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Abstract

Automated Detection of Circulating Cells

Using Low Level Features

This thesis addresses the problem of detection of high definition circulating tumor cells

using data driven feature selection. We propose techniques in pattern analysis and computer

vision to achieve this goal. Specifically, we determine a set of low level features which can

structurally differentiate between different cell types of interest to contribute to the treatment

and monitoring of patients. We have implemented three image representation techniques on

a curated data set. The curated data set consists of digitized images of 1000 single cells:

500 of which are high definition circulating tumor cells or other cells of high interest, and

500 of which are white blood cells. None of the three image representation techniques have

been previously applied to this data set. One image representation is a novel contribution

and is based on the characterization of a cell in terms of its concentric Fourier rings. The

Fourier Ring Descriptors (FRDs) exploit the size variations and morphological differences

between events of high and low interest while being rotationally invariant. Using the low

level descriptors, FRDs, as a representation with a linear support vector machine decision

tree classifier we have been able to average 99.34% accuracy on the curated data set and

99.53% on non-curated data. FRDs exhibit robustness to rotation and segmentation error.

We discuss the applications of the results to clinical use in context of data provided by The

Kuhn Laboratory at The Scripps Research Institute.
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CHAPTER 1

Problem Statement and Other Related Research

This thesis concerns the application of pattern analysis and computer vision techniques

to the task of computer aided diagnostics in the realm of circulating tumor cells. We propose

to determine structurally differentiating features which aid in detection of cell populations

of interest. All features are extracted from images generated using the high definition circu-

lating tumor cell assay developed by The Kuhn Laboratory (TKL) at The Scripps Research

Institute (TSRI). High definition circulating tumor cells (HD-CTCs) are cells in the blood

that originated from tumors of epithelial origin. Research surrounding circulating tumor

cells has been inspired by a desire for greater understanding of the metastatic phase of can-

cer as well as a hope for earlier stage diagnosis and better monitoring of patient status and

treatment [1]. The term HD-CTC is unique to the assay which has been developed by TKL

at TSRI.

Circulating tumor cells (CTCs) are disseminated tumor cells in the blood. In 2011 it

was asserted that the “CTCs represent an independent predictor of outcome in patients

with metastatic breast cancer.” [2] In addition, similar connections have been shown, in

the literature, between CTCs and other cancers including metastatic colorectal cancer, neu-

roendocrine tumors, non-small cell lung cancer, and progressive castration-resistant prostate

cancer [3, 4, 5, 6]. There is evidence to suggest that by better understanding CTCs we will

have a better understanding of cancer in its metastatic phase. It has been demonstarted

that a large increase in CTCs in a patient after receiving chemotherapy is a strong predictor

for relapse and acts, in some ways, as a marker for the aggressiveness of the tumor [7]. Thus,

there is reason to believe that greater understanding of CTCs will aid in the monitoring of
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patients as their cancer progresses. Additionally, there is hope that CTCs will eventually

be able to be used to help in the detection of earlier stage cancer which results in higher

survival rates.

While strong connections have been made between the relative counts of CTCs in a

patient blood sample and prognosis in many types of cancer, there is only one Food and

Drug Administration (FDA) approved technique for the automated detection of circulating

tumor cells called Cell Search [8]. Cell Search uses positive enrichment based on epithelial cell

adhesion molecule (EpCAM) and then uses cytokeratin to mark for CTCs within the reduced

population. This method, however, has been shown to produce lower CTC counts than the

assay used at TKL [1]. It is believed that the difference in CTC counts is largely caused

by undergoing enrichment prior to cytokeratin staining. The downside, however, to the

current method at TKL is that it requires manual involvement of a highly trained technician

to produce these counts and that it inherits the non-standardized results associated with

human involvement.

We thus seek to detect CTCs found in the TKL assay by determining a set of low

level features which strongly differentiates between cell populations. This problem has two

primary parts. First, to improve the efficiency and standardization of detection of rare events

of high interest through low level features. Second, to determine unsupervised subclasses

of cell types of both high and low interest. The work presented in [9] addressed the results

of first efforts on the second problem. This thesis, however, focuses on the detection and

classification of known classes. It is our hope that the results of this work, and future work,

will contribute to the treatment and monitoring of patients with diseases with epithelial cell

expression.
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We are the first group to focus on the data driven feature selection detection of circulating

tumor cells using the TKL high definition circulating tumor cell assay. There have been,

however, others who have applied computer vision techniques to the subclassification of

human epithelial cells. The research done on classification of epithelial cell subtypes will

be of high relevance to us in the subclassification of events of high interest because high

definition circulating tumor cells are tumor cells that came from a tumor of epithelial origin,

and are, consequently, epithelial cells themselves. Due to the number of diseases that have

epithelial cell expression, research on human epithelial cells has grown significantly. Much

of the research, however, strongly differs from our own.

In 2012 there was a contest on classification of types of human cell line epithelial cells

(HEp-2) hosted by the International Conference on Pattern Recognition. First, the classifi-

cation task outlined in the competition was to classify an image containing multiple cells (all

of which are epithelial cells) as one of several subtypes based on the dominant cell subtype

present. In the contest data challenge, researchers are not first asked to distinguish the

epithelial cells from other cells in the images. Additionally, all images contained in the data

set are of high magnification, focus on the nucleus of the cell, and contestants are provided

with masks for each cell contained in the image. There were 28 teams that participated in

the competition. A description of each teams methodology can be found by looking at the

results page of the contest website [10].

We, unlike the contestants, must build a classifier that can first distinguish events of

interest from white blood cells, then additional classifiers to subdivide our populations of

interest. Furthermore, in observing the contest data one can see an obvious distinction

between the cell classes and that the imaging shows a large level of textural variation in
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the nucleus of the cells. This textural variation allows ready application of many patch

based feature extraction, many of which are discussed in [10]. Thus, while there have been

selected attempts at classifying human epithelial cells, none to our knowledge seek to both

identify these events in human blood in the presence of white blood cells and determine

subclassifications of them from low magnification images and multiple image channels.

We will first discuss the data we have analyzed, the current methods used for detection,

and some of the challenges associated with the data. Next, we will describe the three

different feature extraction and image representations we have applied to the data followed

by a discussion of the classification technique we have used. Lastly, we will present the

results of our work to current date and discuss future ambitions related to this project.
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CHAPTER 2

The Data

The data used in this thesis was generated by The Kuhn Laboratory (TKL) at The

Scripps Research Institute (TSRI). 1 In this chapter we describe the data acquisition process,

challenges of the data, and the manual curation of a small data set.

2.1. Acquisition of Data

2.1.1. Imaging. The process begins with a blood draw performed on a patient of interest.

Next, the blood is placed in a centrifuge and all red blood cells are removed. The remaining

blood is then slided and treated with stains to mark for differentiating characteristics of

cells. There are three fluorescent stains common to all patient samples in the HD-CTC

assay: a nuclear marker 4’,6-diamidino-2-phenylindole (DAPI), a cytokeratin (CK) marker

called Alexa555, and Alexa647 which is a marker for protein tyrosine phosphatase receptor

type C (CD-45). In some cases more stains are used depending on the nature of the disease

of the patient. For example, in the case of prostate cancer a fourth stain is used to mark

for an androgen receptor in addition to the three common stains. After storing the slides

for a specified amount of time, the slides are thawed and the treated blood is imaged using

immunofluorescent microscopy at the excitation wavelength of each stain. A 10X objective

on an inverted microscope is used to generate the images. The results of the imaging process

are three monochromatic images corresponding to the intensities from each of the emission

wavelengths. The excitation and emission wavelengths are 555nm and 565nm respectively for

Alexa555, 650nm and 668nm respectively for Alexa647, and 350nm and 470nm respectively

1This center is a part of collaborative network of 12 Physical Science-Oncology Centers (PS-OCs), funded
by The National Cancer Institute (NCI) NCI Grant Number: U54CA143906
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for DAPI. The three monochromatic images are then layered into a false colored image

where the red layer corresponds to the Alexa555 channel, the green layer corresponds to the

Alexa647 channel, and the blue layer corresponds to the DAPI channel. A description of

the imaging process, in greater detail, can be found in [1].

