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A Model Reduction Method for a Class of
2-D Systems

Mahmood R. Azimi-Sadjadi, Senior Member, IEEE, and Khashayar Khorasani, Member, IEEE

Abstract—A decomposition-aggregation scheme for reduction
of dimensionality for a class of 2-D systems is introduced. This
method, which is based upon the extension of the singular
perturbation method in two dimensions, is used to decompose
the original 2-D system into two reduced-order 2-D subsystems.
These reduced order subsystems are shown to effectively capture
the dynamical behavior of the original full-order system. Two
numerical examples are provided that indicate the effectiveness
of this method when used in image modeling applications.

I. INTRODUCTION

ARAMETRIC representation of images involves fitting

an appropriate autoregressive (AR) or autoregressive
moving average (ARMA) model to the image that would
realize the given covariance function or equivalently the
spectral density function of the relevant image. The mismatch
between the covariances generated by the model and those of
the original image field can be reduced by increasing the
order of the model. On the other hand, the principle of
parsimony precludes the use of a model having a large
number of parameters. It is, therefore, desirable to develop a
model reduction scheme that can be applied to the original
full-order model to obtain the relevant reduced-order models
that preserve the stability and correlation properties of the
original system. These reduced-order subsystems can then be
used in place of the full-order system for synthesis and
analysis problems.

Model reduction for 2-D systems described by state-space
formulations has been considered in a number of recent
papers [1]-[6]. Jury and Premaratne [1] extended the 1-D
model reduction technique of Badreddin and Mansour [2] to
the 2-D case. However, unfortunately, in contrast to the 1-D
case, in the 2-D extension the stability of the reduced-order
system is not generally guaranteed even for a stable full-order
system. Lu, Lee, and Zhang [3] developed a model reduction
method using a generalized balanced realization that exploits
the properties of the reachability and observability Grammi-
ans. For a balanced realization these Grammians provide
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measure of couplings of input-to-state and state-to-output.
The effects of weakly coupled states are ignored in this
method. In the method proposed by Zilouchian and Carroll
[4], structure transformations are applied to the full-order
system to reduce the number of vertical and horizontal states
separately. The transformation matrices are determined such
that the error between the outputs of the full-order and
reduced-order systems is minimized. Balanced realization is
suggested to provide a good minimization procedure. More
recently, Premaratne et al. [5] have extended their method to
the 2-D multi-input multi-output case. In [6], they have
obtained new results on the stability, minimality, and Gram-
mian computation for separable 2-D systems.

In our earlier work [7], [8], the singular perturbation
method was used for order reduction of I-D and 2-D dy-
namic models of images. In [7], this method is employed to
derive a reduced-order strip Kalman filter for image restora-
tion applications. The idea of applying singular perturbation
for 2-D model reduction was first reported in [8] and then
later extended in [9] and [10].

The methodology for model reduction is greatly dependent
on the particular choice of model description. In this paper, a
new approach for model reduction is presented for a class of
2-D systems described by finite-order 2-D causal difference
equations with strong-weak coupling effects within their
region of support (ROS). This approach, which is based upon
the extension of the singular perturbation methodology, ex-
ploits the strong-weak coupling effects between a group of
pixels within the ROS to obtain a 2-D image model in
singularly perturbed form. This model is arranged into a 2-D
state-space realization with ‘‘two-time-scale’’ property (to be
specified later; see also 1] and [2]). This property is then
used to capture the aggregated effects of the weakly corre-
lated states (pixels) on those strongly correlated ones and
hence obtain 2-D reduced-order models, which perform very
closely to the original 2-D full-order system. This is accom-
plished by using the decomposition-aggregation capabilities
of the singular perturbation method. This model reduction
scheme is used to decompose 2-D systems into slow and fast
2-D subsystems associated, respectively, with the strongly
and weakly coupled state variables. The 2-D reduced-order
models preserve the dynamic properties of the original 2-D
full-order system. Two numerical examples are given, which
demonstrate the usefulness and utilities of this method for
image modeling applications. The results are compared with
those obtained using a conventional image data compression
scheme, namely, the Karhunen-Loeve (KL) transform.

1057-7122/92$03.00 ©1992 IEEE



thzt SD4AI

AZIMI-SADJADI AND KHORASANI: MODEL REDUCTION METHOD

1I. A 2-D SINGULARLY PERTURBED IMAGE MODEL

Consider a causal linear space-invariant 2-D image model
described by the following M X Mth-order difference equa-
tion with quarter plane ROS,

y(m,n) =33 &, ,y(m—p,n—q)+u(m n) (1)
D, geWw

where W={p, q:0=p=M0=<qg=<M,(p, q)#Q,
0)} and {u(m, n)} and { y(m, n)} represent the input and
the output arrays, respectively. Since any general linear
space-invariant 2-D recursive system can be viewed as a
cascade of a 2-D all-zero system and a 2-D all-pole system,
and since the model reduction scheme proposed in this paper
does not affect the all-zero part, thus without any loss of
generality, we have throughout this work considered only the
all-pole systems. (See Section 6.2 for an ARMA modeling
example).

Now, let us assume that the ROS, W, of this model is
partitioned into two subregions, W, and W,, such that
W,NW,=p0and W, U W, = W where the pixels in W,
are strongly correlated with the present pixel y(m, n), and
those in W, are weakly correlated with y(m, n). These
strong—weak coupling effects between the pixels in the ROS
exist due to the local spatial activities within an image. The
partitioned ROS is shown in Fig. 1. The coefficients a, ,’s
of the difference equation (1) in the subregions are assumed
to be given by

Op g = 8 > for p+qe[1,N] (2a)
a, =€’ N, for p+qge[N+1,2M]
(20)

where ¢ is a positive real number greater than zero and
normally very much less than one. The choice of the pertur-
bation parameter, ¢, is discussed in Section III. The above
definitions confirm the fact that the pixels in region W, are
highly correlated to y(m, n) as their corresponding coeffi-
cients are of order 1, whereas the pixels in region W, are
weakly correlated to y(m, n) and their coefficients are of
order €, €2,- -+, 2™ =N when their spatial diagonal distances
from y(m, n) are respectively N + 1, N + 2,---,2M (see
Fig. 1). The system described by (1) is now in a 2-D
singularly perturbed form in the sense that by formally
setting € = 0, the order of the system is reduced from
M x M to N x N. Note that this is different from a regular
perturbation problem in the sense that in a regularly per-
turbed system the order of the system is unchanged when the
perturbation parameter is neglected. This is not the case for
system (1). By neglecting the perturbation parameter in (1)
the reduced-order (truncated) 2-D system becomes

y(m,n) = pZ;;V ap,qJ’(m —p,n—gq)+ulm,n).
(3)

Although the reduced-order system (3) provides computa-
tional simplicity, it will not generally be able to give a
complete representation of the system characteristics. This is
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Fig. 1. Region of support of the 2-D AR model and strong and weak

coupling regions.

due to the fact that part of the dynamics of the system is lost
in the process of truncation (degeneration).

