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ABSTRACT 

 

 

 

NATURAL CASES OF SALAMANDER HYBRIDIZATION SUGGEST A CONSISTENT 

RELATIONSHIP BETWEEN GENETIC DISTANCE AND REPRODUCTIVE ISOLATION 

ACROSS TETRAPODS 

 

 

Hybridization between populations along the path to complete reproductive isolation can 

provide snapshots of speciation in action. Here, we present the first comprehensive list of natural 

salamander hybrids and estimate genetic distances between the parental hybridizing species 

using a mitochondrial and nuclear gene (MT-CYB and RAG1). Salamanders are outliers among 

tetrapod vertebrates in having low metabolic rates and highly variable sex chromosomes. Both of 

these features might be expected to impact speciation; mismatches between the mitochondrial 

and nuclear genomes that encode the proteins for oxidative metabolism, as well as mismatches in 

heteromorphic sex chromosomes, can lead to reproductive isolation. We compared the genetic 

distances between hybridizing parental species across four main tetrapod clades that differ in 

metabolic rates and sex chromosome diversity: salamanders, lizards, mammals, and birds. Our 

results reveal no significant differences, suggesting that variation in these traits across 

vertebrates does not translate into predictable patterns of genetic divergence and incompatible 

loci in hybrids. 
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INTRODUCTION 

 

 

 

As lineages diverge (i.e. species form), the separating populations accumulate genetic 

distance, and eventually the distance becomes great enough to prevent reproduction, keeping the 

species on completely independent trajectories (de Queiroz 1998). Studying this process is 

challenging because it typically occurs over long timescales, but populations along the path to 

complete reproductive isolation can provide snapshots of speciation in action (Harrison and 

Larson 2016; Soltani et al., 2017). Classic examples include ring species such as Ensatina 

eschscholtzii, where different steps of speciation can be examined in a single taxon by looking at 

how the populations distributed around the geographic “ring” interbreed or hybridize (Pereira 

and Wake, 2009; Devitt et al., 2011). Specifically, hybrids provide an opportunity to identify the 

key genetic factors that become reproductive barriers when divergent genomes mix (Arnold 

1997; Toro et al., 2002; Harrison and Larson, 2016; Qvarnström et al.,2016). Typically, 

populations that come into contact and interbreed after isolation will have alleles interact in new, 

untested ways (Barton 1985). If this mixture of alleles is harmful, such as the hybrid being sterile 

or having low fitness, these negative interactions are called Dobzhansky–Muller or Bateson–

Dobzhansky–Muller incompatibilities (BDMIs) and are a source of reproductive isolation 

(Bateson, 1909; Dobzhansky 1937; Muller 1942; Orr 1996). 

One special case of BDMIs is when the mitochondria and the nucleus are mismatched 

after hybridization ⎯ i.e. mitonuclear discordance (Ellison and Burton 2007; Sloan et al., 2017; 

Hill et al., 2019). When the nucleus comes from one species and the mitochondria comes from a 

second, the gene products encoded by the two organelles can’t always functionally interact, 

causing reduced fitness and contributing to reproductive isolation. More specifically, this 
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reduced fitness can be reflected in the metabolic costs of being a hybrid, which include increased 

respiration rates, increased levels of reactive oxygen species (ROS), and increased metabolic rate 

(Olson et al., 2010; Gvoždík 2012; Borowiec et al., 2016; McFarlane et la., 2016; Prokić et al, 

2018). However, if an organism has a low metabolic rate to begin with, this drop in OXPHOS 

productivity might have a smaller effect on overall hybrid fitness. This could allow hybridization 

between species with more genetically distant mitochondrial and nuclear genomes before 

mismatches between the two parental species cause reproductive isolation. Tetrapods are a good 

model system in which to test this hypothesis because of the wide range of metabolic rates that 

exists in the clade (Pough 1980; White el al., 2006; Anderson and Gillooly 2018). Literature 

reviews summarizing natural hybrids in birds, mammals, and lizards have been published 

previously (Fitzpatrick 2004; Jančúchová-Lásková et al., 2015); birds have the highest metabolic 

rates, followed by mammals, and then lizards. Salamanders (Order Caudata) are an important 

clade to incorporate into a comparative analysis of tetrapods because they have the lowest 

metabolic rates (Pough 1980; Glatten et al., 1992), and there are many reported cases of 

salamander hybrids. With their low metabolic requirements, salamander hybrids might be able to 

tolerate greater levels of genetic divergence between parental species before complete 

reproductive isolation occurs. 

Sex chromosomes are also important during speciation and the emergence of 

reproductive isolation or hybrid incompatibility (Lima 2014) because of Haldane’s rule, where 

the heterogametic sex is more likely to be infertile by a variety of potential mechanisms, or the 

related large X/Z effect, where a disproportionately high amount of hybrid incompatibilities are 

found on either the X or Z chromosome (Presgraves 2008; Lavretsky et al., 2015; Janoušek et al., 

2018). In hybrid zones, mutations in sex chromosomes have been shown to limit introgression 



 

3 

 

(Cortés-Ortiz et al., 2018) or even cause complete reproductive isolation between lineages 

(Johnson and Lachance, 2012; Hooper et al., 2018). Compared to other tetrapod clades, 

salamanders have variable genetic sex determining mechanisms with either homomorphic sex 

chromosomes or heteromorphic sex chromosomes and either ZW or XY systems (Eggert 2005). 

This makes the salamander clade a good system for studying the effects of heteromorphic sex 

chromosomes on reproductive isolation (Evans et al., 2012), as this diversity yields a snapshot 

into heteromorphic sex chromosome evolution (Charlesworth et al 2005; Evans et al., 2012). 

There are numerous studies published on hybrids in salamanders, both from long-term 

stable hybrid zones and conservation efforts (Fitzpatrick and Shaffer, 2004; Fukumoto et al., 

2015), but to date, there is no published review of natural salamander hybrids. With a few 

notable exceptions (e.g. Twitty 1963; Gvoždík 2012; Prokić et al, 2018), there have not been 

extensive published experimental crosses in salamanders like those done in other vertebrate 

clades (e.g. toads, Malone and Fontenot, 2008). Here, we summarize the known cases of natural 

hybridization in salamanders. We then use this dataset to compare the genetic distances across 

which viable hybrids can form in different tetrapod clades and test whether differences in 

metabolic rate and sex chromosomes impact hybridization. 
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MATERIALS AND METHODS 

 

 

 

Compilation of Salamander Hybrids 

The first goal was the establishment of a comprehensive list of published salamander 

hybrids (Table 1). Taxonomy is continually revised to provide scientific names that convey 

accurate information about species boundaries as well as the evolutionary relationships among 

species. Making these species designations is a rich discipline, with disagreements caused by 

taxonomists requiring different levels of divergence or isolation between populations before they 

are formally named as species (Highton 1998; Kuchta and Wake 2014). For this review, we used 

a general lineage concept of species where a species equates to a population-level evolutionary 

segment (de Queiroz 1998). We looked for populations far enough along their own evolutionary 

trajectories that when secondary contact occurred, the populations did not completely admix into 

a single population. By doing this, we were able to include several instances of hybridization in 

which the hybridizing populations have not been formally named as species, which allowed us to 

compile the maximum amount of information about hybrid salamanders.  