For each slide there are 2,304 images generated for each channel combining to produce

6,912 total images per slide. Each slide contains approximately three million events, of which

less than 0.1% are truly HD-CTCs. One of the distinguishing traits of the HD-CTC assay is

that there is no enrichment prior to imaging. For this reason there are more than one type

of cell of high interest to detect in a patient sample.

2.1.2. The TKL Algorithm. The algorithm for detection of these rare cell events

currently in use by TKL can be broken into two stages. The first stage is computer automated

while the second stage is manual and done by a hematopathologist-trained technical analyst.

Segmentation to determine the location of all cell events is performed on the monochrome

DAPI channel image using software called ImageJ. One benefit to performing segmentation

on the DAPI channel is that it is typically the cleanest of the stains leaving very few

artifacts. Once an event has been detected a center of mass computation is performed to

identify the center of the cell. After the center of the cell has been determined two circles of

fixed radii, with the cell center as the circle center, are computed. The larger circle of radius

40 pixels is overlaid in the Alexa555 channel and the average image value within the circle,

to be referred to as α, is computed. Next, the smaller circle with a radius of 14 pixels is

overlaid in the Alexa647 channel and the average image value, to be referred to as β, within

this circle is computed.
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A table is then generated for a slide with CK intensity along the columns decreasing from

left to right and with CD-45 intensity along the rows increasing from top to bottom. The

intensities are computed using a quantity determined by the number of standard deviations

over the mean (SDOM). For each image an average image value, Āchannel, and standard

deviation, σchannel is computed for both Alexa555 or Alexa647 channels. The SDOM mea-

surement of α is given by

α̃ =
α− ĀAlexa555
σAlexa555

.

Similarly, an SDOM measurement is computed for β as

β̃ =
β − ĀAlexa647
σAlexa647

.

The table generated identifies events deemed to be candidate HD-CTCs as well as their

location and cropped images of the event in each invididual channel and a cropped composite

image. The format of the table places the events such that the events the algorithm believes

to be the most likely HD-CTCs are listed first and as you move through the table the

likelihood of the events being HD-CTCs reduces.

It is at this point that the automatically generated table is passed to a technician to

manually classify each candidate event as either an HD-CTC, one of three near HD-CTC

types (Apoptotic, No CK, Small CK), imaging noise, or as an event of non-interest (e.g.,

a WBC). Examples of each type of manual classification type can be seen in Figure 2.1.

Classification of an event as a HD-CTC requires that α̃ is generally greater than or equal to

6 while also presenting in the lowest 0.2 % of the population in the Alexa647 channel together

with a sufficiently large nucleus, in addition to other visually discernable characteristics. A

classification of an event as “No CK” arises when the size of the nucleus of an event meets

7



(a) HD-CTC (b) Apoptotic (c) No CK

(d) Small CK (e) WBC

Figure 2.1. The set of images above are sample cells from the curated data
set of each class of cell we seek to identify.

Figure 2.2. This figure contains a comparison of the properties of each cell
type of high interest.
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the accepted criterion of an HD-CTC but does not exhibit appropriate levels of CK. “Small

CK” refers to an event that has an α̃ that is sufficiently high to be considered an HD-CTC,

as well as the some of the visually discernable characteristics, but an insufficient nuclear

size. Lastly, “Apoptotic” refers to a set of cells that do not fall directly into the category

of HD-CTC, No CK, or Small CK, but share some chanracteristics of each population and

appear to be sick or dying. A comparison of the properties of each cell type are summarized

in Figure 2.2. Currently, once a technician has reached a point in the table where they have

classified 200 events in a row as WBCs, they terminate manual classification. We aim to

produce a smaller set of candidate events for a technician to manually classify using our data

driven features while still including all HD-CTC and near HD-CTC types and minimizing

events of non-interest.

2.2. Challenges of the Data

2.2.1. Rare Event Detection. Rare event detection problems arise when the target

events occur at significantly lower frequencies than non-target events. “Lower frequencies”

often refers to orders of magnitude differences in the literature, often on the scale of 1 target

event per 1 thousand non-target events. Examples of non-medical rare event detection prob-

lems include detection of chemical particles in air from hyperspectral images and detection

of rare plant species from hyperspectral images. In recent years there has been an increase in

application of rare event detection to various biomedical queries. Many of these applications

focus on detection of cells of interest in various mediums including blood, tissue, and bone

marrow [11, 12, 13, 14, 15]. The research to be discussed falls into this category as we are

seeking to identify HD-CTCs as well as other cells of high interest which occur on a scale of

5-1000 per 3 million cells in an image set generated from one slide of patient blood.
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2.2.2. Image Quality and Characteristics. Our algorithms are currently being

run on 8-bit Joint Photographic Experts Group (JPEG) images generated using a 10x objec-

tive which is automatically focused. While the images are generated using high-end imaging

techniques there is still variation in the image quality due to the automated focusing of the

objective as well as artifact signatures based on who was responsible for the preparation of

the slide. Furthermore, at 10x scale there is very limited textural information contained in

the images which is an issue for image classification tasks [16].

Figure 2.3 illustrates the lack of textural variation in an event of interest and of low

interest. Additionally, due to the biological properties of the different cells we see significant

variation in the expression of the three different markers on different cells within an image.

We also see inter-slide variation in expression that can be attributed to small concentration

variations in the stains. It has been suggested by members of TKL that dimness may in fact

be related to an unsupervised cell subtype [17], and until further analysis has been performed

we assume that the variation in cell expression may contain relevant information.

2.2.3. High Throughput. Based on the current assay there are 2,304 images generated

per slide in each channel resulting in 6,912 total images per slide. However, a full exploration

of a patient’s CTC volume is judged based on a four slide sample when possible. Thus, for a

comprehensive patient evaluation there are 27,648 total images to draw information from and

roughly 12 million events. In order to maintain a manageable workflow we need to be able

to produce all candidate cells for a single slide in approximately one hour with satisfactory

sensitivity and specificity.2 Sensitivity refers to our ability to detect all the events of high

interest and specificity refers to the relative amount of extraneous events we pass to the

2The current algorithm used by the laboratory can produce a set of candidate cells in approximately one
hour. Our sensitivity and specificity will be measured in comparison to the the set of candidate cells currently
produced using the current algorithm.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3. The set of images above show the lack of textural variation
within the interior of the cells. The heat maps in (a)-(c) are from a sample HD-
CTC while (d)-(f) come from a sample WBC. The lack of textural variation
within the interior of a cell makes it very difficult to extract gradient based
descriptors on the interior which reduces our ability to apply many extraction
methods to this data set.
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technician. We note that it would be considered acceptable to exceed the one hour time

constraint if our method successfully identifies an event that was previously missed.

