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ABSTRACT 

 

 

 
ARTIFICIAL NEURAL NETWORKS FOR FUEL CONSUMPTION AND EMISSIONS MODELING 

IN LIGHT DUTY VEHICLES 

 

 
There is growing evidence that real world, on-road emissions from mobile sources exceed emissions 

determined during laboratory tests and that the air quality, climate, and human health impacts from 

mobile sources might be substantially different than initially thought. Hence, there is an immediate need 

to measure and model these exceedances if we are to better understand and mitigate the environmental 

impacts of mobile sources. In this work, we used a portable emissions monitoring system (PEMS) and 

artificial neural networks (ANNs) to measure and model on-road fuel consumption and tailpipe emissions 

from Tier-2 light-duty gasoline and diesel vehicle.  

 
Tests were performed on at least five separate days for each vehicle and each test included a cold start and 

operation over a hot phase. Routes were deliberately picked to mimic certain features (e.g., distance, time 

duration) of driving cycles used for emissions certification (e.g., FTP-75). Data were gathered for a total 

of 49 miles and 145 minutes for the gasoline vehicle and 52 miles and 165 minutes for the diesel vehicle. 

Fuel consumption and emissions data were calculated at 1 Hz using information gathered from the vehicle 

using the onboard diagnostics port and the PEMS measurements. Route-integrated tailpipe emissions did 

not exceed the Tier-2 emissions standard for CO, NOX, and non-methane organic gases (NMOG) for 

either vehicle but did exceed so for PM for the diesel vehicle.  

 
We trained ANN models on part of the data to predict fuel consumption and tailpipe emissions at 1 Hz for 

both vehicles and evaluated these models against the rest of the data. The ANN models performed best 

when the training iterations (or epochs) were set to larger than 25 and the number of neurons in the 

hidden layer was between 7 and 9, although we did not see any specific advantage in increasing the 
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number of hidden layers beyond 1. The trained ANN model predicted the fuel consumption over test 

routes within 5.5% of the measured value for both gasoline and diesel vehicles. The ANN performance 

varied significantly with pollutant type for the two vehicles and we were able to develop satisfactory 

models only for unburned hydrocarbons (HC) and NOX for diesel vehicles. Over independent test routes, 

the trained ANN models predicted HC within 12.5% of the measured value for the gasoline vehicle and 

predicted NOX emissions within 3% of the measured values for the diesel vehicle. The ANN performed 

better than, and hence could be used in lieu of, multivariable regression models such as those used in 

mobile source emissions models (e.g., EMFAC). In an ‘environmental-routing’ case study performed over 

three origin-destination pairs, the ANNs were able to successfully pick routes that minimized fuel 

consumption.  

 
Our work demonstrates the use of artificial neural networks to model fuel consumption and tailpipe 

emissions from light-duty passenger vehicles, with applications ranging from environmental routing to 

emissions inventory modeling.  
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1. Introduction 

  

  

  
The vast majority of anthropogenic greenhouse gases come from the combustion of fossil fuels used for 

energy production and transportation (Kampa and Castanas, 2008). According to 2016 United States 

Environmental Protection Agency (EPA) report, in the United States, the transportation and electricity 

generation sectors contribute to the majority of total greenhouse gas emissions, with each contributing 28 

percent each. Within the transportation sector, light-duty vehicles (LDV) which include passenger cars 

below 8500 lbs contribute to 60% of total emissions followed by heavy-duty trucks (HDT) which account 

for 23%. Greenhouse gases from transportation include carbon dioxide (CO2), methane (CH4), nitrous 

Oxides (NOX) which are a result of the combustion of fossil fuels. Passenger vehicles have a huge 

environmental impact and contribute to 38.1% of total CO emissions, 34.7% of total NOX emissions, 

7.1% of total PM2.5 and 10.8% of total PM10 emissions (U.S. EPA Office of Air and Radiation, n.d.). 

These pollutants not only have significant climate impact but also have adverse health effects (Kampa and 

Castanas, 2008) (Brugge et al., 2007) (Laumbach and Kipen, 2012) (Zhang and Batterman, 2013). For 

example, breathing elevated levels of CO reduces the amount of oxygen reaching the body’s organs and 

tissues. This can result in chest pain and other serious symptoms like a coma. On the climate front, CO 

emissions, contribute to the formation of CO2 and ozone, greenhouse gases that warm the atmosphere. 

NOX also enhances the production of ozone (O3) causing greenhouse effects. Since vehicular pollution 

has a significant role in global climate change it is important to reduce the emissions from vehicles in the 

most cost-efficient way possible. One forthright approach to reducing greenhouse gas emissions is by 

improving fuel economy which results in a lesser amount of fuel burnt leading to reduced emissions.  

 
To improve fuel economy the US EPA imposed Corporate Average Fuel Economy (CAFE) standards in 

1982. These are a fleet-wide average fuel economy standard in a given model year, expressed in miles per 

gallon that the manufacturers must attain to be compliant and avoid fines. These standards indirectly 

contribute to better air quality through reduced emissions of CO, NOX, and PM2.5 . To improve fleet wide 

https://paperpile.com/c/Fsa8ZV/5sJX
https://paperpile.com/c/Fsa8ZV/DcMn
https://paperpile.com/c/Fsa8ZV/5sJX
https://paperpile.com/c/Fsa8ZV/5sJX
https://paperpile.com/c/Fsa8ZV/dfhc
https://paperpile.com/c/Fsa8ZV/RdHH
https://paperpile.com/c/Fsa8ZV/UNqY
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averages, manufacturers have also been encouraged to increase the production of electric and hybrid 

vehicles. While there are many methods to improve fuel economy in vehicles, in our study, we try to 

improve fuel economy by Eco-routing. Eco-routing is the ability for a vehicle to acknowledge all possible 

routes to get to a destination and identify the most fuel efficient and/or emissions efficient way to help the 

driver reduce the environmental impact of their journey. To do this we need a better understanding of 

individual vehicles on-road vehicular emissions for a representable drive cycle. 

 
All vehicles regardless of size and model year must undergo emissions test procedures and comply with 

the certification standards. The emissions test procedures take place on a chassis dynamometer for 

standard emission test cycles. Chassis dynamometer drive cycles are defined as vehicle velocity as a 

function of time intended to capture various driving conditions such as rural, urban, low-speed city 

driving and aggressive highway driving. Common drive cycles used for chassis dynamometer tests are the 

Federal Test Procedure-75 (FTP-75), New York City Cycle (NYCC), California Unified Cycle (UC, 

LA92) and, Inspection and Maintenance Driving Cycle (IM240). The existing models to predict on-road 

emissions in the United States are EMFAC (EMission FACtor) by California Air Resources Board and 

MOtor Vehicle Emission Simulator (MOVES) which are quite extensive and are built using data from 

these emissions testing facilities that use chassis dynamometer tests. These models are only accurate for 

on-road results if the data with which they are built are accurate. Chassis dynamometer tests often fail to 

capture the effects of real-world driving such as driver behavior, weather, traffic and, rash driving habits 

which can result in under-predicting on-road emissions (Frey et al., 2008). Many studies have pointed out 

that the on-road emissions of vehicles are often much higher than certified limits especially during 

suburban/rural driving conditions (Pelkmans and Debal, 2006)), (Kumar Pathak et al., 2016). Anenberg et 

al., (2017) compiled information from 11 major markets (USA, China, Japan, EU) to show that over half 

of on-road light-duty diesel vehicles were exceeding certification limits. Figure 1.1 shows that in the 

United States, on-road NOX emissions for tier 2 light-duty diesel vehicles were found at 0.35 g.mile-1 

https://paperpile.com/c/Fsa8ZV/8ooF
https://paperpile.com/c/Fsa8ZV/rKbp
https://paperpile.com/c/Fsa8ZV/Sm3f
https://paperpile.com/c/Fsa8ZV/zLgH
https://paperpile.com/c/Fsa8ZV/zLgH
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while the certified limit was 0.7 g.mile-1.  These excess emissions (totaling 4.6 million tons) were linked 

to 38,000 premature deaths globally in 2015.  

  

Fig 1.1 Real world NOX emission factors by vehicle emissions standards in different regions (Anenberg et 

al., 2017)   
 

Real-World drive cycles help in capturing the difference between the chassis dynamometer emissions and 

real driving emissions. Over the past decade, portable emissions monitoring systems (PEMSs) have been 

used to measure tailpipe emissions from on- and off-road vehicles for in-use tests ((Frey et al., 2003); 

(O’Driscoll et al., 2016); (Kwon et al., 2017);). While their use earlier was limited to studying differences 

between laboratory and on-road use, they are now increasingly used for regulatory purposes. For instance, 

federal (Environmental Protection Agency) and state (California Air Resources Board) emissions 

certification for heavy-duty vehicles in the United States requires compliance with Not To Exceed (NTE) 

standards measured via PEMS devices (https://www.dieselnet.com/standards/cycles/nte.php). The 

European Commission now requires the use of PEMS-based testing to meet real driving emissions (RDE) 

standards in all of Europe and the United Kingdom. PEMS devices have evolved significantly in terms of 

the quality, performance, and cost and systematic tests against laboratory-grade reference instruments 

show very little difference (Durbin et al., 2007). Using PEMS devices to acquire in-use emissions data for 

https://paperpile.com/c/Fsa8ZV/eK2L
https://paperpile.com/c/Fsa8ZV/19vu
https://paperpile.com/c/Fsa8ZV/sgnj
https://www.dieselnet.com/standards/cycles/nte.php
https://paperpile.com/c/Fsa8ZV/wmYT
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individual vehicles and developing vehicle specific emissions models using this data can deliver better 

estimates of real-world emissions from vehicles.  

 

The goal of our study is a step to model fuel consumption and on-road emissions in real time based on 

parameters that can be calculated ahead of driving and give the user suggestions about the route that could 

be used which results in the least fuel consumed or least amount of emissions. We aim to develop models 

that can better predict on-road emissions from passenger vehicles to achieve more accurate emission 

estimates from the transportation sector. The advent of smart and connected vehicles helps us to have a 

better sense of the route to be driven in advance. Developing models for each individual vehicle and 

identifying the possible routes between the origin and destination pair will help us in predicting the fuel 

consumption and tailpipe emissions in advance. In our work, we construct models using the data collected 

from on-road vehicles under real driving conditions using a Portable Emissions Measurement Device 

(PEMS). Artificial Neural Network (ANN) models and multivariable linear regression models were 

developed using data from the PEMS to predict on-road fuel consumption and tailpipe emissions from 

LDV’s. The primary objectives of this work are (i) to determine whether ANN models perform better 

when compared to linear multivariable models in predicting on-road fuel consumption and emissions 

from light duty vehicle, (ii) determine efficient ways to train and test an ANN model to predict fuel 

consumption and tailpipe emissions and (iii) to understand how the performance of ANN model varies by 

the type of pollutant, and (iv) to determine if ANNs can be used to improve on-road fuel economy. 
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2. Methods 

 

 

 
In the sections below, we describe the experimental (Section 2.1) and numerical methods (Section 2.2) 

used in this work. The experimental methods describe the use of the Portable Emissions Monitoring 

System (PEMS) to measure fuel consumption and tailpipe emissions from two light-duty passenger 

vehicles. The numerical methods describe the multivariable regression and artificial neural network 

models used to model fuel consumption and tailpipe emissions.  

2.1 Experimental Methods 

2.1.1 Portable Emissions Monitoring System (PEMS) 

In this work, we used a PEMS AxionR/S manufactured by Global MRV (Buffalo, NY)(RDE PEMS, 

n.d.). This is a low to mid-range device that costs approximately $100,000 and was loaned through a no-

cost contract with Lightning Systems (Loveland, CO). The PEMS (shown in Figure 2.1(a)) consists of a 

central unit in a briefcase that includes the sensors and the integrated system to acquire, process, record, 

and display data in real-time. It has a small form factor, weighs approximately 17 kg, and can be easily 

placed on the front passenger seat during tests.  The PEMS measures concentrations of CO2, O2, CO, 

NOX, HC (hydrocarbons), and PM (particulate matter) at 1 Hz; details for the different gas and particle 

sensors are provided in Table 2.1.  

 

Figure 2.1: (a) PEMS device, (b)PEMS in the passenger seat during experiment(c)Exhaust sampling line 

https://www.globalmrv.com/pems-axionrs-2/
https://www.globalmrv.com/pems-axionrs-2/
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Table 2.1: Sensors and sensor features used in the PEMS AxionR/S. Values reflect those listed in the 

AxionR/S manual (Global MRV, 2016). 

 

Species Measurement Type Measurement Range Accuracy Resolution Sensor Flow Rate 

CO2 NDIR 0.01 – 16% ± 0.3% abs. 0.01 vol. % 1 liter/min 

O2 Electrochemical 0.01 – 25 % ± 0.1% abs 0.01 vol. % 1 liter/min 

CO NDIR 0.001 – 10% ± 0.02% abs. 0.001 vol. % 1 liter/min 

NO Electrochemical 1 – 4000 ppm ± 25 ppm abs. 1 ppm 1 liter/min 

HC NDIR 1 – 4000 ppm ± 8 ppm abs. 1 ppm 1 liter/min 

PM Light scattering 0.01 – 300 mg/m3 ± 2% 0.01 mg/m3 4 liters/min 

  

Tailpipe emissions were sampled through a stainless-steel probe (2.25 mm OD) inserted ~25 cm inside 

the tailpipe and secured using a steel hose clamp. The probe was connected to two conductive tubes that 

ran from the tailpipe to the PEMS device placed inside the vehicle (~8 m). One of the tubes sampled 

undiluted exhaust at 5 liters per minute (lpm) and delivered the sample to the gas sensors while the other 

tube sampled undiluted exhaust at 5 lpm and delivered the sample to the particle sensor. Both sample 

streams were run through a water trap to remove the condensing water and the gas stream was also 

filtered for particles using a particle filter. We did not measure losses of the species through the relatively 

long sample tubing but expect the HC and PM to be substantially affected based on the tube material 

(Deming et al., 2019). Some modern PEMS devices are located in the trunk of the vehicle or on a skid 

above the tailpipe outside the vehicle, presumably to shorten the sampling lines and maintain the sample 

integrity (e.g., Figure 2.2).  
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Figure 2.2: Examples of on-road sampling from light-duty vehicles with the PEMS placed in the trunk 

(left) and on a skid above the tailpipe (right). Courtesy: (Portable Emissions Measurement System)   

2.1.2 Vehicles, Routes, and Experimental Details 

The PEMS was used to measure tailpipe emissions from in-use gasoline and a diesel vehicle. Both 

vehicles were solicited from researchers working at the Powerhouse Energy Campus and were road legal 

(i.e., valid registration and emissions certificate provided under Colorado’s inspection and maintenance 

program (AirCare Colorado, n.d.). We deliberately chose older vehicles to make sure we could make 

robust measurements with this low- to medium-range PEMS and not have to worry about signals near or 

below the limit of detection. We note that the goal of this research was to study the potential of artificial 

neural networks to model tailpipe emissions and the choice of vehicle should have little to no influence on 

the findings from this work. Details for both vehicles are provided in Table 2.2. Both vehicles were driven 

on commercially available fuel from local gas stations.  

