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ABSTRACT OF THESIS 

LOW-SENSITIVITY ACTIVE FILTER DESIGN 

At high frequencies, the performance of active filters is impaired 

by the frequency dependent nature of the operational amplifiers. Much 

research has been devoted to the design of active filters with reduced 

dependence on the active devices; however no general analysis scheme or 

method of comparing existing filters has emerged. 

A general characterization of second-order active-RC filters 

employing one, two, and three operational amplifier(s) is given. A 

method of comparing active filters with respect to the active devices 

based on the active sensitivity function is introduced. Conditions 

necessary for zero pole, w, Q, and transfer-function-magnitude active 
0 

sensitivities are derived. Several novel circuits that possess. these 

zero-active-sensitivity properties are presented. The markedly superior 

performance of these filters is demonstrated by a comparison of second­

order zero-active-sensitivity filters with other popular existing 

realizations. Experimental results that agree favorably with the 
I 

theoretical results of these filters are presented. 

Randall L. Geiger 
Electrical Engineering Department 
Colorado State University 
Fort Collins, Colorado 80523 
Summer, 1977 
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CHAPTER I 

INTRODUCTION 

Active RC filters are filters constructed with resistors, capacitors, 

and some type of amplifying device. For low frequency applications they 

are often more economical to construct, smaller in size, and easier to 

tune than their passive counterparts and, as a result, much research has 

been devoted to active-RC filter design. Many active-RC filter designs 

have appeared in the literature since the landmark paper of Sallen and 

Key (l] in 1955, but no dominant general design procedure has emerged. 

Cost, size, tunability, component spread, and performance are some 

of the factors that must be considered when comparing two active filters 

that ideally have the same transfer function. This thesis addresses the 

performance of active RC filters. In active RC filters, the critical 

transfer-function parameters, such as thew and Q of the poles and 
0 

zeros, are determined by resistors, capacitors and the characteristics 

of the amplifying device (alternately, active device) itself. Conse­

quently, changes in these circuit components from the values specified 

in the design will cause a change in the critical transfer-function 

parameters. In practical designs, the component values will vary from 

those specified in the design due to manufacturing tolerances, aging, 

temperature, etc. Many circuit designs exist that will realize a given 

transfer function; the critical parameters of some are affected much 

less by small changes in circuit components than others. 

The sensitivity function is useful for comparing filters with 

respect to the passive components as it relates the changes in transfer­

function parameters to the changes in the passive components. Many 

circuit designs exist with acceptably low passive sensitivities. In 

1 
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many designs the change in transfer-function parameters due to small 

changes in the passive components is small compared to those that result 

from changes in the properties of the active device. 

Most recent active filter designs use an operational amplifier (OP 

AMP) as the active device. An ideal OP AMP has infinite input impedance, 

zero output impedance, infinite common-mode rejection ratio, and an 

infinite voltage gain. OP AMPs will be the only active devices 

discussed in this thesis. 

Prior to 1972, most active filter designers assumed the OP AMP to 

be ideal. As a result, the experimentally observed performance of many 

of these designs differed significantly from that predicted by the 

design. A model of the internally compensated OP AMP was presented by 

Budak and Petrela [2] and others in 1972 and has been incorporated in 

most designs in recent years. The use of this model has resulted in 

quite close agreement of theoretical and experimental results. A 

discussion of this model is included later in this chapter. 

Since the parameters of this model vary considerably from device to 

device, and since even the parameters of a specific device are affected 

by temperature, supply voltages, aging, signal levels, etc., the critical 

transfer-function parameters of a good active filter design should be 

insensitive to changes in the characteristics of the active device. 

There is not an agreement among active filter designers on a method 

for comparing, with respect to the active device, any two active RC 

filters that ideally have identical transfer functions. A host of 

literature [3] - [21] has appeared in recent years discussing and intro­

ducing circuits in which some parameters are less dependent on the 
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characteristics of the active devices than the circuits of Sallen and 

Key. However, these circuits all have one or more critical parameter(s) 

whose dependence on the active devices is of the same order of magnitude 

as the circuits of Sallen and Key. 

Contributions of This Thesis 

The active sensitivity function is introduced and shown to be a 

figure of merit that can be used to compare with respect to the active 

devices any two active filter designs that have ideally identical 

transfer functions. Designs with low active sensitivity are less 

dependent on the active-device characteristics than those with high 

active sensitivities. 

Thew and Q of the poles and zeros, as well as the transfer-
o 

function magnitude of a t ransfer function, are affected by the active 

devices. The degree of t he dependence is a function of the actual pole­

zero locations, which are in turn functions of the characteristics of the 

available OAs. In some designs, only the poles are affected by the 

characteristics of the active devices. In this thesis, conditions are 

established to force the active sensitivities of either the poles or 

zeros or both to vanish. Several design examples are included in which 

both the zero and pole sensitivities, with respect to the active 

elements, are zero. These designs are compared with popular existing 

designs on a basis of incremental as well as infinitesimal changes in 

the characteristics of the OP AMPs. It is shown that any realizable 

transfer function can be obtained from a circuit with zero active 

sensitivities. Prior to this investigation, no active RC filters 

possessing this property were given. These zero-active-sensitivity 

properties are obtained without requiring matched OP AMPs. 
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Most existing two-input amplifiers ideally have an infinite connnon­

mode rejection ratio and thus, identical gain functions on each input. 

The usefulness in active filter design of a two-input amplifier with a 

different gain function for each input is demonstrated. 

Development of Notation 

In a linear single-input single-output system, the Laplace trans­

form of the output, R(s), is related to the Laplace transform of the 

input, E(s), by 

R(s) = T(s) E(s) (1) 

where T(s) is dependent only upon the system and hence is independent of 

the particular input E(s). T(s) is called the transfer function of the 

system. In the case that the system is composed of a finite number of 

lumped circuit components and amplifiers, the transfer function is the 

ratio of two polynomials with real coefficients, 

m 
i l a. s 

i=O 1 
N(s) T (s) = = 
D(s) 

(2) 
n 

sj l b. 
j=O J 

where a f O and b = 1. 
m n 

The poles and zeros of the transfer function T(s) are defined as 

the roots of D(s) and N(s), respectively. The transfer function, T(s), 

may be expressed in terms of the poles and zeros by 

m 
a 1T (s-z.) m i=l 1 

T (s) = (3) 
n 
1T (s-p.) 

j=l J 
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The order of the transfer function is defined to be the maximum of m 

and n. 

In the case that the order of the transfer function is two, the 

transfer function is said to be biquadratic. It is immediate that T(s) 

may be written as a product of biquadratic transfer functions with real 

coefficients and, at most, one first-order transfer function. In 

general, this decomposit i on is not unique. 

Many higher-order transfer functions are realized by cascading 

biquadratic and first-order sections. Some advantages of cascaded 

biquadratic designs are the use of a common biquadratic building block 

and ease of tuning. Some direct designs may be less sensitive to 

changes in component values and require fewer components than the 

cascaded biquad designs. 

Since the degree of the biquadratic transfer function is two, it 

may be expressed in the form 

T(s) (4) 

Two biquadratic-transfer-function parameters of interest are obtained 

when T(s) is written in the form 

T(s) (5) 

w
0 

is called the pole frequency and Q is called the pole Q. 

If a sinusoidal input A sin wt is applied to a system with transfer 

function T(s), the steady state response is given by 

r(t) = IT(jw I •A• sin(wt + L T(jw). (6) 
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The frequency-dependent amplitude-scaling factor IT(jw)I is called the 

transfer function magnitude and L T(jw) the phase of the system. 

