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ABSTRACT 

THREE ESSAYS ON THE ECONOMICS OF UNIVERSITY KNOWLEDGE PRODUCTION 

AND COMMERCIAL INNOVATION: THE CASE OF COLORADO STATE UNIVERSITY 

RESEARCH AND TECHNOLOGY TRANSFER 

The central aim of this study is to analyze the research production and R&D activities of 

Colorado State University (CSU) across its different colleges, departments and other research units, 

and to evaluate how those activities impact the Colorado economy’s agriculturally-related sectors. 

The study consists of three main chapters, to introduce the dynamics of university knowledge 

transfer to local agricultural economies.  

Chapter 1 explores CSU research production and technology-transfer activities, using a unique 

panel date set for each of 54 academic departments over the period of 1989-2012. In order to 

estimate the empirical knowledge-production function (KPF), this chapter attempts to build a 

negative binomial panel regression model with a polynomial distributed lags (PDL) of research 

expenditures. Three categories of research outputs are modelled, including (1) published journal 

articles, (2) industry collaboration, and (3) technology transfer mechanisms. In the regression 

results, publications are clearly the most common research outputs of the university, with a more 

systematic relationship between research inputs and publications than the other two types of 

research outputs. Moreover, it appears to exhibit decreasing returns to scale, whereas the 

collaborative and tech transfer research outputs appear to show increasing returns to scale. In the 

results of a seemingly unrelated regressions (SUR) model among the three different types of 

research outputs, publications and the tech transfer mediated research outputs are the primary 

research outputs in the university and have the maximum impact from past research expenditures. 
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Furthermore, results indicate that collaboration mediated outputs are substitutional relative to the 

more formal tech transfer outputs.  

Chapter 2 explores the agency of knowledge production, viewing scientific research teams as 

“quasi-firms” arising as independent knowledge-creating entities within the university context. 

First, the findings from the ego-centric social network showed that the participation of outside 

members makes it possible to increase the size of the ego-centric teams and the growth patterns of 

the percent share are an obvious parallel to the patterns of team size. Particularly, the growth rate 

of team size is opposite of the percent share of ego’s home department co-authors with upward 

and downward tendencies, respectively. Second, the findings from the regression results showed 

that the number of CSU departments per team is statistically significant in the team’s assembly 

mechanism for both the article teams and patent teams. Thus, it seems reasonable to conclude that 

cross-functional team formation is more effective and common in the university research team 

formation and has a positive impact on the size of research teams. Finally, the quality of research 

teams’ knowledge production tells us that the group with multiple departments per article has a 

higher research impact than a group using a single department per article. By the same token, 

larger-sized teams have higher impacts than relatively smaller-sized teams, as well as field variety. 

The group with multiple references per patent had a higher impact than the groups with a single or 

no reference per patent. This result tells us that the citation mapping from backward citations to 

forward citations is a significant factor for testing the research teams’ impacts on the economic 

and social benefits with respect to knowledge spillover. 

Chapter 3 has focused on CSU’s knowledge spillovers within agriculturally related fields and 

technologies. The findings indicated that academic knowledge spillovers are geographically 

bounded, but they are not strictly limited to the regional scale. Crucially, the impact of university 
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spillovers on agriculturally-related industries depends upon which type of knowledge 

dissemination channel is utilized by university researchers. Broadly speaking this chapter 

evaluates four types of channel—including the publication mechanism, the industry collaboration 

and extension mechanism, the technology patenting/licensing mechanism, and the venture creation 

mechanism—each of which are variously adapted to transmitting different degrees of sticky (tacit) 

versus slippery (codified) knowledge. The results showed that in both aggregate level of 

technology and six different technological categories, the spillover impacts of journal publications, 

are rarely localized within Colorado; rather, the geographic scope of these impacts are national 

and even global. However, the extent to which the spillover impacts of patented knowledge is 

localized within Colorado is open to question because it is possible to control permissions for use, 

but at the same time it is impossible to limit everyone’s awareness and use of it, particularly in 

foreign jurisdictions where patents are not taken out by the university. However, the collaboration 

mechanism requires closer interaction and greater geographic proximity, which usually prevents 

global dissemination. Thus, we observe geographic proximity is significantly important for these 

channels. However, there are even distinctions within these. For example, we find industry 

coauthorship on articles to be less likely to be localized than privately sponsored grant awards. 

Nevertheless, the stickiness of these channels might depend also on the different technological 

categories. As mention as above, the geographic proximity is important only in aggregate level of 

technology, but it can be varied across the different technological categories, especially the 

slippery form of knowledge in animal health and nutrition health technology. Finally, university 

start-ups are highly geographically bounded near universities because in the early stages start-up 

companies need support from their host university.  
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OVERALL INTRODUCTION 

In recent years, numerous studies have explored the economic impacts of university research 

and technology transfer on industrial research and development (R&D) and commercial innovation. 

These studies have contributed to the understanding that university research leads to positive social 

returns as well as economic growth through stimulating commercial innovation (Adams & 

Griliches, 1998; Cohen, Nelson, & Walsh, 2002; Jaffe, 1989).  

The importance of university technology transfer has been addressed by economists for only a 

few decades. Of particular importance in this regard is the potential of university knowledge 

production activities to affect both commercial innovation directly and economic growth indirectly. 

According to Adams & Griliches (1998), universities account for about 50 percent of basic 

research conducted in the U.S., and basic research is one of the mainsprings of industrial 

innovation. If universities’ research productivities were to decline overall or were to shift in 

composition away from basic research, a critical input into industrial research would grow more 

slowly. Following Cohen, Nelson, & Walsh (2002), university research is of at least moderate 

importance to a number of industries, including both high technology and more traditional 

industries. Studies by Mansfield (1991 & 1995), Henderson, Jaffe, & Trajtenberg (1998), Agrawal 

& Henderson (2002), and others, have sought to model and measure the contributions of academic 

research to industrial innovation through different knowledge transmission channels and different 

modes of impact. Moreover, these seminal studies have shown that technological innovation across 

various industries, including both new products and new processes, have been based on to some 

extent on academic research. At the same time these studies emphasize the importance of the role 

of university research in the creation of human capital, arguably the most significant resource in 
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industry and society, through the training of graduate students, many of whom become industrial 

scientists, engineers, and inventors. 

However, these roles and missions of the research university have been transformed by 

histories of university institutional and national government policy changes. Before the nineteenth 

century, the function of the university was primarily teaching, i.e. the preservation and 

dissemination of knowledge. Beginning in the nineteenth century, the university was transformed 

into the research university, in what is often called the first academic revolution in which a research 

mission was integrated with the teaching mission (Etzkowitz, 2003). In the early- to mid-twentieth 

century, the third mission of university emerged, emphasizing outcomes such as economic and 

social development, in which is called the second academic revolution (Etzkowitz, 2003). In the 

course of changing their roles and missions, universities have dealt with important policy changes. 

Although changes in the roles and missions of the university, and changes in policy have been 

interdependent, with causality flowing in both directions, in general, policy changes have 

accelerated the speed of university transformation and supported or suggested the dissemination 

of new missions across the population of universities. In the U.S., universities have encountered 

several important policy changes, such as the Morrill Land-Grant Act of 1862, the Hatch Act of 

1887, the Smith-Lever Act of 1914, the Bayh-Dole Act of 1980, and so on.  

Following these policy changes, the Land Grant universities in the U.S. have generally come 

to embrace three missions: an educational mission, a research mission, and an outreach mission. 

First, the educational mission is to prepare and educate knowledge workers for statewide, 

nationwide, and even worldwide labor markets. The university graduates become knowledge 

workers--whether scientists, engineers, faculty members, or political leaders--contributing the 

most important factor of production in the knowledge economy, human capital. Second, the 
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research mission is to produce new knowledge, which can be observed as outputs such as journal 

articles, student theses and dissertations, or even invention disclosures and patent applications. The 

university output of new knowledge can contribute to industrial innovation and technological 

progress both indirectly through basic research and directly through development of high 

technology. Finally, the outreach mission encompasses not only the traditional forms such as 

public lectures, extension services, and consulting and collaborative R&D with industry partners, 

but also newer forms such as the licensing of patents and the startup of new companies.  

However, in most previous studies of academic knowledge transfer, some important 

knowledge indicators such as publications, degree awards, private sponsorships, and extension 

activities are far less fully explored and catalogued than are patents, licenses, and royalties. 

Furthermore, relatively few studies have been devoted to understanding the multiple knowledge 

channels of the university, but most of them have been highly skewed toward just one or two 

knowledge dissemination channels, because of data limitations. This study takes into consideration 

a full range of potential knowledge dissemination channels, as indicated by such measures as 

academic journal publications, degrees awarded (master and doctoral), industry co-authorship on 

publications, private sponsorship of research projects, extension activities, invention disclosures, 

patent applications, licenses, and startups, all from data collected at the level of the different 

departments or research units of Colorado State University, from 1989 to 2012. These various 

measures make it possible to analyze the extent to which the different types of knowledge 

dissemination channels work. 

The concept of multiple knowledge channels in this study can be understood as informed by 

Samuelson’s (1954) classic comparison of excludability and rivalry dimensions in “The Pure 

Theory of Public Expenditure.” As such, four types of knowledge channels are introduced (see 
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Figure 1). First, what we call the “public domain mechanism” of knowledge dissemination is most 

appropriate for those outputs of research that have the strongest public good attributes, defined as 

non-excludable and non-rivalrous. Thus, it is impossible to exclude anyone from accessing this 

knowledge and to prevent simultaneous use or access, which means full freedom of use and open 

access.  

Second, the “collaboration mechanism” of knowledge dissemination is defined as a common 

good that is non-excludable and, yet, more rivalrous, due to the tacit or “sticky” nature of the 

knowledge, with it skills or routines, thus preventing global dissemination via publication or even 

making simultaneous contact or contract with multiple parties less than effective. Dissemination 

or transfer of the knowledge requires close interaction, such as apprenticeship or collaboration.  

 
Figure 1—The concept of Four Types of Knowledge Dissemination Channels 

 
Third, the utilization of the intellectual property rights and contracts characterize the 

“patenting/licensing mechanism” of knowledge transfer, which is best suited when a certain degree 

of excludability is required to create sufficient incentives for follow-on investment in an otherwise 
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non-excludable and non-rivalrous knowledge output. Thus, by virtue of the IP and contracts, it is 

possible to exclude others from accessing and making use of it. Finally, the “venture creation 

mechanism” of knowledge dissemination is best for raising private investment in the further 

development of knowledge treating it most like a private good, by virtue of IP making it relatively 

excludable and, by virtue of its intrinsic stickiness or context dependence, being relatively non-

rivalrous, so it is possible to exclude others from accessing this knowledge and making 

simultaneous use of it. 

The main goal of this study is to analyze the economics of Colorado State University (CSU)’s 

knowledge production and its spillover activities on the commercial innovation and invention. 

There are three main objectives: (1) to understand the historical trends and system of university 

knowledge production and R&D activities across the different colleges, departments, and research 

units in terms of a full range of potential knowledge dissemination channels, (2) to understand 

recent changes in the organization of knowledge creation activities, called the rise of the 

“entrepreneurial university” by Etzkowitz et al (2000), such as university research team structures 

and assembly mechanisms, and (3) to understand the dynamics of university knowledge spillovers 

and the geographic scope of their commercial and economic impacts on our society and economy, 

especially in the agriculturally-related sectors in Colorado and beyond.  

This study consists of three main chapters, and each chapter pursues the three objectives of the 

study in different ways. Chapter 1 analyzes the system of CSU’s knowledge production and 

transfer activities. This chapter introduces several advances to the literature. First, while previous 

studies have limited their analysis, due to data, to the institutional level, this analysis shows how 

knowledge production works at the more disaggregated level of the different colleges, departments, 

and research units within the university. Second, most other studies explore the relationship 
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between research inputs and one type of output, typically research papers or patents. This analysis 

considers production of several different knowledge outputs that are disseminated through 

different channels and analyzes how the input output relationship differs across them. This chapter 

addresses questions of how efficiency of knowledge production can be assessed across the 

different types of knowledge, why they have different productivity, and what important factors 

may be related to improving productivity. Finally, this first chapter introduces a novel empirical 

technique for estimating the knowledge production function that combines a panel count data 

model with polynomial distributed lags between the inputs and the outputs of the knowledge 

production function. This approach makes it possible to estimate the input-output relationships 

systematically across the entire university at the disaggregate level of analysis, and for each of the 

different types of knowledge outputs.  

Chapter 2 explores how knowledge production within the research university works, by 

analyzing the structure and composition of academic research teams as quasi-firms or the agents 

of innovation. This is a speculative and preliminary exploration into new concepts about the 

agency and organization of early-stage innovation, an attempt to look inside the black box of the 

production function. To this purpose, this study aims to examine what are the main components 

and structures of research teams, who can be characterized as principals and as agents of the 

research production process, what kinds of research environments or other factors determine the 

sizes of scientific research teams, and what sorts of team structures characterizes the relationship 

between university researchers and industry collaborators.  

Chapter 3 examines CSU’s knowledge dissemination and its impact on commercial innovation 

through the several different types of knowledge dissemination channels introduced above. This 

chapter focuses on the geospatial patterns of CSU’s knowledge spillovers and its commercial 



7 
 

economic impact especially within Colorado’s agriculturally related sectors and industries, but 

also nationally and globally. This chapter describes CSU’s publications, its collaborative activities, 

such as indicated by data on university-industry co-authorship of articles and private sponsorship 

of research, its licensing of inventions, and its startup of new ventures in agricultural and food 

technologies. This chapter traces the locations of private industry innovators impacted by or 

associated with CSU agricultural research across different types of technology, and a systematic 

relationship between the types of CSU knowledge transfer mechanisms employed the geographic 

proximity to CSU of the commercial user of that knowledge. 
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CHAPTER 1. EMPIRICAL EVIDENCE OF THE UNIVERSITY KNOWLEDEG 

PRODUCTION FUNCTION AND KNOWLEDGE DISSEMINATION ACTIVITIES: THE 

CASE OF COLORADO STATE UNIVERSITY 

I. Introduction 

Knowledge production and transfer activities are an important source of commercial 

innovation and economic development, such that knowledge spillovers have attracted the attention 

of many economists and policy makers. Furthermore, university research accounts for 50 percent 

of basic research in the U.S., and the university research is one of the mainsprings of industrial 

innovation, and the introduction of new products and processes (Mansfield, 1991, 1995; Adams 

and Griliches, 1998). Although studies of knowledge production had developed steadily for 

decades, around the 1980s the area blossomed with seminal papers by Griliches (1979), Pakes & 

Griliches (1980, 1984), Hausman, Hall, & Griliches (1984, 1986), Jaffe (1989), and Pardey (1989). 

Since that time, the main conceptual ideas and empirical techniques for analyzing knowledge 

production have progressed, as the quantity of studies has increased. In most previous studies, 

including those of both industrial research and development (R&D) and university research, 

empirical results of the input-output relationship between past research expenditures and current 

research outputs, respectively, remain ambiguous (Crespi & Geuna, 2008). This is largely due to 

two major problems: the quality of data and empirical model misspecifications. 

In the United States, total R&D spending in 20121 was $447 billion of which academic R&D 

expenditures2 were $66 billion, nearly 15 percent of the total. According to the National Science 

                                                 
1 Source: 2014 Global R&D Funding Forecast, Battelle, R&D Magazine, International Monetary Fund, World Bank, 
CIA Fact Book. 
2 Source: Rankings by total academic R&E expenditures, National Center for Science and Engineering Statistics 
(NCSES), National Science Foundation (NSF). 
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Foundation, the industry investment was the largest performance of U.S. total R&D, accounting 

for 71 percent, and the research universities were the second largest performer (NSF, 2015). 

Furthermore, from 1996 to 2010, the economic impact of university and non-profit patent licensing 

was estimated to be $388 billion on the U.S. gross domestic product and $836 billion on the U.S. 

gross industrial outputs3. Since 1980, startup companies affiliated with universities were more than 

4,000. In the same period, universities and non-profit entities’ patent licensing created more than 

3 million jobs in U.S. (AUTM, 2015).  

There is a growing body of evidence that academic research and technology transfer activities 

are an important source of ideas and inputs for commercial research and innovation, including both 

basic and high technology industries (Cohen et al, 2002). Yet, many of the recent studies of 

academic knowledge output and its commercial impact focus on patenting and licensing as the 

newer, more controversial channels of knowledge dissemination by academics. Although patents 

are a significant output of academic knowledge production and represent one channel of its impact 

on economic growth and development, other research outputs such as journal articles, degree 

awards, and more traditional relationships of university-industry collaboration4 are still the major 

channels by which research universities affect commercial activity (Agrawal & Henderson, 2002). 

To create a more accurate holistic picture, analysis of the impacts of academic knowledge 

production should take into account the full range of potential knowledge dissemination channels. 

Also, previous studies of academic knowledge production and transfer have focused their analyses 

at the institutional level, largely because of data limitations. Again, a more accurate picture of 

academic knowledge production should be possible from a more disaggregated, yet systematic 

                                                 
3 Source: the AUTM Briefing Book: 2015.  
4 Collaborative channels include consulting to state governments and local industries, seminars and workshops, 
informal conversation, co-supervising, personnel exchange, and so on. 
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accounting of research activities within the diverse structure of the contemporary research 

university.  