 

Table 2.2: Vehicles and vehicle specifications used for this study. 

 
Attribute Gasoline Diesel 

EPA Tier standard Tier 2 Tier 1 

Model year 2008 2003 

Make and model Subaru Impreza  Volkswagen Jetta 

Engine displacement 2.5 L 1.9 L 

Gross vehicle weight 4040 lbs. 4023 lbs. 

file:///C:/Users/shiva17/Downloads/Publications%20|%20Center%20for%20Alternative%20Fuels%20Engines%20and%20Emissions%20|%20West%20Virginia%20University,%20%5bonline%5d%20Available%20from:
file:///C:/Users/shiva17/Downloads/Home%20::%20AirCare%20Colorado,%20%5bonline%5d%20Available%20from:
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Vehicle miles 88,000 120,000 

Emissions control 3-way catalytic converter (CO, THC, NOX) Exhaust gas recirculation for NOX 

 

We performed a total of eight experiments with four tests each for the gasoline and diesel vehicle. Each 

test was performed on a different day since to ensure that our test, like those performed on chassis 

dynamometers, included a cold start. Gasoline tests were conducted in spring 2018 (ambient temperatures 

of 0 to 6 ℃) and the diesel tests conducted in spring and summer of 2018 (ambient temperatures of 7 to 

22 ℃). Tests were performed on the same urban-suburban route through Fort Collins, CO that was ~10 

miles long and required less than 30 minutes to navigate. The test route with the velocity superimposed 

on a map of Fort Collins, CO is shown in Figure 2.2(a) and the timeseries for the vehicle velocity is 

shown in Figure 2.2(b). The developed drive cycle starts at Fort Collins downtown to capture the 

urban/downtown driving and later routes through the suburbs of the city to mimic cruising/highway 

speeds. We can clearly see the low-velocity patterns near the starting point (A) and higher speeds as we 

move away from downtown Fort Collins.  Since these were on-road tests, the vehicle operation during 

each of these tests was a little different. In addition to the test route mentioned above, we drove one 

random route with the gasoline vehicle on one of its four experiment days and drove four random routes 

with the diesel vehicle on each of its four experiment days. These random route tests do not include a cold 

start.  
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 . 

 

 

At the beginning of each test day, the PEMS was placed on the front passenger seat, following which the 

PEMS was powered and warmed up for 45 minutes. A calibration was then performed with zero air and a 

low and high concentration gas mixture (low: 6% CO2, 0.5 ppmv CO, 300 ppmv NO, 200 ppmv of 

propane and high: 12% CO2, 8 ppmv CO, 3000 ppmv NO, 3200 ppmv propane). The manufacturer 

recommends calibration for every 10 hours of PEMS operation and hence a calibration was performed for 

every test day. The PEMS was powered using a dedicated 12V, 80 Ah lead acid battery that was placed in 

the passenger row of the vehicle. On a full charge, the lead-acid battery can provide 10 hours of 

uninterrupted power to the PEMS and was enough for the single day tests performed in this work. All 

lines to and from the PEMS (sample lines, zero air line to measure the background air, exhaust lines) were 

taped to the exterior of the vehicle for safety purposes. The PEMS was interfaced with the On-Board 

Diagnostics-II (OBD-II) port on the vehicle to read vehicle parameters that included, velocity, intake air 

temperature, engine speed, and manifold air pressure; a complete list can be found in the appendix. 

Finally, a GPS (global positioning system) module connected to the PEMS was affixed to the top of the 

vehicle to record latitude, longitude, and altitude. The PEMS was made to sample ambient air for 45 

minutes at the end of each test day to flush the sample and exhaust lines.  

 

Figure 2.2: Route map (left(a)) and vehicle 

velocity (right(b)) for the experiment 

performed on January 3rd, 2018 with the 

gasoline vehicle 
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2.1.3 PEMS Data Management  

The PEMS recorded and stored raw and processed data on a local hard drive in the ASCII format. These 

data included, but were not limited, to local time (hh:mm:ss), tailpipe concentrations(%, ppmv, or µg m-3) 

and emission factors (g mile-1) and rates (mg.s-1) for CO2, O2, CO, NOX, THC, and PM, air intake (g.s-1), 

exhaust flow (g.s-1), fuel consumption (g.s-1), latitude, longitude, altitude (m), and vehicle speed (km h-1). 

We should note that tailpipe concentrations and emissions were corrected for the residence time in the 

sampling line. The ASCII data from the PEMS for each experiment was organized as a structure array and 

stored as a .mat file for further processing in MATLAB (MathWorks, MA). The raw ASCII files from the 

PEMS along with MATLAB structure arrays and codes are currently stored on a network drive but will 

eventually be archived with CSU Libraries.  

2.2 Numerical Methods 

In this study, Linear regression models and Artificial Neural Network (ANN) models were the two 

different predictive modeling approaches used to model on-road fuel consumption and tailpipe emissions 

from the two light-duty vehicles. Both these models are useful to solve tasks that are difficult to solve 

with fixed programs. The sections below briefly describe the theory and our process for model 

development and application.  

2.2.1 Linear Regression Modeling 

A linear regression model is a form of predictive modeling technique where the model can take a set of 

parameters as input and can predict a scalar output corresponding to those inputs. As the name suggests, 

the output of the linear regression model is a linear function of the inputs. The three different types of 

linear regression models based on the number of inputs and outputs of the model are simple regression, 

multivariable linear regression, and multivariate linear regression. Simple regression is when a single 

output is predicted using one dependent variable (input). In multivariable regression, a single output is 
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predicted using two or more dependent variables and in multivariate regression, one or more dependent 

variables are used to predict multiple output parameters at once.  

• Simple Regression 𝑌 = 𝛽0 + 𝛽1 ∗ 𝑋 

• Multivariable Linear Regression 𝑌 = 𝛽0 + 𝛽1 ∗ 𝑋1 + 𝛽2 ∗ 𝑋2 + ⋯ 𝛽𝑛 ∗ 𝑋𝑛 

• Multivariate Regression  �̂� = 𝛽0 + 𝛽1 ∗ 𝑋1 + 𝛽2 ∗ 𝑋2 + ⋯ 𝛽𝑛 ∗ 𝑋𝑛 

Y is the response variable, 𝑋1 through 𝑋𝑛 are the dependent variable or predictors, 𝛽0 is the bias or 

intercept, and 𝛽1 through 𝛽𝑛 are the coefficients associated with respective predictors and, �̂� is set of 

response variables that are dependent on each of the dependent variables. 

 
In this study, we used Multivariable (MV) linear regression model to predict fuel consumption and 

tailpipe emissions individually using multiple predictors such as vehicle velocity, acceleration, intake air 

temperature, vehicle rotations per minute (rpm), vehicle specific power and, time since the start of the 

experiment. In the training phase, each set of inputs has an associated target output value which results in 

a set of weights that are calculated using the method of least squares (Geladi and Kowalski, 1986), the 

greater the weight associated with an input parameter, the greater is its impact on the response or output 

variable.  

2.2.2 Artificial Neural Networks  

Artificial Neural Networks (ANN) or Machine Learning (ML) models are learning algorithms that were 

inspired to be computational models of biological learning. As defined in (Mitchell, 1997) “ A computer 

program is said to learn from experience E with respect to some class of tasks T and performance measure 

P, if its performance of tasks in T, as measured by P, improves with experience E”. ANNs can be used to 

perform multiple tasks and some common tasks solved using ANNs are classification, denoising and, 

regression. A common example of classification is object detection where the input is an image and the 

output are the identification of the object in the image if any. Denoising is when the neural networks are 

required to denoise a corrupted input signal with the help of a model built using uncorrupted input 

https://paperpile.com/c/Fsa8ZV/aJNH
https://paperpile.com/c/Fsa8ZV/UA8L
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signals. Regression is when the ANN model is trained on an existing set of observations and predicts a 

numerical output based on a previously unobserved input or set of inputs. An example of this is 

temperature forecasting based on previous trends and various factors contributing to the change in 

temperature. ANN models are non-linear models, primarily used when the underlying relationship within 

the data is unknown. These models can identify and learn correlated patterns between the inputs and the 

associated target output even if the data is non-linear, complex and, noisy and can predict the output of 

new independent data (Lek and Guégan, 1999) .  

 

ANN algorithms are broadly classified as supervised and unsupervised learning (LeCun et al., 2015). 

Unsupervised learning is when neural network models learn by understanding the multiple features of the 

input dataset that does not have a corresponding observed target value, this is mostly associated with the 

classifier algorithms such as image recognition (Weber et al., 2000) and clustering analysis (Erman et al., 

2006) . In our work, we have used supervised ANN models that learn from not only the features of the 

input values but also have an associated target value for each input. Multiple studies have previously used 

ANN models for various emissions modeling (Kukkonen et al., 2003)  (Khoshnevisan et al., 2013) 

(Nagendra and Khare, 2006) (Mohamed Ismail et al., 2012) (Thompson et al., 2000). A multi-layer 

feedforward neural network also known as multi-layer perceptron (MLP) is a popular supervised neural 

network architecture where the model is constructed based on experimental data with known output. In 

this architecture, the neurons are arranged in successive layers from the input layer to the output layer 

through hidden layers where information flows unidirectionally (Lek and Guégan, 1999). The number of 

neurons in each of these layers varies according to the complexity of the data. The most important phase 

in model development is the training phase where the ANN model learns using a set algorithm to perform 

the designated task. In this phase, the network is presented with a training dataset consisting of 

input/output pairs obtained from the real-world experimentation. After the training phase, the 

performance of the model is assessed using a different dataset called test dataset. The primary challenges 

associated with training the model are overfitting, underfitting, and generalization of models. Underfitting 

https://paperpile.com/c/Fsa8ZV/XvXL
https://paperpile.com/c/Fsa8ZV/9WKY
https://paperpile.com/c/Fsa8ZV/uwLG
https://paperpile.com/c/Fsa8ZV/JV1y
https://paperpile.com/c/Fsa8ZV/JV1y
https://paperpile.com/c/Fsa8ZV/Fqdi
https://paperpile.com/c/Fsa8ZV/61Fl
https://paperpile.com/c/Fsa8ZV/rNd7
https://paperpile.com/c/Fsa8ZV/O3K3
https://paperpile.com/c/Fsa8ZV/7geE
https://paperpile.com/c/Fsa8ZV/XvXL
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is when the trained model has high errors when validated against the same dataset with which it is trained 

with while overfitting happens when the model performs well when validated against the training dataset, 

but the performance drops when validated against a different dataset. Generalization refers to the model’s 

ability to perform well on previously unobserved inputs during training. We can say that a model 

performs well on generalized data if the difference in error between train validation and test validation is 

minimal.  

 

In our work, we used neural network toolbox available in MATLAB which has various training 

algorithms to train the neural network models (NN). In this study, we used a two-layer feed-forward 

network trained with the Levenberg-Marquardt algorithm and a sigmoid activation function.

 

Figure 2.3: Basic neuron block in an artificial neural network model 
 

Figure 2.3 depicts the basic block of all NN models which is a single input neuron where a scalar input (i) 

(e.g., Velocity) is multiplied with a scalar weight (w) and this weighted input is then added to a bias (b) 

term which becomes the net input that is passed through a transfer/activation function (f) to produce a 

scalar output (o) (e.g., fuel consumption or emissions) . The neural network element computes a linear 

combination of its input signals (net input) and applies a sigmoid function 𝑓(𝑥) = 11+𝑒−𝑥 to the result to 

introduce nonlinearity in the model by mapping the net input that can vary between minus infinity to plus 

infinity to 0 and 1. The output from the hidden layer is then fed as an input to the output layer where a 

similar procedure with a linear activation function is applied to approximate the function value. A typical 

neural network architecture consists of multiple neurons in different layers. Figure 2.4 illustrates an 

example of the NN architecture in the MATLAB toolbox used in this study where there are 7 independent 

inputs to the network, one hidden layer with 8 neurons and an output layer to predict one response at any 
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given time. In MATLAB, the training data set is split into three segments for training, validation, and 

verification. The amount of data allocated for each of these can be user-specified and in our work, we 

chose it to be 70%, 15%, and 15% respectively. The process of training a neural network model involves 

changing the weights and biases of the network to optimize the performance of the network. The common 

performance measure used in training feedforward neural networks is mean square error (MSE) between 

the predicted output of the 15% validation dataset and the respective observed values. 

MSE = 
1𝑁 ∑ (𝑀𝑖 − 𝑂𝑖)2𝑁𝑖=0   where 𝑁 is the total number of data points, 𝑀𝑖 is the model output and, 𝑂𝑖 is 

the observed/target value.   

 

There are many standard numerical optimization functions for training multilayer feedforward neural 

network models. The optimization methods mainly use either the gradient of network performance with 

respect to network weights or the Jacobian of network errors with respect to network weights 

(https://www2.cs.siu.edu/~rahimi/cs437/slides/nnet.pdf). Jacobian uses the gradient method to compute 

the final weights and biases. The Levenberg-Marquardt (LM) algorithm uses the Jacobian method to 

optimize network performance and is also the fastest algorithm available in MATLAB toolbox 

(Levenberg-Marquardt backpropagation, n.d.).  The LM method was found to be more efficient and to 

have a high convergence rate when compared to the gradient algorithm (Hagan and Menhaj, 1994) 

 

Figure 2.4. Example of an artificial neural network architecture from MATLAB 2018 toolbox  

 

https://www2.cs.siu.edu/~rahimi/cs437/slides/nnet.pdf
https://www.mathworks.com/help/deeplearning/ref/trainlm.html
https://paperpile.com/c/Fsa8ZV/Th6X
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The performance of a Neural network model also depends on the number of neurons in the hidden layers, 

the number of hidden layers and the number of epochs and the initial weights assigned. Typically, these 

parameters are set beforehand. Epochs refer to the number of times the network weights and bias terms 

are updated to obtain the best performing model. To capture the effects of these parameters on the model 

performance multiple simulations were run while varying all the above-mentioned parameters. A general 

consensus is that by increasing the number on any of these parameters will eventually lead to overfitting 

of the model which trickles down to poor performance when validated against a new dataset (Sheela and 

Deepa, 2013). The effect of initial weights on the model performance was minimized by training each NN 

model with a set number of epochs, hidden layers and number of neurons, multiple times and picking the 

model with the best performance on the validation dataset.  