The main crux of the singular perturbation technique is to
effectively utilize the simplicity offered by the order reduc-
tion and simultaneously recover the lost dynamics. To show
the utility and effectiveness of this method for 2-D image
model reduction, we need to put system (1) into a standard
singularly perturbed form. To this end, let us define the
following vertical state variables along the right-hand bound-
ary by
x;’(m’ n) = EM’N"'y(m, n-M+i- 1),

forie[l,M - N—1] (4a)
and
x!(m,n)=y(m,n-—M+i-1),

forie[M - N, M]|. (4b)

Propagating x;’s along the vertical direction gives

x!(m,n+1)=ext, (m,n), forie[l, M - N - 1]

(5a)
and

x!(m,n+1)=x (m,n),forie[M- N, M- 1].
(5b)

For x},, we have
M

xy(m,n+ 1) =y(m,n)

N
ay ,y(m,n—q)
=

<

M
+ > e, y(m,n—gq)

g=N+1
+ x(m,n) + u(m, n) (6a)
where
M M
xt(m, n):= pZ:I qgoap.qy(m ~p,n—gq). (6b)
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The first and second terms in (6a) can be written in terms of
x;’s as

M=

x,”v,(m,n+ 1) = a(]4z/x‘:/l-(1+l(’n’n)

i

Il

q
M
+ Z an.qxx/[—q+l(m’n)
g=N+1
+ xf(m,n) +u(m.n).

(7)

The horizontal state variable x| can be propagated to give

M M
xf(m+1,n)= > > a, yim+1-p.n-gq)
p=1¢g=0
M
=a, oy(m,n) + Zlal‘qy(m. n-q)
a=
+ xt(m, n) (8a)
where

M M
x?’j(’"’ n):: 22 Zoap,qy(m + l - p' n— Q) (Sb)
pP=z4q=

Replacing for y(m, n) from (6a) yields

x'(m+ 1,n) =a, ,x"(m.n) +x¥(m,n)
N-1
+ Zl a‘]l.)qxll’\lll— q+|(m’ n)
a=

+ ”(lz_)Nx.LMa'\w (m, n)

M
t e Z[\z la(ﬁ.qx‘u’\/lfz/+l(m’n)
g=N+
+ a, qu(m, n) (9a)
where
a’h=a, gay ;+ e a,  k=1.2.-. (%)

A similar procedure can be applied to all x/’s. ie[2. N].
The expression for x2(m + 1, n) is
M M

Z Z a/).qy(m+N7p‘”7q)
p=Nqg=0

xt(m+1,n) =

Mk

=ay  y(m,n)+ elay y(m.n— q)

1

q
+ext, (m, n) (10a)

where

M

> (e, q/€)
+1g=0
“y(m+N-p.n—gq). (10b)

Again using (6a), we obtain

XRi(m, n) =
p

xb(m+1,n) =ay oxH(m.n) +ext, (m. n)

N
+ 2 al "Xy (mon)
q=

M
+ € Z as\;\.;“x}'vﬂ—(/%—\(m‘n)
g=N+1

+ay yu(m, n).

(11a)

This process continues up to the last state variable, for which
we get

Xy (m+ 1, n) = a\,_()xlh(m. n)

.
+ Y a5 ()
qg="

M
+e > a i xy g (mon)
qg=N+1

+ ay, u(m, n). (11b)

Now, these equations can be arranged into the following 2-D
local state-space model {11]:

X"m + 1, n) A,
Xv(m.n+1)

where

. /\}hx‘ . ’ ) )A(us m.n

X"(m,n) =", (m ") L X (m,n) = ( )
X" (m, n) X (m, n)

X =[xt ] X = [l e ]
(13a)

X' = [Xf’\‘/lf.\#l xfil][
X = [/\i Tt Xy N][ (13b)

and "¢’ denotes transposition.

The horizontal state X’ e R is effectively partitioned
into “slow’” state, X"e R™, n, = N, and the *‘fast’ state
X"'eR", n,=M — N, corresponding to the strong and
weak correlation areas, respectively. Similarly, the vertical
state vector X e R is partitioned into the *‘slow’” state,
X"™eR", m, = N, and the *‘fast’” state X7 eRm, m,
= M — N, relating to the strong and weak correlation areas,
respectively. Explicit definitions for fast/slow states are given
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subsequently in Section III. The

matrices in model (12) are

defined as
A, eAp Ay €Ay
= A, = - 14
A [AIS 7 Ay €Ay (142)
4. = Az €Asy A = Ay €Ay (14b)
’ Ay €Ay ! Ay €Ay
B B
B =\ "|.B=1]" (14c)
: [BIZ] : B,,
C =[C, eCph],C = [Co1 €Cp]andd =1 (14d)
where
[ a,, 1 0 -+ 0
a5y 0 0
Ay = |- s
an_1o0 O 1
| dn.0 0 0
[0 0
0 0
Ap=|- (15a)
LI O 0
_aN+I.0 0 0
4. = Anyao O 0
137 | - .
LaMO 0 0
[0 1 0
0 0 1 0
Ay = (ISb)
. 1
LO O 0
a(12,)N a(xl,)Nf— 1 a(ll. 1
a(;.)/v a(lz.)N— 1 a(zl‘)l
Ay =1 ’
LA A AN a3
a’y a(lz.).M— | a’ i
A = a(23,)M 0(23,)/«/17»1 a?}N+I (15¢)
2
VAN VA ag
a(/v,\rll.)/v ay, 1.1
A = avhy agia
237 . )

31
a oy ay l ‘N1
a(NN+21 )M agVN++21)N+ 1
Ay = |2 ~ (154)
asy aS\[/XJeril
0 0
Ay =10 0’A32:07A33:0’A34:0
1 1 0
(15€)
[0 1 0
0 0 0
Ay =1. s
0 1
| 0.~ 90, N1 0.1
K 0
0 0
A42 = (15f)
LaO.M o, N+1
[0 0 0]
0 0 0
Ay = )
11 0 0]
[0 1 0]
0o 0 1 0
Ay = (15g)
1
L0 0 © 0]
a0 an+i1.0 0 0
a; adn+2.0 ’ 0
B, =|- B, = : s By =i | Br=
an.o Ar.0 1 0
(15h)
C, = [1 "'O]an: [0"'0]
G, = [aO.N aO.l]’andCZZ = [ao.M ao,N+1]~

(151)
The 2-D state-space model (12) is now in singularly per-
turbed form. By setting the singular perturbation parameter €
to zero, the effects of weakly coupled pixels in region W, are
totally ignored and as a consequence the order of the model
(12) reduces from M x M for the entire region W to
N X N corresponding to region W,. However, this reduced-
order system does not usually capture the essential character-
istics of the full-order model (12). In the following sections a
decomposition-aggregation strategy is introduced for 2-D
singularly perturbed systems, which provides a tool for ob-
taining reduced-order 2-D subsystems that closely capture the
dynamics of the original 2-D full-order system.