The main purpose of this chapter is to analyze the disaggregated system of knowledge 

production and transfer activities within a major research university.  In so doing, this chapter 

introduces a uniquely detailed dataset together with a novel empirical technique for estimating the 

knowledge production function. First, this chapter introduces and explores data that characterizes 

the full range of knowledge production inputs and outputs across all of the available accounting 

units—the different colleges, departments, and research units—of our home institution, Colorado 

State University (CSU), over more than two decades, accessed from both open access and private 

sources within the administration of CSU, to explore some basic questions: how does this 

relationship differ for the different types of knowledge output that impact the economy through 

different knowledge transfer or dissemination channels; how does the efficiency of knowledge 

production vary across the different disciplines and research units of the university; and what 

factors might explain why they vary in output productivity. 

Second, this chapter introduces a panel count data model with a polynomial distributed lag 

scheme to estimate the input-output relationship of knowledge production using the CSU 

knowledge production and transfer dataset. This unique data allows for more detailed modelling 

of systematic input-output relationship of academic knowledge production and its relationship with 

the wider economy, overcoming some of the typical data limitations confronted in prior 

investigations.  

The rest of this chapter is organized into six sections. Section II reviews the literature and 

describes previous studies of knowledge production. Section III describes a technique for 

estimating the knowledge production function involving panel count data within a polynomial 
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distributed lag scheme. Section IV describes research inputs-outputs data set. Section V shows 

results for the four main types of research output, by the fifty-four separate academic departments 

and research units of Colorado State University from 1989 to 2012, within an adapting a seemingly 

unrelated regression (SUR) system of knowledge production functions. In addition, this section 

presents a structural change analysis within this regression framework for one of the three types 

of research outputs, comparing technology transfer metrics before and after the restructuring of 

the technology transfer office at CSU. Section VI discusses some the main characteristics of the 

university departments’ knowledge production in terms of classical production theory, including 

the output elasticity of knowledge production with respect to research inputs and returns to scale 

of knowledge production across the main research outputs. The section also discusses limitations 

of this study and future directions for this research. Section VII summarizes the main conclusions 

and insights of this chapter. 

II. Literature Review 

A. The Knowledge Production Function: Theory and Empirical Analysis 

The knowledge production function is based on the concept of the neo-classical production 

function, and it is useful for describing the unobservable, yet valuable, additions that research 

contributes to the stock of knowledge capital. The concept of a knowledge production function 

was first introduced by Griliches (1979) and further developed by Pakes & Griliches (1980, 1984). 

These initial papers analyzed the rate of “production” of patents, considered a useful indicator of 

unobservable knowledge increments, resulting from the research and development (R&D) 

activities of U.S. industry, and set up an empirical model of the relationship between past R&D 

expenditures and the output of patented inventions.  
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In one of the early applications of the Griliches knowledge production function to academic 

research, Jaffe (1989) modeled a production function of commercial spillovers from university 

R&D, examining the importance of geographical proximity between university research and 

commercial innovation. The same year, Pardey (1989) analyzed the input-output relationship of 

knowledge production at the state agricultural experiment stations (SAES) of a number of major 

state universities in the U.S. using a panel data set. The model was also based on the Griliches 

knowledge production function to explore the relationship between past research expenditures and 

research outputs, as indicated by research publications and their citations. This paper provides that 

the quality of the publications depends on the number of citations and increases the research output 

elasticity. Moreover, levels of research expenditure showed little evidence of systematic short-run 

or point-to-point influence in the input-output relationship, but only a long-run or average 

influence.  

Adams & Griliches (1998) explored research performance and productivity within a set of U.S. 

universities, with a model based on the Griliches knowledge production function. They show that, 

at the aggregate level, research outputs such as publications and citations tend to follow constant 

returns to scale, but, at the individual institutional level, they follow diminishing returns to scale. 

Moreover, the paper analyzes variations in the relationship between research outputs and R&D 

expenditures across different fields, types of universities (public versus private), funding sources, 

and degree awards.  

Subsequently, few other studies have extended and developed Griliches’ knowledge 

production function, especially empirically. According to Crespi and Geuna (2008), previous 

studies provide little systematic evidence that such investments lead to increased levels of 

knowledge outputs, such as scientific publications, patenting, or other measures of innovation, and 
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ultimately to better economic performance. Crespi and Geuna critique several common methods 

used in estimating Griliches’ knowledge production function, including the misspecifications of a 

Cobb-Douglas functional form and problems with Koyck lags. They instead introduce a 

polynomial distributed lags (PDL) model for this input-output relationship. 

This paper seeks to develop a new empirical approach, utilizing both a more detailed dataset 

and a polynomial distributed lags model to analyze how R&D inputs relate to knowledge outputs 

within the university context.  

B. Different Types of Knowledge Dissemination Channels 

First, we begin with a recognition that the type of university knowledge outputs (and the type 

of knowledge dissemination channels on which they tend to rely) can vary across the many 

different research environments and disciplines found within the university. In general, basic 

knowledge outputs in the university can be measured by scientific publications, citations made to 

those publications, and graduate degrees awarded. There is a long tradition of “unpublished” or 

“prepublication” collaborative exchange of new knowledge with industry, via a range of formal 

and informal contacts, such as joint conduct of research, workshops and seminars, extension 

activities, personnel exchanges, and consulting relationships. Newer types of academic knowledge 

outputs include invention disclosures, patents, and even, occasionally, hi-tech startup ventures 

founded by university researchers. Many previous studies of academic knowledge production have 

tended to focus on just one type of research output in their empirical models, particularly favoring 

journal publications, citations, or patents (see Jaffe, 1989; Johnes & Johnes, 1995; Mansfield, 1995; 

Narin et al., 1997; Adams & Griliches, 1998; Henderson et al., 1998; Crespi & Geuna, 2008; 

Whalley, 2013).  
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Because of data limitations, it has been challenging to take multiple types of knowledge output 

systematically into account. Agrawal & Henderson (2002) attempted to consider various types of 

knowledge outputs. They introduced relative importance of university knowledge channels such 

as publications, conferences, consulting, informal conversations, collaborative research, patents & 

licenses, recruiting of graduates, and co-supervising. These channels were not analyzed within 

empirical or other statistics methods, but simply summarized as percentages and ratios, relative to 

one another, across the entire university at an institutional-wide level of analysis.  

This study exploits an extensive data set of knowledge inputs—including grant and contract 

awards, research expenditures, researcher FTEs, laboratory space, equipment—as well as 

outputs—including publications, graduate degrees awarded, proxies for university-industry 

collaboration and extension activities, invention disclosures, patent applications and grants, license 

agreements, and startup companies. All data are collected at the lowest possible institutional level 

of analysis, that of the academic department or research unit, as annual counts, over more than 

twenty years for many of the series.  

III. Model Framework  

A. Empirical Model Framework 

1. Functional Forms for Modelling Knowledge Production 

In classical production theory, various functional forms are used to represent the relationship 

between inputs and outputs: linear, log-log, quadratic, Cobb-Douglas, constant elasticity of 

substitution (CES), transcendental, von Liebig, Mitscherlich-Baule, translog, etc. However, most 

previous empirical studies of knowledge production have utilized one of most common, the Cobb-

Douglas production function, because of its amenability to econometric techniques but also 
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because of its suitable representation of some of the inherent characteristics of knowledge 

production. 

Although Griliches’ concept of knowledge production originates in neo-classical production 

theory, the production of knowledge differs somewhat from that of normal economic goods. There 

are two major differences. First, the profit maximization problem is rarely applied to the 

knowledge production problem due to the lack of a stable, appropriated market price of research 

outputs. In other words, markets fail to form for most knowledge outputs, for a variety of reasons 

that will be discussed later. Second, the units or increments of actual or “underlying” economically 

valuable technological knowledge are often unobservable. According to Pardey (1989), empirical 

studies of knowledge production is limited in large part because of the difficulties of obtaining 

suitable indicators of research outputs. However, we can still be confident that there exists a 

systematic input-output relationship between research inputs and new knowledge outputs.  

The university knowledge production function developed here is based on previous models 

(Griliches, 1979; Pakes & Griliches, 1984; Jaffe, 1989; Pardey, 1989; Adams & Griliches, 1998) 

using classical microeconomic assumptions of production theory. The knowledge production 

function, describing the technical relationship between research inputs and outputs, is structurally 

analogous to the neoclassical production function. Consider an accounting center within the 

university—a college, department, or research unit–within which known amounts of inputs, such 

as salaries of R&D staff, equipment, laboratory space, are used and within which research 

outputs—such as datasets, software, research publications, inventions—are produced. The 

knowledge production function defines the technical relationship by which the observed research 

inputs are transformed into the observed research outputs.  
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Equation (1) represents the empirical functional form for panel data analysis of the university 

knowledge production that relates research inputs to outputs.  

  , , , , , ,
0

k

i t j i t j L i t E i t C i t i t
j

Y R L EQ C     
             (1) 

where i stands for the i th department or research unit and t stands for the tth time period. Y is the 

vector of university research outputs. R represents research expenditures in the current and the k 

lagged time periods. L is the count of full-time-equivalent (FTE) researchers, which consists of 

faculty, research staff, and graduate research assistants employed in time period t, as human 

capital5. EQ represents the value of research equipment, or physical capital, employed in research. 

C are other control variables. The variable ,i t  is an independent and identically distributed panel 

disturbance term. This term can be comprised of a group-variant but time-invariant error term, iu , 

and a group and time-variant idiosyncratic error term, ,i te , in which case it is decomposed to the 

following: 

   , ,i t i i tu e               (2) 

Assuming that these are characterized by mean zero and homoscedastic variance, such that 

 2~ 0,i uu  ,  2
, ~ 0,i t ee   and  ,cov , 0i i tu e  , and assuming no serial correlation, such that 

 , ,cov , ,i t i se e t s  , then equation (3) follows from equations (1) and (2),  
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5 There exists a positive relationship between FTEs and research expenditures, because research expenditures 
include the salary of faculty members, GRAs and research staffs. This can cause a collinearity problem, which we 
can control, if it is detected, by adopting an alternative model.  
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where the slope coefficients 0, , , , ,k L E Cand      are constant in every group, but  iu   

vary by group, such that this latter term measures the heterogeneity of research environments and 

inherent characteristics across colleges and research units, sometimes called a varying coefficient 

model.  

In contrast, another useful panel disturbance term consists of two components, where one is 

time-variant but group-invariant, t , and the other is both time and group-variant, as depicted in 

equation (4), 

   , ,i t t i te             (4) 

Again, it is assumed these components are characterized by mean zero, with homoscedastic 

variance and no serial correlation. Equation (5) is the modified model from equations (1) and (4): 

       , , , , , ,
0

k

i t t j i t j L i t E i t C i t i t
j

Y R L EQ C e     
              (5) 

So, these two variants control only one or the other source of variation, either group or time 

heterogeneity, and are thus considered a one-way error component model.6  

2. Count Data as Research Output 

Most academic research outputs are measured by count data,7 such as the number of articles 

published per year, the number of graduate degrees conferred per year, the number of articles with 

co-authors from industry per year, the number of invention disclosures or patent applications per 

year, and the number of startups created per year. The fundamental variable in each of these 

measures is discrete, taking only a finite number of non-negative, integer values.  For count data, 

                                                 
6 A two-way error component model would control both unobserved group and time heterogeneities at the same 
time. However, in this two-way method many degrees of freedom would be lost, so our analysis will not use the 
method.  
7 A type of data in which the observations can take only the non-negative integer values {0, 1, 2, 3, …} and where 
these integers arise from counting rather than ranking. 
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the Poisson and negative binomial maximum likelihood regression models are well established. 

First, when a Poisson model is appropriate for research outputs with count data, the probability 

distribution function is given by  
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where   is known as the population rate parameter, and the Poisson PDF has an equal-dispersion 

property where  iE Y   and 2  . 

Second, the negative binomial is an extension of the Poisson with a probability distribution 

given by  
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where r  is the dispersion parameter and   is the gamma function. The negative binomial does 

not have the equal-dispersion property, and different values for mean and variance allow for over-

dispersion, with  iE Y   and 
2

2

r

   .  

In many cases of count data, the value of the sample variance is, indeed, greater than the value 

of the sample mean, indicating over-dispersion; yet, the Poisson distribution does not allow for 

variance to be adjusted independently of the mean. In such cases, the negative binomial 

distribution can be used. In general, in testing for over-dispersion it is not sufficient merely to 

compare sample mean and variance, but it is necessary to proceed with a hypothesis test with a 

null hypothesis, : ~oH Dependent variable Poisson distribution. However, if such a test is not 

feasible, alternatively, information criteria, such as the Akaike information criteria (AIC) and the 
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Schwarz Bayesian information criteria (SBIC), can be used, as the Poisson distribution is a special 

case of the negative binomial distribution, with simply a zero value of the dispersion parameter, 

0r  in equation (7) above.  

The first step of negative binomial maximum likelihood estimation is to derive the log 

likelihood function with independently and identically distributed disturbances from equation (7), 

the negative binomial probability distribution:  
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Next, taking the logarithm on the both sides of equation (8), we obtain the log-likelihood 

function for negative binomial maximum likelihood estimation,  
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where  , , , , , , , ,
0
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Equation (9) is maximized with respect to the unknown parameter, ,i t , the mean of the 

negative binomial process.  

3. Polynomial Distributed Lags (PDL) Model 

Much of the literature has shown that past research expenditures are the main input of 

knowledge production. A number of previous studies have thus adopted research expenditures as 

the primary research input and have used a distributed-lag model with a finite lag of k time periods. 
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A few have adopted the Koyck approach to modelling the distributed lag, which is based on the 

assumption that coefficients decline geometrically as the lag lengthens. See the Figure 2.  

 

 
Source: D.N. Gujarati (2004) Basic Econometrics 4th edition 

Figure 2―Koyck Scheme (Declining Geometric Distribution) 

 

 
Figure 3―Coefficient Patterns of Pakes & Griliches (1984) and Pardey (1989) 

However, the assumption has limitations in estimating a knowledge production function, and 

in particular in estimating lagged research expenditures. In Figure 3, the slope coefficients of Pakes 

& Griliches (1984) and Pardey (1989) do not seem to follow a geometrically decreasing pattern, 

but appear to follow something more like a fourth-degree polynomial pattern, such that the Koyck 
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scheme of distributed-lags does not appear to work as well in these cases as an ad hoc distributed 

lag scheme. 

In the current study, Almon’s (1965) scheme, with a polynomial of degree m and a lag length 

k of past inputs will be adapted to the knowledge production function model. The advantages are 

an increased goodness-of-fit of the regression model and more accurate verification of the 

regression results. However, there are few examples in the literature, see Crespi & Geuna (2008), 

that employ this methodology in the knowledge production context, which is a disadvantage, along 

with the risk of model misspecification. However, in light of the failure of the Koyck assumption, 

the polynomial distributed lag (PDL) model is more precise than an ad hoc distributed lag model.  

A panel count polynomial distributed-lag model (PDL) is derived from equation (1) and the 

negative binomial maximum likelihood equation. First, equation (10) is a polynomial distributed 

lag scheme generated by different degrees of polynomial. In this the maximum degree, m, of the 

polynomial, 0,1,2, ,p m  , must be smaller than the maximum lag, 0,1,2, , ( )j k m k   : 
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Second the corresponding equation of m-degree and k lags of unrestricted polynomial 

distributed lag is 
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The degree of the polynomial and the length of the lag can be tested by two common measures 

for comparing maximum likelihood models, the Akaike information criterion (AIC) and the 

Schwarz Bayesian information criterion (SBIC) .8 However, the slope coefficients, p , from 

equation (11) are not true values of the model estimators, but the true slope coefficients need to be 

recovered. The formulae for recovered slope coefficients are the following: 
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    (12) 

Thus, the  s from equation (12) are the estimated slope coefficients, and the unrestricted PDL 

model is 
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The unrestricted PDL model has no a priori restrictions, but a restricted PDL model can be 

limited by endpoint restrictions on the current and the kth or k+1st lagged coefficients, which are 

zero. If imposing this restriction on the coefficient of the current time period’s input variable, it is 

called a left restriction or a near-end restriction. If imposing the restriction on the kth or k+1th 

lagged coefficient, it is called a right restriction or a far-end restriction. Following Gujarati (2004), 

such restrictions are explained by psychological, institutional, or technical reasons. In this paper, 

we assume that unobservable inputs made beyond the kth lag year no longer impact the current 

research outputs, but that research expenditures in the current year do have impact.  

                                                 
8 2 ln(Likelihood Function) 2AIC p      and 2 ln(Likelihood Function) ln( )SBIC N p      where p is number of 

parameters estimated and N is number of observations. 
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For example, setting m=4, k=6, and far endpoint=7,7 in equation (14) is the far endpoint 

restriction for the regression model: 

7 0 1 2 3 4

0 1 2 3 4

7 49 343 2401 0

7 49 343 2401

     
    
     

         (14) 

Equation (14) is substituted into equation (11) and then the result is: 

       , 1 1 , 0 , 2 2 , 0 , 3 3 , 0 , 4 4 , 0 , ,7 49 343 2401i t i t i t i t i t i t i t i t i t i tY z z z z z z z z                  (15) 

Then, recovering the true estimated slope coefficients from equation (15) by the same manner 

as in the unrestricted model, equation (16) is the resulting restricted PDL model: 

6

, , , , ,
0

r r
i t j i t j L i t E i t C i t

j

Y R L EQ C    
        (16) 

In knowledge production, there is no doubt that past research expenditures impact current 

research outputs, but there are some ambiguities between near-endpoint, far-endpoint, and both-

endpoint restrictions. In general, these depend on the type of research output, the inherent 

characteristics of the research environments, and the different purposes of R&D projects across 

the different departments or research units. 