 

In our work, we focus on both linear and ANN regression models to predict fuel consumption and 

emissions from on-road LDV’s given a certain set of inputs. The models are developed/trained using the 

on-road experimental data obtained in this study. The performance of the model was validated using 

training dataset (train validation) to understand the model performance against the data it was trained 

with. Models were also validated with data from a different experiment (test validation) which were 

independent to the training dataset, but also identically distributed meaning performed on the same 

vehicle on the same route with the same driver. 

2.2.3 Processing PEMS Data for Modeling 

For all experiments, we performed quality assurance by checking for data gaps (e.g. since both vehicles 

had a manual transmission, gaps caused due to poor gear shifts leading to engine off) and outliers (e.g. 

NaN values caused when the engine shuts off during the experiment). PEMS software automatically 

corrects for any signal delays between the parameters and outputs the data as a second by second ASCII 

comma delimited text (csv). These files were read using MATLAB software as multiple row vectors with 

each vector representing one particular parameter from that experiment. All the row vectors from one 

https://paperpile.com/c/Fsa8ZV/Mre8
https://paperpile.com/c/Fsa8ZV/Mre8
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experiment were saved in a structure data-type (struct) that can store vectors of different data types in it. 

Each experiment had one struct file with 19 different row vectors such as velocity, rpm, acceleration, fuel 

consumption, CO, CO2, NOX, HC, PM, manifold air pressure, intake air temperature, time in seconds 

from start of the experiment, latitude, longitude, catalyst temperature, manifold air flow, altitude, flow in 

and flow out.  One other parameter calculated was the limit of detection (LoD) of the PEMS device for 

different pollutants at every second since the device does not account for measurements performed at or 

below the LoD. LoD of the PEMS device depends on the lowest measurement range for each pollutant in 

milligrams per meter cubed, density of air at the experimental location and the intake air flow rate i.e. 𝐿𝑜𝐷 (𝑚𝑔 𝑠−1) = 𝑋 (𝑚𝑔 𝑚−3) ∗ 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 (𝑔 𝑠−1)𝜌 (𝑔 𝑚−3)  where 𝑋 is the pollutant being measured and  𝜌 is the  

density of air. Tailpipe emissions from vehicles were a combination of highly nonlinear and time-

dependent data, to develop models that can capture these trends struct files were also created by applying 

different transformations on data from all the experiments. Four different transformations were used on 

the experimental data and the performance of the models was assessed. The following are the 

transformations used in this study 

• T1 - No transformation 

• T2 - 7 and 13 second time averaged transformation - to capture the causality 

• T3 - Logarithmic transformation - to capture the non-linearity in emissions 

• T4 - Normalized transformation - to restrict the input data range between 0 and 1 

2.2.4 Model Selection and Validation 

The most important factor that drives the model performance in our modeling approach is the choice of 

independent input variables selected. The other factors along that drive the model performance are the 

choice of transformation on the training dataset and NN model architecture, i.e., the number of epochs, 

number of neurons and number of hidden layers. In our study, a variety of model types that varied in the 

number of input variables and types of input variables were used on all transformations of data and the 
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performance of each model was assessed to pick the best model for predicting fuel consumption and 

emissions independently. 

Table 2.3 : Type of inputs used for different modeling schemes 

 
Types Input Parameters 

M1 V 

M2 VSP 

M3 VSP, t 

M4 V, VSP 

M5 V, a 

M6 V, VSP, t 

M7 V, RPM, VSP 

M8 V, a, t 

M9 V, V3, t 

M10 V, V3, a*V, t 

M11 V, V3, a*V, RPM, t 

M12 V, V3, a*V, V*RPM, t 

M13 V, RPM, a, a*V, IAT, t 

M14* V, RPM, a, a*V, IAT, VSP, t 

 

V=velocity, a=acceleration, V3= velocity cubed, RPM=revolutions per minute, VSP=vehicle specific 

power, t=time since ignition, IAT=intake air temperature.  

 

In table 2.3, VSP is the measure of load on a vehicle and is defined as power per unit mass to overcome 

inertial acceleration, rolling resistance, road grade, and aerodynamic drag (Frey et al. 2010). 

https://paperpile.com/c/Fsa8ZV/WYNI
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VSP = V{a ∗ (1 + ϵ)  +  gr + gCr} + 0.5 ∗ ρ ∗ V3 ∗ (CDAM )  where ϵ is mass factor for rotational mass,  g 

is acceleration due to gravity (m s-2) , r is road grade , ρ is ambient air density (kg m-3), Cr is rolling 

resistance (dimensionless), CD is aerodynamic drag coefficient, A is vehicle frontal area (m2) and  m is 

vehicle mass (metric tons)  

 

The different model input parameters were selected based on how each independent variable is physically 

related to the output variable and based on previous literature. These modeling types were used for both 

MV and NN models. The models were used to predict changes in fuel consumption or tailpipe emissions 

based on the changes in input parameters. A generic NN architecture was first set with 10 neurons, one 

hidden layer and 50 epochs and models were developed with the same architecture but with different 

transformations on the training dataset  

• For no transformation, the training dataset was directly fed into the NN without any 

transformation 

• For 7 and 13-second time-averaged transformation, training dataset was time averaged at 7 

seconds and 13-second intervals before the modeling. 

• If the logarithmic transformation was used, a natural log was applied to the training dataset. Once 

the model was built, the output was transformed back into the actual values using an inverse log 

transformation 

• For normalized transformation, a z-transformation was used to convert the training dataset to 

have a mean of 0 and a standard deviation of 1 using the function 𝑍𝑖 = (𝑋𝑖−�̅�)𝜎 where 𝑍𝑖 is the 

respective 𝑍 score value for the respective observed 𝑋𝑖, �̅� is the average of all observed 𝑋 and 𝜎 

is the standard deviation of the observed 𝑋 values. The developed model produces a z-score 

output (𝑍𝑜) of the response variable which needs to be transformed back into the absolute 

output(𝑌𝑜) value using 𝑌𝑜 = 𝑍𝑜 ∗ 𝜎 + �̅� . 



19 

Multiple models each having a different number and type of input variables were developed and the 

models with the highest performance were picked to predict both fuel consumption and emissions.  

2.2.5 Error Metrics 

Models were developed to predict on-road fuel consumption and emissions for a given set of independent 

variables. The performance of all the developed MV and NN models were measured using Relative Error 

(RE) and coefficient of determination (R2).  

1. Absolute Relative Error (RE)  

𝑅𝐸 = 1𝑁 ∑ ∣ 𝑀𝑖 − 𝑂𝑖𝑂𝑖
𝑁

𝑖=1 ∣ 
 

2. The coefficient of determination (R2)  𝑅2 = 1 − 𝑆𝑆𝐸𝑆𝑆𝐸 + 𝑆𝑆𝑅  𝑆𝑆𝐸 =  ∑ (𝑂 − 𝑀)2𝑁𝑖=0  𝑆𝑆𝑅 =  ∑ (𝑀 − �̅�)2𝑁𝑖=0  𝑀 - Model output, 𝑂 - Observed values, �̅� - Mean of observed values, SSE - Sum of squared errors, SSR - 

Sum of squared residuals  

 
RE helps in measuring model performance on a route integrated basis, i.e., it is the error percentage by 

which the model differs from the observed value in predicting either the total fuel consumed for the 

experimental route or total mass emissions of a particular pollutant for the given route. R2
 measures model 

performance in capturing the fuel consumption/emissions time trace on a per second basis for the given 

route. Data from one experiment was used as training dataset and data from a different experiment 

performed on the same vehicle on a different day was used as validation dataset. Two types of validation 

methods were used in this study, one is internal validation and the other is cross-validation. Internal 

validation is when the model performance is measured in terms of its prediction capability of the output 

variable from the same dataset as it was trained/built on, meaning the model is trained and validated using 
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the same dataset from the same experiment. Cross-validation is when the model is built using the data 

from one specific experiment but validated against a dataset from a different experiment. In our study, 

internal validation is referred to as training data and cross-validation is referred to as test data. Both these 

validations give different insights into our model performance. If a model performs well against the 

training data but performs poorly against test dataset it means that the model is overfitted. Our goal is to 

get a high performance against the test dataset which would make the model more versatile in predicting 

results from any experiments. 

2.3 Case study 

In our work, three routes between two origin-destination pairs each were identified and driven on a 2004 

gasoline LDV with a PEMS device onboard that was used to collect vehicles’ engine data through the 

OBD-II port. Routes used for the case study comprised of routes with highway driving and urban driving 

and varied widely in maximum and average velocity, total distance and total time when compared to the 

experimental route. Models developed using the data from gasoline LDV experiments were used to 

predict fuel consumption of our case study routes. By comparing the fuel consumed on different routes 

for each origin-destination pair we can identify the route that results in the least fuel consumed and the 

associated time penalty if there was any. The primary purpose of this case study was to understand 

whether there is a significant difference in fuel consumed based on the choice of route.  
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3. Results 
 

 

 

3.1 Experimental Results 

Raw data from PEMS were processed and compared against standard emissions test cycles and against 

EPA emission factor for Tier-1 and Tier-2 standards. We describe the experimental results and how they 

vary between gasoline and diesel vehicle experiments before going into the modeling results. 

3.1.1 Drive Cycle Comparisons 

In our study, we chose the EPA Federal Test procedure - 75 (FTP-75) as a base to develop our 

experimental route. Figure 3.1 shows the metric comparison between FTP-75 and the experimental data 

for all the experiments. Both gasoline and diesel vehicle experimental data compare well for maximum 

velocity, average velocity, the standard deviation of velocity, total distance, stop time and, vehicle 

specific power not only within the experiments but also against the FTP-75 cycle. While the maximum 

acceleration from the FTP-75 cycle is lower than that of all the experimental routes, the average 

acceleration compares well with the FTP-75 cycle showing that our developed drive cycle is realistic to 

the existing emissions test cycles. 
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Figure 3.1: Route metrics comparison between FTP-75 and experimental data 

3.1.2 Emission Factor Comparisons 

Tailpipe emissions from on-road vehicles are subject to stringent standards based on grams of pollutant 

emitted per mile driven. Tier-2 emission standards imposed by EPA regulate the following tailpipe 

pollutants: carbon monoxide (CO), oxides of nitrogen (NOX), hydrocarbons (HC) and particulate matter 

(PM). These pollutants emitted during our experiments on diesel and gasoline vehicles that were driven 

on the developed drive cycle were compared with the EPA standards. Figure 3.2 compares on-road CO, 

NOX, and HC emissions from all experiments with their respective standards. The PM measurements 

from all gasoline vehicle experiments were below the limit of detection of PEMS and hence were not 

used in our study. Tier-2 standards do not regulate CO2 emissions from tailpipe directly (Epa and OAR 

2016) and hence the plot only shows the real-world emissions of CO2 from both the test vehicles.  

https://paperpile.com/c/Fsa8ZV/YwaF
https://paperpile.com/c/Fsa8ZV/YwaF
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Figure 3.2: Comparison of real-world emission factors obtained from this study with the US EPA 

emission standards 
 

CO2 emissions from gasoline vehicles have an average of 315 g.mile-1 and are slightly higher than 

emissions from diesel vehicles which have an average of 220 g.mile-1. CO from gasoline vehicles have an 

average value that is two times higher than that of diesel vehicles, but both these vehicles fall well within 

the permissible standards. Tier-2 standards for NOX emissions from diesel vehicles illustrated with a red 

marker in the plot are less stringent at 0.3 g.mile-1 (bin 9) when compared to that of gasoline vehicles 

which are at 0.07 g.mile-1 (bin 3)(Emission Standards: USA: Cars) . NOX from gasoline vehicles 

compared closely with the imposed standards except for one outlier. NOX emissions from diesel vehicles 

had a much higher average value of 0.7 g.mile-1 making on-road emissions greater than a factor of two 

when compared to the standard. HC emissions from both the vehicles on an average were only slightly 

higher when compared with the imposed standards and PM emissions from diesel vehicles were within 

https://paperpile.com/c/Fsa8ZV/Dvtz
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the Tier-2 standard for diesel vehicles. On-road emissions from all the gasoline experiments were 

comparable to the Tier-2 emission standards for all pollutants except for one outlier in NOX emissions for 

one experiment. On-road emissions from diesel engines were within the standards for all pollutants except 

NOX.  

3.1.3 Cold phase and Hot phase 

In our study, emissions from the gasoline vehicle where much higher within the first eight minutes of 

operation. Cold phase in vehicles primarily refers to when there is a difference in temperature from 

regular operating conditions (Reiter and Kockelman, 2016). Emissions from the LDV’s during the cold 

phase are an important source of NOX, HC, PM and CO. During the first minutes of vehicle operation 

when the engine block and coolant temperature are low, incomplete combustion paired with low catalyst 

temperature results in significantly higher emissions than at nominal operating conditions (Cao, 2007). 

Low ambient temperatures also result in higher cold start emissions (Reiter and Kockelman, 2016) 

(Weilenmann et al., 2005). The emissions from diesel and gasoline vehicles are greatly reduced by 

catalysts during the hot phase when the catalyst reaches its normal operating temperature. In our work, we 

observe the effect of cold phase and hot phase emissions for various pollutants for both gasoline and 

diesel vehicle experiments and arbitrarily picked the first 8 minutes of vehicle operation to be in the cold 

phase. Figure 3.3 illustrates the normalized cumulative emissions of CO2, CO, NOX, HC and, PM (diesel) 

from engine start until the end of the experiment for a representative gasoline and diesel vehicle 

experiment. For gasoline vehicle experiments the effect of cold phase is very prominent with more than 

80% of  CO, HC and NOX emissions being limited to the cold phase. We also observed that CO2 

emissions from both gasoline and diesel vehicle experiments were linear across the experiment. In diesel 

vehicle experiments, the cold phase has a significant effect in CO emissions with more than 60% of 

emissions within the cold phase while the other pollutants are not affected by the phase of the vehicle. A 

study by (Weilenmann et al., 2005) also shows that cold phase emissions are significantly lower for diesel 

vehicles than gasoline vehicles.   

https://paperpile.com/c/Fsa8ZV/KwRv
https://paperpile.com/c/Fsa8ZV/2Yeu
https://paperpile.com/c/Fsa8ZV/KwRv
https://paperpile.com/c/Fsa8ZV/A5OS
https://paperpile.com/c/Fsa8ZV/A5OS
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Figure 3.3: Normalized cumulative emissions from the start of experiment for a representative gasoline 

and diesel vehicle experiment illustrating the effects of cold phase. 