Sensitivity 

If f is a function and a is a variable, then the sensitivity off 

with respect to a is defined as 

af 
aa. 

Many authors define the sensitivity function by 

a af = f aa 

(7) 

(8) 

Some advantages of the normalization in the latter definition are that 

the sensitivity expressions are often less involved and that the sensi­

tivity directly approximates the ratio of the percentage change inf due 

to a given percentage change in a. The former definition, however, has 

been adopted since it is useful when a or f vanish; a situation that is 

later shown to exist when comparing active filters. 

Operational Amplifier Model 

The active device in all filters discussed here is an internally 

compensated operational amplifier with infinite input impedance, zero 

output impedence, infinite common-mode rejection ratio, and is charac-

terized by the transfer function [2]. 

V 
A(s) 

0 = V. 
1 

= 1 
T S 

(9) 

The symbol for the operational amplifier is shown in Fig. 1. The time 

constant, T, is related to the gain-bandwidth product, GB, of the OP AMP 
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-
l --

Fig. 1. Operational Amplifier 
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(typical values of which are usually included in manufacturer specifi­

cation sheets) by the expression 

T = 1/GB. (10) 

The OP AMP thus is characterized by a single parameter, T. In the 

case that T = 0 the OP AMP as said to be ideal. 



CHAPTER II 

SENSITIVITY CONSIDERATIONS 

Active Sensitivity--A Figure of Merit 

Let f be a transfer function parameter of an active RC filter 

consisting of r resistors, c capacitors and m OP AMPs. Let R, C, 
-+ 

and T be rxl, cxl, and mxl column vectors, respectively, of the component 

values specified in the active-RC filter design. Also, let R + R, 
p 

C + C, and T + T be the actual component values used in the design. 
p p 

Define the (r + c + m) x 1 component vectors P and P by the expressions 
p 

and (11) 

The function, f, is a function of P + P where P is ideally the 
p p 

(r + c + m) x 1 zero vector. If f is expanded in a Maclaurin series in 

terms of the r + c + m independent variables, one obtains 

++ 
f(P+P) = 

p 
-+ 

f(P) + 
r+c+m af 

I <~) pp 
i=l i i 

-+ p :zQ 
p 

-+ 
where p is the ith element of P 

pi p 

r+c+m r+c+m a2f + l l api apj i=l j=l 

+ ... (12) 

A first-order approximation off is obtained by neglecting all 

second-order and higher terms. A first-order approximation is thus 

r+c+m 
(~) f(P + P > '\, f(P) + l pp (13) p 

i=l api i 

p =O 
p 

9 
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This may be expressed in terms of the sensitivity function defined in 

(7) by the expression 

fCP + P) 
p 

-+ 
"' f (P) + 

(r+c+m) 
l 

i=l 
-+ 
P =O p 

(14) 

-+ 
The right hand side of (14) is equal to the desired part f(P) plus the 

parasitic part 

(r+c+m) 
l sf 

i=l P1 
-+ 
p -o 

p 

(15) 

Although no assumption on the form of the statistical distribution from 

-+ 
which the p 's comes is made, if P is assumed to be a random variable, 

p p 

the variance of the first-order approximation of f(P + P) is given by 
p 

-+ -+ 
var(f(P + P )) 

p 
= 

(r+c+m) 

l var 
i=l 

where it is safely assumed that the random variables pp and p 
i pj 

(16) 

are 

independent for i/j. To avoid cluttering the notation, no distinction 

is made between the random variable P and the 
p 

distinction should be clear from the context. 

-+ 
sample point P; the 

p 

The term var(p ) is 
pi 

dependent only on the available circuit components and is always 

-+ -+ 
nonnegative. Thus, the term var(f(P + P )) is an increasing function 

p 

of the configuration dependent quantity lsf I I for i=l, •.• r+c+m. 
pi -+ 

P =O 
p 

The merit of the function Sf, i=l, ... r+c+m for comparing active filter 
pi 

sections is immediate. In particular, the active sensitivity defined by 

af 
clt. 

1 

(17) 
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is a figure of merit for comparing active-RC filter sections with 

respect to the active devices. Unless stated otherwise, the term 

sensitivity is to be interpreted as active sensitivity throughout the 

remainder of this thesis. 

Two schools of thought exist on the design of the active RC filt~r 

itself. One assumes that the OP AMPs are ideal for the determination of 

the resistor and capacitor values in the circuit. With this assumption 

+ + 
the T vector defined above is the zero vector and the vector T is 

p 

composed of the actual OP AMP time constants, that is, ti=O and t =T., 
pi 1 

i = 1, ... m. 

The other assumes that the parameters of the OP AMP are equal to 

their expected (or in some cases measured) value when the resistor and 

capacitor values are determined. This is actually a form of predistor­

tion discussed by several authors [20, 22]. Since the variance of the 

OP AMP time constant is large and dependent upon the environment, little 

is gained from such designs; the design itself is, in general, more 

involved, often requiring the use of a digital computer. 
+ 

Since R and 
p 

C are usually assumed to have a zero mean, it follows from (12) that p 
+ + + 

for the latter case the expected value of f(P + P) is equal to f(P). 
p 

The estimate of f(P + P) is, in general, not unbiased in the former 
p 

case; however, in most good designs the bias is quite small. Nonethe-

less, the variance is the same in both cases. Unless stated otherwise, 

+ + 
it is assumed that Tis the zero vector in this thesis and hence, T 

p 

is the vector of OP AMP time constants. This assumption is by far the 

most popular and does keep the analysis somewhat tractable. 

Although a comparison of active RC filters should be made on the 

basis of changes in critical parameters due to both active and passive 
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components, this thesis only discusses comparisons with respect to the 

active devices; comparisons with respect to the passive components have 

been quite successfully made by many others in the past twenty years. 

The assumption will thus be made that the resistors and capacitors are 

ideal. To see the effect of the nonideal OP AMPs on the active-filter 

transfer-function parameter, f, (12) thus reduces to 

f(T) 
p 

= 
+ m af 

f(T =O) + L 
p i=l dTi 

m a3f 

m m 

+ l l 
i 1 . l dT. dT. 

= J= 1 J 
+ 
T =O 

p 

+ l l l dTidTjdTk TiTjTk + ... 
i, j' k=l 

+ 
T =O p 

and the first-order approximation of (14) reduces to 

+ 
f(T) p 

+ 
f(T =O) + 

p 

Sensitivity Relations 

m 

l 
i=l 

+ 
T =O 

p 

+ -~ =O 
p 

(18) 

(19) 

For any circuit component, q, the transfer function may be written 

in the form 

T (s) 
N

0
(s) + qN

1
(s) 

D
0

(s) + qD1 (s) 
~ 
D(s) (20) 

where N
0

, N1 , D
0

, and o1 are polynomials ins independent of q. The 

pole sensitivity of the pole p. is defined by (7) as 
1 

(21) 

Since D0 (pi) + qD1 (pi)= O, an implicit differentiation of this equation 
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with re$pect to q yields 

ap. 
Solving for -2:. 

aq 

= 

= 

the following expression is obtained 

o. (22) 

(23) 

where it has been assumed that pi is a simple pole to enable division by 

d 
dp D(p1) in (22). An analogous expression for the sensitivities of the 

i 
zeros can also be written. 