Database searches were performed using the terms salamander, newt, hybrid, and contact 

zone. Databases used were JSTOR, Web of Science, and Wildlife & Ecology Studies 

Worldwide. Using the same terms, additional sources were found with the search engine Google 

Scholar. The searches were undertaken from January 2018 to June 2019 and included research 

published between 1979-2019. Many taxonomic changes occurred during this 40-year period; 

whenever there was a conflict in species name, the current listing on AmphibiaWeb 

(amphibiaweb.org) was used to resolve the issue.  
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Intensity of Research on Different Salamander Families 

To check whether the reported number of hybrids within each salamander family was a 

function of the intensity of publication, a general review was also conducted on how well each 

family of salamanders is represented in literature. Using the Web of Science database, searches 

were performed using terms based on variations on the salamander family names with two to 

three search terms used per family. Terms used were: Ambystomatidae (Ambystomatid and 

Ambystoma), Amphiumidae (Amphiumid and Amphiuma), Cryptobranchidae (Cryptobranchid 

and Cryptobranchus), Dicamptodontidae (Dicamptodontid and Dicamptodon), Hynobiidae 

(Hynobiid and Hynobius), Plethodontidae (Plethodontid and Plethodon), Proteidae (Proteid), 

Rhyacotritonidae (Rhyacotritonid and Rhyacotriton), Salamandridae (Salamandrid and 

Salamandra), and Sirenidae (Sirenid). The genus names Proteus and Siren were excluded due to 

their use in Greek mythology; because the corresponding salamander families are small, missing 

papers is unlikely. The number of articles per family was recorded divided by the number of 

species in each family based off AmphibiaWeb as of June 2019 (amphibiaweb.org). To test 

whether the reported number of hybrids within each salamander was related to the intensity of 

publication, a Kendall correlation coefficient was calculated comparing papers per species and 

hybrids per species for each family.  

Genetic Distances Between Hybridizing Species of Salamanders 

The genetic distances across the parental species for each hybridizing salamander pair 

were estimated using the mitochondrial gene cytochrome b (MT-CYB) (Figure 2a). MT-CYB 

has long been used as a phylogenetic and phylogeographic marker for salamanders, so there is 

wide coverage for many different species (Johns and Avise, 1998). MT-CYB has also been used 

as a proxy for overall genetic distance in summaries of hybridizing pairs of species in other 
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vertebrate taxa (Fitzpatrick 2004; Jančúchová-Lásková et al., 2015). For each parental species, 

the longest sequence without ambiguous nucleotides was downloaded from NCBI GenBank 

(http://www.ncbi.nlm.nih.gov/genbank/). In some cases, this involved extracting the MT-CYB 

sequence from a complete mitochondrial genome sequence. Of the 68 salamander species pairs 

known to hybridize, MT-CYB sequence data were available for 52 (Table 2). For each 

hybridizing pair, a pairwise alignment was calculated with default ClustalW settings 

implemented in MEGA X (Kumar et al., 2018). Each alignment was then trimmed to the first 

and last overlapping nucleotide position. After trimming, the alignments ranged from 345 to 

1141 base pairs. The genetic distances were estimated with PAUP * Version 4.0a (Swofford 

2002). The nucleotide substitution model used was HKY85 + Γ (Swofford 1998). In order to 

maximize the amount of sequence data used, the Γ distribution shape parameter α was estimated 

using the MEGA X maximum likelihood model selector based on a ClustalW alignment of all 73 

salamander MT-CYB sequences used in this study (Kumar et al., 2018). To test whether 

differences between the two largest salamander families (Plethodontidae and Salamandridae) 

drive overall patterns of genetic distances across which salamander hybrids form, a non-

parametric Mann-Whitney test was used. 

In order to test how representative MT-CYB genetic distances are in describing the 

overall genetic divergence between species, the substitution rate of mitochondrial genes versus 

nuclear genes was compared. This was accomplished by dividing the genetic distance of the 

mitochondrial gene MT-CYB by the genetic distance of the nuclear gene recombination 

activating 1 (RAG1) for the parental species that hybridize (Table 2). RAG1 was selected since 

the gene has widespread use in phylogenetic studies and was available for the most taxa (Chiari 

et al., 2009). For every parental species available, the longest RAG1 sequence without 
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ambiguous nucleotides was downloaded from GenBank. RAG1 genetic distances between 

parental species that hybridize were then estimated using the same methods as for MT-CYB 

genetic distances. 

Genetic Distances Between Hybridizing Species of Salamanders Compared with Hybrids in 

Other Vertebrate Clades  

The MT-CYB genetic distances between hybridizing parental species of salamanders 

were compared to those of birds, mammals, and lizards. These clades were selected because they 

span part of the range of vertebrate metabolic rates (Pough 1980; White el al., 2006; Anderson 

and Gillooly 2018) and because of the existence of published summaries of known, naturally 

occurring hybrids (Fitzpatrick 2004; Jančúchová-Lásková et al., 2015). A hybrid toad summary 

was excluded because it focused primarily on experimental crosses (Malone and Fontenot, 

2008). In some vertebrate classes, many closely related species hybridize, or a singular species 

hybridizes several times. This creates a potential bias when looking at many pairwise 

comparisons as a single taxon becomes overrepresented, and the resulting data becomes 

dependent on a few select taxa (Fitzpatrick 2004). Previously published work in mammals and 

birds resolved this issue by removing repeated taxa to remove nonindependence (Fitzpatrick 

2004), so the list of hybrids for salamanders and lizards was also pared down to make 

comparable results. For salamanders, the order was pared down to a single pair that can 

hybridize per genus. When a genus had multiple hybridizing species pairs, the pair with the 

greatest MT-CYB genetic distance was used. The list of hybrids for lizards was also pared down 

to the largest MT-CYB genetic distance per genus based on previously published work 

(Jančúchová-Lásková et al., 2015). Using this pared down list for all four vertebrate classes, MT-

CYB genetic distances were estimated between the parental species for each hybridizing species 
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pair (Table 2). For every species included, the longest MT-CYB sequence without ambiguous 

nucleotides was downloaded from NCBI GenBank. A pairwise alignment was then calculated for 

each hybridizing species pair with default ClustalW settings implemented in MEGA X (Kumar 

et al., 2018). Each alignment was then trimmed to the first and last overlapping nucleotide 

position. As was done for the salamanders, genetic distance was estimated using PAUP * 

Version 4.0a with an HKY85 + Γ nucleotide substitution model (Swofford 2002). For each of the 

vertebrate classes, the shape of the Γ distribution shape parameter α was estimated using the 

MEGA X maximum likelihood model selector based on a ClustalW alignment of all MT-CYB 

sequences included in this study (46 birds, 50 mammals, and 40 lizards) (Kumar et al., 2018). A 

Kruskal-Wallis test was then used to determine if the genetic distance across parental species that 

hybridize differs among the vertebrate classes.  

