure vertical velocity(y, z) for the four deep diabatic heating displacements
mentioned in Fig. 5. Thé&}(y, z) contour interval is 0.2 K day', the maximum
(magnitude)l;(y, z) is 1.257 K day!, and the zero line is of double thickness. The
w(y, z) shade interval is 1 mnT$, and the maximum (magnitude)y, z) is 18.01
mm s,

v(y, z) increases in Fig. 2.8a)—2.8c) and decreases slightly in Ei§d), similar to the)(y, z)
field. The low-levehs(y, z) field illustrates an increase of westerlies from the equitalightly

poleward of the center of the ITCZ and easterlies polewarthefwesterlies. This meridional
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structure of theu, implies a buildup of positive absolute vorticity in the ITGHat satisfies the
necessary condition for combined barotropic and baracimstability. At upper levels, the zonal
velocity increase at a large rate, especially near the edfydee ITCZ. These upper-level zonal
jets can be considered subtropical jets, but are diffefgant jets seen in nature because zonally
asymmetric eddies are neglected here.

Another view of combined barotropic and baroclinic insti#picomes from analyzing the po-

tential vorticity anomaly. The potential vorticity equatiis

dq _gBy (0 1
ot b= o IyN?2 \0z H @ (2.51)
where
_ Ou_ gBy (O 1
1= "oy T T (82 H) g (2.52)

is the potential vorticity anomaly. A reversal of the meoidal gradient of the total potential
vorticity, Sy + ¢, occurs on the poleward side of the ITCZ in the lower trop@sprand on the
equatorward side of the ITCZ in the upper troposphere in Ri§, agreeing well with Schubert
et al. (1991) and Nieto Ferreira and Schubert (1997). Thgsnecessary condition for combined
barotropic-baroclinic instability is satisfied (CharnaydaStern 1962). As the potential vorticity
anomaly increases over time, growth rates of unstable waneealso expected to increase. In this

sense, the ITCZ contains the seeds of its own destruction.

2.7. SHALLOW OVERTURNING CIRCULATIONS

While the direct effects of friction are confined to the boandlayer flow in the lowest kilo-
meter, the inviscid interior is indirectly affected thrdutihe meridional circulation produced by the

upward extension of the Ekman pumping at the top of the bayrldger, as discussed in Holton
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FiG. 2.8. Contoured meridional velocity(y, z) and shaded zonal velocity ten-
dencyu,(y, z) for the four deep diabatic heating displacements mentiamédg.

5. Thewv(y, z) contour interval is 0.4 m, the maximum (magnitude)(y, z) is
2.141 m s, and the zero line is of double thickness. Théy, ») shade interval is
1 m s! per day, and the maximum (magnitude}y, z) is 7.403 m s! per day.

etal. (1971) and Wang and Rui (1990). An estimate of the Ekpoamping at the top of the bound-
ary layer in the ITCZ can be obtained by considering an idedliequatoriab-plane slab model

linearized about a resting basic state of the region bet®86rmPa and 1013 hPa, a region which
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s~! per day, the maximum (magnitude) is 2.9270~° s~! per day, and the zero
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has the log-pressure deptly = H In(1013/900) ~ 1015 m. In this Ekman layer the dynamics

are governed by

3ub

E — ﬂyvb = _kUb, (2'53)
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— + Byu, = —kvy, + Byuy, (2.54)

whereu,(y) anduv,(y) are the height independent slab boundary layer velocitypmrantsk is the
proportionality constant for the surface stregsjs the Ekman pumping at the top of the boundary
layer (z = 0), andu,(y) is the height independent geostrophic zonal velocity, Wisadefined in

terms of the imposed pressure gradient fotegy)/dy, by

Byug, = 3y (2.56)

The first equality in equation (2.55) results from verticalegration of the Boussinesq form of
the continuity equation (2.4). The second equality in eigua2.55) is obtained by first noting
w(y,0,t) = —(1/9)[00(y,0,t)/0t] + W(y,t) at the top of the boundary layer andy, —hg,t) =
—(1/9)[To/T(—hg)][06(y, —hg)/0t] at the surface, since the physical height vertical veldsity
assumed to vanish at= —h . Also, note that < 0 is in the boundary layer and= 0 is the top
of the boundary layer. The difference between these lastréhations, with the assumption that
Ty/T(—hg) =~ 1, yields the second equality in equation (2.55), since warassthe geopotential
tendency is the same at all heights in the boundary layer.

For slowly evolving flows the time derivative terms in (2.%8)d (2.54) can be neglected, and

then the resulting two algebraic equations can be solvebttai

uy(y) = <#%2y2) ug(y), (2.57)
) = (s ) o) 2.58)
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As a typical exampley; = 750 km, yo = 1250 km, u,(y1) = 3.0 m s, u,(y2) = —3.0 m s,
andk = 8.3 x 107% s7!, so that equations (2.57) and (2.58) yield

up(yp) = —2.78ms™ ", wy(y) = —0.78ms™*,
(2.59)

up(yp) = 2.46ms™',  vy(y;) = 1.15ms 1.
Using the values of,,(y;) andw,(y2) given in equation (2.59) and equation (2.55), we obtain the

estimate

1.93ms™!

ave A 101
& 01om ( 500 ki

) ~4mms ! (2.60)

for the average Ekman pumping in the ITCZ. Note that it is geesible to calculate a value of
vertical velocity at the top of the boundary layer due to offv®cesses. For example, the vertical
velocity associated with boundary layer convergence du&Sd gradients can be computed in a
similar manner as done in Stevens et al. (2002) and Back agitié&@ton (2009a).

Based on the above estimate of Ekman pumping, and in ordesotaté the effects of the
upward penetration of Ekman pumping in (2.28), consid&d(pfor the case in Whic@(y, 2)=0

and

Wavo if N <y <y,
W(y) = (2.61)

0 otherwise.
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Use of (2.61) in (2.42) now yields

Q/A)m(y) = — 0 Zn(0) /_OO d)/;}i?jzj)

y1+ Wy ,
yi— Y (2.62)

oWy
b ZnOGnlvove) [ 25 gy
y2— Y

Gn(y,y') dy'

= b Zm (0)Wave [Gm (Y, ¥2) — G (y, 1)) 5

where the final line in (2.62) follows from the fact that thenosv integral acrosy = 1 IS Wae,
while the narrow integral acrogs= 1, is —W.... Use of (2.62) in (2.21), along with (2.14), yields

the final solution

?/)(?J, Z) = Wavee_z/2H Z mem(O)Zm(Z) [Gm(y> y2) - Gm(yv yl)] . (263)

m=0

This equation is a bit more complicated than the formulaqRfdr the deep Hadley circulation,
but still quite insightful. Equation (2.63) states that antmnation of Green’s functions, Rossby
lengths, and eigenfunctions are needed in order to unadersti@ meridional structure of the shal-
low Hadley circulation.

The solution (2.63) can also be written in the form

(Y, 2) = Wavee 7! i b Z (0) 20 (2)

m=0

(

[D—1/2<y2/bm> - D—1/2(yl/bm)]D—1/2<_y/bm) if —oo< Yy < Y1,
(2.64)

X\ D_1/2(y2/bm)D-12(=y/bm) — D_1/2(=y1/bm) D_1/2(y/bm) if y1 <y <y,

[D—1/2(=Y2/bm) — D-1/2(=y1/bm)|D-1/2(y/br) ~ if ya <y < oc.

\
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Using the prescribed Ekman pumping at the top of the bounidgmeyr, the(01V/dy)-term on
the right hand side of (2.18) vanishes everywhere excepigaloe edges of the ITCZ, analogous
to the deep diabatic heating case. Taking the assumed Ekomaergence in the boundary layer
into consideration, the circulation in thg, z)-plane consists of a counterclockwise overturning
cell on the southern edge of the ITCZ and a clockwise oveirigroell on the northern edge of
the ITCZ looking from east to west. Figure 2.10 shows the talb of the circulation cells via
isolines ofy (y, z) computed from (2.59) using the same parameters as for thpedil@eatic heating
caseWae = 4mm s, and(y;,y2) = (0,500), (500, 1000), (1000, 1500), (1500, 2000) km. The
solutions have been computed using a maximum vertical waeer ofm = 500, and only the
region up toz = 3 km is displayed since the solution is negligible above 3 km. The meridional
overturning circulation is strongly trapped just above bloeindary layer because the resistance of
parcels to horizontal motion (i.e., inertial stability)sgynificantly smaller than their resistance to
vertical motion (i.e., static stability). The mass flux oétwinter cell is significantly stronger than
that of the summer cell, just like the deep Hadley circulatid\s the ITCZ is displaced further
away from the equator, the meridional asymmetry betweemvthter and summer cells increases
for all of the displacements due once again to the anisotobflye inertial stability.

In order to see the asymmetric nature of the shallow Hadleulation in more detail, 0-3
day parcel trajectories calculated frarfy, z) andw(y, z) are illustrated in Fig. 2.11 for the three
off-equatorial ITCZ positions{y,, y2) = (500, 1000), (1000, 1500), (1500, 2000) km. For cases
in which the ITCZ touches or straddles the equator (not shothie numerical convergence of the
v(y, z) andw(y, z) fields is slow because the shallow return circulation is sansfly trapped just

above the top of the boundary layer. The approximate timkesctakes a parcel near the top of
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the boundary layer in the ITCZ to cross the equator depenelstigron the displacement of the

ITCZ, butis on the order of seven days in a) to two months in c).
3 L L L 1 L L L 1 L L L L L L 1 L L L 1 L L L

z (km)

z (km)

z (km)

z (km)

0
—-3000 -2000 -—1000 0 1000 2000 3000

y (km)

Fic. 2.10. Contoured streamfunctian(y, z) for the four displacements men-
tioned in Fig. 5. The contour interval is 400°ra~!, the maximum (magnitude)
Y(y, z) is 1723 ni s71, and the zero line is of double thickness. Note: the domain
is0 < z < 3, wherez = 0 is the top of the boundary layer.

Figure 2.12 illustrates contours ef(y, z) for the ITCZ positions: (y;,y2) = (500,1000),

(1000, 1500), (1500,2000) km. There is meridional divergence at the top of the boundkygr
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FIG. 2.11. Parcel trajectories during the first three days fordtEkman pumping
displacements: gy, y2) = (500, 1000) km, b) (y1,y2) = (1000, 1500) km, and c)
(y1,y2) = (1500, 2000) km. Note: the domainis-1 < z < 3, wherez = 0 is the
top of the boundary layer. The arrows indicate the directibthe boundary layer
inflow and associated Ekman pumping.

with maximum meridional winds of 3-7 nt§, which generally agree with Zhang et al. (2004).
Despite these relatively large valuesdiy, z), the response af(y, z) to the Ekman pumping is
relatively weak in the southern hemisphere compared to &ep dHadley circulation, except for
Fig. 2.12a).

The cross-equatorial meridional winds at the top of the lolauy layer may have implications
for moisture transport across the equator, as mentioneatin Bhang et al. (2004) and Nolan
et al. (2007). As the ITCZ migrates closer to the equatonrduecember—February in the eastern

Pacific, the cross-equatorial winds at the top of the bount#ser increase in the winter cell of
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FIG. 2.12. Contoured meridional velocity(y, z) for the three Ekman pumping
displacements mentioned in Fig. 11. Thi, z) contour interval is 0.4 ms,
the maximum (magnitude)(y, z) is 7.922 m s', and the zero line is of double
thickness. Note: the domainis< z < 3, wherez = 0 is the top of the boundary
layer.

the shallow Hadley circulation. These cross-equatorialdsiadvect moisture across the equator,
and along with warmer SSTs south of the equator, may helptimgeup favorable conditions for
an ITCZ south of the equator. Therefore, a double ITCZ is niikedy to been seen during the
months after the ITCZ is close but strictly north of the eguafs the ITCZ north of the equator
begins to migrate poleward again, the cross-equatoriadisvat the top of the boundary layer and
SSTs south of the equator decrease, leading to less faeorahtitions for an ITCZ south of the

equator.
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In Fig. 2.13, the vertical log-pressure velocityy, ) is contoured for the three ITCZ positions:
(y1,y2) = (500, 1000), (1000, 1500), (1500, 2000) km. There is rising motion in and near the ITCZ
up toz ~ 2 km, and weak sinking motion away from the ITCZ. As the ITCZ isptaced farther
away from the equator, parcels are pumped to higher levalgalthe increase in inertial stability
going toward the pole. Also, note that thig(y, z) field has the same structure asy, =), but
with opposite signs (not shown). There is adiabatic cooliferew(y, z) > 0 and adiabatic
warming wherew(y, z) < 0, with a maximum perturbation temperature tendency at tpeofo
the ITCZ boundary layer. This result agrees with the theaosynfNolan et al. (2007) that shallow
overturning circulations are associated with a reversaheftemperature gradient between the
ITCZ and away from the ITCZ at the top of the boundary layer.

Observations (Zhang et al. 2004) and numerical modelindiessuNolan et al. 2007, 2010)
tend to show that there are distinct multi-level flows in ti€E associated with deep and shallow
circulations. Therefore we decided to show thgy, z) solution when both forcings are present
(Fig. 2.14). Both the deep and shallow Hadley circulatioespmesent, especially when the ITCZ
is close to equator. Taking the assumed boundary layer agenee into consideration, the di-
vergence just above the top of the boundary layer along vativergence until about the middle
troposphere and divergence at upper-levels is in generakagent with the studies mentioned

above.

2.8. ASYMMETRICAL NATURE OF THEHADLEY CIRCULATION

The meridional asymmetry of the winter and summer cells ithhéadley circulations so far
has only been discussed when the ITCZ is 500 km wide. A conipanula can be derived of the
fractional asymmetry between the two cells for ITCZs of angit. The maximum mass flux of

the winter cell occurs a = y; and the maximum mass flux of the summer cell occurg aty,
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FIG. 2.13. Contoured vertical log-pressure veloaityy, ) for the three Ekman
pumping displacements mentioned in Fig. 11. e, z) contour interval is 0.5
mm s!, the maximum (magnitude)(y, z) is 3.774 mm s?, and the zero line is of
double thickness. Note: there is a discontinuityii{z = 0) aty = y; andy = ys,
and the domain i8 < z < 3, wherez = 0 is the top of the boundary layer.

when the ITCZ is north of the equator. Therefore, the frawianass flux in the summer Hadley

cell as a function of vertical wavenumberis

Y (y2) ) Dop(ye/bn) [Dorjp(=y2/bm) — Doyja(=y1/bm) -1
G (y2) = V(1) - {1 D_1jo(=y1/bm) [ D-1/2(y2/bm) — D-1/2(y1/bim) } } - (269
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FIG. 2.14. Contoured streamfunctiany, z) of both Ekman pumping and deep
diabatic heating for the four displacements mentioned ¢n bi The contour inter-
val of (y, 2) is 400 nt s71, the maximum (magnitude)(y, ) is 2808 n s~*, and
the zero line is of double thickness. The arrow heads inditte¢ general direction

of the flow field.

and the fractional mass flux in the winter Hadley cell as a fimmoof vertical wavenumber is

_Tﬁm (y})

_ )y Doap0/bn) [ Dorpa(y2/bn) = D-1/2(y1/0m) B
(1) {1 D_1/5(y2/bm) | D—1j2(—ya/bm) — D_l/g(—yl/bm)]} . (2.66)
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Now consider the limiting case whe(g, — 1) — 0, butQ — oo in such a way thaf)(y, —

y1) = constant. Equation (2.50) reduces to

Dl—l/z(yl/bl)D—lﬂ(_y/bl) if —oco<y<u

o 9@(92 ) —z/2H
vins) = s e AE) (2.67)

D’ (=1 /br)D_1pa(y/br) if y1 <y < oo,
whereD’ , ,(x) = dD_1p2(x)/dx and D’ , ,(—x) = dD_12(—x)/dz. Note thaty(y, z) is dis-
continuous ay = y;. With the aid of (2.38), the fractional mass flux in the sumimemisphere

cell as a function of vertical wavenumberfor an infinitesimally thin ITCZ is

P +
(Summer Cell) = 7 (ylf;n(_yi&) ) :%D/_l/z(_yl/bm)D_1/2<y1/bm)7 (2.68)

and the fractional mass flux in the winter hemisphere cell fasetion of vertical wavenumber.
for an infinitesimally thin ITCZ is

1
inter == > = ——=D" 1 5(y1/bm) D_1/2(—y1/bm). 2.69
<W te Cell)m I — o (57 /2 /(yl/ )D_1/2(=Yy1/bm) ( )

Plots of (2.65), (2.66), (2.68), and (2.69) are shown in Big5 form = 0, 1,2 and for the four
ITCZ widths: (y2 — y1) — 0, (y2 — 1) = 500, 1000, 2000 km. For example, whem = 1, the
winter cell carries approximately 2—4 times the mass fluxhef summer cell, increasing as the
width of the ITCZ increases. This result is in close agreemdth the numerical calculations
of Hack et al. (1989) and Hack and Schubert (1990). nAfncreases, the asymmetry between
the winter and summer cells also increases. Complicatetinigestructures force higher vertical
modes, therefore we expect there to be larger asymmetrtesbe the winter and summer cells

compared to the typicah = 1 mode. Both the width and vertical structure of diabatic megin
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the ITCZ help explain the large observed asymmetries betwezzonally and monthly averaged
Hadley cells.

Now consider the fractional mass flux for Ekman pumping in ER€Z in the absence of
diabatic heating. The fractional mass flux in the shallows@nHadley cell for an infinitesimally

thin ITCZ is

Summer Cell = vy, 2) — 2 =0 bmZm(0)Zm(2) D /— o(=Y1/bm)D—-1/2(y1/bi)
Y(yi',2) —lyr, 2) S b Zin(0)Z(2) ’

(2.70)

and the fractional mass flux in the shallow winter Hadley faallan infinitesimally thin ITCZ is

(y1/bm)D 1/2(_y1/bm).

Winter Cell = = — 0Z.(2)

¢(yf_7z) —¢(y1_72) Z

U(yr, 2) D m=0bmZm(0)Zm(2) D,
0 bmZm

(2.71)

Plots of (2.70) and (2.71) at= 0 are shown in Fig. 2.16. The maximum asymmetry between
the winter and summer shallow Hadley cells occurs relativat from the equator (2800-2900
km). This result is surprising since the shallow Hadley diation was expected to be made up
of many high vertical wavenumbers, which decrease in egahfRossby length as: increases.
Below the total solution in Fig. 2.16, the contributions e in = 0, 1,2 modes are illustrated,
and they show that the majority of the solution is compriskthe externaln = 0 mode solution
(more than 95% of the total solution). The external mode ¢dndlay a large role in solutions at
the lower boundary, as discussed in Fulton (1980).

It is also interesting to note that asincreases, the contributions from highermodes in-
creases, therefore the maximum asymmetry between thenaimtesummer cells changes in mag-
nitude and location as a function of The location of maximum asymmetry between the winter

and summer cells seems to depend highly on the dominantakenibrmal modes in the ITCZ so
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FIG. 2.15. Percentage of the total mass flux carried by the sunmemisphere
Hadley cell (red curves) and the winter hemisphere Hadl#yldee curves) forced
by diabatic heating for four ITCZ widths: infinitesimallyith(ys — y1) — 0, (y2 —
y1) = 500, 1000, 2000 km. Three vertical modes are shown,= 0, 1, 2.

that as vertical wavenumber increases, the solutions becoare confined in the meridional di-
rection (refer to the Green'’s function). The change in asgtmybetween the winter and summer
shallow Hadley cells as the ITCZ widens is not shown sincer¢iselts are consistent with the
results for the diabatic heating. In fact, the ideas of asgtnyrare quite similar for both the deep
and shallow Hadley circulations. The main difference lreshieir spectrum of equatorial Rossby

lengths.
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FIG. 2.16. Percentage of the total mass flux carried by the sunmemisphere
Hadley cell (red curves) and the winter hemisphere Hadl#yldee curves) forced
by Ekman pumping at the top of the boundary layer for an irégiihally thin ITCZ.
The four panels signify: a) total solution, b) contributimom them = 0 mode, c)
contribution from then = 1 mode, and d) contribution from the = 2 mode.