Thew and Q sensitivities will now be derived. From (5), the pole 
0 

p1 may be expressed in terms of w
0 

and Q by the expression 

= .!.2 w [- _Ql + i/4 - 12 ] • 
0 - Q 

Upon differentiating this equation by q, it follows that 

and 

w 
s 0 

q 

= 

(24) 

(25) 

(26) 

The transfer-function-magnitude sensitivity will now be computed 

two ways. The first, which will be stated in the form of a theorem, 

relates the transfer-function-magnitude sensitivity to the root 

sensitivities. The second is much easier to derive and apply. Before 

the theorem is stated, some notation must be developed. T(s) as given 

in (3) can be decomposed into the product of the desired and parasitic 

transfer functions defined by the expression 



where 

= 

14 

nl 
Tr (s-pJ.) 

j=l 

m 

a Tr (s-zi) 
m2 i=m

1
+1 

-+ 

n 
Tr (s-pi) 

i=n
1
+1 

a is independent of T, and where 
ml p 

m 

a Tr (s-zi) 
m2 i=m

1
+1 

n 
Tr (s-p.) 

j=n
1
+1 J 

-+ 
T =O 

p 

1, 

= Cl) for m > i > m
1

, and n ~ j > n
1

. 

Theorem: If Tis an OP AMP time constant, then 

[ p. z ] SIT (jw) I 
nl S 1 ml Si 

= I T(jw) I Re l _T_ - l _T_ 
T T =O i=l s-pi j=l s-zj -+ 

T =O p p 

-+ 

(27) 

(28) 

(29) 

(30) 

Proof: For any s and any T, the poles and zeros of the parasitic p 

factor, T (s), may be p decomposed into the four disjoint sets: 

G = {zijzi is a zero of T (s) with nonzero immaginary part} 
CZ p 

G = {zijzi is a zero of T (s) with zero immaginary part} 
rz p 

G = {pijpi is a pole of T (s) with nonzero immaginary part} cp p 

G = {pijpi is a pole of T (s) with zero immaginary part}. rp p 

Since G and G contain only complex conjugate pairs, T (s) may be cp CZ p 

written in the form 



where 

It thus 

a 

1T pi 

P EG (s-p) 
i rp i 

= a 
,rzizj 

m3 m2 ,rpipj 

follows that 

1T 

Zi£G rz 

15 

(31) 

(32) 

Log T (s) 
p 

, L ( PiP! \ + , L ( (s-zi) (s-zt) ) 
= l og (s-p ) (s-p*) } l og z z* 

i i i i 

pi s-zi 
+ l Log(--) + l Log(--) + Log a + 2irik (33) 

s-pi zi m3 

where the function Log(x) is the principle value of the logarithmic 

function and the integer k is the constant necessary to make (33) valid. 

The ranges on the summat i ons in (33) are obvious from (31). Differen­

tiation of (33) with respect to a parameter q results in the expression 

_a__,TP~(_s_) = T (s) • l sl-, ( ~ + ~ ) 
aq p - l p (s-p) p*(s-p*) -

i i i i 

api az. 

] aa l l. 

+ l ag - I ag +-1-
m3 

pi(s-pi) zi(s-zi) a aq 
m3 

But 

c)pi clp* i api 

ag + ag 
T =O 

lim ( ag + = 
pi(s-pi) p*(s-p*) pi-+<» 2 i i p pi 

. 

clp* i 
ag 
*2 pi 

). 
I 

clz* 

ag i ) 
z*(s-z*) i i 

(34) 

(35) 
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The complex root pi may be expressed as 

u + iv (36) 

where the real valued functions u and v are, in general, functions of q, 

It thus follows from (36) that 

clpi clp* 
2 

clv (u2 2 clv i -- - V ) + 4uv -
clg + clg = clg clg 

2 *2 1Pil
4 

pi pi 

(37) 

From (35) and (37), it is concluded that 

Re [iw l clpi ap* 

I 'p=o] 
i 

clg + clg = o. 
(s-pi)pi (s-p*)p* i i 

(38) 

A similar argument establishes the same result for the complex zeros, 

real poles, and real zeros in (33). 

It is a well known and easily verified fact that 

5 IT(jw) I 
q 

= (39) 

Upon taking the logarithm of (27) and differentiating with respect to q, 

one obtains 

5
T(s) 
q 

z 
nl Si 
l _q_ + 1 

i 1 
s-z. T (s) = 1 p 

clT (s)J 
~q • (40) 

In the case that q is an OP AMP time constant, T (an element of the 
a 

T vector), it follows from the decomposition in (27) that S ml= 0. p T 

Furthermore, since the OP AMP gain function is (Ts)-1 , it follows from 

(28) and (32) upon evaluating at s = 0 that a = 1 and is independent 
m3 

of T, It may be thus concluded from (38), (39) and (40) that 



S jT(jw) I I+ 
T T =O 

p 
= I T(jw) I 

The proof is now complete. 
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I 
Pi zi 

s s 
T T 

Re -- - --2 s-p I s-z 
i i l + 

T =O 
p 

(41) 

The second derivation of the transfer-function-magnitude sensi­

tivity is obtained from (20) and (39). Equation (20), repeated for 

convenience, states t hat T(s) may be written as 

T (s) 
N

0
(s) + q N1 (s) 

= D
0

(s) + q n1 (s) 

Differentiating with respect to q, it follows that 

8T(s) = 
q 

[D
0

(s) + q n1 (s)] N1 (s) - (N
0

(s) + q N1 (s)]D1 (s) 

2 [D
0

(s) + q n1 (s)] 

Consequently, it follows from (39) that 

(42) 

(43) 

(44) 

In the case that q is an OP AMP time constant, this equation reduces to 

= IT{jw) I Re j N1 
(jw) 

N (jw) 
0 

Merits of the Root-Sensitivity Function 

Dl (jw) l 
D (jw) 

0 

(45) 

From (25), (26), and (30), it follows that thew, Q, and transfer-
o 

function-magnitude active sensitivities may be written in terms of the 

root sensitivities, thus emphasizing the importance of the root­

sensitivity function. In particular, it should be observed from these 

equations that if the root sensitivities all vanish, then so do the w
0

, 
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Q, and transfer-function-magnitude sensitivities with respect to the 

time constant of the OP AMP. The conditions necessary for zero root 

sensitivities in active filter design are developed in the next chapter. 



CHAPTER III 

ZERO-SENSITIVITY CRITERION 

General Active Transfer Functions 

The most general three-OP AMP active filter with output taken from 

the output of one of the OP AMPs is shown in Fig. 2 . .Applying super­

position to this configuration , the following set of equations is 

obtained: 

where 

T .. 
1J 

= 

V =O 
k 

(46) 

fork£ {O, 1, 2, 3} - {j} (47) 

is the transfer function of the passive RC network from terminal j to 

terminal i . From (9 ) , it follows that 

and 

-v 4 

-v 5 

(48) 

It follows from the two systems of equations (46) and (48) that 

the overall active-RC transfer function of the circuit of Fig. 2 is 

given by 

19 
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V3 V2 V1 

+ + + 
v6 V5 V4 

Passive RC Network wifh Finite Number 

of Lumped Elements 

0 

Vj.,_ _ ___, 

Fig. 2. General Three-OP AMP Active RC Filter 
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T(s) 
V (s) 

0 
= 

Vi(s) 

From (49) it follows that for three, two, and one OP AMP(s), the 

transfer functions are given by: 

THREE OP AMPS 

2 
-T43T50T60+(T43T60-T40T63)T2s+(T42T50-T40T52)T3S-T3T3S T40 

T 41 T 52T63+T 42'i 53T61 +T 43T 51 T62-T 43T 52T61-T 41 T53T62-T 42T 511'63 

2 
+Tls(T52T63-T53T62)+T zs(T41T63-T43T61)+T3S(T41T52-T51T42)+T1T2S T63 

2 2 3 
+T1T3S T52+'2'38 T41+'1'2'38 

TWO OP AMPS 

= 

SINGLE OP AMP 

(49) 

(SO) 

(51) 

(52) 

Since all transfer functions of passive RC networks with a finite 

number of lumped components are ratios of polynomials, multiplication 

by the least common multiple of all denominator polynomials in any of 

the three active-RC transfer functions just given enables these transfer 

functions to be written in the following form: 
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where all Ns and Ds are polynomials ins independent of the time 

constants of the OP AMPs. 