2.2.4. Segmentation. Segmentation issues are a reoccurring problem in cell classifica-

tion tasks and several papers have been published on methods for improving segmentation

in tasks of this variety. Two papers, in particular, discuss methods of segmentation for ep-

ithelial cells in blood [18, 19]. Often within the images we find that cells are overlapping

or occur in clusters. Also, cells of low and high interest do not express themselves in the

same image channels. Thus, there are many possible ways to segment events. We propose to

design an algorithm which is robust to segmentation error on both the DAPI channel (where

current segmentation is performed) and on the entire cell. We test the relative robustness of

each descriptor to simulated segmentation error by distorting the verticies of the manually

drawn boundaries (as discussed in the following section) by various amounts and using the

distorted boundaries as a new mask. The effects of segmentation are shown and discussed

in the results section. The resultant images produced by distorting the boundary on a single

cell, both shrinking and stretching by some number of pixels, are shown in Figure 2.4. The

distortion of a boundary is done by taking the manually drawn boundary which consists of a

set of verticies and either adding or subtracting some number of pixels from the coordinates

of each vertex. To simulate a boundary which may contain neighboring cells we stretch the

boundary by moving each vertex away from the center of the cell. In order to simulate a

boundary which did not contain the entirety of the cell we shrink the boundary by moving

each vertex in towards the center of the cell. The code for these distortions is provided in

the Appendix.
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(a)

(b)

Figure 2.4. (a) Shows the resultant curated images of a single HD-CTC
as the manually drawn boundary is stretched by 1 to 15 pixels. (b) Shows
the resultant curated images of the same HD-CTC as the manually drawn
boundary is shrunk by 1 to 15 pixels.

13



2.3. Curation of Data

Based on the inherent challenges of the data and results of preliminary classification

attempts discussed in [9], we decided to follow a conservative approach and first test our

methods on a manually curated data set. The data set consists of 1000 events. One half of

the events had been previously labeled as events of interest by a technician at TKL while

the other half are labeled as WBCs by us based on the attributes of a WBC as described to

us by TKL.

Curated events of high interest were selected from four categories: HD-CTC, Apoptotic,

No-CK, and Small-CK. Events were selected based on the quality of the image and the

distance from neighboring events so as to avoid the previously mentioned issue of cell overlap.

Additionally, there are no clusters of cells included in our manually curated data. There are

200 HD-CTC events and 100 events of each other high interest cell type.

Curated events of low interest were pulled from a total of 40 images. Two hundred events

of low interest were selected in sets of 20 from 10 images that also contained an HD-CTC.

The remaining 300 events of low interest were selected in sets of 10 from 30 images: 10

containing an Apoptotic event, 10 containing a No-CK event, and 10 containing a Small-CK

event. These events were selected from relatively high distances away from the rare event

contained in the image and were chosen to represent multiple visually discernible cell types

to the eye with limited training.

Following the selection of the events a cell boundary was drawn by hand on the composite

image. The composite image was selected to determine the boundary to ensure that the

curated image contained all cell information which is most visible in the composite image.

This cell boundary was then used to create a mask. True pixel values were kept from each

14



(a) (b) (c)

Figure 2.5. (a) Shows an HD-CTC in the original composite image sur-
rounded by neighboring WBCs. (b) Shows the same HD-CTC with the man-
ually drawn boundary, and (c) shows what a curated image of a single cell
looks like after the boundary shown in (b) has been used to generate a mask
and blackout all other events.

image channel if the pixel’s location was within the boundary, otherwise the pixel value was

set to zero. Last, the cell was centered within a 111x111 pixel cropped image. The size

of the cropped image was selected to ensure full containment of all cells. Figure 2.5 shows

the process of curating an image. The same boundary which was manually drawn was then

used to test the effects of segmentation on the representations by distorting the boundary

to generate a new mask and a new resultant curated image. The boundaries were both

stretched and shrunk by up to 15 pixels as discussed and shown in the section discussing

segmentation.
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CHAPTER 3

Feature Extraction and Image Representations

We have implemented several different feature extraction methods and image represen-

tation techniques including both codebook based descriptors and representations and non-

codebook based methods. The discussion of this thesis will focus on non-codebook based

techniques. Results and discussion of the codebook based implementations can be seen in

[9]. In the following sections we will discuss a representation based on raw image values,

a 2-dimensional Fourier transform descriptor, and a concentric ring based descriptor that

exploits the rotational invariance of the Fourier transform, and finally the relationship of our

methods to other work.

3.1. Raw Image Value

Both pathologists and the TKL algorithm utilize various measurements to determine a

classification of an event as discussed in section 2.1.2. However, the measurements which

contribute to a particular classification are strongly correlated to particular channel inten-

sities. Since the intensities of the various channels are significant the first, rudimentary,

representation of an event was to concatenate all pixel values. To this end we represent the

ith event, in a particular channel, as

~v
(i)
channel = vec(I

(i)
channel)

where vec is the matlab command which concatenates all the columns of a matrix into a

single column vector and I
(i)
channel is the monochrome channel image of the ith event. Thus,

we have that ~v
(i)
channel is a 12321 × 1 vector representation of the event, recalling that each
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(a) (b)

(c) (d)

Figure 3.1. (a) Shows a curated image of an HD-CTC while (b) shows a
curated image of a WBC. (c) Shows the mean centered and scaled raw image
value representation of the HD-CTC in (a). (d) Shows the mean centered and
scaled raw image value representation of the WBC in (b).

image is 111× 111 pixels in dimension and 111 · 111 = 12321, and where channel is chosen

from Alexa555, Alexa647, or DAPI. The event is then represented as a 1 × 36963 vector

defined as

~Vi =


~v
(i)
Alexa555

~v
(i)
Alexa647

~v
(i)
DAPI

 .

This image representation method has been utilized in other classification tasks with varying
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degrees of success depending on the application. It is important to note that this image

representation technique is heavily dependent on the quality of segmentation for the entire

cell and is not rotationally invariant. Figure 3.1 show a visual representation of the raw

image value representation of two sample cells: one of high interest and one of low.

3.2. 2-Dimensional Discrete Fourier Transform

The 2-dimensional discrete Fourier transform, implemented as the 2-dimensional fast

Fourier transform (2D-FFT) in Matlab, has been implemented widely as a patch based

feature descriptor. There are many beneficial properties of the 2D-FFT, including but not

limited to, the ease of image reconstruction and the robustness of the descriptor to rotation.

A Fourier transform of an integrable function is a representation of a function f in terms

of its frequency spectrum defined by

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξdx

for ξ any real number. The Fourier transform represents a function as a combination of com-

plex exponential functions, or equivalently as the combination of sine and cosine functions

using Euler’s formula

eiθ = cos(θ) + i sin(θ).

In the scenario where we wish to compute the Fourier transform of a discrete set of function

values we can replace the integral with the Riemann sum. Thus, we use the following formula

to compute the kth term in the Fourier transform of ~x, of length N , to be

X(k) =
N∑
j=1

x(j)ω
(j−1)(k−1)
N

18



(a) (b)

(c) (d)

Figure 3.2. (a) Shows a curated image of an HD-CTC while (b) shows a
curated image of a WBC. (c) Shows the mean centered and scaled 2D-FFT
representation of the HD-CTC in (a). (d) Shows the mean centered and scaled
2D-FFT representation of the WBC in (b).

where

ωN = e−2πi/N .