3.1.4 EMFAC Model comparison 

In our work, vehicle specific ANN models were developed using real-world emissions and fuel 

consumption data. Unlike the ANN models developed in this study, existing emissions inventory models 

such as EMFAC are developed based on emissions from chassis dynamometer tests. Figure 3.4 compares 

the results of median grams per mile emissions with respect to binned velocity from all gasoline 

experiments in our study to the values generated by the EMFAC model for the pollutants NOX, HC, and 

CO. PM emissions were not measured for the gasoline vehicle experiments since typical PM values were 

below the PEMS detection limit. EMFAC model results were generated as California statewide emission 

rates for the annual calendar year 2017 for a 2008 model year light-duty gasoline vehicle for velocities 0 

to 50 mph. For both NOX and HC emissions, we can clearly see that for lower velocity bins, on-road 

emissions were much higher than those of the EMFAC models and at the higher velocity bins, both 

observed and EMFAC model results compared well. This trend suggests that the EMFAC model may 

underestimate the on-road vehicular NOX and HC emissions at lower speeds. On the other hand, observed 

CO emissions from on-road vehicles are lower than that of the EMFAC model predictions except at the 

lowest velocity bin. Higher emissions in the lower velocity bins are also a result of higher cold phase 

emissions which were significant during lower vehicle velocities.    
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Figure 3.4: Comparison of velocity binned emission factors generated by EMFAC model for calendar 

year 2017 for a 2008 model year light-duty gasoline vehicle with the median observed emissions from 

gasoline vehicle experiments in our study.  
 

Like gasoline vehicles, velocity binned median NOX, HC, CO, and PM emission factors from all the 

diesel vehicle experiments were also compared to the EMFAC model results in Figure 3.5. EMFAC 

model results were generated as California statewide emission rates for the annual calendar year 2017 for 

a 2003 model year light-duty diesel vehicle for velocities 0 to 50 mph. We can see that diesel NOX 

emission rates are much higher than that of EMFAC emission rates at lower bin velocities of 5,10 and 15 

mph.  
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Figure 3.4: Comparison of velocity binned emission factors generated by EMFAC model for calendar 

year 2017 for a 2003 model year light-duty diesel vehicle with the median observed emissions from 

gasoline vehicle experiments in our study.  
 

At higher velocities, the median of observed NOX emission rates is lower than that of EMFAC emission 

rates from which we can say that in urban driving conditions where the vehicle velocities are within 20 

mph the EMFAC model underpredicts on-road NOX emissions from diesel (Chossière, 2017), (Wang et 

al., 2016). On the other hand, HC emission rates from both the EMFAC model and observed experimental 

values compare well across all velocity bins except at the lowest velocity bin. Finally, for both CO and 

PM, EMFAC model over-predicts the on-road emission rates from diesel vehicles across all velocities. 

Developing vehicle specific fuel consumption and emissions models can provide better estimates of on-

road emissions. 

 

https://paperpile.com/c/Fsa8ZV/5e1L
https://paperpile.com/c/Fsa8ZV/eTY5
https://paperpile.com/c/Fsa8ZV/eTY5
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3.2 Model performance 

Performance of the model was highly dependent on the type of modeling used and, on the transformation,  

type used. In our study, we first tested out different modeling types that resulted in the best performance 

and later this model was used to test the effects of different transformations. 

3.2.1 Parameter selection for models 

In our work, data from multiple experiments were available to develop models to predict FC and 

emissions from both gasoline and diesel vehicles. Although multiple datasets existed to train models, only 

one experiment was used to develop a model at any given time. For example, models built to predict 

gasoline FC used a dataset from one experiment from gasoline experiment set to train the model and data 

from a different experiment from the same gasoline set was used to validate the model. A similar process 

was used to build diesel FC, NOX and HC. One important aspect to look into is the effect of the choice of 

training dataset on the model performance. Although all experiments were conducted on one single set 

experimental route, the day to day traffic and the timing of the experiments result in a highly diverge time 

series of both fuel consumption and emissions, these diverse time series will lead to change in model 

performance based on the type of training dataset used to develop the model in the first place. For 

example, a model that is built using data from an experiment that had many stops in the first few hundred 

seconds from the start of the experiment will have frequent stops and acceleration events in that time 

period. If this model is used to validate fuel consumption or emissions from an experiment that have a 

similar behavior, it would result in a higher performance and similarly if this model is validated against a 

different experiment which has very few stops in the initial phase of the experiment, it might provide a 

very different result in terms of performance. To understand the effects of training/validation dataset on 

model performance, models were developed and validated using all possible combinations of training and 

validation datasets for each of the output variables. The change in model performance was studied for 

both MV and NN models for all modeling types defined in table 2.3 for each independent output variable 

with no transformation on the training dataset.  
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Figure 3.5: Performance effect due to the choice of input parameters on the Multi-Variable and Neural-

Network models developed to predict fuel consumption in gasoline vehicles. The boxplots show the 

variability in RE and R2 for each model due to the choice of training and validation datasets. 
 

Figure 3.5 shows the trends of RE and R2 values for both MV and NN models developed to predict FC 

from gasoline vehicles. The boxplots represent the variability in RE and R2 based on the choice of training 

and validation dataset used in modeling. The route integrated model performance is measured using RE 

and the per second prediction capability of the model is measured using the R2 .(models are trained and 

validated using different datasets). In the FC models, apart from few outliers, the RE decreases as we go 

from model 1 through 14, with model 14 having the least median relative error in predicting fuel 

consumption. Model 14 parameters, when used with NN models without any transformation, has a 

median R2 of 0.72 and median relative error of ~2% meaning if the route integrated fuel consumption of a 

vehicle was 1 gallon on a particular drive cycle then the model would predict fuel consumed within 0.98 

to 1.02 gallons.  
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Figure 3.6: Performance effect due to the choice of input parameters on the Multi-Variable and Neural-

Network models developed to predict emissions from gasoline vehicles. 
 

R2 values reflect the model performance in predicting the time series of FC, these values vary from 0 to 1 

and a higher value corresponds to a better match in time series predictions. For all MV and NN models, 

the median R2 rapidly increase as we go from model 1 through 5 but do not increase significantly between 



31 

models 11 through 14 indicating that although there is a decreased RE value associated with model 14, it 

doesn’t necessarily indicate better performance in time-series predictions. Figure 3.6 represents the trends 

of RE and R2 values for both MV and NN models developed to predict on-road emissions from gasoline 

vehicles. Unlike the models developed for predicting fuel consumption, the models developed to predict 

emissions from gasoline vehicles had high relative errors and poor R2
 values. In the models developed to 

predict CO emissions, both MV and NN models had similar RE for each modeling type and unlike FC 

models were RE had a decreasing trend as we went from model 1 through 14, here model 13 and 14 have 

the highest median RE values at 103% and 76% respectively suggesting that the model with more number 

of inputs does not necessarily improve the model performance and that the type of inputs used in the 

model need to be correlated to the response variable. While model 10 has a modest median RE at 16%, it 

has a corresponding R2 value of 0.2 suggesting that although the models route integrated prediction 

capability is high, it fails in capturing the time series of CO emissions. The models developed predict 

NOX emissions from gasoline vehicles have no significant improvement as we go from model 1 through 

14 with all the models having high median RE of  >35% and R2 of <0.4 resulting in a poor route 

integrated and time series prediction capabilities. In the models developed to predict HC emissions from 

gasoline vehicles, we did not find any visual trends in performance change as we go from model 1 

through 14. Among all the models, model 12 had a least median RE of ~12% but with a corresponding 

median R2 of 0.5 which results in good route integrated prediction but a poor time series prediction. 

Overall, for all the models developed to predict emissions from on-road gasoline vehicles, the 

performance was poor with high median RE values and corresponding low median R2 values. One 

primary reason for this is due to the huge difference in magnitude in the emissions during the cold phase 

and hot phase of vehicle operation. Since we know that more than 80% of total emissions from gasoline 

vehicles were associated with the cold phase, only this data (i.e. first 8 minutes of every experiment) was 

later modeled and it was found that the model performance remained poor with no significant 

improvement in predictions, this could be attributed to the reduced sample size that is involved in training 

the model. For cold phase NOX emissions from gasoline vehicles, all models resulted in a relative error of 
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more than 40%. RE for NN models developed to predict cold phase CO and HC emissions were lower 

when compared with that of NOX at an average RE of 34% and 22% respectively, but this alone does not 

guarantee better performance. Respective R2 values should also be higher to ensure that this performance 

is not just attributed to the choice of training and test dataset.  

 

Comparing the modeling results between MV and NN models, we see that NN models in most cases have 

a lower RE and a higher R2 value when compared to the MV models regardless of the response variable 

being modeled. For FC models, where NN model 14 had the highest performance with median RE at ~2% 

and R2 at 0.72, the corresponding MV model has a RE of 3% and a lower R2 of  0.65 suggesting that MV 

model has a poor correlation with time series when compared to the developed NN model. Unlike 

gasoline FC models, in the models developed to predict emissions from gasoline vehicles both NN and 

MV models had high REs and low R2 values suggesting poor prediction capabilities of the developed 

models regardless of the type of inputs used.  

 

For diesel vehicle experiments, FC, NOX, HC and, PM was modeled. The pollutants from diesel vehicles 

in our experiments had no influence of cold starts from vehicles. Like gasoline, all input types with no 

transformation to the training data were used to develop models for each of the response variables using 

both MV and NN. Figure 3.7 represents the trends in RE and R2 for both MV and NN models when 

developed using different model configurations from table 2.3 to predict FC and NOX from diesel 

vehicles. Models were trained with different training datasets and the effect of these various training and 

validation dataset is illustrated as boxplots. We can see that for models developed to predict diesel FC, 

NN model 14 has the least median RE of 0.7% with a very high R2 of  0.81 suggesting a very high route 

integrated performance as well as highly correlated time series prediction. Although RE values from both 

MV and NN models do not show a visual trend as we go from model 1 through 14, R2 value has a slowly 

increasing trend as we go from model 1 through 14 except for one outlier. We can see a similar trend in 

models developed to predict NOX emissions from diesel vehicle where NN model 14 had a low median 
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RE of 1% and a high median R2 of 0.8. A median RE of 1% indicates that if the route integrated NOX 

emissions consumed on a particular drive cycle was 1000 grams then the model would output a route 

integrated NOX value between 990 and 1010 grams. 

 

Figure 3.7: Performance effect due to the choice of input parameters on the Multi-Variable and Neural-

Network models developed to predict fuel consumption and NOX emissions from diesel vehicles. The 

boxplots show the variability in RE and R2 for each model due to the choice of training and validation 

datasets.  
 

The performance trends of different models developed to predict diesel CO, HC and NOX emissions are 

shown as boxplots of RE and R2 values obtained by using different training and validations datasets for all 

the modeling types in figure 3.8. Similar to gasoline vehicle CO models, all models developed to predict 

CO form diesel vehicles had high RE values and very low R2 values. In the figure, we can see that NN 

model 6 has a low relative error of 2.8% but the corresponding R2 value for the same mode was less than 



34 

0.3 suggesting a poor time series correlation. The highest median R2  value among the CO models for NN 

model 11 at 0.4 with a corresponding median RE of 17%, combined these will result in a model with poor 

prediction capabilities. The poor performance in predicting CO emissions from diesel vehicles can be 

attributed to the failure in capturing the cold phase CO emissions which were dominant in the diesel 

vehicles as well as gasoline vehicles. Unlike CO models, models developed to predict HC emissions from 

diesel vehicles had lower RE and higher R2 values. The most comprehensive NN model with the highest 

number of inputs which was model 14, had the least median RE of 16% and a high median R2 value of 

0.67. Although NN model 6 has a lower median  RE of 4.2%, it is associated with a lower median R2 of 

0.49 which will result in a less correlated time series when compared to model 14. For the diesel PM 

models, all models developed using both MV and NN model had high REs and very poor R2 values, with 

a maximum R2 of 0.3. The low R2 value will result in a poor time series correlation and will result in poor 

prediction when applied on random drive cycles. The poor performance of models in predicting PM can 

be attributed to the high number of PM emissions from diesel vehicles which were below the limit of 

detection of PEMS and were assumed to be at the limit of detection, which can result in reducing the 

correlation of the inputs with the PM emitted.  

 

Comparing the model performance within MV and NN models for diesel vehicle models we can see 

similar trends to that from gasoline vehicle models. NN model 14 developed to predict FC has a median 

RE of 0.7% and an R2
 of 0.81 while the MV model had a RE of 4.9% and an R2 of 0.75. Similarly, NN 

model 14 developed to predict NOX had a higher performance (RE - 1 %, R2 - 0.8) when compared to the 

MV model 14 (RE - 22 %, R2 - 0.4) and a similar trend is observed for the best HC model as well. In all 

the best models picked for predicting diesel FC, NOX and, HC emissions, NN models had lower median 

RE and higher median R2 values when compared to the MV models. 
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Figure 3.8: Performance effect due to the choice of input parameters on the Multi-Variable and Neural-

Network models developed to predict CO, HC and PM from diesel vehicles. The boxplots show the 

variability in RE and R2 for each model due to the choice of training and validation datasets.                
 

Overall, the models developed to predict CO, NOX and, HC emissions from gasoline vehicles, and CO 

and PM emissions from diesel vehicle experiments had poor performance. Hence, only the models 
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developed to predict FC from gasoline vehicles and FC, NOX, and HC from diesel vehicles were more 

closely looked at in our study. 

3.2.2 Effect of input data transformation 

Model performance depends on the relationship of inputs and the output variable. The input dataset was 

transformed in different ways in an effort to improve model performance by targeting a few key issues 

that can improve the correlation between the input variable and the output variable. Different 

transformations used in our study were time averaging, log transformation and normal transformation to 

reduce causality, nonlinearity and restrict the span of all variables during modeling between -1 and 1. 