Conditions for Zero Pole-Sensitivity 

(53) 

(54) 

(55) 

Conditions for zero active pole-sensitivity will be derived for 

the three-OP AMP active RC filter. The results for the single- and two­

OP AMP cases will be subsequently stated. 

From (23) and (53), the pole sensitivity of the kth pole, pk 

(a simple root of n3 (s)) with respect to T1 , the time constant of the 

first OP AMP, may be expressed as 

pk D31 (pk)+ D312(pk)T2 + D313(pk)T3 + D3123(pk)T2T3 
s =---~~-~----~--~~---~~----~---c-

Tl d [D3(pk)+TlD31 (pk)+T2D32(pk)+T3D33(pk)+TlT2D312(pk) 
(56) 

dpk +TlT3D313(pk)+T2TJD323(pk)+TlT2T3D3123(pk)] 

Hence 

(57) 

+ 
where T is as defined on page 9. It follows from (57) that if the 

p 

pole sensitivity of each simple pole of n3 (s) with respect to the first 

OP AMP is to be identically zero, it is necessary and sufficient that 
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(58) 

where pk is any simple root of Ds(s). 

By similar arguments, the conditions for zero pole-sensitivity of 

each simple pole of n3 (s) with respect to each OP AMP time constant are 

obtained. The conditions for zero pole-sensitivity with respect to each 

OP AMP time constant for the three- and two-OP AMP active filters are, 

respectively: 

CONDITION 1 

D31 (pk) = 

where pk is any simple root of D3 (s) 

CONDITION 2 

0 

where pk is any simple root of D2 (s), 

= 0 (59) 

(60) 

The conditions for zero pole-sensitivity in the single-OP AMP case 

are likewise; n11 (pk)= 0 where pk is any simple root of D1 (s). It will 

now be shown that no single-OP AMP active-RC filter with at least one 

pair of complex conjugate poles has zero pole-sensitivity. From (52) 

and (53), it follows that n
11 

(s)/s is the characteristic polynomial of 

the passive RC network of Fig, 2, and as such, has only negative-real­

axis roots. The claim now follows since the polynomial D1 (s), which by 

assumption has at least one root off of the real axis, cannot be a 

divisor of n
11 

(s), a necessary condition for zero sensitivity with 

respect to each root of D
1

(s). 

From (18), it can be seen that for zero pole-sensitivity, the 

Maclaurin series expansion of the actual pole position is expressible 
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as the sum of the desired pole position and only second-order and higher 

terms involving the OP AMP time constants. The actual pole position in 

zero-sensitivity designs is thus 

T.T. + higher order terms. 
1 J 

-+ . 
T =O 

p 

(61) 

From (25) and (26), it follows that the Maclaurin series expansion of w 
0 

and Q also contain only second-order and higher OP AMP time constant 

terms when the pole sensitivities vanish. 

Zero Transfer-Function-Magnitude Sensitivity 

Conditions 1 and 2 can be strengthened to obtain zero transfer­

function-magnitude sensitivity for all w. From (30) it is sufficient 

that both the active pole and active zero sensitivities vanish to obtain 

zero transfer-function-magnitude sensitivity. The conditions for zero 

transfer-function-magnitude sensitivity with respect to each OP AMP time 

constant for the three- and two-OP AMP active filters are, respectively: 

CONDITION 3 

= 0 

where pk is any simple root of n3 (s), and 
(62) 

0 

where~ is any simple root of N30 (s). 

CONDITION 4 

= = 0 

where pk is any simple root of n2 (s), and (63) 

= 0 where nk is any simple root of N20 (s). 
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No claim has been made about the physical realizability of active 

RC filters with zero pole-sensitivities or zero transfer-function­

magnitude sensitivities, In fact, although the sensitivity of the 

desired poles (the poles of D2 (s) or D3 (s)) may be zero and hence the 

pole perturbations extremely small when actual OP AMPs with sufficiently 

small time constants are used, the parasitic poles introduced by the OP 

AMPs may be either quite close to the immaginary axis or even in the 

right half plane resulting in an unstable filter. Several realizations 

are given later that are stable and that do have zero pole-sensitivity, 

Zero Second Derivatives 

The second derivative is related to the sensitivity function 

defined in (7) by 

a2f 
sf 

= s i 
a. a. j 
J l. 

(64) 

The second derivative may thus be thought of as the sensitivity of the 

sensitivity function. It follows from (18) that zero active sensitivities 

and zero second derivatives with respect to all OP AMP time constants 

eliminate both the first- and second-order terms in the Maclaurin expan­

sion of any critical transfer-function parameter. Unless stated other­

wise, all second derivatives discussed in the remainder of this thesis 

are with respect to the OP AMP time constants. 

The conditions for zero pole second derivatives will now be developed 

for the three-OP AMP active RC filter. It follows from (22) that 
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dD3 <rk> ( ao33 (pk ) 

dpk 3pk 

Assuming zero pole-sensitivites, these equations reduce to: 

-+ 
T =O 

p 

0 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 
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2 
a Pk 

0 -.-2- = 
dT 2 + T =O 

(72) 

p 

2 
a Pk 

0 = 2 
dTJ + T =O 

(73) 

p 

2 
D312(pk) a Pk 

= 
dD/pk) dTldT2 t =O 

(74) 

p 
dpk 

2 
D313 (pk) a Pk 

= 
dD3(pk) dTJdTl t =O 

(75) 

p 
dpk 

2 
D323(pk) a Pk 

= 
dD3(pk) dTzdTJ t =O 

(76) 

p 
dpk 

The condition for zero pole-sensitivity and zero pole second derivatives 

for the three-OP AMP active RC filter now follows from (71) - (76). 

This condition is: 

CONDITION 5 

Condition 1 must be satisfied and 

(77) 

where pk is any simple root of n3 (s). 

No two-OP AMP active RC filter with at least one pair of complex 

conjugate poles has both zero pole-sensitivity and zero pole second 

derivatives. This fact will now be verified. The conditions necessary 



28 

for zero sensitivity and zero second derivatives in the two-OP AMP case 

can be shown to be 

(78) 

where pk is any simple root of D2 (s). However, n212 (s) is the character­

istic polynomial (or product of characteristic polynomials) of a passive 

RC network. It must be concluded that n212 (s) has no roots off of the 

real axis and hence that n212 (pk) = 0 at all roots of D2 (s). 