The kth term of the Fourier transform is referred to as the kth Fourier coefficient. Each Fourier

coefficient is a complex number and for the sake of visualization we record the magnitude

to be a real valued representation of the coefficient. It is sufficient to keep the magnitude of
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the complex number since the distance between a pair of complex numbers and the distance

between their magnitudes are equivalent.

When computing the 2D-FFT of an image of size n × m there will be n · m Fourier

coefficients. We define the j, k 2D Fourier coefficient as

F̂j′,k′ =
1

MN

M−1∑
j=0

N−1∑
k=0

Fj,ke
−2πi(jj′/M+kk′/N),

where Fj,k is the image value of the j, k pixel. This is the formulation of the 2D-FFT as

shown in Geometric Data Analysis [20]. To use 2D-FFT as an image representation of the

ith event we take the 2D-FFT as described above for each image channel and concatenate it

into a vector. For each channel of a curated event we then obtain a 12321× 1 vector

~xichannel = vec(Î
(i)
channel),

where Î
(i)
channel is the 2D-FFT of the channel image of the ith event, channel is chosen from

Alexa555, Alexa647, or DAPI, and vec refers to the matlab command which stacks the

columns of a matrix into a single vector. Next, we concatenate the transforms of each

different channel to again obtain

~Xi =


~x
(i)
Alexa555

~x
(i)
Alexa647

~x
(i)
DAPI

 .

Figure 3.2 illustrates what the 2D-FFT representation of two sample cells look like. The

implementation of this method to non-curated data requires segmentation of an event from

the background and potentially some pre-processing to remove the noise created by directly
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placing nonzero values in a true zero background. However, the generation of the represen-

tation does not require any previously computed values (i.e. center of mass of the cell, area,

average image intensity, etc.).

3.3. Fourier Ring Descriptor

We propose a concentric ring based descriptor which also incorporates the fast Fourier

transform and is therefore referred to as the Fourier Ring Descriptor (FRD). Unlike the

2D-FFT where a cell segmentation is required, the only previously computed value needed

to begin the development of the FRD for an event is the center of mass of the cell nucleus.

Given the center of a cell ~c = (xcenter, ycenter), coordinates of points on a circle of radius r

pixels centered at ~c are computed. The number of points on a circle of radius r is linearly

scaled up from eight. Eight was chosen to be the number of points on a circle of radius r = 1

pixel because a circle of radius one will hit eight distinct pixels and therefore can correspond

to at most eight distinct image values. Excessive sampling is redundant and computationally

expensive. In our first implementation of this descriptor we used circles with radii varying

from 1 to 25 pixels.

For the ithevent, the jth point on a circle of radius r in a given channel we determine the

image value at that location using bicubic interpolation and obtain the quantity zirjchannel
.

Thus, for each circle in a channel we obtain the vector

Zirchannel
=



zir1channel

zir2channel

...

zirNchannel


,
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where N = 2× 8× r is the number of points on the ring of radius r. Next, for each Zirchannel

the magnitudes of the coefficients of the fast Fourier transform of Zirchannel
are computed as

described in the previous section and stored as a vector Ẑirchannel
. For each image channel

we then concatenate the Ẑirchannel
in ascending order of the radii to obtain

Z̃ichannel
=



Ẑi1channel

Ẑi2channel

...

Ẑi25channel


,

where channel is again chosen from Alexa555, Alexa647, or DAPI. Lastly, we concatenate

the concatenated magnitudes of the Fourier coefficients by channel to obtain a final image

representation of the ith event to be

Z̊i =


Z̃iAlexa555

Z̃iAlexa647

Z̃iDAPI

 .

After preliminary work using 25 concentric rings, we observed that there were no features

being selected for the classifier that came from outside the sixteenth ring in the Alexa555

and DAPI channels and no features selected outside the twelfth ring in Alexa647. This is

why the Figures 3.4 and 3.5 show sixteen rings. The number of rings required corresponds to

circles of smaller radii than the TKL algorithm uses. In the case of the FRD descriptor there

is minimal reliance on the segmentation of the entire cell and it is therefore more readily

implementable to non-curated data. Contrary to the other two descriptors, this descriptor
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(a) (b)

(c) (d)

Figure 3.3. (a) Shows a curated image of an HD-CTC while (b) shows a
curated image of a WBC. (c) Shows the mean centered and scaled FRD rep-
resentation of the HD-CTC in (a). (d) Shows the mean centered and scaled
FRD representation of the WBC in (b).

does require the computation of center of mass of the cell. However, this computation is done

once on a single channel per event and is thus readily implementable. Since we encountered

issues of rotational invariance in [9] we wanted to ensure that our proposed descriptor was

rotationally invariant. A function which is periodic is invariant to translation, rotation, and

shifting. As stated in Proposition 5.2 in [20], “The amplitude spectrum is periodic.” Thus,

since we are writing the images values along a circle in terms of their amplitude spectrum we
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(a) (b)

(c)

Figure 3.4. Shows the magnitudes of the fast Fourier transform of each in-
dividual of the 16 concentric rings in the different channels for the HD-CTC
shown in Figure 3.3. The x−axis in each plot is the Fourier coefficient number
in a particular ring and the y − axis is the mean centered and scaled magni-
tude of the Fourier coefficient. The subplots correspond to the various radii
used starting with 1 in the upper left corner, increasing left to right and top to
bottom. (a) Corresponds to the rings extracted from the Alexa555 channel,
(b) corresponds to the Alexa647 channel, and (c) corresponds to the DAPI
channel.

have that Z̃ichannel
is rotationally invariant. Code for the computations shown can be found

in the appendix.
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(a) (b)

(c)

Figure 3.5. Shows the magnitudes of the fast Fourier transform of each indi-
vidual of the 16 concentric rings in the different channels for the WBC shown
in Figure 3.3. The x − axis in each plot is the Fourier coefficient number in
a particular ring and the y − axis is the mean centered and scaled magnitude
of the Fourier coefficient. The subplots correspond to the various radii used
starting with 1 in the upper left corner, increasing left to right and top to
bottom. (a) Corresponds to the rings extracted from the Alexa555 channel,
(b) corresponds to the Alexa647 channel, and (c) corresponds to the DAPI
channel.

3.4. Relation to Other Work

We were motivated to construct a Fourier based feature descriptor based on proper-

ties intrinsic to our data and to have a descriptor that was rotationally invariant. Other
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approaches to this problem have been taken. For example spatially invariant vector quan-

tization (SIVQ) is a pattern matching algorithm developed by Dr. Jason Hipp. The SIVQ

descriptor methods advertises rotational invariance and states that concentric rings act like

a safe combination lock [21]. Hipp expands on this metaphor by explaining that each ring

can be rotated independently of the others. In allowing this possibility the method requires

a codebook like structure where there is a set of “code” rings corresponding to each of the

radii used. What is inferred from reading [21] is that there is an exhaustive search performed

when identifying the closest code ring for a ring from a novel sample. This is done by first

breaking the circular descriptor, which appears to be a set of interpolated image values along

the ring, at an arbitrary point and finding the nearest code ring. Next, a shift of the circular

descriptor is performed and the nearest code ring is again found. The method continues

until all circular permutations have been tried and the ring is assigned to the code ring

corresponding to the minimal distance over all permutations. This is then done for each

ring. After each ring has been matched to its code ring, the information is put into a vector

representation and classified.