Transformations were only used on the NN model as these models performed better than MV and Hybrid 

models 

 

Figure 3.9: Effect of transformation on the performance of Neural-Network models generated to predict 

FC for gasoline engines, FC for diesel engines, NOX  for diesel engines and HC for diesel engines 
 

For NN models the RE and R2 varied based on the type of transformation used on input parameters. 

Different transformations were used to look at the effect of model performance in predicting FC from 

gasoline and diesel engines as well as NOX and HC from diesel engines. For gasoline FC, RE is the least 

without any transformation on the dataset followed by normalization and averaging. Log transformation 
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of the data resulted in the highest error. R2 values are comparable for raw data and normalization but the 

averaged dataset has the highest R2 value among all of them.  

Figure 3.10: Effect of training dataset transformation in predicting gasoline fuel consumption.  
 

Although averaged transformation yields an excellent median R2 value of 0.9, it is at a cost of lower time 

resolution. Figure 3.10 illustrates the model predicted gasoline FC time series as compared to observed 

values as a result of different transformations. The model was trained using a dataset from one experiment 

and validated against dataset from a different experiment. Models with no transformation and Normalized 

transformation predict the time-series of fuel consumption with great accuracy whereas log 

transformation of Input data gives us a rather skewed result and overpredicts when compared to the 

observed values. In our work, averaged transformation is when the model training dataset is arbitrarily 
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averaged for every 7 seconds and is used to predict output variables as a 7-second averaged time series. 

This approach results in a very high correlation between the model outputs and the observed values but 

also comes at a cost of reduced time series resolution. 

 

Figure 3.11: Effect of training dataset transformation in predicting diesel fuel consumption  
 

Diesel FC predictions have a slightly different trend when compared to gasoline FC. When a normalized 

transformation, which transforms each variable in the dataset with a mean of 0 and standard deviation of 

1, was applied on the training dataset and validation datasets resulted in a low RE and a slightly poor R2 

in predicting FC from diesel vehicle. However, normalization has a high dependence on the type of 

training dataset used as the mean and standard deviation of FC from the training dataset are used to 



39 

transform the normalized output of the NN model to respective fuel consumed per second.  R2 for 

averaged transformation is significantly higher for all output pollutants in diesel vehicle experiments but 

they lack the time resolution provided by other models. Log transformation is inefficient for FC for both 

gasoline and diesel which can be a result of linear trends in FC for both vehicle types. Figure 3.11 shows 

the time series trends in predicting diesel fuel consumption based on different transformations. Log 

transformation has visually the least correlation between the model predicted values and the observed 

values. Training dataset with no transformation and normalized training dataset yield similar results in 

terms of time-series with little to no visual difference. Similar to gasoline FC, diesel FC when modeled 

using averaged training dataset to predict average FC results in a very high correlation between observed 

and modeled results with low RE but has a lower resolution in time series.  
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Figure 3.12: Effect of training dataset transformation in predicting diesel NOX  
 

Emissions from diesel vehicles have a wide range in magnitude and vary non-linearly throughout the 

experiment when compared to linear fuel consumption trends. They are heavily impacted by the vehicles 

instantaneous velocity and acceleration and result in higher grams of emission per second when there is a 

higher load on the vehicle. One main difference between FC and NOX modeling based on the type of 

transformation is the significant improvement in performance when a log transformation is used on the 

training dataset to predict NOX emissions. In figure 3.12 we can see that model built by log 

transformation of the training dataset to predict NOX visually compares indifferently to those models 

developed by either normalization or no transformation and both the RE and R2 values obtained using log 

transformation are also comparable to all other transformations’ types used. Among all the 
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transformations, normalization has the least RE of 0.15% and an R2 of 0.73 while the model with no 

transformation has a RE of 2% and a slightly higher R2 of  0.76. Since normalization transformations’ 

performance is highly dependent on the training dataset used to build the model, the model built using no 

transformation were used to model NOX emissions from diesel vehicles.  

 

Similar to NOX emissions, HC from diesel vehicles have a high nonlinearity associated with the rapid 

acceleration and velocity events of the drive cycle. Figure 3.13 compares the variation in performance of 

M14 when used to predict HC from diesel vehicles based on the type of transformation used. When log 

transformation is used on the training dataset to predict HC results, we can see that the model 

performance is very similar to that obtained with any other type of transformation. Models with no 

transformation on training dataset tend to perform better in both RE and R2 domain. Overall, for artificial 

neural network models, the transformation of model training dataset did not have any significant 

improvement in model performance. We observed that NN models perform really well as long as the 

training data or the model inputs used are a good physical representation of the dependent variable being 

predicted. An appropriate sample size, a suitable number of input variables and dataset that is free of 

outliers and signal delay, resulted in best performing models for predicting both fuel consumption and 

emissions from the test vehicles. Since transformation did not lead to consistent improvement in 

performance, all models were built using only the training dataset without any transformation.  
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Figure 3.13: Effect of training dataset transformation in predicting diesel HC  

3.2.3 NN model parameter selections 

Apart from the choice of inputs and transformation used on the training dataset, the performance of NN 

models is dependent on the model architecture settings that include the number of neurons in a hidden 

layer, the number of epochs and the number of hidden layers used. In our work, we did a comprehensive 

study on how changing each of those parameters affected model performance. Once the model inputs, 

type of transformation and the training validation dataset were set, each one of the model parameters was 

selected using a series of simulations. For example, to decide on the number of neurons, epochs were set 

arbitrarily at 30 and the hidden layer at 1, the number of neurons was varied from 1 to 20 to see the 

change in performance as we increase the number of neurons in a hidden layer. Table 3.1 illustrates all the 

simulations performed to narrow the number of neurons, number of hidden layers and the number of 
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epochs for a model. The results presented here are for the models developed to predict diesel FC and 

NOX, when trained using a dataset from one diesel experiment and validated using data from a different 

diesel vehicle experiment performed on the same route on a different day.  

Table 3.1: Different simulations used in this study to determine the neural network architecture. 

 

Simulation # Neurons (N) Hidden Layers (HL) Epochs (Ep) 

1 N=1:20 1 Set at 30 

2 [N, N-1] where N=2:20 2 Set at 30 

3 [N, N-1, N-2] where N=3:20 3 Set at 30 

4 Set at 8 1 Ep=1:30 

5 Set at [8,7] 2 Ep=1:30 

6 Set at [8,7,6] 3 Ep=1:30 

 

For example, in simulation 2, epochs were set constant at 30 while the number of hidden layers was set at 

2. The second hidden layer had one neuron less than the first hidden layer and the number of neurons 

varied from 2 to 20. Similar simulations were performed for understanding the effects of number of 

epochs. In simulation 1, NN models were developed by setting the epochs at 30 while varying number of 

neurons from 1 to 20. Each model was trained on a specific representative dataset and validated against 

data from a different experiment. Figure 3.14 illustrates the change in model performance on validation 

dataset in terms of RE and R2 in predicting FC and NOX emissions from diesel vehicles during simulation 

1. For models developed to predict FC, an increase in the number of neurons from 1 to 12 leads to a 

decrease in RE and increasing the number of neurons any further resulted in increasing the error. On the 

other hand, R2 values have little to no effect due to the increasing number of neurons. Using these results 

the number of neurons was selected using the model that performed well in both RE and R2. Setting the 

number of neurons at 9 for models that predicted FC from diesel vehicles was sufficient to get good 

overall performance. 
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Figure 3.14: Simulation-1, Effect of number of neurons on model performance in predicting fuel 

consumption and NOX emissions for diesel vehicles 

 

For the models developed to predict NOX emissions, as the number of neurons was increased in the model 

from 1-9, RE decreased significantly and a further increase in the number of neurons resulted in a random 

increase and decrease in the error. As the number of neurons varied, R2 values fluctuated between 0.75 

and 0.81 with no identifiable pattern. The number of neurons for NOX models was set at 8 which had a 

low RE of ~3 and a corresponding R2 value of ~0.795. Increasing the number of neurons for any model 

will result in a model that is overfitted against the training data. This yields a high performance when the 

model is validated against the same dataset with which it was trained but will result in poor performance 

when validated against any other experimental data.  
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Figure 3.15: Simulation - 4, Effect of number of epochs on model performance in predicting fuel 

consumption for diesel vehicles 
 

In simulation 4, NN models were developed by setting the number of neurons based on the results from 

simulation and varying the number of epochs from 1 to 30. Also, the number of maximum epochs can be 

set for any NN model, but the actual number of epochs used by the model can be less than the number of 

maximum epochs set, and this happens when the NN model performance worsens when the model 

overfits the data which is indicated by an increased error on validation dataset. Figure 3.15 illustrates the 

changes in performance when the number of maximum epochs varied between 1 and 30 in the models 

that were built to predict FC and NOX emissions. For both FC and NOX emissions, an increase in epochs 

from 1 to 8 resulted in a sharp decrease in error and increasing the number of epochs any further did not 

result in a significant improvement in performance. R2 values for FC models increased sharply and 



46 

reached a steady value with as low as 3 epochs and the R2 values for NOX models increased and obtained 

a steady value within 8 epochs. These results indicate that having a high maximum number of epochs 

does not affect the performance significantly as long the number of epochs is greater than a minimum 

value. This is because if the number of maximum epochs is much higher than what is required by the 

model, MATLAB automatically stops training the model when the minimum mean squared error is 

obtained on the 15% of the training dataset that was assigned for validation. This is to avoid overfitting as 

well as to reduce the computational time in training the model.  

3.3 Fuel consumption modeling results 

In the previous sections, we have established that NN models outperformed MV models for all parameters 

of interest. NN model 14, with no transformation on the training dataset, was set as a base model for all 

parameters. 

Figure 3.16: Time series comparison of observed fuel consumption from PEMS device for diesel and 

gasoline vehicle for a representative route with model results when validated against a trained dataset 

and when validated against a test dataset (left). Scatter plot of observed values against the trained and 

test model results (right).  
 

NN model with no transformation on the input set M14 with 8 neurons, 1 hidden layer and, the maximum 

number of epochs set at 30 was used to model fuel consumption from both gasoline and diesel vehicles. 
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Figure 3.16 is the time series representation as well as the scatter plots of FC modeling results compared 

to the observed values from gasoline and diesel experiments for a representative experiment respectively. 

FC is illustrated as grams of fuel consumed per second from the start of the experiment. Observed fuel 

consumption is the experimental data obtained using the PEMS, trained model data is an output of the NN 

model which is trained and validated using the data from the same experiment, test model data is the 

output of the NN model that was trained using the data from one experiment and validated against data 

from a different experiment. In gasoline FC time series, we can see that the trained model compares well 

on a per second basis with the observed values and has an R2 of 0.78 and RE of only 0.12 % but it does 

not represent the models' prediction capabilities when validated against a random dataset from a different 

drive cycle. Test model gives a generalized sense on how the model performs for any given route 

regardless of the model training dataset. We can see that for gasoline FC the test model does not capture 

the FC during idling and few cases where there is a high FC. The test model, in this case, has an R2 of 

0.73 and a RE 5.47%.  The scatter plots provide good insight into how well the NN model performs when 

compared to changes in the observed values. The scatter plot consists of observed FC values in grams per 

second on the x-axis and both modeling results test and trained in grams per second on the y-axis. For 

gasoline FC we can see that there are many data points from test model with a small deviation from the 1-

1 line at lower FC values suggesting that the model either under-predicts or over-predicts when the FC is 

low and as the FC increases the scatter between the model and observed results increases. The scatter at 

higher FC does not affect the overall relative error as the number of points that deviate from the observed 

value are less compared to the total data points. We also investigated the changes in the performance of 

the model based on the choice of training and validation dataset used to develop the NN model, which we 

will further discuss in the next section. 

 

In diesel FC time series, we can see that the trained model has an error of only 0.38% with an R2 value of 

0.85. Test model developed for the diesel FC perform better than the models developed for gasoline FC. 

We can see that the test model’s time series has a high correlation with the observed values with a high R2 
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value of 0.78 and with a RE as low as 1.1%. Unlike gasoline FC, test model results from diesel FC aligns 

well when the FC values are lower. The scatter plot shows a lower scatter from the 1-1 line when 

compared to gasoline FC. Overall, we have found that the fuel consumption from diesel vehicles was 

more predictable than fuel consumed by gasoline vehicles.  

3.4 Emission modeling 

3.4.1 Gasoline emissions modeling 

Exhaust emissions from gasoline experiment vehicle were highly dependent on the phase of the vehicle 

(cold/hot phase) and on the effective operation of the 3-way catalytic converter.  

As discussed earlier, >80% of all emissions from gasoline vehicles occurred within the first 500 seconds 

of the experiment resulting in a disparity between the emissions before 500 seconds and after. Figure 3.17 

illustrates the time series predictions of NN models for various emissions from gasoline vehicle and 

compares the model results to the observed values obtained from the PEMS. The time series for all 

pollutants is illustrated as milligrams of pollutant emitted per second from the start of the experiment 

whereas the scatter plot compares the per second observed values against the respective predictions form 

both the test and trained NN models. The first row in figure 3.17 consists of the NN model time series 

comparison for CO emissions from gasoline vehicles when validated against the same dataset with which 

the model was trained (training dataset) and when validated against data from a different experiment (test 

dataset) and the corresponding scatter plot. We can clearly see the high variance in the observed values of 

CO emissions where most emissions are concentrated within 500 seconds and the emissions after that are 

very close to zero. Trained NN model predictions compared well with the observed values with a RE of 

9% and a high R2 of 0.76, which was expected as the weights of NN model were optimized to give the 

least error against the training dataset. 
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Figure 3.17: Time series comparison of observed CO, NOX and HC emissions from gasoline vehicle for a 

representative route with model results when validated against a trained dataset and when validated 

against a test dataset (left). Scatter plot of observed values against the trained and test model results 

(right). 
 