III. FAsT-SLow DECOMPOSITION IN 2-D STATE-SPACE
MobDELS

The first step in the process of model reduction using the
singular perturbation scheme is to decompose the eigenvalues
of matrices A, and A, into fast-slow parts. That is, given
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the 2-D system (12), a similarity transformation is applied to
the system such that matrices A, and A, are block diagonal-
ized. Through this procedure the inherent dynamic separation
becomes more evident.

Definition 3.1: Given the matrix A, (or A,) correspond-
ing to the horizontal (or vertical) state, an eigenvalue is
defined as ‘‘slow/fast’’ if its magnitude is close to the
boundary /origin of the unit circle (see also [1] for similar
definitions). |

Definition 3.2: The horizontal (or vertical) state associ-
ated with the ‘‘slow/fast’” dynamics is referred to as
“‘slow /fast’” state (see also [1]). |

The clustering in eigenvalues of A, and A, matrices is
caused owing to the strong—weak coupling effects in the ROS
of the image model. The slow eigenvalues of 4, and A4,
correspond to the strongly coupled states while the fast
eigenvalues are associated with the weakly coupled states.
Now, let us assume that the eigenvalues are clustered into
two distinct sets of n, and n, for matrix A, and m, and m,
for matrix A, such that

iyn,+n = M,

ii) m,+m, =M,

iii) denote A= min | N,(A4)) |, ie[l, n;] and A;:= max
INCAD|, jell, ngl, then A, < X, and

iv) denote X;:= min | N,(A,) |, ie[l, m,] and X;:= max
INCAY |, Jell, mg], then X, < X\,

Under the above conditions there will exist bases in R
such that both matrices A4, and A, are block diagonalizable.
This is discussed in the following lemma derived from the
results in [12].

Lemma 3.1: Assuming that the eigenvalue clustering con-
ditions above are satisfied, similarity transformation matrices
of the form

[nj_MlLl —-M, ImS—MZLZ - M,
L, I, "2 L, I

my

T, =

j (16)

exist, which block diagonalize matrices 4, and A,, respec-
tively, such that

N AS 0
T,AT =" T,AT; = | * (17a)
! 141 0 Alf s £24%4%2 0 A‘{
where
A=A, —eApL,, A=Ay —eAp L, (17b)

Ali=e(Ay + L1 Ap), Al:=e(Ay + Ly Ap) (17¢)

and 1, , I, , 1, ,and I, are identity matrices of dimension
ng, ny;, m, and mg, respectively. Matrices L,, M, and
L,, M, satisfy the following Riccati and Lyapunov type

equations:
LA, —€eAy,L, —eLl A, L +A;;=0
— €A, LM, +€A,

(18a)
AllMl
— ML, Ay, — eM,A,, =0 (18b)

and
LA, —eAyL, —el, AL, +A; =0 (19a)
AyM, + €Ay —eM, L, Ay,
- eM, A, —eAp, L, M, =0. (19b)
|

Remark 3.1: The ‘‘zeroth-order’” approximation for L,
M, and L,, M, are obtained for ¢ = 0 as

LY =-A,A " 'and M{® =0

LY = A AL and M =0 (20)

where it is assumed that A;' and Aj' exist (this is a
necessary condition for dynamic separation property [12]).
The contraction mapping argument of [12] can be used to
develop a computationally efficient iterative procedure to
evaluate, for a sufficiently small €, L;, M and L,, M, as
follows:

L = (EAML(lkv” +eL{ VA, LY — Als)Aﬂl
(21a)
Ml(k) = fAflllAlzL(lkil)Ml(kil)
+M1(k71)(A14+L(1k7‘)A12) _AIZ] (ZIb)
and
L(zk) = (€A44L(2k71) + fL(zkil)AnL(zk_” - A43)A4_1l
(22a)
MR = GALI[AM L(zkil)Mz(kil)
+MEV(A,, + LFVA,) - Ay]. (22b)

1t is clearly seen that M, and M, are O(e) matrices whereas
L, and L, are O(1) matrices. |

Now, following the results developed in [12] and [13],
sufficiency conditions for the existence and uniqueness of real
solutions for L, and L, and bounds on ¢ may be obtained.
The result is summarized in the following lemma.

Lemma 3.2: A unique solution to (18a) and (19a) exists if
A,, and A, are nonsingular and ¢ is within the bounds
defined by 0 < ¢ < € = min (¢, €,), where || Al| = [\,
(A*A)]'/2, * £ conjugate transpose with

R 1
=6 <
P AR N A+ LA+ Al TLP])
(23a)

and
. 1
< .
U3 ALN( A + LA + [ AN TLPN)
(23b)

Proof: Follows immediately from the results in [12]. W

By expressing (18b) as
(All - EAIZLI)MI - EMI(AM + LIAIZ) +ed;,=0
(24a)
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or alternatively

ASM, — M, Al +€A4,,=0 (24b)
and similarly for (19b),
ASM, — M, Al + €A, =0 (25)

it is well known that the Lyapunov type equations (24) and
(25) have unique solutions, since 4% and A7, and A$ and
A, have no eigenvalues in common. Therefore, the above
bound on ¢ provides a sufficient condition for block diagonal-
ization and dynamic separation of the original system (12).
With the dynamic separation property satisfied, the eigenval-
ues of A, are now partitioned into the slow and fast eigen-
values associated with those of A7 and A,f , respectively; and
similarly the eigenvalues of A, are partitioned into the slow
and fast eigenvalues associated with those of A3 and A7,
respectively. The eigenvalues of A, can be ordered as
Mg =< Ny = =< )\M_,,fﬂ K< Nyy_p S 0 SN,
with #, and n, denoting the number of slow and fast
eigenvalues of A, respectively, and the eigenvalues of A,
can be ordered as Ny, < Xj,_, < -+ < XM—m/+l < )\’M_,,,/
< --+ =X, with m; and m, denoting the number of slow
and fast eigenvalues of A,, respectively. Thus the similarity
transformation matrix 7, partitions the eigenvalues of A,
into the slow and fast eigenvalues of A$ and A7, respec-
tively, and the similarly transformation matrix T, partitions
the eigenvalues of A, into the slow and fast eigenvalues of
A$ and A7, respectively. Note that the perturbation parame-
ter e can be interpreted as representing a gap between the
largest of the fast eigenvalues and the smallest of the slow
eigenvalues. The ratio between these two eigenvalues has
been used in practice [13] for quantifying e. For the 2-D case
we can use