2.9. CONCLUDING REMARKS

In this study, the effects of diabatic heating and Ekman pgamp the ITCZ were explored
using an idealized model on the equatorigblane. The analysis used a linear zonally symmetric
model of the inviscid interior of the tropical atmospherected by two prescribed forcings in the

ITCZ: i) deep diabatic heating and ii) Ekman pumping at theedbthe boundary layer. The results
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demonstrate that deep diabatic heating in the ITCZ forcesegp averturning circulation in the

absence of Ekman pumping, which we call the deep Hadleylaiion. When Ekman pumping at
the top of the boundary layer is present, there is a shall@vtokning circulation, with divergence
at the top of the boundary layer up to about 2 km above the tappetboundary layer, which

we refer to as the shallow Hadley circulation. Both forcinlfisstrate an increase in asymmetry
between the winter and summer Hadley cells until the ITCZspldced at a particular distance
away from the equator. This distance depends on the domweatntal normal modes in the ITCZ

so that as vertical wavenumber increases, the solutionsnbeenore confined in the meridional
direction.

The solution method described in section 3 begins with acaransform that involves solv-
ing the Sturm-Liouville problem, with a nonzero lower boangl condition, and then solves the
horizontal structure equation (2.28) using Green'’s fuortsince it obeys an equation similar to
the field. The fields that force the response in the ITCZ using dealized equatoriab-plane
model are the meridional structure of the diabatic heatimgj the Ekman pumping at the top of
the boundary layer, while the inertial stability and statiability are shaping parameters. Since
the static stability is constant in the solutions presetiee, the spatial variability of the inertial
stability 3%y? plays the most important role in the asymmetry between thgeriand summer
Hadley cells. A physical interpretation is that fluid pascé&rced near the equator by diabatic
and frictional processes tend to move much more easily irhtrezontal direction because the
resistance to horizontal motion (i.e., inertial stabjlity significantly smaller than the resistance
to vertical motion (i.e., static stability). The asymmesiinherent in both the deep and shallow
Hadley circulations were also explored for different ITCHths. The results indicate that as the

ITCZ becomes wider, the asymmetry increases, agreeingwitsliHack and Schubert (1990). A
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new finding is that as the vertical structure of the forcingdraes more complicated (as vertical
wavenumber increases), the asymmetry increases as wedl.a3ymmetries between the winter
and summer shallow Hadley cellsat= 0 that this model produces have somewhat of a different
structure than expected since the majority of the solusaomprised of the external = 0 verti-

cal mode solution. In a model where the boundary layer isieitiglsimulated, the shallow Hadley
solution may look slightly different because it may havergda percentage of contributions from
higher internal vertical modes.

Future research on the topic of deep and shallow overturairogllations should explore a
model that is able to produce solutions of both the boundaygrl and the inviscid interior and
should explore the role of higher internal modes. Such a iinsitleuld also explore the role of
combined barotropic and baroclinic instability as well las &ffect of the basic state fields on the
shallow Hadley circulation. The idealized model used i3 8tudy suffers from not being able to
explore such aspects. The understanding of the ITCZ in teeeaPacific involves ITCZ break-
down and diabatic heating dominates the monthly averagdign| leading to deep overturning
circulations. The time period between ITCZ breakdown aridrneation is influenced by bound-
ary layer processes, and most likely, shallow overturniingutations. It is still unclear whether
shallow overturning circulations are due mostly to shalttiabatic heating or boundary layer ef-
fects such as Ekman pumping or vertical motion due to SSTigmésl Therefore, the prevalence
of shallow precipitating profiles and their contributiongballow overturning circulations should

also be explored.
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CHAPTER 3

Deep and Shallow Vertical Motions in the Tropical Easterniffain the YOTC reanalysis

3.1. SYNOPSIS

This chapter analyzes the vertical structure of the vdrticessure velocity fieldy, in the trop-
ical eastern Pacific Ocean (80-150W) using the Year of Tropical Convection (YOTC) reanal-
ysis. YOTC provides a great opportunity to investigate icapfeatures at high spatial resolutions
because of increased satellite coverage, especially beetropical oceans, where the transient
dynamics are not well understood. Also, both modest La Netober 2008—April 2009) and
El Niflo (May 2009—April 2010) conditions were observed i@ ¥C. My analyses focus on sea-
sonal changes i while retaining the 6 hourly temporal variability of the YQTields. The most
striking feature was the zonally-oriented narrow line o&lsbw vertical motions in the Intertrop-
ical Convergence Zone (ITCZ), especially in the '5150W region. However, this region did
experience some deepening during the summer El Nifio marfthMay—October 2009. Vertical
motions in the 8OW-115W eastern Pacific were generally dominated by deep verticaioms,
especially in May—October in both 2008 and 2009. During ¢r@smmer months, deeper rising
motions seem to correspond with warmer sea surface tenypesain line with past studies. The
months of November—January of both years highlight theawgrshallow vertical motions asso-
ciated with the ITCZ and activity to the north and south, vehieiis believed that Tropical Upper
Tropospheric Troughs (TUTTs) and the South Pacific Converge&Zone (SPCZ) provide deeper
vertical motions north of the ITCZ and in the southern hemeésp, respectively. Finally, the

months of February—April exhibit significant differencesan the equator, where February—April
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2009 illustrated a double shallow ITCZ structure while ketsy—April 2010 had a single ITCZ

just north of the equator with both shallow and deep risingiomns.

3.2. INTRODUCTION

Tropical diabatic heating profiles and their associategdeascale circulations have been inves-
tigated by many studies, such as the pioneering work of Yanal. (1973). It was assumed for
some time that deep convective diabatic heating profileleofitst baroclinic mode dominated the
tropical atmosphere. As observations of diabatic heatmglps in different tropical regions have
increased it has become apparent that other precipitatattic heating profiles, such as shallow
convective and stratiform profiles are also prevalent. A felevant studies that investigate the
variability of circulations associated with shallow, deapd stratiform diabatic heating are Schu-
macher et al. (2004), Zhang and Hagos (2009), Hagos et dl0j20akayabu et al. (2010), Ling
and Zhang (2013), and Yokoyama et al. (2014). It is likelyt th@pical regions where sea surface
temperatures (SSTs) are relatively cool may be less fal@fabdeep convective diabatic heating
profiles since convection relies on the contrast of lowepdspheric temperatures with upper tro-
pospheric temperatures to first order through ideas of nstasic energy (Neelin and Held 1987).
There has also been evidence that regions with large SSTegtadend to have relatively shal-
low vertical motions because of larger boundary layer cogerece (Back and Bretherton 2006,
2009a,b; Nolan et al. 2007). Gonzalez and Mora Rojas (20L4jrated that shallow vertical mo-
tions can be attributed to Ekman pumping at the top of boynldaer not being able to penetrate
deep into the free troposphere of the Intertropical Cormecg Zone (ITCZ).

The goal of this chapter is to further look into the spatiatiafaility of vertical motions in
the eastern Pacific region using the Year of Tropical ComvediYOTC) reanalysis since it has

both high horizontal and vertical resolution. Previousdgts tend to take monthly or seasonal
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averages while we will retain the full temporal variability the YOTC fields. Also, McNoldy
et al. (2004) suggest that the European Centre for Mediung&&\Veather Forecasts (ECMWF)
reanalysis products are superior in the eastern Pacific.

This chapter is organized in the following way. Section 3e3atibes the YOTC reanalysis
fields to be analyzed while section 3.4 shows seasonal pfatseovertical motion, SSTs, and

diabatic heating. Concluding remarks are made in section 3.

3.3. DatA

YOTC is a global reanalysis product spanning the time peoiolllay 2008—April 2010 that
uses four-dimensional variational data assimilation atr&zbntal resolution of 0.25 degrees (T799),
with 91 hybrid vertical levels. It is similar to the ECMWF R&alysis (ERA-Interim) with a num-
ber of additional observations using satellite data, in-data, and a new high resolution modeling
framework. Just like ERA-Interim, the fields are produceergsix hours, at0Z, 62,127, and 18Z.
In this chapter, we analyze the vertical pressure veloatd fi, SSTs, and diabatic heatiigy /¢,
fields at a horizontal resolution of 0.125 degrees. THeeld was interpolated from all hybrid ver-
tical levels at or below 100 hPa to pressure levels using BARI Command Language function
vinth2p while the diabatic heating was only available at fiéspure levels below 100 hPa. Since
YOTC does not explicitly provide the diabatic heating fietdyas computed using the individual
terms that make up the diabatic heating using the equétios Qcony + Qcloud + @rad + Qturh,
whereQ..., IS the temperature tendency from deep and shallow convecfig,.q is the temper-
ature tendency from the cloud schemg,, is the temperature tendency from radiation, anhg,

is the temperature tendency from turbulent diffusion artatgud orography.
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3.4. RESULTS

In order to better understand the variability of verticaltioos in the tropical eastern (80/—
150°'W) Pacific, vertical profiles ofv were divided into shallow and deep rising motions €
0). This was done by defining the lower troposphere as the lagkaw 650 hPa and the upper
troposphere as the layer including 650 hPa until 100 hPa. [g¢ewsed 600 and 700 hPa as the
level separating the upper and lower troposphere and dige®tqualitatively different results.
The absolute maximum of the lower troposphere was takeneagdminant shallow profile and
the absolute maximum of the upper troposphere was takereagothinant deep profile. If the
vertical profile ofw had maxima in both the lower and upper troposphere, the egith the
stronger vertical motion was selected. Also, the absolwgimum in rising motion in each layer
was required to be above a threshold of 2 hPa hwhich helps eliminate weak cases.

Figure 3.1 shows a map of the percentage of the time the agptiofile ofw was dominated by
either shallow or deep vertical motions along with SSTs far ¢ntire YOTC period, May 2008—
April 2010. Itis interesting to note that shallow verticabtions are relatively latitudinally narrow
and do not extend far away from the equator (top panel). Alsere is a relative minimum near
the equator in the shallow regime, which is related to the equatorial cold tongue. Desfical
motions, shown in the bottom panel of Fig. 3.1, are most peewanorth of shallow vertical
motions and are much broader in latitudinal extent. Theaesi$or these features will be explored
in more detail below, where we analyze individual seasons.

Note that there were modest La Nina and EIl Niflo conditiominduthe YOTC period, which
may account for many of the features shown in the analysesicplar seasons. Figure 3.2
shows the Nifio 1+2 (8@V—-90°W, 0-10°S) and Nifo 3 region (9IW-150W, 5°S-5°N) indices

using version 3 of the Extended Reconstructed Sea Surfanpdrature (ERSST) dataset (Smith
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FiGc. 3.1. Percentage (%) of the output times during the entird @@eriod (May
2008—April 2010) that were dominated by either shallow oemleising motions
above a threshold of 2 hPatrin the shading and SST fieldQ®) in the contours.
The SST contour interval is ZC.

et al. 2008) and SSTs from the YOTC reanalysis. The basegasged to compute anomalies is
1981-2010, where SSTs from ERSST are used as the ERSST bagkbgrel ERA-Interim SSTs
are used as the base period of the YOTC anomalies. The YOTalyesis seems to replicate
the conditions seen in ERSST quite well, with some discrelggn(more La Nina-like in YOTC)
during May and June 2008 in the ER Nifio 3 region, and Februgpyil 2010 in the ER Nifio 1+2

region.
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El Nino regions during YOTC
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FIiG. 3.2. SST anomalieSC) from the Extended Reconstructed Sea Surface Tem-
perature (ERSST) dataset version 3 (Smith et al. 2008), &@@CY during May
2008—April 2010 for the Nifo 1+2 (89V—9C°W, 0-10°S) and Nifio 3 region
(90°W-150W, 5°S-5’N). The base period used to compute anomalies from is 1981-
2010, where SSTs from ERSST are used for the ERSST base martb&RA-
Interim SSTs are used as the base period of YOTC anomalies.

Figures 3.3 and 3.4 illustrate the percentage of the timeehtcal profile ofw was dominated
by either shallow or deep rising motions along with isoliméghe SST field during May—July
2008 and August—October 2008, respectively. Tha/BaL15W region was dominated by deep

vertical motions covering a broad area while the M/5150W region was dominated by shallow
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and latitudinally concentrated vertical motions whichrege resemble a thin ITCZ. It is not sur-
prising that vertical motions in the eastern Pacific aredgijty deeper since the SSTs are warmer,
as discussed by Neelin and Held (1987). Also, there is tylgicaore tropical cyclone activity
in this part of the eastern Pacific and 2008 had the most allioreh American monsoon since
1941 (Waliser and Coauthors 2012). The North American monsgpically occurs during June—
September and impacts not only the American west coastsl$uitlze eastern Pacific through
westward propagating disturbances (Higgins and Coau2@d6; Mapes et al. 2003).

May 2008—Jul 2008
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150W 120W 90w

Fic. 3.3. Percentage (%) of the output times during May—July820@t were
dominated by either shallow or deep rising motions aboveestiold of 2 hPa hrt
in the shading and SST field@) in the contours. The SST contour interval iS2

54



Aug 2008—-0ct 2008
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Fic. 3.4. Percentage (%) of the output times during August—mt@008 that
were dominated by either shallow or deep rising motions alaothreshold of 2 hPa
hr-! in the shading and SST fieldQ) in the contours. The SST contour interval is
2°C.

During May—October of 2009, there were deeper vertical onsj especially in the 128/~
150°W region, as shown in Figures 3.5 for August—October 2009s Triftrease in coverage of
deep rising motions is most likely due to the strong El NiBaditions in both the Nifio 1+2 and 3

regions, as shown in Figure 3.2.
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FIG. 3.5. Same as Fig. 3.4, but for August—October 2009.

Figure 3.6 shows a map of the percentage of the time the aepiofile of w was dominated
by either shallow or deep vertical motions along with comtiimes of the SST field during No-
vember 2008-January 2009. There are three regions of sttetlge ITCZ region just north of
the equator, the tropical to subtropical transition regmanth of the ITCZ, and the South Pacific
Convergence Zone (SPCZ). The ITCZ region was once againladefhed, thin band of shallow
vertical motion. In fact, shallow rising motions occur ab8¢4 of the YOTC output times in the

90°W-110W region during November 2008—January 2009. To try and stded why there is
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such prevalent and latitudinally confined shallow motiorhis region during these months, we

take a look at the diabatic heating field.

Nov 2008—Jan 2009
Shallow

20N

208

20N

150W 120W 90w

FiGc. 3.6. Percentage (%) of the output times during Novembe820@nuary 2009
that were dominated by either shallow or deep rising motetmsve a threshold of
2 hPa hr! in the shading and SST field®) in the contours. The SST contour
interval is 2°C.

Figure 3.7 shows the area-averageand diabatic heating /¢, over the ocean in two regions:
0°-1C0°N, 80°*W-115 (left panels), andB-10°N, 1153W-150 (right panels) during January 2009.
A daily running mean filter was applied to both fields to reméwve diurnal cycle. The vertical

profile ofw and@); /¢, are typically shallow in both regions and are often weak ignitude (e.g.,
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Q1/c, < 2K day™'). There seems to be a good correlation between the two fields/t650 hPa,

suggesting that shallow vertical motions in YOTC are pdgsilue to shallow diabatic heating.
However, since the diabatic heating is often weak, it is a@jsibe possible that other adiabatic
processes might be important as well. For example, verticgion at the top of the boundary layer
associated with Ekman convergence and meridional SSTegredinay help describe why vertical
motions are shallow, as discussed in Gonzalez and Mora R2(ds!l) and Back and Bretherton

(2009b).
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Fic. 3.7. January 2009 area averaged vertical motian fPa h!) in the top
panels and diabatic heating fiel@{(/c,, K d~') in the bottom panels. All plots
were averaged over@dlO°N and only over the ocean, and the left panels were also
averaged over 1P5V-150W while the right panels were averaged over\86-
115°W. Note: The contour intervals are 1 hPalland 1 K d!.

Returning to Figure 3.6, the region north of the ITCZ (1WWB-150W) experiences deep verti-

cal motions that are likely associated with Tropical Uppespbspheric Troughs (TUTTS) during
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November 2008—January 2009. These events occur duringldfatie-spring and typically last a
few days to a week and involve significant interaction betwibe tropics and subtropics (Webster
and Holton 1982). In fact, Masarik and Schubert (2013) ubedviOTC reanalysis to document
a moderate TUTT during January 2009 (their Fig. 2). The SP@Z also a prominent feature
during November 2008—-January 2009 in the AMB8150W region. Many global models tend
to overproduce a double ITCZ in the eastern Pacific as a zoaklhgated SPCZ (Mechoso and
Coauthors 1995), but the YOTC reanalysis does not seem toiglo t

The resulting deep vs. shallow plot for November—January 2010 is not shown since these
months agree well with those of 2009, except with a slightaase in deep vertical motions. Once
again, it is likely that the modest El Nifio conditions pldyeerole during these months.

During February—April 2009 and 2010 vertical profileswfand SST differed significantly
over the eastern Pacific attributed to the effects of the 2@0Blifha and 2010 EIl Niio, as shown
in Figures 3.8 and 3.9. February—April 2009 had a double I'8Bdcture dominated mainly by
shallow vertical motions while 2010 was dominated by anyaofashallow and deep vertical mo-
tions in the form of a single, near-equatorial ITCZ. Thesautes agree with Lietzke et al. (2001),
who suggested that the double ITCZ in the eastern Pacific & prominent during La Nifla years
since the equatorial cold tongue is present, whereas handaEl Nifio years exhibit a single
ITCZ slightly on or north of the equator. The region northleétiTCZ once again exhibited deep
vertical motions in February—April of both years most likelssociated with TUTT activity. Also,
the region southwest of the ITCZ was dominated by an arrahatt@v and deep vertical motions

during both February—April of 2009 and 2010, likely asstaiiwith activity in the SPCZ.
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Feb 2009—Apr 2009
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FiG. 3.8. Percentage (%) of the output times during Februaryt-2p09 that were
dominated by either shallow or deep rising motions aboveestiold of 2 hPa hrt
in the shading and SST field@) in the contours. The SST contour interval i%2

3.5. CONCLUDING REMARKS

We analyzed vertical profiles of the vertical pressure &ypce, during the YOTC reanalysis
of May 2008—April 2010 in the tropical eastern Pacific (868-150W). We defined the vertical
motions as being dominated by a shallow (up to 650 hPa) or deak (650 hPa to 100 hPa).
During May—October of 2008, the 80/~115W region of the eastern Pacific was dominated by

deepw profiles covering a broad area while the 1\06-150W region was dominated by shallower,
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Feb 2010—Apr 2010
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Fic. 3.9. Same as Fig. 3.8, but for February—April 2010.

more latitudinally confined ITCZ-like vertical motions. Meal motions deepened the next year
during these months, especially in the 15-150W region. However, deep rising motion is still
more prevalent in the 8OV-115W region. A possible explanation for this is that’83-115W
tends to be affected more by convection propagating wedtfsam the North American monsoon
and tropical cyclones.

From October—January of both years of YOTC, the easterffiP&ECZ is strongly dominated

by shalloww profiles. We analyzed the diabatic heating field during thesaths and find that
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diabatic heating was shallower and relatively weak in magig, which agrees with the cooler
SSTs. It seems that the diabatic heating field qualitatiagiyees with the shallow vertical mo-
tions. Also, with the lack of significant diabatic heatingjabatic processes might be important
for understanding the vertical motion field. It is possitilattEkman pumping at the top of the
boundary layer cannot penetrate very deep into the freegyuipere in the absence of significant
diabatic heating. Also, these months may also show theteftédactivity in the form of TUTTs
and the SPCZ. TUTTSs typically account for deep vertical madiwhile the SPCZ can be deep or
shallow.

During February—April 2009 shallow profiles dominated ie iiCZ region, while there were
an array of shallow and deep profiles during February—April 2010 in the ITCZ. Rising mati
was usually north of the equator, except during La Nifa @k in 2009 when a double ITCZ
structure was prominent. Once again, TUTTs account for degjical motions northwest of the
ITCZ while the SPCZ account for an array of vertical motioosth of the equator.