Predistortion for Low Active Sensitivity 

In some applications, it may be desirable to predistort the active 

filter design so that the desired poles are in precisely the desired 

position when the OP AMP time constants agree with those specified in 

the design. In the predistorted designs, the OP AMP time constant 

~ 

vector T of Chapter iI is no longer the zero vector but rather the 

vector of either expected or measured OP AMP time constants. Several 

authors have discussed predistorted designs, among which are [20] and 

[22]. 

Predistorted designs may not be practical for large scale production 

at the present time since the properties of most commercially available 

OP AMPs vary considerably from device to device. Some precision 

applications may well benefit from such designs, however. A computer 

aided design procedure is often needed in the predistorted design itself. 

In precision applications that have used predistorted design techniques 

incorporating measured OP AMP time constants, it is particularly crucial 

that the active sensitivit ies be small since the OP AMP time constant is 

also affected by temperature, age, supply voltages, etc. 
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The active pole sensitivity for the predistorted designs will now 

be computed for the three-OP AMP case; the results for the two-OP AMP 

and single-OP AMP cases will be stated. 

In the three-OP AMP predistorted design, the transfer function may 

be written as 

T(s) • 
N30+N32 {t 2+tp'.! )+N33 ('r J+tp3 )+N32 3 (t 2+tp2) (t 3+tp3) 

D3+D31(1 l+tpl)+D32(1 2+tp2)+D33(t3+tp3)+03l2(t 2+tp2)( t l+tpl) 

+D313Ct3+tp)}(tl+tpl)+D323<t2+tp2)(t3+tp3)+D3123(t3+tp3)(t2+tp2><1 1+tpl) 

(79) 

where T1 , T2 , and T3 are the OP AMP time constants used in the design 

and tpl' tp2 , and tp3 are the differences in the actual OP AMP time 

constants and the values specified in the design. The position of the 

+ T + 
desired pole pk is thus a function of Tp = (tpl' tp2 , tp3) ; Tis 

assumed to be constant. It follows from (23) and (53) that the 

pole sensitivities of the pole pk with respect to the perturbation· in 

the OP AMP time constants may be expressed as 

(80) 

(81) 

(82) 
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where 

In the two-OP AMP case, the sensitivity expressions are _ 

pk D21 (pk) + D212(pk) . (,2+tE2) 
st = d pl dp D(pk) 

k 

pk D22(pk) + D212(pk) . (T l+tEl) 
st = d p2 dp D(pk) 

k 

where 

D(pk) = D2(pk) + D21(pk) • (,l+tpl) + D22(pk) • (,2+tp2) 

+ D212(pk) • (,l+tpl) • (,2+tp2) 

The sensitivity expression in the single-OP AMP case is 

(84) 

(85) 

(86) 

(87) 

It can be seen from (80) - (81) that zero pole-sensitivity is not 

attainable in the predistorted designs; conditions necessary to eliminate 

the first-order and second-order time constant terms in the Maclaurin 

series expansion of t he pole position will be given, however. From (18) 

the Maclaurin series expansion of the desired pole pk is in the three-

OP AMP case 

3 

pk= pkl+ + I 
T =O i=l 

p 

pk 
S •, i + higher order terms. 

t . p 
pi+ 

T =O 
p 

(88) 
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From (80) - (83) this equation may be expressed as 

"T 
pi 

r .. o 
p 

[,Ltpl +'rltp3]+D313(pk)[T3tpl+Tltp3]+b323(pk)[T3tp2+r2tp3] 

+D3123(pk)[T2T3tpl+TlT3tp2+TlT2tp3] I + 
+ higher order terms. 

T =O 
p 

(89) 

Since the OP AMP time constants ,
1

, , 2 , and , 3 are small, the time 

constant-t i me constant perturbation produc t terms of the quantity in 

parenthesis may be considered as second- and third-order effects. With 

this interpretation, the conditions necessary to eliminate first-order 

time constant terms in the Maclaurin series expansion of the desired 

pole become in the three- and two-OP AMP cases, respectively: 

CONDITION 6 

= 0 

where pk is the pole position specified in the design. 

CONDITION 7 

0 

where pk is the pole position specified in the design. 

(90) 

(91) 

For the single-OP AMP case, it is not possible to eliminate the 

first-order time constant terms when pk has a nonzero imaginary part. 

The proof of this fact is similar to the argument given on page 

It should be pointed out that it is possible to realize circuits 

with either Condition 6 or Condition 7 sat i sfied at each desired pole. 

Note also that in the predistorted designs, pk is not, in general, a 
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root of n
3

(s) in the three-OP AMP case or of n2 (s) in the two-OP AMP 

case. 

It can be shown by using (45) and (79 ) that the first-order time 

constant terms in the Maclaurin series expansion of the transfer-function 

magnitude vanish if the following conditions hold in the three- and 

two-OP AMP cases, respectively: 

CONDITION 8 

D31 (pk) = D32(pk) = D33(Pk) = 0 

where pk is any simple desired pole and (92) 

N32(nk) = N33(nk) = 0 

where °k is any simple desired zero, 

CONDITION 9 

D21 (pk) = D22 (pk) = 0 

where pk is any simple desired pole and (93) 

N22(nk) = 0 

where nk is any simple desired zero. 

It can also be shown that if, in addition to Condition 8, the 

following condition holds, then both the first-order and second-order 

time constant terms are zero in the Maclaurin series expansion of the 

desired pole pk. 

CONDITION 10 

0 (94) 

where pk is the pole position specified in the design. 

Although zero active sensitivity was not attainable for the pre­

distorted designs, for sufficiently small changes in the OP AMP time 

constants the desired poles will move less when the corresponding 

conditions are satisfied than in the zero-active-sensitivity unpre­

distorted designs. This follows since, in general, 
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t . < • • 
pi J 

for i, j E{l, 2, 3}. (95) 

The inequal ity is often quite strong. 

In order to keep the analysis tractable, no further considerations 

of low-sensitivity predistorted designs will be made in this thesis. 

Slight modifications of the designs that follow can be made, however, to 

obtain low sensitivity predistorted designs. 



CHAPTER IV 

ZERO-SENSITIVITY DESIGNS 

Many circuits can be designed whose transfer functions satisfy the 

conditions for zero pole, w
0

, Q, and transfer-function-magnitude sensi­

tivity. The zero-sensitivity conditions derived in Chapter III do not, 

however, imply stabili ty; it is possible in some realizations that the 

desired poles are quite insensitive to the OP AMP time constants but the 

parasitic poles introduced by the OP AMP lie in the right half plane 

rendering the filter unstable. 

Several general configurations with zero active sensitivities are 

presented in this chapter. Active filters realizing specific transfer 

functions are subsequently introduced, stability discussed, and perform­

ance comparisons made with previous state of the art designs. The 

comparisons are made for both infinitesimal and incremental changes in 

the OP AMP time constants. Experimental performance of the zero­

sensitivity realizations is compared with the theoretical. 

Functional Forms 

Many functional f orms exist that have zero active sensitivities. 

Three of these are presented and discussed in this section. 

It is assumed that the passive RC networks shown in Fig. 3, Fig. 4, 

and Fig. 6 have identical characteristic polynomials and that the zeros 

of T1 are coincident with the desired transfer-function poles and the 

zeros of T2 are coincident with the desired active transfer-function 

zeros. 

The transfer function of the circuit of Fig. 3 is given by 

V N2 
T(s) 

0 
(96) = = V. 2 

1 Nl + T2sN1 + TlTlS D 

34 
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Passive RC 

N1 
= 

--

Fig. 3. Two-OP AMP Zero Sensitivity Filter 
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It is innnediate from (96) that T(s) satisfies both Condition 2 and 

Condition 4. The active filter of Fig. 3 thus has zero pole, w
0

, Q, 

and transfer-function-magnitude sensitivities. 