6 = |>\M~n/+1 |/ )‘anf| or

e =11- )\M—nfl/ 11— )\M—n/—H (26)
and

&= [ Xosmer |/ | Xag o, | or

&= 1= Nop, |/ 11 = Nogp i |- (27)

Then set e: = Max (¢, €,). Note that the estimates given by
(23a) and (23b) would guarantee the existence of a conver-
gent solution to the Riccati-type equations. This is to be
distinguished from the perturbation parameter used in (2), or
equivalently defined in (26) and (27). To clarify this point, if
we are given only state equation (12) without an explicit
definition of ¢, then we would use equations (26) and (27) to
define € as the gap between the fast and slow eigenvalues.
This happens to be the situation we have for the two numeri-
cal examples in Section VI. Once ¢ is defined this way, we
then check (23a, b) to ensure that solutions to the Riccati-type
equations do exist. In the numerical examples in Section VI,
the exact solutions have actually been obtained in a few
iterations, which suggests that conditions (23a) and (b) are
indeed satisfied. We can now state the main result of this
section in the following lemma.

33

Lemma 3.3: A similarity transformation matrix 7 = T,
@ T, exists, with ® denoting the direct sum operation, and
the new transformed 2-D state vector defined by

[Xh(m,n)" [Tl 0}

X“(m,n)__ 0 7

X*(m, n)
X¥(m,n)

} (28)

such that the transformed state and output equations are

x'm+1,n)] [rAaT' T,4,7
X'(mon+1) | |TAT T,AT;
X* T,B
| X (m. ) YU u(m.n) (29a)
X“(m,n) T, B,
X"(m, n)
m,n)y=|CT;" C,T;' ’ +du(m,n).
»( ) [ 14 24y ] X”(m,n)] ( )
(29b)

If T, and 7, are chosen as in Lemma 3.1, the transformed
2-D state-space equations are

X"(m + 1, n) A; 0 | Bj B
X" (m+ 1, n) 0 A | B eB,
____________ e L R
X¥(m,n+ 1) Ci, eClL,1 A5 0
X (m, n+ 1) Ch Chl 0 Al
X"(m, n) D}, ]
X"(m,n D/,
____(____)_ + __12_ u(m’n)
Xv(m, n) Dy,
X(m.n) | [ D]
(30a)
X"(m, n)
X" (m, n)
y(m, n) = [Elleé'FlsfaElj;] —————————
Xv(m, n)
X (m, n)
+du(m, n) (30b)
where
X"(m,n XY(m,n
X"(m, n) ( ) , X"(m,n) = ( )
X" (m, n) | X*/(m, n)
with X**eR™, X"'eR"™, X"*eR™, and X" eR"/
and
BS, B}, ] Ko Te’A
T,AZT;':=[ vl A= |
By €B14_ »Cls3 eCiy
Dy, Dy,
T1Bl:—[ , 1= s
lez 252 Da

C\T "= [E}EL]. G, T, "= | ELE,

(31)
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Al =A, —€A,L,
By = (A21 - M Ay - M1L1A21)
+e(M Ay + MLiAy, - Ay)L,
B, = €(Ay — ML Ay - My Ay,) + B M,
A{:G(Al4+LlA]2)
By = (Ap+ LiAy) —e(Ay + L1 Ay) L,
B, = e(Ay + Ly Ay) + B M,
Ciy = (A3 — My Ay — My L, Ay)
te(-Ap+ My Ay + MyLy Ay) L
€Cly = (A, — MyLy Ay, = My Ay) + CL M,
Ai =Ay —€ApL,
Ch = (A + LyAsy) —e(LyAp + Ay L,
€Cl, = e( Ay + Ly Ayy) + CHLM,
A4f: e( Ay + Ly Ay)
Dj, = (1_ MILI)BII - M B,
lez =B, + LB, Dj;= (I"‘ Msz)B;n - M, B,
D{:t =By + L, B,

E}, =C - €eCp, Ly, Elf2 =eCp, + C; /M, — eC, L | M,
Ely =Gy — eCypL, — eCy Ly M,
Ef, = €Cyy + Cy/ M,. (32)

Proof: The proof follows from the results obtained in
[9] and [10]. Note that in Remark 3.1 it was pointed out that
M, and M, are O(e) matrices. Thus the terms B M,,
BiM,, C;;M,, and C}; M, are O(e) matrices implying that
eBY,, eB{,, eC/,, and €C{, are also O(e) matrices. |
So far the eigenvalues of matrices 4, and A, are decom-
posed into the fast and the slow eigenvalues via the applica-
tion of the block diagonalizing transformations 7, and 7, in
(16). In contrast to the 1-D case [12], where the block
diagonalizing transformation would lead to an exact dynamic
separation and hence an exact model reduction, in the 2-D
case these transformations by themselves would not result in
a dynamic separation or model reduction as evident from the
state matrix in system (30). Nonetheless, these transforma-
tions result in dynamic separation along each direction inde-
pendently, i.e., the dynamics along the horizontal and verti-
cal directions alone are separated as evident from the upper
left and lower right blocks in the state matrix of system (30).
In the next section a method is introduced that can be used to
effectively reduce the general transformed 2-D system (30)
into two reduced-order 2-D subsystems associated with slow
and fast dynamics.

IV. MoDEL REDUCTION AND AGGREGATION FOR
SINGULARLY PERTURBED 2-D SYSTEMS

A singularly perturbed system exhibits, in general, a multi-
time-scale behavior characterized by the presence of both
slow and fast dynamics in the system response. The slow

response of system (30) contains contributions from both the
fast variables as well as the slow variables. Similarly, the fast
response of system (30) contains contributions from both the
fast variables as well as the slow variables. The fast variables
themselves contain a pure fast part that characterizes the
““‘fast transient’” and a slow part, which is referred to as the
*‘quasi-steady-state’” (see Definition 4.1). In order to accom-
plish dynamic separation and subsequently model reduction
without losing the effects of the corresponding fast dynamics
in the reduced-order slow subsystem, the effects of the
quasi-steady-states are incorporated into the slow dynamics.
This is achieved by defining new fast variables that represent
the pure fast variables (or fast transients) by removing the
quasi-steady-state parts from the fast variables and then ag-
gregating these quasi-steady-state parts into the slow vari-
ables. Interestingly enough, if the dynamics of the pure fast
subsystem is asymptotically stable the effect of the fast
transients on the slow subsystem would vanish quickly. This
can be seen from the numerical examples in Section V. Note
that the difference between the response of the original
full-order system with ¢ = 0 and that of the slow subsystem
is that the latter response has embedded in it the aggregated
effects of the fast variables (the quasi-steady-state parts).