We believe that the YOTC reanalysis has provided an oppibyttm analyze fields such as
at a high resolution for two contrasting years in a region hanvection and circulations are
sensitive to the background conditions. Future work shaaldcentrate on variability of large-
scale convection and circulations on smaller scales toimeatmproving our understanding of

transient convection and circulations in the tropics.
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CHAPTER 4

Transient Hadley Circulations

4.1. SYNOPSIS

This chapter examines the transient dynamics of largeeseainally symmetric overturning
circulations in the tropical troposphere. The dynamicsdiseussed in the context of idealized
analytical solutions of the meridional circulation eqoatiarising in an equatorial-plane model
of the Hadley circulation. This partial differential eqigat for the meridional circulation can be
solved by first performing a vertical transform to obtain aaféhorizontal structure equations, and
then performing a horizontal Hermite transform to obtaietos second order ordinary differential
equations in time. The solutions of these ordinary difféie#requations contain terms for the
slow, quasi-balanced part of the response and terms fordhsiént, zonally symmetric, inertia-
gravity wave part of the response. When the ITCZ is locatédhef equator, both parts of the
response reveal a basic asymmetry between the winter ansheuhemispheres, with the winter
hemisphere side containing most of the quasi-balanced ensaping subsidence and most of the
transient inertia-gravity wave activity. Also, the inergravity waves travel in packets, causing the
Hadley cells to pulsate on timescales of about 1, 2, and 3fdaykabatic heating of the external,
first internal, and second internal modes. These basic dyahaspects of the Hadley circulation
are revealed in the upper tropospheric water vapor pattssrved by the 6.4m water vapor

channels on the GOES satellites over the Atlantic and eaB&xcific.
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4.2. INTRODUCTION

Figure 4.1 shows a typical, boreal summer G water vapor image of the eastern Pacific
from the GOES West satellite. Under clear sky conditions,&tY um channel is sensitive to the
vertically averaged humidity in the 200-500 hPa layer, sodark blue areas on either side of the
ITCZ indicate regions of low humidity in the upper tropospfhieand hence regions of enhanced
subsidence in the downward branches of the summer hemegphedrwinter hemisphere Hadley
cells. The complete explanation of atmospheric water vdstributions can be quite complicated
and involve several different physical processes, suchastretching and folding processes as-
sociated with the Rossby wave pattern just east of Hawaiignre 4.1. For detailed discussions
of tropical moisture distributions, including trajectaapalysis and the concept of “time since last
condensation,” see Sun and Lindzen (1993), Soden and F&)188lathé and Hartmann (1997),
Pierrehumbert (1998), Pierrehumbert and Roca (1998),v@&ile et al. (2005), Sherwood et al.
(2006), Cau et al. (2007), and Schreck et al. (2013). In gdithe intricacies involved in com-
prehensive explanations of tropical water vapor distiing, it appears that, during much of the
year, the explanation of the water vapor distribution inélastern Pacific is simpler than in many
other areas. An important part of the explanation lies indyx@amics of the Hadley cells, with the
winter hemisphere Hadley cell having a large meridiona¢ekand a large overturning mass flux.
These are the aspects on which the present chapter shail focu

In the theory presented here, only the flow in the inviscieiior (i.e., above the 900 hPa
isobaric surface) is explicitly considered. The effectthef frictional boundary layer appear as the
lower boundary condition on the inviscid interior. The plerin consists of a partial differential
equation in(y, z, t), with appropriate boundary and initial conditions. Thislplem can be solved

by a variety of methods. The methods used here are analgticiprovide important insights into
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FIG. 4.1. The 06 UTC 25 June 2013 water vapor image (6nj from the GOES
West satellite. This image is typical of the eastern Pacifitng) the boreal summer
when the ITCZ is located near 10—15N. The dark blue areastbereside of the
ITCZ indicate regions of low humidity in the upper troposphieand hence regions
of enhanced subsidence in the downward branches of the sunemésphere and
winter hemisphere Hadley cells. For a detailed discussio®.D m radiance-
to-humidity transformation formulas, see Soden and Brébing(1993, 1996) and
Jackson and Bates (2001).

the dynamics. As described in section 2.4, the first stegwegcapplication of a vertical transform
that converts the original partial differential equatiar(y, z, ) into a system of partial differential
equations in(y,t). In a previous paper (Gonzalez and Mora Rojas 2014), therGréenction

approach (evanescent basis functions) was used to solgéothly forced version of this problem.

This approach yields the most physical insight into the gbaknced meridional flow and the
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fundamental asymmetry between the summer hemisphere amdrvwiemisphere Hadley cells.
As discussed in section 4.5, the present chapter uses timitdeéransform approach (oscillatory
basis functions) to solve this problem for forcing on anyeistale. This approach yields the most
physical insight into the transient aspects of the flow andparticular, how zonally symmetric
inertia-gravity waves can be emitted due to transient cctime in the ITCZ.

The importance of equatorially-trapped inertia-gravitgwes in large-scale dynamics has long
been debated. Traditionally, inertia-gravity waves arer@d out in idealized models, such as
those used in Gill (1980) and Chao (1987). This is due to tbigthent it is difficult to observe these
waves because of their small time and space scales. Howpayts such as Takayabu (1994) and
Haertel and Kiladis (2004) show that inertia-gravity waaes important for tropical dynamics,
and often are coupled to convection. As we will see, this tdraflustrates that equatorially-
trapped inertia-gravity waves are the fundamental reduti®transient zonally symmetric Hadley
circulation. There has been evidence of equatoriallygtegppoceanic inertia-gravity waves in sea
level and surface meridional wind data over the Pacific Ocaarshown in Figure 4.2 (Wunsch
and Gill 1976). It is possible that the tropical atmosphesg/montain a considerable amount of
inertia-gravity wave activity which our present obsergatil systems are not capable of detecting.
Therefore, it is important to try to understand theoreti@sppects of the problem in an idealized
model setting.

In order to gain insight into the dynamics of the deep Hadieyutations, this chapter considers
zonally symmetric motions in a stratified, compressibleadphere on the equatorigiplane. The
limitation to zonally symmetric motions is a strong one, dese it precludes simulation of Walker-
type circulations. However, as we shall see, the zonallyrsgiric model can yield insight into

situations such as the one depicted in Figure 4.1.

66



PERIOD {DAYS)

4 60 302015 10 65543 2 |
10 T T T T T T T

E\ —

-

(@]

T

-~

| ]

d

g |03|___ 397

L&)

N\H .

3 SEA LEVEL

. CANTON |,

(=

(72 ]

[}

> L 7

ja el

L

=

L
| ] L [
10 -
10-4 10-3 10~% 10

FREQUENCY (CYCLES /7 HOUR)

FIG. 4.2. Sea level as a function of frequency and energy defrsity January
1954—-August 4, 1957 at Canton Island$%217TW). The top axis shows the period
(days), and the selected peaks are also denoted in daysth¢oteday peak has an
error bar next to it and Mf is the fortnightly tide. From Wuisand Gill (1976).

This chapter follows up on work from Gonzalez and Mora Rop314), where they exam-
ined some aspects of the dynamics of the deep and shalloweaditulations of the tropical
troposphere. Their results are based on analytical solsitod the meridional circulation equation
derived from the zonally symmetric equations of equatasiplane theory. The forcing terms for
the meridional circulation equation involve diabatic hegtand boundary layer pumping. When
these forcing effects are slowly varying in time, the meoidl circulation equation simplifies to
a second order partial differential equation of elliptip¢y so transient inertia-gravity waves are

filtered and the meridional circulation has no memory of pasting, but is simply diagnostically
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determined from the present forcing. In the following dission we shall relax the assumption that
forcing effects are slowly varying in time, which means ttia meridional circulation equation
has an additional term involving two time derivatives, sattlt changes from an elliptic partial
differential equation to a hyperbolic partial differenteguation.

The chapter is organized in the following way. In section 4h@ primitive equation model is
presented and the associated meridional circulation equest derived. Section 4.4 introduces a
Hermite transform iry that converts the set of equationg(in t) into a set of ordinary differential
equations irt. In sections 4.5 and 4.6, we discuss the deep overturnipgpmnsg associated with
diabatic forcing in the ITCZ. Derivations of inertia-graéyviwave packet properties are shown in

section 4.7. Some concluding remarks are presented iroseti.

4.3. MODEL EQUATIONS

In order to gain insight into the transient aspects of theleladirculation, we consider zonally
symmetric motions in a stratified, compressible atmospberthe equatoriab-plane. The prob-
lem consists of a partial differential equation in the inelegent variable§y, z, t), with appropriate
boundary and initial conditions. This problem can be solgd variety of methods. The methods
used here are analytical and provide important insightstimé dynamics. As described in Chap-
ter 2, we first apply a vertical transform that converts thigiaal partial differential equation in
(y, z,t) into a system of partial differential equations(in ¢) for the horizontal structure of each
vertical mode. As we will discuss in section 4.4, these phdifferential equations are then solved
analytically via a horizontal transform method.

As the vertical coordinate we use= H In(p,/p), wherep, = 900 hPa,7, = 293 K, and
H = RT,/g = 8581 m. We consider the case of weak horizontal flow and weak biaioit},

so that thev(0u/0y) andw(0u/0z) terms in the zonal momentum equation, th{év/dy) and
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w(0v/0z) terms in the meridional momentum equation, anduti#l’/dy) term in the thermody-

namic equation can be neglected. Under these assumpti@governing equations are

ou
5 Byv = 0, (4.1)
ov 0P
o +0yu+ o =0 (4.2)
0o g
5 = TOT’ (4.3)
ov Ow w
e T (4.4)
or + EN%U = Q, (4.5)
ot g p

whereu andv are the zonal and meridional components of veloeitys the log-pressure vertical
velocity, ® is the perturbation geopotentidl, is the perturbation temperaturd? is the square

of the buoyancy frequency (considered for simplicity to beoastant)() is the diabatic heating,
and fy is the Coriolis parameter, witff = 2Q)/a denoting the constant northward gradient of
the Coriolis parameter and with anda denoting the Earth’s rotation rate and radius. We have
already formally derived the second order partial diffei@requation in(y, t) for the streamfunc-
tion v, (y, t) in Chapter 2, therefore we will begin from (2.28)—(2.32),ig¥hare restated below in

a slightly different form as

82, - ( O y2) A OF,

o o2 T Ym, = _ghmﬁ—y’ (4.6)

m

with boundary conditions

~

Um(y,t) — 0 as y — +o0, 4.7)
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and with the initial conditions

Um =0 and 83—?:0 at¢t=0, (4.8)

where the equatorial Rossby length is definedfy= (c,./3)/? andc,, = gh,, are the gravity
wave speeds. The spectra of equivalent depthsquatorial Rossby lengths,, and gravity wave
speeds:,, for m = 0,1,2,3,4 are shown in Table 4.1. Note that thig definition of Rossby
length is convenient when working with Hermite polynomials(z) (or the meridional structure
functionsH™(z)), while theb,, = b,,/+/2 definition of Rossby length is convenient when working
with parabolic cylinder function®,,(x), as in Gonzalez and Mora Rojas (2014). This situation
ruppert@atmos.colostate.edu Show details
arises because the two functions are relatedhyzv/2) = 2-"/2¢~**/2H, (). The forcing

term F,,,(y, t) on the right hand side of equation (4.6) is given by

~ 9Qm(y.t) 9Q(y,0,1)
Fou(y,t) = e ToN? + (W(%t) - W) Z,(0), (4.9)
where
) N2 [T .
Qm(y,t) = 7/0 QY. 2, 1) Zn(z) dz + Qy, 0, 1) Z,,(0). (4.10)

TABLE 4.1. The spectra of equivalent depths, gravity wave speeds,, =
(ghm)'/?, and Rossby lengthis, = (c,,/3)'/? for the five values ofn listed in
the left column. The values have been computed from using 13 km, g = 9.8
ms?2, N=12x10"2s"!, andH = 8581 m.

[m | o (M) [ e (M ST [ By (kM) |
7099 | 2638 | 3394
229.8 | 47.46 | 1440
61.42 | 2453 | 1035
27.66 | 16.46 | 848.1
15.63 | 1238 | 735.2

A WNPEFLO
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4.4, DLUTION VIA HERMITE TRANSFORMS

The solution of equations (4.6)—(4.8) is now constructedsing Hermite transform methods.

The Hermite transform pair for the streamfunction is

YU, 1) = Y () HI (1), (4.11)
n=0
dnnlt) = 5 [ Z b, ) H ) dy. (4.12)

where the meridional structure functioh&’ (y) are related to the Hermite polynomid, (v /b,,,)

by

[NIES

Hit(y) = (52mnl) " Haly/Bp) e 200", (4.13)

Since the Hermite polynomials satisfy the recurrenceitall,, . ,(z) = 22 H, () — 2nH,_1(x),

it is easily shown that the meridional structure functi@tis(y) satisfy the recurrence relation

ra = (527) (&) - (nil)%w_xy). (4.14)

Since the first Hermite polynomial 8 (z) = 1, the first meridional structure functionig;'(y) =

[N

= 1e~ 3@/ from which all succeeding structure functions can be camgbwsing the recur-
rence relation (4.14), with the understanding that the tixssh in (4.14) vanishes whem = 0.
ComputingH™ (y) via its recurrence relation is much preferable to compufihdy/b,,) via its
recurrence relation and then computikg]’(y) by evaluation of the right hand side of equation
(4.13), because the former method avoids explicit calmradf the factor2"n! for largen. Plots

of H™(y) form = 0,1,2 andn = 0, 1, 2, 3, 4 are shown below in the three panels of Figure 4.3.
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Meridional Structure Functions
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FIG. 4.3. Plots ofH,,(y/b,,) form = 0,1,2 andn = 0,1, 2, 3, 4. Note that, as
increases (for givem), the width of the oscillatory region d%,,(y/b,,) increases
asn'/?, so the magnitude df,(y/b,,) in the oscillatory region decreasesias/*
in order to satisfy the normalization imposed by (4.16).

The meridional structure functions satisfy the second oedeation

d? N\ Lo 2n+1\ ,
(52— ) ) = - (25 ) . (4.15)

so thatH”(y) is an eigenfunction of the operator that appears in parsathen the left hand side of
equation (4.6). This eigenfunction property makes thesti@im pair (4.11) and (4.12) convenient

for the solution of (4.6). Note that solutions of (4.15) wsdion from oscillatory to evanescent
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wheng,., = +b,,(2n + 1)'/2, which we denote as the turning (or critical) latitudes (\Weimand
Gill 1976). These will become important when we analyze thletgns for the streamfunction

later. Another convenient property of the meridional stowe functionsH!” (y) is that they satisfy

the orthonormality relation

/ " () H ) dy = (4.16)

Note that equation (4.12) can be obtained through mulagbo of equation (4.11) b (y),
followed by integration ovey and use of equation (4.16).

To take the meridional transform of equation (4.6), first tiply it by +"(y) and integrate
overy. The integral originating from the second ordederivative term in equation (4.6) is then

integrated by parts twice, making use of the boundary camdit(4.8), to yield

o [ .
o | Ot ) dy
oo d2 y2
gt [ bl <@ _ E) H () dy (4.17)
B * O (Y, ) m
= —ghm, /_OO o H' (y) dy.

To simplify equation (4.17) we first use equation (4.15) imititegrand on the second line. We then

make use of equation (4.12) to simplify equation (4.17) s tbcond order ordinary differential

equation

Pl 5
T T Vi Umn = = Ghm (4.18)
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with the initial conditions

~

n d¢mn
mn = 0 d
P an o

=0 at t=0, (4.19)

where the inertia-gravity wave frequengy;,, is given by

o = 5= [gh (204 ]2 (4.20)
and the forcing by
, 1 [*0F.(y,t).,,m
b J-os Oy

The inertia-gravity wave frequencies for the first 5 vertisavenumbers:/, = 0,1, 2, 3,4) are
shown as a function of meridional moden Figure 4.4 below. Values of the switch-on function
7 (t), which will be formally introduced in the next section, ar®ted in the four horizontal
dotted lines;y~! = 3, 6, 12, 24 hours. Notice howy~! = 24 h does not intersect with any of
them = 0, 1, 2, 3, 4 inertia-gravity wave frequencies. As will be seen latergwldiabatic heating
is switched on at this rate, inertia-gravity wave activgyminimal, and the transient solutions are
approximately equal to the balanced solutions derived iapBdr 2. In the next section we solve

(4.18) and (4.19) for a particular forcing.

4.5. TRANSIENT HADLEY CIRCULATIONS FORCED BY A SWITCHON OFITCZ CONVECTION

For illustration purposes, we now consider the response farang for which the Ekman

pumping and the diabatic heatingzat 0 are related by

~ 9Q(y,0,%)

Wi(y,t) = CToNT (4.22)

74



Inertia—Gravity Wave Frequencies

T T T ‘ T T T T ‘ T T T T

y=@h)"

Jy=@6n"
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FiG. 4.4. Plots ofv,,,, computed from equation (4.20), fet = 0,1, 2, 3,4 and
n = 0,1,...,20. The four horizontal dotted lines indicate the valuesyaforre-
sponding to the four switch-on functiofi§¢) plotted in Figure 4.5.

so that (4.9) simplifies to

~ 9Qn(y,t)

Assume that)(y, z, t) vanishes everywhere except in the latitudinal rapge< y < y,, where
y1 andy, are constants that specify the south and north boundaritee T CZ. Within this ITCZ
region the diabatic heating is assumed to be independentaiod to be smoothly switched on to a

steady state value, i.e.,

Z QmZm(z) if (3 < ) < Y2,
Qy, 2, 1) =T ()™ (4.24)

e}

otherwise,
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where the constants,, specify the projection of the vertical structure@@, z, t) onto the vertical

modes, and where the time dependence is given by

Tt)=1—(1+~t)e ™, (4.25)

with the constanty specifying the sharpness of the switch-on functioft). Figure 4.5 displays

four 7 (t) curves for the particular values ™ = 3, 6, 12, 24 hours.

\1| — \(1\ T\Yﬁ)?ilYt\

1.0

0.8

y'24h

0.6

y'i12 h

0.4

0.2

|
<
w
=2

OO ] 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 1

time (h)

FIG. 4.5. Plots of the switch-on functiod (¢) for the four choicesy™ =
3, 6, 12, 24 hours. The “filtered solutions” discussed below are validtifie “slow
switch-on” cases, i.e., for large valuespof'.

Substituting (4.24) into (4.9), and then using the orthomality relation (A.2), we obtain

) Qm it y1 <y <y,
Qum(y,t) =T(t) (4.26)

0 otherwise.

Use of (4.23) and (4.26) in (4.21) now yields

dy +

2 D Gy = T () Foms (427
o o ToNh,, y="TI(t) (4.27)

H™ Y1+ 0 Am ,
By =Y n(yl)/ Qm(y,1) L
y

- ! gH. (y2) / 2 0Qm(y, 1)
CpT0N2bm y

1— 2—
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where

Fo— 9%
CpT0N2 bm

[Ho (y1) — H'(y2)] (4.28)
and where we have made use of the fact that the narrow intefg@d).,, /0y) acrossy, is Q.7 (),
while the narrow integral across is —Q,, 7 (t).

The final equality in (4.27) can now be used in the right hade sif equation (4.18), and the
complete solution can be written as the sum of the homogesrsaution and a particular solution.
As is easily checked by direct substitution into equatiodi &), the solution satisfying the initial
conditions (4.19) is

D) = — Im m"{ <<”3fm - 72)”2) cos(vmt) — (M) Sin ()

Vi (Vo +7%)? Ve +7)?
2 2 2 —t
Vi + 3y ve e 7
i ( Vo + 7 +7) (V%m+72>}

In summary, the solution of the original meridional cirdida problem (2.10)—(2.14) is obtained

(4.29)

by combining equations (2.15), (2.21), and (4.11) into

Uy, 2, t) = €PN "t (8) H' (y) Zin(2), (4.30)

m=0 n=0

where@Emn(t) is given by equation (4.29). Plots of the streamfunction loarconstructed by first
calculatingF,,,,, from equation (4.28), then calculatin/@nn(t) from equation (4.29), and finally
calculatingy (y, z, t) from equation (4.30).

Note that wheny < v,,,,, the solution (4.29) simplifies considerably since the ficiehts of

thecos(v;,,,t) andsin(v,,,,,t) terms become much smaller than unity, while the third lineqoation
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(4.29) approache® (t). Then, the spectral space solution (4.29) simplifies to

_ gha T T (1)

PO () = . , (4.31)
an
so that the physical space solution (4.30) becomes
WOy, z,t) = 2y N D0 (0 H(y) Zul2), (4.32)

m=0 n=0

where the superscrigb) indicates the balanced (or filtered) solution. Since theetdapendence
on the right hand side of (4.31) &(t), they®)(y, 2, t) field develops in lockstep with the forc-
ing, i.e., there is no time delay between the forcing and #@sponse, no matter how far one is
from the forcing. Since this represents “action at a distgnit should be regarded as a filtered
approximation of the actual dynamics, valid only in the caéa “slowly varying forcing.” To
better understand how slow the forcing needs to be, Fig. ntMides horizontal dotted lines for
the four values ofy used in Fig. 4.5. As an example, for = 1 andy = (24h)~! the condition

v < Vmn holds for essentially akb, while form = 1 andy = (1 h)~! the condition does not hold
for the smaller values of. Thus, form = 1 and the slowy = (24h)~! forcing, inertia-gravity
wave activity should be weak and the balanced (or filterellitem (4.32) should be accurate. This

argument will be confirmed by the examples shown in sectién 4.

4.6. EXAMPLES USINGm = 0, 1,2 DIABATIC HEATING

For simplicity, we assume

(4.33)
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i.e., the diabatic heating projects only onto the first in&émode and has been normalized in such
a way that the horizontally integrated forcifig, — y1)Q.» is fixed.