In order to test how representative MT-CYB genetic distances are in describing the 

overall genetic divergence between species, the substitution rate of mitochondrial genes relative 

to the substitution rate of nuclear genes was compared across the four vertebrate clades (Figure 

4). This was accomplished by dividing the genetic distance of the mitochondrial gene MT-CYB 

by the genetic distance of the nuclear gene RAG1 for the parental species that hybridize (Table 

2). For every parental species available, the longest RAG1 sequence without ambiguous 

nucleotides was downloaded from GenBank. RAG1 genetic distances between parental species 

that hybridize were then estimated using the same methods as for MT-CYB genetic distances. A 

Kruskal-Wallis test was used to determine if the ratio of MT-CYB/RAG1 genetic distances 

differed between the four vertebrate clades. 
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Relationship Between Sex Chromosomes and Hybridization in Salamanders 

A list of which salamanders have heteromorphic sex chromosomes was generated to see 

if the presence of heteromorphic sex chromosomes impacted hybridization. Salamanders with 

heteromorphic sex chromosomes were identified by using two published reviews and a recently 

published amphibian karyotype database (Hillis and Green, 1990; Evans et al., 2012; Perkins et 

al., 2019). In the available literature, it is not always apparent whether a salamander species is 

known to have homomorphic sex chromosomes or if the species was merely never confirmed as 

having heteromorphic sex chromosomes (Perkins et al., 2019). As such, additional unpublished 

information on salamanders that are known to have homomorphic sex chromosomes was 

obtained (S. Sessions, Personal Communication, June 19th, 2019). MT-CYB genetic distances 

between parental species with heteromorphic sex chromosomes that hybridize were compared to 

the genetic distances between parental species with homomorphic sex chromosomes that 

hybridize using a non-parametric Mann-Whitney test. A comparison was also made between the 

overall percentage of salamanders known to hybridize and the percentage of salamanders with 

heteromorphic sex chromosomes known to hybridize using a one-sided exact test of goodness-

of-fit. The overall results were similar whether the analyses were performed using only the 

species confirmed to have homomorphic sex chromosomes (based on personal communication) 

or using the larger dataset that assumed that all salamanders that have not been reported to have 

heteromorphic sex chromosomes have homomorphic sex chromosomes. 
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RESULTS 

 

 

 

Natural Hybrids in Salamanders 

 This review found 68 pairs of genetically distinct salamander lineages that hybridize in 

nature (Table 1). These lineages represent 10.5% of named salamander species and 7 out of 10 

salamander families (Figure 1). The seven families represented include Plethondontidae (38 

species), Salamandridae (25 species), Ambystomatidae (4 species), Hynobiidae (4 species), 

Cryptobranchidae (2 species), Dicamptodontidae (2 species), and Proteidae (2 species) (Figure 

1). The families of Amphiumidae, Rhyacotritonidae, and Sirenidae have no recorded cases of 

hybrids. Many pairs that hybridize come from Plethondontidae and Salamandridae, consistent 

with these being the two largest families of salamanders (475 and 120 species, respectively) 

(amphibiaweb.org). The third largest salamander family (Hynobiidae with 79 species) contains 

proportionally fewer hybrids with just 2 recorded pairs that can hybridize (Figure 1). There is no 

case of hybridization occurring between species of different genera.  

Intensity of Research on Different Salamander Families 

There were a total of 32,499 papers published using the salamander family related terms. 

Out of the large salamander families, the family with the highest number of papers per species, 

Ambystomatidae, did not have the highest number of reported hybrids (Figure 1). However, 

Ambystoma mexicanum is a contributor to the high paper-per-species count because it is a model 

lab animal and makes up a quarter (2694) of the Web of Science results for Ambystomatidae 

(Figure 1) (Voss et al., 2010). The two families with the highest numbers of species have the 

lowest intensity of publication: Hynobiidae (22 papers per species) and Plethondontidae (13 

papers per species). There are proportionally more papers published for families with fewer 
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species: Cryptobranchidae (336 papers per species), Amphiumidae (270 papers per species), 

Proteidae (110 papers per species), Dicamptodontidae (107 papers per species), Sirenidae (79 

papers per species), and Rhyacotritonidae (44 papers per species). There was no significant 

correlation between the number of papers per species and the number of salamanders found to 

hybridize per family (Kendall's rank correlation P = 0.146).   

Figure 1. Salamander hybrids are found in most families (cf. Weins et al., 2011). About 10.5% 

of salamanders are known to hybridize with over half belonging to Plethodontidae. There was no 

significant correlation between the number of papers per species and the proportion of 

salamanders found to hybridize (Kendall's rank correlation P = 0.146) 

 

Salamander Hybrid Genetic Distances 

For the 52 parental pairs of salamanders that have published MT-CYB sequence data, the 

mean genetic distance was 0.107 (Table 2). Lissotriton vulgaris X Lissotriton helveticus had the 

largest genetic distance of 0.376 while Plethodon teyahalee X Plethodon shermani had the 

smallest distance of 0.003 (Table 2). The two families with the most pairs that can hybridize 

have slightly differing distributions of genetic distance (Plethondontidae, mean = 0.114; 
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Salamandridae, mean = 0.0916). However, a non-parametric Mann-Whitney test showed no 

significant difference in genetic distance between the two families, (nPlethondontidae= 35, nSalamandridae 

=15, W = 336, P = 0.1231). For the 29 parental pairs of salamanders that have published RAG1 

data, the mean genetic distance was 0.00569 (range 0.000682 to 0.0199) (Table 2). The genetic 

distance ratio of the mitochondrial gene MT-CYB over the nuclear gene RAG1 between 

salamanders that hybridize was highly variable (Figure 2b). The ratio ranged from 0.6x to 112x 

with most species pairs having a higher mitochondrial genetic distance (median ratio = 21.5).  

Figure 2. A) Histogram of cytochrome b (MT-CYB) genetic distance estimates (HKY85 + Γ) 
between salamanders that hybridize. Graph bin width is 0.0125. B) Ratio of mitochondrial MT-

CYB genetic distance to nuclear recombination activating 1 (RAG1) genetic distance between 

parental species of salamanders that hybridize on a log scale. The ratio of genetic distance ranged 

from 0.6 to 112 with the majority of species pairs having a higher mitochondrial genetic distance 

(median = 21.5). 