Test NN model performance was poor because of high RE of 25.97% and a very low R2 of 0.13. Scatter 

plot on the right compares both trained and test model results to the observed values and since the values 

vary in orders of magnitude, a log-log scatter plot was used where both the axis are logarithmic. We can 

see that most points of the trained model are scattered around the 1-1 line while the test model results 

have no identifiable trend and are either underpredicted or overpredicted in most cases. Both the time 

series and the scatter plot of the test model against the observed values indicate that the developed model 

cannot predict CO emissions reliably from a gasoline vehicle. The second row of figure 3.17 illustrates 

the model performances in predicting NOX emissions from gasoline vehicles. NOX emissions like CO 

were confined mostly in the cold phase and occasional high values in the hot phase. The trained model 
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has a very low RE of 5.9% with a high correlation in time series with an R2 of 0.78 while the test model 

has a RE of 386% with a very low R2 of 0.08. The log-log scatter plot compares the test and trained model 

results with the observed values and indicates that the training model data compares well with the 

observed data and the test model in most cases overpredicts the NOX emissions from gasoline vehicles. 

Test model performance also varies from iteration to iteration but never approaches a reliable 

performance metric in predicting NOX emissions from gasoline vehicles. Similar to CO and NOX models, 

models developed to predict HC emissions from gasoline vehicles also had poor performance metrics for 

the test datasets with a RE of 43.19% and R2 of 0.18.  

 

Clearly, all models developed to predict emissions from the gasoline vehicle performed well only when 

validated against training data and in all other cases, the models had very high overall error and a very 

poor time series comparison. Since >80% of emissions were within the cold phase for gasoline vehicles, 

developing a successful model to predict just cold phase emissions from these vehicles will help in 

understanding and reducing these emissions for each individual vehicle. To develop these models, only 

the cold phase data from an experiment was used to train the NN model and consequently, these models 

were validated against the cold phase experimental data used to train the model and also cold phase data 

from different experiments. Figure 3.18 illustrates the NN model predictions for cold phase gasoline CO, 

NOX, and HC emissions. The first row of figure 3.18 is split into two parts one that illustrates the time 

series of observed cold phase CO emissions, trained model and test model predictions of CO all as 

milligrams of CO emitted per second and the second part consists of a log-log scatter plot that depicts the 

observed CO values at any particular second on the x-axis and the corresponding trained and test model 

predictions on the y-axis.  
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Figure 3.18: Time series comparison of observed cold phase CO, NOX and HC emissions from gasoline 

vehicle for a representative route with model results when validated against a trained dataset and when 

validated against a test dataset (left). Scatter plot of observed values against the trained and test model 

results (right). 

 

CO emissions from the trained model compare well with the observed values and in most cases capture 

both the peaks as well as the lower values in CO, the RE error of the trained model was 9% with a fairly 

high R2 of 0.76 but as mentioned earlier high performance in the trained model is expected as the model 

built was optimized to perform well against the training dataset. Test model performance was subpar with 

RE of 24% and a poor R2 of 0.2. Modeling the cold phase for CO emissions did not help in improving the 

model performance significantly. The second row of figure 3.18 illustrates observed and modeled cold 

phase NOX emissions from the gasoline vehicle for a representative route as both time series and a log-log 

scatter plot. Although the trained model has very good performance metrics (RE-3%, R2-0.84) the test 

model performed poorly with a very high RE of 458% and an R2 of 0.13. It is evident from the time series 
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plot that the test model drastically overpredicts the NOX emissions which also reflects in the scatter plot 

where most of the test model data is above the 1-1 line. Results from models developed to predict HC 

emissions and the observed values are represented in the third row of Figure 3.18 along with the 

corresponding scatter plot. Similar to models developed to predict cold phase CO and NOX emissions, 

models developed to predict HC emissions did not show a significant improvement in performance (RE-

5.8%, R2-0.82) when validated against a test dataset. Observing the time series and the scatterplot we can 

clearly state that the test model overpredicts the HC emissions in most cases.  

 

All models developed to predict cold phase emissions from gasoline vehicles performed poorly and few 

reasons that lead to the poor performance are the lower number of data points available for the NN model 

to train, highly nonlinear nature of the emissions from gasoline vehicles, and also having significant 

number of data points that are below the limit of detection of PEMS device used. Having a larger dataset 

for the cold phase emissions along with a more sensitive PEMS device can improve the prediction 

capabilities of the models developed to predict tailpipe emissions from gasoline vehicles. In our 

study,  despite of trying different modeling schemes, transformation types and modeling architectures, we 

were not able to successfully develop a model to simulate tailpipe emissions from a gasoline vehicle. 

3.4.2 Diesel emissions modeling 

In our work, emissions from diesel vehicles were highly dependent on vehicle velocity and acceleration 

events and were sporadic in nature meaning the emissions were distributed across the entire length of the 

experiment, unlike gasoline vehicle experiments where >80% of emissions are in the cold phase. Models 

developed to predict these emissions performed better when compared to models developed to predict 

emissions from gasoline vehicles. Within the tailpipe pollutants from diesel vehicles, models developed to 

predict NOX and HC emissions had a very low RE and high R2 values while the models developed to 

predict CO and PM emissions had comparatively higher RE and lower R2 values. 
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NN models built to predict tailpipe emissions from diesel vehicles are illustrated in figure 3.19 in the 

form of both time series of observed, trained and test model results in milligrams of pollutant emitted per 

second, as well as a log-log scatter plot, comparing the observed values against the test and trained model 

values.  

 
Figure 3.19: Time series comparison of observed CO, PM, NOX and HC emissions from diesel vehicle for 

a representative route with model results when validated against a trained dataset and when validated 

against a test dataset (left). Scatter plot of observed values against the trained and test model results 

(right). 
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The ANN model developed to predict CO emissions performed well when validated against the dataset 

used to build the model with a low RE of 11.35% and an R2 of 0.72, however, the test model in spite of 

having a low RE of 16.88% has a very poor correlation with time series with an R2 of only 0.3. The low 

RE value is a result of the test model capturing the high CO emission events over the drive cycle and the 

low R2 is due to poor performance in capturing low CO emissions. This trend can also be observed in the 

scatter plot where there is a higher scatter of CO emissions at lower values and as the emissions increase 

the scatter decreases and most data points are close to the 1:1 line. 

 

Another reason for this can be due to the numerous data points that were found to be below the limit of 

detection of the PEMS device. Since all data points that were below LoD of PEMS were set to be at the 

limit of detection, this can affect the model performance as the value at these particular instances reduce 

the correlation of the input parameters and the CO emissions being modeled. NN models developed to 

predict PM emissions had a very high R2 of 0.86 and with a RE of 6.4% when validated against the 

trained experimental data. The model, when validated against the test data, had a decent R2 of 0.58 with 

and a RE of 35.13%. When compared to the models developed to predict CO, the test model to predict 

PM has a lower scatter at lower PM values and the scatter decreased as the value of PM increased leading 

to a higher R2 when compared to those of CO models. The lower R2 in predicting CO and higher RE in 

predicting PM make both these models not suitable for applying for a more generic case. If the NN model 

predictions are poor for a different experiment performed on the same vehicle and in similar conditions by 

the same driver then the predictions for other vehicles of the same category will invariably be poor. 

 

In all the emission models developed in our study, models developed to predict diesel NOX and HC 

emissions had the best performance. NOX and HC emissions from the test diesel vehicle were more 

sporadic and were highly dependent on vehicle parameters like velocity, acceleration, and engine speed. 

The time series of observed NOX emissions and predicted emissions from trained and test model in the 

form of milligrams of pollutant emitted per second and scatter plot that compares how the model 
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predictions vary based on the observed values are illustrated in the third row of Figure 3.19. NOX models, 

when validated against the experimental data that were used to train the model, had a low RE of 1.9% and 

a high R2 of 0.89. The model when validated against data from a different representative experiment 

performed with a low RE of only 2.9% and a very R2 of 0.78. Scatter plot suggests that the difference in 

model predictions to the observed value is higher when the NOX emissions are low and as the 

instantaneous NOX emission increases the scatter between the observed and trained and test models is 

decreased. This can be attributed to the limit of detection assumptions and a more sensitive PEMS can 

yield better results in NOX predictions. 

 

The last row of Figure 3.19 illustrates the time series of observed, trained and test model results of HC 

emissions from a representative route as milligrams of HC emitted per second along the route along with 

the corresponding scatter plot of observed vs trained and test model results. Similar to models developed 

to predict NOX, HC models also perform well when validated against a trained dataset (RE-2.26%, R2 -

0.82). The models also perform moderately well in terms of both RE and R2 when validated against data 

from a different experiment (RE - 12.21%, R2-0.54). Unlike for NOX models, there is no sign of the effect 

of the magnitude of HC emissions on the model prediction capabilities and the scatter plot is uniformly 

distributed along the 1:1 line throughout. In the models developed to predict emissions from diesel 

vehicles, NOX and HC models had high performance metrics with a low RE of ~3% and ~12% with a 

corresponding R2 of 0.78 and 0.54 respectively and hence can be used on more generic routes.  

3.5 Multivariable and NN model comparison 

A primary focus of our work was to establish whether the NN models are invariably better than the linear 

multivariable models which are commonly used in predicting both fuel consumption and emissions from 

on-road vehicles. Since we have established that models developed to predict fuel consumption and NOX 

emissions from diesel vehicles had low RE and high R2 values, we can compare the differences in MV 

and NN models developed to predict these two parameters. Figure 3.20 illustrates how the MV model 
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compares with the NN model in predicting FC and NOX from diesel vehicle in the form of both time 

series and a scatter plot. The first row of figure 3.20 contains the observed time series of fuel consumed in 

grams per second along with the respective MV and NN model predictions for FC.  

 

 
Figure 3.20: Time series comparison of observed FC and NOX emissions from diesel vehicle for a 

representative route with MV and NN model results when validated against a test dataset (left). Scatter 

plot of observed values against the trained and test model results (right). 
 

The scatter plot on the right compares the observed FC in grams on the x axis to the respective MV and 

NN model FC output in grams on the y axis. NN model has a better performance in predicting both 

instantaneous FC (R2
 - 0.78)  and route-integrated FC (RE-1.13%) when compared to the MV model that 

has an R2 of 0.7 and RE of 8.71%. One reason for the higher error in MV model for this case is that the 

model has a higher error in the initial few seconds of the experiment where the observed FC value is at 0 

(g s-1) while the MV model prediction is at a constant value of 1.1 (g s-1). Although both MV and NN 

models have a similar scatter, the correlation between observed and NN model is slightly higher than that 

of observed and MV model output. 
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Difference between MV and NN model in predicting NOX emissions from diesel vehicles is illustrated in 

the second row of figure 3.20. Linear MV model performs better when the output of the model changes 

linearly with respect to the inputs used whereas for NN model it is not necessary to have linear 

relationship between the inputs and output of the model to obtain high performance. In predicting NOX 

emissions from diesel vehicles, NN models significantly outperform the MV model. NN models had a 

very low route integrated error of 2.9% and a high R2 of 0.78 suggesting a high instantaneous prediction 

capability. On the other hand, we can see that the MV model has a very high RE of 38.76% and a poor R2 

of 0.41. From the time series and scatter plot it is evident that when the emitted NOX value is higher the 

MV model overpredicts the NOX emissions while the NN model underpredicts. 

 

The performance trends between MV and NN models are similar for all other parameters modeled in this 

study where the NN model outperforms the MV models regardless of the output variable. 

3.6 Choice of training dataset for the model 

It is also important to validate the developed models on a random route to understand the applicability of 

the model across different routes on the same vehicle. Figure 3.21 illustrates the observed values of FC 

and NOX emissions of a diesel vehicle when driven on a random route and compares them to the output 

generated by the NN model in predicting these parameters. The first row of figure 3.21 depicts the 

timeseries of observed FC and the respective NN model prediction in grams per second, as well as the 

scatter plot comparing the correlation of observed values and model output. The model predicts the route 

integrated FC with a low error of 8.18% and the instantaneous FC with a high correlation of R2=0.78. The 

second row of figure 3.21 depicts the timeseries of observed NOX and the respective NN model prediction 

in milligrams per second, as well as a logarithmic scatter plot comparing the observed NOX values and 

model output. NN model developed predicts the route integrated NOX with an error of 9.45% and the 

instantaneous NOX with a correlation of R2=0.69, where we can see that at lower NOX values model 

deviates from the observed values resulting in a lower overall R2. Although the performance is slightly 
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lower when compared to models validated against experimental data from the same route, the current 

model has considerably high performance when validated against a random route for the same vehicle for 

diesel FC and NOX with a RE<10% and R2>0.68 in both cases. 

 

Figure 3.21: Time series comparison of observed FC and NOX emissions from diesel vehicle with NN 

model results when validated against a random dataset (left). Scatter plot of observed values against the 

model results (right). 
 

Within gasoline vehicle experiments, NN models built to predict FC had the highest performance. Similar 

to NN models built to predict diesel vehicle fuel consumption and emissions, the NN model developed to 

predict FC from gasoline vehicle was trained on data from an experiment performed on a specific day on 

the designed experimental route and validates using the data from an experiment performed on a different 

day but on the same route. To successfully apply this model for any given route driven on the same 

vehicle it is important to understand the performance of the model when validated against a random route. 

Figure 3.22 represents the timeseries of observed values of FC and the corresponding NN model 

prediction for the gasoline vehicle driven on the test route. It also represents the scatter plot comparing the 

correlation of observed FC values and NN model output. The model predicts the route integrated FC with 

a very low error of 9.51% but has a very poor R2 value of 0.53. In figure 3.22, we can clearly  observe that 
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there is a high scatter between the observed values and model predicted value when the observed FC is 

lower, and we can also see that at higher FC values the NN model underpredicts which is also reflected in 

the timeseries plot where the NN model fails to capture the peaks in the observed FC values. The model 

performance in predicting instantaneous FC does not affect the route integrated FC prediction since the 

model both underpredicts and overpredicts at lower FC values which results in a decreased relative error 

over the entire route.  

  

 
Figure 3.22: Time series comparison of observed FC of gasoline vehicle with NN model results when 

validated against a random dataset (left). Scatter plot of observed values against the model results 

(right). 

3.7 Case Study 

Developing a model that can predict FC and emissions from parameters that are readily available through 

onboard sensors can help in providing a real-time estimation of the FC and emissions based on user 

choice of route to arrive at a destination. Given the possibility of smart connected cars over the horizon, if 

a person needs to travel from one point to another and a real-time velocity time pattern is available for all 

possible routes through a platform like Google Maps, we can incorporate our NN models to calculate 

emissions and FC for each individual route before driving through them and can estimate the route that 

results in the lowest emissions or least amount of fuel consumed. This vehicle navigation method that 

aims to minimize fuel or energy consumption is known as Eco-routing (M Kubička et al., 2016 IEEE). 