Let us first rearrange the 2-D full-order system (30) such
that the slow horizontal and vertical states, and also the fast
horizontal and vertical states, are grouped together. This
yields

X"(m+ 1, n) A By i 0 eB,fz_
X(m,n+ 1) C;, Ailecl, 0
X" (m+1.n) | |0 Byl Al B
XY(m.n+1) c 0 eCl Al
X"(m, n) D5,
X"S(m.n) D7, ( )
—————————— + |- |u(m,n
X" (m. n) D,
X (m. n) DY,
(33a)
y(m, n) = [EISI El, El, Elf‘t]
/\,hs(m.n)
X"(m,n
( ) +du(m,n).
X" (m. n)
X (m, n)
(33b)

As already discussed the aggregation is accomplished by
replacing the original fast states with their new fast variables
which simply represent the deviation of the fast states from
their quasi-steady-state values. But let us first define the term
‘‘quasi-steady-state’” properly.

Definition 4.1: The quasi-steady-states X"/ and X*/ are
defined from the full-order system by allowing no propaga-
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tion occurring in the horizontal and vertical directions in the
fast states X"/ and X"/, respectively. That is, the quasi-
steady-states are defined under the condition that X" (m +
1, i) =X"(m, ny and X(m, n+ 1) =X(m, n,
which is equivalent to treating the fast states as bcing
““frozen’’ in the appropriate directions. u

From the Definition 4.1 of the quasi-steady-states X "/ and
X one gets

X" (m,n) = BLX(m,n) + A{X" (m, n)
+ €eBf, X" (m,n) + DHu(m, n)
XY (m,n) = CLX"™(m, n) + A{X(m.n)
+ €CL, X" (m, n) + Df,u(m. n). (34b)

(34a)

Now, using (34a) and (b), the quasi-steady-states X" and
X/ of the fast variables may be expressed in terms of the
slow states and the input by

X" (m,n) =K, X"(m,n)+ K, X"(m. n)

+ Dyu(m, n) (35a)
XY(m,n) =K, X*(m,n) + K, X"(m, n)
+ Dyu(m, n) (35b)

where
K= (I~ R2R4)—]R1,K2:= (1- R2R4)7]R3R*
K;: = (1— R4R2)71R4R,,K4:: (1_ R4R2)7IR3
and
D,:= (1_ R2R4)71(R252 + SI)
Dyi= (I- R,R,) (RS, + S,)
with

R11=(1_A{)A|Bls3v G(I‘A’()VIB'IG

R,:
Ry=(I—-A}) 'Ci, Ry:=e(1- 4)) ',
S;:=(I-Al) 'Df,,and S,:= (I - A{) ' D{,. (36b)

In contrast to the original fast variables which could initially,
say at m = m, and n = n,, take arbitrary values X"*/(m,,
n,)and X%/(m,, n,), the quasi-steady-states are not free to
start from X*"/(m,, n,) and X*(m,, n,). As a matter of
fact, (35) constrains the initial values of the quasi-steady-states
at

th(m()’ n()) = KIX'JS(mO’ n()) + K;‘X’[S(mo. n(?)
+ Dlu(mu7 nr))
yu.f(rrl()’ n()) = KEXUS(m{)’ n“) + K—JXI]X(’n()‘ n())
+ Dyu(m,.n,)
which could, in general, be far from X"/(m,. n,) and
X”f(mo, n,). Therefore, (35) cannot be a uniform approxi-
mation of the fast states. Strictly speaking, we can only

approximate the fast variables by their quasi-steady-states on
an interval (m, nye[(m,, n\). (m,, n,)| where (m,. n,) >

35

(m,. n,), by X"/(m, ny=X"(m, nyand X"/(m, n) =
)?“’(m, n). Consequently, from the initial values at (m,,
n,). the fast variables may deviate significantly from their
quasi-steady-states up to (#,, n,). during which the original
fast variables approach their quasi-steady-states values and
then, during [(m,. n,), (m,. n,)] remain close to quasi-
steady-state values. We can now introduce new pure fast
variables that represent the deviation of the fast variables
X"/ and X/ from their quasi-steady-states, as

ZM(m.n) = X" (m,n) - X"(m,n)  (38)

ZY(m.n) = XY (m.n) — X(m,n). (38b)
It is a standard procedure in the singular perturbation litera-
ture to express the slow subsystem in the ‘‘slow-time-scale’’
and the fast subsystem in the ‘‘fast-time-scale’’ [14]. Here
we have kept the work “‘time’" for the sake of conformity
with literature, although strictly speaking due to the nature of
2-D systems the word ‘‘space’” would have been more
appropriatc. The system (12). and (30), are both expressed in
the slow-time-scale. To construct the fast subsystem we need
to define a fast-time-scale. This is done by relating the
slow-time-scale m and n to the fast-time-scale k& and / [14]
using

k= m[l/e],and | = n[1/€] (39)

where [1/¢€] is the largest integer < 1/e. We assume that the
input is slowly time varying in the slow-time-scale, so that
we have u(k + 1, ) = u(k. Iy and u(k, I + 1) = u(k, )
in the fast-time-scale. Furthermore, we assume that the slow
variables X" and X'° remain constant during the fast
transients in the fast-time-scale. which implies that X"k +
1, h=X"(k. I)and X"(k, I +1)=X"(k, [) (since
they contain only slow variables). We are now in a position
to obtain the fast subsystem.

The dynamics of the new pure fast variables Z/ and Z*/
arc specified from (38) in the fast-time-scale by

ZM(k+1.0) = XM (k+ 10) = XMk +1,1) (40a)
Z9(k b+ 1) = XY (ko I+ 1) — XY(k, I+ 1). (40b)
Using (33) and (38) we have
Z"(k+1,1) = BS, XSk, 1) + AL X" (k1)
+ A{ZM (k. 1) + Bl XY (k, 1)
+ eBLZV(k. 1)

+ Dhu(k.l) — X" (k. 1) (41a)

and
ZY(k L+ 1) = CL X (k1) + ALX (k1)
+ ALZY (k1) + eCy XM (k. 1)
+€eCLZM (k. 1)

+ Diu(k. 1y — X*(k,1). (41b)
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Now, using (34a) and (b), Equations (41a) and (b) yield the
fast subsystem given by

ZM(k + 1,1) = A{Z" (k1) + eBL,Z"(k, 1)
ZY(k, 1+ 1) = A[Z"(k, 1) + eC{,Z" (k,1).