 

Genetic Distances Between Parental Species that Hybridize in Different Clades 

After paring down to the pair that can hybridize with the highest genetic distance per 

genus, there were 23 pairs of hybrids for birds, 20 pairs for lizards, 25 pairs for mammals, and 16 

pairs for salamanders (Table 2). The median MT-CYB genetic distances for the groups were: 

lizards (0.181), birds (0.167), mammals (0.152), and salamanders (0.125) (Figure 3). There were 
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no significant differences in distributions of genetic distance among the four groups (χ2 = 2.8024, 

P = 0.4231). Across all vertebrates, birds had both the lowest and highest genetic distances with 

Regulus calendula X Regulus satrapa (0.002) and Gallus gallus X Alectura lathami (0.366). 

Using the pared down list of hybrids, RAG1 sequences were available for 12 pairs of hybrids for 

birds, nine pairs for lizards, nine pairs for mammals, and nine pairs for salamanders (Table 2). 

The median MT-CYB/RAG1 genetic distance ratio for the four groups were: lizards (25.8), 

salamanders (21.0), mammals (14.0), and birds (10.6) (Figure 4). There were no significant 

differences among the four vertebrate classes (P = 0.0915).  

Figure 3. Cytochrome b (MT-CYB) genetic distances between parental species that hybridize in 

different tetrapod groups. Kruskal–Wallis H test showed no significant differences across the 

groups (p = 0.423). Salamanders are not hybridizing across greater genetic distances.  

 

Relationship Between Sex Chromosomes and Hybridization in Salamanders 

 Forty-eight species of salamanders in seven families have been discovered with 

heteromorphic sex chromosomes (Ambystomatidae, Hynobiidae, Plethodontidae, Proteidae, 

Salamandridae, Sirenidae, and Proteidae) (Table 3). (Continued next page).  
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Figure 4. Genetic distance ratio of mitochondrial cytochrome b (MT-CYB) to nuclear 

recombination activating 1 (RAG1) for pairs of species that hybridize in major tetrapod clade on 

a log scale. Kruskal–Wallis H test showed no strong significant differences across the four 

groups (p = 0.0915).  

 

Salamander families are not characterized by a single type of sex chromosome with different 

members of Salamandridae and Plethodontidae having both ZZ/ZW and XX/XY systems. Out of 

the salamanders with sex chromosomes, 13/48 are known to hybridize with a different species 

(Table 3). There is no difference between percentage of salamanders that hybridize with known 

sex chromosomes and the known overall salamander hybridization rate (P = 0.999). Also, the 

genetic distances between parental salamanders that hybridize with sex chromosomes (median = 

0.104) and parental salamanders that hybridize without sex chromosomes (median = 0.139) are 

not significantly different (p=0.639) (Figure 5). Based on these analyses, there is no indication 

that the presence of sex chromosomes hinders hybridization in salamanders.  
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Figure 5. Genetic distances between salamanders that hybridize with heteromorphic sex 

chromosomes (median = 0.104) and salamanders that hybridize without sex chromosomes 

(median = 0.139). There is no significant difference (p=0.639) between salamanders with sex 

chromosomes and salamanders without sex chromosomes 
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Table 1. Natural Hybridization in Salamanders 
Parental Species 

Resources 
Species 1  Species 2 

Ambystomatidae   

Ambystoma macrodactylum North Central Ambystoma macrodactylum Rocky Mountains Lee-Yaw et al., 2014 

Ambystoma maculatum Eastern  Ambystoma maculatum Western Johnson et al., 2015 

Ambystoma tigrinum californiense Ambystoma mavortium Fitzpatrick et al., 2009  

Fitzpatrick and Shaffer, 2004 

Riley et al., 2003 

Cryptobranchidae 
  

Andrias davidianus Andrias japonicus Fukumoto et al., 2015 

Dicamptodontidae 
  

Dicamptodon ensatus Dicamptodon tenebrosus Good, 1989 

Hynobiidae 
  

Onychodactylus japonicus S-Tohoku Onychodactylus japonicus SW-Honshu Yoshikawa et al., 2012 

Salamandrella keyserlingii Salamandrella tridactyla Malyarchuk et al., 2014 

Plethodontidae 
  

Batrachoseps gavilanensis Batrachoseps luciae Jockusch and Wake, 2002 

Bolitoglossa franklini  Bolitoglossa lincolni  Wake et al., 1980 

Desmognathus carolinensis  Desmognathus orestes Mead and Tilley, 2000 

Desmognathus conanti Desmognathus fuscus Bonett, 2002 

Desmognathus fuscus Desmognathus ochrophaeus Sharbel et al., 1995 

Desmognathus fuscus Desmognathus santeetlah Tilley, 1988 

Ensatina eschscholtzii croceater Ensatina eschscholtzii platensis Pereira and Wake, 2009 

Ensatina eschscholtzii Ensatina eschscholtzii klauberi Devit et al., 2011 

Ensatina eschscholtzii oregonensis Ensatina eschscholtzii picta Pereira and Wake, 2009 

Ensatina eschscholtzii oregonensis Ensatina eschscholtzii xanthoptica Pereira and Wake, 2009 

Ensatina eschscholtzii platensis Ensatina eschscholtzii xanthoptica Alexandrino et al., 2005  

Sweet, 1984 

Eurycea bislineata Eurycea cirrigera Guttman and Karlin, 1986 
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Table 1 (continued). 

Eurycea cirrigera Eurycea wilderae Kozak, 2003 

Eurycea neotenes Eurycea tridentifera Kozak and Montanucci, 2001 

Hydromantes ambrosii Hydromantes italicus Lunghi et al., 2017 

Ficetola et al., 2019 

Plethodon aureolus  Plethodon shermani Highton and Peabody, 2000 

Plethodon chattahoochee  Plethodon chlorobryonis Highton and Peabody, 2000 

Plethodon chattahoochee  Plethodon shermani Highton and Peabody, 2000 

Plethodon chattahoochee  Plethodon teyahalee Highton and Peabody, 2000 

Plethodon cheoah Plethodon teyahalee Highton and Peabody, 2000 

Plethodon chlorobryonis Plethodon cylindraceus Highton and Peabody, 2000 

Plethodon chlorobryonis Plethodon metcalfi Highton and Peabody, 2000 

Plethodon chlorobryonis Plethodon teyahalee Highton and Peabody, 2000 

Plethodon cinereus Plethodon electromorphus Lehtinen et al., 2016 

Plethodon cylindraceus Plethodon glutinosus Highton and Peabody, 2000 

Plethodon dorsalis Plethodon ventralis Highton, 1997 

Duncan and Highton, 1979 

Plethodon electromorphus Plethodon richmondi Highton, 1999 

Plethodon fourchensis Plethodon ouachiteae Shepard et al., 2011 

Plethodon glutinosus Plethodon jordani Hairston et al., 1992 

Plethodon glutinosus Plethodon kentucki Kuchta et al., 2016  

Hairston et al., 1992 

Plethodon hoffmani Plethodon virginia Highton, 2009  

Dawley, 1987 

Plethodon jordani Plethodon metcalfi Chatfield et al., 2010 

Plethodon jordani Plethodon teyahalee Chatfield et al., 2010 

Plethodon metcalfi Plethodon teyahalee Chatfield et al., 2010 

Plethodon shermani Plethodon teyahalee Highton and Peabody, 2000 

Proteidae   

Necturus maculosus Necturus aff. lewisi Nelson et al., 2017 
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Table 1 (continued). 