Using the models developed, we tested the amount of fuel required to travel between two origin-
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destination pairs on 3 different routes each. Figure 3.23(a) depicts the three different routes in the city of 

Fort Collins having the same start and end points. The routes were driven on the gasoline experimental 

vehicle and all the input parameters necessary for model 14 from table 2.3 were readily available through 

the vehicle’s onboard sensors. The model developed in our study was used to predict FC from the three 

routes and we found that the route that had the highest fuel consumption of 0.55 gallons which took ~30 

minutes was 27% more than the route that had the least fuel consumption of 0.431 gallons which only 

took 17.3 minutes.  

   

Figure 3.23: Three different routes with same origin and destination point in the city of fort Collins 

(left(a)), three different routes with origin and destination point interchanged (right(b)) 
 

In figure 3.23(b) gasoline experimental vehicle was driven on 3 new routes with the start and stop points 

interchanged from figure 3.23(a) and the ANN model was used to predict gasoline fuel consumption. We 

can observe that the red route has the least fuel consumption of 0.42 gallons while the highest fuel 

consumption was observed on the green route with 0.501 gallons. In this, we can also see that both routes 

took a similar amount of time to drive but one route had 25% more fuel consumption than the other route. 

With this case study, we can infer that by having route information between origin-destination pairs and 

vehicle specific ANN models we can optimize our route selection leading to lower fuel consumption and 

emissions from vehicles.  
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4. Summary and conclusions 
 

 

 

On-road vehicle emissions are often higher than those of laboratory type-approval methods. On-road 

diesel vehicles contribute approximately to 20% of the global anthropogenic NOX emissions (Stohl, A. et 

al.,2015). A study by Anenberg et al., 2017 estimated that over half of on-road light-duty diesel vehicle 

NOX emissions among  80% of total global diesel vehicles sales are in excess of certification limits. These 

excess emissions from vehicles have significant health and environmental impacts ((Holland et al., 

2016),  (Oldenkamp et al., 2016)). To better understand and regulate these excess emissions there is a 

necessity to develop accurate models to predict both on-road fuel consumption and emissions. The 

existing US emission models EMFAC for California and MOVES for rest of US predict on-road 

emissions by having a fixed emission factor (EF) along with vehicle activity data like velocity paired with 

temperature and relative humidity amongst other, for estimating on-road emissions. These models are 

built based on emissions observed during chassis dynamometer tests that do not represent on-road 

emissions accurately, which results in imprecise predictions. In our work, we develop models based on 

the on-road fuel consumption and emissions data collected using a PEMS device on a representative test 

route to better predict real-world fuel consumption and emissions from gasoline and diesel light-duty 

passenger vehicles.   

 

In our work, we developed linear Multivariable (MV) and Artificial Neural Networks (ANNs) to predict 

fuel consumption and emissions from LDV’s. Performance of the model was assessed using absolute 

relative error (RE) and coefficient of correlation (R2) where the former estimates the route integrated 

prediction capability while the later gives an idea of instantaneous prediction at any given second during 

the drive cycle. All models were developed with multiple configurations to maximize performance for 

each individual output variable for both diesel and gasoline vehicle. The performance of the NN model 

varied based on the variable being predicted and also had a dependency on the fuel type of the vehicle. 

https://paperpile.com/c/Fsa8ZV/zLgH
https://paperpile.com/c/Fsa8ZV/Bru4
https://paperpile.com/c/Fsa8ZV/Bru4
https://paperpile.com/c/Fsa8ZV/AtDT
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NN model route integrated fuel consumption predictions for both gasoline and diesel vehicles for any 

given route were within 11% and 5% respectively. On the other hand, instantaneous fuel predictions 

measured in terms of R2 were also high with a median value of ~0.7 and ~0.8 for gasoline and diesel 

vehicles respectively. One key finding of this work is that NN models developed to predict fuel 

consumption and emissions consistently performed better than MV models regardless of the vehicle fuel 

type. 

 

Models built to predict emissions from gasoline vehicles performed poorly when compared to all other 

models. The primary reason for poor performance was due to the emission activity from a gasoline 

vehicle where >80% of all emissions were within the cold phase (~8 mins) of the experiment leading to a 

highly nonlinear trend. The reason for this could be due to the catalytic converter not achieving the 

operating temperatures because of the cold start. Another reason for poor performance is due to a number 

of data points being below the limit of detection of the PEMS that was used in this study, leading to a 

decreased correlation between the model inputs and the output variable. On the contrary, emissions from 

diesel vehicles are much more sporadic over the entire drive cycle leading to more efficient models in 

predicting emissions. Model predictions for route integrated NOX emissions from diesel vehicle were 

within 3% and 17% respectively regardless of the experimental data or the type of transformation used 

during training the model and the instantaneous time series predictions for NOX and HC emissions were 

also high with a median R2 of 0.79 and 0.64 resulting in models with high prediction capabilities. Models 

developed to predict CO and PM emissions had low performance metrics with high median RE of 26% 

and 19% and low R2 of 0.38 and 0.24 respectively. Overall, among all the models developed, NN models 

outperformed MV models regardless of the type of transformation or modeling schemes used and the NN 

models developed to predict fuel consumption from gasoline vehicles and fuel consumption, NOX, and, 

HC from diesel vehicles had the highest performance.      

 

 



63 

Bibliography 
 

 

 

1) Anenberg, S. C., Miller, J., Minjares, R., Du, L., Henze, D. K., Lacey, F., Malley, C. S., Emberson, 
L., Franco, V., Klimont, Z. and Heyes, C.: Impacts and mitigation of excess diesel-related NOx 
emissions in 11 major vehicle markets, Nature, 545(7655), 467–471, doi:10.1038/nature22086, 2017. 

2) Emission Standards: USA: Cars and Light-Duty Trucks—Tier 2, [online] Available from: 
https://www.dieselnet.com/standards/us/ld_t2.php (Accessed 20 May 2019a), n.d. 

3) Home :: AirCare Colorado, [online] Available from: https://aircarecolorado.com/ (Accessed 15 May 
2019b), n.d. 

4) Levenberg-Marquardt backpropagation - MATLAB trainlm, [online] Available from: 
https://www.mathworks.com/help/deeplearning/ref/trainlm.html (Accessed 15 May 2019c), n.d. 

5) Portable Emissions Measurement System | Center for Alternative Fuels Engines and Emissions | West 
Virginia University, [online] Available from: https://www.cafee.wvu.edu/laboratories/portable-
emissions-measurement-system (Accessed 20 May 2019d), n.d. 

6) In-Use Emissions Testing of Light-Duty Diesel Vehicles in the United States, Publications | Center 
for Alternative Fuels Engines and Emissions | West Virginia University, [online] Available from: 
https://www.cafee.wvu.edu/publications (Accessed 17 May 2019e), n.d. 

7) RDE PEMS Real Driving Emissions Portable Emissions Measurement Systems - micro-PEMS, nano-
PEMS | Global MRV, [online] Available from: https://www.globalmrv.com/pems-axionrs-2/ 
(Accessed 15 May 2019f), n.d. 

8) Brugge, D., Durant, J. L. and Rioux, C.: Near-highway pollutants in motor vehicle exhaust: a review 
of epidemiologic evidence of cardiac and pulmonary health risks, Environ. Health, 6, 23, 
doi:10.1186/1476-069X-6-23, 2007. 

9) Cao, Y.: Operation and Cold Start Mechanisms of Internal Combustion Engines with Alternative 
Fuels, in SAE Technical Paper Series, vol. 1, SAE International, 400 Commonwealth Drive, 
Warrendale, PA, United States., 2007. 

10) Chossière, G. P.: Public Health Impacts of Excess NOx̳ Emissions from Volkswagen Diesel 
Passenger Vehicles in Germany, Massachusetts Institute of Technology, Department of Aeronautics 
and Astronautics. [online] Available from: https://market.android.com/details?id=book-
QTvPtAEACAAJ, 2017. 

11) Durbin, T. D., Johnson, K., Cocker, D. R., 3rd, Miller, J. W., Maldonado, H., Shah, A., Ensfield, C., 
Weaver, C., Akard, M., Harvey, N., Symon, J., Lanni, T., Bachalo, W. D., Payne, G., Smallwood, G. 
and Linke, M.: Evaluation and comparison of portable emissions measurement systems and federal 
reference methods for emissions from a back-up generator and a diesel truck operated on a chassis 
dynamometer, Environ. Sci. Technol., 41(17), 6199–6204, doi:10.1021/es0622251, 2007. 

12) Epa, U. S. and OAR: Final Rule for Model Year 2017 and Later Light-Duty Vehicle Greenhouse Gas 
Emissions and Corporate Average Fuel Economy Standards, [online] Available from: 

http://paperpile.com/b/Fsa8ZV/zLgH
http://paperpile.com/b/Fsa8ZV/zLgH
http://paperpile.com/b/Fsa8ZV/zLgH
http://dx.doi.org/10.1038/nature22086
http://paperpile.com/b/Fsa8ZV/zLgH
http://paperpile.com/b/Fsa8ZV/Dvtz
http://paperpile.com/b/Fsa8ZV/Dvtz
https://www.dieselnet.com/standards/us/ld_t2.php
http://paperpile.com/b/Fsa8ZV/Dvtz
Home%20::%20AirCare%20Colorado,%20%5bonline%5d%20Available%20from:%20
https://aircarecolorado.com/
http://paperpile.com/b/Fsa8ZV/QTUU
http://paperpile.com/b/Fsa8ZV/QTUU
http://paperpile.com/b/Fsa8ZV/NiMr
http://paperpile.com/b/Fsa8ZV/NiMr
https://www.mathworks.com/help/deeplearning/ref/trainlm.html
http://paperpile.com/b/Fsa8ZV/NiMr
Portable%20Emissions%20Measurement%20System%20|%20Center%20for%20Alternative%20Fuels%20Engines%20and%20Emissions%20|%20West%20Virginia%20University,%20%5bonline%5d%20Available%20from:%20
Portable%20Emissions%20Measurement%20System%20|%20Center%20for%20Alternative%20Fuels%20Engines%20and%20Emissions%20|%20West%20Virginia%20University,%20%5bonline%5d%20Available%20from:%20
https://www.cafee.wvu.edu/laboratories/portable-emissions-measurement-system
https://www.cafee.wvu.edu/laboratories/portable-emissions-measurement-system
http://paperpile.com/b/Fsa8ZV/MDN7
Publications%20|%20Center%20for%20Alternative%20Fuels%20Engines%20and%20Emissions%20|%20West%20Virginia%20University,%20%5bonline%5d%20Available%20from:%20
Publications%20|%20Center%20for%20Alternative%20Fuels%20Engines%20and%20Emissions%20|%20West%20Virginia%20University,%20%5bonline%5d%20Available%20from:%20
https://www.cafee.wvu.edu/publications
http://paperpile.com/b/Fsa8ZV/s562
RDE%20PEMS%20Real%20Driving%20Emissions%20Portable%20Emissions%20Measurement%20Systems%20-%20micro-PEMS,%20nano-PEMS%20|%20Global%20MRV,%20%5bonline%5d%20Available%20from:%20
RDE%20PEMS%20Real%20Driving%20Emissions%20Portable%20Emissions%20Measurement%20Systems%20-%20micro-PEMS,%20nano-PEMS%20|%20Global%20MRV,%20%5bonline%5d%20Available%20from:%20
https://www.globalmrv.com/pems-axionrs-2/
http://paperpile.com/b/Fsa8ZV/zRR3
http://paperpile.com/b/Fsa8ZV/zRR3
http://paperpile.com/b/Fsa8ZV/dfhc
http://paperpile.com/b/Fsa8ZV/dfhc
http://paperpile.com/b/Fsa8ZV/dfhc
http://dx.doi.org/10.1186/1476-069X-6-23
http://paperpile.com/b/Fsa8ZV/dfhc
http://paperpile.com/b/Fsa8ZV/2Yeu
http://paperpile.com/b/Fsa8ZV/2Yeu
http://paperpile.com/b/Fsa8ZV/2Yeu
http://paperpile.com/b/Fsa8ZV/5e1L
http://paperpile.com/b/Fsa8ZV/5e1L
http://paperpile.com/b/Fsa8ZV/5e1L
https://market.android.com/details?id=book-QTvPtAEACAAJ
https://market.android.com/details?id=book-QTvPtAEACAAJ
http://paperpile.com/b/Fsa8ZV/5e1L
http://paperpile.com/b/Fsa8ZV/wmYT
http://paperpile.com/b/Fsa8ZV/wmYT
http://paperpile.com/b/Fsa8ZV/wmYT
http://paperpile.com/b/Fsa8ZV/wmYT
http://paperpile.com/b/Fsa8ZV/wmYT
http://dx.doi.org/10.1021/es0622251
http://paperpile.com/b/Fsa8ZV/wmYT
http://paperpile.com/b/Fsa8ZV/YwaF
http://paperpile.com/b/Fsa8ZV/YwaF


64 

https://www.epa.gov/regulations-emissions-vehicles-and-engines/final-rule-model-year-2017-and-
later-light-duty-vehicle (Accessed 20 May 2019), 2016. 

13) Erman, J., Arlitt, M. and Mahanti, A.: Traffic classification using clustering algorithms, in 
Proceedings of the 2006 SIGCOMM workshop on Mining network data, pp. 281–286, ACM., 2006. 

14) Frey, H. C., Unal, A., Rouphail, N. M. and Colyar, J. D.: On-road measurement of vehicle tailpipe 
emissions using a portable instrument, J. Air Waste Manag. Assoc., 53(8), 992–1002, 
doi:10.1080/10473289.2003.10466245, 2003. 

15) Frey, H. C., Zhang, K. and Rouphail, N. M.: Fuel use and emissions comparisons for alternative 
routes, time of day, road grade, and vehicles based on in-use measurements, Environ. Sci. Technol., 
42(7), 2483–2489, doi:10.1021/es702493v, 2008. 

16) Geladi, P. and Kowalski, B. R.: Partial least-squares regression: a tutorial, Anal. Chim. Acta, 185, 1–
17, doi:10.1016/0003-2670(86)80028-9, 1986. 

17) Hagan, M. T. and Menhaj, M. B.: Training feedforward networks with the Marquardt algorithm, 
IEEE Trans. Neural Netw., 5(6), 989–993, doi:10.1109/72.329697, 1994. 