The SIVQ pattern matching technique has had success in several applications [21], but

ultimately did not seem applicable to our classification task for several reasons. First, in

the applications where SIVQ showed great promise there was a significant amount of tex-

tural variation in the images which is not present in our data. Secondly, SIVQ was largely

successful in identifying events once a small sample had been obtained; SIVQ was not used

to pull out candidates of interest from large data sets. Additionally, the exhaustive nature

of ring matching described in the implementation of SIVQ is infeasible at the scale of the

number of events needing to be classified in the problem we describe.
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While SIVQ is rotationally invariant it is computationally expensive. We therefore

wanted to incorporate the concentric ring idea with the Fourier transform which is also

rotationally invariant and less costly than exhaustive permutations to find a best match.

Discrete Fourier transforms can be used in many ways to aid in classification of cells. We

have discussed two ways we have employed a discrete Fourier transform (2D-FFT and FRD),

but there are other ways to utilize Fourier transforms. For example, a recent paper on the

automated classification of images of human epithelial cells used 2D-FFT as a patch based

feature extractor as a component in a codebook image representation technique [22]. In [22]

they seek to classify an entire image of cells as a single class and therefore the extraction

of a small number of patches on each cell within the image is not a cause for large concern.

However, based on the limited size of the events of interest in our study and that we seek

to classify a single cell within an image, we implement the 2D-FFT as a complete image

representation instead of as a patch based method.

A ring based descriptor exploits the differences in morphology of events of low and high

interest without having to compute measurements of circularity. Using concentric rings of

varying size also allows us to exploit the natural size variation of cells without having to

do area computations. Also, when implemented as we describe our ring based descriptor is

rotationally invariant and does not require codebooks or exhaustive comparison.
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CHAPTER 4

Classification

A primary focus of our research is to develop a series of decision functions to determine

the class of particular cell. The first set of classes are known cell types, while later we hope

to determine additional classes that are not currently labeled. Given a cell we first want to

decide whether it is an event of high interest(EOHI) or if it is a white blood cell (WBC). For

this classification task we refer to an EOHI as a member of C+ and a WBC as a member

of C−. After a cell has received its classification as a member of either C+ or C− we then

want to determine what subclass the cell belongs to. We have four known subclasses of the

Figure 4.1. This figure provides an illustration of the structure of the deci-
sion tree we are trying to develop for the the classification of cells. The number
of branches ending in question marks off of each known subset is illustrative
only.
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Figure 4.2. This figure provides an illustration of the hyperplane separating
two classes in two dimensions. These classes are linearly separable and have
no events misclassified.

class C+ and currently no known subclasses of C−. In previous work done on this problem,

discussed in [9], we implemented hierarchal clustering algorithms for our decision functions to

discern unknown subclasses and essentially began at the bottom of the decision tree model

shown in Figure 4.1. These methods are computationally expensive. While we hope to

continue exploring additional types of decision functions, especially when we return to the

unsupervised problem of determining unknown subclassifications of cells, we have made use
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of readily available tools for the supervised problems corresponding to labeled branches of

Figure 4.1.

For the two class classification problem of events of high versus low interest, on both

curated and non-curated data, we have used the open source support vector machine (SVM)

made available by LibLINEAR [23] with a linear kernel, l1 regularized classifiers and an l2

loss function. In doing so we aim to determine a hyperplane which linearly separates our data

classes while maximizing the distance to the nearest points of each class from the hyperplane

symmetrically, as shown in Figure 4.2, by solving the optimization problem

min
w
‖w‖1 + C

∑n
i=1max(0, 1− yiwTxi)2.

In the optimization problem above w is the normal vector to the hyperplane, {(xi, yi)}ni=1

is the set of data points, and C is a penalty parameter. Additionally, in the LibLINEAR

implementation the cost function is a combination of the one norm of the normal vector and

a two norm lost function depending on whether you want to use the one norm or two norm

loss function.

The points closest to the separating hyperplane are called the support vectors. The

vector ~w in Figure 4.2 is the normal vector to the plane. An event ~x, not in the set used to

build the classifier, is classified by the sign of ~wT~x+ b. In Figure 4.2 the classes are linearly

separable and no events are misclassified. This is a very simple example that does not cover

many of the possible problems that can arise. Our current implementations have weighted

each class equally but in the future we will explore making the cost of EOHI misclassification

more expensive.

We have chosen to use an l1 regularized classifier in order to force sparsity of features.

This is important in the case of the 2D-FFT and RIV descriptors which contain 36, 963

30



features. When sparsity is forced it often means that the set of features selected to obtain

high accuracy is not unique. A further discussion of this follows in the results section.

Additionally, there are arguments for and against mean centering and scaling data before

performing SVM classification. We have applied a linear SVM classifier to unaltered data and

to mean-centered and scaled data. A discussion of the effect of mean-centering is included

in the results section.

The l1 regularized, l2 loss function linear SVM can be solved by using primal-dual interior

point methods. Given the primal form of the problem

min
w
‖w‖1 + C

∑n
i=1max(0, 1− yiwTxi)2.

we can introduce additional variables which allow us to rewrite the primal form in such a

way that it can be easily differentiated. First, we can let w = w+−w−. We can then rewrite

‖w‖1 = eTw++eTw− where e is the vector of all ones of the appropriate length. Additionally,

we can define ξi = 1− yiwTxi, or equivalently, ξi = 1− yi(w+ − w−)Txi, where the yi is the

class label of the data point xi. Lastly, we can define a diagonal matrix D with the y along

the diagonal, and a matrix X with the data points xi as rows in the matrix. By making

these changes the primal problem becomes

minimize eTw+ + eTw− + cξT ξ

subject to DX(w+ − w−) ≥ e− ξ

w+, w−, ξ ≥ 0

With this primal problem we can then compute the Lagrangian function L as

L=eTw+ + eTw− + cξT − αT (DX(w+ − w−)− e+ ξ)− βTw+ − γTw− − µT ξ.

Once we have the Lagrangian we can derive the Karush-Kuhn-Tucker (KKT) Conditions

based on the function being stationary, requiring both primal and dual feasibility, and looking
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at complementary slackness conditions to hold. The function being stationary refers to all

the partial derivatives of the Lagrangian to be equal to zero. From this component of the

KKT conditions we obtain the following conditions:

δL
δw+ = e−XTDα− β = 0⇒ β = e−XTDα

δL
δw−

= e+XTDα− γ = 0⇒ γ = e+XTDα

δL
δξ

= 2cξ − α− µ = 0⇒ µ = 2cξ − α

For primal feasibility we require

DX(w+ − w−)− e+ ξ ≥ 0

w+, w−, ξ ≥ 0.

From dual feasibility we simply require α, β, γ, µ ≥ 0 which yields the following constraints

β, γ ≥ 0⇒ −e ≤ XTDα ≤ e

µ ≥ 0⇒ 2cξ − α ≥ 0

α ≥ 0⇒ 0 ≤ a ≤ 2cξ

Lastly, we look at the conditions enforced by complementary slackness. Complementary

slackness requires that αT (DX(w+ − w−) − e + ξ) = 0, βTw+ = 0, γTw− = 0, and that

µT ξ = 0. Plugging all of the relationships that are derived from the KKT conditions into

the original Lagrangian and simplifying will then allow us to obtain the formulation of the

dual problem. Once we have the paired Primal-Dual problems, we can apply one of the

Primal-Dual interior methods to reach an optimal solution, if one exists.
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CHAPTER 5

Results

In this chapter we present the results of three methods applied to two different tasks.