Thus, for the external mode and the first two internal modes;t' = 24 h curve in Figure
4.4 yields a forcing that is probably slow enough for the fdteapproximation to be reasonably
accurate, but the=! = 3 h curve yields a forcing that excites a non-negligible iizegravity wave
response, especially for the higher internal modes, as Wa®&é in the next few figures.

Figure 4.6 shows isolines af(y, 2, ) and contour shading af(y, z)e */# /c, att = 32 h,

56 h, 80 h, and 104 h computed from equation (4.30) using thenpeterszr = 13 km, N =

1.2 x 1072 s7%, (y1,2) = (1000,1500) km, and—!= 3 h. Note that the largest asymmetries
between the winter hemisphere Hadley cell and the summeispliere Hadley cell occur for this
ITCZ displacement due to the anisotropy of the inertial ditsbas discussed in Chapter 2. Also
note that the forcing has been sufficiently switched ont by 32 h according to Fig. 4.5. The
summer cell is almost nonexistentfat= 32 h, then there are very small asymmetries between
the winter and summer cells at= 56 h, and then about a 9:1 asymmetry at 80 h, and once
again almost no asymmetry @at= 104 h. Also note the expansion and contraction of both winter
and summer cells at = 32 h andt = 56 h, respectively. These features, suggest that there is
significant transient activity due to inertia-gravity wave both the Hadley cells. Another way to
view the transient activity in both the winter and summer ldgaells is illustrated in Figure 4.7.
We compute the normalized total streamfunctioand fractional streamfunction as a function

of time and the power spectrum as a function of frequencyguiie parameters; = 13 km,

N =12x10"2s", (y1,y2) = (1000,1500) km, ang~'= 3 h, shown in the three panels in Figure
4.7. The total) is the sum of the maximum values ofat the northern and southern edges of the

ITCZ. It is then normalized using the maximum totafor all times. The fractional’ is the the
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FIG. 4.6. Contoured streamfunctiar(y, ) and shaded)(y, )e=*/# /¢, fields for
(y1,v2) = (1000,1500) km and~! =3 h att = 32 h, 56 h, 80 h, and 104 h. The

contour interval for)(y, z) is 400 n¥ s~1, the maximum (magnitude) af(y, 2) is

4149 nt s7!, and the zero line is omitted. TH@(y, z)e=*/# /c, shade interval is
0.5 K day?, and the maximum (magnitude) of the diabatic heating is @.K9

day .

80



fraction of the winter (blue) or summer (red) celldivided by the total). The power spectrum is
computed in both the winter (blue) and summer (red) cellgithe solutions of) from ¢ =0-360
h using the NCL function specanal, using 10 % tapering and no smoothing. We also normalize
the energy density by dividing by the maximum energy dengisgjther the winter or summer cell.

The temporal evolution of the normalized total streamfigrct), shown in the top panel of
Fig. 4.7, shows the highly variable nature of the how muchana®eing fluxed away from the
ITCZ and into the extratropics. When air rises to the tropgegain the ITCZ, it has the option of
turning toward or away from the equator (into the winter omsoer cell, respectively). In Chapter
2, we found out that it is easier for the air to turn toward tly@ator due to the smaller inertial
stability near the equator. When the ITCZ is in a balanceté st illustrated in the solutions in
Chapter 2, this rising ITCZ air turns toward the equator dlwice as often than it turns away
from the equator. The fractional streamfunctipnn the middle panel of Fig. 4.7 illustrates that
when the ITCZ is time dependent, the behavior of the risingnaihe ITCZ is more complicated.
The asymmetry between the winter and summer cells fluctisatesuch so that the winter cell
at times is weaker than the summer cell, etgsy 60 h, and at other times, e.d.~ 195 h, the
summer cell is almost nonexistent. However, the averagéewto summer cell asymmetry over
time is about 2:1, shown in the dashed lines in Fig. 4.7, asihgar to the balanced results shown
in Figure 2.15. The period of the pulsations is a bit irregubait in general is on the order of two
days (51.5 h), as shown in the power spectrum in the bottorelmdrFigure 4.7. Also note that
the winter cell has a larger normalized energy density tharsummer cell, suggesting that there
is more inertia-gravity wave activity in the winter cell.

We have also produced plots using the smae parameters asubed to produce Fig. 4.7

excepty~! = 6, 12, and 24 h. The inertia-gravity activity decreasesdsincreases, but the most
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FIG. 4.7. The top panel illustrates the total streamfuncticas a function of time
computed by summing for the winter and summer Hadley cells and normalizing
it by the maximum total). The middle panel shows the fractionalof the winter
(summer) Hadley cell in blue (red) as a function of time in #wdid lines, and
their time average fractional in the dashed lines. The normalized energy density
as a function of frequency is shown in the bottom panel forvirger (blue) and
summer (red) Hadley cell. The = 1 diabatic heating is located between 1000 and
1500 km andy~! =3 h.

prominent spectral peak in both Hadley cells is still at the-tlay timescale (51.5 h) foy~! =

6 and 12 h. Therefore, we choose not to show the plots comelipg to they~! = 6 and 12 h
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cases. Figure 4.8 illustrates the normalized total streaotfon:) and fractional streamfunction
1 as a function of time and the power spectrum as a functioneafuency using the parameters
as those used to produce Fig. 4.7 except= 24 h. Note from the top panel of Fig. 4.8 that as
~v~1increases, the fluctuations in the total mass flux and théidreal mass flux in the winter and
summer Hadley cells decrease. As can be seen in the poweérspen the bottom panel of Fig.
4.8, the energy density associated with two day oscillatismuch smaller than that of the lowest
frequencies, and the winter cell is significantly strondert the summer cell. The asymmetry
between the winter and summer cells oscillates betweeno2311t illustrating the sensitivity of
the Hadley cells to how fast convection in the ITCZ is turned dhere are still inertia-gravity
waves, buty < v,,,,, and the solution (4.29) approaches the balanced solutiB&); Once again,
the average winter to summer cell asymmetry over time is 8Pdudashed lines of middle panel),
similar to them = 1 balanced results shown in Figure 2.15.

The spectral space solution (4.29) can be considered togbsutin of two parts, with the first
part consisting of the oscillatory termss(v,,,t) andsin(v,,,t) and the second part consisting
of the decaying term with the™* factor. There is a third term which is outside of the brackets
which is the steady state termgh,, F),./v2,. For large times (i.e5t > 1), the second part is
negligible and the oscillatory terms represent inertiavgly waves that have propagated far from
any confined region of forcing (Salby and Garcia 1987; Gaetia. 1987).

Figure 4.9 shows the totab solution atz ~ 6 km, the oscillatory (or inertia-gravity) part
of ¢ (igw), and the decaying (or balanced) partwf(bal) using the parameters: = 13 km,

N =1.2x10"%2s, (y1,y2) = (1000,1500) km, ang—'= 3 h. Now we see that the balanced
solutions (bottom panel) change very little after about dQrk while the inertia-gravity wave

solutions (middle panel) continue to be active long afterftrcing has been sufficiently switched
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ITCZ = (1000,1500) km, m = 1, y' = 24 h
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FIG. 4.8. The same as Fig. 4.7, but for! =24 h,

on. This signifies the presence of equatorially-trappediengravity wave packets and the idea
that the tropical atmosphere has memory of the initial fagci It is interesting to note that the
inertia-gravity wave activity is maximum just south of thEdZ, in the winter cell. This result is
in line with the fact that there is an inherent asymmetry leetwthe winter and summer cells due
to the anisotropy of the inertial stability. Also, the irtdgr behavior of the pulsating in the winter

and summer cells is likely due to the idea that the waves anategally trapped and bounce off
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the turning latitudeg,,., = +b,,(2n + 1)'/2, where the solutions af transition from oscillatory
to evanescent. The inertia-gravity waves initially tragelay from the ITCZ in the north/south
direction, and when the ITCZ is north of the equator, the wdiat initially travel north reach their
turning latitudes before those that initially travel sautthis behavior likely causes the pulsations
of the Hadley cells to be irregular. In Table 4.2, we displag/turning latitudes fom = 0, 1,2, 3,4
andn =0,1,2,3,4.

ITCZ = (1000,1500) km, y' = 3 h
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FIG. 4.9. Solutions ofi(y,t) inm?s™! atz ~ 6 km: the total) solution (total), the
inertia-gravity part of) (igw), and the balanced part ¢f(bal) using the parameters
zr = 13km, N = 1.2 x 1072 571, (y1,92) = (1000,1500) km, and~'= 3 h.
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TABLE 4.2. The turning latitudes in units of km fon. = 0,1,2,3,4 andn =
0,1,2,3,4 using the formuldj,,, = +b,,(2n + 1)'/2. Note how the turning latitude
increases as the meridional madéncreases angh decreases.

Turning Latitudesj,,,, (km) \
‘m‘nzO‘nzl‘nz?‘n:Zﬂnzéﬂ
3395 | 5880 | 7590 | 8981 | 10184
1440 | 2494 | 3230 | 3809 | 4319
1035 | 1793 | 2315 | 2739 | 3106
848.1| 1469 | 1896 | 2244 | 2544
735.3| 1274 | 1644 | 1945 | 2206

A WNEFLO

Figure 4.10 shows the total solution atz ~ 6 km, the oscillatory (or inertia-gravity) part
of ¢ (igw), and the decaying (or balanced) partwf(bal) using the parameters: = 13 km,
N = 1.2 x 1072 s7, (y1,42) = (1000,1500) km, and~'= 24 h. This figure helps confirm
that inertia-gravity wave activity (middle panel) is lirad and the total solutions (top panel) are
approximately equal to the balanced solutions (bottom pane

Thus far we have shown solutions for the streamfunctiomut we can easily illustrate the
solutions for meridionab and log-pressure vertical velocity using (2.9). We have chosen not to
showwv andw because the results are qualitatively the same as thegegultshown. However,
an interesting feature of the field is that the rising motion does not change as much in ti&zIT
compared to the subsidence regions north and south of thé.IThis is due to the fact that the
diabatic heating is invariant in the direction in the ITCZ. We now performed experiments in
which the vertical structure of the diabatic heating is odd the m = 0 external mode and solely
of them = 2 internal mode. In Figures 4.11 and 4.12, we show the noredliatal streamfunction
v and fractional streamfunction fields as a function of time using the parameters= 13 km,
N =12x10"2s"!, (y;,942) = (1000,1500) km, and~'= 3 h for them = 2 andm = 0 diabatic

heating, respectively.
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ITCZ = (1000,1500) km, y* = 24 h
4000 —mMm™ ————————————————

2000 -

~2000 -

4000 i v oy B
400 —mMmMmMm 1T ——

2000 -

~2000 b -

4000 b o e
400 —m™——————

2000 | -

~2000 -

4000 i v o o0y
0 100 200 300

time (h

—4000 —3000 —2000 —1000 0 1000 2000 3000 4000
¥ (m* s7)

FIG. 4.10. Solutions ofi(y,t) inm? st atz ~ 6 km: the totak) solution (total),
the inertia-gravity part of) (igw), and the balanced part ¢f(bal) using the param-

eterszy = 13km, N = 1.2 x 1072 57}, (y1,92) = (1000,1500) km, and~'= 24
h.

The ideas we have postulated thus far for the= 1 diabatic forcing apply to then = 0
andm = 2 cases in that there is significant pulsating of the winter amchmer Hadley cells
leading to oscillations in the total streamfunction. Théspting for them = 2 diabatic heating
leads to slower inertia-gravity wave packets than#he= 1 case, with a period of about 3 days

(72.1 h), while the pulsating for thes = 0 diabatic heating leads to faster inertia-gravity wave
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FIG. 4.11. The top panelillustrates the total streamfuncti@s a function of time
computed by summing for the winter and summer Hadley cells and normalizing
it by the maximum total). The bottom panel shows the fractionabf the winter
(summer) Hadley cell in blue (red) as a function of time. Tloenmalized energy
density as a function of frequency is shown in the bottom pfan¢he winter (blue)
and summer (red) Hadley cell. The = 2 diabatic heating is located between 1000
and 1500 km ang~—! = 3 h.

packets than the: = 1 case, with a period of about 1 day (22.5 h). This result hasotavith
the fact that the internal gravity wave speed decreases ascéidn of vertical wavenumber.

Even though the turning latitude decreasesdsacreases, the decrease in gravity wave speed has
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ITCZ = (1000,1500) km, m
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FIG. 4.12. The same as Fig. 11 forna= 0 diabatic heating.

a larger effect on the wave packets. This implies that theewrackets take longer to reach their
critical latitudes as the vertical structure of diabatiatieg becomes more complex (e.g., higher
internal modes), leading to a longer period of pulsatinghefidadley circulation. Another feature
worth discussing is the total streamfunction plots on thepanels of Fig. 4.11 and 4.12. As
increases, the influence of the inertia-gravity waves ortdted ;) increases. This is most evident

in them = 0 case, where the inertia-gravity waves seem to have less iofigerct on the total).
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A possible explanation for this behavior has to do with theaithat as the forcing involves higher
vertical wavenumbers, the asymmetry between the wintesaminer cells increases, as discussed
in Chapter 2.

In concluding this section it is interesting to note thatf &&comes large7 (¢) — 1 and the
forced divergent circulatiofw, w) comes into steady state. However, as can be seen from (411) an
(4.5), the zonal flow and the temperature continue to evdivéact, as discussed by Gonzalez and
Mora Rojas (2014), these fields evolve in such a way that theceeted potential vorticity field
develops local extrema in the ITCZ, leading to a zonal flowt Hadisfies the Charney-Stern nec-
essary condition for combined barotropic-baroclinic aslity (Charney and Stern 1962). Thus,
one should not expect the evolving zonal flow to remain zgrlmmetric for more than approxi-
mately 10—-15 days (Nieto Ferreira and Schubert 1997; Wadd/eEgnusdottir 2005; Magnusdottir

and Wang 2008).

4.7. ANALYSIS OF THE INERTIA-GRAVITY WAVE PACKETS

Thus far we have learned that when the intensity of ITCZ cotiwa fluctuates, inertia-gravity
wave packets are emitted toward the north and south. Thermavieof these wave packets depends
critically on the wave guide effect, i.e., the effect by witbe variable Coriolis parameter traps the
inertia-gravity wave energy in the equatorial region (Rleord 1966). The meridional structure
of our solutions in the last section are solely composed ftloenHermite functions, which have
both oscillatory and evanescent behavior. Now we take &reifit approach by abandoning the
idea of Hermite functions and instead assuming that thediogral structure of the solutions are
solely oscillatory. This procedure is often called an astotip, Liouville-Green (LG), or Wentzel-

Kramers-Brillouine-Jeffreys (WKBJ) analysis. To accomaplthis, we seek approximate solutions
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of the homogeneous version of (4.6). The approximate soiathave the form

~

U (y, 1) = Ap(y, t)eom ol (4.34)

wherey,,(y, t) is the phase and,, (y, t) is the local amplitude. The local meridional wavenumber

{(y,t) and the local frequency(y, t) are defined by

_ Op(y, ) __Op(y,1)
l(y,t) = o and w(y,t) = 5 (4.35)
and a relationship that immediately follows (4.35) is
ol Ow
— +— =0. 4.36
ot oy " (4.36)

Note that we have dropped the subscriptand superscript) for convenience. The functions
A(y,t), L(y,t), andw(y, t) are all assumed to be slowly varyinggrandt. Substituting (4.34) into
the homogeneous version of (4.6), neglectingnd¢ derivatives of the slowly varying functions

A(y,t), L(y,t), andw(y, t), we obtain the local dispersion relation

1/2

w(y,t) ==+ [czﬁz(y, t)+ ﬁ2y2} (4.37)

Note that, because of thi#y? term in (4.37), the inertia-gravity waves propagate thioagionuni-
form medium. In other words, varies as a function of bothandy, whereasv depends on only
in a uniform medium. From (4.36) and with the knowledege efdldditional dependence ©fon

Y, we can rewrite (4.36) as

o psat o
o ooy Oy’
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and in its characteristic form (Whitham 1974)

dt.  Ow @_&u

As discussed by Whitham (1974), the trajectory (or groupei®y) of a wave packet is given by

d Oow
d—i =5 == (4.39)

where the rightmost formula is computed after using theefsipn relation (4.37) and neglecting
y andt derivatives of the slowly varying functiof(y, t). Along this trajectoryw satisfies the
relation

dw

— = 4.40

= =0, (4.40)

where we have used the assumption that medium is indepeoiieme in (4.40). In summary, we

have
do _
dt
on &y = 8_w (4.41)
dl Ow dt ol
at oy
Using the local dispersion relation (4.37), we can writ&9}.in the form
dy _ 484 (4.42)
(w2 — B2y2)"? w
Similarly, we can write first entry in (4.40) in the form
d = iﬁdt. (4.43)
(w? — ng2)1/2 w
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Integration of (4.42) and (4.43) yields the solutions

y(t) = (%) sin {sin_l (%) + %} . (4.44)

(t) = (%) cos {sin_1 (%) + %} . (4.45)

Note that (4.44) describes two rays, one starting @nd initially moving northward, and the other
also starting ay, but initially moving southward. Plots af(¢) and/(t) are shown in Figure 4.13
for m = 1 and two arbitrary initial meridional wavenumbefgt = 0) = 1,2 x 1072 km~'. Note
how the raysy(¢) bounce back at particular turning latitudes,2560 and 4410 km. Recall that
we introduced turning latitudes in the previous sectiort,d®@cause we have abandoned the idea
of meridional modes:, the turning latitudes seen in Fig. 4.13 do not corresponanp partic-
ular meridional mode. When the wave packets reach theiirtgratitude their local meridional
wavenumber crossés= 0, which signifies that this analysis breaks down as discuss@dinsch
and Gill (1976). Also note how the rays spread out over tinfeés behavior has to do with the fact

that the energy decays along rays with time following theola

dE &
c--c (4.46)

whereé = %WQAQ is the energy as derived using Whitham’s the variationat@ggh (Whitham

1974).

4.8. CONCLUDING REMARKS

To understand the dynamics of the deep and shallow meridbee&aurning circulations, a zon-
ally symmetric model on the equatorijaiplane has been formulated and the associated meridional

circulation equation has been derived. This meridionadation equation is a partial differential
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Wave Packet Properties, ITCZ = (1000,1500) km
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FIG. 4.13. Solutions of (4.44) and (4.45) for = 1 and two arbitrary initial merid-
ional wavenumberd(t = 0) = 1,2 x 10~% km~!. Note how the rayg(t) bounce
at particular turning latitudesy 2560 and 4410 km.

equation in(y, z, t). It contains two types of forcing: (1) horizontal variatiofthe interior dia-
batic heating; (2) Ekman pumping at the top of the boundamriaSince the problem is linear, the
meridional circulations attributable to these two forceftects can be treated separately, and then
the resulting flows can simply be added together to obtairidts response. In this chapter we
focus on the diabatic heating of the= 0, 1, 2 vertical modes as the forcing.

The meridional circulation equation has been solved aitaljy by first performing a ver-
tical transform that converts the partial differential atjan in (y, z,¢) into a system of partial
differential equations iy, t) for the meridional structures of all the vertical modes. Jdpartial
differential equations have been solved via both the Gsefemiction approach (evanescent basis
functions) and the Hermite transform approach (oscillabarsis functions). These two approaches
yield two different mathematical representations of thmsg@hysical solution. For understanding

the basic asymmetry between the intensities of the winteigghere and the summer hemisphere
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Hadley cells, the Green’s function approach is preferaleabse of the efficiency of the mathe-
matical representation, which is simply a superpositiotwaf Green’s functions written in terms
of parabolic cylinder functions of ordeif%. For understanding the transient behavior of the Hadley
cells it is preferable to solve the equations using Hermitefions.

The solutions illustrate the fundamental result which Iaes inertia-gravity wave packets em-
anating from the ITCZ and bouncing off a spectrum of turniatiflides when the ITCZ is switched
on at various rates. These packets are therefore equétdaregped and cause the Hadley cells to
pulsate with a period of about 1, 2, and 3 days forrthe 0, 1, 2 vertical modes. When the forcing
is switched on slowly (e.g., about 100 hours to be almosy itched on), the transient behavior
is minimal, and the solutions are similar to the balancedlteshown in Gonzalez and Mora Rojas
(2014). When the ITCZ is located off the equator, both pairthe response reveal a basic asym-
metry between the winter and summer hemispheres, with theewhemisphere side containing
most of the quasi-balanced compensating subsidence anafilos transient inertia-gravity wave
activity.