Close matching of the two characteristic polynomials of the passive 

RC networks of Fig. 3 is not crucial. This can be explained as follows. 

With n
1 

and n2 as shown in Fig, 3, the transfer function of the active 

filter is 

T(s) 
N2Dl 

= . 
2 

D2N1 (1 + 'ls)+ '1'2s DlD2 

(97) 

When ,
1 = T = 0, 2 

T(s) = (::) ( :~) (98) 

Since n1/D 2 should be approximately unity, the transfer function attains 

approximately its desired value when , 1 = , 2 = O. Furthermore, the 

transfer-function-magnitude sensitivity expressions are from (45) 

IT (jw) I = -IT (jw) I 
sD2N

1 
0 Re( D N) = 

s 2 1 
'1 T =, =O 

1 2 

(99) 

2 

IT (jw) I = -IT(jw)I 
( 'ls DlD2 ) Re =O 

s D
2
N

1 
(1 + ,

1
s) 

'2 T =, =O T =O 
1 2 

1 

(100) 

The transfer-function-magnitude sensitivities thus vanish even if n1 and 

D2 are not matched. 

With the appropriate choice of T1 and T2 , any realizable transfer 

function can be obtained from the zero-sensitivity configuration of 

Fig, 3. Any realizable transfer function can also be obtained by a 
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cascade of biquadratic zero-sensitivity sections and at most one first­

order section. Since a cascade of zero-sensitivity sections still has 

zero sensitivities, t he cascaded zero-sensitivity biquadratic design is 

also a zero-sensitivity configuration. 

If the passive RC circuits of Fig. 4 have the same characteristic 

polynomials, then this active filter has transfer function given by 

T(s) 
V 

0 

V. 
1 

(101) 

It can be seen that t his transfer function satisfies Conditions 1, 3, 

and 5 so has zero desired pole, w , Q, and transfer-function-magnitude 
0 

sensitivities and also zero second derivat i ves of the desired poles. 

The active devices in both Fig. 3 and Fig. 4 can be replaced by 

single two-input active devices that have different gain functions on 

each input. The equivalent active devices are shown in Fig. 5 along 

with the inverting and noninverting transfer functions. In terms of the 

inverting and noninverting active transfer functions given in Fig. 5, 

the transfer functions of the circuits of Fig. 3 and Fig. 4 may be 

expressed as 

N~ 
2 (102) 

The single-OP AMP RC filter with the OP AMP modeled by a single 

pole and an infinite common-mode-rejection ratio is shown in Chapter III 

to have nonzero active sensitivity. If, however, the model of the 

active device is changed, it is possible to obtain zero sensitivity with 

respect to each parameter of the active device. For example, a zero 
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Passive RC 

=~ 
D 

-Po 

P ossive RC 

T = 2 

--

..... --.y. 
I 

Fig. 4. Three-OP AMP Zero Second-Derivative Filter 
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active sensitivity filter results when the active devices in either 

Fig. 3 or Fig. 4 are repl aced with the appropriate two-input equivalent 

device of Fig. 5. The equivalent active devices of Fig. 5 do not have 

an infinite conunon-mode-rejection ratio. 

It will now be s hown that the two-OP AMP filter of Fig. 6 has zero 

pole-sensitivities and zero second pol e derivatives with respect to the 

OP AMP time constant s . If T1 and T2 are a ssumed to have identical 

characteristic pol ynomial s, the transfer function of this filter is 

T(s) (103) 

If the R
3
c

3 
produc t i s chosen so that 

(104) 

then the transfer function reduces to 

T(s) (105) 

Since this transfer function satisfies Conditions 1, 3, and 5, the pole, 

w, Q, and transfer-function-magnitude sensitivities and second pole 
0 

derivatives can be made zero. These zero-sensitivity properties are 

obtained with only two OP AMPs; however, matching a passive time 

constant and an active time constant is necessary to obtain these zero­

sensitivity propert i es. 

Cascaded Amplifier Designs 

It will now be s hown that the cascaded amplifier designs of Fig. 7 

have zero-sensitivity transfer functions. If T
1 

and T
2 

have the same 
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Passive RC 
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Vj 
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Fig. 6. Two-OP AMP Zero Second-Derivative Active Filter 
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Fig. 7. Cascaded-OP AMP Zero-Sensitivity Designs 
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characteristic polynomial, then the transfer function of the cascaded 

amplifier filters (a) and (b) are, respectively: 

V N2 
T(s) 0 (106) = = 

vi 2 
Nl + '1'2s D 

and 

V N2 
T(s) 0 

(107) = = . 
vi 3 

Nl + '1'2T3S D 

These transfer functions respectively satisfy the zero-sensitivity 

and zero second derivative conditions of Chapter III. It will be shown 

in a following section that in some cases the cascaded amplifier designs 

become unstable. An investigation has not been made to determine if the 

cascaded amplifier designs are ever useful. They have been included, 

nonetheless, to emphasize the fact that the zero-sensitivity conditions 

do not guarantee stability. 

Specific Zero-Sensitivity Biquadratic Bandpass Reali zations 

Any realizable t r ansfer function can be realized with zero sensi­

tivity. The only zero-sensitivity active filters discussed here will be 

of the second-order bandpass type. Even the treatment of the bandpass 

case is far from exhaustive. A similar discussion with similar results 

could be made for other classes of transfer functions but has not been 

included here to save space and avoid redundancy. A connnent is, however, 

included at the end of this section discussing modifications that will 

yield arbitrary lowpass and highpass transfer functions. 

The bandpass circuits of Figs. 8 - Fig. 11 are all zero-active­

sensitivity configurations. The frequency normalized transfer functions 
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Fig. 8. Zero-Active-Sensitivity Four-Capacitor Bandpass Filter 
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Fig. 9. Zero-Active-Sensitivity Three-Capacitor Bandpass Filter 
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Fig. 10. Zero-Active-Sensitivity Two-Capacitor Bandpass Filter 
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Fig. 11. Zero-Active-Sensitivity Low Component Spread Active Filter 
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are included in the figures. A brief discussion about each of these 

four circuits follows: 

a) The circuit of Fig. 8 is obtained from the general form shown 

in Fig. 3. The passive RC network that realizes T1 of Fig. 3 

is chosen to be the popular compl ex-zero-producing bridged-T 

structure while the network that realizes T2 has been chosen 

to have the same characteristic polynomial but a bandpass 

transfer function. 

b) The bandpass filter of Fig. 9 uses the bridged-T structure but 

uses one less capacitor than the circuit of Fig. 8. 

c) The circuit of Fig. 10, introduced by A. Budak [23), uses only 

two capacitors. The desired poles of the active transfer 

function are, as in the previous two designs, determined by 

the zeros of the bridged-T feedback network. Whereas in the 

previous two structures the zero-sensitivity properties were 

dependent only upon the circuit topology, it can easily be 

shown that the zero-sensitivity properties of this configura­

tion are also dependent upon R1 and R2 • 

d) The zero-sensitivity circuit of Fig. 11 uses only two capaci­

tors and has a much smaller component spread than the previous 

structures. The component spread of the bridged-T structure 

2 is proportional to Q; the component spread of the circuit of 

Fig. 11 is bounded by 21. The circuit of Fig. 11 does have, 

in general, higher passive sensitivities than the previous 

configurations and may be more difficult to tune. 