First we will compare the performance of each of the three proposed descriptors on the two

class problem separating events of high interest (EOHI) from white blood cells (WBCs).

Next, we will discuss the performance of each descriptor on the pairwise classifications tasks

of subdividing EOHI into four subclasses. In the following sections the expression “mean-

centered” refers to the matrix consisting of all descriptors of one type being column wise

mean centered and scaled by the standard deviation, while “unaltered” refers to the ma-

trix consisting of all descriptors of one type without any interference. All explorations were

performed on both mean-centered and unaltered versions of the descriptors. This was done

largely to help determine whether the variation of stain expression is important to the clas-

sification tasks at hand. Also, in order to fully interpret the results shown it is important

to note that when the descriptors are mean centered the number of features required for

classification is reduced, often by a factor between 2 and 10.

5.1. Comparison on the EOHI vs. WBC two Class Problem

The first set of results shown in Tables 5.1 and 5.2 show a comparison of the three image

representations in terms of their performance averaged over 500 randomly generated trials

on the two class problem where we seek to separate all EOHI from WBCs. In each trial 75%

of the data of each class is randomly selected and used for trainiing (375 events), while the

remaining 25% is used for testing (125 events). The ‘Total Number of Distinct Events Ever
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Table 5.1. Results of Representations on Two Class Problem (Unaltered)

FRD 2D-FFT RIV

Average Overall Accuracy 99.3800± 0.4337% 99.4272± 0.5827% 99.2080± 0.5072%
Average Number of EOHI Misclassified as WBC 1.0100± 1.0049 0.6840± 0.8174 0.9400± 0.9780
Average Number of WBC Misclassified as EOHI 0.5400± 0.6726 0.7480± 0.7619 1.0400± 0.8800

Total Number of Distinct Events Ever Misclassified 19 21 45
Number of Distinct HD-CTC Ever Misclassified 2 5 2
Number of Distinct Apoptotic Ever Misclassified 1 1 7

Number of No CK Ever Misclassified 8 8 25
Number of Small CK Ever Misclassified 0 1 3

Maximum Number of EOHI Misclassified in Single Trial 4 4 6
Average Time to Generate Classifier (in Seconds) 0.6478 6.8641 0.8117
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Table 5.2. Results of Representations on Two Class Problem (Mean-Centered)

FRD 2D-FFT RIV

Average Overall Accuracy 99.3416± 0.4548% 99.2664± 0.5100% 99.4360± 0.3976%
Average Number of EOHI Misclassified as WBC 0.9140± 0.9101 1.1620± 1.1019 0.4800± 0.6530
Average Number of WBC Misclassified as EOHI 0.7320± 0.7858 0.6700± 0.7782 0.9300± 0.8641

Total Number of Distinct Events Ever Misclassified 31 49 24
Number of Distinct HD-CTC Ever Misclassified 8 12 3
Number of Distinct Apoptotic Ever Misclassified 2 1 5

Number of No CK Ever Misclassified 7 14 6
Number of Small CK Ever Misclassified 3 8 2

Maximum Number of EOHI Misclassified in Single Trial 4 5 3
Average Time to Generate Classifier (in Seconds) 0.6484 6.2560 3.5212
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Misclassified’ refers to the number of events that were misclassified in one or more of the 500

trials.

In the Table 5.1, the average accuracy of each of the representations are not statistically

significantly different. Nor are their relative numbers of false positive and false negatives.

However, the total number of events misclassified over 500 trials makes the Fourier based

methods stand out as they give false classifications less than half the number of events as

RIV over 500 trials. This measure illustrates the robustness of the models generated by each

image representation. Thus, Table 5.1 suggests that FRD generates the most robust models.

Although we want to correctly classify all EOHI, our top priority is to correctly identify

HD-CTCs. To this end FRD and RIV are the representations that minimize the number of

misclassified HD-CTCs over 500 trials and achieve our top priority. Additionally, if one seeks

to select the fastest classifier for this classification task, FRD wins by a factor of roughly

ten over 2D-FFT on both versions of the descriptors and a factor of about 6 over RIV on

mean-centered descriptors and a factor of about 1.5 over RIV on unaltered descriptors. This

is an important measurement to consider when we think of the large scale implementation.

Results shown in Table 5.2 were generated under the same conditions as Table 5.1 with the

exception that the descriptors were mean centered prior to classification. While the average

accuracy, false positives, and false negatives of each model does not change in a statistically

significant way between mean-centered and unaltered descriptors, the total number of events

misclassified roughly doubles in the Fourier representations and halves in RIV. Also, in all

three representations the number of HD-CTCs misclassified goes up. Furthermore, an effect

of mean centering is an increase in the time taken to generate a classifier for RIV. While

it is often considered a standard technique to mean-center and scale data prior to using a
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Table 5.3. Comparison of Average Number of Selected Features

Mean-Centered and Scaled Unaltered

FRD 227 405
2D-FFT 541 1757

RIV 228 325

SVM, our results suggest that on this particular problem the variation of intensities between

cells in different images contains information useful to the EOHI versus WBC classification

task. As a point of curiosity we generated the FRD descriptors for the cells in our curated

data set from their uncurated form and generated 500 classifiers randomly partitioning the

data. When FRD is used on uncurated images of hand selected events, it averages a correct

classification of 99.5328±0.4199% on unaltered descriptors and 99.5656±0.4181% on mean-

centered and scaled descriptors. To obtain a comprehensive view of the performance of each

representation we must also look at the robustness of the features selected for classification.

As previously mentioned, using an l1 classifier forces sparsity of features used in classification.

One can then inquire as to whether or not the selected set of features for classification is

unique. The Figures 5.1 and 5.2 show the average effects of removal of feature sets on the

accuracy of a model in the EOHI vs. WBC problem over 500 trials. Also as previously stated,

when the descriptors are mean centered the number of features required for classification goes

down. The average number of features selected, when the classifier is based on all possible

features, for each trial on both mean centered and unaltered data are shown in Table 5.3.

For example, the average number of features, selected to generate a classifier for FRD

drops from around 400 on unaltered descriptors to around 220 on mean-centered and scaled

descriptors. This is why the x-axis of Figure 5.1 extends only to 10 instead of 50. At the

lowest end, we would consider a 95% classification to be acceptable. The average accuracy

of the models generated using unaltered descriptors falls below this threshold in all cases
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Figure 5.1. The average accuracy over 500 randomly generated models as
the first ten selected feature sets are removed on unaltered descriptors.

after the first ten selected feature sets have been removed. On the mean-centered and scaled

descriptors, however, the average accuracy of the 2D-FFT descriptor maintains an acceptable

level even after the first 50 selected feature sets have been removed. It is also important

when interpreting these results to recall that FRD has 3264 total features while 2D-FFT and

RIV have 36963 features before selection. This is important, for example, in the unaltered

FRD case where if 300 features were selected at each step, after five steps 50% of all the

features would have been removed. If the same number of features were selected in each step

in 2D-FFT or RIV, after five steps only about 5% of all features would have been removed.
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Figure 5.2. The average accuracy over 500 randomly generated models as
the first fifty selected feature sets are removed on scaled and mean-centered
descriptors.