In closing we note that the analytical solutions of the miendl circulation equation are con-
sistent with the extent and shape of upper troposphericatfions regularly observed in satellite
water vapor images, such as the one shown in Figure 4.1. Thgss tropospheric dry regions
play an important role in our ability to observe the univergth surface-based visible, infrared,
and millimeter/sub-millimeter telescopes. The best astnoical observatory sites are at high alti-
tudes in regions of persistently low upper troposphericawvatpor, such as Mauna Kea, Hawaii,
the mountains of northern Chile, and the Canary Islandssédlsées are above the trade wind in-

version layer, which normally lies between 2000 and 2500 imove the trade wind inversion the
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clear, dry air generally provides excellent observing étods, but there can be important varia-
tions on synoptic, seasonal, and interannual time scaledigeussed by Businger et al. (2002),
forecasts of weather conditions can play an important molkelescope scheduling and observing
strategy at these sites.

In closing, we iterate that the tropical atmosphere mayaiara considerable amount of inertia-
gravity wave activity which our present observational eys$ are not capable of detecting. There-
fore, this theoretical work should serve as motivation fatufe observational work on inertia-

gravity waves in the tropics.
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CHAPTER 5

Shock-like Structures in the ITCZ Boundary Layer

5.1. SrNOPSIS

This chapter presents numerical solutions and idealizedlycal solutions of zonally sym-
metric models of the ITCZ boundary layer. In the numericadelpthe boundary layer zonal and
meridional flow is forced by a specified pressure field, whiah also be interpreted as a specified
geostrophically balanced zonal wind fielg(¢) or vorticity field (,(¢). To better understand the
dynamics of boundary layer structures, analytical sohgiare presented for two simplified ver-
sions of the model. In the simplified analytical models, viahdo not include horizontal diffusion,
the v(0v/ad¢) term in the meridional equation of motion and th@u/ad¢) term in the zonal
equation of motion produce discontinuities in the zonal ematidional wind, with associated sin-
gularities in the boundary layer pumping and the boundaygraorticity. In the numerical model,
which does include horizontal diffusion, the zonal and mhenal wind structures are not true dis-
continuities, but are shock-like. Finally, the numericabdel is forced by the Year of Tropical
Convection (YOTC) reanalysis pressure gradient fieldsmuduly 2008, March 2009, and March
2010. The numerical model agrees well with the YOTC dynahfields while adding important

details about the boundary layer pumping and vorticity.

5.2. INTRODUCTION

Figure 5.1 is a GOES visible image of the Pacific on 24 Noveribé&0, a day when the ITCZ

formed a well-defined east-west line. A striking feature lmstimage, and many other similar
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images, is the narrowness of the ITCZ, and hence the narsswfehe rising branch of the Hadley

circulation (Charney 1968). The purpose of this chaptepibédtter understand the dynamical

FIG. 5.1. NOAA GOES 11 visible image at 00:00 UTC on 24 Novembd&i(0

reasons for this feature. The question is explored by exagithe meridional distribution of
Ekman pumping at the top of the boundary layer in and arouadTZ. The argument is based

on a zonally symmetric slab boundary layer model which daasstrictly conform to Ekman
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balance. The model includes the meridional advection tesush asv(dv/ad¢), wherewv is
the meridional velocityg is the latitude, and. is the Earth’s radius. When the boundary layer
meridional flow is strong, the neglect of this advection témrthe meridional momentum equation
is not justifiable. With the inclusion of thg0v/a0d¢) term in the boundary layer dynamics, shock-
like structures can appear in both thandv fields, and the relative vorticity and Ekman pumping
can become very localized. The term, “shock” refers to aathtiauity in the wind field in the
absence of horizontal diffusion whereas “shock-like” refeo a sharp gradient that is not a true
discontinuity due to the presence of diffusion. An analagpwcess in the hurricane eyewall
has recently been studied by Williams et al. (2013) and Sioetial. (2014). If a hurricane can
be described as a mesoscale power plant (the eyewall) wigh@psc scale supporting structure
Ooyama (1997), then the Hadley circulation can be descridsed mesoscale power plant (the
ITCZ) with a planetary scale supporting structure.

Classic theory on the formation of the ITCZ stems back to magach as Charney (1968,
1971); Holton et al. (1971); Yamasaki (1971); Pike (1971729 All of these studies focused on
the idea that the ITCZ rarely forms on the equator and doegamot poleward of about 20 In
particular, Charney (1971) and Pike (1971) theorized tmaiTCZ may form near the equator but
quickly moves poleward due to the upwelling of cold SSTs epghesence of easterly flow. Holton
etal. (1971) approached the problem by using linearizedary layer equations on the equatorial
(G-plane forced by a specified pressure field. They found thatexgence is frictionally driven
and concentrated at critical latitudes, where the distuwcbarequency is equal to the Coriolis
parameter. Holton (1975) extended Holton et al. (1971) lmjushing the horizontal advection
terms and forcing the model with a mixed Rossby-gravity wgeepotential field. Once again,

low-level convergence was concentrated near the critatabides. Mahrt (1972a,b) considered the
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effects of horizontal advection in a zonally symmetric g@qual 3-plane model. These studies
showed that cross-equatorial flow can produce a thick atkelsbundary layer with strong cross-
isobar flow and with significant off-equatorial rising matievhere there is a transition from an
advective-type layer to a quasi-Ekman-type layer. This fuaber explored by Smith and Mahrt
(1981), but on ary-plane, with the result that low-level convergence is atgmated at the critical
latitudes. Despite what seemed to be general agreemengééetwany of these studies on the idea
of low-level convergence being concentrated at the ctitatgudes, the acceptance of these ideas
began to fade in the early-mid 1980s.

Lindzen and Nigam (1987) presented what is now a well-aeckfiteory on some of the key
mechanisms to understanding the ITCZ from a steady-stasp@etive. Their model conforms to
an Ekman balance in the horizontal momentum equations hae balance between the Coriolis,
pressure gradient, and frictional forces. They illustthieimportance of SST gradients in creat-
ing large-scale pressure gradients which in turn enhaneddwel horizontal wind convergence.
Although there are some limits to their model, they do not aseaditional slab boundary layer
model in that they suppress the influence of the higher laygif®rcing horizontal pressure gra-
dients to vanish at 700 hPa. Therefore, they have to use &-fr@ssure” effect to include a free
tropospheric redistribution of mass with the trade cumdasndary layer to minimize excessive
surface convergence. Their model also neglects the londktecies and horizontal advection of
the horizontal winds, e.gu(0u/ad¢) andv(dv/ad¢). Therefore, Lindzen and Nigam (1987) treat
the ITCZ as a balanced phenomenon instead of a transienoptegon that goes through ITCZ
breakdown and reformation (Nieto Ferreira and Schuber?19¢&ng and Magnusdottir 2006).

Since Lindzen and Nigam (1987), many studies choose to ugs¢ af £quations that is in

some balance to understand the ITCZ boundary layer. For ghearthe extended Ekman model
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(a local balance) was used by Stevens et al. (2002) and by Megat al. (2004). Raymond
et al. (2006) studied data from the East Pacific Investigataf Climate (EPIC) field project and
also used the extended Ekman model. They argued that saiesisrshows that the(dv/ad¢)
term is not important. However, in shock formation there eswell-defined horizontal scale on
which to base a scale analysis due to scale-collapse. A nerergl model, one that includes
the v(dv/ad¢) term, was used by Tomas et al. (1999), who suggest that thidioreal advection
of the zonal velocityv(du/ad¢) is the term most vital to correctly simulating the ITCZ. They
claim that this term allows for anticyclonic absolute voity to form on the low pressure side of
the equator, leading to a convergence-divergence doubtaeiboundary layer. Sobel and Neelin
(2006) studied the ITCZ boundary layer and free tropospheneg an equatoriab-plane model
which includes the/(0u/ad¢) andv(dv/ad¢) terms. Their experiments were run until a steady
state was reached, and then a scale analysis of the indivelnas was performed. They note
that SST gradients associated with the Lindzen and Nigar@7(16ffect are most important in
determining ITCZ width and intensity. Indeed the next |atgerm in their scale analysis is the
horizontal advection, but it’s likely that their large diffion might lessen the effects of shocks. In
fact, as they decrease the value of the horizontal moistfftesivity, they produce narrower and
more intense ITCZs, but state that such precipitation ratesinrealistic.

A recent study by Back and Bretherton (2009b) agrees withesofrthe ideas in Lindzen
and Nigam (1987) and Sobel and Neelin (2006). More spedifiddack and Bretherton (2009b)
suggest that boundary layer temperature gradients areritmany contributor to the meridional
winds, low-level convergence, and 850 hPa vertical motighile the zonal surface winds are
mainly determined by free tropospheric pressure gradiantsdownward momentum mixing. In

this study, we present a dynamical and transient viewpditteol TCZ, where the pressure gradient
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in and just above the boundary layer support both the ewoiuif the boundary layer zonal and
meridional winds along with the formation and narrowing dénian pumping and vorticity in

the ITCZ due to the Burgers’ equation (Burgers 1948) embéddehe meridional momentum
equation.

Another interesting feature of the tropical circulatiorthe formation of ITCZs just north and
south of the equator, often referred to as double ITCZs. reigu2 is a GOES visible image of
the Pacific on 11 March 2015, a day when the eastern Pacifiaioeak two thin ITCZs on either
side of the equator. There are many observational papetseatouble ITCZ in the eastern Pacific,
starting with Hubert et al. (1969) and continuing with therkvof Hayes et al. (1989), Mitchell and
Wallace (1992); Lietzke et al. (2001); Zhang (2001); Liu afie (2002). A very interesting paper
is that of Gu et al. (2005), who analyzed TRMM precipitaticatadand QuikScat surface wind
divergence data for several boreal springs (March and ApFhey identify four types of patterns
in the eastern Pacific: (1) El Nifo; (2) double ITCZ; (3) rodominant double ITCZ; (4) south
dominant double ITCZ. This chapter discusses the some afyjthemical reasons for the formation
of double ITCZs in regions such as the eastern Pacific. Mamjiest identify double ITCZs by
convection or precipitation using satellite data mainlgdugse there is a lack of observational wind
data in the tropics. If double ITCZs were instead definedgisie low-level convergence field,
as the name ITCZ suggests, double ITCZs seem to be more conam@uggested by Liu and
Xie (2002) and McNoldy et al. (2004). In fact, Liu and Xie (Z)hote that double ITCZs are
common year round in both the Atlantic and eastern Pacifi@®c€&here are a number of theories
that explore why low-level convergence does not alwaysteadnvection, such as those described

by Zhang et al. (2004), Gonzalez and Mora Rojas (2014), ac#t Bad Bretherton (2006).
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FIG. 5.2. NOAA GOES 11 visible image at 18:00 UTC on 11 March 2015.

The ITCZ boundary layer is an environment conducive to sHoakation. We expect such
shocks to appear intermittently in the ITCZ, causing thistegest lines of deep convection in this
conditionally unstable region. These lines are expectdxktmore common in the eastern oceans,
where the opposing meridional flows associated with thereplaal highs are stronger.

The chapter is organized in the following way. Section 5&spnts the governing set of partial

differential equations for the slab model. Sections 5.4 &udpresent heuristic models in order
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to gain insight into the role of Burgers’ equation on the dtalundary layer dynamics. Section
5.6 contains numerical solutions of the slab boundary layadel forced by an idealized balanced
zonal wind field. Section 5.7 presents numerical solutidrib@slab boundary layer model forced
by a pressure field from the Year of Tropical Convection (YQT&analysis. Some concluding

remarks are presented in section 5.8.

5.3. S AB BOUNDARY LAYER MODEL

The model considers zonally symmetric, boundary layer omstiof an incompressible fluid
on the sphere. The frictional boundary layer is assumedye banstant depth, with zonal and
meridional velocities.(¢,t) andv(¢, t) that are independent of height between the top of a thin
surface layer and height and with vertical velocityu (¢, t) at heighth. In the overlying layer the
meridional velocity is assumed to be negligible and the keelacity v, (¢, t) is assumed to be in
geostrophic balance and to be a specified function of lagiftt time. The governing system of
differential equations for the boundary layer variabl€s, t), v(¢,t), andw(¢, t) then takes the

form

0u+ Ou g(1—04)(u—ug):<2Qsin¢+Utémqb)U—cDUg—i-K 0 (8(ucos¢))7

ot " ade  h a B a6 \acos pod
(5.1)
ov o w B ) utan ¢ 1 Op v
Ejtvm—ﬁ(l—a)v— (QQsmng— )u 000 CDUE 52
LK 0 (0(vcos¢) .
adgp \ acospdp )’
if w>0
~ ,0(vcos ) B 11 =
= hacosgb@qb and «a = (5.3)
0 if w<O,
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where

1/2

U =0.78 (v* + v?) (5.4)

is the wind speed at 10 m heiglfl,is the Earth’s rotation rate, and is the constant horizontal
diffusivity. The drag factorpU is assumed to depend on the 10 m wind speed according to (Large
et al. 1994)

cpU =107 (2.70 + 0.142U + 0.0764 U?) , (for U < 25), (5.5)

where the 10 m wind spedd is expressed in ms.

The boundary layer flow is driven by the same meridional pressgradient force that occurs in
the overlying fluid, so that, in the meridional equation otihdary layer motion, the pressure gra-
dient force can be expressed as the specified fun{2iorin ¢ + (u, tan ¢)/alu, so that equation

(5.2) can be written in the form

%%—va@a—ib—%(l—aﬁ} =— <QQ sin ¢ + w> (u — ug)—cDU%+Kag¢ (3(503552) ,
(5.6)

In the absence of the horizontal diffusion terms, the slalmidary layer equations constitute a
hyperbolic system that can be written in characteristiof¢gee Appendix C). A knowledge of the
characteristic form is useful in understanding the formaif shocks. In fact, before presenting
numerical solutions of the system (5.1), (5.3), and (5.8antion 6, we first discuss analytical
solutions of two simplified versions of the model, i.e., twarsions that have very simple charac-

teristic forms. These analytical solutions aid in undaerdiag the formation of discontinuities in

the zonal and meridional flow, and hence singularities invtfréicity and vertical velocity.
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5.4. HEURISTIC ARGUMENTI

The formation of shocks in the ITCZ boundary layer dependthem(dv/adp) termin (5.2),
with the term proportional to the ageostrophic zonal flew- «,) serving as a forcing mechanism
for (Ov/0t), the surface friction term serving to dampand the horizontal diffusion term serving
to control the structure near the shock. The formation ofacklin v leads to a shock in through
the v(0u/ad¢) term in (5.1). This discontinuity in the zonal flow means thé& an east-west
oriented infinite vorticity sheet in the boundary layer.

To obtain a semi-quantitative understanding of the abouweepts before computing numerical
solutions, we now approximate (5.1) and (5.2) by neglediieghorizontal diffusion terms, the
terms, the surface drag terms, and the- u,) forcing term. By making these assumptions, we
aim to understand the atmospheric conditions needed to $bouks in the ITCZ boundary layer
given a suite of different initial conditions. The zonal améridional momentum equations (5.1)

and (5.2) then simplify to
om om

ov ov

wherem = (u 4 Qa cos ¢)a cos ¢ is the absolute angular momentum per unit mass.
The solutions of (5.7) and (5.8) are easily obtained by mptirat these two equations can be

written in the form

dm
o 0, (5.9)
dv
= 0, (5.10)
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where(d/dt) = (0/0t) +v(0/ad¢) is the derivative following the boundary layer meridionadm

tion. Integration of (5.9) and (5.10), with use of approf®imitial conditions yields the solutions

~

u(p,t) = <u0(<5) + Qa cos g5> ZSZZ — Qacos ¢, (5.11)
v(,t) = vo(9), (5.12)

where the characteristids{gb, t) are given implicitly by
¢ =0+ (t/a)vo(d), (5.13)

which is easily obtained by integration &i¢/dt) = v/a, with v given by (5.12). For a given
6, (5.13) defines a straight characteristic(if ¢), along which the absolute angular momentum
(u + Qacos ¢)acos ¢ is fixed according to (5.11), and along whieky, ¢) is fixed according to
(5.12).

To understand when the derivativigs:/0¢) and(dv/0¢) become infinite, and to also check

that (5.11)—(5.13) constitute solutions of (5.7) and (5v@ first note thato/ot) and (0/0¢) of

(5.13) yield
_5_5 _ Uo(ég)
ot ()
A a + tv) (@) (5.14)
0¢ a

~_ .

9 a+ tuh(d)
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Therefore(d/dt) andv(8/ade) of m(¢,t) = my(¢) yield

~

om 2 ¢ o (0)miy(9)
= (cb) =
ot a+ty
) 0 ;_t ZE?) (5.15)
om ., 00 0]
U@ = vo(@)mi )CL8¢ a+ tvo(gg)
while (8/0t) andv(d/adp) of v(p,t) = vy(¢) yield
v, 00 w(d (c?ﬁ)
En = Uo(ﬁb)a— . —
v ~ 00 vo(P)ui(o
Uaa¢ UO(¢) (¢)CL8¢ a+tv0<é)’

where the final equalities in (5.15) and (5.16) follow fromngs(5.14) to eIiminate{agE/at) and
(8¢/04). The sum of the two lines in (5.15) then confirms that (5.11J éR13) constitute a
solution of (5.7), while the sum of the two lines in (5.16) @ions that (5.12) and (5.13) constitute
a solution of (5.8). However, these solutions may be mulisd, in which case (5.11) and (5.12)
must be amended in such a way as to guarantee the solutiossgle valued. We will return to
this point by using a shock fitting procedure later. From tBaaiminators on the right hand sides
of (5.15) and (5.16), it is evident that the derivati@sn/0t), (0m/0¢),(0v/0t), and(Ov/d)
become infinite when

to)(¢) = —a (5.17)

along one or more of the characteristics. ketdenote the characteristic that originates at the
minimum value ofv}(¢), i.e.,v}(¢s) = [0)(®)]mm. Then, the time of shock formation, determined
from (5.17), is

fy= - (5.18)
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and the latitude of shock formation, determined from (54:8]) (5.18), is

20)
o (9s)

¢s = Cgs - (519)

From the solutions (5.11) and (5.12) we can compute the isakuffor the relative vorticity
C(p,t) = —0[u(e,t) cos ¢]/acos ¢ 0p and the divergencé(o,t) = O[v(¢p,t) cos @]/acos P Ip.
It is interesting to first note that the way in whi¢ghandé behave along a characteristic is quite
different than the way in whichn andv behave. For example, from (5.7) or (5.9), it is easily

shown that

dn_
dt

—né, (5.20)
wheren = 2Qsin ¢ + ( is the absolute vorticity. Thus, while andv are fixed along a given
characteristic according to (5.9) and (5.10), the absalatécity can rapidly increase along cer-
tain characteristics whefi < 0. A similar argument applies to the variation &falong certain

characteristics.

The relative vorticity is obtained by differentiation of.{&), which yields

B 20sin ¢ + Co(P) | cos b B .
C(6,1) = ( ) ) oy~ 20sin0, (5.21)

where(y(¢) = —0[uo(¢) cos ¢|/acos ¢ ¢ is the initial relative vorticity. Similarly, the bound-
ary layer divergencé(¢, t), or equivalently the boundary layer pumpindo, t) = —hd(¢,t), is

obtained by using (5.12) in (5.3), which yields

w :—ﬁ U()(&) — — g %) tan > 5.22
(6,1) = —= (H(t/a)%(@ (6) tan ¢ (5.22)
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Because of the factotst (¢/a)v)(¢) in the denominators of (5.21) and (5.22), the relative edti
((¢,t) and the boundary layer pumping ¢, t) become infinite at the same time= ¢,) and the
same placed = ¢,).