(42a)
(42b)

The solution of Z*/(k, 1) and Z"/(k, I) from the fast
subsystem may now be used as a correction to the quasi-
steady-states X"/ and X"/ for a uniform approximation of
X"/ and X/, The application of change of the fast variables
using (38), which represent translations in these states, re-
sults in the aggregated full-order system. The result is pre-
sented in the following lemma.

Lemma 4.1: Under the assumption of the slow time-vary-
ing of the input, and that the slow variables remain constant
during the fast transients in the fast-time-scale, the complete
aggregated state equations for the full-order system (33) in
terms of the new fast variables can be expressed as

X"(m+1,n) = ASX"(m, n) + Bf, X**(m, n)
+ eBf,Z"(m, n) + Diu(m, n)
Xv(m,n+1) = C} X"(m,n) + A5 X"(m, n)
+ €CHLZ" (m, n) + Diu(m, n)
Z(k + 1,1) = ATZM (k1) + eB{,Z"(k, 1)
ZY (k, 1+ 1) = eCL,Z" (k, 1) + A{Z" (k1)
y(m,n) = E;X"(m, n) + E;X"(m, n)
+ ELZM (m[1/€]. n[1/€])
+ EL,Z(m[1/€], n[1/€])
+c?u(m,n) (43)
where
A3:= A + eBLK,, B,:= B}, + eB},K,
AS:= A + eCLK,, C:= C}, + eCLK,
D$:= D§, + ¢B/,D,, Di:= D, + eCl, D,.
Es:= ES, + ELK, + ELK,, E3: = E5, + EL,K, + E/ K,
d:=ELD, +E[,D, +d. (44)

Proof: The proof follows along the results outlined
above (also see [7] and [8] for more details). |
As can be seen from (43), the slow part of state is now
dependent on the prior slow states and the pure prior fast
states. The fast part of state is not externally excited and
since the eigenvalues of A{ and AJ matrices are located in a
cluster close to the origin of the unit circle, the fast dynamics
decay quickly. We are now in a position to define the
reduced-order 2-D slow and fast subsystems.

2-D Slow Subsystem: The reduced-order 2-D slow sub-
system is obtained by neglecting the 0(e) fast terms eB{, Z*/
and eC,sz”f in (43) (representing the weak external inter-
connections between slow and fast subsystems). This subsys-
tem, which represents the dominant part of the response and

captures the dynamics of the strongly correlated pixels, is
given by

X"s(m+ 1, n) B A3 Bs || X"(m, n)
Xv(m,n+1) Cs, A5 || X*(m,n)
55
+| Zu(m, n) (45a)
D3

yS(m,n) = E;X"(m,n) + EsX*(m, n)
+ du(m, n) (45b)
where the notation X”* and X“* are used instead of X”"*
and X"® to distinguish the response of (45) from that of
(43). The discrepancy between the full-order model (33) and
the reduced-order slow subsystem (45) is characterized by the
fast subsystem obtained from (43) as the following.

2-D Fast Subsystem. The fast subsystem which has cap-
tured the dynamics of the weakly correlated pixels is

Z"Y(k + 1,1) A ZM(k, 1)
(46a)

Z(k, 1+ 1) eCy, Z (k1)
v (k, 1) = ELZ"(k, 1) + EL,Z"/(k,I). (46b)

eB,f4
A

The terms y*(m, n) and y”/(k, I) represent the slow subsys-
tem and the fast subsystem outputs, respectively. The actual
output of the 2-D system (33) is related to the slow and fast
subsystem outputs by

y(m,n) =y*(m,n) +y/(m[1/€], n[1/€]) + 0(e).
(47)

Provided that there exists an € > 0 such that for all €€ [0,
€], the 2-D systems (45) and (46) are stable, then the
solutions to the decoupled 2-D state equations (45) and (46)
are related to the solutions of the full-order 2-D system (33)
by the following expressions:

X"(m,n) = X"(m,n
Xv(m,n)=X"(m,n

)

) (48a)
X" (m,n)=X"(m,n)

[

)

+ Z7(m[1/¢€], n[1/e]) + O(e). (48b)

The reduction in the computational effort is now attainable as
a direct consequence of reduction in the model dimensional-
ity. The stability properties of the reduced-order models and
their relations to those of the full-order model are established
in [9] and [10].

V. IMPLEMENTATION AND RESULTS

5.1. Image Modeling Example

The model reduction scheme developed in the previous
sections is examined on the Lena image in Fig. 2, which has
a resolution of 512 X 512 and the number of gray levels
which is 256. A third-order 2-D autoregressive (AR) model
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Fig. 2.

Original Lena image.

with a causal quarter plane ROS is fitted to this image. This
model is obtained by solving a system of Yule-Walker
equations. The estimates of the covariances are obtained
globally. The reflection coeflicients of the 2-D AR model in a
window of size 4 X 4 are shown in Table I.

Based upon the eigenvalues of A, and A,, which are
computed to be

Ay = 0.8463519, N, = A3 = 0.4065156
Ny, = 0.4655526, X, = N3 = 0.3808155

and the structure of A4, and A, matrices as defined in (14),
€ was chosen to be ¢ = .817986. Once ¢ is determined, the
matrices in the full-order state-space model (12) can be
formed using (14) and (15). The impulse response of the
original full-order 2-D system is shown in Fig. 3.

With the 2-D AR model completely defined in a 2-D
singularly perturbed state-space form, the transformation ma-
trices 7, and 7, may be formed. However, generating T,
and T, requires solving a set of Riccati and Lyapunov-type
equations given in (21) and (22) iteratively. Convergent
solutions for these equations are obtained in 12 and 25 steps
for M,, L, and M,, L, pairs, respectively. Now the
transformation matrices 7, and 7, may be formed using
(16). Applying these transformation matrices 7, and 7, to
matrices A, and A4, would block diagonalize these matrices.
The blocks of 4, and A, are given below.

AS = 0.8463674

AT = [ 0.1894367 0.8179859]
! —0.2020152 0.

A = 0.4656191

A = [—0.31161’35 1.704438
47 | —0.1773056  0.5043840]"

As can be seen 4] and Aj exactly capture the slow eigen-
values of A, and A, matrices, respectively. Similarly, 47
and A exactly capture the fast eigenvalues of A4, and A,.
The eigenvalues of 4{ and A7 are

N, = N, = 0.4065041
N, = M, = 0.3808326
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Fig. 3. Impulse response of the original full-order 2-D system (Example

6.1).