Salamandridae   
Chioglossa lusitanica Northern Chioglossa lusitanica Southern Sequeira et al., 2005 

Cynops pyrrhogaster Central Cynops pyrrhogaster Western  Tominaga et al., 2017 

Lissotriton helveticus Lissotriton vulgaris Johanet et al., 2011 

Lissotriton montandoni Lissotriton vulgaris Babik et al., 2005  

Zieliński et al., 2013 

Lissotriton vulgaris kosswigi Lissotriton vulgaris Nadachowska and Babik, 

2009 

Lyciasalamandra antalyana Lyciasalamandra billae Johannesen et al., 2006 

Notophthalmus viridescens Notophthalmus viridescens dorsalis Takahashi et al., 2011 

Ommatotriton ophryticus Ommatotriton nesterovi Riemsdijk et al., 2018 

Ommatotriton ophryticus Ommatotriton vittatus Yoshikawa et al., 2010  

Riemsdijk et al., 2018 

Pleurodeles nebulosus Pleurodeles poireti Escoriza et al., 2016 

Salamandra salamandra gallaica Salamandra bernardezi García-París et al., 2003 

Salamandra fastuosa Salamandra terrestris Ventura et al., 2015  

Canestrelli et al., 2014  

García-París et al., 2003 

Salamandrina perspicillata Salamandrina terdigitata Hauswaldt et al., 2011  

Mattoccia et al., 2011  

Arntzen et al., 2009  

Taricha torosa Taricha sierrae Kuchta, 2007 

Triturus carnifex Triturus cristatus Arntzen et al., 2014 

Triturus carnifex Triturus dobrogicus Arntzen et al., 2014 

Triturus carnifex Triturus ivanbureschi Arntzen et al., 2014 

Triturus carnifex Triturus macedonicus Arntzen et al., 2014 

Triturus cristatus Triturus dobrogicus Arntzen et al., 2014 

Triturus cristatus Triturus ivanbureschi Arntzen et al., 2014 

Triturus cristatus Triturus macedonicus Arntzen et al., 2014 

Triturus cristatus Triturus marmoratus Visser et al., 2016 
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Table 2. Hybrid pairs and accession numbers for MT-CYB and RAG1. Lists of bird hybrids and mammal hybrids modified from 

Fitzpatrick 2004. Lizards modified from Jančúchová-Lásková et al., 2015. Only the highest distance per genus was used in the 

salamander (*) for the cross-clade comparison (Figure 3).  

Species 1 
Accession 

Number 
Species 2 

Accession 

Number 

Genetic Distance 

(HKY85 + Γ) 

 MT-CYB RAG1  MT-CYB RAG1 
MT-

CYB 
RAG1 

MT-

CYB/ 

RAG1 

Birds 
 

 

  

 

 

  

Acrocephalus scirpaceus LT671508.1  A. palustris AJ004774.1  0.121   

Aegypius monachus AY987266.1 EF078711.1 Gyps fulvus AY987261.1 EU496474.1 0.120 0.005 22.0 

Agapornis nigrigenis AF001328.1 GQ505193.1 Melopsittacus undulatus DQ467903.1 DQ143354.1 0.265 0.036 7.3 

Alectura lathami KF833611.1 AF294687.2 Gallus L08376.1 NM001031188.1 0.366 0.076 4.8 

Branta canadensis EU585629.1  Cairina moschata L08385.1  0.235   

Bugeranus carunculatus U27556.1  Grus canadensis EU166997.1  0.074   

Buteo buteo X86741.1 EU345528.1 Pernis apivorus X86758.1 EF078753.1 0.185 0.018 10.2 

Carduelis chloris AY495384.1  Emberiza citrinella AY495392.1  0.221   

Ciconia ciconia KJ456229.1  C. nigra U72771.1  0.184   

Cathartes aura EU166984.1 EF078766.1 Coragyps atratus KX534417.1 KM876315.1 0.167 0.008 21.8 

Columba livia KC675192.1 AY228768.1 
Leucosarcia 

melanoleuca 
AF483327.1 EF373512.1 0.239 0.032 7.4 

Diphyllodes magnificus X74255.1  Paradisaea minor U25737.1  0.159   

Egretta garzetta MH645659.1  Nycticorax nycticorax AF193829.1  0.143   

Falco columbarius EU233049.1 EU233167.1 F. tinnunculus EU233121.1 EU233241.1 0.140 0.006 24.4 

Ficedula albicollis DQ674491.1 XM005046928.1 F. hypoleuca KJ930552.1 DQ466798.1 0.042 0.004 11.0 
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Table 2 (continued). 

Garrulus glandarius AB242559.1  Perisoreus infaustus U86042.1  0.247   

Hirundo rustica DQ119526.1 AY443290.1 H. pyrrhonota AF074591.1 AY056997.1 0.181 0.010 18.0 

Larus canus AB208756.1  L. ridibundus FM209923.1  0.056   

Phylloscopus collybita HQ608821.1  P. trochilus MH079362.1  0.146   

Pterocnemia pennata U76054.1  Rhea americana L78808.1  0.084   

Regulus calendula AY329472.1 AY057028.1 R. satrapa AJ004329.1 AY443327.1 0.002 0.018 0.1 

Scolopax rusticola KM434134.1 AY228802.1 Vanellus vanellus 
KM577158.1: 

13657-14802 
AY339126.1 0.260 0.052 5.0 

Turdus migratorius AF197835.1 KC789829.1 T. philomelos AY495411.1 AY307214.1 0.196 0.013 15.4 

Lizards         

Amblyrhynchus cristatus AY948118.1 KR350710.1 Conolophus subcristatus AY948122.1 KR350708.1 0.219 0.008 25.8 

Anolis aeneus EU557103.1 JN112592.1 A. trinitatis AF493592.1 JN112645.1 0.286 0.009 30.7 

Carlia rubrigularis 

NORTH 
AF181042.1  C. rubrigularis South AF181056.1  0.229   

Crotaphytus bicinctores EU037682.1  C. collaris EU037482.1  0.137   

Ctenosaura bakeri GU331976.1  C. similis GU331975.1  0.184   

Gambelia sila EU037370.1  G. wislizenii EU037415.1  0.026   

Iberolacerta galani HQ234901.1 KY762187.1 I. monticola HQ234897.1 EF632220.1 0.050 0.001 33.8 

Iguana delicatissima KX610607.1  I. iguana AF020251.1  0.172   

Kentropyx calcarata JQ639739.1  K. striata JQ639672.1  0.223   

Lacerta agilis AF373032.1 EF632222.1 L. schreiberi AF372103.1 KY762190.1 0.310 0.017 18.7 
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Table 2 (continued). 

