Technical Report No. 304 AN OVERVIEW OF BRIDGER SITE BIOMASS DATA: 1969-1973

T. Weaver and B. Haglund
 Biology Department
 Montana State University
 Bozeman, Montana

GRASSLAND BIOME

U.S. International Biological Program

December 1976

TABLE OF CONTENTS

Pag	je
Title Page	i
Table of Contents	i
Abstract	i
Introduction	1
Aboveground Plant Biomass	2
Belowground Plant Biomass	8
Arthropods	1
Aves	8
	8 8
Mammals	3
Results and Discussion	7
Acknowledgments	5
Literature Cited	6
Appendix I. Appendix Tables	9
Appendix II. Field Data	7
Aboveground Plant Biomass 6 Belowground Plant Biomass 7 Litter 7 Aboveground Invertebrate Data 8 Soil Microarthropod Data 9 Small Mammal Live Trapping Data, Grids 93	4 0 4 1 7
Small Mammal Live Trapping Data, Assessment Lines 10	

.__. .

•

ABSTRACT

A mountain meadow ecosystem (*Festuca idahoensis-Agropyron caninum*) was studied in the years 1969 through 1973. This report describes sampling methods, periodicity of sampling, and results obtained on biomasses of plants (above and below ground), insects, birds, and mammals.

.

INTRODUCTION

The Bridger Site lies in a high mountain meadow 22 km northeast of Bozeman, Montana at the Bangtail U.S. Forest Service Ranger Station 2380 m altitude, 46°47' N latitude, and 110°44' W longitude. Its vegetation is of the *Festuca idahoensis-Agropyron caninum* type (Mueggler and Handl 1973); surrounding forests are dominated by *Abies lasiocarpa* or seral *Pinus contorta*. Published records of the vegetation, soils, and climate of the Bangtail Ridge are found in Weaver (1974), Buchanan (1972), and US Department of Commerce (1969-1972). Previous site reports include Collins (1970), Collins (1971), and Weaver and Collins (1972). Mueggler (1971, 1972) describes the climate and vegetation of similar meadows in the Gravelly Range, Montana.

The major objectives of Bridger Site studies have been: (i) to describe the structure and function of a near-climax mountain meadow which has had essentially no domestic grazing since 1930, and (ii) to contrast its structure and function with those of similar sites which have received regular sheep-cattle grazing and similar sites which receive heavy snow packs due to long-standing natural barriers (trees or land forms) or to snowfences in place from September through June since 1968.

This report summarizes the biomass data collected at the Bridger Site from 1969-1973. It consists of five sections describing the aboveground plant, belowground plant, arthropod (aboveground and belowground), avian, and mammalian biomasses and seasonal changes in these biomasses. No attempt has been made to measure microbe biomasses: algal, bacterial, fungal, or protozoan. Bissett and Parkinson's (unpublished, Appendix Table 22) appear relevant. Nematode numbers and biomasses measured in 1972-1973 were significant (Appendix Table 23). Repitles have not been seen at the site and are not expected at these altitudes. Abiotic data and data from process studies (especially litter decomposition, soil respiration, and phenology) will be reported elsewhere.

ABOVEGROUND PLANT BIOMASS

Treatments sampled included an area protected from grazing since about 1930 (two replications), an adjacent area subjected to relatively light annual sheep and/or cattle grazing except in the study years (two replications), an area receiving an artificial snowpack of 12 dm (approximately two times normal, one replication), and an area receiving an artificial snowpack of 25 dm (four times normal, one replication). The snowfences were dismantled in the summer season to avoid shelter effects (Marshall 1967). The ungrazed area and snow treatments were sampled annually from 1969 to 1973. The grazed treatments were sampled in 1970 and 1972.

Aboveground plant biomass was generally measured by the methods recommended by Swift and French (1972). In 1970 through 1973 ten 1×0.5 m quadrats from each treatment sampled were clipped at each sampling date. Sampling was from randomized blocks. Sorting into species categories was done in the field, and on returning from the field samples were dried at 60° C and weighed. Minimal sorting was done in 1973 due to lack of funds. In 1972 subsamples of major plants were analyzed for total carbohydrates, nitrogen, phosphorus, ash, cell wall constituents, and lignin. In 1969 each treatment was sampled with ten "randomly placed" 0.2×0.5 m quadrats.

The results of the clipping studies are summarized in Appendix Tables 1-21.

-2-

Average production in the ungrazed-1 treatment was 233 g/m²/year (Table 1). The value presented is a sum of the maximum standing crops of each species separated: it is probably a low estimate since many species were pooled in the miscellaneous grass and forb categories and it is considerably higher than an estimate based on maximum standing crop (see Mueggler 1972). Production ranged from 153 g/m² in 1970 when soil water was largely exhausted by 10 August to 342 g/m² in 1972 when soil water stresses at 25 cm never exceeded 7 bars.

The effect of a light grazing history had essentially no effect on range production (Table 2). Total production in 1972, a wet year, was 366 g/m² (233 g of grass and 134 g of forbs) on the ungrazed-2 site and 369 g/m² (242 g of grass and 125 g of forbs) on the adjacent grazed-1 site. In the drier year 1970 the ungrazed-2 site and the grazed-1 sites produced 200 and 149 g/m², respectively; I attribute the difference to the lesser water storage capacity (shallower soil) found on the grazed site.

Production is generally reduced on heavy snowpack sites (Tables 3 and 4) because they melt out much later than the average site, dry up shortly after the average site, and therefore have a relatively short growing season. Water relations on either site are similar because normal winter and spring precipitation are sufficient to bring the whole soil to field capacity so additional snow drains through the profile when it melts. A comparison of the data from the ungrazed-1 and the 25 dm sites illustrates this nicely. In the "normal" years of 1969, 1970, 1971, and 1973 production was lower on the snowy site than on the unmodified site; production before mid-August of 1972 was also low but August rains

-3-

Taxon	1969	1970	1971	1972	1973	Mean
Festuca idahoensis	50	38	70	115	43	۳ <u>۰۰</u> ۰
Agropyron subsecundum	50	32	41	71	- -	
Miscellaneous grasses						
Miscellaneous grasses Koeleria cristata Danthonia intermedia Carex spp.	21 15 12 7	25 2 7 	22 7 7	22 19 10 14	 	
Total	55	34	36	65	/ <u>ھ</u> وھ	
Lupinus argenteus	31	21	35	31	27	
Early forbs						
Miscellaneous forbs Agoseris spp.	23 7	22 4	24 9	24 12		
Total	30	26	33	36		
Late forbs						
Cerastium arvense Erigeron speciosus Achillea millefolium Arenaria congesta Galium boreale Total	16 15 5 14 4 54	3 6 3 5 6 	6 16 3 7 8 	13 8 7 19 8 	 59 ^b /	
Total	270	153	184	342	218	233

Table 1. Production (species peaks - g/m^2) on the ungrazed-1 treatment, Bridger Site, 1969-1973.

 $\frac{a}{m}$ Total of grasses except *Festuca idahoensis*

 $\frac{b}{T}$ Total of forbs except Lupinus argenteus

	1970		1972	
Taxon	Ungrazed-2	Grazed-1	Ungrazed-2	Grazed-1
Festuca idahoensis	56.2	37.6	137.1	88.1
Agropyron subsecundum	25.5	15.2	51.2	67.7
Carex spp.			14.0	35.6
Danthonia intermedia	8.5	14.7	17.5	27.2
Koeleria cristata	4.1	1.8	13.0	11.6
Miscellaneous grasses	11.5	23.7	11.1	12.2
Total grasses	105.8	93.0	232.8	242.4
Lupinus argenteus	27.3	15.1	39.6	24.1
Arenaria congesta	6.8	3.5	21.3	20.0
Achillea millefolium	3.5	3.9	6.5	9.5
Agoseris spp.	1.8	0.7	9.0	0.8
Trigeron speciosus	5.8	1.1	4.8	2.6
Cerastium arvense	5.0	2.1	8.9	9.0
balium boreale	6.5	6.2	6.8	2.9
liscellaneous forbs	38.0	23.5	36.7	56.4
otal forbs	94.7	56.1	133.6	125.3
otal production	200.5	149.1	366.4	367.7

Table 2.	A comparison of production (species peaks - g/m^2) on the ungrazed-2 and grazed-1 treatments: Bridger Site, 1970 and 1972.
----------	---

A comparison of production (species peaks - g/m²) on fescue meadows receiving normal (6 dm) snowpacks and experimental areas receiving 25 dm snowpacks. Treatment started in fall of 1968. Table 3.

					Ungrazed-1	zed-1				
Taxon	Nor	Normal snow	snowpack (approx.	9	dm)	Ť	Heavy snow	v - 25 dm	n snowpack	×
	1969	1970	1971	1972	1973	1969	1970	1971	1972	1973
Festuca idahoensis Agropyron subsecundum	50.0 50.4	37.6 31.7	47.1 41.6	115.5	44.1	34.6 15 0	16.7	13.8	32.9	5.0
Carex spp.	7.0		6.9	13.6		11.0	0.42	55.Y	137.8 2.9	: :
Danthonia intermedia	12.3	6.8	7.4	9.7	ł		5.9	2.3	1.9	:
<i>Koeleria cristata</i> Miscellaneous grasses	14.8 18.0	2.0 24.8	 21.8	19.0 21.5	 79.1	8.1	3. t	32.3	7.5	 24 E
Total grasses	152.5	102.9	124.8	250.3	123.2	84.3	66.2	83.7	194.4	39.5
Lupinus argenteus	31.5	20.6	34.8	31.3	37.9	42.8	28.5	32.0	32.3	19.7
Arenaria congesta Achillea millofolium	1.1	۰. در د	0.0	18.6 1.	!	6.6	4.8	5.4	% .1	
in the second of	.	4.7	۲ ۰ ۷	4./	1	12.2	8.6	5.4	23.7	;
Agoseris spp.	6.4	4.3	с. С.	11.5	t I	12.8	6.6		15.4	;
Erigeron spectosus		9.0 	16.0	7.6	1	8.2	6.9	9.0	18.8	!
cerus rum arbense	<u></u> ک	3.0	5.6	13.5	;	5.6		6.0	2.7	ł 1
Galium boreale	2.4	6.3	8.4	7.7	1	4.6	3.6	12.5	14.3	1
Miscellaneous forbs	23.4	21.7	24.3	23.8	46.8	20.4	43.1	16.7	70.9	77.1
Total forbs	110.6	69.7	107.9	121.4	84.7	121.3	103.2	88.5	186.2	96.8
Total production	263.1	172.6	232.7	371.7	207.9	206.0	169.4	172.2	380.6	136.3

Table 4. Production (species peaks - g/m^2) on an experimental area receiving 12 dm snowpacks (approximately two times normal pack). Treatment started in the fall of 1968. Compare with Table 3.

Тахоп	1969	1970	1971	1972	1973
Festuca idahoensis	29.3	26.7	31.7	67.5	26.9
Agropyron subsecundum	6.0	14.7	19.0	47.1	
Carex spp.	8.1		4.3	12.5	
Danthonia intermedia	14.0	8.6	5.7	11.8	
Koeleria cristata	7.4	7.2		8.4	* -
Miscellaneous grasses	3.2	16.7	6.2	10.4	42.0
Total grasses	68.0	73.9	66.9	157.7	68.9
Lupinus argenteus	22.3	47.1	31.7	27.0	16.7
Arenaria congesta	6.4	8.6	5.6	14.7	
Achillea millefolium	11.3	10.6	9.9	12.8	
Agoseris spp.	6.8	5.3	11.5	24.6	
Erigeron speciosus	12.4	5.2	4.6	8.4	
Cerastium arvense	6.8	3.1	1.2	7.3	
Falium boreale	5.6	5.2	13.8	16.3	
liscellaneous forbs	19.9	36.6	19.5	50.6	92.0
otal forbs	91.5	121.7	97.8	161.7	118.7
otal production	159.5	195.6	164.7	319.4	187.6

lengthened the growing season and allowed the plants of the late melting site to catch up with those on the normal sites so production was equal on both sites. Production on the 12 dm snowpack site was generally lower than that on either the ungrazed-1 (control) or the 8-foot sites because the soils there are shallower.

Heavy snowpack produces changes in vegetation composition. In the normal years of 1969, 1970, 1971, and 1973 *Festuca idahoensis*, *Danthonia intermedia*, and *Lupinus argenteus* seem to have decreased (Table 3) on the 9-foot site while small annual forbs have increased. The equilibrium condition is discussed by Weaver (1974) and Weaver and Super (1973).

BELOWGROUND PLANT BIOMASS

Belowground biomass was measured in 1970, 1972, and 1973 on the grazed and ungrazed sites. The general method used is described by Swift and French (1972): ten 2.05-cm soil cores were taken in randomized blocks on each treatment at each sampling date. These were divided into 10-cm increments and soaked in a "Calgon" solution. In 1972 and 1973 the roots were washed out (0.5 mm-40 mesh screen plus decantable organic material), dried at 60°C, weighed, ashed (600°C), and reweighed. Washing and ashing were done at the Bridger Site in 1970 and 1972 and at the Pawnee Site in 1973. In Tables 5 and 6 all data are expressed as ash-free weights. Samples for 1970 were not ashed and therefore appeared heavy; they were adjusted downward by the factor 0.36 (November 1972 ash-free weight/total root weight). Dry root weights were not recorded for the first four sample periods in 1972 and were estimated by multiplying ash weights by the 0.57 (November 1972 ash-free weight/ash weight).

Sample Depth		13 June			24 July <mark>b</mark>	!		18 Septe	mber
	Ave.	Rep. 1	Rep. 2	Ave.	Rep. 1	Rep. 2	Ave.	Rep. 1	Rep. 2
0-10 cm	793	576	1009	1237	1061	1413	934	711	1098
	99	334	526	101	399	485	89	281	305
10-20 cm	206	255	159	607	693	522	300	265	334
	32	203	37	59	281	229	47	101	177
20-30 cm	118	111	124	361	354	369	174	109	239
20-30 Cm	10	43	49	37	135	187	28	48	106
30-40 cm	113	105	120	257	292	223	124	113	135
	13	54	52	48	278	67	14	39	48
			41	110	134	86	101	82	119
			51	25	143	45	14	48	40
0-50 cm	1271	1088	1453	2572	2534	2613	1533	1340	1925

The 5. Belowground biomass (g/m²/dm) on the ungrazed^{A/} Bridger Site: 1973. Ashfree weights with mean ash-free weights are presented. Washing and ashing were done by the Natural Resource Ecology Laboratory.

 $\frac{a}{Root}$ biomasses were sampled on the grazed site on 13 June. The average belowground biomasses on the grazed-1 treatment were: 0-10 cm 1043 ± 350, 10-20 cm 341 ± 147, 20-30 cm 173 ± 88, 30-40 cm 136 ± 104, 40-50 cm 45 ± 31, and 0-50 cm 1738 g/m². On the grazed-2 treatment the average belowground biomasses were: 0-10 cm 573 ± 224, 10-20 cm 273 ± 214, 20-30 cm 134 ± 81, 30-40 cm 84 ± 34, 40-50 cm 53 ± 48 and 0-50 cm 1117 g/m².

 $\frac{b}{A}$ O-10 cm sample was taken on 9 July; the average belowground biomass recorded was 2504 g/m² with a standard error of 48 g/m².

 $\frac{c}{Biomass}$ given in $g/m^2/5$ dm.

Belowground biomass (g/m²/dm) at the Bridger jite for ungrazed (U) and grazed (G) treatments: 1970 and 1972. Each datum is the mean of 10 samples. Table 6.

Depth	Replicate	10 Sep 1970 <u>a</u> /	10 Sept 1970 <mark>a</mark> /	20 June 1972 <u>b</u> /	20 June 1972 <u>5</u> /	10 201 1972 <u>5</u> /	1972 ^{5/}	8 August 1972 <u>b</u> /	August 972 <u>b</u> /	6 Sept 1972 <u>b</u> /	₽t <u>`</u> b/	8 Nov 1972 <u>5</u> /	
		∍	IJ	Ð	IJ	∍	G		5	5	σ	5	σ
0-10	A 2 -	896 990 943	800 807 803	881 641 762	1365 1211 1288	986 1177 1081	1400 1314 1357	813 830 831	1384 882 1122	830 952	1072	1031 788 200	940 788
10-20	1 2 Ave.	637 537 587	392 414 403	329 433 381	416 277 346	381 363 372	744	260 242 251	242 285 285	09- 242 242 242	277 277 381 381	394 394 394 394	004 243 273 273
0-30	1 2 Âve.	650 562 606	331 383 357	242 312 277	260 277 268	242 225 233	518 225 271	156 147	208 156 182	170 138 154	191 242 216	121	91 121 126
0+10	1 2 Ave.	681 555 618	285 427 356	156 294 225	156 122 135	122 156 135		138 104 122	138 69 104	122 69 95	122 130	6669	30 61 61
to-50	1 2 Åve.	614 543 578	301 353 327	104 225 165	122 87 104	87 52 69	329 87 208	69 52 60	87 35 61	1 04 33 69	104 52 78	152 · 30 · 30	, 120 120
050	1 2 Ave.	3478 3187 3332	2109 2384 2246	1712 1905 1808	2319 1974 2146	1818 1973 1895	3299 2042 2670	1436 1366 1401	2146 1384 1765	1468 1436 1452	1766 1954 1860	1789 1363 1576	1365 1304 1334

to U.43 In the JU-50 cm layer.

^{b/}1972 data: Estimated by multiplying ash weights by 0.57, the ratio of ash-free weight to ash weight in the first 10 cm of the soil on 8 November 1973. The 0.57 ratio was used throughout despite the fact that it rose to 0.91 in the 10-50 cm layer.

c/1972 data: Calculated from ash-free weights by multiplying by 3031.22, the factor for converting a 2.05-cm diameter core to 1 m².

-10-

Belowground biomass (0-50 cm) at the Bridger Site is in the 1000 to 3000 g/m^2 range: at maximum standing crop aboveground biomass is unlikely to exceed 20% of the total live material even if one assumes that 50% of the belowground material is dead. The quantity of organic matter per horizon declines with depth: of the material in the first 50 cm the first through fifth decimeter layers contain approximately 59%, 19%, 10%, 7%, and 5%, respectively.

Belowground biomass is apparently highest at mid-summer (18-24 July) and falls continually through late summer, fall, and winter. If one estimates root production as maximum minus minimum standing crop 1350 g were produced in 41 days in 1973 (Table 5). This suggests that (i) 80% of the total annual production is below ground and that (ii) productivities of mountain grass meadows may exceed 30 $g/m^2/day$. Though we have no early spring data for 1972 trough-peak analysis of 1972 data (Table 6) suggests minimum belowground 1972 belowground production of 500 $g/m^2/year$.

Belowground biomass is apparently greater on the grazed site than on the ungrazed site: of the seven times belowground biomass was measured on both sites (Tables 5 and 6), the highest average biomass was found on the grazed site in five cases.

ARTHROPODS

Arthropods were collected at the Bridger Site in 1969, 1972, and 1973. In 1969 the site was periodically sampled with a sweep net to inventory the insects: specimens were identified, counted, and preserved (N. Anderson personal communication, Montana State Univ.). In 1972 samples were collected according to the methods outlined in Swift and French (1972). Ten grazed plots and ten ungrazed plots (0.5 m^2) were sampled on each of five sampling

-11-

periods; rep 1 was sampled on Mondays and rep 2 was sampled on Wednesdays of alternate weeks throughout the summer. Each plot was quick trapped, vacuumed, clipped, revacuumed, and cored for soil microarthropods (core = 5 cm dia × 10 cm). Litter and clippings were extracted with Berlese funnels; though small (8 to 18 cm diameter) their efficiency appears to have exceeded 95%. Soil cores were extracted in a Merchant and Crossley extractor (1970). The total dry weight of plants in the plots sampled and estimated percentage composition were recorded for later attempts to correlate insect numbers with amount and composition of vegetation. In 1973 reps 1 and 2 of the ungrazed site were sampled on six occasions: Wednesdays of alternate weeks throughout the summer. Due to limited funds sample plots were quick trapped and vacuumed, but not clipped. Material gathered was extracted with the Berlese funnels of 8-cm diameter.

To estimate numbers of soil macroarthropods at depths greater than 10 cm, 10 cores (2-cm diameter) were taken in each treatment area on 25 July and 6 September 1972. Arthropods not immediately apparent were sorted out by soaking in "Calgon" solution, wet sieving (0.5-mm screen), and floating in a saturated solution of Epsom salts.

Insect weights were determined by drying pickled insects to constant weight at 80°C. The weights are high by the amount of glycerine sticking to their bodies and low by the amounts of lipid extracted from their bodies by the alcohol.

Insects associated with common plants of the Bridger Site (Festuca idahoensis, Gaillardia aristata, Lupinus argenteus, Oxytropis sericea, and Achillea millefolium) were determined by collecting individuals in plastic bags and extracting their associates in a modified Berlese apparatus.

-12-

Similar work was done with Festuca idahoensis, Agropyron spicatum, Stipa viridula, Tragopogon dubius, Artemisia tridentata, and Artemisia frigida from lower Agropyron spicatum-Festuca idahoensis grasslands.

Respiration rates of three ant species not present on the site were determined to develop methods for studying insect respiration in 1973: similar results were obtained with a Gilson differential respirometer and the alkali absorption method used in soil respiration studies (Walter 1952).

A preliminary synthesis of 1972 data follows. Data for 1973 are not yet available.

Species identified appear in Appendix Table 24; other important species have been sent to the US National Museum for identification. Average weights of major species are given in Appendix Table 25.

Most of the arthropod work was done at the family level. Major families are listed in Tables 7 and 8 with data on their numbers. Many of the individuals listed as "miscellaneous" have not been identified to family. Those individuals which were identified to family but which are listed as miscellaneous because of their rarity belong to the following families: Coleoptera (Anthieidae, Cerambycidae, Coesinellidae, Elateridae, Mordellidae, Scarabaeidae, and Staphylinidae); Diptera (Bombyliidae, Calliphoridae, Cecidomyiidae, Chloropidae, Lauxaniidae, Rhagionidae, Sarcophagidae, Sepsidae, Tabanidae, and Tachinidae); Hemiptera (Coreidae, Lygaeidae, Fulgoridae, and Scutelleridae); Homoptera (Aleyrodidae, Aphididae, Chermidae, and Phylloxeridae); Hymenoptera (Chalcididae, Mymaridae, and Scelionidae); Lepidoptera (Gelechiidae, Phaloniidae, and Tischeriidae); Orthroptera (all identified); Thysanoptera (none identified); Araneida (none identified); and Acarina (none identified).

Table 7. Average numbers of aboveground arthropods per square meter in grazed and ungrazed fescue meadows on the 1972 dates shown.

~				Graze	đ				Ungrazed	t i	
Taxon	Life stage=/	25 June	9 3 Ju	23 Iy July		20 Aug	25 June	9 July	23 July	6 Aug	20 Aug
Acarina ^{b/}		·		8 sp					<u>8 spp</u>	<u>_</u>	
	00	28.0) 34.(25.0	151.0	137.0	48.0			
Amonatio					-	191.0	157.0	40.0	10.0	66.0	212.0
Araneida				6 sp					8 spp	·	
	00	1.4	1.0	2.2	0.4	1.2	1.4	1.0	2.2	2.0	3.4
Coleoptera	•			28 spp	<u>.</u>				24 spp		
Carabi dae	10	1.0	0.8		0.0	1.2	0.6	1.2	0.6	- 0.0	1.4
Curculionidae	10	1.4	1.0		1.0	1.0	0.0	1.0	0.6	2.2	2.0
Chrysomelidae	10	0.6	1.6		1.2	0.8	1.2	0.4	0.6	0.8	1.0
Miscellaneous	10	0.2	+		0.8	0.4	0.8	0.2	0.6	1.4	0.8
	40	12.0	5.0	3.4	3.6	1.8	9.2	4.8	1.6	2.8	6.6
Collembola				<u>1</u> spp	•				<u>1 spp</u>		
Entomobryidae	10	0.0	0.2		—	۰ أ					
·	40	0.0	0.2		0.6 0.0	0.8 0.0	1.8 0.2	1.0 0.0	0.0 0.0	2.4 1.0	2.4 0.2
Diptera				21 spp					<u>10</u> spp.		
Miscellaneous	10	1.0	0.0		- 1.8	0.6	~ (_	
	40	3.8	3.2	1.8	0.6	1.2	0.4 1.0	0.0 0.2	0.8 1.8	0.4 2.0	1.4 9.8
lemiptera				<u>17 spp</u>			•		21 spp.		
Miridae	10	0.8	6.2	5.0	6.4	L .	• •				
· · · •	40	0.0	0.0	1.8	3.0	4.4	0.0	14.4	10.4	6.6	2.4
Nabidae	10	0.0	0.0	0.2	0.2	1.0 0.8	0.0	0.4	0.2	0.6	0.4
	40	0.0	0.0	4.2	0.2	1.4	0.0	0.0	0.8	0.0	1.2
Pentalomidae	10	0.6	0.0	0.4	0.2	0.1	0.0 0.0	0.0	0.0	0.4	1.6
	40	0.0	0.0	0.6	3.4	2.0	0.0	0.0 0.0	0.0	0.0	0.1
Miscellaneous	10	0.0	0.6	0.0	0.6	1.2	1.0	0.4	3.2 0.6	3.4	0.8
	40	4.2	2.6	2.0	3.2	1.8	7.6	1.4	3.2	0.0 1.2	0.0 0.2
omoptera				16 spp.					<u>16 spp.</u>		
Cicadellidae	10	3.6	3.6	1.6	- 1.4	11.8					-
	40	4.2	4.8	11.6	30.8	25.4	4.8 5.8	4.2	0.2	2.0	6.0
Miscellaneous	00	1.0	0.0	0.0	1.6	0.0	1.6	6.6 0.0	4.0	11.2	17.0
	10	0.0	0.6	0.4	0.0	0.0	0.0	0.2	0.0 2.0	0.4	0.0
	40	1.2	2.8	3.2	0.0	2.6	0.2	0.2	0.0	0.0 0.0	0.0 2.2
ymenoptera				<u>27 spp.</u>							
Formicidae	10	17.2	n 2 2 2				_		24 spp.		
Miscellaneous	10	0.4	23.2	46.8	4.8	4.8		22.0	7.4	9.0	4.6
and the state state	40	0.4	0.0 1.0	1.4	1.6	0.2	1.6	0.0	0.2	1.2	1.0
• .		0.0	1.0	1.0	0.2	0.0	3.0	0.4	0.2	0.2	0.2
epidoptera				5 spp.					<u>6 spp.</u>		
Miscellaneous	10	0.0	0.0	0.4	0.6	0.0	<u>ہ</u> ہ	• •			
	40	2.8	3.0	2.2	0.6	0.0	0.8 3.6	0.0 2.2	0.0 0.6	1.2 0.6	2.6 1.4
thoptera				<u>4 spp.</u>			-			0.0	1.4
Locustidae	10	0.0	0.0				_		<u>5 spp.</u>		
	40	2.8	0.8	0.6	0.2	0.4	0.0	0.4	1.2	1.0	1.0
Tettigoniidae	10	0.0	1.0 0.0	0.8	1.2	0.0	1.0	0.6	1.2	0.2	0.2
	40	1.4	1.2	0.0 0.6	0.0	0.4	0.0	0.0	0.0	0.0	0.2
h/	-	•••	•••	0.0	0.6	0.2	1.0	0.0	0.6	0.2	0.0
ysanoptera				<u>? spp.</u>					<u> ? spp.</u>		
	00	73.0	75.0		04.0	10 C	F 6 -				
					04.0	40.0	5.0 3	36.0 1	17.0	53.0	53.0

 $\frac{a}{L}$ Life stages are 00 = unknown, 10 = adult, and 40 = larval.

 $\frac{b}{m}$ Pata for Thysanoptera and Acarina are rounded to the nearest whole animal/m².

Taxon	Life _{a/}		G .	razed			Ungra	azed	
	stage	9 July	23 July	6 Aug	20 Aug	9 July	23 July	6 Aug	20 Aug
	•				0-5 cm			<u> </u>	
Acarina	00	32000	13000	22200	7800	23600	23000	11500	20800
Collembola						-			20000
. Entomobryidae	10 40	100	0	100	50	0	0	100	C
Poduridae	10	1250 0 700	400 0	500 50	720 0	1500 0	900 0	2050 50	1700
Miscellaneous	40	700 200	200 50	100 0	50 150	1450 100	500 0	650 50	350
Total		2250	650	750	970	3050	1400	2900	2150
Coleoptera					-				-
Miscellaneous	40	100	0	150	100	50	100	50	150
Insects									•
Miscellaneous	10 40	50 2000 <u>-</u> /	50 50	150 50	0 150	100 50	0 0	0 300	50 50
				5	-10 cm				
Acarina	00	6550	3000	25600	2450	56 50	10050	4250	4400
Collembola									
Entomobryidae	10 40	0 700	0 [.] 900	0	0	0	0	200	O
Poduridae	10 40	0 50	0 50	700 100	100 0	50 200	100 150	1200 150	100 0
Miscellaneous	40	õ	0	0 0	200 0	0 0	0 100	350 0	450 0
Total		750	950	800	300	250	350	1900	550
Insects									
Miscellaneous	10 40	0 0	0 0	100	0 0	150 50	100 0	0 200	0 250

Table 8.	Average numbers of soil arthropods per square meter in grazed and ungrazed
	fescue meadows on the 1972 dates shown.

 $\frac{a}{Life}$ stages are: 00 = unknown, 10 = adult, 40 = larval.

b/This sample included 1850 Homoptera (Phylloxeridae).

Table 7 summarizes the data on aboveground arthropod numbers. Table 8 summarizes the relatively high belowground arthropod numbers. Though macroarthropods have been seen in soil pits of various sorts, none were found in the cores taken for estimation of their numbers at depths greater than 10 cm.

Orders seem to be similarly represented on the grazed and ungrazed sites. Numbers of species of Coleoptera, Diptera, and Hymenoptera were highest on the grazed site while species of Hemiptera, Lepidoptera, Orthoptera, and Araneida were more numerous on the ungrazed site.

Numbers of individuals within families also differ little between the grazed and ungrazed sites above ground; the Orthoptera (Tettigoniidae) and the Thysanoptera may be slightly more numerous on the grazed site while the Collembola (Entomobryidae) and the Acarina may be more numerous on the ungrazed site.

The insect fauna changes relatively little between late June and early September. Hemipteran (Miridae, Namidae, and Penttomidae) may increase as the season progresses. Adult Homopteran (Cicadellidae) may decline at midsummer and are high especially at summer's end.

At the order and family level the insect associates of different herbs of a fescue grassland are similar (Table 9). Thysanopterans are easily the most abundant associates of the herbs studied in 1972. The numbers of Thripidae on the average lupine plant may be higher than on other plants because lupine plants are larger than the others. Phoeothripidae are rare except on *Achillea*. Arachnids (spiders and mites), Hemipterans, and Hymenopterans seem equally common on all four species. Further sampling might demonstrate positive associations (i) of Chermidae

-16-

Taxon	Date		Thysanoptera		Coleop- Dip-	Dio-	Hemin-	Homoptera	era	Нутепс	Hymenoptera		
		Aeolo- thripidae	Phoeo- thripidae	Thripidae	tera	tera	tera	Aphidae	0ther	Formi- cidae	0ther	tera	Arach- nida
Lupinus argenteus Pursh.	26 July 7 Aug 25 Aug 7 Sept	20		1003 593 107 15		1 1 0 4		1151		:		0	- ; - ;
Oxytropis sericea Nutt.	26 July 7 Aug 25 Aug 7 Sept	23	0	220 3 11 61	28	-	:::-			2	::::	^	-17 ⁻
Achillea millefolium L.	26 July 7 Aug 25 Aug 7 Sept		4 - 4 7 - 4	544 544	¦ -		;	-400	- 0 0		¦−¦¦	4 1 1 4	- :-::
Gaillandia aristata Pursh.	7 Aug 25 Aug 7 Sept	5	:::	117 298 6	; - ;	:::		-4 M	;;;	-!!	;		

L

Average numbers of arthropods present on four forb species of the Bridger Site, summer 1972. Sample size = five plants. Table 9.

(Homopteran other) with Achillea or (ii) Dipterans and immature Lepidopterans with Lupinus (iii) of Curculionidae (Coleoptera) with Oxytropis, and (iv) of aphids with Composites: the relatively small and composites (Achillea and Gaillardia) seem to have more aphids than larger leguminous plants (Oxytropis and Lupinus). Though the 1973 data have not yet been tabulated, it appears that the insects associates of the grass Festuca idahoensis are fewer than those of the forbs discussed above. Thrips, mites and labops are among these; their possible importance is suggested by Tingey et al. (1972) and Haws et al. (1973).

Ant respiration rates increase with increasing temperature (Table 10), increasing heaviness of the soil, and decreasing population density. The rates observed in these species were similar to each other as well as similar to values reported in the literature and were about five times greater than those recorded for grasshoppers (Mitchell 1971).