4. Effective Labor in Knowledge Production Function 

In classical production theory, the primary input variables in the production function are capital 

and labor. In a similar way, research expenditures and full time equivalent (FTE) researchers can 

be considered the main input variables in the knowledge production function. Since, most of 

research expenditures go toward the salaries of faculty members, research staff, and graduate 

students, these two input variables in the knowledge production function interact with each other. 

Thus, this section introduces one of the alternative ways for avoiding the resulting problems. In 

Solow’s (1956) model, human knowledge cannot be removed from the labor input, so knowledge 
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and labor enter multiplicatively, which is referred to as an effective labor, labor-augmenting, or 

Harrod-neutral model.9 Moreover, according to Romer (1986, 1990), the stock of human or 

knowledge capital determines the rate of growth and is a non-rival and semi-excludable resource, 

in his alternative specification known as endogenous technological change. Even though these 

growth models are macroeconomic, they are based on the notion of the production function, 

sometimes called “the microfoundations of macroeconomics.”10 In general, aggregate data of 

production functions assume constant returns to scale instead of diminishing returns to scale, as in 

individual firm data. However, if we follow this and assume constant returns to scales with respect 

to labor in the knowledge production function for the university, we can generate equation (17) 

below  
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          (17) 

By assuming a Cobb-Douglas functional form, and taking the logarithm on both sides of 

equation (17), we can denote research output per unit of effective labor (in our case, FTEs) as a 

function of research expenditures per unit of effective labor (or FTEs) and the value of research 

equipment per unit of effective labor (or FTEs), as in equation (18): 
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9 Romer (2001) “Advanced Macroeconomics” 2nd edition. 
10 The microeconomics of individual agents’ behavior such as households or firms that underpins a macroeconomic 
theory. 
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It should be noted that equation (18) is still a panel group fixed-effects model with polynomial 

distributed lags of research expenditures, but it is not a negative binomial maximum likelihood 

equation. At the department level, there are many zero values that causes the estimation routine to 

drop the observations due to the characteristics of the logarithm.  

IV. Data Descriptions 

The data describing both research inputs and research outputs was collected from a variety of 

sources, and was denominated at the smallest common organizational unit that proved feasible 

across the entire set of data sources, which was the department or analogous research unit (e.g. 

various semi-autonomous research centers or services) within the university.  

A. Research Input Data 

Research input data collected for the university consist of three different categories, broadly 

representing financial capital, human capital, and physical capital. Total research expenditures and 

awards of grants and contracts are the financial capital variables collected. Full-time equivalents 

(FTEs) of researchers represent the human capital input. Office and laboratory space and the value 

of research equipment are the physical capital variables collected. 

1. Financial Capital  

Total Research Expenditures: CSU research expenditures are reported from 1989 to 2012 for 

the university overall, and from 2003-2012 at two more disaggregate levels, including colleges as 

well as departments and other research units that, combined, make up the colleges.11 These data 

come from the Office of Vice President of Research and the University Fact Book Online compiled 

by the Institutional Research office at CSU. In 2012, the university’s overall level of total research 

                                                 
11 Given the more limited data reporting at the departmental level, estimates for departmental research expenditures 
were “back cast” for the period from 1989 to 2002, based on the total university research expenditures for those 
years, subdivided according to the average share of total university research expenditures observed for each 
department during the period of 2003-2012. 



26 
 

expenditure was $371.6 million. Among colleges, the College of Veterinary Medicine and 

Biomedical Sciences was the top ranked in 2012 in terms of total research expenditures, at $63.3 

million (see Figure 4).  

 
Note: CEMML is Center of Environmental Management of Military Lands, and CSFS is the Colorado State 
Forest Service. These distinct programs’ research budgets are of sufficient size to be counted alongside the 
eight academic colleges. “Others” include the Vice President for Research (VPR) Office, the libraries, and 
other central functions that have research budgets. 

Figure 4―Annual trends of total research expenditures, by college, (1989-2012) 

 
Grant and Contract Awards: Another measure of financial input is the announced awarding of 

research funding from external sources via grants and contracts, the records of which are 

characterized by investigator names, project titles, funding sources, award amounts, college and 

department affiliations of investigators, and the date and year when the award was announced, 

from 1989 to 2012. The total number of awards announced over this time period was 38,792 and 

the total amount dollar was $3,951.3 million. The data comes from the online Proposal and Award 
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Search at the Research Data Center of the CSU Office of Vice President for Research 

(http://web.research.colostate.edu/datacenter/). In 2012, the value of overall grant awards 

announced totaled $257.4 million, and the top ranked college was College of Engineering, at $61.2 

million. The disaggregated grant and contract awards and total research expenditures at the 

departmental level are highly correlated. Moreover, grant awards do not represent actual 

expenditures, so total research expenditures are considered a better measure of financial inputs to 

research. The additional information on individual investigators and funding sources, and the fact 

that it is at a more disaggregate level can make grant and contract award data useful for other 

purposes. 

2. Human Capital 

Full-time equivalent (FTE) researchers: The research human capital within the university 

consists of faculty, research staff, postdoctoral fellows, and graduate research assistants (GRAs). 

 
Figure 5―Full-time equivalent (FTE) researchers for the university overall, (1989-2012) 
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The data on university research staff is tabulated for the full university, as well as for individual 

colleges and departments. The data comes from the Office of Institutional Research at CSU, but 

the time period is only 10 years, from 2003 to 2012 rather than 24 years. Totals for other years 

within the range of this study, from 1989 to 2002, are collected from the CSU Fact Book report. 

3. Physical Capital  

Laboratory Space: Physical research capital is accounted for across the full university, as well 

as the level of individual colleges and departments. The data source is the Department of Business 

and Financial Services, Cost Accounting Division, at CSU. 

 
Figure 6―Three different types of research space for the university overall, 

(2008 and 2013) 
 

However, laboratory space has only been inventoried at two points in time during the range of 

this study, in 2008 and again in 2013. Even though it does not provide an annual time series, it is 

still valuable for investigating heterogeneity of physical research capital across the university. In 
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Figure 4, the total research space for CSU overall in 2008 was 1,680,562 square ft. and in 2013 

was 1,899,843 square ft., considering laboratory space, office space, and other research facility 

space (see Figure 6). By the mean value between 2008 and 2013, the College of Veterinary 

Medicine was the top ranked, with 29% of the university total, and the College of Business was 

the lowest, with 2% of total. 

 
Figure 7―Value of research equipment acquisition, by college, (1981-2013) 

 
Research Equipment: Finally, value of equipment as physical capital is characterized for the 

university, colleges, and departments from 1981 to 2013. The data comes from the Department of 

Business and Financial Services, Cost Accounting Division, at CSU. The value of equipment is 

recorded by acquisition date. Technically, for the value of research equipment to be suitable as an 

annualized capital input variable for the empirical model, each single piece of equipment would 

need to be depreciated independently in estimating the value of the stock of equipment. However, 
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even just acquisition values are valuable for examining the heterogeneity across the university; 

and moreover, we find that annual acquisition values are highly correlated with our preliminary 

calculation of the value of equipment stock using uniform depreciation rates. In the empirical 

model, to capture some of this, the equipment acquisitions variable is transformed by a moving 

window, the sum of the value of research equipment acquisition in the current year and two or 

three previous years’ values.  

B. Research Output Data  

Research output data were categorized according to the main mechanism or channel of impact 

they were most likely to represent. We develop a simple taxonomy of three mechanisms: the public 

domain mechanism; the mechanism of direct collaboration with industry users; or the mechanism 

of technology transfer mediated by formal intellectual property, including licensing of patents or 

the creation of startup ventures. 

1. Outputs Disseminated via the Public Domain Mechanism 

 
Figure 8―Annual published academic journal articles, by college, (1989-2012) 
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Published academic articles: This primary proxy of research output is characterized by journal 

names, author names, publication dates, keywords, citation counts, numbers of references, and 

organizational details such as college, department, and academic disciplinary field. The data was 

collected from the Web of Knowledge (Thomson Reuters) accessed via CSU Libraries. The total 

count of CSU affiliated publication, from 1989 to 2012 is 38,916, within which the highest annual 

count was 2,211 in 2011. Moreover, among colleges, the College of Natural Sciences had the 

largest annual count of publication, with 603, in 2011, and at the departmental level, the 

Department of Chemistry had the highest annual count, at 252, in 2006. 

 
Figure 9―Total (research based) masters and doctoral degree awards, by the 

university overall, (1989-2012) 

 
Masters and doctoral degree awards: Since not all research conducted by graduate students is 

published as articles, this additional measure of research output is characterized by colleges and 

departments, and the years of coverage is from 1989 to 2012. The data source is Institutional 
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Research Online at CSU. Note that professional degrees, that are not considered research based, 

such as MBA and Doctor of Veterinary Medicine are excluded. Total numbers of master’s degrees 

and doctoral degrees awarded from 1989 to 2012 were 16,839 and 4,609, respectively. 

2. Outputs Disseminated via the Collaboration Mechanism 

Given the challenge of measuring directly the results of collaboration between university 

researchers and industry R&D, several indirect measures are devised to ascertain the research 

output that has impact via the channel of collaboration. 

 
Figure 10―Contract and grant awards from industry sponsors as a share of the 

total contract and grant awards to the university overall, (1989-
2012), million $ 

 

Grant and Contract Awards from Industry Sponsors: Even though, technically speaking, grants 

or contracts are considered an input to research, the extent of private sector sponsorship of grants 

to a given department can be considered an indication of the amount of research conducted in that 
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department of which the impact is realized, at least in part, via collaborative interaction with 

industry sponsors. Grant awards data is characterized by principle investigator names, project titles, 

funding source, college and department of the investigator, award amount, and award dates from 

1989 to 2012.  

The source is the online Research Data Center (http://web.research.colostate.edu/datacenter/) 

of the Vice President for Research at CSU, under Proposal and Award Search. The nature of the 

sponsor, if it was a public sector (federal or state) entity or an industry sponsor, was ascertained 

by hand. The total number of industry sponsored awards made from 1989 to 2012 is 4,387. Over 

the 24 years, on average, the value of industry sponsored contract and grant awards to the 

university makes up 7% percent of total value of awards. In 2012, the value of industry sponsored 

awards was $21.8 million. The largest single year’s industry award to an individual college was to 

the College of Veterinary Medicine in 2007, at $8.5 million, which was largely driven by the 

largest single award to a single department, to the Department of Clinical Sciences in 2007, at $5.2 

million.  

Published academic articles with industry co-authors: Co-authorship on research articles with 

someone from industry is another indication of the collaboration mechanism at work. While the 

article itself indicates an impact via the public domain, the fact that the research was conducted 

and the publication was authored jointly with industry R&D personnel indicates that likely other 

results of the research, such as tacit skills, and possibly technical findings of relevance to the 

industry partner, could have arisen and been exchanged more informally. The data source for 

academic articles is the Web of Knowledge, accessed via CSU Libraries (as already detailed 

above). All authors on the academic articles associated with CSU were labelled based on their 

affiliation, being either “CSU”, “other public sector”, or “private sector” affiliation. Total number 
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of the articles published from 1989 to 2012 with at least one CSU author and at least one private 

sector author is 2,960 (or 7.6% of total articles published during this time period). The single 

largest observation for a single college in a single year was the College of Veterinary Medicine 

with 94 articles with a private sector co-author in 2006.  

 
Figure 11―Total published academic articles with industry co-authors, for the 

university overall, (1989-2012) 
 

Departmental level expenditures on Extension: Extension activities, especially when involving 

appointments in academic departments, is considered another form of the collaboration mechanism 

of disseminating research impact. Faculty with extension appointments tend to be engaged with 

private sector stakeholders throughout the state, communicating their own research results as well 

as those of their colleagues. Other indicators of extension activity, such as contact hours, numbers 

of consultations, etc., were not found to be systematically collected across all departments. 
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Figure 12―Total annual departmentally-administered expenditures on 

extension activities, (1989-2012), million $ 
 

Again even though expenditures on extension appointments may be technically considered an 

“input” variable, the level of department level extension expenditures is likely to indicate, in a 

reasonably systematic and comparable way, across departments and across years, the amounts of 

engagement with stakeholders outside the university made by extension appointed faculty 

members of a department. Extension budgets are characterized both at the college and the 

department level, in dollars per year, with coverage from 1989 to 2012. The data for the college 

and the department level was provided by accountants in the Agricultural Business Center, of the 

College of Agricultural Sciences at CSU, from 2003 to 2012. Total extension budget for the 

remaining period, from 1989 to 2002, was collected from the CSU Fact Book, and the share of 

expenditures for individual departments over these years was estimated from the annual total, 
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based on average departmental shares in the observed data from 2003-2012. Naturally, some 

colleges and departments have no extension budget or activity.  

 
Figure 13―Annual combined industry research collaboration index, by college, 

(1989-2012), million $ 
 

Collaboration Index: The three different collaboration proxies—industry co-authorship on 

academic articles, research grant awards from industry sponsors, and departmental extension 

expenditures—were found to be relatively uncorrelated and thus independent of one another. 

Therefore, a combination of these three into a single variable could best represent the level of 

industry collaboration activities. In constructing such an index, however, in order to compare 

industry co-authorship on articles, which is count data, with the other two variables which are 

financial data, we transformed the publications count data into financial-type data based on 

average overall research expenditures observed per published article for each respective 

department or research unit. 
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3. Outputs Disseminated via Technology Transfer Mechanism 

Invention Disclosures: The first indicator of research results that have impact via the 

technology transfer mechanisms mediated by formal intellectual property are inventions that result 

from university research formally disclosed to the university’s technology transfer office. 

Invention disclosures are characterized by names of inventor, funding sources that supported the 

research that led to the disclosed invention, resulting patents related to the invention, percent 

contribution, as well as the college and department affiliation of the inventor(s). This data spans 

from 1989 to 2012. The data was provided by CSU Ventures, which serves as the technology 

transfer office, located within the CSU Research Foundation, on behalf of the university. The total 

number of CSU invention disclosures was 1,564 from 1989 to 2012. The highest single year, by 

college, was by the College of Engineering, with 49 invention disclosures in 2009. 

 
Figure 14―Annual summation of invention disclosures by college level, (1989-2012) 
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Published Patent Applications and Granted Patents: A second indicator of the 

patenting/licensing mechanism of impact is patent data. Patent data is characterized by inventor 

names, published or issued dates, assignee, technology classifications, numbers of citations, and 

were augmented with the college and department of the CSU affiliated inventors, from 1990 to 

2011. Patent data was collected from the Thompson Innovation database by Thompson Reuters. 

The total number of CSU patents application between 1990 and 2011 was 195. The single largest 

annual count was from the College of Engineering, with 17 in 2008.  

 
Figure 15―Annual summation of published patent applications and granted 

patents by college level, (1989-2012) 
 

Startup companies arising from university research are the main indicator of the venture 

creation mechanism of impact. Data on CSU startup companies is characterized by names of the 

companies, names of founders, incorporation dates, current employee count, capital raised, as well 
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as college and department of the CSU founder, spanning from 1989 to 2012. During this time CSU 

research has led to 41 startup companies. The data source is again the CSU Ventures database.  

 
Figure 16―Annual combined tech transfer metric, by college, from 1989 to 2012 

 

Combined Tech Transfer Metrics Index: This numerical value measures the combination of 

invention disclosures, patent applications and issued or granted patents, and the number of startup 

companies. These three variables represent publicly observable university tech transfer activities. 

The combined tech transfer metrics index is conceptually distinguished from the previously 

introduced collaboration index, as it is more based on intellectual property rights and the 

“patenting/licensing mechanism” and the “venture creation” mechanism of research output, rather 

than the “collaboration mechanism” of research output. 
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V. Empirical Results 

In order to assess the efficiency of knowledge production across the different disciplines and 

research units of the university and to test the effects of changes in research inputs on the various 

knowledge outputs that impact the economy through different channels, several empirical 

relationships were estimated. This section consists of two parts of regression models results. One 

involves regression models which show the results of different knowledge dissemination channels 

independently. The other involves a system of equations, which provides a test of the 

interrelationships among the three sets of independent regression models. In addition, we examine 

the structural changes in the model around the time period of the creation of CSU Ventures, as the 

technology transfer office (TTO) for Colorado State University.  

Table 1 provides summary statistics of the research input and output variables for 54 research 

units. As detailed in the previous section, we have collected data on several major research inputs, 

including total annual research expenditures, research FTEs employed, value of research 

equipment acquisitions, and other control variables. Two of the input variables introduced in 

Section III, contract and grant awards and research space, were not employed in the regression 

models, due to the fact that they were found to be highly correlated with some of the other input 

variables12 and issues with the quality of data13, respectively.  