The transfer function of the circuits of Fig. 12 and Fig. 13 have 

zero sensitivities and zero second derivatives. The circuit of Fig. 12 
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is of the same form as the general c i rcuit of Fig. 4 where the passive 

network that realizes T1 has been chosen to be the bridged-T structure. 

The circuit of Fig. 13 which is of the general class of Fig. 6 also uses 

the bridged-T feedback structure but uses only two OP AMPs at the expense . 

of an additional resistor and capacitor. The latter circuit has zero 

second derivatives only as long as R3c3 = , 1 . 

If the passive RC structures that determine t 1 and T2 in Fig. 7 are 

chosen to be the bridged-T and the bandpass networks shown in Fig. 14, 

the zero-sensitivity and zero-second-derivative cascaded-amplifier 

active filters are obtained. It will be shown later in this chapter 

that both circuits of Fig. 14 can become unstable. 

If the feedback network of Fig. 8, Fig. 12, and Fig. 13 is changed 

to the twin-T structure; the resulting component spread is proportional 

2 
to Q instead of Q of the bridged-T structure. However, one additional 

capacitor is used in the twin-T structure. 

The networks of Fig. 8, Fig. 12 and Fig. 13 can be made lowpass and 

highpass, respectively, if the input passive RC network is altered as 

shown in Fig, 15. 

Comparisons with Existing Designs 

The merit of any new circuit is best established by comparing it 

with accepted existing designs. The zero-sensitivity circuits of Fig. 8 

and Fig. 12 have transfer functions that are representative of the zero­

sensitivity and zero second derivative circuits, respectively, of Fig. 8 

through Fig. 13 . For this reason only the zero-sensitivity circuits of 

Fig. 8 and Fig. 12 will be compared on a theoretical basis with accepted 

existing bandpass filter designs. 
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The three existing circuits against which the zero-sensitivity 

designs are compared are shown in Fig. 16 - Fig. 18. The circuit of 

Fig. 16, discussed by several authors including (17], (19], and (20] 

uses only a single OP AMP. The circuit of Fig. 17 was recently claimed 

by Sedra [11] to be t he "state of the art" two-OP AMP bandpass filter. 

The commonly used state-variable filter, a form of which is shown in 

Fig. 18, uses three OP AMPs; it appears in many texts and papers 

including [21] and [24]. The transfer functions of these filters are 

also included in the corresponding figures. 

Comparison of the performance of these filters due to infinitesimal 

changes in the OP AMP time constants can be obtained from a study of the 

sensitivity functions and Maclaurin expansions discussed previously. 

The zero-sensitivity designs are obviously much superior to the existing 

designs in such comparisons. This follows from (19) since zero sensi­

tivity was a design constraint in the zero sensitivity designs. 

In this section the effect of incremental changes in the OP AMP 

time constants are studied on a theoretical basis. The comparisons of 

the zero-sensitivity and existing designs of Fig. 16 - Fig. 18 are made 

for values of Q = 10 and 25 on the basis of the position of the desired 

poles and on the transfer-function-magnitude response using the time 

constants of the OP AMPs as parameters. The comparisons show the actual 

pole positions and magnitude characteristics for a given OP AMP time 

constant. The positions of the parasitic poles, those poles introduced 

by the OP AMPs, are also discussed. Although the assumption of equal OP 

AMP time constants is not necessary to obtain the zero-sensitivity 

conditions for the circuits of Fig. 8 and Fig. 12, i t will be assumed 

for convenience in these comparisons that all OP AMPs are identical. 



V 
0 

--

C 

w 
0 

s 
n 

T 
n 

55 

1 =--
2QRC 

= s/w 
0 

= ,
1

w
0 

2Qs 
n 

C 

-=--------------------
$ Z + s /Q + 1 +TS (s 

2 + S [2Q + 1/Q] + 1) 
n n n n n n 

Fig. 16 . Popular Single-OP AMP Bandpass Filter 



V 
0 

R 

56 

R 

C 

1 w =-
0 RC 

s • s/w 
n o 

2s /Q + ,
2 

2s (s + 1)/Q 
n n n n 

R 

r -

_,.. ___________________________ _ 
s 

2 + s /Q + 1 + ,
1 

2s 2 (s + 1 + 1/Q) + 1
2 

2s (s + 1 + 1/Q) 
n n n n n n n n 

+ 1 T 2s 
2

(s 2 + s [2 + 1/QJ + 1 + 1/Q) ln 2n n n n 

Fig. 17. Popular Two-OP AMP Bandpass Filter 



V 
0 

--

57 

R 

QR 

C R C 

- -- -
1 w =-

0 RC 

s = s/w 
n 0 

Tin = TiWO 

2 2 2 8n + T2n28n + T3n( 8n + 5 n) + •2nT3n5 n 2 <sn + l) 

-=--------------------------
s 

2 + s /Q + 1 + •
1 

s 
2

(s + 2 + 1/Q) + T2 2s 
2

(s + 1/Q) n n n n n n n n 

+ T3 s (s 
2 + s [l + 1/Q] + 1/Q) + Tl T 2 2s 

3
(s + 2 + 1/Q) n n n n n n n n 

2 2 + Tl T
3 

S (s + S [3 + 1/Q] + 2 + 1/Q) n n n n n 

2 2 + •z •3 s 2(s + s [l + 1/Q] + 1/Q) n n n n n 

+ Tl T2 TJ 2s 
3

(s 
2 + s [3 + 1/Q] + 2 + 1/Q) n n n n n n 

Fig. 18. State Variable Filter 



58 

The desired pole loci for the circuits of Fig. 16 - Fig. 18 and 

the zero-sensitivity circuits are shown in Fig. 19 and Fig. 20 for 

Q = 10 and Q = 25, respectively. It can be seen that for the two-OP AMP 

circuit of Fig. 8, t he actual pole location is practically identical to 

the desired pole location for T = TW < .01 and that in the three-OP 
n o 

AMP circuit of Fig. 12, the pole location moves very little for T < .1. 
n 

It should be noted that one vertical unit on the graph represents about 

five horizontal units in Fig. 19 and ten horizontal units in Fig. 20. 

Therefore, the magnitude of the pole movement for Qs of 10 and 25 for 

either of the zero-sensitivity circuits is about an order of magnitude 

or more smaller than that for any of the other circuits compared for 

T = .01. As T becomes smaller, the differences in the pole movement n n 

become even more pronounced. 6 If the GB of an OP AMP is 2nl0 rad./sec, 

a typical value for the 741 type OP AMP, then the two-OP AMP zero­

sensitivity circuit of Fig. 8 should perform nearly as if the OP AMP is 

ideal for a Q of 10 or 25 for center frequencies up to 10 KHz. The 

three-OP AMP zero-sensitivity design of Fig. 12 should correspondingly 

be useful for center frequencies up to about 100 KHz. 