AVES

Introduction and Methods

Avian field studies were conducted in 1970 and 1972 at the Bridger Site. (1) The avian flush plot, grazed treatment, was the only census attempted because of the limited area of the grasslands and the absence of a road system. The same plot was sampled both years (Wiens 1971). The methods used are described in Swift and French (1972). (2) Studies of nestling growth rates of Mountain Bluebirds and White-crowned Sparrows at the site are also reported.

Results and Discussion

Table 11 is a list of birds found on the Bangtail grasslands. Some species, such as the Mourning Dove, Blue Grouse, and Cassin's Finch, are usually seen near the forest edge.

-18-

Ant	Number	Wet wt (mg)	Dry wt (mg)	6°C	15°C	23°C	33°C	42°C
A	15	12.7	3.2	0.2	2.3	5.8	9.0	12.5
В	8	6.9	2.8	0.2	2.0	4.6	8.2	10.3
C	5	3.9	0.9	0.2	1.8	2.7	4.6	7.1

Table 10. Average respiration rates of three ant species at five temperatures: hundredths of a milligram per ant per hour.

Taxon	Common name
Anthus spinoletta	Water Pipit
Bubo virginianus	Great Horned Owl
Carpodacus cassinii	Cassin's Finch
Circus cyaneus	Harrier (Marsh Hawk)
Chordeiles minor	Nighthawk
Corvus corax ^{a/}	Raven
Dendragapus obscurus	Blue Grouse
Eremophila alpestris ^{a,b/}	Horned Lark
Falco sparverius	Kestrel (Sparrow Hawk)
Perisoreus canadensis <mark>a/</mark>	Gray Jay
Pica pica	Magpie
Pooecetes gramineus ^{_/}	Vesper Sparrow
Sialia currucoides ^{a,b/}	Mountain Bluebird -
Turdus migratorius ^{a,b/}	Robin
Zenaidura macroura	Mourning Dove
Zonotrichia leucophrys	White-crowned Sparrow

.

Table 11. Bird species observed on Bridger grasslands.

 $\frac{a}{0}$ Observed on 16 March 1972. $\frac{b}{2}$ Censused on flush plot. Robin and Mountain Bluebird observations on 16 March 1972 may be unusually early since that month had been warm and much of the usual Bridger Site snow cover had melted. Skaar (1969) lists 15 March as the usual date for Mountain Bluebird spring arrival in the nearby Bozeman area, about 3,000 feet lower in elevation. The other three species encountered in March may overwinter on the site.

Harriers and Kestrels were observed throughout the summer of 1970 and a number of Harriers were fledged on the site that summer. In 1971 neither species was observed until late September. In 1972, Harriers were first observed on 17 August and Kestrels on 29 August. The heavy and long raptorial use of the site in 1970 may have been a response to the large vole (*Microtus montanus*) population which occurred that year (Haglund 1972).

Table 12 contrasts the flush plot census data for 1970 and 1972. In 1970 the flush plot was run in early July; it was censused in late June and mid-July in 1972. Plot census figures in Table 12 were derived by multiplying actual results by 2 to account for unseen females (Wiens 1971).

The near doubling of bird numbers and biomasses from 1970 to 1972 is notable. Vesper Sparrows and Mountain Bluebirds accounted for most of the increase; Horned Lark and Robin numbers were nearly constant. Commensurate with the Vesper Sparrow increase was a drop in average territory size from 1.96 ha in 1970 to 0.49 ha in 1972. Huxley (1934) and Zimmerman (1970) have also observed this phenomenon.

That the Vesper Sparrow population increase from 1970 to 1972 is real is suggested by both the census and the diminished average territory size. This may be explained by increased availability of food due to a

-21-

Species	Year	Plot census (individual/ study plot)	Birds/ 100 ha	Area Occupied (ha) <mark>b</mark> /	Territory size (ha)—	Standing crop (g/ha)
Horned	1970	1.92	18.1	2.7 (26)	2.82 (1)	<u> </u>
Lark	1972	1.50	14.1	1.8 (17)	1.09 (1)	5.8 4.5
Mountain	1970	1.68	15.8	3.6 (34)		b 0
Bluebird	1972	4.50	42.4	4.1 (39)		4.9 13.2
Robin	1970	2.24	21.1	5.5 (52)		16.6
	1972	3.00	28.3	3.2 (30)		22.2
Vesper	1970	5.70	53.8	5.6 (53)	1.96 (3)	10.0
Sparrow	1972	13.50	127.2	6.7 (64)	0.49 (8)	12.8 30.2
Total	1970		108.8			40.1
	1972		212.1			70.0

Table 12. Bridger Site avian flush plot data, 1970^{A/} and 1972. Grazed treatment (10.6 ha grid).

 $\frac{a}{1970}$ data from Wiens (1971).

 $\frac{b}{2}$ of study plot in parentheses.

 $\frac{c}{Sample}$ size in parentheses.

warm spring, an early snow melt, and good insect production (?) allowing more efficient Vesper Sparrow foraging (Watt 1968).

Even at greater density much of the study plot (36%) was unused by the Vesper Sparrows. Sutton (1960) described the reliance of Vesper Sparrows on "blow-out" areas which are absent from the unused portion of the Bridger plot. Every Vesper Sparrow and Horned Lark territory at the site included at least one "blow-out" area.

Though no active search was made, eight nests were discovered on the grasslands, of which one was on the flush plot. Four were Vesper Sparrow nests: two were found in clumps of Agropyron subsecundum, (each with three eggs), one in a Festuca idahoensis clump (five eggs), and one under an Artemisia tridentata bush (four eggs). Both Whitecrowned Sparrow nests were amidst patches of Lupinus argenteus (each with four eggs). One Mountain Bluebird nest (six eggs) was encountered in a pile of discarded fence posts and another was found in the IBP weather station shelter (five eggs).

Tables 13 and 14 record the weight increases observed in nestlings of White-crowned Sparrows and Mountain Bluebirds (one nest each). The young bluebirds spent a greater amount of time in the nest than the sparrows did. Delayed development is often more characteristic of brush and tree nesters than ground nesting species, such as the White-crowned Sparrows (Ricklefs 1968). However, White-crowned Sparrows occasionally nest in shrubs (Peterson 1969). Nestlings in other nests were weighed but desertion or predation halted those studies.

MAMMALS

Mammal studies were conducted at the Bridger Site in 1970, 1971, 1972, and 1973. The methods used generally followed Swift and French

-23-

Day	Number	Weight (g)	Standard deviation	Minimum weight (g)	Maximum weight (g)
0	1	3.0	0.0	3	3
5	4	11.0	1.4	10	12
10	2	22.5	0.7	22	23

.

Table 13.	Growth of White-crowned Sparrow nestlings, 28 June to 15 July, 1972.	Bridger	Site.
-----------	---	---------	-------

Day	Number	Weight (g)	Standard deviation	Minimum weight (g)	Maximum weight (g)
2	5	7.2	3.3	5	9
10	5	22.6	6.1	17	25
15	5	25.6	2.5	24	27
20	4	28.2	2.2	27	30
25	1	24.0	0.0	24	24

- -

Table 14.	Growth of Mountain Bluebird nestlings, Bridger Site. 22 June to 15 July, 1972.

(1972). This report presents (i) a list of mammals present, (ii) density and biomass data for the commonest mammals, and (iii) a discussion of some of their impacts.

Small mammals were trapped on five subsites (Appendix Table 26): one ungrazed site (5), two cattle-grazed (3,4) sites, and two sheepgrazed (1,2) sites. Sites 1 and 5 were the IBP sites trapped by Hoffman et al. (1971) and generally reported in the "official data." Small mammal numbers were estimated on live-trap grids with 15 m intervals. "IBP grids" were 12 × 12; "weather modification grids" were of similar size, but had shapes adjusted to fit available homogeneous meadow space. Assessment lines were used on 1972 IBP grids. Trapping dates are summarized in Appendix Table 27.

Pocket gopher numbers were estimated in 1970, 1971, and 1972 by the "48-hour mound-building index" of Reid et al. (1966). Their earthmoving activity was estimated (Haglund 1972) by weighing and measuring the new mounds and plugs appearing in 48 hours in 11 of the 15×15 m squares on each grid: one square was chosen at random from each row of the grid.

Mule deer numbers were estimated in 1972 by a variant of the "jackrabbit census" method (Swift and French 1972): all deer in a 0.36 \times 11.27 km (1200 ft \times 7 mi) rectangle were counted on 4, 13, and 15 August 1972.

Estimates of sheep and cattle use are derived from US Forest Service records.

Results and Discussion

Mammals observed on the site are listed in Table 15. Of the 22 species listed, eight were trapped on the grids. Several species listed (Alces, Clethrionomys, Eutamius, Lasionycteris, Lepus americanus, Lynx, Tamiasciurus, and Ursus) are forest residents which make little use of the meadows.

Small mammal population size and biomass estimates were made for three species: *Microtus montanus* (Table 16), *Peromyscus maniculatus* (Table 17) and *Thomomys thalpoides* (Table 18). Estimates are probably low since they include only individuals actually trapped.

Small mammal numbers were similar on grazed and ungrazed sites. *Microtus* (Table 16) were apparently more numerous on the grazed site in a "high" year (1970) and more numerous on the ungrazed site in a "low" year (1972-1973). *Peromyscus* numbers (Table 17) were also higher on the grazed site in a "high" year (1972) and lower there in a "low" year (1973). The same trend may exist in the *Thomomys* data (Table 19): on the grazed site gopher numbers were highest in a "high" (1970) and lowest in the 1971-1972 "low." The data show no clear differences in the effects of sheep and cattle grazing on population sizes of voles, deer mice, or pocket gophers.

The size of small mammal populations varied considerably between years. *Microtus* populations were high (20-40 individuals/ha) in 1970 and low (1-15/ha) in 1971-1972. *Thomomys* populations were also high (15-40/ha) in 1970 and low (1-10/ha) in 1973. *Peromyscus* populations, on the other hand, were low (0-1/ha) in 1970 and relatively high (15-20/ha) in 1972. Total small mammal biomass dropped from 3500 g/ha in 1970 to less than 100 g/ha in 1972.

-27-

Table 15. Bridger Site mammal species list.

Špecies	Common name	Trapped on grids
Alces alces	Moose	
Canis latrans	Coyote	
Cervus canadensis	Elk	
Clethrionomys gapperi	Red-backed vole	X
Erethizon dorsatum	Procupine	
Eutamias amoenus	Yellow pine chipmunk	x
Lasionycteris noctivagans	Silver-haired bat	
Lepus americanus	Snowshoe hare	
Lepus townsendii	White-tailed jackrabbit	
Lynx rufus	Bobcat	
Microtus montanus	Montane vole	x
Mustela erminea	Short-tailed weasel	x
Neotoma cinerea	Bushy-tailed wood rat	
Odocoileus hemionus	Mule deer	
Peromyscus moniculatus	Deer mouse	x
Sorex cinereus	Masked shrew	x
Spermophilus richardsonii	Richardson's ground squirrel	
Tamiasciurus hudsonicus	Red squirrel	
^r axidea ta x us	Badger	
Thomomys talpoides	Northern pocket gopher	x
Irsus americanus	Black bear	
lapus princeps	Western jumping mouse	x

sults: 1970-1973. Number of individuals captured, density (individuals/ha), and blomass estimates		
1970-1973.		
Table 16. Microtus montanus trapping results: 1	(g/ha) for each trapping period. ^{a,b/}	

Grid 1 Number Density Biomass Number 43.0 15.8 ^{C/} 326.4 2.0 43.0 15.8 ^{C/} 326.4 2.0 1.0 0.4 8.3 0.0 2.0 0.4 8.3 0.0 2.0 0.8 16.5 0.0 0.0 0.0 0.0 0.0 1.0 0.4 8.3 0.0 1.0 0.0 0.0 0.0 1.0 0.4 8.3 0.0 1.0 0.4 8.3 0.0 1.0 0.4 8.3 0.0 1.0 0.4 8.3 0.0 1.0 0.4 8.3 0.0				Cattle	Cattle-grazed				Ungrazed	
Number Density Biomass Number 43.0 15.8 ^{C/} 326.4 2.0 4.0 5.0 4.0 6.0 1.0 0.4 8.3 0.0 2.0 0.8 16.5 0.0 2.0 0.8 16.5 0.0 0.0 0.0 0.0 0.0 1.0 0.4 8.3 0.0 1.0 0.4 8.3 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.4 8.3 1.0 1.0 0.4 8.3 1.0	Grid 2		Grid 3		-	Grid 4			Grid 5	
43.0 15.8 ^{42/} 326.4 1.0 0.4 8.3 2.0 0.8 16.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.4 8.3 0.0 0.0 0.0	Density Biomass	iss Number	Density	Biomass	Number	Density	Biomass	Number	Density	Bîomass
1.0 0.4 8.3 2.0 0.8 16.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.4 8.3 0.0 0.0 0.0 1.0 0.4 8.3 1.0 0.4 8.3 1.0 0.4 8.3	0.8 16.5	29-0	13.3	274.8				24.0	8.8	181.8
1.0 0.4 8.3 2.0 0.8 16.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.4 8.3 0.0 0.0 0.0 1.0 0.4 8.3 1.0 0.4 8.3 1.0 0.4 8.3	1.5 31.0	43.0	19.7	407.0						
1.0 0.4 8.3 2.0 0.8 16.5 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.4 8.3 1.0 0.4 8.3 1.0 0.4 8.3	2.3 47.5	16.0	7.3	150.8						
2.0 0.8 16.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.4 8.3 1.0 0.4 8.3 1.0 0.4 8.3	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0			
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.4 8.3 1.0 0.0 0.0 1.0 0.4 8.3	0.0 0.0	1.0	0.5	10.33	1.0	0.4	8.3			
0.0 0.0 0.0 1.0 0.4 8.3 0.0 0.0 0.0 1.0 0.4 8.3	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0			
1.0 0.4 0.0 0.0 1.0 0.4	0.0 0.0	4.0	1.8	37.2	1.0	0.4	8.3			
0.0 0.0 1.0 0.4					·			3.0	1.1	22.7
1.0 0.4								8.0	2.9	59.9
								14.0	5.2	107.4
Sept 1972 1.0 C.4 8.3			ı					12.0	4.4	90.9
Aug 1973 1.0 0.4 8.3						-		4.0	1.5	31.0

 $\frac{d}{d}$ Population estimates equal the number of different individuals captured on the grids.

 $\frac{b}{M}$ Mean weight of *Microtus* from Hoffman et al. (1970) = 20.66 g.

 ${\tt c'}^{\sf N}$ Number of individuals removed from the grid by snap-trapping.

<u>d</u>/Early August

e/Late August

density (indiv./ha) and biomass
Number of different individuals captured, density (indiv./ha)
1970-1973.
Table 17. <i>Peromyscus maniculatus</i> trapping results: 1970–1973. (g/ha) for each trapping period ^{a.b/} .

ł

i

Importance Grid 1 Grid 2 Frid 3 Grid 4 Crid 5 Number Donsity Biomass Number Donsity Biomass Number Density Biomass Numbe	Grid 1 Grid 2 $7rid 3$ Grid 4 Grid 5 Number Density Biomass Number Density Biomass Number Density Biomass Number Density Biomass Number Density Density Biomass Number Density Density <td< th=""><th>irapping</th><th></th><th></th><th></th><th>ancep-grazed</th><th></th><th></th><th></th><th></th><th>Cattle</th><th>Cattle-grazed</th><th></th><th></th><th></th><th>Ungrazed</th><th></th></td<>	irapping				ancep-grazed					Cattle	Cattle-grazed				Ungrazed	
Number Density Biomass Number Density Density	Number Dansity Biomass Number Density Biomass Number Density 1.0 0.5 9.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 9.3 2.0 0.7 13.0 13.0 1.0 0.5 9.3 2.0 0.7 13.0 14.0 5.5 1.0 0.9 16.7 4.0 1.4 26.0 5.5 14.0 5.2 4.0 0.9 16.7 4.0 1.4 26.0 5.2 14.0 5.2 2.0 0.9 16.7 4.0 1.4 26.0 5.2 14.0 5.2 14.0 5.2 <td< th=""><th>date</th><th></th><th>Grid 1</th><th></th><th></th><th>Grid 2</th><th></th><th></th><th></th><th></th><th></th><th>Grid 4</th><th></th><th></th><th>Grid 5</th><th></th></td<>	date		Grid 1			Grid 2						Grid 4			Grid 5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0 0.5 9.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 9.3 2.0 0.7 13.0 1.0 0.5 9.3 2.0 0.7 13.0 2.0 0.9 16.7 2.0 0.7 13.0 4.0 1.4 26.0 1.4 26.0 2.0 0.9 16.7 4.0 1.4 26.0 2.0 0.9 16.7 4.0 1.4 26.0 2.0 0.9 16.7 4.0 1.4 26.0 2.0 0.9 16.7 4.0 1.4 26.0 14.0 5.2 9 14.0 5.2 9 2.0 0.9 14.0 5.2 9 14.0 5.2 9 14.0 5.2 9 14.0 5.2 9 5.4 144.0 5.2 9 6 6 7 144.0 5.2 6 6 7 144.0 5.2	Z	lumbe r	Density	Biomass	Number	Density	Biomass	Number	Dansity	Biomass	Number	Density	Biomass	Number	Density	Biomass
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 0.0 0.0 0.0 1.0 0.5 9.3 2.0 0.7 13.0 1.0 0.5 9.3 2.0 0.7 13.0 2.0 0.9 16.7 2.0 0.7 13.0 4.0 1.8 33.5 4.0 1.4 26.0 2.0 0.9 16.7 4.0 1.4 26.0 14.0 5.2 9 14.0 5.2 9 15.0 5.5 5 16.0 5.5 9 16.0 5.5 5 16.0 5.5 5	uly 1970	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.5	9.3				c	6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0 0.5 9.3 1.0 0.5 9.3 2.0 0.7 13.0 2.0 0.9 16.7 2.0 0.7 13.0 2.0 0.9 16.7 2.0 0.7 13.0 4.0 1.8 33.5 4.0 1.4 26.0 4.0 1.4 26.0 15.0 5.5 2.0 0.9 16.7 4.0 1.4 26.0 2.0 0.9 16.7 4.0 1.4 26.0 14.0 5.2 14.0 5.2 14.0 5.2 2.0 0.9 16.7 4.0 1.4 26.0 5.2 14.0 5.2 14.0 5.2 14.0 5.2 2.0 6.1 1.4 5.2 14.0 5.2 3.0 6.1 5.2 5.2 5.2 5.2 2.0 6.1 6.1 5.2 5.2 5.2 2.0 6.1 6.2 5.2 5.2 5.2 2.0 7 7.4	ug 1970				0.0	0.0	0.0	0-0	0.0	0.0					5	5
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.0 1 2.0 0.7 13.0 2.0 0.8 14.9 2.0 0.9 16.7 2.0 0.7 13.0 1 2.0 0.4 7.4 3.0 1.1 20.5 4.0 1.8 33.5 4.0 1.4 26.0 1 1.0 0.4 7.4 4.0 1.5 27.9 2.0 0.9 16.7 4.0 1.4 26.0 2 23.0 8.5 158.1 1.1 20.5 1.0 1.4 26.0 1.4 26.0 1.4 26.0 1.4 26.0 1.4 1.4 26.0 5.5 14.0 1.4 26.0 5.5 14.0 5.5 14.0 5.5 14.0 5.5 5.5 14.0 5.5 14.0 5.2 14.0 5.2 14.0 5.2 14.0 5.2 5.5 14.0 5.5 5.5 14.0 5.5 5.5 14.0 5.5 5.2 5.2 5.2	1.0 0.5 9.3 2.0 0.7 13.0 2.0 0.9 16.7 2.0 0.7 13.0 4.0 1.8 33.5 4.0 1.4 26.0 4.0 1.8 33.5 4.0 1.4 26.0 2.0 0.9 16.7 4.0 1.4 26.0 2.0 0.9 16.7 4.0 1.4 26.0 16.7 4.0 1.4 26.0 14.0 5.5 16.7 4.0 1.4 26.0 14.0 5.2 2.0 0.9 16.7 4.0 1.4 5.2 14.0 5.2 14.0 5.2 14.0 5.2 14.0 5.2 8.0 2.9 2.9 captured on the grids. 5.2 8.0 2.9	spt 1970 .				0.0	0.0	0.0	1.0	0.5	9.3						
11 2.0 0.7 13.0 2.0 0.8 14.9 2.0 0.9 16.7 2.0 0.7 13.0 1 1.0 0.4 7.4 3.0 1.1 20.5 4.0 1.8 33.5 4.0 1.4 26.0 1 1.0 0.4 7.4 4.0 1.5 27.9 2.0 0.9 16.7 4.0 1.4 26.0 2 23.0 8.5 158.1 1.5 27.9 2.0 0.9 16.7 4.0 1.4 26.0 2 23.0 8.5 158.1 1.5 27.9 2.0 0.9 16.7 4.0 1.4 26.0 2 14.0 5.2 16.7 4.0 1.4 26.0 14.0 5.5 2 16.0 5.2 96.7 14.0 1.4 26.0 14.0 5.2 2 18.0 6.6 122.8 122.8 14.0 5.2 14.0 5.2 2.0 0.7 13.0 13.0 13.0 14.0	2.0 0.9 16.7 2.0 0.7 13.0 4.0 1.8 33.5 4.0 1.4 26.0 2.0 0.9 16.7 4.0 1.4 26.0 2.0 0.9 16.7 4.0 1.4 26.0 1.0 0.9 16.7 4.0 1.4 26.0 1.1 1.4 26.0 14.0 5.2 14.0 1.4 26.0 14.0 5.2 14.0 14.0 5.2 14.0 5.2 20ptured on the grids. 8.0 2.9	Ine 1971	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.5	9.3	2.0	0.7	13.0			
1.0 0.4 7.4 3.0 1.1 20.5 4.0 1.8 33.5 4.0 1.4 26.0 1 1.0 0.4 7.4 4.0 1.5 27.9 2.0 0.9 16.7 4.0 1.4 26.0 2 23.0 8.5 158.1 1.5 $2.7.9$ 2.0 0.9 16.7 4.0 1.4 26.0 2 23.0 8.5 158.1 1.5 $2.7.9$ 2.0 0.9 16.7 4.0 1.4 26.0 $2'$ 16.0 5.9 109.7 109.7 109.7 104.0 5.2 d' 14.0 5.2 96.7 14.0 5.2 14.0 5.2 2 18.0 6.6 122.8 124.0 5.2 14.0 5.2 2.0 0.7 13.0 13.0 13.0 8.0 2.9	4.0 1.8 33.5 4.0 1.4 26.0 2.0 0.9 16.7 4.0 1.4 26.0 15.0 5.5 14.0 5.2 14.0 5.2 14.0 5.2 14.0 5.2 14.0 5.2 8.0 2.9	ıly 1971	2.0	0.7	13.0	2.0	0.8	14.9	2.0	6.0	16.7	2.0	0.7	13.0			
1 1.0 0.4 7.4 4.0 1.5 27.9 2.0 0.9 16.7 4.0 1.4 26.0 2 23.0 8.5 158.1 15.0 5.5 158.1 15.0 5.5 $2'$ 16.0 5.9 109.7 1 14.0 5.2 d' 14.0 5.2 96.7 14.0 5.2 14.0 5.2 2 18.0 6.6 122.8 1 14.0 5.2 2 18.0 6.6 122.8 1 14.0 5.2 2 0.7 13.0 13.0 8.0 2.9	2.0 0.9 16.7 4.0 1.4 26.0 15.0 5.5 14.0 5.2 14.0 5.2 14.0 5.2 14.0 5.2 8.0 2.9 captured on the grids.	1971 Bi	1.0	0.4	7.4	3.0	1.1	20.5	4.0	1.8	33.5	0.4	4	26.0			
2 23.0 8.5 158.1 15.0 5.5 $2'$ 16.0 5.9 109.7 14.0 5.2 d' 14.0 5.2 96.7 14.0 5.2 2 18.0 6.6 122.8 14.0 5.2 2 18.0 6.6 122.8 14.0 5.2 2 0.7 13.0 8.0 2.9	15.0 5.5 14.0 5.2 14.0 5.2 14.0 5.2 14.0 5.2 8.0 2.9	pt 1971	1.0	0.4	7.4	4.0	1.5	27.9	2.0	0.9	16.7	4.0	-1	26.0			
$\frac{c}{d}$ 16.0 5.9 109.7 $\frac{d}{d}$ 14.0 5.2 96.7 2 18.0 6.6 122.8 2.0 0.7 13.0 8.0 2.9	14.0 5.2 14.0 5.2 14.0 5.2 14.0 5.2 8.0 2.9 captured on the grids.		23.0	8.5	158.1					-		1 1	•		4 1	1 1	
$\frac{d}{14.0}$ 14.0 5.2 96.7 2 18.0 6.6 122.8 2.0 0.7 13.0 8.0 2.9	14.0 5.2 14.0 5.2 14.0 5.2 8.0 2.9 captured on the grids.		16.0	5.9	109.7										0.4	۰. ۲	102.3
2 18.0 6.6 122.8 14.0 5.2 2.0 0.7 13.0 8.0 2.9	14.0 5.2 14.0 5.2 8.0 2.9 captured on the grids.		14.0	5.2	96.7										14.0	5.2	96.7
2.0 0.7 13.0 8.0 2.9	14.0 5.2 8.0 2.9 captured on the grids.		8.0	6,6	122 8					·					14.0	5.2	96.7
2.0 0.7 13.0 8.0 2.9	8.0 2.9 captured on the grids.	I									·				14.0	5.2	96.7
	<pre>/Population estimates equal the number of different individuals captured on the grids.</pre>		2.0	0.7	13.0										8.0	2.9	53.9

-30-

ł

<u>d</u>/Late August

./ha) and biomass (g/ha) by 48-hour mound counting
(g/ha
biomass
and
(indiv./ha)
size
<i>Thomomys talpoides</i> population size (indiv./ha) a method ^{a.b/} .
Table 18.

	ľ	Sheep-grazed	grazed			Cattle.	Cattle-grazed		Ungrazed	azed
Trapping date	Grid 1	1 P	Grid 2	1 2	Grid 3		Grid 4	d 4	Grid 5	d 5
	Dens i ty	Biomass	Density	Biomass	Dens i ty	Density Biomass	Density	Biomass	Density	Biomass
July 1970 43.5 <u>5</u> /	43.5 <u>c/</u>	2426.5							16 K	870.2
Аид 1971	14.5	808.8	63.5	3542.0	26.6	1484.0	22.8	1271.8		7.0/0
Sept 1971									24 K	C CT C F
Aug 1972	1.2	66.9	63.0	0 607E	0 11	0 100			D • • •	7.7/61
				0.3/1/	0	0./25			9.3	518.8
A Population size equals the total number of mounds produced in 48 hours divided to 8 / 2 / 2 / 2 / 2	n size equ	als the to	tal number	of mounds	broduced	in 48 hour	1 - F	4/ 0 0		

Mean weight of *Thomomys* (55.8 g) from Hoffman et al. (1971).

^{C/}Estimate (low) from Hoffman et al. (1970).

The crudely inverse relationship of *Peromyscus* and *Microtus* numbers may represent a negative behavioral interaction of the two species. *Microtus* may be behaviorally dominant and act to exclude *Peromyscus* from the Bridger grasslands during *Microtus* highs (see Grant 1972 and Douglass 1970). Baker (1971) discounts the possibility of competition between such nutritionally distinctive species.

The hypothesis that the high vole and gopher numbers of 1970 were due to late melting of the protective snow cover will be explored. Steinhoff's data (1973, 1976) suggest the opposite trend: both *Microtus* and *Peromyseus* increased in the San Juan Mountains with decreasing amounts of snow. In agreement with Haglund (1972) and in disagreement with Weaver (1974), Steinhoff (1973, 1976) found "a slight indication of higher gopher populations on otherwise comparable sites where the snow lies later." His pocket gopher populations appeared to decline in snowfall as well.

Large herbivores on the area include sheep, cattle, mule deer, elk, and moose. Stocking rates for sheep and cattle are 1.16 acres and 6.6 acres per animal month, respectively. *Alces alces* and *Cervus canadensis* are relatively rare. *Odocoileus hemionus* is commonly seen in forb-rich meadows. An average of nine individuals were seen in the three strip censuses made in August 1972 so one might estimate their numbers at 0.02 individuals per hectare. If the average Montana mule deer weighs 63.5 kg (Mackie 1964), deer biomass can be estimated at 1387 g/ha. This is surely an overestimate because besides foraging in the meadows the deer probably use the forested parts of their habitat.

The primary effects of most mammals on the area are grazing effects; pocket gophers also affect vegetation and soil forming processes by

-32-

burrowing (Turner 1973). In the later summer of 1972 on grid 3 the fossorial rodents covered about 0.1% of the ground surface daily with fresh mound earth (Table 19). This is equivalent to 1925 cm²/gopher day or 4.9 kg/gopher day. Buchanan (1972) found that 2% of Bangtail meadows might be covered by winter mounds at one time and that 1% to 3% might be covered by summer mounds. These data are compatible with suggestions that pocket gophers can move 5 to 38 tons of soil per acre per year (Ellison 1946, Richens 1966).

Treatment	Mound size	Mound weight
Grid 1,	$\bar{x} = 942.2 \text{ cm}^2$	$\overline{X} = 1.94$ kg
grazed	SD = 2312.6	SD = 1.53
9,0204	No. = 19	No. = 19
Grid 5,	$\bar{x} = 459.2 \text{ cm}^2$	$\bar{X} = 1.20$ kg
ungrazed	SD = 379.5	SD = 1.12
ungrazeu	$N_{0} = 126$	No. $= 122$

.

.

Table 19. E	Bridger S survey, 10	ite pocket gopher mound 6 to 18 August 1972.	area	and	weight
-------------	-------------------------	---	------	-----	--------

ACKNOWLEDGMENTS

This work was supported from 1969 to 1973 by NSF grants GB-7302 and GB-20960 to study the ecological effects of winter weather modification and in 1970, 1972, and 1973 by the US/IBP Grassland Biome. Principal contributors were: S. Arthun (site foreman, 1971), I. Bordeau (site foreman, 1972), W. Burleson (insects), D. Collins (principal investigator), C. Deschamps (plant survey), R. Dumond (insects), F. Forcella (site co-foreman, 1973), B. Haglund (birds and mammals), J. Howell (roots and soil respiration), R. Smith (site foreman, 1969), L. Taylor (site foreman, 1970), and T. Weaver (principal investigator). Field crew members not listed above include: in 1968, W. Ballard, L. Jonas, R. Smith; in 1969, S. Arthun, W. Ballard, B. Miller; in 1970, S. Arthun, J. Bernd, S. Geary; in 1971, J. Bernd, I. Bordeau, L. Taylor; and in 1972, P. Abrams, C. Barry, K. Kueffler, M. Nichols, K. Ulrich. I. Bordeau and L. Taylor, with the help of T. Hancock, N. Deschamps, and members of the field crews listed above, have assembled and verified many of the tables presented in this report.

-35-

LITERATURE CITED

- Baker, R. 1971. Nutritional strategies of myomorph rodents in North American grasslands. J. Mammal. 52:800-805.
- Buchanan, B. 1972. Ecological effects of weather modification, Bridger Range area, Montana: Relationships of soil, vegetation, and microclimate. Ph.D. Diss. Montana State Univ., Bozeman. 136 p.
- Collins, D. D. 1970. Comprehensive Network Site description, BRIDGER. US/IBP Grassland Biome Tech. Rep. No. 38. Colorado State Univ., Fort Collins. 10 p.
- Collins, D. D. 1971. The Bridger Site, 1970 progress report. US/IBP Grassland Biome Tech. Rep. No. 84. Colorado State Univ., Fort Collins. 40 p.
- Collins, D. D., and T. W. Weaver III. 1972. Grassland Biome studies at the Bridger Site, 1971. US/IBP Grassland Biome Tech. Rep. No. 198. Colorado State Univ., Fort Collins. 21 p.
- Douglass, R. 1970. A field study of interactions between montane moles, Microtus montanus nexus, Hall and Hayward, and deer mice Peromyscus maniculatus sonoriensis, Le Conte, in northern Utah. M.S. Thesis. Univ. Utah, Salt Lake City. 44 p.
- Ellison, L. 1946. The pocket gopher in relation to soil erosion on mountain range. Ecology 27:101-114.
- French, N. 1970. Field data collection procedures for the comprehensive network, 1970. US/IBP Grassland Biome Tech. Rep. No. 35. Colorado State Univ., Fort Collins. 37 p.
- Grant, P. 1972. Interspecific competition among rodents. In R. F. Johnston, P. W. Frank, and C. D. Michener [ed.] Ann. Review of Ecol. and Syst. 3:79-106.
- Haglund, B. 1972. Ecological effects of weather modification, Bangtail Ridge, Bridger Range, Montana: Relationships of pocket gophers (*Thomomys talpoides*) to time of snow melt. M.S. Thesis. Montana State Univ., Bozeman. 26 p.
- Haws, B., D. Dwyer, and M. Anderson. 1973. Problems with range grasses: Look for black grass bugs. Utah Science 34:3-9.
- Hoffman, R., J. Jones, and H. Genoways. 1971. Small mammal survey on the Bison, Bridger, Cottonwood, Dickinson, and Osage Sites. US/IBP Grassland Biome Tech. Rep. No. 109. Colorado State Univ., Fort Collins. 69 p.