Lacerta pater AF378964.1  Timon lepidus JX626302.1  0.204   

Leiolepis guttata NC014179.1   L. reevesii EU305052.1  0.339   

Liolaemus bibronii JN410531.1  L. gracilis JN410538.1  0.177   

Nactus multicarinatus KC581486.1 HM997172.1 N. pelagicus KC581545.1 EU054275.1 0.081 0.004 20.8 

Oligosoma otagense JN999970.1 EU568093.1 O. waimatense JN999978.1 EU568094.1 0.114 0.001 96.4 

Phrynocephalus putjatai KF691634.1 KC551413.1 P. vlangalii KF691642.1 KJ195972.1 0.058 0.005 10.6 

Phrynosoma cornutum AY141087.1 DQ385423.1 P. coronatum AY141097.1 FJ356738.1 0.291 0.030 9.7 

Plestiodon japonicus EU203134.1 HM161196.1 P. latiscutatus EU203035.1 HM161203.1 0.175 0.004 47.2 

Podarcis melisellensis AY185036.1  P. sicula AY770890.1  0.292   

Zootoca vivipara 

carniolice 
AY714929.1  Z. vivipara vivipara AY714913.1  0.069   

Mammals         

Alcelaphus buselaphus AJ222681.1  Damaliscus lunatus AF016635.1  0.161   

Arctocephalus pusillus AM181018.1   Zalophus californianus AM422164.1  0.088   

Bos bison AF036273.1  B. indicus AF419237.2  0.089   

Camelus bactrianus JX177500.1 XM010964664.1 C. dromedarius KU509220.1 XM011000597.1 0.170 0.004 47.9 

Capra caucasica AF034738.1  C. sibirica KF990328.1  0.110   

Cervus elaphus AB001612.1  Odocoileus hemionus AF091630.1  0.226   

Chinchilla brevicaudata AF464756.1  C. lanigera AF122820.1  0.069   

Equus caballus DQ223535.1 NM001256901.1 E. grevyi X56282.1 AY239184.1 0.118 0.009 13.0 
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Table 2 (continued). 

Eulemur macaco AF081049.1 HM759153.1 E. mongoz AF081051.1 EU342315.1 0.140 0.005 27.1 

Halichoerus grypus GU167293.1  Phoca hispida X82304.1  0.043   

Hylobates agilis AJ010583.1  H. hoolock Y13304.1  0.178   

Kobus kob AF052939.1  K. megaceros AJ222686.1  0.136   

Lama guanicoe U06428.1  Vicugna vicugna U06430.1  0.083   

Lepus europaeus AY745112.1  L. timidus AJ279424.1  0.152   

Macaca fascicularis AF295584.1  Mandrillus sphinx JQ068151.1  0.328   

Martes martes AF154975.1  M. putorius X94925.1  0.218   

Mastomys natalensis JX292865.1 DQ023475.1 Mus musculus AY057804.1 NM009019.2 0.317 0.060 5.2 

Microtus californicus AF163891.1 KC953523.1 M. montanus AF119280.1 KC953524.1 0.189 0.018 10.6 

Ovis aries AF034730.1 XM012134165.2 O. canadensis EU365985.1 AY239177.1 0.089 0.006 14.0 

Panthera leo X82300.1 AB109364.1 P. pardus JF720058.1 XM019470137.1 0.107 0.002 58.0 

Pecari tajacu DQ179055.1  Tayassu pecari AY534303.1  0.073   

Peromyscus difficilis AF155394.1  P. truei FJ800579.1  0.221   

Spermophilus major AF157903.1  S. pygmaeus AF157907.1  0.158   

Ursus americanus U23556.1  U. arctos U18870.1  0.172   

Vulpes lagopus LT559489.1  V. vulpes AY928669.1  0.181   

Salamanders         

Andrias davidianus KU131042.1 MH106790.1 A. japonicus AB208679.1 AY583346.1 0.100* 0.0047 21.5 
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Table 2 (continued). 

Batrachoseps gavilanensis  KM203055.1 KM202898.1 B. luciae KM203053.1 KM202878.1 0.189* 0.0107 17.7 

Bolitoglossa franklini MK165231.1 KC614439.1 B. lincolni  GU725464.1 KC614440.1 0.030* 0.0025 12.1 

Desmognathus 

carolinensis 
EU314306.1 KR732369.1 D. orestes EU314288.1 KR827015.1 0.163 0.0028 58.7 

Desmognathus conanti KY659020.1 KR732370.1 D. fuscus AY728227.1 KR732372.1 0.239* 0.0111 21.6 

Desmognathus fuscus AY728227.1 KR732372.1 D. ochrophaeus  EU314289.1 KR732377.1 0.167 0.0124 13.4 

Desmognathus fuscus AY728227.1 KR732372.1 D. santeetlah EU314270.1 KR732384.1 0.199 0.0117 16.9 

Dicamptodon ensatus AY734600.1 EF107335.1 D. tenebrosus AAW70411.1 AY650132.1 0.044* 0.0054 8.1 

Ensatina eschscholtzii 

croceater 
L75796.1  

E. eschscholtzii  

platensis 
FJ151995.1  0.064   

Ensatina eschscholtzii 

eschscholtzii 
FJ151951.1  

E. eschscholtzii 

 klauberi 
L75801.1  0.183   

Ensatina eschscholtzii 

oregonensis 
FJ151696.1  

E. eschscholtzii  

picta 
FJ151670.1  0.059   

Ensatina eschscholtzii 

oregonensis 
FJ151696.1  

E. eschscholtzii 

xanthoptica  
FJ151887.1  0.226*   

Ensatina eschscholtzii 

platensis 
FJ151995.1  

E. eschscholtzii 

xanthoptica  
FJ151887.1  0.179   

Eurycea bislineata AY728217.1 AY691706.1 E. cirrigera NC035494.1 FJ750236.1 0.125* 0.0160 7.8 

Eurycea cirrigera NC035494.1 FJ750236.1 E. wilderae JQ920621.1 JQ920766.1 0.102 0.0198 5.1 

Eurycea neotenes AY528400.1 AY650122.1 E. tridentifera AY014848.1 KF562669.1 0.009 0.0102 0.9 

Hydromantes ambrosii  FJ602258.1 FJ602321.1 H. italicus  FJ602299.1 EU275791.1 0.059* 0.0008 72.2 

Lissotriton helveticus DQ821238.1  L. vulgaris EU880339.1  0.367*   

Lissotriton montandoni DQ821254.1  L. vulgaris EU880339.1  0.010   

Ommatotriton nesterovi KX682106.1  O. ophryticus DQ821267.1  0.012   
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Table 2 (continued). 