As a simple example, consider the initial condition

_ 2¢w(¢0 _ ¢)
00(6) = v ( S W) , (5.23)

where the constants,,, ¢y, and¢,, specify the strength, location, and half-width of the it

ITCZ inflow. The derivative of (5.23) is

P (1= [(6- )/
o0 =-73, <{1+[<¢—¢0>/¢w]z}2)' (5-24)

From (5.18), the shock formation time is

_ 99w

t, = )
2U,,

(5.25)

Table 5.1 lists the constants used in various test caseswfdtie Model | and Heuristic Model I
(to be discussed in the next section) using the initial diol (5.23) and (5.24). Plots of ¢, t),
v(g,t), w(ep,t), and((¢,t) are shown in Figure 5.3 for test case S5, which uses the adnsta,

= 1000 km,v,, = 2.5 m s!, anda¢,, = 400 km. Theu andv fields become discontinuous while
thew and( fields become singular at = a¢, = 1000 km and = ¢, =22.2 h. This implies that in
the absence of surface drag, a shock would form in less thay &od a 800 km wide ITCZ with
2.5 m s'! meridional winds on either side. Of course surface drag @tesa significant role on
such timescales, therefore we extend Heuristic Model | ¢tunte a linearized surface drag in the

next section.
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TABLE 5.1. Test Cases and Results for Heuristic Models | and Il

Parameters Defining Typical Values Shock Results From
Initial Conditions Needed in Model Il Models | and I
Test ag, U, U T aQs tgl) tgﬂ)

Case (km) (ms) (ms') (h) (km) hy  (h

S1 400 0.5 0.87 96.4 1000 111 No Shock
S2 400 1.0 284 747 1000 55.6 102
S3 400 15 3.33 69.1 1000 37.0 53.1
S4 400 2.0 4.20 59.8 1000 27.8 37.3
S5 400 2.5 436 58.2 1000 22.2 28.0
S6 400 3.0 455 56.4 1000 18.5 22.4
S7 400 3.5 476 54.4 1000 15.9 18.8
S8 400 4.0 499 523 1000 13.9 16.1

After shock formation, the multivalued solutions for (5)4{%.19) need to be amended by a
shock fitting procedure that guarantees a single valuedisoll_et®(¢) denote the shock latitude
at timet, and let¢, () denote the label of the characteristic that just touchesdghern edge of
the shock at time, and let),(¢) denote the label of the characteristic that just touchesdhiern
edge of the shock at time

Then, using (5.19), we obtain the algebraic relations

~

(1) = G (t) + (t/a)vo(n(t)), (5.26)

(1) = Ga(t) + (t/a)vo(a(t)). (5.27)

Since the meridional velocity of the shock is simply the ager of the (discontinuous) meridional

flow velocities across the shock, the first order ordinarfedéntial equation fo(¢) is given by

vo(P1(t)) + vo(d2(t)) ] , (5.28)

111



IIIIIIII IIIIIIII IIIIIIIIIIIIIIIIIIIIII TTT IIIIIIIIIIIIIIIIIII TT IIIIIIIIIIIIIIIIIIIIIIII

20 - 201 4 H -
15 - 151 4 H -
< | i ]
S 10 - 10+
S - - i
©
_I - - -

5 - 51 -

o - o 4 H -

IIIIIIIIIIIII IIIIIIII IIIIIIIIIIIIIIIIIIIIII IIIIIIII 111 IIIIIIIIIIIIIIIIIII 11 IIIIIIIIIIIIIIIIIIIIIIII

-6-4-20 2 4 -3-2-10 1 2 3 -20 2 4 6 8 10 0O 1 2 3 4 5
u(mst) v(mst) ¢(107° s71) w(cms™!)

FIG. 5.3. Plots ofu(¢,t), v(¢,t), ((¢,t), andw(e, t) att = 0 in the blue curves,
and right before shock formatiom,= ¢, in the red curves for Heuristic Model |
equations (5.7), (5.8), and (5.3). Fluid particle disptaeats are also shown by
the black curves for equally spaced particles at the iniinaé. We use the initial
condition (5.23) and the constants in test casedgf:= 1000 km,v,, = 2.5 nT !,
andag,, =400 km.

for the three function®(t), ¢, (t), 2 (t). Once the shock positioh(t) is determined from (5.26)—
(5.28), characteristics intersectidgt) from lower latitudes are terminated there, while character
istics intersectingb(¢) from higher latitudes are also terminated there. This guaes that. and

v are single valued but discontinuous acrdgs). For more details about this procedure, refer to

Whitham (1974).
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Since the initial condition (5.23) is antisymmetric aroune- ¢, the right hand side ob(t) =

oo fort > t,. Thus, for the initial condition (5.23), the solution of {2) becomes

26, (o — ¢)
v(o,t) = vy, R , 5.29
(#:9) <¢i+(¢—¢o)2> 529

whereg(¢, t) is given implicitly by

¢ =+ unt <¢;¢i((¢;30—_g:;))2> , (5.30)

with the requirement that(¢, t) < ¢, if ¢ < ¢o andp(p,t) > ¢ if ¢ > ¢o. Figure 5.4 shows
another view of the solutions, via contoursudip, t) andv(¢, t) in the (¢, t)-plane, along with a
family of characteristicéb(gb, t) for the choices,,, = 2.5 m s'!, a¢y = 1000 km,a¢,, = 400 km,
and for¢ = -1.5°, -0.5, --- 21.5. It is apparent that is constant along the characteristics but
u increases in magnitude along characteristics. We can sgea/wicreases in magnitude along
characteristics by rewriting an approximate form of (5.8)@u/dt) ~ 2Quv sin ¢. The asymmetry

in u about thep = ¢, arises from the&in ¢ factor, allowingu to speed up faster on the north side

of ¢ = ¢o.

5.5. HEURISTIC ARGUMENT I

We now consider a second analytical model that adds surfaceaffects to the model consid-
ered in the previous section. For simplicity, we linearie surface drag terms so the zonal and

meridional momentum equations become

om om m — Mme
ot * Ua@gb - (5:31)
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FIG. 5.4. Analytical solutions of the Heuristic Model | equaits(5.7) and (5.8) of
u(o,t) andv(¢, t) in the (¢, t)-plane (contours), along with the family of character-

istics (¢, t) for test case S5, and whete= -1.5°, -0.5, - - - 21.5.

R R (5.32)

AT Y
where the constant damping time scalés a typical value of./(cpU) computed using typical
values ofU.
The solutions of (5.31) and (5.32) are easily obtained byngdhat these two equations can

be written in the form

pr (ucosqﬁet/T +vel/T F(g, t)) =0, (5.33)
d t/T
T (v e ) =0, (5.34)
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where (d/dt) = (0/0t) + v(0/ad¢) is the derivative following the boundary layer meridional

motion andF'(¢, t) is given by

F(¢,t) = QT{sin 2 (¢ + Tv/a)]ci(2Tv/a) — cos [2 (¢ + Tv/a)]si(2Tv/a) }, (5.35)

and where

si(z) = —/ MY g and ci(r) = —/ 8T (5.36)

vl vl
are respectively the sine integral and the cosine integraéreforexz(d/dx) ci(z) = cos(z) and
x(d/dx)si(z) = sin(x).
Integration of (5.33) and (5.34), with use of appropriaiéahconditions and (5.35), yields the

solutions

R R . R —t/T
u(@.1) = {uo<¢> cosé = v0(9) | F(6.1) = Fy(9)] } 5 (5.37)
0(@,1) = vo(@)e ™, (5.38)
where the characteristids{gb, t) are given implicitly by
¢ =0+ (t/a)vo(d), (5.39)

which is easily obtained by integration @f¢/dt) = v/a, with v given by (5.38), and where

t=7(1—em). (5.40)

For a givene, (5.39) defines a curved characteristic(if ¢), along whichu(¢, t) exponentially

damps according to (5.38).
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To check that (5.37) and (5.38) constitute a solution of {pand (5.32), we first note that

(0/0t) and(9/0¢) of (5.39) yield

B 9o B vo(p)e /™

~

E a+ fvé(é)

) (5.41)
op _ @
99 a+tu(o)
so that(0/0t + 1/7) andv(9/ad¢) of (5.37) yields
om m—m, 08
T T g [ago(d) cosd + () Fy(D)] S
dv v - oF
—a <E + ;) [F(Cb, t) — Fo(¢)} —va—ors
5 o (5.42)
i = [06u(6) cosd+ (@) (&) Gum(@)e
— vg—; [F(gb, t) — Fo(gz;)] - vzg—g — 2Quasin ¢ cos ¢,
and(9/ot + 1/1) andv(0/a0¢) of (5.38) yields
W vy 500 e o(0)v(9)
8t T —¢ O(¢) 015 N a + t%%(g%) ’
0 06 _ e Mruy()ui(d) o
oV _ 2T N2 _ € Vo @)V
Uaa¢ e UO(¢)UO(¢)CL8¢ CL—|—tAU6<A)

The final equalities in (5.42) and (5.43) follow from usingd) to eliminatd 8¢ /dt) and(d¢p /¢).
The sum of the four lines in (5.42) then confirms that (5.3 Mstitutes a solution of (5.31) and
the sum of the two lines in (5.43) confirms that (5.38) con&# a solution of (5.32). Once again,
this solution may be multivalued, in which case (5.37)-9%ust be amended in such a way as
to guarantee the solution is single valued. The shock fipirmgedure involves solving the same

system as (5.26) and (5.27) with: replaced by /a on the right hand sides and multiplying (5.28)
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by ¢!/7. From the denominators on the right hand sides of (5.42) a8}, it is evident that the

derivatives(0v/0t) and(dv/ad¢), for example, can become infinite if
(1 =€) (r/a)uy(¢) = ~1 (5.44)
along one or more of the characteristics. This is possita@df only if
(7/a)[vg(d)]min < —1 (5.45)

where [v}(¢)]min denotes the minimum value of the derivative of the initiahdition. In other
words, if the initial meridional velocity,(¢) has a large enough negative slope, the solution will

become multivalued. The time of shock formation, determifiem (5.44), is

t, = —7ln (1 . L) . (5.46)

From the solutions (5.37) and (5.38) we can compute the isokifor the relative vorticity
C(p,t) = —0[u(o,t) cos ¢]/acos p 0p and the divergencé(¢,t) = 0[v(e,t) cos ¢|/a cos ¢ 0.

The relative vorticity is obtained by differentiation of.8&’), which yields

~ OF e t/T
C(6.8) = wld) g oo
. . R R . . —t/T
+ |G(d)acosd+vi(d) (F6,t) = Fo(d)) — wo(@)Fi(@) eI
a cos ¢ [1 + (t/a)vy(o)

(5.47)

where(y(¢) = —0[uo(¢) cos ¢|/acos ¢ ¢ is the initial relative vorticity. Similarly, the bound-

ary layer divergenceé(¢, t), or equivalently the boundary layer pumpiago,t) = —hd(o,t), is
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obtained by using (5.38) in (5.3), which yields

_ h U()(&) 7 —t/T
w(p,t) = —— - — — tan e T, 5.48
(6,6) = —- (1 e i) ¢> (5.49)

~

Because of the factotst (¢/a)v}(¢) in the denominators of (5.47) and (5.48), the relative edti
((¢,t) and the boundary layer pumping ¢, t) become infinite at the same time= ¢,) and the
same placed = ¢,).

As a simple example, consider the initial condition giver2@ from section 3. Note that the
minimum value ofu{,(¢) occurs ath = ¢, SO thafv(¢)|min = —2vm /P, and the condition (5.44)

for shock formation becomes

o

2TV,

< 1. (5.49)

When the initial condition satisfies (5.23), a shock formspat ¢,. From (5.46), the shock

formation time is

ty=—7ln (1 _ % ) . (5.50)

2TV,

The last column of Table 5.1 lists valuestgffor an ITCZ with half-widtha¢,, = 400 km and for
eight values ofv,,,. Plots ofu(¢,t), v(¢,t), w(¢,t), and((¢,t) are shown in Figure 5.5 for test
case S5. The andw fields become discontinuous while theand( fields become singular at
=a¢p, = 1000 km and = ¢, = 28.0 h. Thus, if the difference in the meridional flow acras®00
km wide ITCZ is 1 m s' or larger, the surface drag in the meridional equation ofiomotannot
prevent the development of a shock in théeld.

We also emphasize the dual role played by the surface seass.t In the zonal equation of
motion the surface stress term decelerates the zonal flasdlupmg subgeostrophic flow. In the

meridional equation of motion thig: — u,) term produces a meridional flow down the pressure
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gradient, which is favorable for shock formation. In costrahe surface stress term in the merid-
ional equation of motion tends to retard shock formation.dearrow enough ITCZ, this retarding

effect is overcome by the shock generation process.

20 —

15 —

10— —

Latitude (°)

-6 -4 -2 0 2 4 -3-2-10 1 2 3 =20 2 4 6 8 10 0 1 2 3 4 5
uw(mst) v(mst) ¢(107° s71) w(ecms™!)

FIG. 5.5. Same as Figure 5.3, but for Heuristic Model 1l equai?31), (5.32),
and (5.3) for test case S5.

Since the initial condition (5.23) is antisymmetric aroune: ¢,, ®(t) = ¢, for t > t,. Thus,

for the initial condition (5.23), the solution (5.37)—(B)3ecomes

v — v 2(¢0 — Qg)/ﬁﬁw e—t/r
1) e (1 - %)/%P) | 51
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whereg (¢, t) is given implicitly by

(5.52)

6 = &+ Vmax(7/a) (1 = e77) (1 f([((b; - zzﬁ; P) |

with the requirement thab(¢,t) < ¢ if ¢ < ¢y ande(p,t) > ¢ if ¢ > ¢o. Figures 5.5 and
5.6 display isolines ofi(¢, t) in the (¢, t)-plane, along with a family of characteristi¢3$¢, t) for
the choices,,,, = 4 m s}, agy = 1000 km,a¢,, = 400 km, and forg% =—1.5° -0.5°,---21.5°,
The characteristics are now curved instead of straighicatohg the retarding effect of surface
drag. Because of this,decreases along the characteristics:bstill increases in magnitude along
characteristics. We rewrite (5.31) in the approximate f¢dm/dt) ~ 2Qu sin ¢ — u/7 and realize
that the surface drag is not strong enough to prevérdm increasing with time, but the magnitude

of u is smaller compared to when surface drag is neglected.

5.6. NUMERICAL SIMULATION OF ITCZ SHOCKS- IDEALIZED u, FORCING

Now that we have some understanding of how shocks form ussimglified version of the
slab boundary layer model, we shall perform experimenth e full slab boundary layer equa-
tions, (5.1), (5.3), and (5.6). The problem has been sols#ugucentered, second-order, spatial
finite difference methods on the domair/4 < ¢ < 7/4 or —45° < ¢ < 45° with a uniform
meridional grid spacing aiA¢ ~ 100 m, and a three-stage third-order strong stability-gmesg
Runge-Kutta time differencing scheme (Shu and Osher 1988) avtime stepAt of 5 s. The

boundary conditions are given by

0 (ucos @) _0

9% at =+l (5.53)
d(vcosg) 0 4

oo 7
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FiGc. 5.6. Same as Figure 5.4, but for Heuristic Model Il equai¢h.31) and
(5.32) for test case S5.

We would like to run the model until a steady state is reactiedefore we use the initial conditions
0) = uy(¢) andv(¢,0) = 0. The constants have been choseh as 1 km, p = 1.2 kg m™3,
and K = 1000 m? s~*. The CFL condition associated with the horizontal diffusterms sets the
stability constraint At/(aA¢)? < 2/3 so that fomA¢ = 100 m andAt = 5 s we have to satisfy

K <1333 nt s !. The forcing is prescribed through tdg(¢) field, from which we can integrate
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to computeu,(¢) andp(¢). We assumé, is of the form

0 T<o<an,
as (22 61 <0< 6,
GS (£2) + G (252) w<o<a
GO =16 (£2) +65 (£22) s<o<o (5.54)
GS () +as (252) <o <o
s (£2) 65 < 6 < ds,
0 b <H<T.

wheregy, ¢o, ¢3, 4, G5, G5, (1, oy €3, @ANA(, are specified constants, afds) = 1 — 3s? + 253

is an interpolating function that satisfieé30) = 1, S(1) = 0, andS’(1) = S’(0) = 0. Figure
5.7 shows(,(¢) along with its associated fields,(¢) andp(¢) for the three test cases with the
parameter values listed in Table 5.2. The difference batwbkese ITCZs is the strength of the
westerlies south of the relative vorticity maximum, withxiraum westerlies of 0, 3, and 6 nTs
respectively. The(o, t) field illustrates that as the westerlies increase, the l@ggure minimum
north of the equator exceeds that of the minimum at the equaitso note that the pressure

difference between the tropics and subtropics is on therafd@-8 hPa.

TABLE 5.2. Information about the first set of experiments &t 10

Test| 1 | &2 | @3 | Oa | @5 | o G G G Ca
Casel () | () [ [O))[C)]@A0°s) (10 °s )| (10 °s) | (10°s™)
Cl -35|-20| 6 | 10| 20| 40 6.20 -7.26 14.18 -6.80
C2 |-35|-20| 6 | 10| 20| 40 6.45 -9.18 18.20 6.90
C3 |-35/-20| 6 | 10| 20| 40 6.66 -11.10 22.40 7.00
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Fic. 5.7. Idealizedu,(¢), (,(¢), p(¢) fields for the 10 ITCZ displacement set
of experiments using (5.54) and the values listed in Tak?e &1, C2, and C3
correspond to maximum westerlies of 0, 3, and 6 Threspectively.

It turns out that shock-like structures do not appear in tieaity of 10° if the westerlies are
weak « 4 m s!), such as in cases C1 and C2. Therefore, we will focus on thexpariment,
where the westerlies maximize at 6 m sFigure 5.8 shows the temporal evolution of the boundary
layer flow in the C3 run. The four plots of Figure 5.8 show mignl profiles (25° < ¢ <
25°) of the boundary layer zonal wind, meridional windv, relative vorticity ¢, and vertical
velocity at the top of the boundary layer for two times: ¢ = 0 and 12 days. Remember that
the initial v is zero while the initialu is in geostrophic balance with the pressure gradient in
the overlying layer. Note that meridional inflow, supergemshic/subgeostrphic zonal winds,
large Ekman pumping at the top of the boundary layer, anatlamundary layer relative vorticity
quickly develop, with the establishment of a near steady steound 8—-12 days. Such timescales
seem reasonable for the formation of the ITCZ, as discusgdlidio Ferreira and Schubert (1997);

Wang and Magnusdottir (2006).
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FiG. 5.8. Slab boundary layer model results for the IDCZ displacement C3
forcing case (6 ms' westerlies). The four plots show the zonal winds, t),
meridional windsv(¢, t), relative vorticity((¢, t), and vertical velocity at the top
of the boundary layew(¢, t) for the region—25° < ¢ < 25°. The results at the
two timest = 0 and 12 days are color coded.

Note that a shock-like structure develops a few hundredhiers north of the meridional
location of maximum westerlies. This response is due toutla®/ad¢) term in the meridional
momentum equation. The maximum meridional inflow assodiatgh these supergeostrophic
westerlies is approximately 2.3 nt's Near this shock, the meridional winds decrease by about 2
m s ! over a 30 km interval, thereby producing a narrow spike inEkman pumping at the top of
the boundary layer of about 6.0 cm's Associated with this concentrated region of convergence
is a relative vorticity sheet, which is almost six times agi¢a(11.9x 1075 s7!) as its initial
value (2.2x 1075 s71). Also note that the easterlies north of the the westerlmsenbecome

supergeostrophic, therefore they do not produce shoekdikuctures, but they do produce weak
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boundary layer pumping o£ 5 mm s!. This process is explained as follows: the Coriolis force
2Qv sin ¢ acts to speed up the zonal winds while the surface drag astswodown the easterlies.
To form shock-like structures, the zonal flow must be suffitiesubgeostrophic at some point in
time to able to produce strong enough meridional inflow. €fae, the region south of the ITCZ
is slowed down more by the surface drag.

Another region of localized Ekman pumping worth mentionisghe region near the equator,
where the Coriolis force approaches zero. In this regioridheng is quite weak, although it does
help produce some southerly flow. It acts more like the visdBurgers’ equation (e.g., Heuristic
Model 11) in that the surface drag tries to overcome the shdd¢le model tends to produce shock-
like structures£ 2 cm s'! pumping) near the equator even though an ITCZ at the equsatardly
observed in nature. Also, the vorticity sheet associatéld this shock-like structure is anticyclonic
in the northern hemisphere, which seems to be unrealistawveder, observations such as those
shown by Liu and Xie (2002) suggest that localized low-l@glvergence near the equator is more
common than previously thought, especially in regions sagthe Atlantic and eastern Pacific, as
illustrated in Fig. 5.9. Since this convergence does natally couple to convection it is possible
that the atmospheric thermodynamic conditions and Ekmarellimg of cold ocean water in this
region helps to suppress convection, as discussed by Gh@rae8, 1971); Pike (1971, 1972).

Table 5.3 shows the next set of experiments, which test thsitsaty of shock-like formation
to the meridional location of the forcing* @d00), 5 (d05), 10 (d10), and 15(d15). Each test
case considers &,(¢) profile that has maximum westerlies of 6 m'sas done in the previous
test case C3 at 20 Note that test case d10 is the same as C3 in Table 5.2. Figl@esfows
¢,(¢) along with its associated fields,(¢) andp(¢) for the three test cases d05, d10, and d15,

with the parameter values listed in Table 5.2. Tie, ) field illustrates that as the ITCZ is
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Fic. 5.9. Surface wind convergence (PG&~!) from QuikSCAT for the months of
March, June, September, and December 2001. From Liu and2R2].

displaced poleward, the low pressure minimum north of thea&ay exceeds that of the minimum
at the equator. As we will see, this does not necessarily rttedtiTCZ shock-like structures are
stronger as the ITCZ is displaced poleward.