- Huxley, J. 1934. A natural experiment on territorial instinct. Brit. Birds 27:270-277.
- Mackie, R. 1964. Montana deer weights. Montana Wildlife Winter, 1964.
- Marshall, J. 1967. The effect of shelter on the productivity of grasslands and field crops. Field Crop Abstr. 20:1-14.
- Merchant, V., and D. Crossley. 1970. An inexpensive, high-efficiency Tullgren extractor for soil microarthropods. J. Georgia Entomol. Soc. 5:83-87.
- Mitchell, J. 1971. Consumption and metabolic rates of some leafeating, chewing arthropods: A summarized literature review. US/IBP Grassland Biome Tech. Rep. No. 118. Colorado State Univ., Fort Collins. 4 p.
- Mueggler, W. 1971. Weather variations on a mountain grassland in southwestern Montana. USDA Forest Serv. Res. Paper INT 99. Intermountain Forest and Range Exp. Sta., Ogden, Utah. 25 p.
- Mueggler, W. 1972. Plant development and yield on mountain grasslands in southwestern Montana. USDA Forest Serv. Res. Paper INT 124. Intermountain Forest and Range Exp. Sta., Ogden, Utah. 20 p.
- Mueggler, W., and W. Handl. 1973. Preliminary classification of mountain grassland and shrubland habitat types in southwestern Montana. Progress Report. USDA Forest Serv., Intermountain Forest and Range Exp. Sta., Ogden, Utah. 52 p.
- Peterson, R. 1969. A field guide to western birds. Houghton-Mifflin, Boston.
- Reid, V., R. Hansen, and A. Ward. 1966. Counting mounds and earth plugs to census mountain pocket gophers. J. Wildlife Manage. 30:327-334.
- Richens, V. 1965. An evaluation of control on the Wasatch pocket gopher. J. Wildlife Manage. 29:327-334.
- Ricklefs, R. 1968. Patterns of growth in birds. Ibis 110:419-451.
- Skaar, P. 1969. Birds of the Bozeman latilong. P. D. Skaar. Bozeman, Montana.
- Steinhoff, H. 1973. Pocket gopher populations. In H. Teller, J. Ives, and H. Steinhof [ed.] The San Juan Ecology Project. Colorado State Univ., Fort Collins. 173 p.
- Steinhoff, H. 1976. Effects of varying snowpack on small mammals, p. 437-485. In H. Steinhof and J. Ives [ed.] Ecological impacts of snowpack augmentation in the San Juan Mountains of Colorado. Colorado State Univ., Fort Collins.

- Sutton, G. 1960. The nesting Fringillids of the Edwin S. George Reserve, southeastern Michigan. Port. U. Jack-pine Warbler, 38:3-15.
- Swift, D. M., and N. R. French. 1972. Basic field data collection procedures for the Grassland Biome, 1972 season. US/IBP Grassland Biome Tech. Rep. No. 145. Colorado State Univ., Fort Collins. 86 p.
- Tingey, W., C. Jorgensen, and N. Frischknecht. 1972. Thrips of the sagebrushgrass range community in west central Utah. J. Range Manage. 25:304-308.
- Turner, G. 1973. Effects of pocket gophers on the range. In G. Turner, R. Hansen, V. Reid, H. Tietjen, and A. Ward [ed.] Pocket gophers and Colorado mountain rangeland. Colorado State Univ. Exp. Sta. Bull. 554S, Fort Collins. 90 p.
- U.S. Department of Commerce. 1969-1972. Climatological data: Montana section. Environmental Science Services Administration. U.S. Dep. Commerce, Washington, D.C.
- Walter, H. 1952. Eine einfache Methode zyr "okologischen Erfassung des CO₂-Factors am Standort. Ber Deut. Bot. Ges. 70:257-282.
- Watt, K. 1968. Ecology and resource management: A quantitative approach. McGraw-Hill. New York.
- Weaver, T. 1974. Ecological effects of weather modification: Effect of late snow melt on *Festuca idahoensis* meadows. Am. Midl. Nat. (in press).
- Weaver, T., and Super, A. 1973. Ecological consequences of winter cloud seeding. ASCE J. of the Irr and Drainage Div. 99:387-399.
- Wiens, J. A. 1971. Avian ecology and distribution in the comprehensive network, 1970. US/IBP Grassland Biome Tech. Rep. No. 77. Colorado State Univ., Fort Collins. 49 p.
- Zimmerman, J. 1970. The territory and its density dependent effect in Spiza americana. Auk 88:591-612.

APPENDIX I

APPENDIX TABLES

,

•

-40-

Appendix Table 1.

Standing crop (g/m^2) of all live and dead plants: 1969-1973. The means (\bar{X}) and standard error (SE) are given. Data from 25 May 1969 are summarized in Appendix Table 20.

					Tre	atme	nt					
Date	4-ft	site	8-ft	site		Ungr	azed			Gra	zed	
	1		1		1		2		1		2	
	x	SE	x	SE	x	SE	x	SE	x	SE	x	SE
					Ear	ly J	ivne					
5 June 1969	36				64							
8 June 1970 15 June 1971	 27	18			82	37	30	10				
12 June 1972	69	44	9 5	84	170	44	173	35	197	36	196	46
					Lat	e Ju	ne					
18 June 1969					117							
22 June 1970 30 June 1971	65 58	21 30	23	18	84 9	18 24	114 121	26 38	88 	39 	98 	17
26 June 1972	124	66	87	53	197	35	240	87	228	57	237	42
21 June 1973	80	11			171	9	239	43				
					Ear	ly J	uly					
6 July 1969	108		96		157							
8 July 1970 13 July 1971	93 81	24 40	55 56	38 16	108 152	37 32	125 170	57 41	102	31	114	40
10 July 1972	167	71	154	72	282	54	321	81	282	89	296	78
					Lat	e Ju	ly					
20 July 1969	82		170		1 61							
26 July 1970	133	52	94	30 54	132 208	28 40	168 194	50 82	102	30	152	33
27 July 1971 24 July 1972	130 205	58 70	137 193	71	302	60	309	85	273	90	338	96
16 July 1973	193	19	133	17	207	10	271	17				
				•	Ear	ly A	ugust					
7 Aug. 1969	134		170		166							
3 Aug. 1970 9 Aug. 1971	132 124	28 43	147 122	22 65	169 190	32 49	150 212	48 105	131	53 	142	41
7 Aug. 1972	256	50	224	59	311	44	355	70	264	65	282	38
					Lat	e Au	gust					
28 Aug. 1969	98		118		136						÷-	
17 Aug. 1970 24 Aug. 1971	158 121	79 56	96 98	28 58	112 194	18 43	133 208	40 30	82	21	117	19
24 Aug. 1971 21 Aug. 1972	188	49	327	85	317	78		153	282	73	247	49
21 Aug. 1973	104	9	122	18	169	16	131	8				
					Ear	ly S	lepter	ıber			•	
4 Sept. 1969	81	-	78		.147							
1 Sept. 1970	97	43	77	27	137	47	93	36	108	23	52	19

Appendix Table

lable 2.		up (g/m ²) of standing dead plants:
		The mean (\bar{X}) and standard error (SE)
	•	Data from May 1969 are summarized
	in Appendix	Table 20.

					Tr	eatme	ent					
Date	4-ft	site	8-ft	site		Ungr	azed			Gra	zed	
	·	1		1		1		2		1		2
	x	SE	x	SE	x	SE	x	SE	X	SE	x	SE
<u></u>					Ea	rly j	Tune					
5 June 1969												
8 June 1970 15 June 1971	2	3			14	12	1	1				
12 June 1972	6	6	4	7	18	15	11	9	28	18	15	13
					La	te Ji	ne					· .
18 June 1969 22 June 1970	 4	 6	 		 37	 13	 35	 18	 11.	 10	 9	 8
30 June 1971	1	1	1	-1	4	5	4	2				
26 June 1972 21 June 1973	1 13	1		1° 	8 66	11 10	6 1-2	7 43	: 6 	. 9 	2	3
					Ea	rly j	uly [.]					
6 July 1969							~					
8 July 1970 13 July 1971	1 	2 1	1 	2 	9 3	10 2	5		4 	4	2 	2
10 July 1972	1	1	2	2	22	23	17	17	9	13	6	4
					Late	e Jul	y					
20 July 1969 26 July 1970			•			 5		 9	 2	 4	 2	 7
27 July 1971					2	3	1	1				
24 July 1972 16 July 1973	3 6	4 2	2 2	5 2	14 25	7 8	11 19	7 2	6 	5 	11 	12
·					Ear	rly A	ugus	t				
7 Aug. 1969				·								
3 Aug. 1970 9 Aug. 1971			3	4	2 	4	10 	11 1			2	_5
7 Aug. 1972	3	2	1	2	22	16	8	10	4	5	6	5
					Late	Augi	ust					
28 Aug. 1 <u>969</u> 17 Aug. 1970	2		4		5 1							
24 Aug. 1971		 				1 	1	1 1				
21 Aug. 1972 21 Aug. 1973	1 26	2 4	5 18	8 4	15 53	22 5	4 43	8 6	3	. 4 	2	4
							otemb					
4 Sept. 1969	38		6		17							
1 Sept. 1970	16	7	12	6	14	7	27	17	23	12	22 -	10

.

Appendix Table 3.	Standing crop (g/m ⁴) of all live plants: 1969-1973.
	The mean (\tilde{X}) and standard error (SE) are given. Data
	from 25 May 1969 are summarized in Appendix Table 20.

				·	Tre	atme	ent					
Date	4-ft	site	8-ft	site		Ungr	azed			Gra	zed	
		1	1		1		2	2	1			2
	x	SE	x	SE	x	SE	x	SE	x	SE	x	SE
					Earl	y Jı	ne					
5 June 1969	36				64							
8 June 1970 15 June 1971	25				68		30					
12 June 1972	63		91		143		158		168		178	
					Late	Jun	e					
18 June 1969					117							
22 June 1970 30 June 1971	60 57		23		47 87		79 118		74		76	
26 June 1972	123		87		188		234		223		235	
21 June 1973	44	8			105	4	137	11				
					Earl	у Ји	ly					
6 July 1969	108		96		157		<u>-</u>					
8 July 1970 13 July 1971	92 81		55 55		99 149		120 168		99		111	
10 July 1972	166		>> 153		260		304		273		290	
					Late	Jul	у					
20 July 1969	82		170		161			÷-				
26 July 1970	133		93		129		160		<u>99</u>		150	
27 July 1971 24 July 1972	130 202		137 191		206 288		192 298		267		226	
16 July 1973	188	18	131	17	183	9	252	17			326 	
					Earl	y Au	gust					
7 Aug. 1969	134		170		166							
3 Aug. 1970	132		145		167		140		130		140	
9 Aug. 1971 7 Aug. 1972	124 253		122 223		190 290		211 347		260		 276	
					Late	Augi						
28 Aug. 1969	95		114		131	0						
17 Aug. 1970	157		96		106		131		79		117	-
24 Aug. 1971	121		98		194		207					
21 Aug. 1972 21 Aug. 1973	187 78		323 104	15	302 116	11	198 87	8	279		245 	
					Early							
4 Sept. 1969	43		71		130							
l Sept. 1970	81		66		122		65		78		28	

Appendix Table 4. Standing crop (g/m^2) of all grasses: 1969-1973. The mean (\bar{X}) and standard error (SE) are given. Data from 25 May 1969 are summarized in Appendix Table 20.

					Tre	atme	nt					
Date	4-ft	site	8-ft	site		Ungr	azed	• • • •		Gra	zed	
	1		1		1	<u> </u>	2	2	1	l	2	2
	x	SE	x	SE	x	SE	x	SE	x	SE	Ī	SE
					Earl	y Ju	ne					
5 June 1969	20				28			÷-				
8 June 1970 15 June 1971	8											
12 June 1972	20		44		51 108		17 105		107		111	
					Late	Jun	e					
18 June 1969					45	•	·					
22 June 1970	18				29		42		42		36	
30 June 1971	14		9		59		68					
26 June 1972 21 June 1973	50 20		33		133 69		141 65		149		147	
、					Earl	y Ju		•				
6 July 1969	44		36		73							
8 July 1970	24		18		57		66		55		58	
13 July 1971	. 26		24		88		102					
10 July 1972	71		51		175		.195		165		187	
					Late	Jul	y		•			
20 July 1969	39		69		97							
26 July 1970 27 July 1971	51 56		26 56		79 120		82 106		53		91	
24 July 1972	81		60		120		176		172		220	
16 July 1973	69		34		123		140		173		220	
					Early	y Aug	just					
7 Aug. 1969	61		64		113							
3 Aug. 1970	55		52		101		73		91		83	
Aug. 1971	61		59		108		115					
' Aug. 1972	120		75		205		238		183		198	
					Late	Augn	ıst					
28 Aug. 1969 17 Aug. 1970	55 63		56 // 7		97		 01					
24 Aug. 1970	58		47 52		64 125		94 138		61		81	
21 Aug. 1972	94.		191		209		130		226		179	
1 Aug. 1973	36		40		49		35				•75	
					Early	sep	otembe	21°				
Sept. 1969	25		34		88					+ m		
l Sept. 1970	47		35		72		49		60		26	

í

					Tre	atme	nt					
Date	4-ft si	te	8-ft	site		Ungr	azed			Gra	zed	
	1		1		i	<u> </u>	2	:	1	i .	2	2
	x	ŞE	x	SE	x	SE	x	SE	x	SE	x	SE
					Earl	y Ju	ne					
5 June 1969	15				37		·					
8 June 1970												
15 June 1971	14		16		17		12					
12 June 1972	42		47		34		54		61		67	
					Late	Jun	ė ·					
18 June 1969					71			·				
22 June 1970	42			~-	19		37		35		40	
30 June 1971	42		43		33		50					
26 June 1972	73		54		55		93		74		88	
21 June 1973	47				36		72				~-	•
					Earl	y Jui	ly		•			
6 July 1969	64		60		84		· = =					
8 July 1970	68		37		42		55		44		53	
13 July 1971	64		55		61		66	т. Г				
10 July 1972	.95		102		85		109		109		103	
					Late	July	1		. ·			
20 July 1969	43		101		64							
26 July 1970	81		68		51		78		46		59	-
27 July 1971	86		74		85		86					
24 July 1972	121		131		93		122		94		107	
16 July 1973	119		97		59		112		,			
					Earl	y Aug	ust					
7 Aug. 1969	73		106		53							
3 Aug. 1970	77		92		67		67		39		57	
9 Aug. 1971	89		63		82		97					
Aug. 1972	134		148		85		109		76		78	
					Late	Augi	ıst					
28 Aug. 1969	40		57		34							
17 Aug. 1970	94		49		42		37		18		36	
24 Aug. 1971	69		63		69		70					
21 Aug. 1972 21 Aug. 1973	93 42		132 63		93 68		63 52		53 		66 	
	-		-		Early	y Sep		er				
Sept. 1969	18		37		42							
Sept. 1970	35		30		50		16		18		3	

Appendix Table 5. Standing crop (g/m²) of all forbs: 1969-1973. The mean (X) and standard error (SE) are given. Data from 25 May 1969 are summarized in Appendix Table 20.

					Trea	tmen	t					-
Date	4-ft s	ite	8-ft s	ite	1	Ingra	zed		· ·	Graze	ed	
	1		1		1		2		1		2	
	x	SE	x	SE	x	SE	x	SE	x	SE	x	SE
					Earl	y Jun	e					
5 June 1969	15				19							
8 June 1970 5 June 1971	 4	 5			30	22	8	6	 			 18
2 June 1972	11	11	20	25	56	31	61	19	44	22	63	10
					Late	June	2	•				
18 June 1969				'	35				26	 15	 22	 13
22 June 1970	8 10	6		 5	14 19	5 9	25 39	14 18	a÷ -==			
30 June 1971 26 June 1972	17	10	12	12	54	20	80	35 4	66	25	96	32
21 June 1973	8	3	0	0	33	4	26	4				
`					Earl	ly Ju	14			÷		
5 July 1969	24		15		43			 14	 22	 11	33	 18
8 JU1y 1970 13 July 1971	12 14	7 9	9	12 4	26 40	14 15	30 56	25				
10 July 1972	32	21	15	13	96	29	110	31	75	28	112	69
					Lat	e Jul	y		•			•
24 July 1969	23		35		50						 44	 19
20 July 1970	26 32	9 18		· 7 9	35 47		33 62	13 40	25 			
27 July 1971 24 July 1972	39	32	17	23	116	40	110	32	88	45	137	42
16 July 1973	27	6	5	2	44	5	41	5				
					Ear	ly Au	ıgust					
7 Aug. 1969	27		-		29		 21-	 24	 38	13	40	20
3 Aug. 1970 9 Aug. 1971	23 29	7 14		9 10	38 39		34 48	28				
7 Aug. 1972	67	42		10	111		137	73	.84	22	88	41
					Lat	e Aug	just					
28 Aug. 1969	29				47						 LA	
17 Aug. 1970	27	20		9 3	32 70		56 • 64		29		42	1
24 Aug. 1971 21 Aug. 1972	27 31	29 19		37	94	i 36	70	65	77	45	101	3
21 Aug. 1973	3		1		11	4	8	1				-
					Ear	rly S	epten	nber				
4 Sept. 1969	14				2						 22	- 1
1 Sept. 1970	25	1:	2 17	9	2	97	33	16	30) 13	26	. •

Appendix Table 6. Standing crop (g/m^2) of *Festuca idahoensis*: 1969-1973. The mean (\bar{X}) and standard error (SE) are given. Data from May 1969 are summarized in Appendix Table 20.

ł

				. <u>-</u>		Tre	eatme	nt	<u></u>		<u> </u>		
Date		4-ft	site	8-ft	site		Ungr	azed		<u></u>	Gra	zed	
		•	·	1			1		2	. ·	1		2
		x	\$E	x	\$E	x	SE	x	SE	X -	SE	x	SE
		- · . ·				Ear	ly Ju	me				-	
5 June 19		5				5							
8 June 19 15 June 19		2				12	7	7	3				
12 June 19		7	8	21	29	49	46	41	22	45	20	35	18
						Lat	e Jun	e			•		
18 June 19			` F	*-	••••		~- I.				· ·		
22 June 19 30 June 19		5 3	5 2	 4		9 24	4 11	10 17	. 5	5	3	4	_
26 June 19		23	32	16	15	47	21	36	17	41	14	17	1
		•				Ear	ly Ju	ly					
6 July 19		3		10		12							
8 July 19 13 July 19		.5 6	6 5	5 6	36	22 24	13 19	24 23	16 18	14 	17	3	
10 July 19		19	23	30	32	41	14	44	35	39	52	16	11
						Lat	e Jul	y					•
20 July 19		3		10		16							
26 July 19		5	5	10	8	21	8	24	34	5	12	11	18
27 July 19 24 July 19		10 18	13 22	11 33	12 32	42 41	33 26	13 24	6 16	 28	25	37	46
						Ear	ly Au	gust					
7 Aug. 19		3		16		50							
3 Aug. 19		7	8	13	9	32	20	18	15	15	34	9	9
9 Aug. 19 7 Aug. 19		18 10	18 10	30 48	28 57	35 42	38 12	41 51	62 58	29	42	23	37
						Late	: Aug	ust					
28 Aug. 19	69	6		13		27							• •-
7 Aug. 19	70	15	20	25	15	20	20	26	31	11	17	6	12
24 Aug. 19 21 Aug. 19		19 47	41 55	34 138	43 62	36 71	48 46	46 30	30 26	 68	35	20	 25
a nuga 13.	y s				~~			pteml					
• • Sept. 19	69	2		10		32							
i Sept. 19		8	13	14	7	30	27	10	8	12	12	2	3

Appendix Table 7. Standing crop (g/m^2) of Agropyron subsecundum: 1969-1973. The mean (\bar{X}) and standard error (SE) are given. Data from May 1969 are summarized in Appendix Table 20.

ŕ

·	_				Tre	eatme	nt			-	<u>.</u>	
Date	4-ft	t site	8-ft	site		Ungr	azed			Gra	zed	
		1		1		I		2		1		2
	x	SE	x	SE	x	SE	x	SE	x	SE	x	SE
<u></u>					Ear	ly Ju	me					
5 June 1969	1				1							
8 June 1970					2							
15 June 1971 12 June 1972	2	1	1	2	1	1	2	2	12	10	8	3
					Lat	e Jun	ie					
18 June 1969					5					· • = ·		·
22 June 1970					•							-
30 June 1971	1 E	1	2		2 4	3	5 7	77	20	18	 12	
26 June 1972	5	o	2	3			•	1	ZU	10	12	C
					Ear	ly Ju	ily					
6 July 1969	3		3		4						**=	
8 July 1970												
13 July 1971 10 July 1972	1 7	2	1 2	1 2	2 6	2 4	5 11	4 10	 26	-14	 20	12
,	-					e Jul				-		
20 July 1969	2		3		3							
26 July 1970												
27 July 1971	3	4	1	2	5	7	4	7				
24 July 1972	6	4	3	3	6	5	12	4	22	14	16	8
					Ear	ly Au	gust					
7 Aug. 1969	8		11		7							
3 Aug. 1970	 I.				 J.							
9 Aug. 1971 7 Aug. 1972	4 12	4	1 2	1 3	4 7			10 8		18	23	16
						e Aug			-			
25 Aug 1060	r		۲								• •	
25 Aug. 1969 28 Aug. 1970	5		6									
17 Aug. 1971	3	3	1	1	7	11	1	2				
24 Aug. 1972	5	3	3	4	14	10	9	10	36	15	17	8
· •					Ear	ly Se	eptem	ber				
4 Sept. 1969	5		5		3							
1 Sept. 1970												

.

Appendix Table 8. Standing crop (g/m²) of *Carex* spp.: 1969-1973. The mean (X) and standard error (SE) are given. Data from May 1969 are summarized in Appendix Table 20.

					Tr	eatmo	ent					
Date	4-ft	site	8-ft	site		Ungi	azed			Gra	zed	
		1		1		1		2		1		2
	x	SE	x	SE	x	\$E	x	SE	x	SE	x	SE
					Ear	ly Jı	me					
5 June 1969 8 June 1970					2							
15 June 1971												
12 June 1972	1	1	2	2	2	2	1		7	8	5	ļ
					Late	e Jun	e					
18 June 1969					3							
22 June 1970 30 June 1971	1	1	1	1	1 3	1 3	2 2	2 3	2	3	2 	
26 June 1972	4	2	2	3	6	5	7	7	11	7	. 12	8
•					Earl	y Ju	ly					
6 July 1969	8		2		8							
8 July 1970 13 July 1971	3 2	3 2	1 1	1	3 6	6	2 5	3	6	10	7	4
10 July 1972	6	5	1	i	7	5 5	14	10	19	11	14	10
					Late	: Jul	y					
20 July 1969	7		6		12							
26 July 1970 27 July 1971	9 6	5 5 2	1 1	1 1	3 5	3 6	7 12	5 7	8	6	13	8
24 July 1972	5	2	i	1	10	7	17	8	20	9	16	9
					Earl	y Au	gust			· ·		
7 Aug. 1969	14		5		5							
3 Aug. 1970 9 Aug. 1971	10 3	8 5	6 2	7	7	9 4	8	6	15	7	12	7
7 Aug. 1972	12	11	1	2 1	5 8	7	- 6 12	5 5	 27	10	16	11
					Late	Augi						-
28 Aug. 1969	6		4		8							
17 Aug. 1970	5	3	3	3	4	3	2	3 8	8	5	18	9
24 Aug. 1971 21 Aug. 1972	2 4	3 2 3	2	1 2	7 8	8 6	9 9	в 9	 25	16	 23	11
					Earl	y Sel		er			-	
+ Sept. 1969	3 4		2		5							
Sept. 1970	4	2	1	1	5 4	2	1	1	11	6	1	2

Appendix Table 9. Standing crop (g/m^2) of *Danthonia intermedia*: 1969-1973. The mean (\tilde{X}) and standard error (SE) are given. Data from May 1969 are summarized in Appendix Table 20.

•

Appendix	Table	10.	

2

.

Standing crop (g/m^2) of *Koeleria cristata*: 1969–1973. The mean (\bar{X}) and standard error (SE) are given. Data from May 1969 are summarized in Appendix Table 20.

в.						eatme						
Date	4-ft	site	8-ft	site		Ungr	azed			Gra	zed	
	1		1		1	i	2	2	1		2	2
	x	SE	x	SE	x	SE	x	SE	x	SE	x	SE
• • • • • • • • • • • • • • • • • • •					Earl	ly Ju	ne					
5 June 1969												
8 June 1970		• ••										
5 June 1971 2 June 1972												
					Late	s Jun	e					
8 June 1969		, 			3							_
2 June 1970	1	1			1	1	1	1	2	2	1	
30 June 1971 26 June 1972		 2			2	2	2	3	2	2	1	-
					Eari	ly In	ly					
6 July 1969	2		1		6		÷-					-
8 July 1970	1	1			1	2	2	2	1	1		
3 July 1971 0 July 1972	 5					5	 11 ·	7		2	5	-
0 3019 1972	,	-		ľ		e Jul		'	•	-		
0 July 1969	⁻ 5		7		15							_
26 July 1970	5	3		1	2	3	4	4	1	2	4	:
27 July 1971												-
24 July 1972	8	8	1	1	12	7	9	8	12	14	6	
					Ear	ly Au	igust					
7 Aug. 1969	5		8		3							-
3 Aug. 1970 9 Aug. 1971	7	3	3				2	2			2	-
7 Aug. 1972	8	9	1	1	19	10	13	8	6	7	6	
					Lat	e Aug	just					
28 Aug. 1969	7		7		8						÷-	-
17 Aug. 1970												-
24 Aug. 1971			 v			 12	 9	7	8			-
21 Aug. 1972	2	1	8	12	11			·	U	U	U	
					Ear	ly Se	eptem	ber				
4 Sept. 1969 1 Sept. 1970	1				1							-

•

. ج

 \mathbf{r}

Appendix Table 11. Standing crop (g/m^2) of live miscellaneous grasses: 1969-1973. The mean (\bar{X}) and standard error (SE) are given. Data from 25 May 1969 are summarized in Appendix Table 20. Note that the composition of this category changes from year to year and even within a season: it includes all graminoids not presented under other headings. Stipa richardsonii data from 15 June, 9 August, and 24 August 1971 appear in Appendix Table 21.

- -

-50-

	 .		a		Tr	eatme	ent				<u>. </u>	
Date	4-ft	site	8-ft	site		Ungr	azed			Gra	zed	
	1	l 		1		1		2		1	.	2
	x	SE	x	SE	x	\$E	x	SE	x	SE	x	SE
				<u> </u>	Ear	ly Jr	me		<u>.</u>	<u>+</u>		
5 June 1969	3			er —	6							
8 June 1970 15 June 1971	1	2				1						
12 June 1972	7	8	5	6	1	1	12	7	10	6	14	14
					Late	e Jun	ie					
18 June 1969 22 June 1970	 6	 4			7 3	3	 6	 5		 9	10	 10
30 June 1971	20	20	2	3	9	10	17	12				
26 June 1972 21 June 1973	12 3	10 1	14 	24 	6 2	3 1	20 14	17 3	8	10	26	18
					Eari	ly Ju	ly			•		
6 July 1969	22		23		31							
8 July 1970 3 July 1971	18 23	11 26	15 9	13 5	12 14	9 6	16 26	12 20	11 	12	18	10
0 July 1972	16	11	28	23	17	12	37	32	24	30	38	39
					Late	e Jul	y					
20 July 1969 26 July 1970	7 22	 27	31	 14	5							
27 July 1971 -	11	11	29 32	26	20 34	16 30	.17 50	17 38	15 	14	24 	21
4 July 1972 6 July 1973	16 27	8 7	18 20	12 5	18 13	16 3	40 42	34 10	22	22	44 	51
					Earl	ly Au	gust					
Aug. 1969	15		43		17							
Aug. 1970 Aug. 1971	21 22	14 18	21 25	14 19	21 35	21 18	27 51	32 37	8 	10 	26	21
Aug. 1972	27	20	31	23	25	20	33	29	19	21	26	33
					Late	e Aug	ust					
8 Aug. 1969	4		17		8			;				
7 Aug. 1970 4 Aug. 1971	47 32	64 30	23 20	17 19	19 18	15 21	7 29	6 19	8 	11 	11 	9
1 Aug. 1972 1 Aug. 1973	21 9	15 3	32 18	26 7	31 38	22 . 8	16 12	17	_7	8	17	19
	-	-		ŕ			pteml	-				
1 Sept. 1969	1		4		8				÷-			

Appendix Table 12. Standing crop (g/m^2) of Lupinus argenteus: 1969–1973. The mean (\bar{X}) and standard error (SE) are given. Data from May 1969 are summarized in Appendix Table 20.

							nt 					
Date	4-ft	site	8-ft	site		Ungr				Gra		
	1	l 	1	l 	1			2		l 		2
	x	SE	x	SE	x	SE	X	SE	<u>x</u>	SE	x	SE
				-	Earl	ly Ju	ne					
5 June 1969	2				3							
8 June 1970 15 June 1971	1	 2		 	3	4	2	2				·
12 June 1972	3	3	5	7	7	8	6	3	8	4	11	1
					Late	e Jun	e					
18 June 1969					8							
22 June 1970 30 June 1971	2 1	3 1		1	1 3	1	4 4	3 4	2	1	3	
26 June 1972	9	7	3	5	ıó	6	20	23	-11	10	10	,
					Earl	ly Ju	ly					
6 July 1969	6		3		6							
8 July 1970 13 July 1971	3 3 7	3 3 5	3 3 2 2	4 2	2 5	2 4	3 7	4 5	3	2	5	ا
10 July 1972	7	5	2	3	19	15	20	16	11	. 4	16	1
					Late	e Jul	y					
20 July 1969	4		10		11							
26 July 1970 27 July 1971	8 6	8 4	4 5	37	3 4	5 2	7	6 6	3	3	5 	
24 July 1972	7	5	5	5	13	8	21	21	20	15	11	11
					Ear	ly Au	igust					
7 Aug. 1969	6		10		2							
3 Aug. 1970 9 Aug. 1971	9 4	5 4	5 5	3 7	5 6	6 5	3 7	3 8	1	· 2	2 	-
7 Aug. 1972	15	9	5 3	5	9	6	14	10	15	6	10	ļ
					Late	e Aug	nıst					
28 Aug. 1969	2		5		4							
17 Aug. 1970	45	1 4	3 2	3 3 8	2 7	3	3 6	1	1	2		-
24 Aug. 1971 21 Aug. 1972	5 5	1 6 3	8	ر 8	13	11	12	17	12	12	9	12
					Ear	ly Se	eptem	ber				
4 Sept. 1969	7		7		14							
1 Sept. 1970	3	3	2	1	2	· 2	2	1	3	2	1	

Appendix Table 13. Standing crop (g/m^2) of Arenaria congesta: 1969-1973. The mean (\bar{X}) and standard error (SE) are given. Data from May 1969 are summarized in Appendix Table 20.

					Tre	atmer	it					
Date	4-ft	site	8-ft	site		Ungra	zed			Graz	zed	
	1		1		1		2		1		2	
	x	SE	x	SE	x	SE	x	SE	x	\$E	x	SE
<u> </u>					Earl	ly Ju	re	<u> </u>				
5 June 1969	1				1							
8 June 1970					1	1		1				
5 June 1971 2 June 1972	1 1	1 2	4	5	2	1	1.	i	. 4	3	2	1
					Late	e Jun	e				•	
8 June 1969					4				 •			
22 June 1970	5	4			1	1	12	1 2	1			
30 June 1971 26 June 1972	2 3	2 2	3	3	2 3	2 2	4	2	6	5	3	2
	-				Ear	ly Ju	ly				-	
6 July 1969	4		5		5					·		
8 July 1970	4	2	2	2 1	1	2	4	5 4	3	2	3	2
13 July 1971 10 July 1972	3 6	25	1	12	3 2	3 1	3 5	3	9	6	3	3
		_			Lat	e Jul	y	-				
20 July 1969	11		12		4							
26 July 1970	7	2		4	2 2	1 2	3 2	3	4	3	6	
27 July 1971 24 July 1972	10 7	12 6		7 39	6	2 4	6	3 2 5	9	7	4	3
					Ear	ly Au	gust					
7 Aug. 1969	11		9		4							
3 Aug. 1970	7	4		8	3	4	2	2	4	4	5	
9 Aug. 1971 7 Aug. 1972	5 13	4 17		5 13	2 7	37 7	2 7	6	8	8	6	1
					Lat	e Aug	just					
28 Aug. 1969	9		5		2							
17 Aug. 1970	11	11	5	4	1	1	2	1	2	2	3	-
24 Aug. 1971 21 Aug. 1972	7 6	6		2 19	2 5	2 5	4	. 3	7		3	
2, magi 1976	v	Ū				ly Se			-	-	-	
4 Sept. 1969	1		4		3							_,
1 Sept. 1970	4	3		5	3	2	1	1	4	3	1	

Appendix Table 14. Standing crop (g/m²) of *Achillea millefolia*: 1969-1973. The mean (X) and standard error (SE) are given. Data from May 1969 are summarized in Appendix Table 20.