In addition, we have eight research output variables, most of which occur as count data, but 

some of which, including contract and grant awards from industry sponsors and departmental level 

expenditures on extension, are financial data14. Moreover, some of the data collected are used as 

                                                 
12 Total research expenditures and total grant awards are highly correlated each other about 90.4%. In addition, total 
research expenditure is actual spending and total grant award is an announcement of winning grants. 
13 We have only two data points within the time period, in 2008 and 2013, for laboratory space. 
14 Thus, these research output models will not be measured in the same manner as other research output models, 
negative binomial maximum likelihood estimation (MLE). This problem will be explained in a later section. In the 
collaboration index, the index values were constructed as counts (in order to employ negative binomial MLE) by the 
combination of annual counts of industry co-authored articles, dollars awarded in grants & contacts from private 
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control variables, including graduate student enrollment by department, which consists of both 

masters and doctoral degrees. Some departments have clearly identified their master’s and doctoral 

enrollment, but others are not as clearly specified because of different policies of their academic 

programs.  

Table 1―Summary statistics: research inputs and outputs at department level, (1989-2012) 

Summary statistics at department level: research input-output variables from 1989 to 2012 

  Mean 

Std. 

Dev. Min Max Sum Group Obs 

Research inputs        
   Research expenditures (million $) 2.7 4.6 0 37.9 3,546 54 1,296 

   Full-time equivalent researchers (FTEs) 56.8 46.1 0 282.4 73,592 54 1,296 

   Value of equipment (3) (million $) 0.3 0.7 0 7.2 380 54 1,296 

   Value of equipment (2) (million $) 0.2 0.5 0 4.2 264 54 1,296 

Research outputs               

   Published academic articles (counts) 28.6 35.9 0 252.0 37,029 54 1,296 

   Doctoral degree awards (counts) 3.4 5.4 0 54.0 4,415 54 1,296 

   Industry co-authored articles (counts) 2.2 5.0 0 58.0 2,872 54 1,296 

   Private grant awards (million $) 0.2 0.5 0 5.4 230 54 1,296 

   Extension budget (million $) 0.1 0.2 0 1.3 106 54 1,296 

   Invention disclosures (counts) 1.1 3.0 0 28.0 1,470 54 1,296 

   Patent apps and granted patents (counts) 0.12 0.5 0 9.0 160 54 1,296 

   Startup companies (counts) 0.03 0.2 0 3.0 40 54 1,296 

Research output index               

   Collaboration index (counts) 44.8 98.6 0 812.0 58,096 54 1,296 

   Tech Transfer metrics (counts) 1.3 3.4 0 29.0 1,670 54 1,296 

Other control variables               

   Enrollment (counts) 124.1 132.0 0 1,075.0 160,717 54 1,296 

Note: 1. The number is window width: (3) is the summation of current value and two previous years that is called three 

years of window, similarly (2).  2. Graduate level enrollment.  

Given the inherent characteristics of panel data analysis, given that it contains both cross-

section and time-series, two significant issues that must be controlled for are heteroscedasticity 

and autocorrelation, respectively. 

                                                 
sponsors, and departmental level of extension expenditures. Similarly, the combined tech transfer metrics index was 
also constructed as a count variable by the combination of counts of patenting/licensing and venture creation 
research outputs. The formulas and methodologies are explained in a later section. 
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Table 2―The results of augmented Dickey-Fuller unit root test of all research inputs and 
outputs 

Augmented Dickey-Fuller Unit Root Test 

  

Inverse chi-

squared (108) 

Inverse 

normal 

Inverse logit 

t(274) 

Modified 

inv. chi-

squared 

Research Inputs     
   Total research expenditures 206.58*** -1.93** -3.15*** 6.71*** 

   FTE researchers 289.72*** -9.48*** -9.87*** 12.36*** 

   Value of equipment (2) 165.05*** -3.66*** -3.80*** 3.88*** 

   Value of equipment (3) 209.21*** -3.92*** -4.71*** 6.89*** 

Research Outputs         

   Publications 281.27*** -9.89*** -9.95*** 11.79*** 

   Degree (PhD) 366.71*** -12.82*** -13.49*** 17.60*** 

   Co-authorship articles 307.25*** -9.42*** -10.29*** 13.56*** 

   Private grant awards 251.73*** -8.33*** -8.57*** 9.78*** 

   Extension budget 108.97 -1.91** -1.78** 0.07 

   Collaboration index 178.08*** -3.46*** -3.72*** 4.77*** 

   Patent applications & grants 266.29*** -8.53*** -8.89*** 10.77*** 

   Invention disclosures 258.15*** -8.96*** -8.92*** 10.22*** 

   Startup companies 185.27*** -4.41*** -4.75*** 5.26*** 

   Tech transfer metrics 258.95*** -9.13*** -9.02*** 10.27*** 

Note: *** 1%, ** 5%, and * 10% levels of statistically significant 

 

First, time-series analysis assumes that the data represents a stationary process, that the 

statistical properties of the distribution from which the observations are drawn does not change 

over time. If, however, a non-stationary process is detected by a unit root test, the analysis should 

be estimated by a first difference, period to period change. A well-established unit root test is the 

augmented Dickey-Fuller (ADF) test. Table 2 displays the results of ADF unit root tests for the 

variables summarized in Table 1. These test statistics indicate a stationary process for most of the 

input and output variables at a 1 percent level of statistical significance, by four different 

methodologies. In considering potential heteroscedasticity, the negative binomial maximum 

likelihood estimation has the advantage of controlling for heteroscedasticity problems with the 

Huber White sandwich variance-covariance estimation, bootstrap estimation, Jackknife estimation, 

and others.  
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A. Research hypotheses 

1. Identifying research inputs on the knowledge production function 

According to the Pakes and Griliches (1984), a knowledge production function translates past 

research expenditures and a disturbance term, encompassing unobserved inputs, into inventions. 

However most previous studies use only past research expenditures because of the quality of data. 

In this study, we attempt to decompose the disturbance term and extract some important research 

input variables from it. In particular, we seek to test the statistical reliability of the stock of human 

capital, as indicated as FTEs, and stock of physical research capital, as indicated by the value of 

research equipment, on the knowledge production function. Although adding more independent 

variables into the objective function has both advantages and disadvantages, these two variables 

makes it possible to derive the best linear unbiased estimators of a knowledge production 

function15, and improve on the connection to classical production theory16. Therefore, we 

hypothesize that both FTEs and the value of equipment are positively related to the measures of 

university research outputs.  

2. Model specification on the lags of research expenditures 

Crespi and Geuna (2008) point out that only a few studies have focused on the relationship 

between investment in science and measures of research outputs. As shown as previous section, 

we want to build an empirical model of knowledge production function, employing polynomial 

distributed lags (PDL) of research expenditures, and to test the comparison between the PDL 

model and previous studies’ model which employ ad hoc lags of research expenditures on the 

knowledge production function. We hypothesize that the PDL model should have statistically 

                                                 
15 The error term is to converge into zero and the model has the lowest variance of the estimate. It is also called 
Gauss–Markov theorem.  
16 In classical production function, the major inputs consist of labor, financial capital, and physical capital.  



44 
 

better results than ad hoc lag models and better explains unobservable effects of past research 

expenditures. 

3. Research productivity and long-run effect  

In order to assess university research productivity, there are some important indicators, which 

came from the classical production theory. Each slope coefficient on the knowledge production 

function model represents the elasticity of production, which is an indicator of short-run 

productivity. The sum of all independent variables’ slope coefficients is the returns to scale of 

production, which is an indicator of long-run productivity. Basically, we expect that the 

productivity of university knowledge can be varied across the different types of knowledge 

dissemination channels because of their own inherent characteristics. First, we hypothesize that 

the public domain mechanisms of knowledge such as the published journal articles and doctoral 

degree awards exhibit degreasing returns to scale. According to Adams and Griliches (1998), at 

the aggregate data, the publication as research outputs follows constant returns to scale, but at the 

individual university level, the result follows decreasing returns to scale.  

Second, we hypothesize that research outputs based on the invention and innovation, such as 

patenting/licensing mechanisms of knowledge exhibit increasing returns to scale. Artz et al (2010) 

study the innovation productivity of firms, examining the relationship between a firm’s 

commitment to R&D and its outcomes in terms of innovations and inventions, and the impact of 

these outcomes on firm performance. Their findings show that the output of patents exhibits 

increasing returns to scale with respect to R&D spending, which contradicts previous studies with 

decreasing returns to scale, but which is consistent with an economic argument for advantages of 

scale in innovation, similar to findings in Henderson and Cockburn (1996) and Bettencourt et al, 

(2007). 
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B. Independent Regression Model Results  

This section shows the results of independent regression models across the different knowledge 

outputs, in which we take into account a full range of potential knowledge dissemination channels: 

(1) published journal articles, (2) doctoral degree awards, (3) the collaboration index, and (4) the 

technology transfer index. The output measures associated with each of the knowledge 

dissemination channel are estimated with four different types of knowledge production function 

model, which are introduced in Section III, at the department level. We examine in this section the 

results of the knowledge production function models across the different knowledge dissemination 

channels, and how the heterogeneous characteristics of each knowledge channel may explain 

economic intuitions of research production in the university.  

1. Estimating Output of Published Journal Articles 

Published journal articles are the primary research output of knowledge production across the 

different colleges, departments, and research units of the university. Both Adams & Griliches 

(1998) and Pardey (1989) found that journal articles as an output of knowledge production were 

increasing in research expenditures, with some lag.  

The total count of published journal articles by CSU authors from 1989 to 2012 was 38,916, 

compared to just 1,470 invention disclosures over the same time period. 10,275 or 26 percent of 

the university’s total publications were from authors in the College of Natural Sciences, followed 

by 22 percent from the College of Veterinary Medicine, and 19 percent from the College of 

Engineering. Thus, these three colleges account for 67 percent, or two thirds, of the university’s 

total research publications. Adding two more colleges, the College of Agricultural Sciences and 

the College of Natural Resources, altogether accounts for almost 85 percent (see Figure 7). 

Similarly in the department level, a relatively small number of departments account for a relatively 
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large percentage of the university. Thus, the distributions of the publication production are highly 

skewed toward a few colleges or departments. In other worlds, a few number of colleges, 

departments, or research units shares of the total capacity or production of publications in the 

university (Scherer and Harhoff, 2000).  

Table 3 displays the results of the panel estimation of the production function of published 

journal articles as a function of lagged research expenditures for the fifty-four departments of the 

university from 1989 to 2012. The model structures are based on Pakes and Griliches (1980, 1984), 

and the empirical technique follows closely from Crespi and Geuna (2008). However, it is 

distinguished from those earlier papers in that we have adopted a negative binomial maximum 

likelihood estimation (MLE) with polynomial distributed lags (PDL). The four different model 

approaches: model 1 is an unrestricted polynomial distributed lags (PDL) model; model 2 is a 

restricted PDL model with end-point restriction (k+1=0); model 3 is an ordinary distributed lag 

model or ad hoc distributed lag model similarly with previous studies; model 4 is a log-log PDL 

model with White’s robust standard error, effective labor model, but not negative binomial MLE. 

       1

var varFE RE FE RE FE REH                   (19) 

All four models assumed a group fixed effect. Equation (19) is the Hausman test, of which the 

result for model 1 rejects the null hypothesis of a random effect model at the 1 percent level of 

statistical significance; the Chi-square statistics is 25.88, and the p-value is 0.0005. Thus, the 

assumption of group fixed effects can be used in model 1. The test results of other models are 

comparable. There are several criteria for choosing the maximum length of the lag, k, and the 

degree of the polynomial, m. The preferred model is the one with minimum values of the AIC and 

SBIC. Further, we assumed that the end of the lag window, the kth time period, must be statistically 

significant at least 5% level and that the maximum length of the lag cannot be greater than 10 years 
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to prevent the loss of degrees of freedom. Using a top-down approach, we choose the lag length, 

k, and, in a similar manner, degree of polynomial, m.  

Table 3―Regression results: Published journal articles at the department level, (1989-2012) 
Published Journal Articles (1989-2012) 

  
Unrestricted PDL3 

(k=6, m=2)1 
  

Restricted PDL4 

(k=6, m=2)1 
  ODL2 (k=6)1   

Effective labor 

PDL5 (k=6, m=2)1 

[1]   [2]   [3]   [4] 

Negative Binomial YES  YES  YES  NO 

Fixed Effect YES  YES  YES  YES 

Expenditure (t-0) 

 

0.0375***   0.0269***   0.0478***   0.1073*** 

(0.0071)  (0.0068)  (0.0120)  (0.0411) 

_t-1 

 

0.0072*  0.0152***  -0.0142  0.1632*** 

(0.0037)  (0.0030)  (0.0164)  (0.0374) 

_t-2 

 

-0.0111**  0.0061***  -0.0099  0.1906*** 

(0.0050)  (0.0013)  (0.0160)  (0.0455) 

_t-3 

 

-0.0174***  -0.0004  -0.0100  0.1895*** 

(0.0053)  (0.0026)  (0.0166)  (0.0431) 

_t-4 

 

-0.0117***  -0.0042  -0.0041  0.1600*** 

(0.0038)  (0.0034)  (0.0179)  (0.0339) 

_t-5 

 

0.0061  -0.0054*  -0.0335*  0.1020** 

(0.0045)  (0.0033)  (0.0180)  (0.0506) 

_t-6 

 

0.0360***  -0.0040*  0.0754***  0.0155 

(0.0112)  (0.0021)  (0.0202)  (0.1045) 

Total lag multipliers 

 

0.0466***  0.0342***  0.0514***  0.9280*** 

(0.0080)  (0.0075)  (0.0084)  (0.1712) 

Mean lag 2.9511  1.5521  3.5935  2.5385 

FTEs (t_5) 

 

0.0044***   0.0044***   0.0045***   
      ― 

(0.0011)  (0.0011)  (0.0011)  

Equipment (3)6 

 

0.0497**  0.0495**  0.0526***  0.0069 

(0.0199)  (0.0202)  (0.0201)  (0.0286) 

Cons 

 

2.0221***  2.0339***  2.0275***  2.3774*** 

(0.1082)  (0.1069)  (0.1054)  (0.5715) 

AIC7 5747.4   5758.7   5748.8   528.6 

SBIC7 5776.6  5783.0  5797.4  546.2 

log-likelihood -2867.7  -2874.4  -2864.4  -260.3 

Obs 954  954  954  589 

Group 53   53   53   43 

Note: 1. k is the length of lags and m is the degree of polynomial, 2. Ordinary distributed lag or ad-hoc model, not PDL,  

3. Unrestricted PDL model, 4. End-point restriction PDL model (k+1=0), 5. Output per unit of FTE with PDL model, 6. Window 

width is three, 7. Akaike Information Criterion and Schwarz' Bayesian Information Criterion. *** at 1%, ** at 5%, and * at 10% 

level of statistically significant. Parentheses are staŶdard errors, but ŵodel 4 has White’s robust staŶdard errors 
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In Table 3, the maximum length of lag in the publication models is 6 years and the better fit is 

obtained with a second-degree polynomial. In particular, the information criteria for the PDL 

models are much smaller than for the ODL model, with the one exception of the AIC for the 

restricted PDL model17. Moreover, the ODL model is not statistically significant in the middle 

time periods, from years 1 to 4, but the results of the PDL models are statistically significant at 

least at the 5 percent level, particularly in the unrestricted PDL model and the effective labor model. 

In model 2, the restricted PDL model, the end-point restriction assumes that there is no impact 

beyond six years of lagged research expenditures on current year publications, yet the estimation 

result tells us that only three years18—the current, and the first and second lagged years’ 

expenditures—affect strongly and positively the current year’s publications. Similarly, model 4 

finds that multiple years of past research expenditures per unit of FTE positively and significantly 

affect current publication counts, also measured per unit of FTE. This fourth model finds no 

negative effects of past research expenditures and finds the 2nd lagged time period’s research 

expenditures to have the maximum impact. The other three models do not have a maximum point. 

However, model 1 does indicate small negative impacts for several years of lagged research 

expenditures. 

The total lag multiplier represents a long-run or total impact of past and current research 

expenditures on current year publications. It measures how the log count of publications at 

department i change in response to changes in research expenditures. All four models have 

statistical significance, while model 3 has a higher magnitude of the coefficients than the others. 

Thus, research expenditures have a positive and significant long-run impact on publication counts 

                                                 
17 The interpretation of AIC & SBIC is that the difference between 0 and 2 is only weakly significant, between 2 and 
6 is significant, between 6 and 10 is strongly significant, and over 10 is very strongly significant. 
18  This is likely due to the characteristics of 2nd degree of polynomial PDL. 
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according to all models. The results also shed some light on the nature of the time lag between 

expenditures and resulting publications. The mean lag represents a weighted average of time in the 

short-run, and the formula for calculating it is shown in equation (20) below. This corresponds, for 

example, to the average lag between a research project’s inception and completion. (In practice, 

actual expenditures typically begin some time after project inception, due to the delay in applying 

for and receiving funding. While at the same time, publications occur some time after project 

completion, due to the similar delay in submitting and publishing articles.) Model 1 tells us that, 

on average, research teams spend 2.95 years, or almost three years of their time on average in 

generating a publication: similarly, model 2 finds a mean lag of 1.55 years; model 3, 3.59 years; 

and model 4, 2.53 years.  

By comparison, in previous studies, Pardey’s mean lag of citation adjusted publications is 3.87 

years in his OLS model, 3.30 years in his “within” model, 4.64 years in his “between” model, and 

3.62 years in an EGLS model. In Crespi and Geuna’s results, the unrestricted PDL model shows a 

mean lag of 3.48 years and the restricted PDL model, 4.16 years. Thus, this analysis finds a 

somewhat smaller mean lag compared to previous studies. The difference may be related to the 

different research settings: while this study uses data at a university department level, Pardey 

analyzed state agricultural experiment station (SAES) data at an institutional level; Crespi and 

Geuna used 14 countries of higher education research and development (HERD) data at a national 

level.  