TABLE 1
THE REFLECTION COEFFICIENTS OF THE 2-D AR MODEL IN A 4 X 4 WINDOW
q
T70.001314895 —0.04401444 —0.001734353  0.06751464 T 3
TT0.03194273  0.06911532  0.07141313  -0.2347962 | 2
T 0.09107567  0.01503638 —0.4019548  0.6583896 | 1
TT01398638  —0.3255982 1035804 -1 0
P <
3 2 1 0

Using the method developed in Section IV, the quasi-
steady-state values of the fast variables are subtracted from
the fast states to generate new fast states. The aggregated 2-D
state-space model (43) is then formed by computing R;’s and
K's,i=1,---,4and S;’s, j =1, 2 given in (36). These
matrices are then used to generate the matrices in model (43).
The impulse response of this 2-D system is shown in Fig. 4.
A comparison between the impulse response of the original
full-order system (12) and the aggregated system (43) indi-
cates that the behavior of the original full-order system is
closely captured in this new model, except that overshoot is
slightly larger in the latter response. The above full-order
system may be used to generate the reduced-order 2-D
subsystems (45) and (46), i.e., 1he slow and fast subsystems
that are

_ [0.8437112 0.0671574]

0.8575461 0.5656865

¥"(m + 1, n)
x(m,n+ 1)

[}"S(m, n)] + [0.837539] u(m, n)

%5(m, n) 1.027984
y¥(m, n) = [1.375461 0.6261222]

~hs
[x (m, ")} +0.6488338 u(m, n)
% (m, n)
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I 15200

Fig. 4. Impulse response of the 2-D system obtained after transformation  Fig. 5. Impulse response of the reduced-order 2-D slow subsystem (Exam-
and change of fast variables. ple 6.1).
and
, 0.1894367 0.8179859 | - 0.05375393 0.1106981
ZM(k+ 1.0 | ~020201520.0000000 | ~0.00334201 _0.0436721 || 2"/ (k. 1)
Z”f(k,l+ 1) 3.621331  3.500319 | —0.3116135 1.704438 ZVf(k,l)
2.0605088 1.991654 | —0.1773056 0.504384

y/ (k. 1) = [0.6261222 0.01693949

The fast subsystem represents a 2-D system without external
excitation. Owing to the fact that fast dynamics decay very
quickly, any nonzero initial condition can be brought to zero
in few sampling intervals. However, since for computing an
impulse response the initial conditions are set to zero, thus
the fast subsystems has zero impulse response. This fact is
evident from the plot of the impulse response of the reduced-
order slow subsystem shown in Fig. 5, which has to be
compared with the plot of the impulse response of the
full-order system shown in Fig. 4. Consequently, the re-
duced-order slow subsystem captures the dynamical behavior
of the full-order system.

To show the usefulness of the proposed model reduction
scheme for image modeling and image data compression
applications, we have reconstructed the girl image by passing
the driving noise process through a 2-D system. First, the
original full-order model is used for this reconstruction. The
recovered image is shown in Fig. 6, which resembles very
closely to the original Lena image in Fig. 2. Then the
first-order slow subsystem is employed and the resultant
reconstructed image is shown in Fig. 7. The CPU times for
this reconstruction are measured to be approximately 14 min
and 5 min for the full-order and the reduced-order slow
subsystem models, respectively. This clearly reveals the ef-
fectiveness of the proposed scheme in image representation.
This capability can be utilized in a number of image process-
ing problems such as image data compression, image restora-
tion, enhancement, and many other areas where 2-D linear
models for the images and the filters are needed.

To compare our results with those of the conventional
image data compression schemes we have employed the KL

—0.1643277 0.0000000][

Z”f(k,l)}

Z9(k, 1)

transform or the principal component method [16]. This
particular algorithm is well known for its optimality in
accurate data compression and its energy compaction or
reduced dimensionality properties. In order to apply KL
transform the image is partitioned into nonoverlapping blocks
of size 8 X 8. The covariance matrix of size 64 X 64 is
evaluated based upon the global statistics of the image. This
matrix is then diagonalized using an orthonormal transforma-
tion. Examination of the eigenvalues shows that only 16 of 64
values are significant and thus only 16 eigenvectors corre-
sponding to these most significant eigenvalues can be used
for coding and subsequently the reconstruction. The reduced
transform matrix is then used to map each individual 8 x 8
block to 16 KL coeflicients. These coeflicients can be used to
reconstruct the original image from its eigen-images. The
reconstructed image is shown in Fig. 8. As can be seen, the
KL transform causes undesirable blocking effects that would
be even more prominent, particularly around the edges, when
smaller number of eigenvalues are used. To reduce this
effect, smaller block size may be used. However, this would
result in less accurate estimates of the covariance matrix. The
CPU time for reduction and reconstruction is approximately
18 min, which is considerably higher than that of the model
reduction scheme in this paper.

5.2. ARMA Modeling Example

Consider a 2-D ARMA (2 x 2, 31 x 31) which can be
represented by a cascaded of an AR(2 X 2) and an MA(31 X
31). The coeflicients of the polynomial A(z; ', z; ') associ-
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Fig. 6. Reconstructed Lena image using the original full-order 2-D system.
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Fig. 7. Reconstructed Lena image using the reduced-order (first-order) 2-D

slow subsystem.

Fig. 8. Reconstructed Lena image using 2-D KL transform.

ated with the AR part are shown in Table Il over a 3 X 3
grid. The magnitude and the phase characteristics of the MA
part are shown in Fig. 9(a) and (b), respectively. The im-
pulse response of the overall original system is shown in Fig.
10. As pointed out in Section II, the proposed model reduc-
tion scheme is only applied to the AR part.

The eigenvalues of matrix A, are the roots of

A(zl_l,O) =1-auz;' - “’2021—2 =0

(b)
Fig. 9. (a) Magnitude response of the 2-D MA (31 x 31) part. (b) Phase
response of the 2-D MA (31 X 31) part.
TABLE 1I
COEFFICIENTS OF Afz;'.25')IN A 3 X 3 GriD
q
—0.02471 —0.05030 0.01802 2
—0.05030 0.00101 0.53397 1
0.01802 0.53397 -1 0
P €
2 1 0

that are A;; = 0.5658177, and A, = 0.03184765. Similarly
the eigenvalues of matrix A, are the roots of

A(O, ') =1-anz;' —apz;° =0

that are N, = 0.5658177 and X,, = 0.03184765. Thus the
perturbation parameter is set to be ¢ = 0.5628606. Follow-
ing the same procedure as in Example 1, the matrices in the
full-order 2-D model are formed and the convergent solutions
for (M,, L,) and (M,, L,) pairs are obtained, respectively,
after three and four iterations of the Riccati and Lyapunov
equations. The block diagonalizing transformation matrices
T, and T, are then computed, which transform the full-order
system into a partially decomposed 2-D state-space model.
The quasi-steady-state parts of the fast variables are aggre-
gated with the slow variables through a translation of the fast
variables. This led to the following 2-D reduced-order slow
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Fig. 10. Impulse response of the original full-order 2-D subsystem

(Example 6.2).

and fast subsystems:

032212 q

Fig. 11.