ι

	••••••••••				Tr	eatme	ent					_
Date	4-ft	site	8-ft	site		Ungr	azed			Gra	zed	
		1	_	1		1		2		1		2
	x	\$E	x	SE	x	SE	x	SE	x	SE	x	SE
					Ear	ly Ju	me					
5 June 1969	2				2						~~	
8 June 1970 15 June 1971					2		1	2				
12 June 1972	2	5	4	8		1	2	3	1	1	3	6
					Late	e Jun	e	۰.				
18 June 1969 22 June 1970					3 · 1							
30 June 1971	5	. 6	1	1	4	1	1 3	1 5	1	1 	1 	1
26 June 1972	4	7	3	4	7	8	3	6	• ~		4	6
					Eari	у Ли	lų					
6 July 1969 8 July 1970	3 2		5		6							
13 July 1971	11	3 15	1 2	2 3	1	1 7.	5	8			3	3
10 July 1972	13	16	9	15	4	4	7	11		1	3 ·	4
					Late	Jul	y					
0 July 1969 6 July 1970	5 5		13 4		3						·	
7 July 1971	8	10	7	9 9	2 9	2 12	1 3	4 8			1 	1
4 July 1972	25	29	10	7	11	16	5	7		1	4	5
					Earl	y Au	just					
Aug. 1969 Aug. 1970	7 2	 3	12 7	 7	2 4	 10	 2	 L				
Aug. 1971	3	4	6	8	5	9	2	3			2	3
Aug. 1972	11	13	15	25	10	10	9	18			3	4
					Late	Aug:	ust					
8 Aug. 1969	6		4 5		3			*-				
7 Aug. 1970 4 Aug. 1971	2 3	3 7	5 2	8 4	1 4	2 10	2 5	3 8			3	3
1 Aug. 1972	9	13	11	12	3	6	2	6		1	6	6
					Earl	y Sel	otemb	per				
Sept. 1969 Sept. 1970		 1	2 1		2 2	 2			 1			 1

Appendix Table 15. Standing crop (g/m^2) of Agoseris species: 1969-1973. The mean (\bar{X}) and standard error (SE) are given. Data from May 1969 are summarized in Appendix Table 20.

.,

1

۰.

15

		<u> </u>	<u>-</u>		Tr	eatme	ent					
Date	4-ft	site	8-ft	site		Ungi	razed			Gra	zed	
		1	•	1		1		2		1		2
	x	\$E	x	SE	x	SE	x	SE	x	SE	x	SE
					Ear	ly Jı	me					
5 June 1969					1							
8 June 1970 15 June 1971			*-									
12 June 1972	3	6	1	1	3	1	2	2	3	5		1
					Late	e Jun	e					
18 June 1969				·	2							
22 June 1970		1			1	1		1	•		1	2
30 June 1971	1								~~			
26 June 1972	1	3			1	2	1	1				
`					Earl	y Ju	ly					
6 July 1969	1				6							• •
8 July 1970	3	10	1	4	3	6	1	3				
13 July 1971 10 July 1972					1 9	2 8	3 4	6				**
	•	,		•	-	s Jul	-	7				
20 July 1969	2		4				5					
26 July 1970	23	6	6 		15 		6		1		**	
27 July 1971	3 5 3	12	9	17	10	9	5	5			**	
4 July 1972	3	9	10	19	6	7	. 4	10		-		
					Earl	y Au	gust					
7 Aug. 1969	12		8		9							
3 Aug. 1970	ş	7	?	9	6	6	4	5				2
9 Aug. 1971 7 Aug. 1972	4 8	6 18	4 2	6 3	6	8 5	9	11			** **	
/ Aug. 13/2	U.	10	2	د	4	2	5	5	1	2		
					Late	Aug	ust					
8 Aug. 1969			5		9							
7 Aug. 1970												
4 Aug. 1971 1 Aug. 1972	3 8	7 16	3 19	6 23	16 8	27 9	12 3	10 5				
			-				otemb					
Sept. 1969					1							
Sept. 1970					۱ ۳-							

Appendix Table 16. Standing crop (g/m^2) of *Erigeron speciosus*: 1969-1973. The mean (\bar{X}) and standard error (SE) are given. Data from May 1969 are summarized in Appendix Table 20.

₩.

Appendix Table 17. Standing crop (g/m^2) of *Cerastium arvensis*: 1969-1973. The mean (\bar{X}) and standard error (SE) are given. Data from May 1969 are summarized in Appendix Table 20.

1					Tr	reatm	ent					
Date	4-fi	: site	8-f	t site	<u>-</u>	Ungi	razed	 1		Gr	azed	
		1		1		1		2	•	1		2
	x	SE	x	SE	x	SE	x	SE	Ī	SE	ž	SE
					Ear	ly Ji	me					
5 June 1969					2							
8 June 1970												
15 June 1971					1	1		1				
12 June 1972			1	3	2	3	1	1			3	5
					Lat	e Jun	e					
18 June 1969					3						` -	
22 June 1970												
30 June 1971					2	2	1	2				
26 June 1972	1	2		1	4	2	5	4	2	1	6	4
					Ear	ly Ju	ly					
6 July 1969	2		3		5							
8 June 1970	1	2			3	4	7	1	1	1	2	7
13 July 1971 10 July 1972	1 2	1 2			4 6	2	3 4	2				
	2	2		1	0	5	4	3	5	3	9	7
					Late	e Juli	y			•		
20 July 1969	1		4		14							
26 July 1970 27 July 1971	2	2			3	3	5	4	2	2	6	4
4 July 1972	1 2	1 2		1	6 8	4 6	2	3 4				
	-	£		1	U.	o	5	4	9	7	6	5
					Earl	y Aug	just					
Aug. 1969	5		4		16							
Aug. 1970 Aug. 1971	3 1	2 1	1	1			4	5			5	4
Aug. 1972	3	2	•	2 1	2 10	3	5	9		 0		
· · • • • · · ·	-	-		•		8	9	6	8	8	9	5
					Late	Augu	st					
8 Aug. 1969	7		6		6							
7 Aug. 1970 4 Aug. 1971									•••			
4 Aug. 1971 1 Aug. 1972	7	10	3	5	2 13	· 2 11	2 4	2 3	 r	 L		
	,		د					-	5	4	11	12
					Early	y Sep	temb	er				
Sept. 1969			2		3							
Sept. 1970				~ •		~ =						

					Tr	eatm	ent					
Date	4-ft	site	8-ft	t site		Ungi	razed	 		Gra	zed	
		1	·	1		1	_	2.		1		2
	x	SE	x	SE	x	SE	x	SE	x	SE	x	SE
					Ear	ly Jı	me					. <u></u>
5 June 1969					2							
8 June 1970 15 June 1971												
12 June 1972	2	3	3	3	- 1	2	3	4				
					Lat	e Jun	ie		•			
18 June 1969					2	·						
22 June 1970 30 June 1971		2		 3	2			 6				
26 June 1972	3	Ĩ4	6	11	3	3	3 4	7	1	2	2	4
•					Eart	ly Ju	ily					
6 July 1969	4				1							
8 July 1970 13 July 1971	 2											
10 July 1972	16	3 33	5 9	5 10	5 6	6 6	5 7	5 11	2	3	2	
					Late	e Jul	y					
20 July 1969	5		9		4					~-		
26 July 1970 27 July 1971	14		6	 7	 8	 13						
4 July 1972	12	17	9	13	8	12	2 5	3 6	3	5	2	5
					Earl	у Ащ	just					
Aug. 1969	4		7									
Aug. 1970 Aug. 1971	11	13	7		6	13			6	8		
Aug. 1972	6		14	9 14	4 3	9 5	11 5	19 5	1	2	•-	
					Late	Augu	ıst					
8 Aug. 1969	6		4	÷-	1.							
7 Aug. 1970 4 Aug. 1971	5 5 6	9 8	4	4	3 8	4	7	8		1	2	3
1 Aug. 1972	6	11	12 9	14 11	8 5	7 6	3 7	8 5 13	1		3	
					Early	ı Sep				-	-	•
Sept. 1969	T		4				~-					•
Sept. 1970		•- •	•-	~								

Appendix Table 18.	Standing crop (g/m ²) of Galium boreale: 1969-1973.
	The mean (X) and standard error (SE) are given. Data from May 1969 are summarized in Appendix Table 20.

Appendix Table 19. Standing crop (g/m^2) of live miscellaneous forbs: 1969-1973. The mean (\tilde{X}) and standard error (SE) are given. Data from 25 May 1969 are summarized in Appendix Table 20. Note that the composition of this category changes from year to year and even within a season: it includes all forbs not included in other categories.

-58-

30 June 1971 14 7 8 6 13 5 19 14 26 June 1972 40 27 24 15 21 7 37 23 21 June 1973 44 8 33 4 58 7 Early July 6 July 1969 20 20 23 <	nt	atmer	atme	nent						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	azed	Ungra	Ungr	graze	ed			Gra	zed	
Early June 5 June 1969 8 20					2			1		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x	\$E	\$E	ΕX	Σ̈́ S	E	ž	SE	x	SE
8 June 1970 10 3 7 4 15 June 1971 13 9 10 3 7 4 12 June 1972 24 15 25 25 18 12 26 20 Late June 18 June 1969 13 3 24 8 30 June 1971 14 7 8 6 13 5 19 14 26 June 1972 40 27 24 15 21 7 37 23 21 June 1973 44 8 33 4 58 7 Early July 6 July 1969 20 20 23 8 July 1970 37 19 15 9 21 12 30 20 13 July 1971 11 7 13 6 24 7 15 7 10 July 1972 33 23 45 30 22 9 24 15 Late July 20 July 1969 8 15 8 27 July 1970 35 28 29 20 20 7 38 12 27 July 1971 19 17 17 16 11 6 14 12 24 July 1972 49 28 61 26 24 8 35 21 15 July 1973 10 11 77 16 47 7 70 7 Early August 7 Aug. 1969 12 12 4 3 Aug. 1970 25 18 8 3 15 9 17 12 7 Aug. 1970 25 18 8 3 15 9 17 12 7 Aug. 1970 25 18 8 3 15 9 17 12 7 Aug. 1970 25 18 8 3 15 9 17 12 7 Aug. 1970 25 18 8 3 15 9 17 12 7 Aug. 1970 25 18 8 3 15 9 17 12 16 August 28 Aug. 1969 6 12 10 7 Aug. 1970 25 18 8 3 15 9 17 12 17 Aug. 1970 25 18 8 3 15 9 17 12 18 Aug. 1970 25 18 8 3 15 9 17 12 19 Aug. 1971 3 10 7 4 3 12 12 9 5 11 Aug. 1973 33 4 45 12 30 4 40 5	ne	y Jur	y Ju	June						
15 June 1971 13 9 10 3 7 4 12 June 1972 24 15 25 25 18 12 26 20 Late June 18 June 1972 24 15 25 25 18 12 26 20 Late June 18 June 1970 28 18 13 3 24 8 20 June 1970 28 18 13 3 24 8 21 June 1972 40 27 24 15 21 7 37 23 21 June 1973 44 8 33 4 58 7 6 July 1969 20 20 23 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
13 13 13 14 15 25 25 18 12 26 20 Late June 18 June 1972 24 15 25 18 12 26 20 Late June 18 June 1972 28 18 13 3 24 8 30 June 1971 14 7 8 6 13 5 19 14 26 June 1972 40 27 24 15 21 7 37 23 21 June 1973 44 8 33 4 58 7 6 July 1969 20 20 23 23 15 7 10 20 13 July 1970 37 13 30 22 9 24 15 26 July 1970 35 28 29 20 20 7 38 12 27 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Late June 18 June 1969 21 22 June 1970 28 18 13 3 24 8 30 June 1971 14 7 8 6 13 5 19 14 26 June 1972 40 27 24 15 21 7 37 23 21 June 1973 44 8 33 4 58 7 6 July 1969 20 20 23 8 July 1970 37 19 15 9 21 12 30 20 13 July 1971 11 7 13 6 24 7 15 7 10 July 1972 33 23 45 30 22 9 24 15 26 July 1970 35 28 29 20 20 7 38						-			 >E	10
18 June 1969 21 13 3 24 8 30 June 1971 14 7 8 6 13 5 19 14 26 June 1972 40 27 24 15 21 7 37 23 21 June 1973 44 8 33 4 58 7 24 1970 37 19 15 9 21 12 30 20 13 July 1969 20 20 23 <	25	12	12	2 25	6 2	20	34	5	35	15
22 June 1970 28 18 13 3 24 8 30 June 1971 14 7 8 6 13 5 19 14 26 June 1972 40 27 24 15 21 7 37 23 21 June 1973 44 8 33 4 58 7 21 June 1973 44 8 33 4 58 7 21 June 1973 44 8 33 4 58 7 22 July 1969 20 20 23	e	June	Jun	une						
30 June 1971 14 7 8 6 13 5 19 14 26 June 1972 40 27 24 15 21 7 37 23 21 June 1973 44 8 33 4 58 7 Early July 6 July 1969 20 20 23 <				* •••						
26 June 1972 40 27 24 15 21 7 37 23 21 June 1973 44 8 33 4 58 7 21 June 1973 44 8 33 4 58 7 21 June 1973 44 8 33 4 58 7 21 June 1973 44 8 33 4 58 7 8 July 1970 37 19 15 9 21 12 30 20 13 July 1971 11 7 13 6 24 7 15 7 10 July 1970 35 28 29 20 20 7 38 12 27 July 1971 19 17 16 11 6 14 12 24 July 1972 49 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>24</td> <td>15</td> <td>24</td> <td>14</td>						-	24	15	24	14
21 June 1973 44 8 33 4 58 7 Early July 6 July 1969 20 20 23										
Early July $Early July$ $6 July 1969 20 20 23$							47 	27	37	15
	50	4	4	4 50	0	1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ly	y Jul	y Ju	July	,					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				+		• •				
10 July 1972 33 23 45 30 22 9 24 15 Late July 20 July 1969 8 15 8 10 10 10 11 17 10 11 10 12							26	10	21	7
Late July 20 July 1969 8 15 8								* -		
20 July 1969 8 15 8 10 10 10 10 11 7 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 12 14 11 10 12 10 11 11 11 10 11 11 11 11 11 11 11 11 11 11 11	24	9	9	9 24	4 1	15	56	27	32	17
26 July 1970 35 28 29 20 20 7 38 12 27 July 1971 19 17 17 16 11 6 14 12 24 July 1972 49 28 61 26 24 8 35 21 15 July 1973 10 11 77 16 47 7 70 7 3 Aug. 1970 29 7 43 35 22 14 25 15 9 Aug. 1970 29 7 43 35 22 14 25 15 9 Aug. 1971 13 10 9 7 7 11 10 12 7 Aug. 1972 51 38 71 43 17 8 28 21 Late August Late August 28 Aug. 1969 6 12 10 <	y	Juli	Jul	uly				-		
26 July 1970 35 28 29 20 20 7 38 12 27 July 1971 19 17 17 16 11 6 14 12 24 July 1972 49 28 61 26 24 8 35 21 15 July 1973 10 11 77 16 47 7 70 7 3 Aug. 1970 29 7 43 35 22 14 25 15 9 Aug. 1970 29 7 43 35 22 14 25 15 9 Aug. 1971 13 10 9 7 7 11 10 12 7 Aug. 1972 51 38 71 43 17 8 28 21 Late August 28 Aug. 1969 6 12 10 12 17 Aug. 1970 25 18 8 3 1										
24 July 1972 49 28 61 26 24 8 35 21 15 July 1973 10 11 77 16 47 7 70 7 Early August 7 Aug. 1969 12 12 4 10 10							20	12	18	9
15 July 1973 10 11 77 16 47 7 70 7 Early August 7 Aug. 1969 12 12 4 13 3 Aug. 1970 29 7 43 35 22 14 25 15 9 Aug. 1970 29 7 43 35 22 14 25 15 9 Aug. 1970 29 7 43 35 22 14 25 15 9 Aug. 1971 13 10 9 7 7 11 10 12 7 Aug. 1972 51 38 71 43 17 8 28 21 Late August Z8 Aug. 1969 6 12 10 14 12 9 5 24 Aug. 1970 25 18 8 3 15 9										
Early August 7 Aug. 1969 12 12 4 3 Aug. 1970 29 7 43 35 22 14 25 15 9 Aug. 1971 13 10 9 7 7 11 10 12 7 Aug. 1972 51 38 71 43 17 8 28 21 Late August 28 Aug. 1969 6 12 10 17 Aug. 1970 25 18 8 3 15 9 17 12 24 Aug. 1971 9 7 4 3 12 12 9 5 21 Aug. 1972 32 31 26 24 14 11 13 10 21 Aug. 1973 33 4 45 12 30 4 40 5							31	13	35	27
7 Aug. 1969 12 12 4	/0	/	/	/ /0	0	1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	gu81	у Ац	y Aı	Аидив	st					
9 Aug. 1971 13 10 9 7 7 11 10 12 7 Aug. 1972 51 38 71 43 17 8 28 21 Late August 28 Aug. 1969 6 12 10 17 Aug. 1970 25 18 8 3 15 9 17 12 24 Aug. 1971 9 7 4 3 12 12 9 5 21 Aug. 1972 32 31 26 24 14 11 13 10 21 Aug. 1973 33 4 45 12 30 4 40 5										
7 Aug. 1972 51 38 71 43 17 8 28 21 Late August 28 Aug. 1969 6 12 10 17 Aug. 1970 25 18 8 3 15 9 17 12 24 Aug. 1971 9 7 4 3 12 12 9 5 21 Aug. 1972 32 31 26 24 14 11 13 10 21 Aug. 1973 33 4 45 12 30 4 40 5							20	11	16	10
Late August 28 Aug. 1969 6 12 10 17 Aug. 1970 25 18 8 3 15 9 17 12 24 Aug. 1971 9 7 4 3 12 12 9 5 21 Aug. 1972 32 31 26 24 14 11 13 10 21 Aug. 1973 33 4 45 12 30 4 40 5										
28 Aug. 1969 6 12 10 1- 17 Aug. 1970 25 18 8 3 15 9 17 12 24 Aug. 1971 9 7 4 3 12 12 9 5 21 Aug. 1972 32 31 26 24 14 11 13 10 21 Aug. 1973 33 4 45 12 30 4 40 5	28	8	8	8 28	82	21	24	8	23	14
17 Aug. 1970 25 18 8 3 15 9 17 12 24 Aug. 1971 9 7 4 3 12 12 9 5 21 Aug. 1972 32 31 26 24 14 11 13 10 21 Aug. 1973 33 4 45 12 30 4 40 5	ust	Augr	Aug	ugust	t					
24 Aug. 1971 9 7 4 3 12 12 9 5 21 Aug. 1972 32 31 26 24 14 11 13 10 21 Aug. 1973 33 4 45 12 30 4 40 5						-				
24 Aug. 1971 9 7 4 3 12 12 9 5 21 Aug. 1972 32 31 26 24 14 11 13 10 21 Aug. 1973 33 4 45 12 30 4 40 5						2	6	4	14	17
21 Aug. 1973 33 4 45 12 30 4 40 5	9	12	12	29	9	5				
							20	9	17	14
BUT VI DED LEMDER										
	, . Cill	, neb	9 08	nop con	saver					
Sont 1070 1/ 1/ 10	 2					-	 11	7	 1	

ŧ

Appendix Table 20.	Standing crops (g/m ²) of various herb categories, Bridger Site, 25 May 1969. Total live material at that time was 45.61 g/m ² .
--------------------	---

,

Graminoids	Biomass (g/m²)	Forbs	Biomass (g/m ²)
Agropyron subsecundum	1.39	Achillea millefolium	0.78
Carex spp.		Agoseris spp.	1.18
Canthonia intermedia	0.12	Arenaria congesta	0.71
Festuca idahoensis	26.78	Cerastium arvensis	1.80
Koeleria cristata	0.73	Erigeron speciosus	2.01
liscellaneous grasses	0.76	Galium boreale	0.10
Total grasses	10.24	Lupinus argenteus	1.24
		Miscellaneous forbs	7.55
		Total forbs	15.37

-59-

Appendix Table 21. Standing crop (g/m^2) of *Stipa richardsonii* at the Bridger Site on 15 June, 9 August, and 24 August 1971. The mean (X) and standard error (SE) are given.

		Treatment											
Date	4-ft	site	8-ft	site	Ungrazednormal snow								
		1	2		<u>-</u>	1	2						
	x	SE	x	SE	x	SE	x	SE					
15 June 1971					1	2	1	1					
9 August 1971	4	6	4	5	7	6	3	4					
24 August 1971	2	6	1	2	3	4	9	7					

1

Appendix Table 22. Quantities of fungi (meters of hyphae/g dry soil) and bacteria (millions/g dry soil) in an alpine grassland dominated by *Bromus*, *Poa*, and *Elymus* on Mt. Allen, Alberta. Unpublished data of Bissett and Parkinson, University of Calgary, Alberta, Canada.

Depth	Fungi		Bacteria	
	May	2 June	17 July	4 September
0-2 cm	580	98	41	56
5-8 cm	224	37	38	29
15-18 cm	190	33	21	20

ł.

. .		Grazed		Ungrazed						
Depth	Plant Feeding	Predaceous	Saprophytes	Plant Feeding	Predaceous	Saprophytes				
0~5	757,400	90,100	1,439,500	967,800	86,700	1,062,000				
5-10	617,600	103,900	667,000	873,600	94,400	979,000				
10-20	820,000	180,800	720,000	1,018,200	157,800	703,000				
20-30	427,200	116,800	572,000	897,200	130,800	497,000				
30-40	337,200	113,800	543,000	510,600	86,400	394,000				
40-50	213,800	74,200	384,000	364,800	74,200	378,000				
Total	3,173,200	679,600	4,325,500	4,632,200	630,300	4,013,000				

Appendix Table 23. Numbers of nematodes per m² at the Bridger Site on 2 October 1972. Unpublished data of J. Smolik, Plant Science Department, South Dakota State University, Brookings.

Order	Family	Genus and species	Namer
Coleoptera	Anthicidae	Anthicus sp.	
	Carabidae	Microlestes nigriuns	Mann
Hemiptera	Pentatomidae	Chlorochroa sp.	
Diptera	Chloropidae	Meromyza pratorum	Meigen
Hymenoptera	Formicidae	Myrmica americana?	
	Formicidae	Formica neogagates?	
	Formicidae	Tapinoma sissile	Say
	Formicidae	Formica obscuri	Forel
	Formicidae	Leptothorax rugulatus	Emery
	Formicidae	Solenopsis molesta	Say
	Formicidae	Lasius umbratus?	July
	Formicidae	Leptothorax tricarinatus	Emery
Homoptera	Cicadellidae	Athysanella bifide	Ball and Beamer
	Cicadellidae	Aceratagallia fuscoscripta	Oman
	Cicadellidae	Dikraneura carneola	(Stal)
	Cicadellidae	Endria inimica	(Say)
	Cicadellidae	Commellus sexvittatus	(Van Duzee)
	Cicadellidae	Cabrulus labeculus	(De Long)
	Cicadellidae	Empoasca decora?	(be cong)
	Cicadellidae	Auridius auratus?	
	Cicadellidae	Aphelonema rugosa	Ball
	Cicadellidae	Paraphlepsius lascivius	Ball
	Cicadellidae	Chlorolettin unicolor	Fitch
)rthoptera	Acrididae	Melanoplus oregonesis	Thomas
	Acrididae	Melanoplus bruneri	Scudder
	Acrididae	Melanoplus alpinus	Scudder
	Acrididae	Melanoplus dawsoni?	(Scudder)
	Acrididae	Camnula pellucida	Scudder

_

Appendix Table 24.	A list of insects ide	ntified to species at the Bridger
	Site in 1972.	· · · · · · · · · · · · · · · · · · ·

Order	Family	Genus and species	Code		Insects (No.)	Average weight (g	
Coleoptera	Curculionidae		0	317	15	0.0004	
Coleoptera	Chrysomelidae		Co		6		
Coleoptera	Anthicidae			133	9	0.000 <u>3</u> 0.0003	
Diptera	Tabanidae		Di	125	1	0.0197	
Hemiptera	Pentatomidae	Chlorochroa sp.	He	02	3	0.0450	
Hemiptera	Miridae	· · · ·	He		26	0.0012	
Hemiptera	Coreidae		He		18	0.0009	
Hemiptera	Coreidae		He		18	0.0009	
Hemiptera	Nabidae		He		6	0.0020	
Homoptera	Chermidae		Но	36	7	0.0004	
Homoptera	Cicadellidae	Aceratagallia fuscoscripta		148	16	0.0004	
Homoptera	Cicadellidae	Empoasca decora?	Ho		9	0.0004	
Homoptera	Cicadellidae	Dikraneura carneola	Ho		5 7	0.0004	
'ymenoptera	Formicidae	Myrmica americana?	Hy (30	14	0.0006	
ymenoptera	Formicidae	Formica neogagates?	Hy		12	0.0006 0.0003	
Lepidoptera	Cosmetperygidae		Le	56	11	0.0007	
Orthoptera	Locustidae	Melanoplus oregonensis	0r (ı.	0.0/0/	
Orthoptera	Locustidae	Melanoplus oregonensis	0r (<u>сь/</u>	4 5	0.0626 0.1216	

`ppendix Table 25. Average weights of important insect species in grams.

<u>a/</u>Male

<u>b</u>/Female

1

Sites	Years trapped	Grazing treatment	Location	Aspect	Slope	Altitude
1-1BP	1970, 1971 1972, 1973	Sheep	SE 1/4, Sec. 36, R. 7E, T. 1N	SE	2 deg	2340 m
2	1970, 1971	Sheep	NE 1/4, Sec. 75, R. 7E, T. 1N	E	8 deg	2250 m
3	1970, 1971	Cattle	NW 1/4, Sec. 8, R. 8E, T. 1S	NW	5 deg	2360 m
4	1971	Cattle	NE 1/4, Sec. 7, R. 8E, T. 1S	E	12 deg	2340 m
5-1BP	1970, 1972 1973	None	NE 1/4, Sec. 6, R. 8E, T. 1S	S	2-9 deg	2345 m

Appendix Table 26. Physical description of sites.

Grid	Date	Live trapping-10	Assessment lines-17	Snap trapping-11	Traps per station	Mound count
1	15-26 July 1970					
	12-17 June 1971	×		×	2	х
	4-9 July 1971	x			1	
	6-11 Aug 1971	x			1	
	31 Aug-5 Sept 1971	x			1	x
	5-9 July 1972	x			1	
	10-14 July 1972	^			2	
	1-5 Aug 1972		×		1	
	6-10 Aug 1972	x			2	
	16-20 Aug 1972		x		1	
	21-25 Aug 1972	x			2	-
	6-10 Aug 1973		x		1	
	- 10 hug 13/3	×			1	
2	14-14 July 1970				·	
-	10-15 Aug 1970	x			1	
	7-12 Seet 1070	x			1	
	7-12 Sept 1970	x			1	
	19-24 June 1971	x			1	
	10-15 July 1971	x			1	
	12-17 Aug 1971	×			1	
	6-11 Sept 1971	x			1	×
3	21-26 July 1970				•	
-	15-20 Aug 1970	x			1	
	13-18 Sept 1970	x			1	
	12-17 June 1971	×			1	
	12 17 June 1971	х			1	
	4-9 July 1971	x			1	
	6-11 Aug 1971	x			1	
	31 Aug-5 Sept 1971	×			1	
4	19-24 June 1971	N			·	
	10-15 July 1971	X			1	
	12-17 Aug 1971	×			1	
	6-11 Sept 1971	x			1	x
	17-28 July 1970	×			1	
	Sept 1970	×			2	x
_						x
5	12-16 July 1972	x			-	
	17-21 July 1972		×		2	
	6-10 Aug 1972	x	×		1	
	11-15 Aug 1972	~	~		2	
	21-25 Aug 1972	×	×		1	
	26-30 Aug 1972	^			2	
	6-10 Aug 1973	v	x		1	
		x			1	

•

Appendix Table 27. Bridger Site small mammal trapping dates: 1970-1973.

APPENDIX II

FIELD DATA

Aboveground Plant Biomass

The aboveground herbage data for the Bridger Site in 1970 are Grassland Biome data set A2U0003 and for 1972 are data set A2U00E3. The data are recorded on Form NREL-01; a data form and a sample listing of the 1972 data follow. GRASSLAND BIOME

U.S. INTERNATIONAL BIOLOGICAL PROGRAM

SITE	- I						1		T	-			_				MAS	5			
ТҮРЕ		AY)АТЕ мо.	YR.	EATMENT	CATE	PLOT SIZE	QUADRAT	CLIP -EST.	N H FM		GENIIO	SPECIES	SUBSPECIES	CATEGORY		WEIGHT	SACK NO.	DRY WEIGHT	PLOT SIZE	EIG
1-2 3-4 01	5-7 8-	-91	10-11	12-13	14	5 16	s-19	21-23	25	27	29	30	31-32	34	35	36	3-40	42-4		54-57	59-6
02Litter03Belowgr10Vertebra11Vertebra12Vertebra12Vertebra20Avian F21Avian R22Avian R23Avian C24Avian C25Avian C30Inverteb40Microbio41Microbio42Microbio43Microbio44Microbio51TEO101Ale02Bison03Bridger04Cottonw05Dickinsc06Hays07Hopland08Jornada09Osage10Pantex11PawneeTREATMENTIUngrazed2Lightly G3Moderate4Heavily G5Grazed I07ungraz6Grazed I	round Bio round Bio rate - Live ate - Snap ate - Collection Flush Cens Road Coun Collection Collection Collection Flogy - De Collection Flogy - Nit Collegy - Nit Collegy - Nit Collegy - Nit Collegy - Res Collegy	mass Tra p Tra cectio sus t Sur - Int - Ext - Plu compe	mmary point rernal terna umage positive en ss ecompation .IP-E Harv Est.f Est.f Est.f SowTh Pere Annu Bienn Perer Half- Shrut Tree	y I e on position STIMA rested rest and for Ins for Refu for Fut for Fut for Fut for Fut for Fut for Strub	TE ect erence ure Clip grass s, etc. o rb orb	P															

-69-+++ EXAMPLE OF DATA +++

		÷ .	•
1 2 3 1234567890123456789012345678901234567890	5	6	7
120 3010 0123 3010 20123 43010 90123 43010 90	1734201030153420	01830153	456789012
1 300C120672110.50 001 1 0 MIGR 1			
1 3DDC120672110.50 001 1 0 MIGR 1 1 3DDC120672110.50 001 1 6 CEAR 41	35.11		1
	00.48		1
1 3DDC120672110.50 001 1 1 FEID 3 1 3DDC120672110.50 001 1 6 ERSP 41	00.59		1
	01.30		1
1 300C120672110.50 001 1 1 AGSU 3 1 300C120672110.50 001 1 1 AGSU 1	05.40		1
1 3DDC120672110.50 001 1 0 MIOT 2	07.65		1
1 3DDC120672110.50 001 1 6 LUAR 31	25.26		1
1 3DDC120672110.50 001 1 0 MIFO 1	00.46 03.60		1
1 3DDC120672110.50 001 1 1 FEID 1	00.65		1
1 300C120672110.50 002 1 1 FEID 1	29.50		1
1 3DDC120672110.50 002 1 1 FEID 3	06.45		i l
1 30DC120672110.50 002 1 0 MIOT 2	01.26		1
1 3DDC120672110.50 002 1 6 CEAR 41	01.00		1
1 3DDC120672110.50 002 1 1 AGSU 1	12.06		1
1 3DDC120672110.50 002 1 1 AGSU 3	01.42		1
1 3DDC120672110.50 002 1 6 LUAR 31	01.03		1
1 3DDC120672110.50 002 1 6 ERSP 41	01.52		1
1 300C120672110.50 002 1 6 ACMI 21	00.60		1
1 3DDC120672110.50 002 1 6 ARCO 51	04.26		1
1 300C120672110.50 002 1 0 MIFO 1	08.99		î
1 30DC120672110.50 002 1 1 DAIN 1	02.65		i i
1 3DDC120672110.50 003 1 0 MIGR 1	03.58		ī
1 3DDC120672110.50 003 1 6 AGOS E1	00.16		ī
1 30DC120672110.50 003 1 0 MIOT 2	08.87		1
1 3DDC120672110.50 003 1 6 CEAR 41	01.12		ī
1 3DDC120672110.50 003 1 6 ACMI 21 1 3DDC120672110.50 003 1 6 EPSP 41	02.24		1
	01.22		1
1 3DDC120672110.50 003 1 6 ARCO 51 1 3DDC120672110.50 003 1 1 AGSU 3	00.10		1
	08.14		1
1 300C120672110.50 003 1 0 MIFO 1 1 30DC120672110.50 003 1 1 FEID 3	05.82		1
1 300C120672110.50 003 1 3 CARE X1	03.40		1
1 3 1 1 1 2 0 4 7 2 1 3 1 4 1 3 4 3 3 3 3 3 3 3 3 3 3	00.24		1
1 300C120672110.50 003 1 1 AGSU 1 1 300C120672110.50 003 1 1 FE1D 1	11.44		1
1 3DDC120672110.50 003 1 6 LUAR 31	06.40		1
1 30DC120672110.50 003 1 6 GABO 21	01.17 00.10		1
1 3DDC120672110.50 004 1 1 FEID 1	18.70		1
1 3DDC120672110.50 004 1 0 MIFO 1	11.90		1
1 3DDC120672110.50 004 1 3 CARE X1	00.50		1
1 3000120672110.50 004 1 6 AGUS F1	00.26		1
1 300C120672110.50 004 1 6 CEAR 41	04.46		1
1 3000120672110.50 004 1 1 AGSU 3	08.03		1 V
1 3DDC120672110.50 004 1 0 MIGR 1	03.16		1
1 3DDC120672110.50 004 1 1 FEID 3	06.60		T
1 300C120672110.50 004 1 6 ARCO 51	00.86		1
1 300C120672110.50 004 1 6 ACMI 21	01.23		1
1 30DC120672110.50 004 1 0 MIOT 2	03.88		1
1 30DC120672110.50 004 1 6 LUAR 31	00.51		1
1 3DDC120672110.50 004 1 6 ERSP 41	01.03		1
			•

- --

--

•

...