The complex-conj ugate parasitic poles of the five circuits under 

comparison are shown in Fig. 21 and Fig. 22. The parasitic poles for 

the circuits of Fig. 16 and Fig. 18 are not shown since they are all on 

the negative real axis. Although the parasitic poles for the zero­

sensitivity circuits are closer to the imaginary axis than those of the 

existing designs, they are, nonetheless, in the left half plane. It is 

seen in the transfer-f unction-magnitude comparisons that the parasitic 

poles do not have any significant effect on the . frequency response. 
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The transfer-function magnitudes are compared in Fig. 23 - Fig. 25 

for Q = 10 and in Fig. 26 and Fig. 27 for Q = 25. The magnitudes have 

been normalized so that when the OP AMPs are ideal, the peak amplitude 

is unity in all cases. For Q = 10, the normalized magnitude response is 

plotted for values of T = .01, .025, and .05; and for Q = 25, the n 

response is plotted for T = .005 and .01. In all cases, the response 
n 

of the zero-sensitivity three-OP AMP filter of Fig. 12 is practically 

indiscernable from the ideal response. The superior performance of the 

two-OP AMP zero-sensitivity circuit of Fig. 8 is also apparent. It is 

interesting to note that even when the two-OP AMP zero-sensitivity 

circuit does depart from the ideal, the center frequency remains nearly 

constant. This result could, of course, have been predicted from Fig. 

19 and Fig. 20 since the desired pole movement is nearly horizontal for 

this circuit. 

The effects of the parasitic poles on the transfer-function magni­

tude for the zero-sensitivity circuits of Fig. 8 and Fig. 12 are shown 

for a Q of 25 in Fig. 28 and Fig. 29, respectively. The frequency axis 

has been purposely extended from that in Fig. 23 - Fig. 27 to include 

frequencies that are comparable to the parasitic pole magnitudes. The 

effects of the parasitic poles on the frequency response are quite 

negligible. 

Experimental Results 

The two-OP AMP zero-sensitivity filter of Fig. 8 was tested using 

two 741 type OP AMPs with measured GBs of 857 KHz+ 1 percent. The 

bridged-T network was designed for a Q of 10 and center frequency of 

10 KHz. The following measured component values were used in the design: 
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C = 315 pf 

949 Kn (108) 

= 2.73 Kn 

With these component values, the normalized time constant, T , is 
n 

approximately .0117. The theoretical and measured values of f
0

, Q, and 

peak amplitude are compared in Table 1. 

f 
0 

Q 

Av(f) 
0 

TABLE 1 

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS 

Experimental Theoretical Percent Difference 

9.991 KHz 9.932 KHz 0.6 

9.330 KHz 8.930 KHz 4.3 

174.100 KHz 173.000 KHz . 0.6 

Designs at other center frequencies below 10 KHz gave similar 

results except that the gain at resonance was sometimes in the few 

percent range instead of the few tenths of a percent indicated in 

Table 1. 

With three type 741 OP AMPs, the three-OP AMP zero-sensitivity 

filter of Fig. 12 proved to be unstable. With the single-pole model of 

the OP AMP used in the design, it follows from Fig. 19 and Fig. 21 that 

this filter possesses two pairs of left-half-plane complex-conjugate 

poles. Since the fifth pole is on the negative real axis, the filter is 
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theoretically stable. However, the instability can be explained if the 

second pole of the 741 is included in the analysis. Thus, a more 

accurate model for the 741 is 

A(s) = GB ( aGB ) 
s s + aGB (109) 

where a is typically around unity. 
w 

0 
With a= 1, - = .01, and Q = 10, GB 

the values used in the unstable design, the poles of the resulting 

eighth-order transfer function are located at: 

s = w [-.0500021 + j(.998758)] 
0 -

s = w [-130 + j(64.9586)] 
0 - (110) 

s = w [-55.4558 + j(88.9402)] 
0 -

s = w [+26.3493 + j(59.7557)]. 
0 -

One of the three pairs of parasitic complex-conjugate poles is in the 

right half plane, thereby making the filter unstable . This right-half 

plane pole can, however, be moved back into the left half plane by 

decreasing a or by using different circuit configurations. The right­

half-plane pole problem may not be present with other OP AMPs. No 

investigation was conducted in this respect. 

Instabilities of Cascaded Amplifier Filters 

For a Q of 10 and w = .OlGB, the denominator polynomial of the 
0 

three-OP AMP cascaded amplifier filter of Fig. 14 is 

D(s) = s 2 + .ls + 1 + (.01) 3s 3 (s 2 + 20.ls + 1). n n n n n n (111) 
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The roots of this polynomial are at 

s = -.0500019 .± (.998759)j 

l 
n 

s = 43.5686 + (86.2288)j n 

-107.137 s 

(112) 

n 

Because of the right-half-plane poles, this circuit is unstable when the 

single-pole model of (9) for the OP AMP is used. 

For the same values of Q and w
0

, the two-OP AMP cascaded amplifier 

filter has denominator polynomial 

D(s) = s 2 + .ls + 1 + (.01) 2s 2 (s2 + 20.ls + 1). n n n n n n (113) 

The roots of this polynomial are at 

s = -.04900092 + .998895 j 

} n 

s -10.0009 + 99.4887 j . 
n 

(114) 

This filter is thus stable if the single-pole model of the OP AMP is 

used, If, however, the two-pole model of the OP AMP given by (109) is 

used, the poies of the two-OP AMP cascaded amplifier zero-sensitivity 

filter are located at 

s = -.0503863 + 1.00062 j n 

s = 3.61753 + 6.04157 j n (115) 

s = -18.1888 n 

s = -11.0454 . n 

It can thus be concluded that for OP AMPs such as the 741 with a second 

pole as given by (109) either cascaded amplifier filter of Fig. 14 will 
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be unstable for Q = 10 and w = .OlGB. The two-OP AMP cascaded 
0 

amplifier filter may, however, be stable with other OP AMPs that have 

the second pole farther removed than that of the 741. 



CHAPTER V 

CONCLUSION 

A consistent met hod for comparing active filters with respect to 

the active devices based on the active sensitivity function has been 

established. 

Conditions for zero pole, w, Q, and transfer-function-magnitude 
0 

active sensitivities have been developed assuming a single-pole model 

of the active device. Conditions for zero second derivatives with 

respect to the OP AMP time constants have also been derived. Methods 

for obtaining low sensitivity predistorted active filters have been 

discussed. 

Any realizable transfer function can be realized so that the 

transfer function is of the zero-active-sensitivity type. Several 

general zero-active-sensitivity filters have been presented. Some 

specific biquadratic bandpass zero-active-sensitivity filters were 

introduced. 

The useful ness of a two-input active device with different gain 

functions on each input in zero-sensitivity active-filter design has 

been established. 

Comparisons o f the performance of the zero-active-sensitivity 

filters with popular existing bandpass filters have been made on a 

theoretical basis for both infinitesimal and incremental changes in 

the OP AMP time constants. The theoretical performance of the zero­

sensitivity designs was shown to be significantly superior to that of 

the existing designs used in the comparison. 

The experimental performance of the zero-sensitivity designs was 

discussed. With 741 type OP AMPs, the experimental and theoretical 

75 
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performance of the two-OP AMP zero-sensitivity filter tested agree quite 

closely. The three-OP AMP zero-second-derivative filter tested was 

unstable. This result was subsequently verified theoretically by using 

a more accurate two-pole model of the 741. For other OP AMPs of the 

present or future, this design may well be stable. 

Suggestions for Future Work 

Only a small number of zero-sensitivity designs have been investi­

gated. Further investigation of zero-sensitivity designs with particular 

attention centered around the location of the parasitic poles introduced 

by both the single-pole and two-pole model of the OP AMP is necessary. 

The relation between component spread and passive sensitivity in zero­

sensitivity designs remains to be studied. Finally, the use of two­

input active devices with a different gain function on each input in 

low-sensitivity active filter designs warrants additional investigation. 
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