Ommatotriton ophryticus DQ821267.1  O. vittatus EU880338.1  0.014*   

Plethodon aureolus DQ994914.1 DQ995012.1 P. shermani DQ994985.1 DQ995063.1 0.168 0.0022 75.1 

Plethodon chattahoochee DQ994919.1 DQ995014.1 P. teyahalee DQ994990.1 DQ995068.1 0.047 0.0034 13.7 

Plethodon chattahoochee DQ994919.1 DQ995014.1 P. chlorobryonis DQ994923.1 DQ995016.1 0.051 0.0033 15.5 

Plethodon chattahoochee DQ994919.1 DQ995014.1 P. shermani DQ994985.1 DQ995063.1 0.051 0.0021 25.0 

Plethodon cheoah DQ994921.1  P. teyahalee DQ994990.1  0.047   

Plethodon chlorobryonis DQ994923.1  P. cylindraceus DQ994928.1  0.016   

Plethodon chlorobryonis DQ994923.1  P. teyahalee DQ994990.1  0.011   

Plethodon chlorobryonis DQ994923.1  P. metcalfi DQ994956.1  0.163   

Plethodon cinereus AY378042.1 AY691703.1 P. electromorphus AY378060.1 DQ995024.1 0.153 0.0131 11.7 

Plethodon cylindraceus DQ994928.1 DQ995022.1 P. glutinosus DQ994937.1 DQ995027.1 0.171 0.0030 57.2 

Plethodon dorsalis GQ464404.1 DQ995023.1 P. ventralis DQ994993.1 DQ995071.1 0.034 0.0034 9.9 

Plethodon electromorphus AY378060.1 DQ995024.1 P. richmondi AY378072.1 DQ995051.1 0.081 0.0020 39.6 

Plethodon fourchensis FJ611481.1 DQ995026.1 P. ouachitae FJ266744.1 AY691704.1 0.181 0.0020 88.3 

Plethodon glutinosus DQ994937.1 DQ995027.1 P. jordani DQ994947.1 DQ995032.1 0.187 0.0022 83.4 

Plethodon glutinosus  DQ994937.1 DQ995027.1 P. kentucki  DQ994948.1 DQ995033.1 0.188* 0.0052 35.8 

Plethodon hoffmani  AY378047.1 DQ995029.1 P. virginia  AY378049.1 DQ995072.1 0.047 0.0007 68.8 

Plethodon jordani DQ994947.1 DQ995032.1 P. metcalfi DQ994956.1 DQ995040.1 0.076 0.0007 112.0 

Plethodon jordani DQ994947.1 DQ995032.1 P. teyahalee DQ994990.1 DQ995068.1 0.164 0.0020 80.2 
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Table 2 (continued). 

Plethodon metcalfi DQ994956.1  P. teyahalee DQ994990.1  0.158   

Plethodon shermani DQ994985.1 DQ995063.1 P. teyahalee DQ994990.1 DQ995068.1 0.003 0.0014 2.3 

Salamandra salamandra 

bernardezi  
DQ092219.1  

S. salamandra  

gallaica 
KX094979.1  0.025*   

Salamandra salamandra 

fastuosa 
DQ221234.1  

S. Salamandra 

 terrestris  
AY222503.1  0.006   

Salamandrella keyserlingii AY593141.1 AY650145.1 S. schrenckii AB363608.1 KJ855096.1 0.154* 0.0036 42.3 

Salamandrina perspicillata DQ821207.1 HQ915345.1 S. terdigitata EU880332.1 HQ915218.1 0.004* 0.0065 0.6 

Taricha sierrae DQ196282.1  T. torosa DQ196247.1  0.125* 
  

Triturus carnifex NC 015788.1  T. cristatus HQ697273.1  0.103 
  

Triturus carnifex  NC 015788.1  T. dobrogicus  HQ697274.1  0.104 
  

Triturus carnifex  NC 015788.1  T. macedonicus  HQ697278.1  0.058 
  

Triturus cristatus HQ697273.1  T. dobrogicus  HQ697274.1  0.115 
  

Triturus cristatus HQ697273.1  T. marmoratus HQ697279.1  0.267* 
  

Triturus cristatus  HQ697273.1  T. macedonicus  HQ697278.1  0.116 
  

Triturus marmoratus HQ697279.1  T. pygmaeus HQ697280.1  0.048 
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Table 3. Heteromorphic Sex Chromosomes in Salamanders. Of the 48 species with sex 

chromosomes, 13 have been shown to hybridize with a different species. A one-sided exact test 

of goodness-of-fit for the lower bounds showed no significance (P = 0.999). The presence of sex 

chromosomes is not an inherent barrier to hybridization in salamanders.  

Species Family Sex Chromosome Type Hybrid 
(Yes/No) 

Ambystoma jeffersonianum3 Ambystomatidae ZW No 

Ambystoma laterale123 Ambystomatidae ZW Yes 

Ambystoma mexicanum123 Ambystomatidae ZW Yes 

Ambystoma tigrinum123 Ambystomatidae ZW Yes 

Hynobius hidamontanus13 Hynobiidae ZW No 

Hynobius quelpaertensis13 Hynobiidae ZW No 

Hynobius tokyoensis3 Hynobiidae ZW No 

Aneides ferreus123 Plethodontidae ZW No 

Bolitoglossa subpalmata123 Plethodontidae XY No 

Chiropterotriton dimidiatus123 Plethodontidae ZW No 

Cryptotriton veraepacis123 Plethodontidae XY No 

Dendrotriton bromeliacius23 Plethodontidae XY No 

Dendrotriton cuchumatanus2 Plethodontidae XY No 

Dendrotriton rabbi123 Plethodontidae XY No 

Dendrotriton xolocalcae123 Plethodontidae XY No 

Hydromantes ambrosii123 Plethodontidae XY Yes 

Hydromantes flavus123 Plethodontidae XY No 

Hydromantes imperialis123 Plethodontidae XY No 

Hydromantes italicus123 Plethodontidae XY Yes 

Hydromantes genei3 Plethodontidae XY No 

Hydromantes supramontis13 Plethodontidae XY No 

Nototriton abscondens13 Plethodontidae XY No 
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Table 3 (continued). 