Figure 5.11 illustrates the slab boundary layer madel, t), v(¢, t), ((¢,t),andw(¢, t) fields
att = 12 days for the three ITCZ displacements: (805), 10 (d10), and 15 (d15). Shock-

like structures form in the initially cyclonic vorticity ggon in experiments d05 and d10, but not
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so much in d15. The determining factor involves the regiaat thitially had cyclonic relative
vorticity. If this region’s cyclonic relative vorticity amtains a vorticity sheet significantly stronger
than the initial cyclonic vorticity and a collocated narr@pike in Ekman pumping, then it has
produced ITCZ shock-like structures where we expect thexpeEment d15 does indeed produce
shock-like structures near the equator, but this is notelgeon where the initial relative vorticity
was cyclonic. Also, the vorticity sheet associated witheheatorial spike in Ekman pumping is
anticyclonic in the northern hemisphere, which seems talealistic. A fourth experiment where
the initial cyclonic vorticity region is centered about°2@20, not shown) also failed to produce
shock-like structures in the initially cyclonic vorticityegion. These results suggest that ITCZ
shocks are most common close to the equatdh® < ¢ < 15°. The reasons for this result have to
do with the delicate balance between the forcing (presstadient force), the Coriolis force, and
the surface drag throughout the time period before a steadly is reached, as discussed before.

TABLE 5.3. Information about the second set of experiments,at®, and 15.

Displacement ¢, | ¢z | ¢3 | ¢4 | &5 | 6 G C2 (3 @
)OO E s sh o s @0 s
dos -40|-30| O | 5 |15]| 35 6.77 -11.07 22.40 -6.90
d1o -35|-25( 5 110| 20| 40 6.66 -11.10 22.40 -7.00
dis -30|-20| 10| 15| 25| 45 6.55 -11.13 22.50 -7.10

Figure 5.11 also shows the(¢,t), v(¢,t), ((¢,t),andw(¢,t) fields att = 12 days for the
dO05 run. Shock-like structures develop in a similar manreemad10, with meridional inflow,
supergeostrophic/subgeostrphic zonal winds, large Ekpuemping at the top of the boundary
layer, and large boundary layer relative vorticity. The bdary layer pumping is a bit smaller in
magnitude when compared to d10, and that is due to the weadtional inflow produced by the
forcing. It is interesting to note that the steady-statetemiss just south of the narrow vorticity

sheet are about 2 ntsslower than those in the d10 run. There is still a region oksgeostrophic
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FiGc. 5.10. Idealized.,(¢), (,(¢), p(¢) fields for the 10 ITCZ displacement set of
experiments using (5.54) and the values listed in the lasetlrows d05, d10, and
d15 listed in Table 5.3.

flow, but the region of subgeostrophic flow is broader thandh@ run. This result is due to the
fact that the forcing goes to zero as one approaches theagabdwing surface drag to be more
efficient in slowing down the horizontal winds in this case.

As we discussed in the Heuristic Model sections, charasttesiare very helpful in understand-
ing the development of shocks and shock-like structurescestihe form of the slab boundary layer
model used here contains horizontal diffusion, we do noelealryperbolic system with associated
families of characteristics. For simplicity, we limit ounalysis to trajectories rather than charac-
teristics. Figure 5.12 shows the trajectories in thet)-plane along with contours of the zonal and
meridional windsu(¢, t) andv(¢, t) for the 10 (d10) experiment. The trajectories were computed
by numerically integrating(d¢/dt) = v using the same 5 s time step used for the numerical so-

lutions of (5.1) and (5.6). To aid in our interpretation oéttrajectories we have the Lagrangian
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FIG. 5.11. Slab boundary layer model results for thgd05), 10(d10), and 15
(d15) ITCZ displacements (6 nT 5 westerlies). The four plots show the zonal
winds u(¢, t), meridional windsv(¢, t), relative vorticity((¢, t), and vertical ve-
locity at the top of the boundary layer(¢, t) for the region—25° < ¢ < 25°. The
results shown are when= 12 days and the different displacements are color coded.

form of (5.1)

dt h

du ([ w(l —a)(u—uy) —cpUu
< ado \ acos pdp

)+(2§Zsin¢+ utangb) v+K 0 <8(ucos¢)

) , (5.55)

and the Lagrangian form of (5.6)

dv w(l —a) —ecpU , (u+ uy) tan ¢ 0 ([ 9(vcos )
E:< h )U_<2QSIH¢+ a )(u_ug)+Ka0¢<acos¢0¢>’

(5.56)
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where(d/dt) = (0/0t) +v(0/ad9) is the derivative following the meridional flow, i.e., therile

ative along trajectories defined lyd¢/dt) = v. The trajectories are horizontal for the first few

hours since the meridional flow is negligible there, and #&yalways horizontal near the equator

since the meridional flow is negligible there. As the menndibflow increases, the trajectories flow

toward the convergence regions, but note that they are ragbt lines. Instead, they curve toward

or away from the convergence regions. This is reminiscetit@Heuristic Model Il results in that

surface drag acts to curve the characteristics (or trajestpaway from the convergence regions.

Latitude (°)
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FiG. 5.12. Trajectory curves in th@, t) plane for the d10 forcing case in the two
plots, along with contours of the zonal windgleft) and meridional winds (right).

For example, the trajectories a couple of degrees northeoetfuator experience an increase

in meridional flow as they move northward until the are jusithoof &, where their meridional

flow decreases and they converge with the other traject@teducing a shock-like structure after
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about 72 h (Fig. 5.12, right panel). When these trajectaressouth of 8their zonal winds are
subgeostrophic (Fig. 5.12, left panel), causiig/dt) > 0 due to(u—u,) < 0 andsin ¢ > 0inthe
Coriolis terms in (5.56), despite the presence of meridisndace drag. Once these trajectories
are north of about8their zonal winds become supergeostrophic, which alonly thieé meridional
surface drag, act to decreaseguickly, as shown in (5.56). This quick decrease isignifies the
spike in boundary layer pumping, shown in Fig. 5.13. We mugpleasize the importance of the
Burgers’ termu(dv/ad¢) in the first 10 hours, which is when the zonal flow is decreasiith
time along trajectories. The zonal surface drag plays &nata in slowing down the zonal winds,
helping drive meridional inflow down the pressure gradienhis is why we believe shocks are
features confined to the boundary layer.

Taking a look at the isolines af in Figure 5.12, we see that they behave quite differently
than meridional winds along trajectories. The zonal winésken along trajectories for the first
10 h due to zonal surface drag, then begin to increase in matgndue to thein ¢ factors in the
Coriolis termsin (5.57). As the trajectories move towarel tonvergence regions their zonal winds
decrease in magnitude quickly due to both the quick weakgewiin in the Coriolis terms in (5.57)
and the presence of zonal surface drag. In this region tloenesfa narrow vorticity sheet along
with a spike in Ekman pumping, as illustrated in Figure 5.13.

In Figure 5.13, the boundary layer relative vorticityand pumping at the top of the boundary
layer w are shown. As we discussed before in the Heuristic Modei@es;tthe vorticity and
pumping increase very quickly along trajectories. Thegetaree main regions of large vorticity—
near the equator,”8L0°, and 12-13°. Despite this, there is only one region that is collocateith wi
significant Ekman pumping,°8L0°. It is also interesting to note that the spike(ims not exactly

collocated with the peak in Ekman pumping. The pumping iated slightly south of the peak in
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¢ and where the trajectories come together. This is similavhiiat was observed in the results of

Williams et al. (2013).
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FIG. 5.13. Trajectory curves in th@, t) plane for the d10 forcing case in the two
plots, along with contours of the relative vorticity(left) and vertical velocityw

(right).

In Figure 5.14, we show the trajectories as well as isolifee@absolute angular momentum

m. As important relation to consider when interpreting thigife is

d d
a cos ¢d_1tL = d_T + (2Qa cos ¢ + u) v sin ¢. (5.57)

In the region a few degrees north of the equatoerdecreases along trajectories despite the fact
thatu increases after the first 10 hours. That is because the stnengional inflow causes in the

second term on the right hand side of (5.57) to be largerdhan ¢(du/dt). In the regions south of
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the equator and north about°l@ increases along trajectories along withecause the the second
term on the right hand side of (5.57) is negative and is ladyer to thecos ¢ andsin ¢ factors.
South of the equator there are northward trajectories anecansl shock-like structure appears
near the equator. This shock-like structure takes abouhliddbecome established. It remains to
be seen how realistic this equatorial shock-like strucisirbut it causes information coming from
south of the equator to never cross it. North of thé a@hird shock-like structure tries to develop.

But, as shown in Figure 5.13, there is no narrow vorticity oubdary layer pumping associated

with it.

Latitude (°)
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time (h)
25 26 27 28 29 30
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FiG. 5.14. Trajectory curves in th@, t) plane for the d10 forcing case in the two
plots, along with contours of the absolute angular momentum
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5.7. NUMERICAL SIMULATION OF ITCZ SHOCKS- YOTC REANALYSIS FORCING

Thus far we have analyzed the slab boundary layer model nsgpim a variety of idealized
u,y(¢) forcings. We would like to force the model with reanalysiddgeduring the contrasting
months of July and March during Year of Tropical Convecti?O{T C) reanalysis to investigate
if our idealized zonally symmetric model can reproduce tiieainical aspects of the ITCZ. We
shall use the slab boundary layer equations (5.1), (5.2)(%u6) with the same constants as those
used in the previous section but with the boundary conditior- v = 0 at¢ = +x /4. We run
the model at two horizontal resolutions: 100 m (high) and &8(low). The low resolution run is
meant to emulate a resolution consistent with operatioralets such as the one used to produce
the YOTC reanalysis fields. We also neglect one of the Ekmatisguterms,w(1 — a)(u — u,).
This simplification allows us to prescribe one field, whiclthie pressure gradient field felt in the
boundary layer. Experience from other runs (not shown fewity) convinces us that this Ekman
suction term tends to be small (differences.in’ on the order of 0.5—-1 ms). We compute the
boundary layer pressure gradient by using the 950 hPa geafuatfield from YOTC. Also, we

switch on the pressure gradient forcing with time using #ygesable function

Tt)=1—(1+~t)e ", (5.58)

which is plotted previously in Figure 4.5. We use the constan(12 h)*. This switch on function

is used to avoid erratic oscillations that occur when theifay is switched on too quickly. Also,
the derivative of the geopotential field is quite erratierdfore we use only ocean data points and
smooth its derivative with the NCAR Command Language baiktubic spline function csalxd.
YOTC is a global reanalysis product spanning the time peoioday 2008—April 2010 that uses

four-dimensional variational data assimilation at a hamtal resolution of 0.25 degrees (28 km,
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FIG. 5.15. YOTC July 2008 monthly and 90W-150W zonally averagg&d hPa

geopotential field (blue curve) and the idealized geopatkfield used in the slab
boundary layer model (red curve). The idealized geopaénias computed using
the cubic spline interpolating NCAR Command Language fionotsalxd.

T799), with 91 vertical levels. We choose the model fieldgpatied at a horizontal resolution of

0.25 degrees (28 km) for direct comparisons to the low régwoilslab boundary layer model fields.

5.7.1. WLy 2008

July 2008 was a relatively weak El Nifio month in the 90W-150\ifio 3) region, as illus-
trated previously in Fig. 3.3. Figure 5.15 shows the July®@ftbonthly and zonally averaged
(90W-150W) geopotential field as seen before and after wsicgpic spline interpolation, with
appropriate treatment of the domain boundaries to satisfybbundary conditions. There is low
pressure in the tropics and high pressure in the subtropiesathe summertime subtropical an-
ticyclones. We should note that even though the lowest press located near 45S, the ITCZ is

expected to form where the lowest pressure occurs in th&cspgbout 10-15.
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Figure 5.16 illustrates both high (sbim-hr) and low resiot(sbim-Ir) slab boundary layer
modelu, v, ,andw fields when they reach a quasi steady state as well as the Q08/r2onthly
and 90W-150W zonally averaged v, (,andw YOTC fields (yotc). YOTC does not output the
w field, but instead provides the horizontal divergendeld. We use the formulas = —hé with
h = 1 km for consistency with the slab model. Overall, the slabriatary layer model qualitatively
agrees with the monthly averaged YOTC fields, although th&@ @@ind fields tend to be larger in
magnitude while the relative vorticity and vertical veliycat the top of the boundary layer tend to
be larger in the slab model. The 100 m model experiment shawsch more confined and intense
Ekman pumping region. Also, there is a vorticity sheet seghé 100 m run which is not seen in
the 28 km run or in the YOTC vorticity field. These differencatbeit not surprising, are intended
to highlight transient dynamical processes in the ITCZ sacBurgers’ shock-like structures that
are not captured as well in the YOTC or sbim-Ir fields. It wobkel more practical to compare
the slab boundary layer model to the YOTC fields if it were nanally symmetric, so that the
ITCZ could be influenced by zonal variations and breakdowne fimescale for breakdown is a
few days to 3 weeks, as discussed in Wang and Magnusdotfi6}2a takes about 2 days for the
pressure forcing to be sufficiently switched an 90%) and about 4 days until the peak in Ekman
pumping occurs (2.3 n3), so that the approximate timescale for ITCZ shock fornmmatsoabout
2 days. Since the model fields reach a quasi steady stateabfiat 8-10 days, it is likely that the
ITCZ would break down after the shock has occurred and efibfare or after a quasi steady state
has been reached. Also, the timescale for shock formatiéhdafys is in line with the results in
Heuristic Model II.

Another interesting feature of the slab boundary layer rhoges is the asymmetrical response

of the meridional velocity. The pressure gradient forcelbiswt the same magnitude on either side
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FIG. 5.16. High (sbim-hr) and low resolution (sbim-Ir) slab inoary layer model

solutions after 12 days against the corresponding YOTC 2088 monthly and

90W-150W zonally averaged 950 hPa fields. The four plots gheveonal winds

u, meridional windsv, relative vorticity ¢, and vertical velocity at the top of the
boundary layenv for the region—25° < ¢ < 25°. The model runs are forced
solely by the YOTC July 2008 monthly and 90W-150W zonallyraged 950 hPa
pressure gradient force. Refer to the text for more details.

of the two equatorial minima in geopotential (Figure 5.185;-15°), but there are small asymme-
tries in between the two minima as well. It is possible thasthsmall asymmetries in the pressure
gradient force are the main contributors to the asymmeiniesin the slab model, but it is also
possible that the Coriolis force plays a role since it is an@pic. This asymmetrical meridional
wind response is also in the YOTC meridional winds, but ita$ as dramatic. One possible ex-
planation for this discrepancy between the slab model and(Y@ that there are nonlinear eddy

contributions that are neglected in the slab boundary lmg@el since it is zonally symmetric. For
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example, the eddy term(0v/ad)) is large in the eastern ocean basins, where the subtropited h
help support strong meridional inflow. In particular, thesdarger meridional inflow in the sum-
mer hemisphere since the subtropical highs are typicalbnger (McNoldy et al. 2004). Figure
5.17 confirms that the subtropical highs were stronger guiirly 2008 in the summer hemisphere
over the eastern Pacific. Another possible explanatiortidiscrepancies in the northerlies is the

uncertainty in the pressure gradient field over land (thetand strictly north of about T2.

Geopotential m

460 500 540 580 620 660

FIG. 5.17. YOTC July 2008 monthly averaged 950 hPa geopotdigidi(m) over
the eastern Pacific Ocean. Note that the subtropical higheistmmer hemisphere
is significantly stronger than the subtropical highs in theter hemisphere.

5.7.2. MARCH 2009

March 2009 was a month with modest La Nifla conditions in thetexn and central Pacific
(Niflo 3 region), as illustrated before in Fig. 3.8. Hayeale{1989); Lietzke et al. (2001); Zhang

(2001); Gu et al. (2005) have illustrated that double ITCEs guite common during La Niha
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and neutral conditions. In fact, the YOTC low-level 950 hireeryence field does show a double
ITCZ structure during March 2009. We would like to see if thabsboundary layer model can
also reproduce a double ITCZ in the form of Ekman pumping dheeiside of the equator. In
Figure 5.18, we illustrate the YOTC monthly and zonally agad (90W-150W) geopotential
field alongside the smoothed geopotential field used in théetdrhere is a broad low pressure
region that is approximately symmetric about the equatdniwiabout 25 degrees of the equator.
One might speculate that with only one pressure minimumetiseéould only be one ITCZ, but
as we will see, the Ekman pumping has two primary peaks orreslle of the equator in both

the slab boundary layer model and the YOTC reanalysis. Eigut9 shows the high and low

March 2009 Geopotential Height (90W—150W)
b T A
20;

§ I
o
B
Y 0k
5
@
—

40 b

| T RN I B!

500 520 540 560 580 600 620 640
Geopotential Height (m)

FIG. 5.18. YOTC March 2009 monthly and 90W-150W zonally aveds@fs0 hPa
geopotential field (blue curve) and the idealized geopakfield used in the slab
boundary layer model (red curve). The idealized geopaéntas computed using
the cubic spline interpolating NCAR Command Language flomatsalxd.

resolution model run., v, ¢, andw fields forced by the smoothed geopotential field shown in

Figure 5.18 alongside the March 2009 monthly and zonallyayed YOTCu, v, ¢, andw fields.

The slab boundary layer model horizontal winds are compearaithe YOTC zonal winds except
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near the equator where the slab model tends to produce weagtrlies in the 28 km run (up to 3
m s~! weaker), and produces weak westerlies in the high resolutio (up to 5 m s' difference).
Also, north of about 7the model tends to have weaker northerlies, just as seereiduly 2008
model runs. Despite these discrepancies, the model domsafalouble ITCZ structure, with two
peaks in cyclonic vorticity and Ekman pumping on either sii¢éhe equator, at abouf 3These
fields tend to be narrower and more intense in the model exarts, just like the July 2008 runs.
Another result worth mentioning is that the Ekman suctiorttenequator is weaker in the low and
high resolution model runs compared to the YO#C Typically, the double ITCZ is described
as having a cold SSTs in between the two ITCZs. Both the sabs&land cold water tend to
stabilize the boundary layer, resisting the formation ofEDZ on the equator and possibly further

enhancing this subsidence.

5.7.3. MARCH 2010

Figure 5.20 illustrates the YOTC monthly and 90W-150W zlyreeraged geopotential field
alongside the smoothed geopotential field used in the mddalch 2010 was characterized by
modest El Nifio conditions in the eastern and central Pa@iito 3 region), as illustrated previ-
ously in Fig. 3.9. Once again, studies such as Hayes et é&89]10ietzke et al. (2001); Zhang
(2001); Gu et al. (2005) have illustrated that a single ITG& porth of or on the equator is com-
monplace during El Nifio conditions, mainly due to warmeifS8n the equator. Just like March
2009, there is a broad low pressure region that is approeimaymmetric about the equator within
about 25 degrees of the equator. Therefore it would be singrio see different results than those
from March 2009.

The high and low resolution model v, {, andw fields are shown in Figure 5.21 alongside

the March 2010 monthly and zonally averaged YOTC fields. Tale lsoundary layer model zonal
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FIG. 5.19. High (sblm-hr) and low resolution (sbim-Ir) slab nolary layer model
solutions after 12 days against the corresponding YOTC Ma@a09 monthly and
90W-150W zonally averaged 950 hPa fields. The four plots gheveonal winds
u, meridional windsv, relative vorticity ¢, and vertical velocity at the top of the
boundary layenv for the region—25° < ¢ < 25°. The model runs are forced
solely by the YOTC March 2009 monthly and 90W-150W zonallgraged 950
hPa pressure gradient force. Refer to the text for more ldetai

winds are comparable to the YOTC zonal winds except in théhean hemisphere north of the
peak Ekman pumping and near the equator. Near the equatdOthen slab model once again
tends to produce weaker easterlies of up to 21 similar to the behavior in the March 2009
runs. North of the peak Ekman pumping the slab model runsym®dtronger easterlies (up to 3
m s1) than in YOTC. The meridional winds are once again weakethnaoirthe ITCZ for the slab

model runs. The model does agree with YOTC in producing aeiligCZ structure, with a peak
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March 2010 Geopotential Height (90W—150W)
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FIG. 5.20. YOTC March 2010 monthly and 90W-150W zonally aveds@fs0 hPa

geopotential field (blue curve) and the idealized geopatkfield used in the slab
boundary layer model (red curve). The idealized geopaéntas computed using
the cubic spline interpolating NCAR Command Language flomatsalxd.

in cyclonic vorticity and Ekman pumping around. 40nce again these fields tend to be narrower
and stronger in the model when compared to the YOTC fields.