18) Holland, S. P., Mansur, E. T., Muller, N. Z. and Yates, A. J.: Damages and Expected Deaths Due to 
Excess NOx Emissions from 2009 to 2015 Volkswagen Diesel Vehicles, Environ. Sci. Technol., 
50(3), 1111–1117, doi:10.1021/acs.est.5b05190, 2016. 

19) Kampa, M. and Castanas, E.: Human health effects of air pollution, Environ. Pollut., 151(2), 362–
367, doi:10.1016/j.envpol.2007.06.012, 2008. 

20) Khoshnevisan, B., Rafiee, S., Omid, M., Yousefi, M. and Movahedi, M.: Modeling of energy 
consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran 
using artificial neural networks, Energy, 52, 333–338, doi:10.1016/j.energy.2013.01.028, 2013. 

21) Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., Kolehmainen, M., Niska, H., 
Dorling, S., Chatterton, T., Foxall, R. and Cawley, G.: Extensive evaluation of neural network models 
for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system 
and measurements in central Helsinki, Atmos. Environ., 37(32), 4539–4550, doi:10.1016/S1352-
2310(03)00583-1, 2003. 

22) Kumar Pathak, S., Sood, V., Singh, Y. and Channiwala, S. A.: Real world vehicle emissions: Their 
correlation with driving parameters, Transp. Res. Part D: Trans. Environ., 44, 157–176, 
doi:10.1016/j.trd.2016.02.001, 2016. 

23) Kwon, S., Park, Y., Park, J., Kim, J., Choi, K.-H. and Cha, J.-S.: Characteristics of on-road NOx 
emissions from Euro 6 light-duty diesel vehicles using a portable emissions measurement system, Sci. 
Total Environ., 576, 70–77, doi:10.1016/j.scitotenv.2016.10.101, 2017. 

24) Laumbach, R. J. and Kipen, H. M.: Respiratory health effects of air pollution: update on biomass 
smoke and traffic pollution, J. Allergy Clin. Immunol., 129(1), 3–11; quiz 12–3, 
doi:10.1016/j.jaci.2011.11.021, 2012. 

25) LeCun, Y., Bengio, Y. and Hinton, G.: Deep learning, Nature, 521(7553), 436–444, 
doi:10.1038/nature14539, 2015. 

https://www.epa.gov/regulations-emissions-vehicles-and-engines/final-rule-model-year-2017-and-later-light-duty-vehicle
https://www.epa.gov/regulations-emissions-vehicles-and-engines/final-rule-model-year-2017-and-later-light-duty-vehicle
http://paperpile.com/b/Fsa8ZV/YwaF
http://paperpile.com/b/Fsa8ZV/JV1y
http://paperpile.com/b/Fsa8ZV/JV1y
http://paperpile.com/b/Fsa8ZV/eK2L
http://paperpile.com/b/Fsa8ZV/eK2L
http://paperpile.com/b/Fsa8ZV/eK2L
http://dx.doi.org/10.1080/10473289.2003.10466245
http://paperpile.com/b/Fsa8ZV/eK2L
http://paperpile.com/b/Fsa8ZV/8ooF
http://paperpile.com/b/Fsa8ZV/8ooF
http://paperpile.com/b/Fsa8ZV/8ooF
http://dx.doi.org/10.1021/es702493v
http://paperpile.com/b/Fsa8ZV/8ooF
http://paperpile.com/b/Fsa8ZV/aJNH
http://paperpile.com/b/Fsa8ZV/aJNH
http://dx.doi.org/10.1016/0003-2670(86)80028-9
http://paperpile.com/b/Fsa8ZV/aJNH
http://paperpile.com/b/Fsa8ZV/Th6X
http://paperpile.com/b/Fsa8ZV/Th6X
http://dx.doi.org/10.1109/72.329697
http://paperpile.com/b/Fsa8ZV/Th6X
http://paperpile.com/b/Fsa8ZV/Bru4
http://paperpile.com/b/Fsa8ZV/Bru4
http://paperpile.com/b/Fsa8ZV/Bru4
http://dx.doi.org/10.1021/acs.est.5b05190
http://paperpile.com/b/Fsa8ZV/Bru4
http://paperpile.com/b/Fsa8ZV/5sJX
http://paperpile.com/b/Fsa8ZV/5sJX
http://dx.doi.org/10.1016/j.envpol.2007.06.012
http://paperpile.com/b/Fsa8ZV/5sJX
http://paperpile.com/b/Fsa8ZV/61Fl
http://paperpile.com/b/Fsa8ZV/61Fl
http://paperpile.com/b/Fsa8ZV/61Fl
http://dx.doi.org/10.1016/j.energy.2013.01.028
http://paperpile.com/b/Fsa8ZV/61Fl
http://paperpile.com/b/Fsa8ZV/Fqdi
http://paperpile.com/b/Fsa8ZV/Fqdi
http://paperpile.com/b/Fsa8ZV/Fqdi
http://paperpile.com/b/Fsa8ZV/Fqdi
http://dx.doi.org/10.1016/S1352-2310(03)00583-1
http://dx.doi.org/10.1016/S1352-2310(03)00583-1
http://paperpile.com/b/Fsa8ZV/Fqdi
http://paperpile.com/b/Fsa8ZV/Sm3f
http://paperpile.com/b/Fsa8ZV/Sm3f
http://paperpile.com/b/Fsa8ZV/Sm3f
http://dx.doi.org/10.1016/j.trd.2016.02.001
http://paperpile.com/b/Fsa8ZV/Sm3f
http://paperpile.com/b/Fsa8ZV/sgnj
http://paperpile.com/b/Fsa8ZV/sgnj
http://paperpile.com/b/Fsa8ZV/sgnj
http://dx.doi.org/10.1016/j.scitotenv.2016.10.101
http://paperpile.com/b/Fsa8ZV/sgnj
http://paperpile.com/b/Fsa8ZV/RdHH
http://paperpile.com/b/Fsa8ZV/RdHH
http://paperpile.com/b/Fsa8ZV/RdHH
http://dx.doi.org/10.1016/j.jaci.2011.11.021
http://paperpile.com/b/Fsa8ZV/RdHH
http://paperpile.com/b/Fsa8ZV/9WKY
http://paperpile.com/b/Fsa8ZV/9WKY
http://dx.doi.org/10.1038/nature14539
http://paperpile.com/b/Fsa8ZV/9WKY


65 

26) Lek, S. and Guégan, J. F.: Artificial neural networks as a tool in ecological modelling, an 
introduction, Ecol. Modell., 120(2), 65–73, doi:10.1016/S0304-3800(99)00092-7, 1999. 

27) Mitchell, T. M.: Does machine learning really work?, AI magazine [online] Available from: 
https://www.aaai.org/ojs/index.php/aimagazine/article/view/1303, 1997. 

28) Mohamed Ismail, H., Ng, H. K., Queck, C. W. and Gan, S.: Artificial neural networks modelling of 
engine-out responses for a light-duty diesel engine fuelled with biodiesel blends, Appl. Energy, 92, 
769–777, doi:10.1016/j.apenergy.2011.08.027, 2012. 

29) Nagendra, S. M. S. and Khare, M.: Artificial neural network approach for modelling nitrogen dioxide 
dispersion from vehicular exhaust emissions, Ecol. Modell., 190(1), 99–115, 
doi:10.1016/j.ecolmodel.2005.01.062, 2006. 

30) O’Driscoll, R., ApSimon, H. M., Oxley, T., Molden, N., Stettler, M. E. J. and Thiyagarajah, A.: A 
Portable Emissions Measurement System (PEMS) study of NOx and primary NO2 emissions from 
Euro 6 diesel passenger cars and comparison with COPERT emission factors, Atmos. Environ., 145, 
81–91, doi:10.1016/j.atmosenv.2016.09.021, 2016. 

31) Oldenkamp, R., van Zelm, R. and Huijbregts, M. A. J.: Valuing the human health damage caused by 
the fraud of Volkswagen, Environ. Pollut., 212, 121–127, doi:10.1016/j.envpol.2016.01.053, 2016. 

32) Pelkmans, L. and Debal, P.: Comparison of on-road emissions with emissions measured on chassis 
dynamometer test cycles, Transp. Res. Part D: Trans. Environ., 11(4), 233–241, 
doi:10.1016/j.trd.2006.04.001, 2006. 

33) Reiter, M. S. and Kockelman, K. M.: The problem of cold starts: A closer look at mobile source 
emissions levels, Transp. Res. Part D: Trans. Environ., 43, 123–132, doi:10.1016/j.trd.2015.12.012, 
2016. 

34) Sheela, K. G. and Deepa, S. N.: Review on Methods to Fix Number of Hidden Neurons in Neural 
Networks, Math. Probl. Eng., 2013, doi:10.1155/2013/425740, 2013. 

35) Thompson, G. J., Atkinson, C. M., Clark, N. N., Long, T. W. and Hanzevack, E.: Technical Note: 
Neural network modelling of the emissions and performance of a heavy-duty diesel engine, Proc. Inst. 
Mech. Eng. Pt. D: J. Automobile Eng., 214(2), 111–126, doi:10.1177/095440700021400201, 2000. 

36) U.S. EPA Office of Air and Radiation: Air Quality Improves as America Grows, [online] Available 
from: https://gispub.epa.gov/air/trendsreport/2018/ (Accessed 15 May 2019), n.d. 

37) Wang, T., Jerrett, M., Sinsheimer, P. and Zhu, Y.: Estimating PM2.5-associated mortality increase in 
California due to the Volkswagen emission control defeat device, Atmos. Environ., 144, 168–174, 
doi:10.1016/j.atmosenv.2016.08.074, 2016. 

38) Weber, M., Welling, M. and Perona, P.: Unsupervised Learning of Models for Recognition, in 
Computer Vision - ECCV 2000, pp. 18–32, Springer Berlin Heidelberg., 2000. 

39) Weilenmann, M., Soltic, P., Saxer, C., Forss, A.-M. and Heeb, N.: Regulated and nonregulated diesel 
and gasoline cold start emissions at different temperatures, Atmos. Environ., 39(13), 2433–2441, 
doi:10.1016/j.atmosenv.2004.03.081, 2005. 

http://paperpile.com/b/Fsa8ZV/XvXL
http://paperpile.com/b/Fsa8ZV/XvXL
http://dx.doi.org/10.1016/S0304-3800(99)00092-7
http://paperpile.com/b/Fsa8ZV/XvXL
http://paperpile.com/b/Fsa8ZV/UA8L
http://paperpile.com/b/Fsa8ZV/UA8L
https://www.aaai.org/ojs/index.php/aimagazine/article/view/1303
http://paperpile.com/b/Fsa8ZV/UA8L
http://paperpile.com/b/Fsa8ZV/O3K3
http://paperpile.com/b/Fsa8ZV/O3K3
http://paperpile.com/b/Fsa8ZV/O3K3
http://dx.doi.org/10.1016/j.apenergy.2011.08.027
http://paperpile.com/b/Fsa8ZV/O3K3
http://paperpile.com/b/Fsa8ZV/rNd7
http://paperpile.com/b/Fsa8ZV/rNd7
http://paperpile.com/b/Fsa8ZV/rNd7
http://dx.doi.org/10.1016/j.ecolmodel.2005.01.062
http://paperpile.com/b/Fsa8ZV/rNd7
http://paperpile.com/b/Fsa8ZV/19vu
http://paperpile.com/b/Fsa8ZV/19vu
http://paperpile.com/b/Fsa8ZV/19vu
http://paperpile.com/b/Fsa8ZV/19vu
http://dx.doi.org/10.1016/j.atmosenv.2016.09.021
http://paperpile.com/b/Fsa8ZV/19vu
http://paperpile.com/b/Fsa8ZV/AtDT
http://paperpile.com/b/Fsa8ZV/AtDT
http://dx.doi.org/10.1016/j.envpol.2016.01.053
http://paperpile.com/b/Fsa8ZV/AtDT
http://paperpile.com/b/Fsa8ZV/rKbp
http://paperpile.com/b/Fsa8ZV/rKbp
http://paperpile.com/b/Fsa8ZV/rKbp
http://dx.doi.org/10.1016/j.trd.2006.04.001
http://paperpile.com/b/Fsa8ZV/rKbp
http://paperpile.com/b/Fsa8ZV/KwRv
http://paperpile.com/b/Fsa8ZV/KwRv
http://dx.doi.org/10.1016/j.trd.2015.12.012
http://paperpile.com/b/Fsa8ZV/KwRv
http://paperpile.com/b/Fsa8ZV/KwRv
http://paperpile.com/b/Fsa8ZV/Mre8
http://paperpile.com/b/Fsa8ZV/Mre8
http://dx.doi.org/10.1155/2013/425740
http://paperpile.com/b/Fsa8ZV/Mre8
http://paperpile.com/b/Fsa8ZV/7geE
http://paperpile.com/b/Fsa8ZV/7geE
http://paperpile.com/b/Fsa8ZV/7geE
http://dx.doi.org/10.1177/095440700021400201
http://paperpile.com/b/Fsa8ZV/7geE
http://paperpile.com/b/Fsa8ZV/DcMn
http://paperpile.com/b/Fsa8ZV/DcMn
https://gispub.epa.gov/air/trendsreport/2018/
http://paperpile.com/b/Fsa8ZV/DcMn
http://paperpile.com/b/Fsa8ZV/eTY5
http://paperpile.com/b/Fsa8ZV/eTY5
http://paperpile.com/b/Fsa8ZV/eTY5
http://dx.doi.org/10.1016/j.atmosenv.2016.08.074
http://paperpile.com/b/Fsa8ZV/eTY5
http://paperpile.com/b/Fsa8ZV/uwLG
http://paperpile.com/b/Fsa8ZV/uwLG
http://paperpile.com/b/Fsa8ZV/A5OS
http://paperpile.com/b/Fsa8ZV/A5OS
http://paperpile.com/b/Fsa8ZV/A5OS
http://dx.doi.org/10.1016/j.atmosenv.2004.03.081
http://paperpile.com/b/Fsa8ZV/A5OS


66 

40) Zhang, K. and Batterman, S.: Air pollution and health risks due to vehicle traffic, Sci. Total Environ., 
450-451, 307–316, doi:10.1016/j.scitotenv.2013.01.074, 2013. 

 

http://paperpile.com/b/Fsa8ZV/UNqY
http://paperpile.com/b/Fsa8ZV/UNqY
http://dx.doi.org/10.1016/j.scitotenv.2013.01.074
http://paperpile.com/b/Fsa8ZV/UNqY