0

0

k

k

k

k

k
Meanlag



                     (20) 
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The full-time equivalent (FTE) researchers, lagged 5 years19, as measure of human capital 

research input has positive and statistically significant (at the 1 percent level) impact on publication 

counts. This variable represents that ceteris paribus, for every unit increase in researcher FTE, the 

log count of publications five years later is increases by approximately 0.0044 in model 1 and 2 

and by 0.0045 in model 3. In model 4, the FTE variable was controlled for as effective labor.  

Next, we include the value of research equipment as a physical input to the research production 

process. There are several ways that equipment could be represented: as a fixed or stock variable 

that changes over time with the addition of new pieces of equipment and the depreciation of 

existing ones, or as a stream of services provided by the existing stock of equipment in any given 

year. The collected data represents the value of equipment at time of acquisition, but does not 

include the (highly heterogeneous) depreciation rates for each of those, making depreciation 

calculations impractical.  

Understanding that the production of research outputs in a given year should be affected by 

equipment acquired in that same year as well as previous years cumulatively, we assume that this 

can be reasonably approximated by an average value of acquisitions within a moving window. In 

these models, the width of the window used is three years, which was selected by model 

specification tests, information criteria (AIC and SBIC), and the statistical significance of their 

estimated coefficients relative to windows of other sizes. The three-year moving average of annual 

values of equipment acquisitions in model 1 to model 3 have statistical significance at least at the 

5 percent level, but the estimated coefficient on the variable in model 4 is insignificant. Thus, the 

value of research equipment per FTE, does not affect publications per FTE by department. Since 

model 1 to model 3 are negative binomial MLEs and thus their slope coefficients do not directly 

                                                 
19 The lag length is also chosen by the smallest value of AIC and SBIC with comparing other lagged years and by 
stronger statistically significant of their estimated slope coefficients. 
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reveal the marginal effect, it needs to be calculated20. Instead, an alternative option is to report an 

incident rate ratio (IRR) for coefficients estimated in the negative binomial MLE model. The IRR 

displays the change in the research output, in this case publications, in terms of a percentage 

increase or decrease, with the precise percentage determined by the amount by which the IRR, 

deviates above or below one. Table 4 represents incident rate ratio of the three negative binomial 

MLE models, models 1 to 3, with the IRR values transformed by taking the exponent of the slope 

coefficients in Table 3.  

Table 4―Negative binomial incident rate ratio (IRR): Published journal articles 

Incident Rate Ratio (IRR): Published Journal Articles (1989-2012) 

 

Unrestricted 

PDL (k=6, m=2) 
 

Restricted PDL 

(k=6, m=2) 
 ODL (k=6) 

[1]   [2]   [3] 

Expenditures (t-0) 1.0382***   1.0272***  1.0489*** 

_t-1 1.0072*  1.0153***  0.9859 

_t-2 0.9889**  1.0061***  0.9901 

_t-3 0.9827***  0.9996  0.9900 

_t-4 0.9884***  0.9958  0.9959 

_t-5 1.0062  0.9946*  0.9670* 

_t-6 1.0366***  0.9960*  1.0784*** 

Total lag multipliers 1.0477***  1.0348***  1.0527*** 

FTEs (t_5) 1.0044***   1.0044***   1.0046*** 

Equipment (3) 1.0510**   1.0508**   1.0540*** 

 

In order to interpret the IRR values and take into account the marginal effects of the 

independent variable, the conversion 1 100 %IRR   is more clear: effectively, the marginal 

value of the independent variable’s impact on the dependent variable is the value by which its IRR 

value exceeds or falls below 1. For example, in the unrestricted PDL, the IRR value suggests that, 

ceteris paribus, for every one percent increase in lagged year 1 research expenditures, the number 

                                                 
20       , ,

,
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of publications are expected to increase by approximately 0.72 percent, with a statistical 

significance at the 10 percent level. In contrast, for every one percent increase in lagged year 2 

research expenditures, publications decrease by 1.11 percent. Over the long-run, publications are 

increased by approximately 4.7 percent for every percent increase in research expenditures, with 

1 percent level of statistical significance.  

At the margin, FTEs lagged 5 years have a positive impact on current publication counts, with 

1 percent level of statistical significance in all models. Ceteris paribus, for every one percent 

increase in FTE, lagged 5 years, current year publications can be expected to increase 

approximately 0.44 percent. Considering the value of research equipment acquisitions, one percent 

increase in the three year moving average value of research equipment acquisitions can be expected 

to increase current year publications by approximately 5.1 percent.  

2. Estimating Output of Doctoral Degree Awards 

Similar to published articles, doctoral degree awards represent an important output of the 

knowledge production process at the university. Each doctoral dissertation represents a body of 

research conducted at the university. In this section, we estimated doctoral degree awards as a 

function of research expenditures by department. We do not estimate master’s degree awards, 

because the counts contain not only those master’s degrees from research-based programs but also 

professional degree programs such as MBA, masters of social work, fine arts performance, and so 

on. In the same vein, we removed Doctor of Veterinary Medicine (DVM) degree awards from the 

count of doctoral degree awards. The departments of veterinary medicine as well as animal science 

do offer research-based PhD degrees, which were included.  

Table 5 presents the regression results of doctoral degree awards at the department level from 

1989 to 2012. The set of regression models is the same as in the previous section: unrestricted 
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PDL, restricted PDL, ordinary distributed lag, and effective labor models. All four have same lag 

length, k=8, and the three PDL models have the same degree of polynomial, m=4. Results of the 

PDL models generally show greater statistical significance than the ODL model, except for the 

restricted PDL model. Model 1, the unrestricted PDL, shows that research expenditures lagged 1, 

5, 6, and 7 years affect positively the current year’s number of doctoral degree awards. In particular, 

we might interpret the strong significance of research expenditures lagged 5 and 6 years to reflect 

the average total time to completion of a doctoral program. The investment decision for admitting 

and funding new Ph.D. students likely proceeds or corresponds to the first year of the program. 

The slope coefficients on the middle range of lagged research expenditures, from years 2 to 4, 

indicate a negative relationship to the current year’s count of doctoral degree awards; however, 

these statistically insignificant. However, these lags correspond to the time periods in the degree 

cycle when most students are taking core classes as well as preliminary or qualifying exams. Mean 

lags show that the average lag times between research expenditures and awarded degrees is 6.40 

years in model 1: similarly, it is 4.50 years in model 2; 5.99 years in model 3; and 4.38 years in 

model 4. These results generally correspond with the reflections above on average time periods 

for the completion of doctoral degree programs. 

In these regressions, FTEs and value of research equipment are insignificant. We expect, 

naturally, that the number of FTEs and the annual number of doctoral degree awards are highly 

correlated with each other, as the FTEs variable contains graduate research assistants as well as 

faculty who serve as Ph.D. advisors. Model 2, the PDL with endpoint restriction, k+1=0, shows 

that all estimated slope coefficients of lagged research expenditures are insignificant as well as 

FTEs and value of equipment variables. Only graduate enrollment is significant.  
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Table 5―Regression results: Doctoral degree awards at the department level, (1989-2012) 
Doctoral Degree Awards (1989-2012) 

 

Unrestricted 

PDL3 (k=8, m=4)1 
  

Restricted PDL4 

(k=8, m=4)1 
  ODL2 (k=8)1   

Effective 

labor PDL5 

(k=8, m=4)1 

[1]   [2]   [3]   [4] 

Negative Binomial YES  YES  YES  NO 

Fixed Effect YES  YES  YES  YES 

Expenditures (t-0) 
-0.0043   0.0208   -0.0171   0.3835** 

(0.0247)  (0.0235)  (0.0287)  (0.1689) 

_t-1 

 

0.0270*  -0.0144  0.0607  0.3635*** 

(0.0164)  (0.0144)  (0.0375)  (0.1318) 

_t-2 

 

-0.0033  -0.0079  -0.0477  0.0251 

(0.0148)  (0.0149)  (0.0381)  (0.1200) 

_t-3 

 

-0.0251  0.0111  0.0031  -0.2595*** 

(0.0156)  (0.0128)  (0.0404)  (0.0736) 

_t-4 

 

-0.0058  0.0235  -0.0125  -0.3026*** 

(0.0158)  (0.0149)  (0.0392)  (0.1070) 

_t-5 

 

0.0490***  0.0198  0.0496  -0.1013 

(0.0142)  (0.0131)  (0.0396)  (0.1104) 

_t-6 

 

0.0965***  0.0004  0.1082*  0.1627 

(0.0260)  (0.0132)  (0.0616)  (0.1214) 

_t-7 

 

0.0559*  -0.0243  0.0622  0.1232 

(0.0297)  (0.0237)  (0.0643)  (0.1232) 

_t-8 

 

-0.1915***  -0.0345  -0.2062***  -0.7709*** 

(0.0463)  (0.0266)  (0.0551)  (0.2770) 

Total lag multipliers 

 

-0.0015  -0.0055  0.0002  -0.3763* 

(0.0270)  (0.0278)  (0.0274)  (0.2175) 

Mean lag 6.4006  4.5001  5.9983  4.3794 

FTEs (t_2) 

 
0.0023   0.0025   0.0023        — 
(0.0027)  (0.0027)  (0.0027)  

Equipment (2)6 

 

-0.0361  -0.0019  -0.0394  -0.0319 

(0.0477)  (0.0472)  (0.0477)  (0.0359) 

Enrollment (t_4)7 

 

0.0022***  0.0022***  0.0022***  0.4540*** 

(0.0003)  (0.0003)  (0.0003)  (0.1104) 

Cons 

 

4.5634**  3.6873***  4.8101  -4.6806*** 

(2.3020)  (1.0116)  (2.9509)  (0.6112) 

AIC8 1947.7   1963.3   1953.9   537.5 

SBIC8 1985.8  1997.2  2009.0  565.1 

log-likelihood -964.8  -973.6  -963.9  -261.8 

Obs 512  512  512  383 

Group 32   32   32   30 

Note: 1. k is the length of lags and m is the degree of polynomial, 2. Ordinary distributed lag or ad-hoc model, not PDL,  

3. Unrestricted PDL model, 4. End-point restriction PDL model (k+1=0), 5. Output per unit of FTE with PDL model, 6. Window 

width is two, 7. Graduate enrollments, 8. Akaike Information Criterion and Schwarz' Bayesian Information Criterion.  

*** at 1%, ** at 5%, and * at 10% level of statistically significant. Parentheses are staŶdard errors, but ŵodel 4 has White’s 
robust standard errors 
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There are two possible explanations for this result: one would be model misspecification and 

another would be the characteristics of the imposed restriction. First of all, if there were model 

misspecification, then the unrestricted PDL model should also be insignificant, because both 

models are strongly related to each other. Considering the second possibility, endpoint restrictions 

are generally imposed to cut off the effect of longer lagged time periods on the current output 

variable. As this seems a more likely explanation, we expect that doctoral degree awards are 

connected with longer and cumulative lagged years of research expenditures as well as investments 

in graduate education. To the extent that doctoral degree awards reflect at least as much about the 

educational attributes of a department, as the research attributes, it is not surprising to find that 

doctoral degree awards are observed to have a less systematic relationship with research inputs. 

Finally, model 4 in Table 5 shows that only two years’ of research expenditures per FTE, the 

current and one lagged year, affect positively the department’s doctoral degree awards per research 

FTE. With regard to the negative relationship observed for research expenditures lagged 3 to 5 

years, this may again reflect the doctoral program’s gestation period, that of taking core classes 

and qualifying exams. However, we expect that the current year and the one prior year to a doctoral 

degree grant are generally the time periods of doctoral students doing their dissertation, such that 

the research expenditures per unit of FTE during those years affect positively doctoral degree 

awards per unit of FTEs.  

Table 6 displays the incident rate ratio (IRR) of three negative binomial MLE models. First, 

model 1’s IRR shows that, ceteris paribus, for every one percent increase in research expenditures, 

the log count of doctoral degree awards is expected to increase by 5.03 percent five years later and 

by 10.14 percent 6 years later, with 1 percent level of statistical significance. 
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Table 6―Negative binomial incident rate ratio (IRR): Doctoral degree award 
Incident Rate Ratio (IRR): Doctoral Degree Awards (1989-2012) 

 

Unrestricted PDL 

(k=8, m=4) 
 

Restricted PDL 

(k=8, m=4) 
 ODL (k=8) 

[1]   [2]   [3] 

Expenditures (t-0) 0.9957   1.0210   0.9830 

_t-1 1.0274*  0.9857  1.0625 

_t-2 0.9967  0.9921  0.9534 

_t-3 0.9752  1.0112  1.0032 

_t-4 0.9942  1.0238  0.9876 

_t-5 1.0503***  1.0200  1.0508 

_t-6 1.1014***  1.0004  1.1142* 

_t-7 1.0575*  0.9759  1.0642 

_t-8 0.8257***  0.9661  0.8137*** 

Total lag multipliers 0.9985  0.9945  1.0002 

FTEs (t_2) 1.0023   1.0025   1.0023 

Equipment (2) 0.9645  0.9981  0.9614 

Enrollment (t_4) 1.0022***   1.0022***   1.0022*** 

 

3. Estimating Output captured in the Collaboration Index 

For many years, the role of the university has included not only basic research and education, 

but also outreach and informal knowledge transfer activities, sometimes referred to as the “third 

mission” of the university. Faculty members in the university have long worked with industry and 

private sectors recipients of their knowledge through a variety of relationships, including 

consulting, conferences, informal conversations, practitioner networks, collaborative research, and 

co-supervising or internship programs for training R&D staff. Such activities emerged early in the 

history of the research university in the 19th and early 20th centuries and became embedded as 

important knowledge dissemination channels from the university to industry.  

However, such collaborative activities by university researchers are often hard to detect in 

terms of their magnitude, size, and scope, particularly in a systematically consistent way across 

the entire institution. In a regression analysis, this problem can cause empirical model specification 

errors and distort estimation results. To overcome this, we propose three separate variables as 
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reasonable proxies of knowledge outputs disseminated through channels based on collaboration or 

close interaction between university and industry: (1) industry co-authorship on academic journal 

articles, (2) the value of grants and contracts awarded from private sector sponsors, and (3) the 

departmental level expenditures on cooperative extension appointments and activities. Again, a 

major advantage is that each of these can be collected systematically for all departments and 

research units across the university. 

First, the total count of journal articles with at least one industry co-author was 2,960 from 

1989 to 2012. The College of Veterinary Medicine and the College of Engineering have published 

1,059 and 810, respectively representing about 63 percent of the university total. At the department 

level, the Department of Clinical Sciences (in the College of Veterinary Medicine) and the 

Department of Electrical and Computer Engineering (in the College of Engineering) have 

published 523 and 286 articles with industry co-authors, respectively.  

Second, across all of CSU, the total amount of private grant and contract awards was $268.7 

million, which represents about 6.8 percent of total grant awards the university total of $3,95 

billion from 1989 to 2012. The College of Veterinary Medicine and College of Engineering have 

received $93.1 and $66.8 million in private contract and grant awards, respectively.  

Third, CSU’s total amount of departmental level expenditures on extension was $108.5 million 

from 2003 to 2014, with the College of Agricultural Sciences accounting for the largest college 

level share at $24.4 million. One problem with this data is that most departments have no extension 

expenditures. 

In this section, we estimate the collaboration-based activities of the university departments as 

a single research output variable by combining these three proxy variables into one single count 

or index.  First of all, since three different variables have different data types, including both count 
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and financial data, we transform the count data of industry co-authored articles into a comparable 

financial-type metric, according to equation (21),  

1

,
, ,

,

i t
i t i t

i t

TPubs
DIA IA

R

         
      (21) 

where DIA is the dollar-equivalent value attributed to industry co-authored articles, TPubs is the 

total publication count, IA is industry co-authored articles, a subset of total publications, and R is 

research expenditures, all of which are specific to department i and time period t. In effect, in 

equation (21), the ratio between research expenditures and total publications per year represents 

the amount of (non-lagged) research expenditures attributed to a single paper in that year. Thus, 

DIA is effectively the research expenditure value that can be associated with the department’s sum 

of articles co-authored with an industry collaborator in that year, in millions of dollars.  

Then, as described in equation (22) we create a linear combination of the three proxy variables 

for collaboration activities, denoting this the collaboration index. 

, , , ,i t i t i t i tColl DIA PGrant Extension       (22) 

where PGrant is the value of contract and grant awards from private sector sponsors and Extension 

is the extension budget21 for department i in time period t. This collaboration index, Coll, is 

essentially financial data type (million $). In order to make appropriate for use within the negative 

binomial MLE and consistent with other research outputs, including publications, doctoral degree 

awards, and our tech transfer index (see next section), we simply transform the collaboration index 

into a count data type by rounding off to units of ten thousand dollar increments: see equation (23). 

                                                 
21 The time coverage of extension budget is from 2003 to 2012 comparing the other two variables from 1989 to 
2012. 
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 , , 100i t i t Round off all decimal points
Collu Coll        (23) 

The correlation between equation (22), the continuous variable, and (23), the rounded-off count 

variable, is 0.9999, almost perfectly correlated.  