It is quite surprising that the slab boundary layer modelrfectly” produces a single ITCZ
given the nearly symmetric structure (within 25 degreeshefequator) of the geopotential field
shown in Fig. 5.20. This implies that small asymmetries mphessure gradient field can make a
significant difference in where the ITCZ will form. Even thgiuthe slab boundary layer model has
no explicit information about the thermodynamics, it haliit information about the tempera-
ture gradient since the temperature gradient affects thetstre of the pressure gradient (Lindzen
and Nigam 1987). Also, the location of the minimum in eagsr{or maximum in westerlies for
the sbim-hr runs) seems to be quite telling for whether alsingdouble ITCZ will be produced.

If this easterly minimum (or westerly maximum) is north oéthquator, a single ITCZ north of
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the equator seems to be favored while if this zonal wind mummis south of the equator, a double

ITCZ seems to be favored.

March 2010 (90W-150W)
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FIG. 5.21. High (sbim-hr) and low resolution (sbim-Ir) slab Ipdary layer model
solutions after 12 days against the corresponding YOTC M2a@10 monthly and
90W-150W zonally averaged 950 hPa fields. The four plots gheveonal winds
u, meridional windsv, relative vorticity ¢, and vertical velocity at the top of the
boundary layenv for the region—25° < ¢ < 25°. The model runs are forced
solely by the YOTC March 2010 monthly and 90W-150W zonallgraged 950
hPa pressure gradient force. Refer to the text for more ldetai

Overall, the slab boundary layer model high and low resotutiuns are able to reproduce
the gross dynamical features in the YOTC fields. The mairedsfices are that the slab boundary
layer model tends to produce stronger gradients, mosylitheé to its higher resolution (especially
in sbim-hr). Our results emphasize the importance of resglgmall scale features in order to

improve the placement of the Ekman pumping and vorticityhe T CZ.
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5.8. CONCLUDING REMARKS

The structure of the boundary layer wind field near the ITCZ been interpreted in terms of
a zonally symmetric slab boundary layer model. The narr@smé the ITCZ has been explained
by dry dynamics, i.e., by the formation of a shock in the bamdayer meridional flow, with
northerly flow on the north edge of the shock and southerly thomthe south edge of the shock.
Shock formation is associated with thédv/ad¢) term in the meridional momentum equation
due to the presence of Burgers’ equation. Sincgan order of magnitude larger in the boundary
layer than in the overlying fluid (approximately 5 m'sversus 0.5 ms!), shocks are primarily a
phenomenon of the boundary layer. The development of a shdble boundary layer meridional
wind v leads to a shock in the boundary layer zonal windince(du/dt) = —v(du/adp) + - - -,
with large northerly flow ¢ < 0) producing a large easterly acceleratiom (0t < 0) on the north
edge of the shock and a large westerly acceleratiari@t > 0) on the south edge of the shock. A
thin sheet of very high vorticity develops in the boundanyela and it may extend upward due to
vertical advection. Horizontal diffusion has been useelteravoid multivalued solutions near the
shock. Although horizontal diffusion is a simple and effeetway to avoid this problem, it is not
the only way. Alternatively, a shock fitting procedure coh&lused, such as in the Fortran routines
in the Conservation Laws Package (Clawpack) described bgdiee (2002).

For the boundary layer structures simulated here, we hawserhto use the terms “boundary
layer shock” or “Burgers’ shock,” rather than the terms “®bor “front.” Our assumption of con-
stanth obviously precludes the development of jumps in the bountigrer depth, so use of the
term “bore” would be confusing. In addition, we have chosereserve the term “front” for struc-

tures that arise not from(dv/ad¢), but rather from the combination of{0u/ad¢), w(du/0z),
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v(06/ad¢), andw(00/0z), with the rotational flow: and the potential temperatufebeing re-
lated by thermal wind balance. However, it should be noteditthis distinction is not completely
sharp, since the “boundary layer shocks” studied here depehonly on thev(dv/ad¢) term

in the meridional equation of motion, but also on tH&u/ad¢) term (or more generally on the
(2Q2sin ¢ + ¢)v term) in the zonal equation of motion, which leads to the &Hike structure in
theu-field. Even with this caveat, it is helpful to use termingfdat distinguishes features that
can be accurately modeled using the geostrophic balancengsisn (i.e., fronts) from features
that cannot be modeled using geostrophic balance (i.endawy layer shocks).

The slab boundary layer model described in section 5.3 caedagded as a model that is at or
near the bottom of a hierarchy of boundary layer models afeiasing complexity. Although the
constant depth slab model does not capture certain imgdeatures found in height-resolving
models of the tropical boundary layer, the constant de@h siodel does appear to capture the
essence of the shock structure in the meridional flow andatsequences for boundary layer
pumping and subgeostrophic/supergeostrophic behavibeizonal wind.

The phenomenon of ITCZ boundary layer shocks puts demarttbnigontal resolution re-
qguirements on global NWP and climate models. These hom@geesolution requirements are as
strict or even stricter than those for accurate simulatibmoist convection. In view of the im-
portance of boundary layer shocks in determining the locadif diabatic heating, accurate ITCZ
simulations probably require accurate simulations of direhscale aspects of the boundary layer.

In closing we reiterate the conclusion that a boundary laheck is one of the essential ingre-
dients of the ITCZ. In fact, it could be said that the formataf a boundary layer shock is one of
the most important events in the formation of a narrow ITGH#,ifimposes on the ITCZ a classic

shock-like structure.
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APPENDIX A

Vertical transform

The mathematical principles underlying the vertical tfan® pair (2.21) and (2.22) are the

orthonormality and completeness of the eigenfunctiBpéz). Consider the eigenfunctiaf,,(z),

which is a solution of (2.23)—(2.23), and the eigenfunctifn (=), which is a solution of (2.23)—

(2.25) withm replaced bym’. To obtain the orthonormality relation, we multiply the aetjon

for Z,,(z) by Z,.(z), then multiply the equation fog,, (z) by Z,,(z), and finally integrate the

difference of the resulting equations to obtain

1/1 1)\ [ ,

s G i) [ 202N
(A1)
dZ,,(z) dZ,.(2)]7"

dz m(2) dz 0 =0

+ 2w

The second line in (A.1) can be evaluated with the aid of thenkdary conditions (2.24) and (2.25).

Then, for distinct eigenvalued., # h,,) and for normalizedzZ,,(z), there is an orthonormality

1 [*T 2
y /0 2 (2) Zyw (2) N2(2) dz + 2, (0)Z,(0)

1 it m=m (A-2)

0 if m#m.
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To confirm that (2.21) is the proper transform for the expangR.22), we multiply (2.22) by

Z,.(2)N?(z) and then integrate overto obtain

T

~

i V(Y 2) 2 (2) N?(2) dz

- . (A3)
_ mzz(]%@) /O Z(2) 2o () N2(2) d.
Similarly, we multiply (2.22), evaluated at= 0, by Z,,,(0) to obtain
(1, 0)Zm(0) =D () Zm(0) 2 (0). (A4)

m=0

Multiplying (A.3) by 1/g, adding the result to (A.4), and then using the orthonoryadlation
(A2), (2.21) is obtained, confirming the validity of the tsdform pair (2.21) and (2.22).
To prove that all the eigenvalues of the problem (2.23)-HRa2e positive, we multiply (2.23)

by Z,.(z) to obtain

N2Z2 Az, dZ,\> [ Z.\°
= %(Zm_dz ) . ( dz) +(ﬁ) | (A5)
Integrating (A.5) over and making use of the boundary conditions (2.24) and (2&&)Its in
1 1 o 2 2 2
=S [ Z2(2) N¥(2) dz + Z2(0)
b L9 Jo
[T 42\ (Za(2) Z3(0)
_/0 {( dz )+<2H =

The right hand side of (A.6) is positive. Sind& > 0, the term in braces on the left hand side of

(A.6)

(A.6) is also positive. Thus, all the eigenvalues are pasjiie.,h,, > 0 for all m.
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To determine if the eigenfunctiors,, (z) form a complete set, we first write (2.21) in the form

R 1 [ R ,
) =< [ 1480 2N (A7)
whered(z’) satisfies
1 o / 201 /o
. /0 SN () =1, (A.8)

Using (A.7) in (2.22) results in

by, z) =

o N (A.9)
5/0 {1+5 sz } (y, /) N2()d.

=0

<

The right hand side of (A.9) evaluatesidy, =) if

N Zn(2)Zm(2) = 6(2 — 2), (A.10)

m=0

which is the completeness relation. Although a generalfpmb@A.7) is not given, it is confirmed

numerically for the special case of constanin Appendix B. For further discussion, see section

8.4 of Arfken and Weber (1985) and section 6.3 of Courant aifiokit (1953).
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APPENDIX B

Calculation ofh,, and Z,,(z)

To solve the Sturm-Liouville problem (2.23)—(2.25), calesithe idealized case in which the
buoyancy frequency is a constant given by = 1.2x10~2 s~!. The solution of the second order
equation (2.23) has different forms depending on the eigleesh,,. We begin by exploring the
possibility that one of the eigenvalues is givenibywhich is defined byl = (2NH)?/g = 4328
m. The corresponding eigenfuncti(ﬁ'(z) then satisfiesl22/d22 = 0, in which case the solution
satisfying the upper boundary condition (2.24)3$z) = C(zr — z), whereC is a constant.
The lower boundary condition is satisfied{if + z;[(1/H) — (1/k)]}C' = 0. We assume that
the constanty is specified in such a way that # [(1/h) — (1/H)]"' = 8731 m, so that
1+ 27[(1/H) — (1/h)] # 0 andC' = 0, meaning that the boundary value problem does not
have a nontrivial eigenfunction with corresponding eigdne,, = 1. Below, the two cases are
investigated separately;, > h (Case 1) an@ < h,, < h (Case 2). The solutions involve solving

a transcendental equation using Newton'’s iterative metbod,,, .

Case 1. If the eigenvalues satisfy,, > &, then the equation faE,,(z) is

¢*Z,(2)
—fmz =0, B.1
dz? 22 B.1)
where
2 N? /1 1
“—?:—<T——)>0. (B.2)
ZT g h hm
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In this case the vertical structure functions satisfyingtipper boundary condition are

Zn(2) = Apsinh[p, (1 — z/27)], (B.3)

whereA,, is the normalization factor. Through application of the ésoundary condition (2.25),

it can be shown that,, is the solution of

_ fom
i) = T 2l — @) (B4

The transcendental equation (B.4) has only one solutionptéd by, and having the value

1o = 0.4686. The corresponding eigenvalig is obtained from (B2), written in the form
ho = h [1 — (2Hpo/2r)?] " ~ 7075 m. (B.5)

The top line in the orthonormality relation (A2) is satisfi€the normalization factor is given by

9 : ~1/2
Ay = {N2 il [smh(uo) coshizo) _ 1} + sinhQ(uo)} . (B.6)
9 Ho

Case 2. If the eigenvalues lie in the rangle< h,, < h, then the equation faE,,(z) is

d*Z,.(z) V2
Umz —0, B.7
dz? * 22, 8.7
where
V2 N? /1 1)
e (——=]>0. B.8
G g (hm h (B.8)
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In this case the vertical structure functions satisfyingtipper boundary condition are

Zn(2) = By sin[yp, (1 — 2/27)], (B.9)

whereB,, is the normalization factor. Through application of the éswoundary condition (2.25),

it can be shown that,, is the solution of

Um

(20/h)[1 — h/2H + (2Hv,, ) 27)?]

tan(v,,) = (B.10)

After the transcendental equation (B.10) is solvedgrthe eigenvalues,, can be obtained from

(B.8), written in the form

haw = h [14 (2Hvp /20)?] ™ ~ W [1 + (2Hmr/21)?] . (B.11)
The second (approximate) equality follows from the fact th& solutions of the transcendental
equation (B.10) are approximatehy, ~ mx form = 1,2, - - -, with the accuracy of the estimate
improving asm increases. The exact and approximate eigenvalues arm ilsT@ble 2.1. Finally,

the top line in the orthonormality relation (A2) is satisfiéthe normalization factor is given by

2 : —-1/2
P L P ST ™

Note that the dependence of the normalization fackyronm is weak because,, ~ mm, making
thesin(v,,) terms in (B.12) negligible, which leads 18, ~ [2g/(N?27)]"/? ~ 3.2.

To summarize, the eigenvalue for the external mode is giye(Blb) wherey, is the single
solution of the transcendental equation (B4), while theeuglues for the internal modes are given

by (B.11) wherey,, are the solutions of the transcendental equation (B.10¢ cresponding
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eigenfunctions are

Apsinh[po(l — z/27)] m=0
Zm(2) = (B.13)

Bpsin[v, (1 —z/zr)] m > 1,
where the normalization factors are given by (B.6) and (B.TRe first five eigenvaluefs,, (m =

0,1,2,3,4) are listed in Table 2.1, while the corresponding eigentioms are plotted in Fig. 2.2.

14 —
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FiG. B.1. Four plots of the left hand side of (B.15) for the chgiée= 1 km
(black),z = 4 km (blue),z = 7 km (red), and = 10 km (green). The two sums on
the left hand side of (B.15) have been truncatea at 500. These plots, and others
with different truncations, demonstrate that the left hamt® of (B.15) converges
in the mean to the right hand side of (B.15), thereby confignttre completeness
of the basis functiong,,(z) for the case of constan¥.

159



To numerically confirm the completeness relation (A10) fug tase of constany, first we
write it in the form
[1+6(2)]20(2') 20(2)

o (B.14)
HL46()]D | Zn(2)Zn(2) = 6( — 2),

m=1
where, for notational convenienceyeplaces:. The numerical confirmation of (B.14) is simpler
if (B.14) is converted to an integrated form because thertwloedelta functions will not appear.
Thus, integrating (B.14) over from zero toz, making use of (B.13), and finally multiplying by

N? /g results in

T Z0(2) {eosh(u) — cosh [ng (1L — /1))

o0

+3 %j”zm(z) {cos [vim(1 = z/27)] — cos(vpm)}

m=l (B.15)
00 1 ifz>2

+ ) Z0(0)2,(2) =

m=0 0 if 2 < 2.
Figure B.1 shows plots of the left hand side of (B.15) wher- 1,4,7,10 km and when 500
terms are used in the summation ower Plots similar to Fig. B.1, but for different truncations of
the sums, confirm that, although the Gibbs phenomenon ooceans: = Z, the left hand side of
(B.15) converges (in the mean) to the unit step function asittmber of terms is increased. This
is numerical confirmation that (B.14) is valid and thereftivat the basis functions (B.13) form a

complete set in the special case of consfent
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APPENDIX C

Characteristic form

Equations (5.1)—(5.5) constitute a quasi-linear first oglestem, i.e., the system is linear in
the first derivatives but the coefficients of these deriestiare functions of the dependent variables
u andwv. In the absence of the horizontal diffusion terms, theseggus constitute a hyperbolic
system, which means that it can be rewritten in charactefmtm. Knowledge of the characteristic
form allows for a deeper understanding of the way that charetics can intersect and thereby
produce discontinuities in andv and singularities inv and(. To derive the characteristic form
we shall rearrange (5.1) and (5.2) in such a way that all ttmegénvolving the derivative&u /0t),
(Ou/adg), (Ov/0t), (Ov/ad¢) appear on the left-hand sides and all the other terms appetiieo
right-hand sides. This procedure requires splittingdhterms. In regions wherer > 0, thew
terms in (5.1) and (5.2) vanish. In regions where< 0, thew terms do not vanish, in which
case these terms need to be expressed in terfis 8f0¢) — (v tan ¢)/a, and then th¢dv/ad¢)
parts need to be kept on the left-hand sides of (5.1) and {hitg the (v tan ¢)/a parts need to
be brought over to the right-hand sides. This proceduresgyeaccomplished by noting that the

mass continuity equation in (5.3) yields

L ﬁ_vtangb
w= h(a(% : ) (Cc.1)

which allows (5.1) and (5.2) to be written in the form

ou ou v
a‘F’U@—F(l—a)(U_Ug)m—FM (C.2)
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av 8’0
where
F, = (1—a)(u—ug)vtang + <2Qsin¢ + utangb) v — CDUE7 (C.4)
a a h
_ 2
= LTG0 gy MO, L0 (C.5)
a p ad¢ h

The forms (C.2) and (C.3) are convenient because the namiiies associated with spatial deriva-
tives are on the left-hand side while all the other linear aadlinear terms are on the right-hand
side. The classification of the system (C.2) and (C.3) as artghic system and the determination
of the characteristic form of this system depends on findiggeigenvalues and left eigenvectors
of the matrixA, which is defined by

v (1 —a)(u—uy)
A= (C.6)

0 (2—a)

(see Chapter 5 of Whitham (1974)). Note that the mattixss composed of the coefficients of
the (Ou/ad¢) and (0v/ad¢) terms on the left-hand sides of (C.2) and (C.3). koe 1,2, let

(E%") Eé")) be the left eigenvector of corresponding to the eigenvalu&”, i.e.,

(e &) = A (6 Y. (C.7)
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As is easily checked by direct substitution into (C.7), thie eigenvalues and the two correspond-
ing left eigenvectors are

A =y = £§1> = —v, £§1> = U — Ug,
(C.8)

M) =(2—-apw «— 6&2) =0, 522) = 1.
Since the eigenvalues’) and A® are real and the corresponding left eigenvectors are liyear
independent, the system (C.2)—(C.3) is hyperbolic and eareWwritten in characteristic form. To
obtain this characteristic form, we next take the sunf&?)’f times (C.2) andfé") times (C.3) to
obtain

ou ou Ov ¢
(n) ) ou Ou ) ) Yv
0 {0t+va8¢}+€2 {0t+

01} n n
Frewd ‘“x“‘“%] m} — R+ R,
2

(C.9)

Using the eigenvector components given in (C.8), equaftibf)(becomes (forn = 1 andn = 2)

ou ou ov ov
! ( ot ”@) ) (a ”@) = O (€49
ov ov

Since (C.11) is identical to (C.3), we conclude that (C.3lisady in characteristic form. We now

write (C.10) and (C.11) in the form

du dv do
v T (u— ug)ﬁ =vF) — (u—uy)F, on A =0 (C.12)
dv do
= = F, on a— = (2 —a)v. (C.13)
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Equations (C.12) and (C.13) constitute the characterfstim of the original system (C.2) and
(C.3). An advantage of (C.12) and (C.13) is that, along eaahily of characteristic curves, the
partial differential equations have been reduced to orglid#ferential equations. It is interest-
ing to note that, in regions of subsidence (i.e., where- 0), information onv is carried along
characteristics given by(d¢/dt) = 2v, while information on a combination ef andwv is carried
along characteristics given lafde/dt) = v. Thus, in regions of subsidence there are two distinct
families of characteristics. In contrast, for regions otihdary layer pumping (i.e., where= 1),

the two families of characteristics become identical.

Although in practice the forcing termis;, and F; are too complicated to allow analytical solu-
tion of (C.12) and (C.13), the numerical solution of thesdirary differential equations can serve
as the basis of the shock-capturing methods described bgouev(2002). In sections 5.6 and 5.7
we have adopted the simpler approach of solving (5.1)—(&B)g standard finite differences with
the inclusion of horizontal diffusion to control the solutinear shocks. Although this approach
has some disadvantages (e.g., unphysical oscillatiorengawck), it provides a useful guide to the
expected results when full-physics hurricane models carubeat the high horizontal resolution
used here.

In regions wherev < 0, we haven = 0 and the characteristic forms (C.12) and (C.13) distin-
guish two families of characteristics, one givendfy¢/dt) = v and one given by (d¢/dt) = 2v.

In regions wherev > 0, we haverr = 1 and there is only one family of characteristics, given by
a(d¢/dt) = v. In that case, (C.13) can be used to eliminate/dt) in (C.12), which leads to the
conclusion thatdu/dt) = F; and(dv/dt) = F; ona(d¢/dt) = v. This case of only one family of

characteristics is the one explored analytically in sexi® and 4, with the forcing terms; and
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F set to zero in section 3, and with these forcing terms repitesglinear surface drag in section
4.

In passing we note that there is a less formal, more inturbvge from (C.2) and (C.3) to the
characteristic forms (C.12) and (C.13). This intuitivete®tesults from simply noting that (C.3) is
already in characteristic form and can be directly written(@.13), while the characteristic form
(C.12) can be simply obtained by combining (C.2) and (C.3uoh a way as to eliminate terms

containing the factofl — «)(dv/ad¢).
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