Impulse response of the reduced-order 2-D slow subsystem
(Example 6.2).

development of reduced-order 2-D slow and fast subsysters

(m+1,n)| [0.6974283 0.0820584]
#5(m,n+ 1) 0.8960686 0.6973895

that capture the essential behavior of the full-order system.
The proposed model reduction method is then applied to

image modeling problems that occur in a number of image

| ¥"(m, n)
x*(m, n)
0.6670664
* [0.8945931] u(m, n)
y*(m, n) = [0.9449549 0.704567] ]
shs
| X (m, n) o1
x5(m, n)
— 0.05660119 u(m, n) i3]
and
hr [4]
Mk+ 1,00 [ ~0.0318444 —0.3616902
2 (k, 1+ 1) 0.1663584 —0.0318481 (5]
[ k0) y
(k. 1)
y/(k,1) = [-0.09412738 0.0009589437] n
hf
(k1
(k. 1) )
(k. 1)
The impulse response of the first-order (reduced-order) 2-D 1%
slow subsystem combined with the MA part is shown in Fig. (10]
11. As expected, the essential characteristics of the full-order
2-D system are mostly captured in the reduced-order slow [11]
subsystem.
V1. CONCLUSION 2]

A decomposition-aggregation approach for a class of 2-D
systems is introduced. This method is derived based upon the
extension of 1-D singular perturbation methodology to the
2-D case. The strong-weak coupling effects that lead to
eigenvalue clustering of A4, and A, matrices in the full-order
system are utilized to derive structure transformations for
fast-slow decomposition. This, in conjunction with the ag-
gregation procedure introduced in this paper, allows the

[13]

[14]

[15])

processing applications such as image restoration, image data
compression, etc. The simulation results indicate the utilities
of the proposed scheme.

REFERENCES

E. 1. Jury and K. Premaratne. ‘*Model reduction of two-dimensional
systems,”’ IEEE Trans. Circuits Syst., vol. CAS-33, pp. 558-562,
May 1986.

E. Badreddin and M. Mansour, “*Model reduction of discrete time
systems using the Schwarz canonical model,” Electron. Lett.. vol.
16, pp. 782-783, Sept. 1980.

W. S. Lu, E. B, Lee, and Q. T. Zhang, “"Model reduction for
two-dimensional systems.” in Proc. ISCAS ’86, pp. 79-82, May
1986.

A. Zilouchian and R. L. Carroll, **Model reduction of 2-D systems:
A state-space approach,”” in Proc. 26th CDC. pp. 118-123, Dec.
1987.

K. Premaratne, E. I. Jury. and M. Mansour, **Multivariable canoni-
cal forms for model reduction of 2-D discrete-time systems.”” /EEE
Trans. Circuits Syst., vol. 37, pp. 488-501, Apr. 1990.

——. “*An algorithm for model reduction of 2-D discrete time sys-
tems,”” IEEE Trans. Circuits Syst., vol. 37. pp. 1116-1132. Sept.
1990.

M. R. Azimi-Sadjadi and K. Khorasani, ‘*Reduced order strip Kalman
filtering using singular perturbation method.” IEEE Trans. Circuils
Syst., vol. 37, pp. 284-290, Feb. 1990.

M. R. Azimi-Sadjadi and K. Khorasani, **Application of singular
perturbation for modelling image field in recursive restoration.”” in
Proc. 26th CDC, pp. 2120-2121, Dec. 1987.

——, ““Model reduction for 2-D systems,”” in Proc. ICASSP 89,
pp. 1598-1601, May 1989.

-, **A decomposition-aggregation approach for 2-D systems,”” in
Proc. 1990 IEEE Int. Symp. Circuits and Systems, May 1990.

R. P. Roesser, ‘A discrete state-space model for linear image proc-
essing,”” IEEE Trans. Automat. Contr.. vol. AC-20, pp. 1-10.
Jan. 1975.

P. V. Kokotovic, **A Riccati equation for block-diagonalization of
ill-conditioned systems,”* [EEE Trans. Automat. Contr., vol. AC-
20, pp. 812-814. 1975.

P. V. Kokotovic, H. K. Khalil, and J. O'Reilly. Singular Perturba-
tion Methods in Control: Analysis and Design. New York: Aca-
demic, 1986.

B. Litkouhi and H. Khalil, "*Multirate and composite control of
two-time scale discrete time systems,”” IEEE Trans. Automat.
Contr., vol. AC-30, pp. 645-651, July 1985.

W. S. Lu and E. B. Lee, '*Stability analysis for two-dimensional
systems via a Lyapunov approach.”” IEEE Trans. Circuits Syst..
vol. CAS-32, pp. 61-68, Jan. 1985.



AZIMI-SADJADI AND KHORASANI: MODEL REDUCTION METHOD

[16] A. K. Jain, Fundamentals of Digital Image Processing.

wood Cliffs, NJ: Prentice-Hall, 1989.

Engle-

Mahmood R. Azimi-Sadjadi received the B.S.
degree from University of Tehran, Iran, in 1977,
and the M.S. and Ph.D. degrees from Imperial
College, University of London, England, in 1978
and 1982, respectively, all in electrical engineer-
ing.

He served as an assistant professor in the De-
partment of Electrical and Computer Engineering,
University of Michigan, Dearborn. Since July 1986
he has been with the Department of Electrical
Engineering, Colorado State University, where he
is now an Associate Professor. His areas of interest are digital signal /image
processing, multidimensional system theory and analysis, adaptive filtering,
system identification, and neural networks. He is a co-author of Digital
Filtering in One and Two Dimensions (Plenum Press, 1989).

-,

41

Dr. Azimi-Sadjadi is the recipient of the 1990 Battelle Summer Faculty
Fellowship award, and the 1984 DOW chemical Outstanding Young Faculty
Award of the American Society for Engineering Education.

Khashayar Khorasani (M '85) received the B.S.,
M.S.. and Ph.D. degrees in electrical and com-
puter engineering, all from the University of Illi-
nois at Urbana-Champaign in 1981, 1982, and
1985, respectively.

From 1985 to 1988 he was an assistant professor
at the University of Michigan, Dearborn, and since
1988 he has been at Concordia University, Mon-
treal, Canada where he is now an Associate Profes-
sor. His current research interests are in stability
and control of large-scale systems, nonlinear con-
trol. robotics, adaptive control, and neural networks. He has published more
than 60 technical papers in these areas.