Table 7 presents regression results of the collaboration index, at the department level, from 

1989 to 2012. Models 1 to model 3 are negative binomial MLE models and model 4 is log-log 

PDL model with White’s robust standard error, an effective labor model. As in previous sections, 

all of the PDL models have better fit than the ordinary distributed lag model. Model 1, the 

unrestricted PDL, shows that the 2nd and 3rd years of lagged research expenditures are positively 

related to a given year’s collaboration activities, as well as, interestingly, the 9th year’s lagged 

research expenditures. However, research expenditures from lagged years 4 to 8 years have a 

negative relationship with a given year’s level of collaborations.  

The cumulative effect of the positive coefficients, at 0.2835, is somewhat greater than that of 

the negative coefficients, at -0.2464 (not considering their statistical significance). All three of the 

count models (i.e. except for model 4), have certain continuous strings of years indicating a 

negative impact of research expenditures on the collaboration index in the current year t=0. There 

may be several explanations. One possibility is that this may reflect a search cost for collaborating 

with private sector partners. Or, it may indicate that private sector collaboration is a strategy 

adopted in the wake of several ‘lean’ years of research funding. In other words, the negative 

relationship is effectively inverse: when research expenditures are down, the collaboration index 

goes up. Or, conversely, this result may indicate that in the years following overall increased 

research expenditures, the large bulk of which comes from federal and state sources, industry 

collaboration activities tend to get “crowded out”. 
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Table 7―Regression results: Collaboration count at the department level, (1989-2012) 
Collaboration count (1989-2012) 

 

Unrestricted 

PDL3 (k=9, m=4)1 
 

Restricted PDL4 

(k=9, m=4)1 
 ODL2 (k=9)1  

Effective 

labor PDL5 

(k=9, m=2)1 

[1]   [2]   [3]   [4] 

Negative Binomial YES  YES  YES  NO 

Fixed Effect YES  YES  YES  YES 

Expenditures (t-0) 
0.0326   -0.0173   0.0459   0.3181*** 

(0.0214)  (0.0210)  (0.0288)  (0.1061) 

_t-1 

 

0.0206  0.0365***  -0.0031  0.2248*** 

(0.0128)  (0.0123)  (0.0435)  (0.0862) 

_t-2 

 

0.0249*  0.0298**  0.0476  0.1570 

(0.0132)  (0.0143)  (0.0427)  (0.0989) 

_t-3 

 

0.0204**  -0.0006  0.0199  0.1146 

(0.0101)  (0.0098)  (0.0382)  (0.1111) 

_t-4 

 

-0.0037  -0.0287***  0.0020  0.0977 

(0.0109)  (0.0098)  (0.0328)  (0.1099) 

_t-5 

 

-0.0444***  -0.0388***  -0.0593*  0.1061 

(0.0122)  (0.0125)  (0.0357)  (0.0938) 

_t-6 

 

-0.0842***  -0.0256**  -0.1250*  0.1400* 

(0.0194)  (0.0123)  (0.0661)  (0.0723) 

_t-7 

 

-0.0920***  0.0057  -0.0404  0.1994** 

(0.0275)  (0.0126)  (0.0652)  (0.0831) 

_t-8 

 

-0.0221  0.0396**  -0.0501  0.2841* 

(0.0218)  (0.0167)  (0.0677)  (0.1494) 

_t-9 

 

0.1850***  0.0498***  0.1999***  0.3943 

(0.0403)  (0.0167)  (0.0560)  (0.2506) 

Total lag multipliers 

 

0.0370*  0.0503**  0.0375*  2.0362*** 

(0.0226)  (0.0232)  (0.0218)  (0.4669) 

Mean lag 6.3400  5.0117  6.2293  4.8431 

FTEs (t_6) 

 

0.0116***   0.0102***   0.0121***   
     — 

(0.0019)  (0.0019)  (0.0019)  

Equipment (2)6 

 

0.1049**  0.1627***  0.1171**  -0.0123 

(0.0530)  (0.0505)  (0.0571)  (0.0608) 

Cons 

 

-1.0137***   -0.9856***   -1.0507***   6.0247*** 

(0.1111)   (0.1122)   (0.1136)   (1.3813) 

AIC7 4922.8   4936.5   4928.8   1025.4 

SBIC7 4959.4  4968.5  4988.3  1041.6 

log-likelihood -2453.4  -2461.2  -2451.4  -508.7 

Obs 720  720  720  427 

Group 48   48   48   41 

Note: 1. k is the length of lags and m is the degree of polynomial, 2. Ordinary distributed lag or ad-hoc model, not PDL,  

3. Unrestricted PDL model, 4. End-point restriction PDL model (k+1=0), 5. Output per unit of FTE with PDL model, 6. Window 

width is two, 7. Akaike Information Criterion and Schwarz' Bayesian Information Criterion. *** at 1%, ** at 5%, and * at 10% 

level of statistically significant. Parentheses are staŶdard errors, but ŵodel 4 has White’s robust staŶdard errors 
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The total lag multipliers, reflecting the total or long-run impact of research expenditures, 

indicate they have a positive impact on the current collaboration count, with at least a 10 percent 

level of statistical significance across all four models. Mean lags in each model can be interpreted 

to represent the average lag between effective inputs and the measured output, or the so-called 

gestation period. These values show that changes in research expenditures seem to affect 

collaboration activities 6.34 years later in model 1: similarly, 5.011 years later model 2; 6.23 years 

in model 3; and 4.84 years in model 4.  The lags here are two or three years longer than those 

observed in the publications equations and similar to the years observed with doctoral degree 

awards equations. 

The number of FTEs, lagged 6 years, impacts the current collaboration index, at the 1 percent 

level of confidence, in models 1 to 3. Ceteris paribus, for every one unit increase in FTEs, the log 

of the collaboration index six years later increases by 0.0116 in model 1, by 0.0102 in model 2, 

and by 0.0121 in model 3. This may reflect that growth in the number of researchers in a 

department will, over time, expand capacity or opportunities for diversification by members of 

that department into engagement with industry. 

The two-year moving window of the value of research equipment acquisitions has a positive 

and statistically significant relationship, at the 5 percent level, with the collaboration index. 

Interestingly, the magnitude of the estimated slope coefficient for equipment acquisitions is much 

higher than those of other input variables in these models. This might reflect that collaborative 

research is often associated with specific laboratory and engineering equipment. In general, we 

find that in the publication models and the doctoral degree award models, the magnitudes of the 

parameter estimates on the equipment variable are much smaller than in the collaboration models 

and the tech transfer models. 
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Table 8―Negative binomial incident rate ratio (IRR): Collaboration count 
Incident Rate Ratio (IRR): Collaboration count (1989-2012) 

  

Unrestricted 

PDL (k=9, m=4) 
  

Restricted PDL 

(k=9, m=4) 
  ODL (k=9) 

[1]   [2]   [3] 

Expenditures (t-0) 1.0331   0.9828   1.0470 

_t-1 1.0208  1.0372***  0.9969 

_t-2 1.0252*  1.0302**  1.0487 

_t-3 1.0206**  0.9994  1.0201 

_t-4 0.9963  0.9717***  1.0020 

_t-5 0.9566***  0.9619***  0.9425* 

_t-6 0.9192***  0.9747**  0.8825* 

_t-7 0.9121***  1.0057  0.9604 

_t-8 0.9781  1.0404**  0.9512 

_t-9 1.2032***  1.0511***  1.2213*** 

Total lag multipliers 1.0377*  1.0516**  1.0382* 

FTEs (t_6) 1.0116***   1.0102***   1.0121*** 

Equipment (2) 1.1106**  1.1767***  1.1242** 

 

Table 8 shows the incident rate ratio (IRR) of the collaboration index models, derived from 

Table 7 by taking the exponents of the slope coefficients. These show us that, for example, in 

model 1, ceteris paribus, for every one percent increase in research expenditures, the log count of 

the collaboration index after a two year lag will be increased by 2.52 percent, with 90 percent 

confidence and after a three year lag will be increased by 2.06 percent with 99 percent confidence.  

However, research expenditures tend to have a decreasing effect on the collaboration index, 

lagged four to eight years. As discussed above, this negative relationship between research 

expenditures and the collaboration index may represent either a search cost, reliance on industry 

collaboration as an alternative when public funding sources are lacking, or a crowding out of 

industry collaboration by publicly funded research, over the time period 4 to 8 years earlier. Ceteris 

paribus, for every one percent increase in research expenditures over this time period, the 

collaboration index will be subsequently decreased by approximately 23.7%. 
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4. Estimating Output of Combined Tech Transfer Metrics 

In terms of university knowledge dissemination and impact, traditional collaborations, as 

introduced in the previous section, have limited scope of activities, subject to constraints such as 

geographical proximity, non-divisibility of time and persons, higher transaction costs, informality, 

strategic and political considerations, and so on, even though they represent one of the major 

knowledge dissemination channels available in the university research context. Alternatively, 

patenting and licensing, and the creation of startup companies, represent a more recently 

emphasized mode of dissemination and impact, which, as such, have received much attention and 

analysis, particularly regarding the role and use of intellectual property rights (IPRs) in the 

commercialization of university knowledge. However, these IPR-mediated technology transfer 

activities, when compared with the other knowledge dissemination channels of the university, are 

still a minor mechanism. Yet, it may have potential for growth as a mechanism for managing 

knowledge outputs and as well as generating revenues for the university in the future.  

In this section, we estimate CSU’s production of research outputs disseminated via such tech 

transfer activities, using the same empirical regression models and methodology employed in the 

previous sections for research outputs disseminated via the public domain and research outputs 

disseminated via collaboration, even though the overall magnitude of tech transfer activities is 

considerably smaller.  

CSU’s total invention disclosures from 1989 to 2012 was 1,564, and of these 488 were made 

by the College of Engineering and 455 were from the College Veterinary Medicine. Thus, overall, 

60 percent came from just these two colleges. At the department level, the Department of Electrical 

and Computer Engineering has the highest count of invention disclosures, at 229. Following the 

disclosure of an invention comes the decision to make a patent application. The university’s total 
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count of patent applications filed and on which patents were granted were 195 from 1989 to 2012. 

The College of Engineering, College Veterinary Medicine, and College of Natural Sciences 

accounted for 69, 58, and 49 patent filings, respectively. The university’s total count of startup 

companies was 41 from 1989 to 2012.  

 
Figure 17―Frequency of invention disclosures and patent filings at 24 years overall, 

(1989-2012) 
 

In the empirical model, which considers invention disclosures, patent filings, and startups made 

by each department each year, these three variables have very few observations (often zero, or just 

one or two inventions by department per year), as shown in Figure 17. Thus, these variables cannot 

be estimated without a zero inflated count model regression procedure. Another possibility is to 

create a linear combination of these three variables into a single variable. This, in turn, may 

introduce multi-counting of single inventions. The typical technology transfer process can consist 

of invention disclosures, patent applications, issued patents, licensing contracts, and even startup 

companies, all around a single invention. Although, it might be interpreted that a linear 

combination of the three count variables thus gives more weight to those inventions that proceed 

further through the typical technology transfer process. 
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Equation (24) represents the combined variable, which we call the tech transfer metrics (TTM) 

index, which consists of the sum of invention disclosures (invention), patent applications & granted 

patents, (patent), and the number of startup companies by CSU inventors, (startups), for 

department i in time period t. 

 , , , ,i t i t i t i tTTM invension patent startups          (24) 

As shown Table 9, we run four different models, the same as we have done for the other 

research output models in previous sections. All three PDL models have greater statistical 

significance and better goodness of fit than the ODL model. In model 1, the unrestricted PDL has 

positive and significant lag coefficients of research expenditures from the current year to the 4th 

lagged year. Similarly, model 2, the endpoint restricted PDL (k+1=0), shows positive and 

significant impacts of research expenditures from the current year through year 3, but this model 

also has a longer period of zero or negative relationships between research expenditures and tech 

transfer activities, from lagged years 4 to 9.  

According to Heher (2007), the tech transfer process typically takes six to ten years from the 

moment of invention disclosure to the time when significant income can be generated from a 

license. In this regard, the negative relationship with research expenditures over longer time 

periods could be connected with the gestational or provisional periods of innovation, proof of 

concepts, and such. It also may be an artifact of the data: as before a major restructuring in the 

university’s tech transfer office in 2007, invention disclosures, patent filings, and startups were 

relatively quiet, even though research expenditures had been growing rapidly. After 2007 the 

positive relationship may have been restored. The possibility of a structural break in this 

relationship is explored further below.  
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Table 9―Regression results: Combined tech transfer metrics at the department level, (1989-
2012) 

Combined Tech Transfer Metrics (1989-2012) 

 

Unrestricted PDL3 

(k=9, m=2)1 
  

Restricted PDL4 

(k=9, m=2)1 
  ODL2 (k=9)1   

Effective 

labor PDL5 

(k=9, m=2)1 

[1]   [2]   [3]   [4] 

Negative Binomial YES  YES  YES  NO 

Fixed Effect YES  YES  YES  YES 

Expenditures (t-0) 
0.0414**   0.0470***   0.0766**   0.0326 

(0.0179)  (0.0177)  (0.0385)  (0.1476) 

_t-1 

 

0.0415***  0.0303***  -0.0240  0.2075** 

(0.0112)  (0.0103)  (0.0591)  (0.0939) 

_t-2 

 

0.0380***  0.0162***  0.1021*  0.3263*** 

(0.0102)  (0.0046)  (0.0609)  (0.0786) 

_t-3 

 

0.0308***  0.0049*  -0.0716  0.3891*** 

(0.0114)  (0.0029)  (0.0599)  (0.0877) 

_t-4 

 

0.0200*  -0.0038  0.0994*  0.3958*** 

(0.0117)  (0.0055)  (0.0528)  (0.0964) 

_t-5 

 

0.0054  -0.0099  -0.0265  0.3463*** 

(0.0102)  (0.0076)  (0.0526)  (0.0956) 

_t-6 

 

-0.0128  -0.0132  0.0162  0.2408*** 

(0.0087)  (0.0086)  (0.0919)  (0.0867) 

_t-7 

 

-0.0347***  -0.0139*  -0.0082  0.0792 

(0.0120)  (0.0084)  (0.0898)  (0.0831) 

_t-8 

 

-0.0603***  -0.0120*  0.0412  -0.1385 

(0.0213)  (0.0069)  (0.0954)  (0.1094) 

_t-9 

 

-0.0896***  -0.0073*  -0.2206***  -0.4122** 

(0.0349)  (0.0041)  (0.0821)  (0.1719) 

Total lag multipliers 

 

-0.0203  0.0381*  -0.0155  1.4670*** 

(0.0325)  (0.0227)  (0.0352)  (0.3735) 

Mean lag 5.1411  5.1520  5.0149  4.7344 

FTEs (t_6) 

 

0.0071**   0.0053*   0.0076**   
     ― 

(0.0032)  (0.0032)  (0.0035)  

Equipment (2) 

 

0.1365**  0.1260*  0.1609**  -0.0491 

(0.0683)  (0.0704)  (0.0769)  (0.0410) 

Cons 

 

0.0896   0.0679   0.0041   0.7170 

(0.2963)   (0.2948)   (0.3143)   (1.1022) 

AIC 1351.7   1355.3   1359.3   480.9 

SBIC 1377.9  1377.1  1416.1  495.2 

log-likelihood -669.8  -672.6  -667.0  -236.5 

Obs 585  585  585  260 

Group 39   39   39   33 

Note: 1. k is the length of lags and m is the degree of polynomial, 2. Ordinary distributed lag or ad-hoc model, not PDL,  

3. Unrestricted PDL model, 4. End-point restriction PDL model (k+1=0), 5. Output per unit of FTE with PDL model, 6. Window 

width is two, 7. Akaike Information Criterion and Schwarz' Bayesian Information Criterion. *** at 1%, ** at 5%, and * at 10% 

level of statistically significant. Parentheses are staŶdard errors, but ŵodel 4 has White’s robust staŶdard errors 
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Overall, the total or long-run impact of research expenditures on the tech transfer metric is not 

significant in models 1 & 3, but it is positive and significant in models 2 & 4. Mean lags indicate 

that the average lag time between research expenditures and the observation of an invention 

disclosure or other tech transfer event is 5.14 years in model 1: similarly, 5.15 years in model 2; 

5.01 years in model 3; and 4.73 years in model 4. These time periods seem to be shorter than those 

calculated by Heher, but his measure includes the time required to realize positive royalty incomes, 

which typically involves a significantly longer wait. In Heher’s result, the average time between 

the invention disclosure and final patent granted is 6 years, which is sufficiently close to the mean 

lag estimates here. 

The human capital input variable, research FTEs, lagged 6 years, is also found to affect the 

combined tech transfer metric index positively, with a 5 percent level of statistical significance in 

models 1 & 3, and a 10 percent level of significance in model 2. This time lag of the influence of 

changes in the size of a department’s research FTEs on its combined tech transfer metrics index 

value is similar to the time lag of its influences on the collaboration index in the previous section. 

Whether in the more traditional or the newer mode of knowledge transfer to industry, the timing 

of impact from increases in FTEs are similar.  