Nototriton picadoi123 Plethodontidae XY No 

Nototriton richardi1 Plethodontidae XY No 

Oedipina cyclocauda1 Plethodontidae XY No 

Oedipina parvipes12 Plethodontidae XY No 

Oedipina poelzi123 Plethodontidae XY No 

Oedipina pseudouniformis1 Plethodontidae XY No 

Oedipina uniformis23 Plethodontidae XY No 

Thorius dubitus123 Plethodontidae XY No 

Thorius pennatulus23 Plethodontidae XY No 

Necturus alabamensis3 Proteidae XY No 

Necturus beyeri123 Proteidae XY No 

Necturus lewisi123 Proteidae XY Yes 

Necturus maculosus123 Proteidae XY Yes 

Necturus punctatus123 Proteidae XY No 

Ichthyosaura alpestris3 Salamandridae XY No 

Lissotriton boscai3 Salamandridae XY No 

Lissotriton helveticus23 Salamandridae XY Yes 

Lissotriton italicus23 Salamandridae XY No 

Lissotriton vulgaris23 Salamandridae XY Yes 

Pleurodeles poireti123 Salamandridae ZW Yes 

Pleurodeles waltl123 Salamandridae ZW No 

Triturus carnifex23 Salamandridae XY Yes 

Triturus cristatus123 Salamandridae XY Yes 

Triturus karelinii13 Salamandridae XY No 

Triturus marmoratus123 Salamandridae XY Yes 

Siren intermedia12 Sirenidae ZW No 

1Evans et al., 2012 2Hillis and Green, 1990 3Perkins et al., 2019 
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DISSCUSION 

 

 

 

Overall, we found that hybridization is widespread throughout the salamander order 

occurring in both the biggest and smallest families (Figure 1). The largest four families 

(Ambystomatidae, Hynobiidae, Plethodontidae, and Salamandridae) account for nearly 97% of 

all salamander species and account for over 90% of the hybrids (Figure 1). With respect to 

geographic location, hybrids are widespread in the Northern Hemisphere, occurring in North 

America, Europe, and Asia. In contrast, there is only one reported case of salamanders 

hybridizing in the tropics, occurring between Bolitoglossa franklini and Bolitoglossa lincolni 

(Table 1). Bolitoglossa is the largest genus of salamanders (132 species) and it occurs 

exclusively in the tropics. More generally, 18% of all salamander diversity occurs in the tropics, 

suggesting that the low number of tropical hybrids is not a result of low tropical species diversity 

(amphibiaweb.org), but may reflect general differences in mechanisms underlying the origin and 

maintenance of species in temperate versus tropical areas worthy of further investigation (Kozak 

and Wiens 2010). 

The mitochondrial genetic distances (estimated with MT-CYTB) between parental 

species of salamanders that hybridize spanned two orders of magnitude (0.003 to 0.376) while 

the nuclear genetic distances (estimated with RAG1) spanned a single order (0.001 to 0.020). 

The ratio of genetic distances between these two genes provides an estimate of the difference in 

substitution rates of the two genomes. In vertebrates, the mitochondrial genome typically has a 

higher substitution rate than the nuclear genome (Brown et al., 1979). However, this ratio is 

variable across genes and species in all of the major vertebrate clades including amphibians, 

where the majority of the estimates are from frogs (Allio et al., 2017). Our salamander estimates 
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(0.6 to 112, median = 21.5) are consistent with existing estimates for other vertebrate taxa, 

suggesting similar relative evolutionary rates between the two genomes. Because the MT-CYTB 

and RAG1 sequences used are short (345–1141 bp and 556–1510 bp, respectively) and represent 

single loci, some of the variation in genetic distance estimates reflects sampling error.  

The ratio between mitochondrial and nuclear genetic distances can also be used to 

identify candidate examples where loci have introgressed from one parental species to another; 

in these cases, the genetic distance would be low at the introgressed locus relative to the non-

introgressed locus. Based on our genetic distance ratios, potential examples of salamander 

mitochondrial introgression include Salamandrina perspicillata X Salamandrina terdigitata 

(0.6), Eurycea neotenes X Eurycea tridentifera (0.9), and Plethodon shermani X Plethodon 

teyahalee (2.3) (Table 2). Additional cline-based analyses of mitochondrial and nuclear 

introgression across the hybrid zone between these species would be informative.  

With each tetrapod clade, the genetic distance between parental species that hybridize is 

highly variable, but we found no significant differences in genetic distances among the clades. In 

addition, there were no significant differences in the ratio of mitochondrial to nuclear genetic 

distances among the clades. Taken together, these results suggest that speciating lineages of 

salamanders retain the ability to hybridize at similar overall genetic divergence levels as 

speciating lineages in other vertebrate clades. Thus, the differences in metabolic rates across 

vertebrates do not appear to translate into predictable patterns of overall genetic divergence and 

incompatible loci in hybrids. This pattern may reflect a similar evolved match between metabolic 

“supply and demand” (i.e. ATP use and ATP synthesis) (Darveau et al., 2002) in all tetrapod 

clades, irrespective of overall metabolic rates, such that increased metabolic costs in hybrids 

have equal detrimental effects on fitness. Cline analyses of OXPHOS-specific loci, combined 
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with OXPHOS functional data in parental species and hybrids, would allow more rigorous 

testing of this hypothesis.   

 The presence of heteromorphic sex chromosomes does not appear to deter salamanders 

from hybridizing (Figure 3). This pattern suggests that, despite evolutionary lability in amphibian 

sex chromosomes (Hillis and Green, 1990; Evans et al., 2012; Sessions et al., 2016), the 

underlying genetic sex-determining factors might be sufficiently conserved to not be a barrier to 

reproduction. Consistent with this explanation, for some salamanders, the difference between the 

heteromorphic sex chromosomes is extremely small (Schartl et al., 2016; Keinath et al., 2018), 

showing that the selective pressures might be similar on each chromosome or that the region of 

suppressed recombination on the X or Z chromosomes is small (unlike in birds or mammals) 

(Schartl et al., 2016). Additionally, evidence that cryptobranchid salamander homomorphic sex 

chromosomes have been conserved for nearly 60 million years (Hime et al., 2019) suggests that 

the underlying genes for determining sex may be highly conserved. Finally, we note that the 

relationship between sex chromosome morphology and reproductive isolation is complex; in 

some cases, even homomorphic sex chromosomes show a large X/Z effect (e.g. Hyla arborea 

and H. orientalis, Dufresnes et al., 2016). 

In conclusion, this first comprehensive review of natural salamander hybrids revealed 

hybrids throughout the order with a wide range of genetic divergences between parental species. 

Despite being outliers among tetrapods in metabolic rate and sex chromosome diversity, both of 

which were predicted to impact the relationship between genetic divergence and reproductive 

isolation, our analyses suggest that salamanders hybridize across similar levels of genetic 

divergence to the other examined tetrapod clades. This study further demonstrates the power of 

comparative studies of hybridization as an approach to understanding the process of speciation.   
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