· ...,

							1
1	3000120672110.50	004	1	3	AGSU	J 1	10.43
-	30DC120672110.50		1		GABO		03.06
1			1	1			03.00
1	3000120672110.50	005	1	6	GABC) 21	00.63
1	3DDC120672110.50	005	1	6	ERSF	41	01.66
1			1	1		-	08.63
1							
			1	1			31.30
1			1	1	FEID		20.90
1	3000150675110+20	005	1	0	MIGF	2 1	01.50
1	300C120672110.50	005	1	1	AGSU) З	02.95
1			1				11.30
1			1	6			00.97
1			1	6	LUAF		00.70
1	- 3DDC120672110.50	005	1	6	ARCO	51	03.70
1	300C120672110.50	005	1	0	MIFC)]	07.70
1			1	Э			00.50
i			î	6			
							00.44
1			1	1	FEID		12,99
1	3000120672110.50	006	1	6	ERSP	41	01.44
1	300C120672110.50	006	1	1	AGSU	3	02.40
1			1	0			06.50
1			i				
				1		-	20.16
1			1		LUAR	-	00.30
1	300C120672110.50		1	1	AGSU	1	09.47
1	3DDC120672110.50	006	1	3	CARE	X1	00.50
1	3000120672110.50	006	1	6	ACMI	21	01.00
1	3000120672110.50		ī	6			00.35
i							
	3000120672110.50		1	0	MIOT		02.47
1	30DC120672110.50		1	6	ARCO		09.34
1	3000120672110.50		1	1	AGSU	3	08.40
1	3000120672110.50	007	1	1	FE1D	3	19.07
1	3DDC120672110.50		1	1	FEID		21.10
ī	3DDC120672110.50		i		AGSU	-	
1				1			10.12
	3DDC120672110.50				LUAR		01.01
1	3DDC120672110.50				CARE		00.25
1	3DDC120672110.50	007	1	0	MIFO	1	25.40
1	3DDC120672110.50	007	1	1	DAIN	1	00.80
1	3DDC120672110.50	007	1	6	ACMI	21	01.02
1	3DDC120672110.50	007		6	CEAR		
1	3DDC120672110.50						00.50
		007	1	6	AGOS		01.20
1	3DDC120672110.50			6	GABO		00.28
1	3DDC120672110.50	007	1	6	ERSP	41	01.22
1	3DDC120672110.50	007	1	6	ARCO	51	02.62
1	3DDC120672110.50	007	1	0	MIOT	2	12.12
1	3DDC120672110.50		-	ī	AGSU	3	
ī	3000120672110.50		-		FEID	3	10.40
							13.88
1	3DDC120672110.50				MIUT	2	05.57
1	3000120672110.50	008	1	0	MIFO	1	06.21
1	3DDC120672110.50	008	1	1	AGSU	1	23.35
1	3000120672110.50				CARE	xī	02.15
1	3DDC120672110.50				MIGR	1	
i	3DDC120672110.50						01.31
					ARCO	51	04.80
1	30DC120672110.50				ACMI	21	00.40
1	3000120672110.50	800	1	1	FEID	1	18.63
1	3000150645110*20	008	1 (GABO	21	00.10
1	3000120672110.50				AGSU	3	
ī	3DDC120672110.50						62.73
					ACMI	51	01.03
1	3DDC120672110.50				MIGR	1	03.80
1	3DDC120672110.50	009	1 (ERSP	41	02.00
1	3DDC120672110.50	009	1 (5	ARCO	51	00.20
						-	

· · · · · ·

	·						
1	3DDC120672110.50	009	1	0	MIFO	1	07.00
ī							00.43
-							
1					CARE		00.56
1	3DDC120672110.50	009	1	0	MIUT	2	
1	3DDC120672110.50	009	1	1	AGSU	1	25.10
i					FEID	-	06.70
1					FEID		
1	300C120672110.50	010	1	6	GABO	21	01.81
1	3DDC120672110.50	010	1	1	DAIN	1	01.20
1					FEID		
-							
1			1		MIOT		
1	3DDC120672110.50	010	1	6	ARCO	51	11.05
1	3DDC120672110.50	010	1	1	AGSU	3	08.86
1					FEID		25.57
			î				02.20
1							
1					LUAR		00.85
1	3DDC120672110.50	010	1	6	ACMI	21	00.30
1	3DDC120672110.50	010	1	1	AGSU	1	10.10
1					ERSP		01.53
_							
1			1	-	-		08.08
1	3DDC120672120.50	001	1	6	LUAR	- 31	11.89
1	3DDC120672120.50	001	1	1	AGSU	1	20.34
1	3000120672120.50	001	1	3	CARE	X 1	03.39
î	3000120672120.50				DAIN		00.19
-							
1	3DDC120672120.50				AGSU		
1	3000120672120.50	001	1	0	MIGR	1	01.28
1	3DDC120672120.50	001	1	6	ERSP	41	Ul.64
ī	3DDC120672120.50				MIOT	2	11.55
1	3000120672120.50					1	13.71
1	3000120672120.50	001	1	0	MIFO	1	13.53
1	3DDC120672120.50	001	1	1	FEID	- 3	12.52
1	3000120672120.50	001	1	6	ACMI	21	01.37
ī	3DDC120672120.50						04.18
1	3DDC120672120.50					1	00.15
1	3DDC120672120.50	002	1	1	FEID	3	18.40
1	3DDC120672120.50	200	1	0	MIGR	3	04.55
1	3000120672120.50	002	1	ł	AGSU	3	04.43
1	3000120672120.50					ĩ	02.29
1	3DDC120672120.50					1	23.24
1	3DDC120672120.50					1	00.27
1	3000120672120.50	200	1	6	ARCO	51	03.92
1	3000120672120.50	002	1	6	LUAR	31	10.04
ī	3DDC120672120.50					1	17.25
_							
1	300C120672120.50						01.87
1	3000120672120.50				AGSU	1	12•51
1	3DDC120672120.50	200	1	6	ERSP	41	01.36
1	3DDC120672120.50	200	1	6	ACMI	21	00.39
1	3DDC120672120.50					3	08.10
1	3000120672120.50					2	05.14
1	3000120672120.50					1	18.36
1	3DDC120672120.50	003	1	6	LUAR	31	00.89
1	3000120672120.50						02.39
î	3DDC120672120.50					3	
							12.50
1	3DDC120672120.50						03.19
1	3000120672120.50						01.14
1	3DDC120672120.50	003	1	6	ERSP	41	02.68
1	3DDC120672120.50					ī	09.37
i	3DDC120672120.50						
-						1	13.82
1	3DDC120672120.50						00.61
1	3DDC120672120.50	003	1	6	CEAR	41	01.46
	· · · · · · · · · · · · · · · · · · ·						

1 1

1

- --

. .-

. . .

1	3000120672120.50	003 1	0 MIGR	1	00.61	1
ī				ī	29.00	ī
-	-					-
1			0 MIFO	1	06.63	1
1	· · · · · · · · · · · · · · · · · · ·		0 MIGR	1	00.44	1
1	3000120672120.50	004 1	6 AGOS	E1	02.82	1
1	3DDC120672120.50	004 1	6 ARCO	51	02.62	1
ī				3	13.93	-
-						1
1			=	3	03.70	1
1	3DDC120672120.50	004 1	1 AGSU	1	15.78	1
1	3000120672120.50	004 1	0 MIOT	5	08.91	1
1	3DDC120672120.50	004 1	3 CARE	X1	00.23	1
1			6 CEAR		00.54	-
-						1
1			6 ACMI		00.98	1
1	3DDC120672120.50	004 1	6 LUAR	31	05.85	1
1	3DDC120672120.50	004 1	1 DAIN	1	00.41	1
1	3000120672120.50	004 1	1 FEID	1	14.52	1
ī			6 GABO		04.99	ī
1			6 ERSP		01.17	1
1			0 MIFO	1	38,97	1
1	3000120672120.50	005 1	1 FEID	3	12.50	1
1	3DDC120672120.50	005 1	6 ARCO	51	04.01	1
l	3000120672120.50		6 LUAR	31	06.06	1
1	3DDC120672120.50		6 AGOS		03.69	i
-						
1	3000120672120.50		6 ACMI	21	00.59	1
1	3DDC120672120.50		1 AGSU	1	06.92	1
1	3000120672120.50	005 1	0 MIOT	2	04.25	1
1	3DDC120672120.50	005 1	6 CEAR	41	00.36	1
1	3000120672120.50		1 AGSU	3	05.95	1
ī	3DDC120672120.50			ĩ	25.06	
1						1
1	3000120672120.50		1 AGSU	3	04.93	1
1	3DDC120672120.50		6 ACMI	21	00.63	1
1	3DDC120672120.50	006 1	6 LUAR	31	04.82	1
1	3000120672120.50	006 1	1 AGSU	1	08.37	1
1	3000120672120.50		6 ARCO		00.44	1
ī	300C120672120.50			1	09.97	
-						1
1	3000120672120.50			3	13.45	1
1	3000120672120.50		-	1	00.13	1
1	3000120672120.50			1	18.66	1
1	3000120672120.50	006 1	6 GAHO	21	01.95	1
1	3000120672120.50	006 1	3 CARE	X 1	00.92	ī
1	3DDC120672120.50				00.33	î
ĩ	3000120672120.50					1
-					00.37	1
1	3DUC120672120.50			S	10.78	1
1	3000120672120.50				02.44	1
1	3000150625150*20		6 ACMI	21	00.87	1
1	3000120672120.50	007 1	1 DAIN	1	00.11	1
1	3DDC120672120.50	007 1	6 CEAR	41	00.10	Ť
1	3DDC120672120.50		1 FEID	ī	08.54	î
ī	3DDC120672120.50		1 AGSU			1
_				1	08.39	1
1	3DDC120672120.50		1 AGSU	3	03.97	1
1	3DDC120672120.50		1 FEID	3	04.45	1
1	3DDC150645150*20			1	00.95	1
ł	3000150625150*20	007 1	6 AGUS	£.1	01.45	1
1	3000120672120.50				00.32	1
1	3000120672120.50			1		, T
i					14.97	1
	3000120672120.50			_	01.60	1
1	3000120672120.50			1	02.75	1
1	3DDC120672120.50			51	00.84	1
1	3DDC120672120.50			1	07.12	ī
1	3000120672120.50				09.39	î
-	······································	• • •				1
					·	

```
04/11/74 +CSU SCOPE 3.3 B
                                 C012 C013 C140 C141 02/08/74
14.50.11.TA601ZU
                  FROM AB
                                   54
14.50.11.TA601.AFZR####.T20.MT1.CVB/TR.
14.50.11.FTN.
14.50.20.
               .300 CP SECONDS COMPILATION TIME
14.50.20.REWIND (OUTPUT)
14.50.21.MAP(OFF)
14.50.21.PFL(10000)
14.50.21.FL= 010000 CP 00000.310SEC. IO 00002.200SEC.
14.50.21.REQUEST, TAPE1, HY, VSN=D0918, READ.
14.50.40. OP-JRS
14.50.42. (23 ASSIGNED)
14.50.47.REWIND(TAPE1)
14.50.47.SKIPF(TAPE1.1.17.C)
14.50.54.RFL(30000)
14.50.54.FL= 030000 CP 00000.3135EC.
                                       IO 00005.7085EC.
14.50.54.LGO.
14.51.01.FL= 014500 CP 00000.587SEC. IO 00006.353SEC.
14.51.03.STOP
14.51.03.RFL(10000)
14.51.03.FL= 010000 CP 00001.732SEC. IO 00007.150SEC.
14.51.03.REWIND (TAPE1.TAPE6)
14.51.05.COPYSBF (TAPE6)
14.51.05.FL= 000300 CP 00001.814SEC. IO 00007.532SEC.
14.51.05.FL= 010000 CP 00001.815SEC.
                                     IO 00007.532SEC.
14.51.06.CP
                 1.815 SEC.
14.51.06.10
                 7.532 SEC.
```

Belowground Plant Biomass

The belowground biomass were collected at the Bridger Site on Form NREL-03 for 1972. These data have the Grassland Biome designation of A2U0023. Examples of the data form and data follow.

..__

-75-

IBP ⊕

GRASSLAND BIOME U.S. INTERNATIONAL BIOLOGICAL PROGRAM

FIELD DATA SHEET - BELOWGROUND BIOMASS

CROWN

DRY

WT.

63-68

ASH

WT.

56-61

								DAT	A 30C			UTGP	OUNI	D BIO	MASS	
DATA TYPE	SITE	INITIALS	ļ			TREATMENT	REPLICATE	PLOT SIZE	QUADRAT	CORE DIAM.	HORIZON	TOP DEPTH	BOTTOM DEP.	LENGTH	WASH WT.	
1-2	3-4		Day	·	Yr						<u> </u>	<u> </u>	-			
1-2	3-4	5-7	8-9	10-11	12-13	14	15	16-19	21-23	25-27	29	31-33	35-37	39-41	43-47	49-54
				l	I											
	АТА 1 Ана	FYPE ovegrou	nd Bi													
02	Lit	ter														
03	i Bel Ver	owgrou tebrate	nd Bio	omass o Tra						1	<u>† </u>					+
11	Ver	tebrate	- Sna	p Traj	pping					<u> </u>	+					
12		tebrate			n					<u> </u>						- <u> </u>
20		an Flus an Road						ł	· · · · · · · · · · · · · · · · · · ·		┢╌┥					
22	Avi	an Road	d Cour	nt Sum	ımary			ł		ļ						
23	Aví Avi	an Coll an Coll	ection	i - Inti	ernal											
25		an Coll						ļ								
30		ertebrat			•											
40	Mic	robiolog	gy - D	ecomp	ositio	n										T
41	Mic	robiolog robiolog	zy - Ni zy - Bi	itroge iomas	n s			ſ		<u> </u>						<u> </u>
43	Mic	robiolog	;y - Re	oot De	ecomp	osit	ion	F								
44	Mici	robiolog	zy - Ro	espira	tion			┣							<u> </u>	
SIT								ŀ			-					<u> </u>
01	Ale Bisc	50						ŀ								ļ
03	Brid	ger						┝								
04 05		onwood cinson														
06	Hay	s														
07 08	Hop Jorn	land ada														
09	Osa														************************	
10	Pant Paw							Γ		†	-+		·			
	i aw	nee											+			
	EATM	ENT azed						h-								
2		tly graz	red					-				—+				
3 4	Mode	erately ;	grazed	1				- -								
5	Graz	vily gra: ed <mark>196</mark> 9	zea), ungi	razed	1970			-			_					
6 7			U													
8																
9								L								
нон	RIZON	,								T	T				f	
t	AO							Γ		-						
2 3	A B							-								
4	В С										-†-					

FIELD DATA	
-----------------------	--

					Ald			
1	2	3		4		5	6	7
123456789012349	56789012345676	390123	4567	8001	2345270	00100/6		
			+307	0301	2343070	9012345	0184015	3456789012345
02021 400117011								
0303TLH08117211 0303TLH08117211	0.50 001 2.5	00			3.0	•67	•47	
0303TLH08117211	0.50 001 2.5	10			3.0	•16	-10	
0303TLH08117211	0.50 001 2.5	20 30		-	3.0	•13	• 05	
0303TLH08117211	0.50 001 2.5	40	-		3.0 3.0	•05	• 0 4	
0303TLH08117211	0.50 002 2.5	00	10		3.0	•06 •23	•04 •14	
03031LH08117211	0.50 002 2.5	10	20		3.0	•23	•17	
0303TLH08117211	0.50 002 2.5	20	30		3.0	•06	•04	
0303TLH08117211 0303TLH08117211	0.50 002 2.5	30	40		3.0	•07	•04	
0303TLH08117211		40 00	50		3.0	•05	•02	
03031LH08117211	0.50 003 2.5	10	10 20	10 10	3.0	•53	•28	
03031LH08117211	0.50 003 2.5	20	30	10	3.0 3.0	.37 .10	•10	
0303TLH08117211	0.50 003 2.5	30	40	10	3.0	•10	•04 •02	
0303TLH08117211	0.50 003 2.5	40	50	10	3.0	•05	•03	
0303TLH08117211	0.50 004 2.5	00	10	10	3.0	1.31	.72	
0303TLH08117211 0303TLH08117211	0.50 004 2.5	10	20	10	3.0	•50	•06	
0303TLH08117211	0.50 004 2.5	20 30	30 40	10	3.0	.08	•05	
0303TLH08117211	0.50 004 2.5	40	40 50	10 10	3.0	•07	•04	
0303TLH081172110	0.50 005 2.5	00	10	10	3.0 3.0	.04 1.18	•02 •67	
0303TLH081172110	0.50 005 2.5	10	20	10	3.0	.06	•04	
0303TLH081172110	0.50 005 2.5	20	30	10	3.0	.12	•05	
0303TLH081172110 0303TLH081172110	0.50 005 2.5	30	40	10	3.0	•18	.06	
0303TLH08117211(1.50 005 2.5	40	50	10	3.0	•14	• 07	
0303TLH08117211().50 006 2.5	00 10	10	10	3.0	•87	•57	
U3031LH081172110	0.50 006 2.5	20	20 30	10 10	3.0	•22	•13	
0303TLH081172110	1.50 006 2.5	30	40	10	3.0 3.0	•08 •03	•04	
0303TLH081172110	.50 006 2.5	40	50	10	3.0	•03 •03	•02 •02	
0303TLH081172110	.50 007 2.5	00	10	10	3.0	•88	•56	
0303TLH081172110 0303TLH081172110	+50 007 2.5	10	20	10	Э.О	•34	•13	
0303TLH081172110		20 30	30	10	3.0	•11	•05	
U3031LH081172110	.50 007 2.5	40	40 50	10	3.0	•03	•02	
03031LH081172110	.50 008 2.5	00	10	$\frac{10}{10}$	3.0 3.0	•37 1•76	•06	
03031LH081172110	.50 008 2.5	10	20	10	3.0	•15	1.43 .09	
0303TLH081172110	.50 008 2.5	20	30	10	3.0	.09	•04	
0303TLH081172110 0303TLH081172110	•50 008 2•5	30	40	10	3.0	.02	.00	
0303TLH081172110	• 50 008 2.5	40	50	10	3.0	•05	•02	
0303TLH081172110	.50 009 2.5	20 20	10 30	10	3.0	1.57	•84	
03031LH081172110.	.50 009 2.5		40	10 10	3.0 3.0	•10	•06	
0303TLH081172110	.50 009 2.5		50	10	3.0	•05 •06	• 04	
03031LH081172110	50 010 2.5			10	3.0	•45	•06 •32	
0303TLH081172110	50 010 2.5		20	10	3.0	.35	•16	
0303TLH081172110 0303TLH081172110	,50 010 2.5 .50 010 2 €			10	3.0	.07	• 0 4	
03031LH081172110.	50 010 2.5			10	3.0	•03	•03	
03031LH081172120.	50 001 2.5			10 10	3.0	•05	•03	
- 03031CH081172120.	50 001 2 5			10	3.0 3.0	.60 .31	•44	
03031LH081172120.	50 001 2.5			10	3.0	• 0 9	•11 •04	
0303TLH081172120.	50 001 2.5	30 4		10	3.0	-08	•05	

- -- -- _

0303TLH081172120.50 001 2.5	40	50	10	3.0	.05	•04
0303TLH081172120.50 002 2.5	00	10		3.0	.73	•42
0303TLH081172120.50 002 2.5	10		_	3.0	•36	•13
0303TLH081172120.50 002 2.5	20			3.0	.12	• 05
0303TLH081172120.50 002 2.5	30		-	3.0	.03	•03
0303TLH081172120.50 002 2.5	40			3.0	.03	
0303TLH081172120.50 003 2.5	00	10		3.0		•02
0303TLH081172120.50 003 2.5	10	20			•92	•53
0303TLH081172120.50 003 2.5	20		-	3.0	•34	•12
0303TLH081172120.50 003 2.5		30	10	3.0	•18	•08
	30	40	10	3.0	60.	•04
	40	50	10	3.0	.02	•02
	00	10	10	3.0	•77	•49
	10	20	10	3.0	•58	•09
0303TLH081172120.50 004 2.5	20	30	10	3.0	•07	•04
0303TLH081172120.50 004 2.5	30	40	10	3.0	.03	•02
0303TLH081172120.50 004 2.5	40	50	10	3.0	.05	•02
0303TLH081172120.50 005 2.5	00	10	10	3.0	•35	•21
0303TLH081172120.50 005 2.5	10	20	10	3.0	•11	• 05
0303TLH081172120.50 005 2.5	20	30	10	3.0	.08	• 0 4
0303TLH081172120.50 005 2.5	30	40	10	3.0	.01	.01
0303TLH081172120.50 005 2.5	40	50	10	3.0	.01	•01
0303TLH081172120.50 006 2.5	00	10	10	3.0	.71	•40
0303TLH081172120.50 006 2.5	10	20	10	3.0	.50	•24
0303TLH081172120.50 006 2.5	20	30	10	3.0	.08	•04
0303TLH081172120.50 006 2.5	30	40	10	3.0	.09	•04
0303TLH081172120.50 006 2.5	40	50	10	3.0	•04	
0303TLH081172120.50 007 2.5	00	10	10	3.0	•04	•03
0303TLH081172120.50 007 2.5	10	20	10	3.0		•31
0303TLH081172120.50 007 2.5	20	30	10		.25	•14
0303TLH081172120.50 007 2.5	30	40		3.0	.07	•00
0303TLH081172120.50 007 2.5	40		10	3.0	•03	•04
0303TLH081172120.50 008 2.5		50	10	3.0	• 05	•03
	00	10	10	3.0	•42	•31
	10	20	10	3.0	•06	•04
	20	30	10	3.0	• 0 4	•03
	30	40	10	3.0	•03	•03
	40	50	10	3.0	•03	•02
	00	10	10	3.0	•68	•52
	10	20	10	3.0	•05	•05
	20	30	10	3.0	•02	•02
	30	40	10	3.0	-02	•02
A T A T F I I A A A A A A A A A A A A A A A A A	40	50	10	3.0	•02	.02
03031LH081172120.50 010 2.5	00	10	10	3.0	•52	•43
0303TLH081172120.50 010 2.5	10	20	10	3.0	•08	•07
0303TLH081172120.50 010 2.5	20	30	10	3.0	•07	•06
0303TLH081172120.50 010 2.5	30	40	10	3.0	.03	•03
0303TLH081172120.50 010 2.5	40	50	10	3.0	.01	•01
0303TLH081172510.50 001 2.5	00	10	10	3.0	.70	.50
0303TLH081172510.50 001 2.5	10	20	10	3.0	•09	.07
0303TLH081172510.50 001 2.5	20	30	10	3.0	.01	.01
0303TLH081172510.50 001 2.5	30	40	10	3.0	.00	•00
0303TLH081172510.50 001 2.5	40	50	10	3.0	.01	.01
0303TLH081172510.50 002 2.5	00	10	10	3.0	•55	• 30
0303TLH081172510.50 002 2.5	10	20	10	3.0	•34	•24
0303TLH081172510.50 002 2.5	20	30	10	3.0	.08	•03
0303TLH081172510.50 002 2.5	30	40	10	3.0	.02	•01
0303TLH081172510.50 002 2.5	40	50	10	3.0	.01	•00
0303TLH081172510.50 003 2.5	00	10	10	3.0	.85	•61
0303TLH081172510.50 003 2.5	10	20	10	3.0	•22	•15
0303TLH081172510.50 003 2.5	20	30	10	3.0	•22	•15
			- *	~ • • •	• 1 4	•00 .

--

0303TLH081172510.50 003 2.5	30	40	10	3.0	•03	•02
0303TLH081172510.50 003 2.5	40	50	10	3.0	.02	.00
0303TLH081172510.50 004 2.5	00	10	10	3.0	.86	•54
0303TLH081172510.50 004 2.5	10	20	10	3.0	•06	.03
0303TLH081172510.50 004 2.5	20	30	10	3.0	.06	•04
0303TLH081172510.50 004 2.5	30	40	10	3.0	•04	•01
0303TLH081172510.50 004 2.5	40	50	10	3.0	•02	•00
0303TLH081172510.50 005 2.5	00	10	10	3.0	1.10	•69
0303TLH081172510.50 005 2.5	10	20	10	3.0	•21	.08
0303TLH081172510.50 005 2.5	50	30	10	3.0	•09	•04
0303TLH081172510.50 005 2.5	30	40	10	3.0	•04	•03
0303TLH081172510.50 005 2.5	40	50	10	3.0	•02	.01
0303TLH081172510.50 006 2.5	00	10	10	3.0	1.31	•73
0303TLH081172510.50 006 2.5	10	20	10	3.0	•23	•11
0303TLH081172510.50 006 2.5	20	30	10	3.0	•06	.02
0303TLH081172510.50 006 2.5	30	40	10	3.0	•05	•01
0303TLH081172510.50 006 2.5	40	50	10	3.0	.07	•02
0303TLH081172510.50 007 2.5	00	10	10	3.0	•88	•56
0303TLH081172510.50 007 2.5	10	20	10	3.0	•11	•04
0303TLH081172510.50 007 2.5	20	30	10	3.0	•06	.03
0303TLH081172510.50 007 2.5	30	40	10	3.0	•01	•00
0303TLH081172510.50 007 2.5	40	50	10	3.0	•04	•01
0303TLH081172510.50 008 2.5	00	10	10	3.0	•99	•61
0303TLH081172510.50 008 2.5	10	20	10	3.0	+18	•09
0303TLH081172510.50 008 2.5	20	30	10	3.0	•09	• 0.3
0303TLH081172510.50 008 2.5	30	40	10	3.0	•06	•03
0303TLH081172510.50 008 2.5	40	50	10	3.0	•03	•01
0303TLH081172510.50 009 2.5	00	10	10	3.0	.77	•55
0303TLH081172510.50 009 2.5	10	20	10	3.0	•11	• 05
0303TLH081172510.50 009 2.5	20	30	10	3.0	.07	•04
0303TLH081172510.50 009 2.5	30	40	10	3.0	•04	•03
0303TLH081172510.50 009 2.5	40	50	10	3.0	•02	•01
0303TLH081172510.50 010 2.5	00	10	10	3.0	•40	•50
0303TLH081172510.50 010 2.5 0303TLH081172510.50 010 2.5	10	20	10	3.0	.29	•13
	20	30	10	3.0	.08	•05
	30	40	10	3.0	•03	•02
	40	50	10	3.0	-02	•02
0303TLH081172520.50 001 2.5 0303TLH081172520.50 001 2.5	00	10	10	3.0	.83	•52
	10	20	10	3.0	•27	+15
0303TLH081172520.50 001 2.5 0303TLH081172520.50 001 2.5	20	30	10	3.0	.03	•03
03037LH081172520.50 002 2.5	30	40	10	3.0	•03	•03
0303TLH081172520.50 002 2.5	00 10	10 20	10 10	3.0	•63	•40
0303TLH081172520.50 002 2.5	20	30	10	3.0	•19	•10
0303TLH081172520.50 002 2.5	30	40	10	3.0 3.0	•15	•08
0303TLH081172520.50 003 2.5	00	10	10	3.0	•05	•02
0303TLH081172520.50 003 2.5	10	20	10	3.0	•38	•22
0303TLH081172520.50 003 2.5	20	30	10	3.0	•18 •14	•10
0303TLH081172520.50 003 2.5	30	40	10	3.0	•14	•09
0303TLH081172520.50 004 2.5	00	10	10	3.0	•08	•06 •43
0303TLH081172520.50 004 2.5	10	20	10	3.0	•17	•43
0303TLH081172520.50 004 2.5	20	30	10	3.0	.15	•09
0303TLH081172520.50 004 2.5	30	40	10	3.0	.10	•07
0303TLH081172520.50 004 2.5	40	50	10	3.0	•05	•02
0303TLH081172520.50 005 2.5	00	10	10	3.0	•73	•48
0303TLH081172520.50 005 2.5	10	20	10	3.0	•11	• 05
0303TLH081172520.50 005 2.5	20	30	10	3.0	.07	.03
0303TLH081172520.50 005 2.5	30	40	10	3.0	•04	.02
0303TLH081172520.50 005 2.5	40	50	10	3.0	.06	.03

.