The physical capital input variable, a two year moving average of the value of research 

equipment acquisitions, is significant in all except model 4, and it has a much higher magnitude 

of the estimated coefficient than do the other input variables. Again, this result is very similar to 

the results in the collaboration index model, in the previous section. Therefore, it appears that 

research equipment is important to the kinds of research that lead to both our measures of 

collaboration index and the combined tech transfer metrics. 
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Table 10 displays the incident rate ratio (IRR) of the tech transfer models. Model 1 indicates 

that, ceteris paribus, for every one percent increase in research expenditures, the log of the 

combined tech transfer metrics index is expected to increase by approximately 4.22 percent, 

similarly the log of tech transfer outputs increase by 4.24 percent from an increase of research 

expenditures lagged 1 year, by 3.88 percent from an increase in research expenditures lagged 2 

years, by 3.31 percent, from an increase in expenditures lagged 3 years, and by 2.02 percent from 

an increase lagged 4 years. Model 1 has an (insignificant) negative long-run relationship of 

research expenditures to tech transfer metrics, but model 2 indicates the opposite. 

Table 10―Negative binomial incident rate ratio (IRR): Combined tech transfer metrics 
Incident Rate Ratio (IRR): Combined Tech Transfer Metrics (1989-2012) 

 

Unrestricted PDL 

(k=9, m=2) 
 

Restricted PDL 

(k=9, m=2) 
 ODL (k=9) 

[1]   [2]   [3] 

Expenditures (t-0) 1.0422**   1.0481***   1.0797** 

_t-1 1.0424***  1.0307***  0.9763 

_t-2 1.0388***  1.0164***  1.1075* 

_t-3 1.0313***  1.0049*  0.9309 

_t-4 1.0202*  0.9962  1.1045* 

_t-5 1.0054  0.9902  0.9738 

_t-6 0.9873  0.9868  1.0163 

_t-7 0.9659***  0.9862*  0.9918 

_t-8 0.9415***  0.9881*  1.0421 

_t-9 0.9143***  0.9927*  0.8020*** 

Total lag multipliers 0.9799  1.0389*  0.9847 

FTEs (t_6) 1.0071**   1.0053*   1.0076** 

Equipment (2) 1.1463**   1.1343*   1.1746** 

 

5. Returns to scale and long-run productivity 

In this section, we consider the university’s research productivity, across the different 

knowledge dissemination channels in the long-run. In the production of knowledge measured by 

published journal articles, the interpretation of estimated slope coefficients in the effective labor 

or log-log PDL model (model 4 in Table 3) are marginal effects directly, due to the logarithm of 
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the Cobb-Douglas production function. They also represent output elasticities with respect to each 

lagged value of research expenditures. In the previous section, it was hypothesized that university 

knowledge production should exhibit decreasing returns to scale, which would mean the sum of 

all estimated slope coefficients in this model equals one in absolute value, but in the estimates of 

the model, is 0.9349, or slightly below one, which indicates instead “very slightly” decreasing 

returns to scale (DRTS) in the publications output model. We expect that publications have 

significant public good attributes and represent the most basic knowledge output within the 

university. Therefore, it is more closely associated with classical production theory’s production 

function with the law of diminishing marginal returns.  

In the production of knowledge measured by doctoral degree awards, the sum of estimated 

slope coefficients (in model 4 in Table 5) is 0.0458; as it is below one that can be interpreted to 

indicate decreasing returns to scale.  As in the case of publication (see model 4 in Table 3), doctoral 

degree awards are understood to be a proxy for a kind of knowledge output that has public-good 

attributes; the result of doctoral research is, predominantly, one of the basic knowledge outputs 

within the university context. However, the results of long-run productivity in the publication and 

doctoral degree awards are different each other even though they exhibit decreasing returns to 

scales with respect to all input variables, as is consistent with classical production theory. The 

doctoral degree awards have a much lower productivity in the long-run than the publications, 

because of the different characteristics. The doctoral degree awards are more likely to be close to 

the educational mission in the university, so it is distinguished from the general research outputs.  

In contrast, the sum of all the estimated slope coefficients in the effective labor model of the 

collaboration index (in model 4 in Table 7) is 2.023, which is interpreted as indicating that the 

collaborative types of research outputs exhibit increasing returns to scale with respect to all input 
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variables. Similarly, Model 4 in the regressions (Table 9) shows that, similarly, the combined tech 

transfer metrics index per FTE increases significantly from greater research expenditures per FTEs 

in the time periods one to six years earlier. Again, the sum of all slope coefficients, at 1.4179, is 

greater than one, indicating increasing returns to scale. Generally interpreted this means that a 

doubling in R&D spending would lead to more than a doubling of the tech transfer outputs, and, 

thus in long-run, it exhibits an economies of scale.  

In terms of production of knowledge associated with inventions and innovations, the 

assessment of productivity is complicated, especially in an empirical study, because of prior 

conditions and variation in propensity to patent across different technologies and fields. However, 

the result of increasing returns to scale is still meaningful in the knowledge production. Another 

possibility of the results of increasing returns to scale in the collaboration and formal tech transfer 

outputs might be an empirical bias introduced from the linear combination of different proxy 

variables or the related skewed distribution of observations across the different departments and 

research units. Nevertheless, it is important that we test the hypothesis, that in the long-run, the 

productivity of university knowledge production is varied across the different types of knowledge 

dissemination channels. Our findings indicate that the publication and doctoral degree award 

models of knowledge disseminated via the public domain mechanism exhibit diminishing returns 

to scale with respect to all input variables. Meanwhile, the collaboration and tech transfer models 

exhibit increasing returns to scale of knowledge production. 

C. System of Equation Model Results  

So far, we have assumed that the different types of knowledge creation are independent of one 

another. However, it is certainly reasonable to assume that the various types of research outputs 

are interrelated as co-products of the underlying knowledge production efforts of the university. 
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Moreover, if the error terms among the models of different types of research outputs are correlated 

for a given department, but are uncorrelated across departments, we cannot derive efficient and 

best linear unbiased estimators from independent regression models of each research output, as we 

have attempted in the previous sections. A better approach is a seemingly unrelated regression 

(SUR) model (Zellner, 1962), a system of linear equations that consists of j linear regression 

equations for i departments and t time periods.  

In the previous sections, we utilized four sets of independent regression models, one each for 

publications, doctoral degree awards, collaborative outputs, and tech transfer metrics, but in this 

section, we use only three output measures--publications, the collaboration index, and the 

combined tech transfer metrics--within a system of equations. Moreover, because of the non-linear 

regression22, we use the effective labor model, a log-log PDL model with White’s robust standard 

errors. Equation (25) represents a matrix version of the seemingly unrelated regression with group 

fixed effect panel polynomial distributed lag (PDL) model for department i and time period t, and 

equation (26) is a compact version of the matrix:  
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    (25) 

  Y X B E       (26) 

Where the third subscript represents the output type: 1=publication, 2=collaboration, and 3= 

tech transfer. y is a logarithm of the respective research output per unit of labor (per research FTE), 

                                                 
22 There exists a non-linear SUR model technically, see Winkelmann (2000). 
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r is the logarithm of research expenditures per unit of labor (per research FTE), and eq is the 

logarithm of the two year moving window of value of research equipment acquisitions per unit of 

labor (per research FTE). iu  is a time-invariant error term and ,i te  is a group and time-variant 

idiosyncratic error term for each equation. Y is 3×1 matrix that consists of a 3×12 matrix of 

regressors included in a constant term,X , a 12×1 matrix of coefficients, B , and a 3×1 matrix of 

error terms,E . 0  to k  are slope coefficients of the calculated and recovered lag scheme of the 

polynomial distributed lag (PDL) model with lag length k and degree m. (For more detail, see 

Section III.)  

Table 11 presents regression results of the estimated SUR model, with bootstrapped standard 

errors, that consists of four different sets of equations at the department level from 1989 to 2012 

as well as polynomial distributed lag (PDL) slope coefficients of research expenditures. First is a 

system of (1) research publications and (2) the collaboration index as measures of output; second 

is a system of (1) research publications and (3) the combined tech transfer metrics as measures of 

output; third is (2) the collaboration index and (3) combined tech transfer metrics; and fourth is 

the system of all three together, (1), (2), and (3). 

First, considering the research publications regression without considering correlations of the 

residuals, it is evident that the magnitude of estimated slope coefficients in model 1 in Table 11 

are larger and their standard errors are smaller than in model 2 and 4. However, all three SUR 

models that include publications indicate a negative impact in the last lagged year of research 

expenditures, comparable to some of the results of the independent regression models in the 

previous section. In general, comparing between the independent regression models and the three 

SUR models that include publications as a research output, there are no notable changes or 

surprises.  
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Table 11―The regression results of SUR model with PDL of research expenditures at department level, (1989-2012) 
System of Equations: Seemingly Unrelated Regression PDL (1989-2012) 

 [1]  [2]  [3]  [4] 

  

Publications 

(k=6, m=2)1 

Collaboratio

n Index 

 (k=9, m=2)1 

  

Publication 

(k=6, 

m=2)1 

Tech 

Transfer 

Metrics  

(k=9, m=2)1 

  

Collaboratio

n Index 

 (k=9, m=2)1 

Tech 

Transfer 

Metrics  

(k=9, m=2)1 

  
Publications 

(k=6, m=2)1 

Collaboratio

n Index 

 (k=9, m=2)1 

Tech 

Transfer 

Metrics  

(k=9, m=2)1 

Width of Equip2 3 5  3 4  5 4  3 5 4 

Expend (t_0) 0.1039* 0.3180***   0.1710* 0.0359   0.3621* 0.0149   0.1569** 0.3641* 0.0192 

(0.0594) (0.1141)  (0.0878) (0.2679)  (0.1981) (0.1680)  (0.0737) (0.1986) (0.1683) 

   t_1 0.1827*** 0.2253***  0.1741*** 0.2142  0.1893 0.1960*  0.1897*** 0.1935 0.2051* 

(0.0306) (0.0768)  (0.0495) (0.1877)  (0.1222) (0.1084)  (0.0451) (0.1229) (0.1098) 

   t_2 0.2157*** 0.1579*  0.1629*** 0.3347**  0.0686 0.3206***  0.1910*** 0.0740 0.3321*** 

(0.0465) (0.0862)  (0.0499) (0.1396)  (0.1073) (0.0894)  (0.0607) (0.1079) (0.0911) 

   t_3 0.2030*** 0.1157  0.1376*** 0.3975***  0.0000 0.3886***  0.1608** 0.0055 0.4002*** 

(0.0528) (0.1026)  (0.0511) (0.1202)  (0.1225) (0.0959)  (0.0672) (0.1231) (0.0969) 

   t_4 0.1444*** 0.0987  0.0980** 0.4025***  -0.0164 0.4000***  0.0990* -0.0120 0.4095*** 

(0.0420) (0.1058)  (0.0471) (0.1152)  (0.1303) (0.1018)  (0.0576) (0.1309) (0.1022) 

   t_5 0.0402 0.1071  0.0441 0.3499***  0.0192 0.3548***  0.0056 0.0216 0.3598*** 

(0.0387) (0.0922)  (0.0731) (0.1111)  (0.1205) (0.0965)  (0.0596) (0.1210) (0.0967) 

   t_6 -0.1099 0.1406**  -0.0239 0.2395**  0.1070 0.2530***  -0.1193 0.1062 0.2513*** 

(0.0883) (0.0681)  (0.1437) (0.1059)  (0.1013) (0.0820)  (0.1155) (0.1007) (0.0825) 

   t_7 ― 
0.1994***  ― 

0.0714  0.2469** 0.0947  ― 
0.2419** 0.0839 

(0.0697)  (0.1125)  (0.1110) (0.0779)  (0.1076) (0.0794) 

   t_8 ― 
0.2835**  ― 

-0.1544  0.4389** -0.1203  ― 
0.4286** -0.1424 

(0.1323)  (0.1503)  (0.1854) (0.1168)  (0.1800) (0.1189) 

   t_9 ― 
0.3928*  ― 

-0.4379  0.6831** -0.3918**  ― 
0.6663** -0.4276** 

(0.2324)  (0.2241)  (0.3091) (0.1964)  (0.3024) (0.1984) 

Equipment 0.0274 -0.0127  0.0577 -0.0465  -0.0162 -0.0421  0.0616 -0.0145 -0.0383 

(0.0242) (0.0539)  (0.0441) (0.0602)  (0.0807) (0.0548)  (0.0389) (0.0796) (0.0539) 

cons 2.0269*** 5.9367***  2.3217*** 0.8504  7.4098*** 1.0913  2.0684*** 7.3840*** 1.0361 

(0.3427) (1.0779)  (0.6285) (1.4448)  (1.3881) (1.0427)  (0.5759) (1.3595) (1.0516) 

R-sq 0.8054 0.5397   0.7196 0.5274   0.6073 0.5313   0.6977 0.6073 0.5313 

Chi2 
1763.28 499.51  667.47 290.59  383.49 281.17  573.14 383.06 281.66 

(0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000) (0.0000) 

Obs 426 426   260 260   248 248   248 248 248 

Note: 1. k is lag length and m is degree of polynomial, 2. Window width.  All models are unrestricted PDL. .*** at 1%, ** at 5%, and * at 10% level. Parentheses are Bootstrap 
standard errors.
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The SUR models indicate a lower returns to scale than the independent model, even though all 

still evidence diminishing returns to scale. This is consistent with the idea that publications as a 

research output are the most fundamental knowledge product, widely generated across all of the 

departments and research units of the university. 

Second, considering the collaboration index as a measure of research output, without 

considering correlations of residuals for the moment, we see that the regression results of model 1 

in Table 11 are similar to the independent models in the previous section; however, the 

collaboration index results in models 3 and model 4, including it in systems with the combined 

tech transfer metrics and with all other research outputs, respectively, are significantly different 

from the results of the independent models, including smaller slope coefficients and larger standard 

errors as well as differences in the statistical significance and the signs of each coefficient.  

These results might be due to the characteristics of tradition collaborations between university 

and private sectors, in that there are many kinds of informal relationships and most of them are not 

measured here. We speculate that industry collaborations may be complements, or preliminary 

activities leading to other research outputs involving private sector partners in those research 

activities picked up in the combined tech transfer metrics. 

Finally, looking at the combined tech transfer metrics models, without considering correlations 

of residuals, we see that the statistical significance of models 3 and 4 in Table 11 are somewhat 

better than model 2. Moreover, the magnitudes and signs of the slope coefficients of the SUR 

models are quite similar to those in the independent regression models in the previous section. 

This research output was infrequently occurring relative to the other research outputs within each 

of the respective systems of equations. Thus, we expect that although the tech transfer outputs—

which consist of invention disclosures, patent applications, granted or issued patents, and startup 
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companies—are still at an early stage of development and smaller than other research outputs, 

seem to have potential as a channel of knowledge dissemination in the university.  

 
Figure 18―Comparison of estimated slope coefficients of three research outputs in 

model 4 

 
Figure 18 represents the comparison of estimated slope coefficients of lagged research 

expenditures from the full system of equations, model 4 in Table 11. As shown in the figure, 

publications and combined tech transfer metrics have similar patterns of slope coefficients across 

lagged research expenditures, each following an inverted U-shape or “projectile” trajectory. In 

contrast, the pattern of coefficients on lagged research expenditures for the collaboration index 

equation shows a U-shape. From the figure, we can interpret that, holding the degree of polynomial 

constant, publications and combined tech transfer metrics as research outputs have a maximum 

impact, in terms of time lagged research expenditures per FTE, between the second and fourth 
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year, respectively, after research expenditures, but the collaboration index exhibits a minimum in 

terms of impact from research expenditures made within roughly the same lagged time frame.  

Moreover, interestingly, the minimum impact of lagged research expenditures on the 

collaboration index corresponds exactly to the maximum impact of lagged research expenditures 

on the combined tech transfer metrics, which may indicate that more traditional mechanisms of 

collaboration and newer tech transfer mechanisms have a substitutional relationship, at least within 

the time period of this analysis. In other words, department i’s research expenditures are tending 

to result in tech transfer outputs rather than the more traditional collaboration activities. 

Table 12―The test results of correlation of residuals 

  

Publications & 

collaboration 

index 

  

Publications & 

Combined tech 

transfer metrics 

  

Collaboration 

index & Combined 

tech transfer 

metrics 

  All research outputs 

 [1]  [2]  [3]  [4] 

Correlation of 

residuals 
-0.0041 

  

0.0599 

  

-0.0662 

  0.0336 for pub&coll1 

   0.0824 for pub&ttm2 

   -0.0662 for coll&ttm3 

Breusch-Pagan 

test of 

independence 

chi2(1)=0.007 

(0.9333) 

  

chi2(1)= 0.932 

(0.3344) 

  

chi2(1)=1.087 

(0.2971) 

  

chi2(3)=3.052 

(0.3837) 

Note: 1. Correlation of residuals between publications & collaboration index,  2. Correlation of residuals between publications 

& combined tech transfer metrics,  3. Correlation of residuals between collaboration index & combined tech transfer metrics.  

The Parentheses are p-values. 

 

Finally, Table 12 displays the correlation of residuals in each system of equations model. In 

model 1, correlation between the errors in the two equations of publications and the collaboration 

index is -0.0041, and the Breusch-Pagan Lagrange multiplier test for error independence indicates 

this is not significantly different from 0. In other words, there is no significant correlation. Model 

2 indicates a slightly positive, but insignificant correlation; and model 3, a slightly negative, but 

insignificant correlation. Model 4, the system of all three research output equations, has positive 
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correlation of the residuals between publications and the collaboration index, in contrast to model 

1, but the other two combinations of research outputs have correlations in the same directions as 

the comparable models 2 and 3, respectively.  