Another component of the performance of the various representations is the effects of dif-

ferent levels of segmentation error on each of the three methods. The effects of segmentation

on all methods on both mean-centered and scaled data as well as unaltered data are shown

in Figures 5.3 and 5.4, respectively. Whether the boundary is shrunk or stretched, FRD

maintains the highest average accuracy in almost all cases when mean-centered and scaled

or unaltered. The performance of 2D-FFT falls off the most rapidly in both cases. This is

only one way of testing the effects of segmentation on the methods, and while it shows that
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(a)

(b)

Figure 5.3. Comparing the average accuracy over 100 randomly generated
models for different levels of distortion of the masking boundary for each of the
three representations. These models were generated on unaltered descriptors.
(a) Shows a comparison of the three methods as the masking boundaries is
shrunk. When a boundary is shrunk it represents segmentation error where
the CK and CD-45 information are reduced. (b) Compares the three rep-
resentations as the masking boundaries are stretched which corresponds to
segmentation error as neighboring cells are included in the boundary.
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(a)

(b)

Figure 5.4. Comparing the average accuracy over 100 randomly generated
models for different levels of distortion of the masking boundary for each of
the three representations. These models were generated on mean-centered and
scaled descriptors. (a) Shows a comparison of the three methods as the mask-
ing boundaries is shrunk. When a boundary is shrunk it represents segmenta-
tion error where the CK and CD-45 information are reduced. (b) Compares
the three representations as the masking boundaries are stretched which cor-
responds to segmentation error as neighboring cells are included in the bound-
ary.
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the FRD descriptor is the most robust to this type of segmentation further analysis would

be necessary before broad scale application to other cell tasks.

5.2. Pairwise EOHI Classification

There are six different pairwise EOHI classifications we can discuss:

• HD-CTC vs. Apoptotic,

• HD-CTC vs. No CK,

• HD-CTC vs. Small CK,

• Apoptotic vs. No CK,

• Apoptotic vs. Small CK,

• Small CK vs. No CK.

In this section we discuss the performance of each of the three descriptors on both mean-

centered and unaltered data on each of the six pairwise classification tasks.

A comparison of the average performance over 100 randomly generated trails of each

descriptor on the pairwise EOHI classification problems, where 75% of each class is used

for training and 25% for testing, on both mean-centered and scaled descriptors as well

as unaltered descriptors are shown in Tables 5.4 and 5.5 respectively. Again, we see no

truly statistically significant differences between the performance of the methods on each

pairwise classification task in most cases, or between a single method’s performance when the

descriptors are mean-centered and scaled or unaltered, but we note that the FRD descriptor

has the highest average performance and usually the smallest standard deviation for each of

the six pairwise classification tasks.

Each of the three near HD-CTC populations are considered marginal populations for

specific reasons. For example, No CK is a population of cells that has the appropriate
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Table 5.4. Results of Representations on Pairwise Classification of EOHI (Mean Centered)

FRD 2D-FFT RIV

HD-CTC vs. Apoptotic 93.6200± 3.4547% 84.3400± 5.2498% 86.3200± 4.6772%
HD-CTC vs. No CK 89.5600± 3.9449% 87.8200± 4.6718% 88.2000± 4.4812%

HD-CTC vs. Small CK 94.0200± 3.5219% 89.9200± 4.2554% 91.4600± 3.7266%
Apoptotic vs. No CK 90.7800± 4.1181% 87.3800± 3.8841% 81.3400± 6.0507%

Apoptotic vs. Small CK 82.4400± 4.7019% 81.9800± 5.4938% 77.0200± 4.9113%
Small CK vs. No CK 96.5600± 2.3455% 96.2200± 2.7692% 96.9400± 2.0391%

Table 5.5. Results of Representations on Pairwise Classification of EOHI (Unaltered)

FRD 2D-FFT RIV

HD-CTC vs. Apoptotic 95.4200± 2.5153% 89.4400± 3.7721% 87.6800± 4.9785%
HD-CTC vs. No CK 93.3000± 3.0134% 91.9800± 3.7023% 90.6800± 3.6317%

HD-CTC vs. Small CK 95.0800± 2.7768% 93.4600± 3.2518% 93.4800± 3.4421%
Apoptotic vs. No CK 92.6400± 3.3136% 86.5600± 3.8985% 75.8000± 5.4643%

Apoptotic vs. Small CK 80.0800± 4.4031% 82.2800± 4.8411% 74.7600± 5.5689%
Small CK vs. No CK 97.4000± 2.0000% 95.3200± 2.3306% 97.2000± 1.9280%
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nuclear size to be considered as a candidate for an HD-CTC but low presentation of CK. For

this reason we would not expect to be able to perfectly separate these two classes. A similar

argument could be made for Small CK which is a population of cells with HD-CTC level CK

expression but small nuclear size. We would, therefore, expect to be able to separate Small

Ck from No Ck with high levels of accuracy due to the fact that these marginal populations

exist on opposite ends of the HD-CTC spectrum. The term “apoptotic” means dying and

refers to a population of cells that are unhealthy or dying. Apoptotic cells are considered

to be of interest because they are distinct from WBCs, appear similar in some ways to

HD-CTCs, and may suggest some measure of sickness in a patient. Also, Apopotic cells

share some similarities with each of the other high interest classes and we would therefore

anticipate a greater challenge to separate Apoptotic cells from each other population. Thus,

the majority of our results are consistent with the thoughts of trained technicians. Perhaps

the most interesting of the pairwise results is the significantly lower ability to separate

Apoptotic from Small CK. While the classification rate is far above random, the results of

this pairwise classification may result in the formulation of additional biologically answerable

questions. For example, in a genomic analysis are there more genes shared between Apoptotic

and Small CK cells than other marginal populations? This particular pairwise classification

also inspires us to, in future work, test the performance of a non-linear classifier on the same

data.

The results in the previous two tables were generated on small sample sizes from the

curated data since there were only 100 cells of each marginal population put into the curated

data set. However, because we do not need segmentation, only a cell center, one could use

the database of EOHI from TKL to run FRD descriptor on a larger uncurated data set.
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Table 5.6. Results of FRD on Large Uncurated Data Set on Pairwise Clas-
sification of EOHI Types

Mean-Centered and Scaled Unaltered

HD-CTC vs. Apoptotic 81.3520± 1.8421% 82.2326± 1.9762%
HD-CTC vs. No CK 86.7720± 1.7846% 87.5320± 1.8309%

HD-CTC vs. Small CK 89.6560± 1.6818% 90.6086± 1.7352%
Apoptotic vs. No CK 89.4840± 1.5542% 89.7200± 1.7207%

Apoptotic vs. Small CK 64.9000± 2.5082% 66.2600± 2.7072%
Small CK vs. No CK 93.7200± 1.2384% 92.9040± 1.3461%

The values in Table 5.6 are the average accuracy over 500 trials performed on an uncurated

data set consisting of 2000 cells, 500 cells of each high interest class. There was no hand

selection involved in the selection of these cells. In each trial 75% of each class is used

for training and the remaining 25% is used for testing. Other image representations were

not run on this large EOHI data set because of their dependence on segmentation and the

inability to generalize the methods to uncurated data. We see in Table 5.6 that when we

generalize FRD to uncurated data on the pairwise classification tasks we loose a significant

amount of performance in each classification task, especially in the Apoptotic versus Small

CK problem. The reduction in performance suggests that exploration into non-linear SVM

may be worthwhile to see if the classifiers are more robust on the pairwise problems.
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CHAPTER 6

Conclusions and Future Work

The analysis provided in Chapter 5 leads us to conclude that the non mean-centered

FRD is the best of the three proposed descriptors for the EOHI versus WBC classification

task. This conclusion is based on the ultimate goal of being able to implement our algorithm

on a large scale while minimizing the number of HD-CTCs that are misclassified. Although

there is no statistically significant difference in the average accuracy of the three methods on

the data set considered here, the ability of FRD to be applied to images with only a center

of mass computation on the nuclear channel required and its rotational invariance makes it

superior for the current application. The results of work to date also suggests that FRD

produces effective low level feature descriptors for separating EOHI from one another.