. ____

--

0303TLH081172520.50	006	2.5	00	10	10	3.0	1.41	.88
0303TLH081172520,50	006	2.5	10	20	10	3.0	.18	
0303TLH081172520.50	006	2.5	20	30	10	3.0	•10	•09
0303TLH081172520.50	006	2.5	30	40	10		- • -	•02
0303TLH081172520.50		2.5	40	50		3.0	• 05	• 05
0303TLH081172520.50		2.5			10	3.0	• 05	•02
0303TLH081172520.50			00	10	10	3.0	•27	•21
0303TLH081172520.50	007	2.5	10	20	10	3.0	•06	•04
030371 H081172520.50	007	2.5	20	30	10	3.0	•02	•02
0303TLH081172520.50		2.5	00	10	10	3.0	.90	•60
0303TLH081172520.50		2.5	10	20	10	3.0	.31	•11
0303TLH081172520.50		2.5	20	30	10	3.0	.09	•08
0303TLH081172520.50	008	2.5	30	40	10	3.0	.05	•04
0303TLH081172520.50	008	2.5	40	50	10	3.0	.02	•02
0303TLH081172520.50	009	2.5	00	10	10	3.0	1.20	
0303TLH081172520.50	009	2.5	10	20	10	3.0		•80
0303TLH081172520.50		2.5	20	30	10	3.0	•29	•16
0303TLH081172520.50		2.5	30	40	10		.15	•07
0303TLH081172520.50		2.5	40	-		3.0	•12	•07
0303TLH081172520.50		2.5	· 00	50	10	3.0	•06	•04
0303TLH081172520.50		2.5	+ -	10	10	3.0	•38	•30
0303TLH081172520.50			10	20	10	3.0	•12	•06
0303TLH081172520.50		2.5	20	30	10	3.0	•03	.02
00001001112520.50	010	2.5	30	40	10	3.0	•01	.00

)

Litter

The litter data for Bridger were collected on Form NREL-02. Four-foot and nine-foot snow fence areas were sampled. The snow fence treatment numbers are 6 and 7, respectively. These data have the Grassland Biome designation of A2U0013. Examples of the data form and data follow. IBP ⊕

-61-

GRASSLAND BIOME U.S. INTERNATIONAL BIOLOGICAL PROGRAM

FIELD DATA-SHEET - LITTER

			.							<u>A I /</u>	4- 3 N E E	T · LITT	CR					
Γ * Α ΤΥΡΕ	SITE	INITIALS	 	DATE		TREATMEN	REPLICATI	PLOT SIZE	QUADRAT	TYPE	SACK NO.	DRY WT.	SACK WT.	ASH ₩T.		E VIO DATI		
			Day	Mo	Yr	NT	m								Day	Mo	Yr	
1+2	3-4	5-7	8-9	10-11	12-13	14	15	16-19	21-23	25	27-30	32-37	39-42	44-49	51-52	53-54	55-56	
												1						┢
															1			┢
D A 0 i											······		1		1		<u> </u>	+
02		vegrou: er	na Bio	omass						_				······				┢
03 10	Bei	owgroui	nd Bio	mass									<u> </u>		<u> </u>			┢
10	Ver	tebrate tebrate	- Live - Snar	e Frap p Tran	oping oping												ļ	
12	Ver	tebrate	- Coll	lectio	n								+		┨			
20 21		an Flus an Road													 			
22	Avia	an Road	I Cour	nt Sum	mary													
23	Avia	an Colle	ection	- Inte	ernal													
24	Avia	an Colle an Colle	ection ection	⊧- Ext ⊧- Plu	ernal mage													
30		rtebrate						ſ					· 1					
40	Micr	obiolog	y - De	ecomp	ositio	n		t		- †			<u>├ </u>					
41 ⊮2	Micr Micr	obiolog obiolog	y - Ni v - Ri	itroge:	n			ŀ					┟───┨	· <u>, , , , , , , , , , , , , , , , , , ,</u>	┢╴╴┦			
43	Micr	obiolog	y - Ro	oot De	comp	osit	ion	┝		-+		-			┟──┤			
44	Micr	obiolog	y - Re	espira	tion		-	ŀ							ļļ			
SIT	E							Ļ										
01	Ale																	
02 03	Biso Brid							ſ		T								
04	Cotte	- onwood						ľ	- †	\neg								
05 06		inson						F										
06 07	Hays Hopl							-							┝╍╋			
08	Jorna	ad a						┝										
09 10	Osag Pant							Ļ]		
	Pawi							L										
TOF	ATM	C N T								[_								
- KC	: AIM Ungr							Γ								†		
2	Light	tty graz						F		+					<u> </u>			
3 4		rately g ily graz		ł				F								<u> </u>		
5		ed 1969		azed	1970			⊢				<u> </u>					-	
5 7			-					F										
3								L		\perp					· .			
}												Ţ						
ΥP	E							Γ		Τ								
	Quad	rat, tota							<u> </u>									
		rat, par						-										
	Litte	ed plot r bag						⊢										
		0						Ļ										_
												ſ	1	T				

	##EXAMPLE OF DATA##									
	1	2	3	4	5	6	7			
123456	789012345	67890123456	5789012345	567890123	345678901234	5678901234	567890123			
		0.50 001 1	50.	23 2.00	1.59					

0200000210012110-001		DU+CJ Z+UU 1+59
0203DDC270672110.50 002	1	45.33 2.00 1.59
0203DDC270672110.50 003	1	51.48 2.00 1.59
0203DDC270672110.50 004	1	52.71 2.00 1.59
0203DDC270672110.50 005	ī	
		56.93 2.00 1.59
0203000270672110.50 006	1	72.70 2.00 1.59
0203DDC270672110.50 007	1	48.20 2.00 1.59
0203DDC270672110.50 008	1	83.80 2.00 1.59
0203DDC270672110.50 009	1	108.22 2.00 1.59
0203DDC270672110.50 010	1	76.90 2.00 1.59
0203DDC270672120.50 001	1	40.21 2.00 1.73
0203DDC270672120.50 002	1	
0203DDC270672120.50 003	1	49.74 2.00 1.73
		37.72 2.00 1.73
0203DDC270672120.50 004	1	28.08 2.00 1.73
0203DDC270672120.50 005	1	40.39 2.00 1.73
0203DDC270672120.50 006	1	54.26 2.00 1.73
0203DDC270672120.50 007	1	30.96 2.00 1.73
0203DDC270672120.50 008	1	35.49 2.00 1.73
0203DDC270672120.50 009	ī	49.27 2.00 1.73
0203DDC270672120.50 010	1	
0203DDC280672610.50 001	•	
		15.40
	1	13.10
0203DDC280672610.50 003	1	07.88
0203DDC280672610.50 004	1	14.86
0203DDC280672610.50 005	1	11.49
0203DDC280672610.50 006	1	12.88
0203DDC280672610.50 007	1	12.89
	ī	09.30
	1	10.97
	1	
		56.72
	1	02.63
	1	15.86
0203DDC280672710.50 003	1	04.85
0203DDC280672710.50 004	1	18.48
0203DDC280672710.50 005	1	11.72
0203DDC280672710.50 006	1	05.69
020200000000000000000000000000000000000	ī	15.98
	1	107.94
02030DC280672710.50 009		
	-	09.93
	1	66.01
0.10.20000.2000.2000.000	1	86.63 2.00 1.56
	1	80.19 2.00 1.56
020300C270672510.50 003	1	93.50 2.00 1.56
0203000270672510.50 004 1	L	47.94 2.00 1.56
0203DDC270672510.50 005 1	L .	27.22 2.00 1.56
0203DDC270672510.50 006 1		34.72 2.00 1.56
0203DDC270672510.50 007 1		
0203DDC270672510.50 008 1		• · · · ·
		39.51 2.00 1.56
		88.86 2.00 1.56
		65.83 2.00 1.56
0203DDC270672520.50 001 1		27.72 2.00 1.82
0203DDC270672520.50 002 1		36.24 2.00 1.82

- ----

0203DDC270672520.50	003	1	36.45 2.00	1.82
0203DDC270672520.50	004	1	28.72 2.00	1.82
0203DDC270672520.50	005	1	24.24 2.00	1.82
0203DDC270672520.50	006	1	13.00 2.00	1.82
0203DDC270672520.50			25.00 2.00	1.82
0203DDC270672520.50	008	1	39.20 2.00	1.82
020300C270672520.50	009	1	35.39 2.00	1.82
0203DDC270672520.50	010	1	26.56 2.00	1.82

Aboveground Invertebrate Data

Aboveground invertebrate data collected in 1972 at the Bridger Site were recorded on Form NREL-30. These data are stored as Grassland Biome data set A2U30E3. A sample data form and an example of the data are attached.

IBP ⊕

GRASSLAND BIOME

U.S. INTERNATIONAL BIOLOGICAL PROGRAM

FIELD DATA SHEET - INVERTEBRATE

DATA TYPE	SITE	INITIALS	Day	DATI	F Yr	TREATMENT	REPLICATE	PLOT SIZE	QUADRAT		TROPHIC	HOST	ORDER	FAMILY		GENUS	SPECIES	1		LIFE STAGE	TOTAL NO.	DR W1	
44	34	5.1	8-9	14-11	12413			t for united				ingereite Kartai e	Series and the series of the			e train	19 Q.						67 W
			. <u></u>	l					100.005		20% w.Y						3* \$.			4.4	i natari a		-14; S.
	ATYP														is rs					5.5			
02	Litter	round Bi round Bi								清清							artunasi. Ali		् ः इ.स.	E.			
11	Vertebr Vertebr	ate - Liv ate - Sna	ve Tra ap Tra	pping oping					ára - 191					AN TO AN A A									
12 20 2	Vertebr Avian F	ate - Co ^I lush Ce	llectia nsus	- n				-	the second													85	
22 /	Avian R	load Cou load Cou ollectio	nt Sur	nmary									246. C		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			e nesig				C. C. A.	
24 /	Avian C	ollectio	n - Ex	ternal													х ^{. 197} .	tere .					
30 1	nverteb			-	n								14										
41 M 42 M	licrobio licrobio	logy - N logy - B	itroge iom as	:п :s									Reason of Con-						1. AN			建立改改	5
43 M	licrobio	logy - R logy - R	oot De	ecomp	sition				5 min Se	41 25		- 224 k 24 1	1. 3		de la c ^e ccio		- 10 495			Calif and			
SITE 01 A	le		T R O	OPHIC Unkn																			
03 B	ison ridger		1 2	Plan: Plani	t feedin t feedin	ne (s	s an ì		2 7			<u>્</u> ર ઉ	300	NAME:	8 (S (K)	A* 67	્રેસ્ટ				lon taller i	it vice	
05 D	ottonwo ickínso ays		3	Plani and	t feedir d necta	1g (‡ .r)	polle		<u> </u>	<u></u>		Ja 19 3	<u>. 1.5</u> 5	Select-1					1 (2) (³)	in Ga		A	
07 H 08 Ja	opland ornada		- 5 6	Preda Preda Paras		ıg (s	eed)					43			1						ં	1. A.	
0 P	sage antex		7 8	Paras Scave	ite nger				Kare	1997 1997 1997	Č.		<u>8</u> 46	12.5 -	-3-A.	Sec. 14	1949 B	<u>@233.18</u>	and the second	- 48 (5-5) (5-5)			
	awnee TMENT		9 LIF	Non-fi E STA	eeding	staj	ge		1-5254						\$ \$	-E Sinak	<u>.</u>	ن میں ایکی کون	5.9¥	22			
Ur Li	ghtly g	razed	00 10	E SIA Undet Adult	ermined	d				14 14				wege i					.			- 51 - 4 - 4 - 4 - 4 - 4 - 4 - 4	3-16 8 1 14
He	oderatel avily g azed 19	y grazed razed	30	Pupar Egg					Marilan Marilan				ः वि		3-1.	2 85	S. 53	à e	يەر يېزىچى ئەر يېزىچى	8 A.	2 204 (1) 24	া হয় ব	
	azed iy ungraze		41	Nymph	or Lai or Lai or Lai	rva.	earl;	, Г	1949-944 		12754											i sin ta Marent	
			43 50	Nymph Instar	or Lar	va,	late												the internet				
			52 ł	nstar, nstar,	2nd			Star of			ې د نوې د مور				167.471				7.84.84				
				nstar,	310			<u> </u>	8-124-1		and and and and								2002 743 (S			1995 - 19	•
										۵. ۲۳۰ – ۲													e harry
										0.00		10.020					Ţ	1					- 7 F
									<u>议官</u> 楼		(14) 95 (14)												
									TATE	3			87 8 497 	5894G (*	Sec. 5	11 - 13 P		500					

1 3 5 6 7 3003H5D24077211 501 CULL 10 1 3003H5D24077211 501 CULL 10 2 3003H5D24077211 501 CULL 40 3 3003H5D24077211 502 HYMEPURM 10 7 3003H5D24077211 502 HYMEPURM 10 7 3003H5D24077211 502 CULL 10 1 3003H5D24077211 502 CULLUNC 10 1 3003H5D24077211 502 CULL 10 1 3003H5D24077211 502 CULL 10 1 3003H5D24077211 502 CULL 10 1 3003H5D24077211 503 HYMERUNA 10 1 3003H5D24077211 <th>,</th> <th>•</th> <th></th> <th></th> <th></th> <th></th>	,	•				
300345024077211 .501 COLECORC 10 1 300345024077211 .501 COLE 10 2 300345024077211 .501 COLE 10 2 300345024077211 .501 COLE 40 2 300345024077211 .501 COLE 40 3 300345024077211 .502 COLE 40 3 300345024077211 .502 COLE 40 2 300345024077211 .502 COLECORC 10 1 300345024077211 .502 COLECORC 10 1 300345024077211 .502 COLE 10 1 300345024077211 .503 COLECORY 10 1 300345024077211 .503 COLECORY 10 1	12345679901.22.	2	3 4		5	6 7
300345024077211 .501 COLECORC 10 1 300345024077211 .501 COLE 10 2 300345024077211 .501 COLE 10 2 300345024077211 .501 COLE 40 2 300345024077211 .501 COLE 40 3 300345024077211 .502 COLE 40 3 300345024077211 .502 COLE 40 2 300345024077211 .502 COLECORC 10 1 300345024077211 .502 COLECORC 10 1 300345024077211 .502 COLE 10 1 300345024077211 .503 COLECORY 10 1 300345024077211 .503 COLECORY 10 1	16345678901234	2219201	2345578401234567840	123456107	01234561	0901234567890
3003#S02+077211 -S01 Current for the second						
300345024077211 501 0011611 42 1 300345024077211 501 114870444 10 7 300345024077211 501 11487044 10 7 300345024077211 502 11487044 10 7 300345024077211 502 11487044 10 7 300345024077211 502 11487044 10 2 300345024077211 502 11111 10 2 300345024077211 502 11111 10 1 300345024077211 502 11111 40 4 300345024077211 502 11111 40 4 300345024077211 503 11111 40 4 300345024077211 503 11471 10 1 300345024077211 503 11471 10 1 300345024077211 503 11471 10 1 300345024077211 504 114011 10 1		· · •		τv	1	
3003MS024077211 501 CTMPLORM 10 1 3004MS024077211 501 Cult 00 3 3004MS024077211 501 Cult 00 3 3004MS024077211 502 CMMPLENT 40 1 3003MS024077211 502 CMMPLENT 40 1 3003MS024077211 502 CULLENT 10 2 3003MS024077211 502 CULLCUNT 10 1 3003MS024077211 502 CULL 10 1 3003MS024077211 503 CULCUNT 10 1 3003MS024077211 503 CULL 40 5 3003MS024077211 503 CULL 40 5				Τυ	ć	
300345024077211 501 TERINITY 10 2 300345024077211 501 UNLE 40 3 300345024077211 502 TMMEPONM 10 7 300345024077211 502 TMMEPONM 10 7 300345024077211 502 TMMEPONM 10 7 300345024077211 502 CULELERA 10 2 300345024077211 502 CULE 10 1 300345024077211 502 CULE 40 4 300345024077211 502 CULE 40 4 300345024077211 502 CULE 40 4 300345024077211 503 nEMERTM 42 1 300345024077211 503 nEMERTM 10 1 300345024077211 503 LEP1 10 1 300345024077211 503 CULE 40 5 300345024077211 504 LP1 10 1 3	30038502407721			46	i	
3004+S02+077211 -501 CLL -70 3 3004+S02+077211 -502 mEMIFENI +0 1 3004+S02+077211 -502 mEMIFENI +0 1 3004+S02+077211 -502 mMMF 10 2 3004+S02+077211 -502 CULCUMC 10 1 3004+S02+077211 -502 CULCUMC 10 1 3004+S02+077211 -502 CULE 10 1 3004+S02+077211 -503 CULE 40 0 3004+S02+077211 -503 CULE 40 10 1 3004+S02+077211 -504 CULE 40 1 3 3004+S02+077211 -504 CULE 40<		· · · •		1 U	7	
3003FSD24077211 501 TEMPTENT 40 1 3003FSD24077211 502 TYMEFUNM 10 7 3003FSD24077211 502 TYMEFUNM 10 2 3003FSD24077211 502 CULLELEHA 10 2 3003FSD24077211 502 CULLEUNE 10 2 3003FSD24077211 502 CULLEUNE 10 2 3003FSD24077211 502 CULL 40 4 3003FSD24077211 502 CULL 40 4 3003FSD24077211 502 CULL 40 4 3003FSD24077211 503 DFMERUNM 10 9 3003FSD24077211 503 DEMITENT 10 1 3003FSD24077211 503 DEMITENT 10 1 3003FSD24077211 503 DEMITENT 10 1 3003FSD24077211 504 DEMITENT 10 1 3003FSD24077211 504 DEMITENT 10 1<		· · · -		10		
3003HSD24077211 502 HYRE ORM 10 7 3003HSD24077211 502 HYRE 10 2 3003HSD24077211 502 LOLELERA 10 2 3003HSD24077211 502 LOLELERA 10 1 3003HSD24077211 502 LOLELHA 10 1 3003HSD24077211 502 LOLE 10 1 3003HSD24077211 503 DFMERURIT 42 1 3003HSD24077211 503 DFMERURIT 42 1 3003HSD24077211 503 DFMERURIT 42 1 3003HSD24077211 503 DEMERT 10 1 3003HSD24077211 503 LEMI 10 1 3003HSD24077211 503 LEMI 10 1 3003HSD24077211 503 LEMI 10 1 3003HSD24077211 504 CRImuLI 10 1 3003HSD24077211 504 CRImuLI 10 1 </td <td></td> <td></td> <td></td> <td>1,4 U</td> <td></td> <td></td>				1,4 U		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30038502407721			4 U		
300345674077211 502 COLECENA 10 2 300345674077211 502 COLECENA 10 1 300345674077211 502 COLECENA 10 1 300345674077211 502 COLE 10 1 300345674077211 502 COLE 40 4 300345674077211 503 OKTALERI 42 1 300345674077211 503 OKTALERI 42 1 300345674077211 503 OKTALERI 42 1 300345674077211 503 COLE 40 1 30034574077211 503 COLE 40 2 30034574077211 504 COLE 40 1 30034574077211 504 COLE 40 1	3003PSD2407721					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3003RSD2407721					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
3003HSD24077211 502 CUL 10 1 3003HSD24077211 503 CUL 40 4 3003HSD24077211 503 CUL 40 4 3003HSD24077211 503 CUL 40 4 3003HSD24077211 503 HCMULLA 10 1 3003HSD24077211 503 CUL 40 0 3003HSD24077211 503 CUL 40 0 3003HSD24077211 503 CUL 40 0 3003HSD24077211 503 HCMULLA 40 5 3003HSD24077211 504 CUL 40 1 3003HSD24077211 504 HCMULLA 40 5 3003HSD24077211 504 CUL 10 1 3003HSD24077211 504 CUL 10 1 3003HSD24077211						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
3003#S024077211 503 0KTMALRI 42 1 3003#S024077211 503 hYMEF0RM 10 9 3003#S024077211 503 hEMPERNM 10 1 3003#S024077211 503 LEP1 10 1 3003#S024077211 503 LEP1 10 1 3003#S024077211 503 LEP1 10 2 3003#S024077211 503 LEP1 40 1 3003#S024077211 503 LEP1 40 1 3003#S024077211 503 HEMPENT 40 1 3003#S024077211 504 HYMEF0RM 10 2 3003#S024077211 504 HYMEF0RM 10 2 3003#S024077211 504 HEMPENT 40 3						
3003#SD24077211 503 hYMErORM 10 9 3003#SD24077211 503 hCMOCICA 10 1 3003#SD24077211 503 hCMPRINI 10 1 3003#SD24077211 503 CULCINY 10 2 3003#SD24077211 503 CULCINY 10 2 3003#SD24077211 503 CULCINY 10 2 3003#SD24077211 503 LEP1 -0 1 3003#SD24077211 503 HCMPKINI 40 5 3003#SD24077211 504 LP1 -0 1 3003#SD24077211 504 LP1 10 1 3003#SD24077211 504 LP1 10 1 3003#SD24077211 504 HCMULLA 40 5 3003#SD24077211 504 HCMULLA 40 2 3003#SD24077211 504 HCMULLA 40 2 3003#SD24077211 504 ULP1 40 2 3003#SD24077211 504 ULP1 40 2						
3003HS024077211 503 HUMOLICA 10 1 3003HS024077211 503 LLP1 10 1 3003HS024077211 503 LLP1 10 2 3003HS024077211 503 LLP1 10 2 3003HS024077211 503 LLP1 40 1 3003HS024077211 503 LLP1 40 1 3003HS024077211 503 LLP1 40 1 3003HS024077211 504 HTMLK1 10 1 3003HS024					_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3003R5024077211					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300385024077211				-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300385024077211					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.503		-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.503				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.504			_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
300.3FSD2407/211 .504 ARAN GU 1 300.3FSD24077211 .504 HOMOLEY LU 2 300.3FSD24077211 .504 HOMOLICA 40 2 300.3FSD24077211 .504 HOMOLICA 40 2 300.3FSD24077211 .504 CULL 40 3 300.3FSD24077211 .504 UTF1 40 1 300.3FSD24077211 .505 UFT1 40 1 300.3FSD24077211 .505 UFT1 40 1 300.3FSD24077211 .505 UFT1 41 1 300.3FSD24077211 .505 HEMIMIKI 10 4 300.3FSD24077211 .505 HEMIMIKI 10 4 300.3FSD24077211 .505 HEMIMIKI 10 2 300.3FSD24077211 .505 HEMIMIKI 10						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300342024077211	.504				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.504	HUMUALEY			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•504				
3003#SD24077211 504 COLE 40 3 3003#SD24077211 504 DIP1 40 1 3003#SD24077211 505 ORTALL1 42 1 3003#SD24077211 505 ORTALL1 42 1 3003#SD24077211 505 ORTALL1 44 1 3003#SD24077211 505 COLE 10 1 3003#SD24077211 505 COLE 10 1 3003#SD24077211 505 COLE 10 1 3003#SD24077211 505 DIP1 10 2 3003#SD24077211 505 NTMEFORM 10 2 3003#SD24077211 505 NTMEFORM 10 2 3003#SD24077211 505 NTMEFORM 40 2 3003#SD24077211 505 COLE 40 2 3003#SD24077211 505 COLE 40 2 3003#SD24077211 505 COLE 40 2 3003#SD24077211 505 FYME 40 1 3003#SD240	300385024077211	• 5 04				
300345074077211 504 $U1P1$ 40 1 300345074077211 505 $0RITALT1$ 42 1 $3003R5074077211$ 505 $0RITALT1$ 41 1 $3003R5074077211$ 505 $0RITALT1$ 10 42 $3003R5074077211$ 505 $0LL$ 10 1 $3003R5074077211$ 505 $01P1$ 10 2 $3003R5074077211$ 505 $01P1$ 10 2 $3003R5074077211$ 505 $01P1$ 10 2 $3003R5074077711$ 505 $01P1$ 10 2 $3003R5074077711$ 505 $10P1$ 40 40 $3003R5074077711$ 505 $10P1$ 40 40 $3003R5074077711$ 505 $10P2$ 40 2 $3003R5074077711$ 505 $10P3$ 00 24 $3003R5074077711$ 505 $10P3$ 00 24 $3003R5074077711$ 503 $10P3$ 00 49 $3003R5074077711$ 504 $10P3$.504	COLL			
300345024077211 505 0814111 42 1 300345024077211 505 08146441 41 1 300345024077211 505 06146441 10 1 300345024077211 505 0614 10 1 300345024077211 505 0141 10 2 300345024077211 505 0141 10 2 300345024077211 505 0141 10 2 300345024077211 505 0141 10 2 300345024077211 505 114141 40 2 300345024077211 505 1141411 40 2 300345024077211 505 1141411 40 2 300345024077211 505 11475 40 2 300345024077211 501 1475 40 2 300345024077211 501 1475 40 2 300345024077211 502 1445 40 2 300345024077211 503 1475 40 4 30034502407	3003RSD24077211	• ラリチ	UIHI			
300385024077211 505 0K1MACR1 41 1 300385024077211 505 CGL 10 1 300385024077211 505 CFP1 10 2 300385024077211 505 MCMOLICA 10 1 300385024077211 505 MCMOLICA 10 1 300385024077211 505 MCMOLICA 40 2 300385024077211 505 COLt 40 2 300385024077211 505 COLt 40 2 300385024077211 505 COLt 40 2 300385024077211 501 EFF 40 2 300385024077211 505 COLt 40 2 300385024077211 501 EFF 40 2 300385024077211 502 HYS 00 24 300385024077211	300345024077211	.505	UK [m]L []			
3003×5024077211 505 HEMIMIKI iu 4 3003×5024077211 505 $COLE$ iu 1 3003×5024077211 505 $nYMEFORM$ $1u$ 2 3003×5024077211 505 $nIP1$ $1u$ 2 3003×5024077211 505 $nIP1$ $1u$ 2 3003×5024077211 505 $nIP1$ u 3 3003×5024077211 505 $LEP1$ $4u$ 2 3003×5024077211 505 $LEP1$ $4u$ 2 3003×5024077211 505 $COLE$ $4u$ 2 3003×5024077211 505 $COLE$ $4u$ 2 3003×5024077211 505 $rYNE$ $4u$ 2 3003×5024077211 501 $inT5$ uu 23 3003×5024077211 502 $4LAR$ uu 44 3003×5024077211 502 $ALAR$ uu 49 3003×5024077211 503 $InT5$ uu 49 3003×5024077211 503 $ACAR$ uu 49 3003×5024077211 503 $ACAR$ uu 49 3003×5024077211 503 $ACAR$ uu 49 3003×5024077211 504 $ALAR$ uu 49 3003×5024077211 504 $ALAR$ uu 40 3003×5024077211 504 $ALAR$ uu 40 3003×5024077211 504 $ALAR$ uu 40	300385024077211		ORTHACRI			
3003 R 5024077211 505 $CGLE$ IU 1 $3003 R 5024077211$ 505 $01P1$ $1U$ 2 $3003 R 5024077211$ 505 $01P1$ $1U$ 2 $3003 R 5024077211$ 505 $ntMoulta$ $1U$ 1 $3003 R 5024077211$ 505 $ntMoulta$ $1U$ 1 $3003 R 5024077211$ 505 $ntMoulta$ $4U$ 2 $3003 R 5024077211$ 505 $ntMoulta$ $4U$ 2 $3003 R 5024077211$ 505 $ntMoulta$ $4U$ 2 $3003 R 5024077211$ 505 $COLE$ $4U$ 2 $3003 R 5024077211$ 505 $ntMe$ $4U$ 2 $3003 R 5024077211$ 505 $ntMe$ $4U$ 2 $3003 R 5024077211$ 505 $ntMe$ $4U$ 2 $3003 R 5024077211$ 501 $IRTS$ $0U$ 24 $3003 R 5024077211$ 501 $ALAR$ $0U$ 4 $3003 R 5024077211$ 502 $ALAR$ $0U$ 49 $3003 R 5024077211$ 503 $IRTS$ $0U$ 49 $3003 R 5024077211$ 503 $ALAR$ $0U$ 49 $3003 R 5024077211$ 504 $iRTS$ $0U$ 49 $3003 R 5024077211$ 504 $ALAR$ $0U$ 16 <		•202	FIL MINIKI			
3003 + 5024077211 505 HYMEFURM 10 2 $3003 + 5024077211$ 505 $01P1$ 10 2 $3003 + 5024077211$ 505 $n0M0010A$ 10 1 $3003 + 5024077211$ 505 $n0M0010A$ $+0$ 3 $3003 + 5024077211$ 505 $n0M0010A$ $+0$ 1 $3003 + 5024077211$ 505 $n0M0010A$ $+0$ 1 $3003 + 5024077211$ 505 $c01c$ $+0$ 1 $3003 + 5024077211$ 505 $c01c$ $+0$ 1 $3003 + 5024077211$ 505 $c01c$ $+0$ 1 $3003 + 5024077211$ 505 $mYMc$ $+0$ 1 $3003 + 5024077211$ 501 mYS 00 23 $3003 + 5024077211$ 502 $40A$ 00 49 $3003 + 5024077211$ 503 $1mYS$ 00 49 $3003 + 5024077211$ 503 $1mYS$ 00 49 $3003 + 5024077211$ 504 $4CAR$ 00 49		+505	LULL.			
3003 H S 0 24077211 505 $01P1$ 10 2 $3003 H S 0 24077211$ 505 $H OM U C C A$ 10 1 $3003 H S 0 24077211$ 505 $H C H P I$ $+0$ 2 $3003 H S 0 24077211$ 505 $L C P I$ $+0$ 2 $3003 H S 0 24077211$ 505 $CO L C$ $+0$ 1 $3003 H S 0 24077211$ 505 $CO L C$ $+0$ 2 $3003 H S 0 24077211$ 505 $CO L C$ $+0$ 2 $3003 H S 0 24077211$ 501 $I H Y S$ 00 23 $3003 H S 0 24077211$ 501 $A C A H$ 00 24 $3003 H S 0 24077211$ 502 $A C A H$ 00 44 $3003 H S 0 24077211$ 502 $A C A H$ 00 49 $3003 H S 0 24077211$ 503 $I H Y S$ 00 16 $3003 H S 0 24077211$ 503 $A C A H$ 00 49 $3003 H S 0 24077211$ 503 $A C A H$ 00 49 $3003 H S 0 24077211$ 504 $A C A H$ 00 49 $3003 H S 0 24077211$ 504 $A C A H$ 00 49 $3003 H S 0 24077211$ 504 $A C A H$ 00 108 $3003 H S 0 24077211$ 504 $A C A H$ 00 108 $3003 H S 0 24077211$ 505 $I H Y S$ 00 108	300385024077211		HYMET URM			
3003H5024077211 505 HUMULICA 10 1 3003H5024077211 505 HEMIPENT 40 2 3003H5024077211 505 HUMULICA 40 2 3003H5024077211 505 HTME 40 2 3003H5024077211 505 HTME 40 2 3003H5024077211 501 HTME 40 2 3003H5024077211 501 HTME 40 2 3003H5024077211 502 HTME 40 24 3003H5024077211 502 HTME 00 14 3003H5024077211 503 HTME 00 8 3003H5024077211 503 HTME 00 49 3003H5024077211 503 HTME 00 49 3003H5024077211 504 HTME 00 49 30	3003R5024077211		01P1			
3003H5024077211 505 htH1PENF 40 3 3003H5024077211 505 LEP1 40 2 3003H5024077211 505 H0MULICA 40 1 3003H5024077211 505 COLt 40 2 3003H5024077211 505 FYNE 40 2 3003H5024077211 505 FYNE 40 2 3003H5024077211 501 FMYS 50 23 3003H5024077211 501 FMYS 50 24 3003H5024077211 502 HMYS 50 14 3003H5024077211 502 ALAH 50 8 3003H5024077211 503 FMYS 50 8 3003H5024077211 503 FMYS 50 8 3003H5024077211 503 FMYS 50 40 3003H5024077211 503 FMYS 50 40 3003H5024077211 503 FMYS 50 40 3003H5024077211 504 FMYS 50 108 3003H5024077211						
3003F5024077211 505 LEPI +0 2 3003F5024077211 505 COLt +0 1 3003F5024077211 505 COLt +0 2 3003F5024077211 505 FYNE +0 1 3003F5024077211 501 ImYS 00 23 3003F5024077211 501 ImYS 00 24 3003F5024077211 502 HYS 00 14 3003F5024077211 502 ALAR 00 8 3003F5024077211 503 ImYS 00 14 3003F5024077211 503 ImYS 00 16 3003F5024077211 503 ALAR 00 49 3003F5024077211 503 ALAR 00 49 3003F5024077211 504 imYS 00 108 3003F5024077211 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
3003(S)/4077211 505 HOMULILA 40 1 3003(S)/4077211 505 COLt 40 2 3003(S)/4077211 505 MYNL 40 1 3003(S)/4077211 505 MYNL 40 1 3003(S)/24077211 501 MYNL 40 2 3003(S)/24077211 501 MYNL 40 23 3003(S)/24077211 502 MYS 00 24 3003(S)/24077211 502 MYS 00 14 3003(S)/24077211 502 ALAM 00 8 3003(S)/24077211 503 INYS 00 16 3003(S)/24077211 503 ALAM 00 49 3003(S)/24077211 504 MYS 00 49 3003(S)/24077211 504 MLAM 00 49 3003(S)/24077211 504 MLAM 00 108 3003(S)/24077211 504 ALAM 00 108 3003(S)/24077211 504 ALAM 00 108				· ~ U		
3003K5024077211 505 COLE 40 2 3003K5024077211 505 PYNE 40 1 3003K5024077211 501 ImYS 00 23 3003K5024077211 501 ALAR 00 24 3003K5024077211 502 HMYS 00 24 3003K5024077211 502 HMYS 00 14 3003K5024077211 502 ALAR 00 8 3003K5024077211 503 ImYS 00 16 3003K5024077211 503 ALAR 00 49 3003K5024077211 504 ImYS 00 49 3003K5024077211 504 ImYS 00 49 3003K5024077211 504 ImYS 00 108	3003F5024077211		MONUCICA			
3003H5024077211 501 10135 40 1 3003H5024077211 501 404H 00 23 3003H5024077211 502 1HYS 00 24 3003H5024077211 502 1HYS 00 24 3003H5024077211 502 HHYS 00 14 3003H5024077211 502 HLAH 00 8 3003H5024077211 503 IHYS 00 16 3003H5024077211 503 ALAH 00 49 3003H5024077211 503 ALAH 00 49 3003H5024077211 504 IHYS 00 49 3003H5024077211 504 IHYS 00 108 3003H5024077211 504 IHYS 00 108 3003H5024077211 504 HLAH 00 108	300365624077211		COLE	4 U		
3003HS024077211 501 HYS UU 23 3003HS024077211 502 HYS UU 24 3003HS024077211 502 HYS UU 14 3003HS024077211 502 HYS UU 14 3003HS024077211 502 ALAH UU 8 3003HS024077211 503 HYS UU 16 3003HS024077211 503 ALAH UU 49 3003HS024077211 503 ALAH UU 49 3003HS024077211 504 HYS UU 108				4 U		
3003+5024077211 501 ALAR 00 24 3003+5024077211 502 HYS 00 14 3003+5024077211 502 ALAR 00 8 3003+5024077211 503 HYS 00 8 3003+5024077211 503 HYS 00 16 3003+5024077211 503 ALAR 00 49 3003+5024077211 504 HYS 00 408 3003+5024077211 504 HYS 00 108	30036502077711			υu		
3003RS024077211 502 ALAR 00 14 3003RS024077211 503 Inys 00 16 3003RS024077211 503 ALAR 00 49 3003RS024077211 503 ALAR 00 49 3003RS024077211 504 iHYS 00 49 3003RS024077211 504 iHYS 00 108 3003RS024077211 504 ALAR 00 108 3003RS024077211 504 ALAR 00 108	300355024077203			υu		
3003H5024077211 502 ALAR 00 B 3003H5024077211 503 THYS 00 16 3003H5024077211 503 ALAR 00 49 3003H5024077211 504 THYS 00 108 3003H5024077211 504 ALAR 00 108 3003H5024077211 504 ALAR 00 108 3003H5024077211 504 ALAR 00 108				υu	14	
3003RSD24077211 503 1HYS 00 16 3003RSD24077211 503 ALAR 00 49 3003RSD24077211 504 1HYS 00 108 3003RSD24077211 504 ALAR 00 108 3003RSD24077211 504 ALAR 00 108 3003RSD24077211 504 ALAR 00 108	300365624077212			ΰu		
3003KS024077211 503 ACAR 00 49 3003KS024077211 504 iHYS 00 108 3003KS024077211 504 ALAR 00 108 3003KS024077211 505 THYS 00 108	300385024077211			00		
3003R5024077211 -504 IRYS UU IU8 3003R5024077211 -504 ALAR UU 16	300365026077511			60		
3003R5024077211 -505 THYS 00 16	340365024077211			ΰU		
THE TRANSFERRED THE THE THE TRANSFERRED THE THE THE TRANSFERRED THE TRANSFERRE	300385124077211			Uu		
	₩₩₩2002₩ /₩/////	つじち	1HYS	00		
			··· · · · · · ·			

,

		-07-		
3003RSU24077211	.505	ACAK	ŬŬ	11
3003RSU26077212	•501	UIPITABA	10	1
3003R5D26077212	.501	HYME	10	1
3003RSD26077212	.501	ORTHACRI	ίU	2
3003R5026077212	•201	URTHACRI	40	2
3003KSD26077212	•⊃01	MYMERURM	1 Ú	4
3003RSD26077212	.501	ARAN		2
3003K5026077212	.501	HEMIMIRI	ΞU	7
3003HSL26077212	.501	HEMINAHI	10	1
3003HSD2t07/212	.501	HUMUALEY	10	2
3003HSD2607:212	.50ì	HEML	'E U	5
3003RSD26077212	•20J	HEMIPENT	4 U	8
3003RSD26077212 3003RSD26077212	•501	HEMIMIRI	ΨU	1
3003RSD26077212	.501	HOMULICA	4 U	8
3003RSD26077212	.501	COLE	4 U	1
3003R5026077212	• 501	COLECHRY	ΞU	3
300345656077212	.501	COLCURC	10	1
3003k5026077212	.501	THY5	υu	35
3003KSD26077212	•501 503	ACAR	υu	6
3003RSD26077212	•502 •502	URTHACK1	τu	2
300345026077212	•502	UKTHALK1	46	1
300385026077212	-502	UNTHIEFF	(+ <u>2</u>	1
300345026077212	• 502 • 502	ARAN UIPI	· U U	1
3003RSD26077212	.502	HYMEFURM	ŤŬ	1
3903RSD26077212	.50Z	HEMINIRI	- 1 U	2
3903KSD26077212	.5UZ	hEMIPENT	Lυ	14
3000-51-20077616	.5Uc	PENILURI	4 U	2
3003RSD260712 2	.502	HUMUALEY	40	4
3003HSD260 7212	. 5UZ	HUMULILA	4 U 4 U	1
30008507607721C	.502	LEPI	40	8
3001 2026077212	• 502	1 ri Y 5	40 00	1 56
57134SD26077212	.50Z	ACAK	00 00	14
301385025077212	+503	URTHTETT	4 L	1
300385026077212	.503	OKTHACRI	4 <u>c</u>	1
300362020215	.503	L [P]	10	i
300382026077212	.503	ARAN	<u>.</u>	3
300385026077212	.503	COLE	1 U	ĩ
300345026077212	.503	HUMULICA	- 4 U	1
21217005112HEUUE	.503	MYMERURM	10	ÿ
300385026077212	.503	约EM上M1+CL	iU	15
3003R5026077212 3003R5026077212	.503	ME MERINA HI	10	1
3003420502021515	.503	hr.Miscut	4 V	2
3003K2026077212	•503	HEMIHENT	4 U	4
300345026077212	.503 .50.	nE M1	10	ć
300345026077212	• 20.5 • 20.5	11E 101	4 U	3
	• >00 • >00		4 U	1
	• 503 • 503	Ulri Invs	+ U	8
300 000 000 000 000	・50J	IHYS Alak	U U	32
300 0 0 0 0 0 0 0 0 0 0 0	.504	UKIMALKI	00	13
1.10	.504	UNTHIELT	41	1
300385020011616	•504	01 711 ETT 1719 ET URM	4 L	2
300385020077212	.504	AMAN	, 1 le	10
300342020077215	.504	HENIMIRI	00 1.1	4
300345626011212	.504	rit MINABI	10	5
300345026077212	504	ME. MI		1
300345420077212	504	CULLCARA	10	1
30038512607/216	504	NUMULICA	10	3
300345020077212	5114	LEFI	4 U 4 U	ال ا
		-	T V	1

3003R5026077212	.504	COLE	4 U	2
3003RSD26077212	•504	ULFT	4 U	1
3003RSD26077212	•504	1 HYS	ŰÜ	17
300345026077212	•504	ACAK	ΰu	8
3003RSD26077212	.505	UHIMACKI	ίU	2
300345026077212		HYMEFURM	10	11
3003RSD26077212	•505	ARAN	00	1
3003KSD26077212	.505	HUMUCICA	. IV	1
3003R5D26077212	.505	HOMUALEY	ĨŬ	2
3003RSD26077212	.505	HEMILUHI	4 U	1
300385026077212	.505	HEMIMIKI	40 10	
3003KS026077212	.505	HEMIPENT	40	8
3003RSD26077212	.505	nEMI		2
3003R2026077212	.505	LÜLECURC	40	8
3003RS026077212	.505	LULE	10	1
3003FSU26077212	.505	IHYS	4 U	1
3003RS026077212	.505	ACAR	ÛŬ	446
3003R5U24077221	•501		60	8
3003RSD24077221	.501	COLECHRY	τu	ł
3003KSD24077221	•501	LULESLAR	τu	1
300JRSD24077221	•501	COLECARA	τų	1
300342024011251		AKAN	· U-U	1
300345024077221	•501	HUMUCICA	10	2
3003K2024077221	•501 501	UIPI	ιu	1
3003RSD24077221	•501 • • • • •	HEMINABL	10	1
3003RSD24077221	.501	HEMIMIKI	10	1
3003KSD24077221	•501	HEMINIRI	4 U	2
30034502407221	.501	HEMIHENT	4 U	Ż
300385024077221	• 50 <i>2</i>	AKAN	υU	2
	.205	MENIMIRI	ļυ	2
300345024077221	.5Uc	HYMEFURM	· 10	6
3003RSU24077221	•50Z	COLECHRY	- 10	1
3003RSD24077221	.502	COLECARA	ΪU	ī
3003RSU24077221	.502	LEFI	4 U	1
300345024077221	.502	hYME.	40	1
300385024077221	•50 <i>c</i>	HUMUCICA	40	ī
3003R5024077221	•203	URTHACKI	41	ī
3003RSD24077221	•503	HYNEFURM	ŁŪ	4
3003RSD24077221	•503	COLECHRY	ΪŪ	i
3003KS024077221	.503	HEMICURI	40	2
300345024077221	.503	HEMIMIRI	10	4
3003K2024021251	.503	MEMINIRI	40	1
3003KSU24077221	.503	HEMIPENT	40	Ē
3003PSD24077221	.503	HOMOCICA	40	4
300345024077221	.503	LEPI	40	1
300385024077221	.503	COLE	40	Ż
300385024077221	•504	μΥΜΕ	10	1
300385024077221	• 504	AHAN	ΰŭ	1
300385024077221	•504	UIMI	10	Ì
300385024011221	• 504	HEMICURI	40	6
300385024017221	•⊃04	COLECHRY	ίŭ	ž
3003RSD24077221	•504	LOLEELAT	10	1
300385024011721	•504	MENIMIKI	10	1
3003HSU24077221	•⊃04	HUMULICA	10	1
3003R5D2407/221	.504	HUMU	40	
3003KSD24077221	504	UIFI	40 40	8
3003RSU24077221	504	LEFI	40 40	1
3003RSD24077221	505	URTHACKL		1
	505	LULLENIÖ	lu	1
		- VELLIVEU	10	1

-88-

3003RSD24077221 .505	LEPI	1 U	1	
3003RSD24077221 .505	UIHI	10	1	
3003RSD24077221 .505	ARAN		2	
3003RSU24077221 .505	HYMEFURM	ŬŬ	1	
3003RSD24077221 .005	COLECARA	10	11	
3003H5024077221 .505	LÜLEUNKY	10	1	
300385024077221 .505	COLLANTH	10	1	
3003PSD24077221 .505	HEMIHENT	10	1	
3003RSD24077221 .505	HEMIMIRI	40	4	
3003PSD24077221 .505	HUMUCICA	ίu	1	
300345024077221 .505	HEMI	4 U	13	
300345024077221 .505		40	1	
3003HSD24077221 .505		4 U	1	
300385024077221 .505	COLE	4 U	1	
3003RSD24077221 .501		. <u>4 U</u>	4	
3003RSD24077221 .501	IHYS NA D	60	29	
300385024077221 .502	ACAR	0.0	29 -	
	THYS	·U U	ы	
Charles Street to an and	ACAR	υu	24	
	IMYS	υU	31	
	ACAR	Úυ	32	
	THYS	Uυ	43	
	ACAR	ΰU	31	
· · · · · · · · · · · · · · · · · · ·	1472	Uυ	126	
Distant of the second second	ACAR	υU	7	
	HYMEFURM	lυ	170	
	ARAN	υU	1	
3003HSD26077222 .501	COLECURC	LU	Ĩ	
3003RSU26077222 .501	COLECARA	10	- C	
3003RSD26077222 .501	UIPI	 4 U	2	
3003RSD26077222 .501	n Y Mc	40	ž	
300345026077222 .501	PT M1	- 4 vi	i	
300385026077222 .501	11145	ΰŪ	47	
300385026077222 .501	ALAR	υu	3	
30038502607/222 .502	HYME	. IU	2	
3003KS026077222 .502	HYMEFURM	ĪŪ	3	
3003K5026077222 .502	CULLENIO	 1 U	1	
3003FSD26077222 .502	LEFI	40	1	
3003PS020077626 .506	HEMINIKI	iv	ì	
3003R5D26077222 .502	HEMIPENE	40	1	
3003PSU26077222 .502	HEML	40	- 1	
3003PSD26077222 .502	LULECURC	10	1	
300345026071222 .502	CULECARA	iu	ć	
300345026071222 .502	LULECHRY	iu	1	
3003KSD26077222 .502	THYS	U U	۲ ۲	
2003RSD26077222 .502	ALAH	00	1	
3003R2026077222 .503	n Y ME	10	4	
3003R5026077222 .503	ARAN	00	1	
3003H2026077222 +203	HYMEFURM	10	1	
300345026011222 .503	HEMIPENT	40	4	
30034502607/222 .503	HEMIMIRI	40 40	3	
300385026077222503	COLLELAI		2	•
3003RSU26077222 .503	CULECORC	10	1	
300385026077222 .503	LULELARY	10	1 1	
3003R2D26077222503	LEFI	10	1 I	
300345026077222 .503	CULE	40	1.	
300345026077222 .503	Inrs	40	4	
	· · · · · •	υu	17	

х ў. **ў**

3003RSD26077222 3003RSD26077222 3003RSD26077222 3003RSD26077222 3003RSD26077222	-503 -504 -504 -504	ACAR URTHIEIT URTHACRI HUMUCICA	00 4∠ 4∠	29	
3003RSD26077222 3003RSD26077222 3003PSD26077222	.504	URTHACKI			
3003RSD26077222		—	46		
3003FSD26077222				1	
	•504	ARAN	40	10	
3003KSD26077222	.504	HYMEFURM	00	ć	
3003RSD26077222	.504	HUMUCICA	10	4	
3003RSD26077222	•504	HEMILORI	10	1	
3003RSD26077222	•504		· 40	2	
3003R2026011222	•504	HEMINIKI	4 U	2	
3003K2D26077222		COLECURC	1 U	2	
3003K5026077222	.504	COLECHRY	iu	1	
	.504	nYME	4 U	1	
3003RSD26077222	.504	COLE	4 U	1	
3003KSD26077222	.504	[HYS	00	93	
3003RSD26077222	•504	ACAK	00	9	
3003KSD26077222	.505	ARAN	υU	1	
3003H5D26077222	.505	HYMEFURM	ΙU	7	
300382026077555	.505	UIPI	τu	З	
3003RSD26077222	•202	HUMUCICA	ΙU	2	
3003R5056077522	.505	HUMULICA	40	15	
3003K2D50011555	.505	HEMIMIRI	-10	6	
3003RS026077222	.505	HEMIMIRI	40	2	
3003RSD26077222	.505	HEMIPENT	+U	1	
3003RSD26077222		HEMICURI		1	
3003RSD26077222	.505	LEFI	40	+ 1	
3003RSD26077222	•505	THYS	υÜ	135	
3003RSD26077222	.505	ALAK	00	11	

.

____ · __ · · _

Soil Microarthropod Data

Soil microarthropod data collected at the Bridger Site were recorded on Form NREL-37. These data are stored as Grassland Biome data set A2U30L3. A sample data form and a listing of the data are attached.

:

-92-

GRASSLAND BIOME

U.S. INTERNATIONAL BIOLOGICAL PROGRAM

FIELD DATA SHEET--MICROARTHROPOD CORES

r 1								FIE	LD DATA		EIM1 	CROAR	THROPOD CO	RES						
Data Type	Site	Initials	Day	Date Month	.	Freatment	Replicate	Core Diameter	Quadrat	Trophic Level	Top Depth	Bottom Depth	Class	Order	Suborder	Family	Genus	Species	Life Stage	Total Number
1-2	3-4	5-7	8-9	10-11	12-13	14	15	16-1	3 20-22	24	25-26	27-28	29-32	33-37	39-42	44-47	49-52	54-57	59-60	62-65
37										1					<u> </u>					
Site 01 02	ALE			Т	Ligh Mode Heav	aze tly rat ily aze	gra ely gra d ci	grazed azed urrent												
03 04 05 06 07 <i>)</i> 08 .	Bridg Cotto Dicki Hays Annua Jorna Osage	ger onwood inson il ida		A 8 C D E F G		11 mo he - 0 - W - N	ght dera avy	ate												
11 I 12	Pawne	e		00		ete	rmîr	red												
1 P1 2 P1	hknow lant (tiss	n feeding ve) feeding		10 11 12 20 30	l Adul 2 Adul 2 Pupa 2 Egg	lti lti a	Fema													
3 P1 (4 P1	lant (poll nect lant	feeding en & ar) feeding		31 32 33	Egg wit Egg wit	cas the cas thr	ie, iggs ie, iymp	ahs												
5 Pr 6 Pa p		or te or itoid		40 41 42	Nymp Nymp ear Nymp mid	oh c oh c iy oh c ldie	or 1 or 1 or 1	arva arva, arva,												
9 No 5 A Ro (tage ot fe tissu	eding eeding ue)		43 50 51 52	Nymp lat Inst Inst Inst	h c e ar, ar,	n t 1s 2n	d												
B Ro (ot fe sap)	eding		53 54 55 56 57	inst Inst	ar, ar, ar,	4ti 5ti 6ti	հ հ հ												
				·																

NREL-37 NATURAL RESOURCE ECOLOGY LABORATORY - COLORADO STATE UNIVERSITY -- PHONE (303) 491-5642 -- FORT COLLINS, COLORADO 80521

- .__..

+++ LISTING OF DATA +++

1 ž	c	<i>.</i> -	
123456789012345678901234567	3 189012345679	4 5 00122454700010	6
	01012040018	20152420189015	345678901234
1003BMH1608723 2.76 PEMA 0	3 36 9	22 6 8 3	
10038MH1608723 2.76 PEMA 0		20 0 7 12	
10038MH1608723 2.76 PEMA 0		26 0 7 2	
10038MH1608723 2.76 PEMA 0		18 0 7 1	
1003BMH1608723 2.76 PEMA 0 1003BMH1608723 2.76 PEMA 0		12062	
1003BM11608723 2.76 PEMA 0		19058	
1003HMH1608723 2.76 PEMA 0		23 0 4 2	
10036MH1608723 2.76 PEMA 0		26 0 2 7 25 0 6 1	
10038MH1608723 2.76 PEMA 0		25 0 6 1 23 0 1 1	
10038MH1608723 2.76 PEMA U	3 39 0	16 0 11 1	
1003BMH1708723 2.76 PEMA 0	3 36 9	20 0 9 1	
10038MH1708723 2.76 PEMA 0 10038MH1708723 2.76 PEMA 0	3 140 9	30 0 7 3	
	3 60 9	24 0 7 12	
1003BMH1708723 2.76 PEMA 1 1003BMH1708723 2.76 PEMA U	1 3 41 0	649	
10038MH1708723 2.76 PEMA 0	3 41 0 3 43 6		
10038MH1708723 2.76 PEMA 0	3 20 6	14017 20013	
1003BMH1808723 2.76 PEMA 0	3 39 0	20013 150101	
10038MH1808723 2.76 PEMA 0	3 60 9	23 0 7 12	
10038MH1808723 2.76 PEMA U	3 64 9	26 0 7 11	
10038MH1808723 2.76 PEMA 0	3 11 6	15075	
1003BMH1808723 2.76 PEMA 0 1003BMH1808723 2.76 PEMA 0	3 140 9	27 0 6 3	
1003BMH1808723 2.76 PEMA 0	3 20 6 3 43 6	5 2 0 5	
10038MH1808723 2.76 PEMA 0	3	19025	
10036MH1908723 2.76 MIMU 3	3 42 9 3 100 0	24 0 2 7	
1003BMH1908723 2.76 PEMA 0	3 39 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1003BMH1908723 2.76 PEMA 0	3 12 6	18 0 8 3	
1003BMH1908723 2.76 PEMA 0	3 60 9	25 0 7 12	
10038MH1908723 2.76 PEMA 0	3 64 9	26 6 7 11	
	3 140 9	55 0 0 55	
	3 11 6 3 62 6	21 0 5 6	
		21 0 4 11	
1003BMH2008723 2.76 PEMA 3	3390 3146	17 6 10 1 21 0 7 12	
1003HMH2008723 2.76 PEMA 0	3 140 9	21 0 7 12 0 6 5	
	3 11 6	16075	
	3 41 9	v 2 9	
300 46 44 40 4 0 2 3 3	3 4 6	0 3 1	
	3 <u>1</u> 9 359	0 10 2	
	359 360	092	
10038MH0608721 2.76 PEMA 3	-		
1003RMH0608721 2.76 PEMA 0		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
10038MH0008721 2.70 PEMA 3 3		0 10 11	
10036MH0606721 2.76 PEMA 3 3 10036MH0606721 2.76 PEMA 0		0 9 12	
100200000000000000000000000000000000000		0 9 12	
		0 8 11	
1003BMH0608721 2.76 MIMU 3 3		0 2 12	
10038MH0708721 2.76 MIM0 0 3		ST 8 0	
1003BMH0708721 2.76 PEMA 0 3		31 0 3 1 23 0 2 9	
10038MH0708721 2.76 PEMA U 3		23 0 2 9	
10038MH0708721 2.76 PEMA 0 3			

1003BMH0708721 2.76 PEMA		• • • • • •
1003BMH0708721 2.76 PEMA		14 0 10 11
10038MH0708721 2.76 PEMA	3 3 30 2	13 0 10 11
	03 50	17 0 7 12
	03 43	13 0 1 12
	3 3 10 0	22 0 12 11
• ··· -··	03 31 1	13 0 10 11
10036MH0808721 2.76 PEMA	33 50	14 0 7 12
1003BMH0808721 2.76 PEMA	03 46	13 0 1 12
10038MH0808721 2.76 PEMA	03 9 6	20 0 2 10
1003BMH0808721 2.76 MIMU	03 10 9	39 0 2 11
1003BMH0808721 2.76 ZAPR	0349	32 0 9 6
10038MH0808721 2.76 MIMU	0320	35031
10036MH0908721 2.76 MUFR	1 1	6 2 9
10038MH0908721 2.76 PEMA	03 126	0 12 10
10038MH0908721 2.76 PEMA	03 10	0 10 11
1003BMH1008721 2.76 MIMU	3 3 11 9	35099
10038MH0108723 2.76 PEMA	03 36 1	18.0 9 3
10038MH0108723 2.76 PEMA	03 370	55 0 8 1
1003BMH0108723 2.76 PEMA	0 3 12 6	20 0 8 1
1003BMH0108723 2.76 PEMA 1003BMH0108723 2.76 PEMA	03 11 6	22 0 7 6
	03 38 0	18041
10038MH0108723 2.76 PEMA 10038MH0108723 2.76 PEMA	03 196	21 0 4 10
	03 20 9	24 0 1 2
· · · · · · · · · · · ·	0 1	6 12 2
	03126	0 9 1
	03 39 0	0 9 1
	03320	081
· · · · · · · · · · · · · · · · · · ·	0 3 17 6	0 8 11
	03 196	0 7 11
	0 3 140 0	076
• • • • • • • • • • • • • • • • • • •	03 11 6	0 4 9
100000000000000000000000000000000000000	0 3 41 1	049
• • • • • • • • • • • • • • • • • • •	0 3 14 6	025
	03 20 9	013
	0 3 140 0	1707 б
10038MH0308723 2.76 PEMA 10038MH0308723 2.76 PEMA	0 3 11 6	25 0 4 10
10038MH0408723 2.76 PEMA	03 20 9	25 Ú Ì J
10038MH0408723 2.76 PEMA	0 3 20 9	613
1003HMH0408723 2.76 PEMA	03196 031400	21 6 6 12
10038MH0408723 2.76 PEMA	•	17670
1003BMH0508723 2.76 PEMA	0.7	20 6 8 1
10038MH0508723 2.76 PEMA	03 126	6 9 2
1003BMH0508723 2.76 PEMA	03 194	681
INVIENDATION TO REMA		6 7 12
10038MH0508723 2.76 PEMA		649
	03421	6 3 7
100 10000000000000000000000000000000000	03 43 6	6 2 7
100 4444 510.535	03 20 9	613
	03 20 9	45055
100	0 3 60 0	16 2 9 5
100364401000000	3 3 51 0	25 0 3 10
100200000000000000000000000000000000000	03 9 9	27 4 2 11
LAO MUNINA ANDRA TANA TANA TANA ANDRA A	0 3 61 2	90411
100 JUNG TIOD TO THE TO THE	0 3 43 2	12 0 6 11
	0 3 62 1	12 0 7 11
100000000000000000000000000000000000000	03120	14 0 12 12
1002600010.701 - 54 45	03 63 2	8 0 12 12
10036445100751	3 64 2	11 0 10 12
) 3 4 0	16 0 3 12

10038MH2208721 2.76 MIMO	ΰ3	<u>55</u> 0	24 0 4 7
10038MH2208721 2.76 PEMA	Û 3		
		65 1	13 0 2 7
	ΰ3	66 0	170 312
1003BMH2208721 2.76 PEMA	<u> </u>	31 U	17 0 10 12
1003BMH2208721 2.76 PEMA	03	8 0	
1003BMH2208721 2.76 PEMA			
	Ú 3	12 0	17 0 12 12
10038MH2208721 2.76 PEMA	33	64 2	11 0 10 10
10038MH2208721 2.76 MIM0	03	23 9	41 0 11 12
10038MH2308721 2.76 MIMU	03		
		24 1	692
	<u>0</u> 3	25 1	013
1003BMH2308721 2.76 MIMO	03	26 2	6 5 5
10038MH2308721 2.76 MIMU	03	27 6	
1003BMH2308721 2.76 MIMU	03		058
		29 6	6 3 10
	03	67 1	6 12 12
1003BMH2408721 2.76 MUFH	1 1		6 3 3
10038MH2408721 2.76 MINU	33	29-1	
• • • • • • • • • • • • • • • • • • •			50 0 5 2
	03	23 9	46 0 10 1 <i>2</i>
10038MH2508721 2.76 MIMU	03	0 15	26058
10038MH2508721 2.76 MIM0	03	28 6	
10038MH2508721 2.76 MIMU	03		
		30 U	29 0 11 12
	03	26	8 E 0 02
1003BMH1207721 2.76 PEMA	U 3	3 3	17 0 12 11
1003BMH1207721 2.76 PEMA	03	4 6	
1003BMH1207721 2.76 PEMA	ũ 3		
			16 0 7 12
	03	66	24 0 12 12
1003BMH1307721 2.76 PEMA	03	16	0 1 0 1
1003BMH1307721 2.76 PEMA	ÚЗ	7 9	-
10038MH1307721 2.76 PEMA	03	•	
		3 3	0 9 8
	03	82	8011 Y
10038MH1307721 2.76 PEMA	03	96	25 0 15 10
10038MH1307721 2.76 PEMA	Ú 3	66	
1003HMH1307721 2.16 HEMA	03		
1003BMH1307721 2.76 PEMA		10 9	59 0 15 11
	03	4 6	0 3 12
1003BMH1307721 2.76 PEMA	υ 3	11 3	20 0 7 12
10038MH1307721 2.76 PEMA	03	12.6	20 0 12 12
10038MH1207721 2.76 PEMA	υ 3	16	
10038MH1407721 2.76 PEMA			24 0 10 1
• · · · · · · · · · · · · · · · · · · ·		2.6	0 2 7
	03	7 9	21048
10036MH1407721 2.76 PENA	03	16	0 11 9
1003HMH1407721 2.76 PEMA	03	9 9	• •
1003BMH1407721 2.76 PEMA	03		
			0 10 11
	ÚЗ	13.6	23 0 1 12
	6 θ	14 6	18 0 7 12
1003HMH1407721 2.76 PEMA	ΰ <u>3</u>	12 0	
1003HMH1507721 2.76 PEMA	63		
100 40400 100 7700		10	0 9 8
	03	10 9	31 0 12 11
10038MH1507721 2.76 PEMA	03	66	0 12 12
10038MH1507721 2.76 PEMA	03	14 6	
10038MH1607721 2.76 MIMU	Ū 3		
1 110 10 111 1 0 2 2 1 2			30 0 10 1
100 00000000000000000000000000000000000	03	2 3	20 0 3 1
States in the second	03	зь	23031
	03	7 9	0 4 8
10034MH1607721 2.76 PEMA	3 <u>3</u>	20	_
	U 3		066
3 (1) 11 11 1 2 (1 7 7 7 7 1		1 9	24 0 2 6
	03	29	26 0 3 7
1003HMH1607721 2.76 PEMA	33	14 6	0 7 12
10038MH1607721 2.76 PEMA	03	6.6	
1 (M) deatests of the second	03	15 6	$0 i \leq 1 \leq 1$
	v	ע נג	24 0 12 12

-95-

1003BMH1607721 2.76 PEMA	03	16	0 10 12
1003BMH0507723 2.76 PEMA	03	ló	
1003BMH0507723 2.76 PEMA	0 1	1	1.2.4.5
10036MH0507723 2.76 MIMU	<u> </u>	1 6	())
10038MH0507723 2.76 PEMA	v 3	2 2	• •
10038MH0507723 2.76 PEMA	ů š	3 1	
10038MH0507723 2.76 PEMA	03	46	
10038MH0507723 2.76 PEMA	03	56	21 0 7 6
10038MH0507723 2.76 PEMA	03	66	24 0 7 1
10038MH0507723 2.76 PEMA	03		0 5 5
10036MH0607723 2.76 PEMA	03	-	28 0 10 33
10038MH0607723 2.76 PEMA	03	83 96	25 0 7 1
10038MH0607723 2.76 PEMA	03		22 0 1 1
10036MH0607723 2.76 PEMA	Ú 3	10 6	21 0 2 9
10036MH0607723 2.76 HEMA	03		17 0 3 12
1003BMH0607723 2.76 FEMA	03		16058
10038MH0607723 2.76 PEMA	03	10	20 0 6 12
10038MH0607723 2.76 PEMA	03	46 66	0 7 10
1003BMH0707723 2.76 PEMA	03		22 0 9 6
10038MH0707723 2.76 PEMA	33	46	6 7 12
10038MH0707723 2.76 PEMA	03	16 106	18 0 6 12
1003RMH0707723 2.76 PEMA	03		6 1 10
10038MH0707723 2.76 PEMA	03	89	621
10038MH0707723 2.76 PEMA	03	56	648
10038MH0707723 2.76 PEMA	03	31 66	648
10038MH0707723 2.76 PEMA	03	_	676
10036MH0707723 2.76 PEMA	03		6 7 1
10038MH0807723 2.76 PEMA	03	•	17 8 1
10038MH0607723 C.76 PEMA	03		681
1003BMH0807723 2.76 HEMA	ΰ3	9 6 5 6	6 3 1
10038MH0807723 2.76 PEMA	33		632
10038MH0807723 2.76 PEMA	03		032
10038MH0807723 2.76 PEMA	03		22 0 1 1
1003BMH0807723 2.76 PEMA	03	· ·	21 0 1 3
10038MH0807723 2.76 MIMU	03	з.,	23 0 1 7
10038MH0807723 2.76 HEMA	03	1 6 10 b	38614
1003HMH0807723 2.76 PEMA	03	11 4	6 <u>3 1</u> 0
1003HMH0807723 2.76 PEMA	03	46	o 312
10038MH0807723 2.76 PEMA .	33	3 1	646
10038MH0807723 2.76 PEMA	1 1	5 I 6	5 8 17 0 7 12
1003BMH0807723 2.76 PEMA	1 1	6	
1003EMH0807723 2.76 PEMA	īī	6	
10038MH0807723 2.76 FEMA	33	7 3	
1003HMH0907723 2.16 PEMA	ů 3	12.6	
1003BMH0907723 2.76 PEMA	03	6 6	6111
1003HMH0907723 2.76 PEMA	23	16 6	6 11 o
10038MH0907723 2.76 PENA	U 3	17 6	
10036MH0907723 2.76 HEMA	33	18 6	
10038MH0907723 2.76 PEMA	υ <u>3</u>	14 6	
10038MH0907723 2.76 PEMA	03	56	
10038MH0907723 2.76 PEMA	23	10 6	о 2 з 6 2 у
10038MH0407723 2.76 PEMA 1	υĴ	11 6	
1003BMH0907723 2.76 FEMA (03	14 6	0 3 11
10038MH0907723 C.76 PEMA (33	15 6	U J LC
	33	9 6	
	- •	2.0	0 1 1

Small Mammal Live Trapping Data, Grids

Small mammal live trapping data collected on grids at the Bridger Site were recorded on Form NREL-10. Data collected in 1970 are stored as Grassland Biome data set A2U1003; 1972 data are stored as Grassland Biome data set A2U10B3; 1973 data are stored as Grassland Biome data set A2U10F3. A sample data form and a listing of the 1972 data are attached.