Although currently we are not able to implement our methods on full patient slides in a

time which meets the goals of our original problem statement, there are many things we can

do to improve the performance. For example, we have not explored the minimum number

of points required to be sampled on a ring to determine appropriate classification. We note

that these algorithms are trivially parallelized and substantial accelerations in the code are

possible. It should be informative to explore the levels of sensitivity and specificity of the

descriptor when applied to complete slides.

Given the promising results of this first exploration we are hopeful that the low level

features that we can determine for HD-CTC, and near HD-CTC, events will provide further

treatment information. Future work will include applying FRD to other circulating epithelial

cell (CEC) classification tasks including, but not limited to, differentiation of HD-CTCs in
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patients with known malignant tumors from CEC in patients with benign masses, differen-

tiation of pre and post biopsy cells, and differentiation of cells at different times before and

after various treatments. Due to the significant difficulty in many of these future explorations

we will also explore using a non-linear kernel SVM classifier.

All of our analysis has been done, to date, on images generated using a 10x objective.

Future work will include testing the performance of the FRD on images produced using

higher magnification. Generating higher magnification images results in too many images

to effectively store when several image channels are used. It may be possible to show that

a descriptor performs with comparable or improved classification rates on a single channel

only at higher magnification, thereby reducing the need for the additional image channels

and allowing greater textural variation. There is hope that with higher levels of textural

information we may be able to make the automated detection of HD-CTC using FRD a tool

in cancer diagnostics.

Another problem of future interest is the unsupervised cell subtype detection. The un-

supervised cell classification problem refers to determining robust cell classes that can be

strongly differentiated mathematically but do not have known clinical titles. It is our hope

that by combining both the supervised and unsupervised cell types that we may be able to

connect a patient’s relative composition of all cell types to their clinical status at the time

the sample was acquired.

Additionally, we would like to see if there is a way to establish a quantifiable difference

between cell line circulating tumor cells and HD-CTCs as found in patient blood to further

support the findings of The Kuhn Laboratory published in [24]. This is an important concept

because much of the cancer research being done currently is done using cell lines and not cells
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developed within patients and therefore the results of a great deal of therapeutic research

may not be transferable to patients.
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APPENDIX A

CODE

1.1. Code Used to Stretch and Shrink Boundaries

function [distorted_boundary] = distortion( boundary, center,amount )

%STRETCH takes in a boundary and will shift each point onvthe boundary by "amount"

%The following if statements add or subtract the distortion amount

%depending on the center of the cell. A negative distortion amount

%corresponds to shrinking of the boundary while a positve corresponds

%to stretching.

for i=1:length(boundary)

x=boundary(i,1);

y=boundary(i,2);

if x>center(1,1)

x_stretch=x+amount;

elseif x<=center(1,1)

x_stretch=x-amount;

end

if y>center(1,2)

y_stretch=y+amount;

elseif y<=center(1,2)

y_stretch=y-amount;
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end

distorted_boundary(i,1)=x_stretch;

distorted_boundary(i,2)=y_stretch;

end

1.2. Code Used to Build FRD

function [points]=circles(x,y,r,np)

% CIRCLES takes in a center (x,y) and a radius r and determines the

% coordinates of number of points (np) along the circle.

angle_step=(2*pi/(np));

ang=0:angle_step:(2*pi)-angle_step;

xp=r*cos(ang);

yp=r*sin(ang);

xp=x+ xp’;

yp=y+ yp’;

points=[xp yp];

function [descriptor] = circular_descriptor(x,y,r,np,Image)

%CIRCULAR DESCRIPTOR takes in a center (x,y), a radius r, a number of

%points along the circle np, and an Image and interpolates the image value

%at the points along the circle.

[points]=circles(x,y,r,np);

ZI=uint8(interp2(Image, points(:,1), points(:,2), ’cubic’));

descriptor=ZI;

end
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function [ frd_descriptor ] = FRD( image, center, num_rings )

%CRFFT computers the concentric ring fourier transform feature descriptor

%of an image given a center and the number of rings

x=center(1,1);

y=center(1,2);

for r=1:num_rings

np=r*8;

[descriptor] = circular_descriptor(x,y,r,np,image);

fourier_coefficients{1,r}=abs(fft(descriptor))’;

end

crfft_descriptor=cell2mat(fourier_coefficients);

end

1.3. Code Used to Generate Results of Random Linear SVM Classifiers

function [ results ] = random_svm(descriptor_matrix, num_trials, num_each_class )

%RANDOM_SVM takes in a matrix of descriptors where the first half of the

%matrix comes from one class and the last half the second type.

% Uses LIBLINEAR matlab imterface to generate num_trials classifiers

% where the 75% of data used for training is randomly selected by

% permuting the number of events in each class. The RESULTS matrix

% contains the overall accuracy, the indicies of events that were

% misclassified, the events used in training and testing, the model

% determined by LIBLINEAR and the time taken to produce the classifier.

results=cell(num_trials,6);
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for i=1:num_trials

tic

clear ind_class_1 ind_class_2

ind_class_1=randperm(num_each_class);

ind_class_2=randperm(num_each_class);

z=floor(.75*num_each_class)

results{i,3}=[ind_class_1(1,1:z) num_each_class+ind_class_2(1,1:z)]’;

results{i,4}=[ind_class_1(1,z+1:end) num_each_class+ind_class_2(1,z+1:end)]’;

train_class_1=descriptor_matrix(ind_class_1(1:z),:);

train_class_2=descriptor_matrix(num_each_class+ind_class_2(1:z),:);

rand_train_set=[train_class_1; train_class_2];

rand_train_label=[ones(z,1);-1*ones(z,1)];

test_class_1=descriptor_matrix(ind_class_1(z+1:end),:);

test_class_2=descriptor_matrix(num_each_class+ind_class_2(z+1:end),:);

rand_test_set=[test_class_1; test_class_2];

rand_test_label=[ones(num_each_class-z,1);-1*ones(num_each_class-z,1)];

% The train and predict functions are from LIBLINEAR

model = train(rand_train_label, sparse(double(rand_train_set)),...

...[’-s 5’,’-c .5’]);
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[predict_label, accuracy, dec_values] = predict(rand_test_label,...

... sparse(double(rand_test_set)), model)

results{i,1}=accuracy(1,1);

s=find(predict_label~=rand_test_label);

indicies=[ind_class_1(1,z+1:end) 500+ind_class_2(1,z+1:end)]’;

misclassified=indicies(s,:);

results{i,2}=misclassified;

results{i,5}=model.w;

toc

results{i,6}=toc;

end

end
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