	A SHART - VERTEARATE LIVE TRAVENCE
NIT NIT	
7	
Day No Xi T	
DATA TYPE OI Abeveground Biomass	
02 Litter 03 Belowground Biomass	
10 Vertebrate - Live Tragging	
12 Vertebrate - Collaction 20 Avian Flush Census	
21 Avian Road Count 22 Avian Road Count Summary	
23 Avian Collection - Internal 24 Avian Collection - External	
25 Avian Collection - Plumage: 30 invertebrate	
40 Microbiology - Decomposition	
41 Microbiology - Nitrogen 42 Microbiology - Biomass	
43 Microbiology - Root Decomposition 4 Microbiology - Respiration	
SITE FEMALE	
01 Ale D Adult, veiva inactive 02 Bisen I Subadult, veiva inactive	
03 Bridger 2 Juvenile, with interime	
05 Dicklason 4 Subadult, valva turgid 06 Hays 5 Juvanita, valva turgid	
08 Jornada 7 Subadalt value	
09 Osage 8 Juvenile, vulve cornified	
CONDITION	
TREATMENT O Normal	
2 Lightly grazed 2 Terpid 3 Moderately grazed 3 Dead	
Henvily grazed Grazed 1969, MOLT	
ungrazed 970 0 No svidence	
2 Post-subadult 3 Adult (vernal)	
4 Adult (autumnal) 5 Molt of unknown stage	
ALE 6 Undetermined Adult, non-breeding	
Subadult, non-breeding Juvenile, non-breeding	
Adult breeding ? MARK Subadult breeding ? D. Normal	
Juvenile breeding ? Unmarked Adult breeding 2 Earths	
Subadult breeding 3 Toe Clip Juvenite breeding 4 Far tag and tag	
Undetermined 5 Natural amputation	

1/12/5/7000122/5/70	2	3	4 5	6		7
1234567890123456789	10153	45678901234567	8901234567890123	456789017	2345678	901
3703RSD10077211.05		0510ARACACAR		00	23	
3703RSD10077211.05		0510INSECOLL	PODU	40	2	
3703RSD10077211.05		0005ARACACAR		00	26	
3703RSD10077211.05		0005INSECOLL	ENTO	40	6	
3703RSD10077211.05		0005INSECOLL	PODU	40	6	
3703RSD10077211.05		0510ARACACAR	DODU	00	8	
3703RSD10077211.05 3703RSD10077211.05		0510INSECOLL 0005INSECOLE	PODU	40	1	
3703RSD10077211.05		0005ARACACAR		40 00	1 38	
3703RSD10077211.05		0005INSECOLL	ENTO	40	2	
3703RSD10077211.05		0510ARACACAR		00	2	
3703RSD10077211.05		0005ARACACAR		00	32	
3703RSD10077211.05		0005INSECULE		40	1	
3703RSD10077211.05		0005INSEHYME		10	1	
3703RSD10077211.05		0005INSECOLL	ENTO	40	6	
3703RSD10077211.05		0005INSECOLL	PODU	40	10	
3703RS010077211.05		0510ARACACAR	CNT()	00	2	
3703RSD10077211.05 3703RSD10077211.05		0005INSECOLL 0005INSECOLL	ENTO PODU	40	7	
3703RSD10077211.05		0005ARACACAR	PUDU	40	5	
3703RSD10077211.05		0510ARACACAR		00 00	19 6	
3703RSD10077211.05		0005ARACACAR		00	16	
3703RSD10077211.05		0005INSECOLL	ENTO	40	1	
3703RSD10077211.05	005	0005INSEHOMO	CICA	40	1	
3703RSD12077212.05		0510ARACACAR		00	6	
3703RSD12077212.05		0005ARACACAR		00	79	
3703RSD12077212.05		0005INSECOLL	ENTO	40	1	
3703RSD12077212.05		0005INSEHEM1		40	1	
3703RSD12077212.05 3703RSD12077212.05		0510ARACACAR		00	58	
3703RSD12077212.05		0005ARACACAR 0005INSECULL	PODU	00	86	
3703RSD12077212.05		00051NSECOLL	ENTO	40 40	4	
3703RSD12077212.05		0510INSEHYME	FORM	10	1 3	
3703RSD12077212.05	003	0510ARACACAR		00	34	
3703RSD12077212.05	003	0510INSECOLL	ENTO	40	1	
3703RSD12077212.05		0510INSECULL	PODU	40	1	
3703RSD12077212.05		0005ARACACAR		00	37	
3703RSD12077212.05		0005INSECOLL	PODU	40	4	
3703RSD12077212.05 3703RSD12077212.05		0005INSECOLL 0510ARACACAR	ENTO	40	5	
3703RSD12077212.05		0005ARACACAR		00	2	
3703RSD12077212.05		00051NSETHYS		00 10	59 1	
3703R5D12077212.05		0005INSECULE		40	1	
3703R5D12077212.05		0510ARACACAR		00	1	
3703RSD12077212.05 (005	0005ARACACAH		00	45 85	
3703RSD12077212.05 (0005INSECOLL	ENTO	40	1	
3703RSD10077221.05		0510ARACACAR		00	9	
3703RSD10077221.05		0005INSEHOMO	PHYL	40	38	
3703RSD10077221.05 (0005ARACACAH		00	61	
3703RSD10077221.05 (3703RSD10077221.05 (002	0510ARACACAR	19 k - 🕶 20	00	19	
3703RSD10077221.05 (0510INSECULL 0510INSECULL	ENTO PODU	40	3	
3703RSD10077221.05 (0005ARACACAH	PODU	40	1	
3703RSD10077221.05 (0005INSECOLE		00 40	0E	
3703RSD10077221.05 (0005INSECULL	PODU	40	2	
				··· V	*	

3703RSD10077221.05 002 0005INSECOLL	ENTO	40	ı
3703RSD10077221.05 003 0510ARACACAR		00	1
3703RSD10077221.05 003 0005ARACACAR			15
3703RSD10077221.05 003 0005INSECOL	P000	00	64
3703RSD10077221.05 003 0005INSECOLL	+	40	5
3703RSD10077221.05 004 0510INSECOLL	ENTO	40	5
	ENTO	40	9
		0.0	3
3343060		00	74
3703RSD10077221.05 004 0005INSETHYS		40	1
3703RSD10077221.05 004 0005INSECOLL	ENTO	40	10
3703RSD10077221.05 004 0005INSEH0M0		40	_
3/03RSD10077221.05 004 0005INSECOLE		_	1
3703RSD10077221.05 005 0510ARACACAH		40	1
3703RSD10077221.05 005 0005ARACACAP		00	11
3703RSD10077221.05 005 0005INSECOLL	CNTO	00	44
3703RSD10077221.05 005 0005INSECULE	ENTO	40	1
		40	1
		00	18
		00	48
3703RSD12077222.05 002 0510ARACACAR		00	25
3703RSD12077222.05 002 0005ARACPSEU		10	
3703RSD12077222.05 002 0005ARACACAR			1
3703RSD12077222.05 002 0005INSECOLI	PODU	00	92
3/03RSD12077222.05 003 05104RACACAP	1 600	40	4
3703RSD12077222.05 003 0005ARACACAH		00	9
3703RSD12077222.05 004 0510ARACACAR		00	73
3703RSD12077222.05 004 0510INSECOLL		00	18
	ENTO	40	2
	ENTO	10	2
		00	121
	ENTO	40	8
3703RSD12077222.05 004 0005INSECOLL	PODU	40	14
3703RSD12077222.05 005 0510ARACACAR		00	4
3703RSD12077222.05 005 0005ARACACAK		00	-
3703KS012077222.05 005 0005TNSEDIPT			33
3703RSD24077211.05 001 0510ARACACAL		10	1
3/03RSD24077211.05 001 0510TNSECOL	ENTO	00	51
3703RSD24077211.05 001 0005ARACACAR	ENTO	40	1
3703RSD24077211.05 001 0005INSECOLL		00	84
3703RSD24077211.05 001 0005INSECOLE	ENTO	40	2
		40	1
		00	51
	ENTO	40	1
		00	5
370 00000/000000000000000000000000000000		00	17
3703RSD24077211.05 003 0510INSECOLL		40	2
3703RSD24077211.05 003 0005ARACACAR		00	
3703HSD24077211.05 003 0005INSECOLL	ENTO	40	88
3703RSD24077211.05 004 0510A0ACACAU			1
3703RSD24077211.05 004 0005INSECOL	ENTO	00	15
3/03RSD24077211.05 004 0005APACAHAN	CNIU	40	3
3703RSD24077211.05 005 05104RACAHAN		00	14
3703RSD24077211.05 005 0510INSECOLL	000.0	00	5
370 306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PODU	40	2
		00	24
- 770 x000 m/ 6mm		40	1
		00	8
	ENTO	40	3
3703RSD26077212.05 001 0005ARACACAR		00	7
3703RSD26077212.05 001 0005INSECULL	ENTO	40	
3703HSU26077212.05 002 0510APACACAD			2
370385026077212.05002 051018550000		00	20
3703RSD26077212.05 002 0005ARACACAR		40	1
		00	44

-

3703RSD26077212.05 002 0005INSECULL	PODU	40	,
3703RSD26077212.05 002 0005INSECOL	ENTO	40	1
3703RSD26077212.05 003 0510INSECULL	ENTO	40	1 9
3703RSD26077212.05 003 0510ARACACAH		00	3
3703RSD26077212.05 003 0005ARACACAR		00	8
3703RSD26077212.05 003 0005INSECOLL	ENTO	40	3
3703RSD26077212.05 004 0510ARACACAR		00	
3703RSD26077212.05 004 0510INSECOLL	ENTO	40	4
3703RSD26077212.05 004 0005ARACACAR		00	25
3703RSD26077212.05 004 0005INSECOLL	PODU	40	2
3703RSD26077212.05 004 0005INSECOLL	ENTO	40	1
3703RSD26077212.05 005 0510ARACACAR		00	04
3703RSD26077212.05 005 0510INSECOLL 3703RSD26077212.05 005 0005ARACACAR	ENTO	40	3
		00	47
		00	12
070000 + · · · · ·	PODU	40	1
		00	04
	PODU	40	1
		00	3
3703RSD24077221.05 002 0005ARACACAR 3703RSD24077221.05 003 0510ARACACAR		00	20
3703R5D24077221.05 003 05101NSECOLL	17 A . T . S	00	2
3703RSD24077221.05 003 0005ARACACAK	ENTO	40	1
3703RSD24077221.05 004 0510ARACACAR		00	26
3703RSD24077221.05 004 0510INSEC011	ENTO	00	3
3703RSD24077221.05 004 0005ARACACAH	ENTU	40	1
3703RSD24077221.05 004 0005INSECOLI	ENTO	00	16
3703RSD24077221.05 005 0510INSETHYS	ENIO	40	1
3703RSD24077221.05 005 05104846464		40	1
3/03RSD24077221.05 005 0005ARACACAL		00	1
3703RSD24077221.05 005 0005INSEHYME	FORM	00	10
3/03HSD26077222.05 001 0510ARACACAB		10 00	1
3703RSD26077222.05 001 0510INSECOL	PODU	40	15
3703RSD26077222.05 001 0005ARACACAR		00	1 38
3703RSD26077222.05 001 0005INSECOLL	PODU	40	05
3703RSD26077222.05 002 0510ARACACAR		00	15
3703RSD26077222.05 002 0510INSECULE	STAP	10	2
3703RSD26077222.05 002 0005ARACACAR		00	77
3703RSD26077222.05 002 0005INSECULL 3703RSD26077222.05 003 0510ARACACAR	ENTO	40	6
		00	9
		0.0	39
	ENTO	20	05
		00	11
3703RSD26077222.05 004 0510INSECULL 3703RSD26077222.05 004 0005ARACACAR	ENTO	40	1
3703RSD26077222.05 004 0005INSECUL	2 (1) 1	00	47
3703RSD26077222.05 005 0510ARACACAR	PODU	40	3
3703RSD26077222.05 005 0005484CACAL		00	18
3703RSD26077222.05 005 0005INSECOL	PODU	00	44
3703RSD07087211.05 001 05101NSECOL	ENTO	40	2
3703RSD07087211.05 001 0510ABACACAD		10	4
3/03RSD07087211.05 001 05101NSE		00	2
3703RSD07087211.05 001 0005INSECOLE		00 40	3
3703R5D07087211.05 001 0005ARACACAR		40	1
3703RSD07087211.05 001 0005INSE		40	15
3703RSD07087211.05 001 0005INSECOLL	ENTO	40	1 7
3703RSD07087211.05 002 0510INSECOLL	PODU	40	3
3703RSD07087211.05 002 0510INSECOLL	ENTO	40	1
3703RSD07087211.05 002 0510ARACACAR		00	2
		- •	-

۰.

-101-

3703RSD07087211.05 002	0005ARACACAR		00	27
3703RSD07087211.05 002	0005INSECOLL	PODU	00	1
3703RSD07087211.05 002	0005INSECOLL	ENTO	10	ī
3703RSD07087211.05 003	0510ARACACAR		00	i
3703RSD07087211.05 003	0510INSECOLL	PODU	00	3
3703RSD07087211.05 003		APHI	40	4
3703R5D07087211.05 003			00	
3703RSD07087211.05 003		PÓDU		28
3703R5D07087211.05 003		ENTO	40	6
3703RSD07087211.05 004	0510INSECOLL	PODU	40	5
3703RSD07087211.05 004	0510ARACACAR	PODU	40	1
3703R5D07087211.05 004	0005INSECOLL	00000	00	1
3703RSD07087211.05 004	0005ARACACAR	PODU	40	9
3703RSD07087211.05 004	0005INSEHOMU	A 634 A T	00	20
3703RSD07087211.05 005		APHI	. 40	1
3703RSD07087211.05 005	0510ARACACAR		00	4
3703RSD09087212.05 001	0005ARACACAR		00	15
3703R5D09087212.05 001	0510ARACACAR		00	29
3703RSD09087212.05 001	0510INSECOLL	ENTO	40	1
370365000007212.05 001	0005INSECOLL	ENTO	40	9
3703RSD09087212.05 001	0005INSECOLL	ENTO	10	1
3703RSD09087212.05 001	0005ARACACAH		00	32
3703RSD09087212.05 002	0510ARACACAR		00	5
3703RSD09087212.05 002	0510INSEHEMI		40	1
3703R5D09087212.05 002	0005ARACACAR		00	5
3703RSD09087212.05 003	0510ARACACAR		00	04
3703RSD09087212.05 003	0005ARACACAR		00	19
3703RSD09087212.05 003	0005INSECOLL	ENTO	40	7
3703RSD09087212.05 004	0510ARACACAR		00	30
3703RSD09087212.05 004	0005ARACACAR		00	37
3703RSD09087212.05 004	0005INSECULL	PODU	40	1
3703RSD09087212.05 005	0510INSECOLL	ENTO	40	22
3703RSD09087212.05 005	0510ARACACAR		00	7
3703RSD09087212.05 005	0005INSECOLL	ENTO	40	13
3703RSD09087212.05 005	0005ARACACAR		00	
3703RSD07087221.05 001	0510ARACACAH		00	27
3703RSD07087221.05 001	0005INSECULE		40	17
3703RSD07087221.05 001	0005ARACACAR			1
3703RSD07087221.05 001	0005INSECOLL	ENTO	00 40	67
3703RSD07087221.05 002	0510ARACACAK	Enro		1
3703RSD07087221.05 002	0510INSE		00	7
3703RSD07087221.05 002	0510INSECOLL	ENTO	40	3
3703RSU07087221.05 002	0005ARACACAR	20	40	1
3703RSD07087221.05 002	0005INSEH0MU	APHI	00	86
3703RSD07087221.05 002	0005INSECOLE	ATT	40	1
3703RSD07087221.05 002	0005INSETHYS		10	1
3703RSD07087221.05 002	0005INSECOLL	ENTO	00	1
3703RSD07087221.05 003	0510ARACACAR	ENTO	40	1
3703RSD07087221.05 003	0005ARACACAR		00	10
3703RSD07087221.05 003	00051NSECOLL	8000	00	59
3703R5007087221.05 004	0510INSEHYME	PODU Furm	40	1
3703RSD07087221.05 004	0510INSE	FURM	10	1
3703RSD07087221.05 004	0510INSEHOMU		40	1
3703RSD07087221.05 004	0510ARACACAR		00	1
3703RSD07087221.05 004	0005ARACACAR		00	6
3703RSD07087221.05 004	0005INSECULL	(* k . * ->		104
3703RSD07087221.05 004	0005INSECOLL	ENTO	10	1
3703RSD07087221.05 005	0510ARACACAH	ENTO	40	3
3703RSD07087221.05 005			00	9
3703RSD07087221.05 005	0005ARACACAR 0005INSECULL	[" N T O	00	24
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ENTO	10	1

3703RSD07087221.05 005	0005INSECOLL	ENTO	40	1
3703RSD09087222.05 001		Ento	00	1
3703RSD09087222.05 001				1
3703RSD09087222.05 001	0005INSEHYME		40	1
			10	1
3703RSD09087222.05 001	0005ARACACAR		00	- 9
3703RSD09087222.05 002			00	7
3703RSD09087222.05 002	0510INSECOLL	ENTO	40	3
3703RSD09087222.05 002	0005INSECOLE		40	ī
3703RSD09087222.05 002	0005ARACACAR		00	18
3703RSD09087222.05 002	0005INSECOLL	ENTO	40	
3703R5D09087222.05 002	0005INSECULL	PODU	40	1
3703RSD09087222.05 003	0005ARACACAR	1000		1
3703RSD09087222.05 003		CA:TO	00	- 21
	0005INSECOLL	ENTO	40	1
	0510INSECOLL	ENTO	40	6
3703RSD09087222.05 004	0510INSECOLL	PODU	40	2
3703RSD09087222.05 004	0510ARACACAR		00	3
3703RSD09087222.05 004	0005ARACACAR		00	17
3703RSD09087222.05 004	0005INSECOLL	ENTO	40	2
3703RSD09087222.05 005	0510INSECOLL	PODU	40	ī
3703RSD09087222.05 005	0510INSECOLL	ENTO	40	4
3703RSD09087222.05 005	0510ARACACAR	ENTO		
3703RSD09087222.05 005	0005ARACACAK	·	00	12
			00	19
	0510ARACACAR		00	4
3703RSD21087211.05 001	0510INSECOLL	PODU	40	1
3703RSD21087211.05 001	0005ARACACAR		00	74
3703RSD21087211.05 001	0005INSECOLE		40	2
3703RSD21087211.05 001	0005INSECOLL		40	2
3703RSD21087211.05 002	0510INSECOLL	PODU	40	7
3703RSD21087211.05 002	0510ARACACAR		00	16
3703RSD21087211.05 002	0005ARACACAR		00	75
3703RSD21087211.05 002	0005INSECOLL	PODU		
3703KSD21087211.05 002	0005INSECULL	ENTO	40	4
3703RSD21087211.05 003	0510ARACACAR	ENIU	40	1
3703RSD21087211.05 003	0510INSECOLL	0000	00	5
		PODU	40	1
3703RSD21087211.05 003	0005ARACACAR		00	49
3703RSD21087211.05 003	0005INSECOLL	ENTO	40	3
3703RSD21087211.05 004	0510ARACACAR		00	12
3703RSD21087211.05 004	0005ARACACAR		00	52
3703RSD21087211.05 004	0005INSECOLL	ENTO	40	2
3703RSD21087211.05 005	0510ARACACAR		00	Ē
3703RSD21087211.05 005	0005ARACACAR		00	33
3703RSD21087211.05 005	0005INSETHYS		10	
3703RSD21087211.05 005	0005INSETHYS			1
3703RSD25087212.05 001	0510INSECOLL	ENTO	40	1
3703RSD25087212.05 001	0510ARACACAR	ENTU	40	2
3703RSD25087212.05 001	0005ARACACAR		00	9
			00	28
A A A B B B B B B B B B B	0005INSECOLL	ENTO	40	1
3703RSD25087212.05 001	00051NSECOLL	PODU	40	1
3703RSD25087212.05 002	0510ARACACAR		00	12
3703RSD25087212.05 002	0005INSECOLL	ENTO	40	17
3703RSD25087212.05 002	0005ARACACAR		00	21
3703RSD25087212.05 003	0510ARACACAR		00	5
3703RSD25087212.05 003	0510INSECOLE		40	
3703RSD25087212,05 003	0005ARACACAR			2
3703RSD25087212.05 004	0510ARACACAR		00	6
3703RSD25087212.05 004	0510INSE		00	23
3703RSD25087212.05 004	0005ARACACAR		40	2
070 (0)() 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0			00	36
	0005INSECOLE	STAP	10	1
3703RSD25087212.05 005	0510INSE		40	1
3703RSD25087212.05 005	0005ARACACAR		00	42

3703R5D25087212.05	005	0005INSECOLL	ENTO	40	10
3703RSD21087221.05	001	0510ARACACAR		00	5
3703RSD21087221.05		0005ARACACAR		00	36
3703RSD21087221.05		0005INSECOLE		40	1
3703RSD21087221.05	001	0005INSECOLL	ENTO	40	i
3703RSD21087221.05		0005INSECOLL	ENTO	10	i
3703RSD21087221.05	002	0510ARACACAR		00	2
3703RSD21087221.05		0005ARACACAR		00	18
3703RSD21087221.05	002	0005INSECULL	ENTO	40	2
3703RSD21087221.05	003	0510ARACACAR		00	ī
3703RSD21087221.05		0005ARACACAR		00	15
3703RSD21087221.05		0005INSEDIPT		40	1
3703RSD21087221.05	004	0510ARACACAR		00	3
3703RSD21087221.05	004	0510INSECOLL		40	- 3
3703RSD21087221.05		0005ARACÁCAR		00	12
3703RSD21087221.05	004	0005INSEHOMO	PHYL	40	1
3703RSD21087221.05	005	0510ARACACAR		00	5
3703R5D21087221.05	005	0005ARACACAR		00	28
3703RSD21087221.05	005	0005INSECULE		40	1
3703R5D21087221.05	005	0005INSED1PT		40	ī
3703RSD25087222.05	001	0510ARACACAR		00	3
3703R5D25087222.05	001	0510INSECOLL	PODU	40	3
3703RSD25087222.05	001	0005ARACACAR		00	7
3703RSD25087222.05	002	0510INSECOLL	ENTO	40	1
3703RSD25087222.05	002	0510ARACACAR	·	00	15
3703RSD25087222.05	200	0005ARACACAR		00	7
3703RSD25087222.05	003	0510ARACACAR		00	1
3703RSD25087222.05	003	0510INSECOLL	ENTO	40	ì
	003	0005ARACACAR		00	5
	004	0510ARACACAR		00	7
3703RSD25087222.05	004	0005INSECOLL	ENTO	40	5
	004	0005INSECOLL	PODU	4 Ú	1
3703RSD25087222.05	004	0005ARACACAR		00	6
3703RSD25087222.05	005	0510INSECOLL	PODU	40	1
3703RSD25087222.05		0510ARACACAR		00	7
	005	0005INSECOLL	ENTO	40	4
3703RSD25087222.05	005	0005ARACACAH		00	22

Small Mammal Live Trapping Data, Assessment Lines

Small mammal live trapping data collected on assessment lines at the Bridger Site in 1972 were recorded on Form NREL-17. These data, like the corresponding grid data, are stored as Grassland Biome data set A2U10B3. A sample data form and a listing of the data are attached.

GRASSLAND BIOME

U.S. INTERNATIONAL BIOLOGICAL PROGRAM

FIELD DATA SHEET--VERTEBRATE - ASSESSMENT LINES

Deta Type	Site	Initials	Day	Date Month	Year	Treatment	Replicate	Genus	Species	Subspecies	Condition	Mark	Number	Male	Female	Weight	Molt	Line Number	Trap Number	Previous Number
1-2	3-4	5-7	8-9	10-11	12-13	14	15	21-22	23-24	25	27	29	31-34	36	38	40-44	46	49	51-52	54-57
Site O1 Ai O2 Bi O3 Br O4 Cc O5 Di O6 Ha O7 An O8 Jo O9 O5 10 Pa 11 Pa 12 Treatm 1 Ung 2 Lig 3 Modd 4 Hea 5 Ung 4 Diel 5	LE ison ridgen ickins aridgen ickins aridgen ickins aridgen ickins aridgen ickins aridgen ickins are arade thig theat ar on theat ar on theat th	grazed ly grazed ly grazed curren ly ht erate vy breedin breedin breedin breedin	t t g g g g	1 Esc 2 Tor 3 Dea Molt 0 No 1 Pos 2 Pos 3 Adu 4 Adu 5 Mol 5 St. 6 Under 4 Adu 5 Mol 5 St. 6 St. 6 St. 6 St. 6 St. 7 Dea 8 St. 7 Dea 9 St. 8 Toe 9 St. 9 Toe 9 St. 9 Toe 9 St. 9 Toe 9 St. 9	mal aped pid d t-juve t-suba lt (ve lt (au t of u age etermin arked cag clip t ag clip	nile dult rnal tumna nknow neđ) a1)													
Subac Juver Adult Subac Juver Adult Subad	dult, nile, t, vu dult, nile, t, vu dult, nile,	vulva vulva lva turg vulva i vulva corr vulva c vulva c	inact inact gid turgi turgi nifie corni	ive ive d d fied																

+++ LISTING OF DATA +++

1234567890123454	2 3 4 5 6
120,00,000123436	3 4 5 6 57890123456789012345678901234567890123456789012345678
1703BMH2108723	PEMA 0 2 20 0 V
1703BMH2108723	PEMA 0 3 140
1703BMH2108723	PEMA 0 2 20 0
170JBMH2208723	PEMA 0 3 38 0 19 0 7 10 PEMA 0 3 38 0 19 0 8 13
17038MH2308723	PEMA 03 126 6 7 14
1703BMH2308723	PEMA 0 3 140 6 6 7 15
1703BMH2308723	PEMA 0 3 20 6 6 11
17038MH2308723 17038MH2308723	PEMA U 3 41 9 6 3 17
1703BMH2308723	PLMA U 3 61 1 6 3 5
17038MH2408723	FEMA U 3 74 0 6 5 1
1703BMH2408723	PEMA 0 3 140 6 21 0 7 16 PEMA 0 3 62 6
1703BMH2408723	FFMA (1.2 (1.1)) 20 0 1 17
1703BMH2408723	PEMA 0 3 25 0 10 1 9
1703BMH2508723	PEMA 0 3 140 5 10 1 1
1703BMH1108721	PEMA 0 3 40 6 21 0 7 15
1703BMH1108721	PEMA (13 4) L L C C
1703BMH1108721	PEMA 0 3 42 6 19 0 2 13
1703BMH1108721	PENA U 3 10 9 18 0 2 13
17038MH1108721 17038MH1108721	PEMA 0 3 43 C 9 U H IZ
1703BMH1208721	PEMA U = 3 44 c = 100 3 1c
17038MH1208721	PEMA 0 3 45 1 13 0 6 9
17038MH1208721	PEMA U 3 406 24070
1703BMH1208721	MIMO 0 3 12 3 36 0 7 15 MIMO 3 3 2 0 30 0 7 15
17038MH1208721	VEMA 0 2 - 0 50 0 8 13
1703BMH1208721	
1703HMH1208721	PEMA 0 3 64 5 17 0 8 4
1703BMH1208721	PEMA U 3 40 4 0 1 6
1703HMH1208721	MIMO 0 3 10 24 0 1 7
1703HMH1208721	PEMA 0 3 50 2 20 2 14
1703BMH1208721	MEMA 0 3 10 6 14 0 212
17036MH1308721 17038MH1308721	
1703EMH1308721	$PEMA = 3 = 3 = 5 \mathcal{E} + 1 = 1 = 1 = 1$
1703BMH1308721	PEMA 0 3 41 1 14 0 1 H
1703HMH1308721	16 6 16 0 2 12
1703BMH1308721	PEMA (1 2 53 1 13 0 3 12
17038MH1308721	
1703BMH1308721	FEMA () 3 56 1 10 / 3
1703BMH1408721	PEMA 3 3 40 0 10 0 7 6
1703BMH1408721	PEMA 0 3 40 7 6
1703BMH1408721	
17038MH1508721	PEMA 3 3 56 0 18 5 7 5
1703BMH1508721 1703BMH1508721	MIMO U 3 18 0 35 6 8 1
1703BMH1508721	PEMA 36 1 D L
1703BMH0608723	PEMA 0 3 10 6 15 0 2 12
1703HMH0608723	PEMA 0 3 36 1 6 6 15
1103PWH0P08153	$\frac{1}{1}$
17036040608723	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1703RMH0608723	PEMA 0 2 24 0 U B 13
1703BMH0608723	PEMA 3 3 45 0 1 12
1703HMH0608723	PEMA 0 3 32 1 0 0 8 15
1703BMH0608723	PEMA 0 3 44 5 0 7 10
	0 7 7

1703BMH0708723	PEMA	6.5	10.4	للل و المحدة و معنى و داده
1703BMH0708723	PEMA	03	19-6	19067
1703BMH0708723		03	21 в	16073
1703BMH0708723	PEMA	03	41 6	190 611
	PEMA	03	36 0	200614
1703BMH0708723	PEMA	03	48 6	180 411
1703BMH0708723	PEMA	03	49 6	19 0 2 11
1703BMH0708723	MIMO	33	26	26 U 2 8
1703BMH0708723	PEMA	υ 3	14 6	180 813
1703BMH0708723	PEMA	03	3 <u>i</u> 6	180 813
1703BMH0708723	PEMA	33	37 1	14 7 12
1703BMH0706723	PEMA	03	32-1	16 7 9
17038MH0708723	PEMA	03	12 6	18 7 8
1703BMH0808723	PEMA	33	19-6	19067
1703BMH0808723	PEMA	33	32 1	13 0 7 9
1703BMH0808723	PEMA	03	47 6	18 0 5 12
1703BMH0808723	PEMA	33	50 3	17053
1703BMH0808723	PEMA	11		652
1703BMH0808723	PEMA	03	51 6	15 0 2 10
17036MH0808723		Û Ĵ	15 6	16 0 2 13
1703BMH0808723		0 3	52 1	
1703BMH0808723		03	3 1	•
1703BMH0808723		03	20 9	—
1703BMH0808723		03	140 6	• ~ ~ ~ ~
17036MH0808723		Ú3	40 Ó	15 0 7 14
17038MH0908723		33		1507 в
17038MH0908723		03	. –	0 6 11
1703BMH0908723		03		052
1703BMH0908723		03		0 4 11
1703BMH0908723		33	41 1	0 3 16
17036MH0908723		55 63	15 6	0 2 11
1/03BMH0908723			14 б	0 1 14
17036000000723		03	433	CLL Ú
1703BMH0908723		33	31.6	61 b V
1703BMH1008723		03	140 6	0 7 17
17038MH1008723		0 3	54 o	510 6 1
1703BMH1008723		53	40 6	16 V 6 9
		13	26 0	19 u 6 14
1703HMH1006723) 3	14 b	16 0 1 16
17038MH1008723 17038MH1008723		3 3	۷	153 0 3 15
	PEMA (-	43 0	17 U 1 12
1703HMH1006723	PEMA L		55 b	20 0 7 4
1703BMH1008723	PEMA L		20 9	34 0 7 3
13038WH5008351	MIMO 3		31 0	31 U 4 II
1703BMH2608721	MIMU U	-	20 6	30 0 7 10
1703BMH2708721	PEMA U	-	9 0	cù 0 2 14
1703BMH2708721	MIMU 0	-	32 0	20 0 4 11
1703BMH2708721	ΜΙΜΟ Ο		0 EE	47 0 5 5
1703BMH2708721	PEMA U	3	76 9	280 6 9
1218082HW8E021	PEMA U	Э	77 0	16 U 1 B
1703BMH2608721	PEMA Ú	3	70 9	25009
1703BMH2908721	PEMA 3		78 U	17 0 1 5
1703BMH2906721	PEMA 0	3	У ()	200215
1703BMH3008721	PEMA 0	3	76 9	20 0 6 9
1703BMH3008721	THTA 3	3	1 1	41 0 7 16
1703HMH3008721	PEMA U	З	79 2	11 0 1 16
1703HMH3008721	PEMA U	3	БU 2	90115
1103HMH3008721	MEMA U	3	41 1	13 0 1 7
12038MH3008151	PEMA U	3	81 1	
17038MH1707721	PEMA U	3	6 0	0 4 13
1703BMH1807721	LAPR U	3	3 6	23 0 3 15
	-	-	- 0	ra A 212

-108-

.....

1703BMH1807721		03	16	0	20-0	2 11
17036MH1807721	PEMA	0З	12 5		19 0	4 9
1703BMH1907721	PEMA .	33	18.6		6	16
17038MH2007721	PEMA I	03	17 6		6	4 8
1703BMH2107721					-	
1703BMH1007723	PEMA (U 3	19-6		18 Ú	<u>к</u> и
1703BMH1007723		03	6 6		10 0	68
1703BMH1007723		из 13				6 14
1/038MH1007723		5 3 5 3			6	3 10
1703BMH1007723			1		6	1 9
1703BMH1007723		13	20	6	19 0	ei s
17038MH1007723		13	56		6	7 12
17030001007723	PEMA (-	21	9	23 0	76
1703BMH1107723	PEMA (22 3		24 0	63
1703BMH1107723	PEMA C) 3	23	1	15 0	66
1703BMH1107723	PEMA 1	1			6	0 8
1703BMH1107723	PEMA 1	1			0	6 14
1703BMH1107723	PEMA 3	в З	16 6		0	3 10
1703BMH1107723	PEMA 0		14 6		o o	1 10
1703BMH1107723	PEMA 3		5 6		Ŭ	
1703BMH1207723	PEMA U		22 6			
1703BMH1207723	PEMA U				b	0 5
1703BMH1207723	PEMA 3				23 0	6 6
1703BMH1207723			25 0		19 0	6 8
1703BMH1207723			6.6		Ŭ	6 14
1703BMH1207723	PEMA 0		26	9	29 0	1 1
	PEMA O		20	6	6	8 lu
1703BMH1207723	PEMA 0		27 5		20 U	1 3
1703BMH1207723	PEMA U		28	9	29 0	12
17036MH1307723	PEMA U		29 3		19 0	σZ
1703BMH1307723	PEMA U	3	23	1	Û	6 5
1703BMH1307723	PEMA U	3	40 6		21 0	6 7
1703BMH1307723	PEMA U	3	19	3	• o	68
1703HMH1307723	PEMA 0	3	30 4	-	14 U	υ Ψ
1703BMH1307723	PEMA U	3	31 3		18 0	
1703BMH1307723	PEMA U	3	32 2		10 0	8 13
17038MH1307723	PEMA 0	3	12 6			
1703BMH1307723	PEMA 0	3	15 6		=	
1703BMH1407723	PEMA 0	3		2	0	1 16
1703HMH1407723				3	24 0	ک ۲
1703BMH1407723		3		9	31 U	1 1
1703BMH1407723		٤	24 3		Û	6 6
1703BMH1407723	PEMA O	3		1	Ú	0 Î
	PEMA U	3	59 3		U	68
1703HMH1407723	PEMA U	3	34 6		24 U	6 1 0
1703HMH1407723	PEMA 0	3	17 0		U	3 10
1703HMH1407723	PEMA 0	3	35 6		19:0	1 17
1703HMH1407723	PEMA U	Э	12 0		0	112
1703HMH1407723	PEMA U	3	28 9	}	30 Ŭ	1 3
1703HMH1407723	PEMA 1	1	•			73
1703HMH1407723	PENA O	3	14 b		Ű	-
	Ŭ	-			v	d 15