Therefore, we reject the null hypothesis that the different types of research outputs are related 

with each other and their error terms are correlated. Instead it is appropriate to estimate 

independent regressions for each research output. However, without considering the correlation of 

residuals in SUR models, it would not be possible to support the intuitions and results we consider 

in the overall results and conclusions of this chapter. 

D. Structural Changes 

Panel data is based on both time series and cross sectional data. In time series data, there can 

be structural changes in the relationship between the dependent variable, in this case the research 

output, and one or more of the independent variables, in this case the research inputs. By structural 

change, we mean that the value of the parameters of the model do not remain the same through the 

entire time period, from 1989 to 2012. Structural change can occur at some point in time as a result 

of changes in policy, consumer preferences, new institutions and technical systems, or some other 

external shock. In particular, we want to test for structural changes in the model around the time 

of the creation of CSU Ventures as the technology transfer office (TTO) for Colorado State 

University.  

In 1963, Colorado State University Research Foundation (CSURF) was officially established 

as an independent non-profit entity to hold and manage certain capital assets on behalf of the 

university, which, in time, came to include management of intellectual property arising from 

inventions made at the university. In a major restructuring of the technology transfer operations of 

CSURF in 2007, CSU Ventures was founded as a wholly-owned subsidiary of CSURF. Since CSU 
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Ventures specializes in the commercialization of university inventions, including the management 

of patenting and licensing, as well as the launch of startups, we want to test only the combined 

tech transfer metrics research output variable, which consists of the combination of the department 

level count of invention disclosures, patent applications and granted patents, and startup companies 

founded.  

 
Figure 19―The time trend of the combined tech transfer metrics at CSU overall, 

(1989-2012) 

 
In our database, the total sum of these combined tech transfer metrics is 1,779 for the entire 

university from 1989 to 2012. (For more detail, see Section IV). However, in the time period 

following the creation of CSU Ventures, 2008-2012, the total count was 792, which is about 45 

percent of total tech transfer activities in just five years or 21 percent of the total time period 

covered in this study, 1989-2012.  
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Figure 19 shows the time trend of the combined tech transfer metrics at CSU overall from 1989 

to 2012. There was a remarkable increase of combined tech transfer metrics after 2007. However, 

the explanation for this increase is not only the foundation of the new tech transfer office (TTO), 

but it may also represent the cumulative effects from previous research as well as tech transfer 

activities. Nevertheless, it is important to test a structural change because of the enormous changes 

that occurred in 2007 and persist for all of the years thereafter.  

The Chow test is the most commonly used technique for the analysis of structural changes, and 

is generally used for testing for a structural change of known timing. There are two different 

methods of Chow test for the structural change: one is a sum of squared error prediction and 

another is a dummy variable model. Most statistic software packages can generate both test 

methods. We want to test two different time periods, the pre-period 1989-2006, and the post-period 

of 2007-2012, and assume that CSU Ventures significantly affects the number of university 

invention disclosures, patent applications & published or granted patents, and startup companies 

during 2007 to 2012.  

Using a Chow test based on the dummy variable method we adopt a log-log PDL model with 

White’s robust standard errors, with the combined tech transfer metric research output per research 

FTE as a function of research expenditures per research FTE, following a PDL scheme and a two-

year moving-window average of the value of research equipment acquisitions per research FTE, 

as in Section IV-A-4. Equation (27) shows the structural changes in the knowledge production 

function with group fixed effects and a polynomial distributed lag scheme of research expenditures, 
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where D is a dummy variable with a value of zero for years 1989 through 2006 and a value of one 

for years 2007 through 2012. 

Running the regression, we assume a null hypothesis of no structural change between 2007 

and 2012 and an alternative hypothesis that not all the dummy variable coefficients are zero. If the 

critical values of the F-distribution are smaller than the F-statistic values from the hypothesis test, 

within a 1 or 5 percent level of statistically significance, we can reject the null hypothesis. If 

otherwise, we must accept the null of no structural break in the data. 

Table 13―The results of Chow test for the structural change after 2007 on the tech transfer 
metrics model at the department level, (1989-2012) 

 Chow Test 

  

Sum of squared 

errors of 

prediction 

Dummy variable 

of prediction 

F-statistics 8.4657 8.6402 

p-value 0.0001 0.0001 

Group* 33 33 

 

Table 13 shows Chow test results for the structural changes after 2007 on the combined tech 

transfer metrics at the department level from 1989 to 2012. The result displays the values of F-

statistics are greater than the critical value, so we can reject the null hypothesis at 1 percent level 

of statistical significance. This is strong evidence of a structural change in the relationship between 

the combined tech transfer activities and the independent variables measuring research inputs after 

2007. 

VI. Discussion 

A. Knowledge Production Based on the Theory of Classical Production 

In classical production theory, the principal goal of a firm, farmer, or other type of producer is 

to maximize the difference between the costs and the revenues from turning inputs into outputs, 
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and the production function describes the quantitative relationship by which they turn inputs into 

outputs. The production function of a rational profit maximizing producer necessarily exhibits 

certain characteristics, such as non-negativity, weak essentiality, non-decreasing in input variables, 

and concavity. Several key concepts or measures used to describe production decision-making are 

marginal productivity, the scale of production, and elasticity. The knowledge production function 

is based on the same basic theories and assumptions. However, because knowledge is an intangible 

asset, which distinguishes it from the physical outputs of firms and farmers, not all of the typical 

production function characteristics and assumptions necessarily hold when describing the 

relationships between research inputs and outputs. Thus, the productivity of inputs with respect to 

research outputs—especially when measured by proxies such as publications or intellectual 

properties in both public and private research—varies due to the heterogeneous characteristics of 

the different types of research outputs and the different research environments across the colleges, 

departments, and research units of the university. 

In section IV, the functions describing the “production” of publications and doctoral degrees 

exhibit decreasing returns to scale, at 0.9349 and 0.0458, respectively with respect to all inputs, 

past research expenditures and the value of research equipment. However, the functions describing 

“production” of the other two research outputs, those measured by the collaboration index and the 

combined tech transfer metric, exhibit increasing returns to scale, at 2.0239 and 1.4179, 

respectively (See model 4 for the effective labor PDL in the regression results of each research 

output model.) In light of these results, publications and doctoral degree awards might be 

understood to conform more closely to the typical assumptions of the theory of classical production, 

specifically the law of diminishing marginal productivity, than do the other two types of research 

outputs. The publication model’s weighted average lag, which can be interpreted as the mean lag 
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between research project inception and completion, is two or three years, which is shorter than the 

lag estimated for the other research outputs. In other words, production of a publication, as the 

predominate research output in the university, is faster than that of other research outputs, even 

without considering factors related to productivity.  

Furthermore, with regard to lagged research expenditures in the effective labor PDL models, 

publications and combined tech transfer metrics have a concave production function, but the 

collaboration index has a convex production function, and doctoral degree award have a cubic 

production function. Thus, publications and tech transfer metrics have an estimated maximum 

point of impact among past research expenditures, but the collaboration index, on the other hand, 

has a minimum point; the doctoral degree award has both local minimum and local maximum 

points. One interpretations are that publications are the fundamental research output in the 

university while tech transfer represents are a newer channel of research output that, while it has a 

lot of potential for the future of research outcomes at the university, it is still in its early stages of 

implementations. In the long run, publications and tech transfer metrics are less elastic than is the 

collaboration index with respect to the past research expenditures. A possible interpretation is that, 

over the long run, conventional collaboration activities, such as collaborative R&D, informal 

conversations, consulting, co-supervising, and so on, are more sensitive to changes in research 

expenditures. This interpretation could be derived from the theories of classical production, in that 

publications and combined tech transfer metrics seem to have the attributes of “necessary goods” 

within the university.  

B. Knowledge Production in a Single Institutional Data versus an Aggregation Data 

According to Adams & Griliches (1998), in aggregated data research outputs exhibit constant 

returns to scale, but, they find, within individual universities, exhibit decreasing returns to scale, 
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which they interpret to be because data errors are more important at the single institution level and 

because research spillovers exists only at the aggregate level. In our database, however, the 

regression results partially follow the critique of Adams and Griliches, as the results seemed to 

ignore the heterogeneous characteristics of the different research outputs, as in the increasing 

returns to scale for the collaboration index and combined tech transfer metrics.  

Nevertheless, both advantages and disadvantages exist for the use of single institutional data. 

First, certain types of data are only available within the single institutional context, such as 

department level faculty extension budgets, collaborative contacts with industry, etc., which are 

rarely reported in aggregation datasets. Second, single institutional data makes it possible to 

investigate deeply within one institution or region, controlling for a host of exogenous 

characteristics by holding them relatively constant. These advantages therefore present the 

opportunity to unravel the university research system’s generally unobservable and inherent 

characteristics, the inner workings of its so-called black box, and their implications for knowledge 

spillovers.  

However, conclusions drawn from single institutional data may compromise findings’ 

generality relative to other institutions or to aggregate data, because each institution has its own 

idiosyncratic conditioning characteristics, including levels of research expenditures, management 

skills, administrative policies, and so on. Thus, these factors may inherently bias findings based 

on single institutional data. In the optimistic view, we still hope to open a meaningful debate using 

data and empirical results from a single university, CSU, which in future analyses can be compared 

or combined with other universities’ results. This makes it possible to discover the unobservable 

and heterogeneous research systems of different institutions, and eventually, their aggregation. 
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VII. Conclusion 

This chapter has analyzed research production and technology transfer activities of the 

academic departments of a large research university (Colorado State University) and introduced a 

novel empirical technique for estimating knowledge production functions. First, we have utilized 

four different knowledge production functions as an empirical regression model and adopted a 

group fixed effect of panel negative binomial MLE with polynomial distributed lag (PDL) or 

Almon scheme of past research expenditures. The results show that PDL models have more 

statistically significant estimated slope coefficients, better model specification, and smaller AIC 

and SBIC values than ad hoc or Koyck scheme models, especially of slope coefficients within the 

mid-range lagged years. It is important to emphasize that the PDL scheme may unravel the 

unobserved lag effects found in previous studies. With regard to considering important input 

variables that have rarely appeared in previous studies of knowledge production, both full-time 

equivalent (FTE) of researchers as a labor variable and value of research equipment as a fixed 

input variable make it possible to better connect with neo-classical production theory, and these 

input variables increase the statistical significance of estimators as the best linear unbiased 

estimators (BLUE). These help overcome model misspecification errors, especially omitted 

relevant variables, affecting previous studies estimating knowledge production functions.  

Further, an effective labor PDL model gives more intuitive results in this paper, having been 

adapted for investigating returns to scale of knowledge production, output elasticity, and the degree 

of co-production of outputs in a system of equations (SUR) model. The greatest advantage of this 

effective labor model is to control for the lag effects of the FTE variable, following the labor-

augmenting or Harrod-neutral approach, with knowledge and labor entering multiplicatively. 

Human knowledge capital is generally unmeasurable in the production function system.  



85 
 

Second, merely from the summary statistics, publications as a knowledge dissemination 

channel seem to be a more productive and common research output across departments and 

research units than other research outputs. Indeed, most colleges and departments report the 

number of published journal articles as their major research output each year. In this regard, our 

empirical results have shown that in the estimated models publications have a more systematic 

relationship with research inputs, as well as a shorter lag length with respect to research 

expenditures. The mean lag between research project inception and the output of publications is 

two or three years shorter than for the output of other types: lags are, on average, 2.66 years for 

publications; 5.32 years for doctoral degree awards; 5.61 years for collaboration outputs; and 5.01 

years for tech transfer outputs. Thus, the speed of output is fastest even without considering the 

quality of publications. 

Publications are more closely linked with the assumptions of classical production theory, 

including the law of diminishing marginal productivity, and are less elastic with respect to past 

research expenditures than are the other research outputs. In contrast, the collaboration and tech 

transfer outputs exhibit increasing returns to scale with respect to all inputs and are more elastic 

with respect to past research expenditures than publications. In the models estimating doctoral 

degree award, impacts are less significant in all models, especially the restricted PDL model. 

Besides, the FTE and value of equipment variables are insignificant in all of the models. Hence, 

there does not seem to be a systematic relationship between research inputs and doctoral degrees 

as an output. Doctoral degree awards may be more related to the education mission of the 

university, but not seem to be directly related to research outcomes. 

Third, we hypothesized co-production relationships among the different research outputs, 

expecting they would have a positive and significant correlation of residuals within departments 
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or research units. This hypothesis was tested by SUR system of equations among the different 

types of research outputs. The results suggest that conventional collaboration activities may be 

substitutional or ex ante activities to the other research outputs, especially the tech transfer outputs. 

Furthermore, by the results of SUR models, estimations of the production of tech transfer outputs 

and collaboration outputs have inverse patterns of estimated slope coefficients—concave and 

convex over time, respectively—and the maximum point of impact of past research expenditures 

on the combined tech transfer metrics exactly matches the minimum point of impact of past 

research expenditures in the collaboration index. 

Proceeding from what has been said above, it should be concluded that knowledge production 

and productivity in the university should rely on the heterogeneous characteristics of research 

outputs and research environments across the different departments and research units. Basic 

research outputs such as publications and doctoral degree awards are more closely connected with 

classical production theory, and publications and combined tech transfer metrics are the most 

primary research outputs in the departments and research units of the university. Furthermore, 

empirical model specifications, which should help to unravel the complex research system in the 

university, are also the central point of this chapter. Our proposed empirical models of the 

knowledge production function, a negative binomial MLE with both unrestricted and end-point 

restricted PDL models, and an effective labor PDL model, improve upon the statistical significance 

results of the relationship between research outputs and inputs, compared to previous studies. In 

general, further improvement upon the methods outlined may be fruitful particularly when 

combining multiple universities’ data or utilizing aggregate data.  
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CHAPTER 2. SCIENTIFIC TEAMS AS QUASI-FIRMS: A NEW FRAMEWORK FOR 

UNDERSTANDING THE AGENCY OF KNOWLEDGE PRODUCTION WITHIN THE 

UNIVERSITY CONTEXT 

I. Introduction 

In the knowledge economy or information society, a knowledge-based view of economic 

activity is increasingly central to understanding production of new products and processes, for 

guiding the strategic management of the firm, and even for pioneering new market systems. This 

new knowledge-based paradigm can also lead to new conceptions of economic structures 

involving social networks. According to Spender (1996), organizations based on knowledge are 

best characterized as enduring alliances between “independent knowledge-creating entities”. 

These independent entities—consisting of individuals or teams, together with tangible resources—

generally have attributes of a semi-autonomous organic system, but its specific attributes depend 

on the type of organization. If the organization has a more hierarchical structure and culture, the 

degree of autonomy of the knowledge-creating entities within the organization may be low and 

their identity more machine-like. However, if the organization has a more network structure and 

culture, the independent knowledge creating entities that comprise the organization may have a 

high degree of autonomy and a self-regulating system. The organization based dynamic and 

network types of knowledge creation have positive advantages: pooling heterogeneous intangible 

resources or assets, increasing the speed of technological innovation, reducing externalities, and 

managing uncertainty or risk, and so on. While this new conceptualization is deeply rooted in the 

ideas of 1990s of its basis reaches to the years before World War II (Powell, 1990; Spender, 1996; 

Latour, 1993; Bush, 1945; Schumpeter, 1942).  
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In recent years, exploration of the inner logic of academic operations in the research university 

have suggested a firm-like quality of research teams (Etzkowitz, 2003), similar in many respects 

to the “independent knowledge creating entities” of Spender (1996). This conceptualization of 

research groups or scientific teams as quasi-firms operating within the context of the research 

university suggests a new paradigm for study of the organizational formation and evolution of the 

research university. According to Wuchty et al (2007), the traditional university ethos emphasized 

the role of individual genius in scientific discovery, but in recent developments, most academic 

research has shifted from an individual model to a teamwork model.  

The study of university research teams is linked with the study of university knowledge 

production as well as university technology transfer. This approach views research project teams 

as the primary agents that contribute to new knowledge creation within the university, including 

potentially commercializable innovations, whether in the form of patented inventions or in the 

form of collaborative research projects conducted jointly with private sector industry partners. 

Project teams based in universities can have not only an interdisciplinary or inter-university 

composition but can also include team members from industry or from private entities. They can 

also extend across state and national borders. Regarding the formation of academic research teams, 

their size and composition is an important factor affecting the extent to which the university is 

fulfilling its outreach mission of economic and social development.  

In U.S. research universities, the size of scientific teams increased by 50 percent between 1981 

and 1999 (Adams, 2005). In recent times it has become much less common to find scientific 

articles that have one author, and usually there are several authors on a paper or project. In the case 

of Colorado State University (CSU), the number of authors per paper increased by 58 percent over 
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the 24-year period between 1989 and 2012, while laboratory-based research papers were more 

prevalent than non-laboratory-based ones. 

The most important reason for the organization of a research team is to generate efficient and 

synergic knowledge production that reduces the cost and time of knowledge production; in other 

words, they make it possible to produce a maximum amount or quality of research outputs with 

respect to the naturally limited inputs to the knowledge creation process, such as research 

expenditures, research equipment, highly specialized and talented personnel, etc. This impetus has 

led to experimentation with and the creation of new organizational forms within research 

universities, and, in this process, academic research teams have come to operate more and more 

like “quasi-firms,” run like small businesses, optimizing their collective behavior albeit without 

being directly profit making (Etzkowitz, 2003).  

The purpose of this chapter is to explore the agency of knowledge production. The chapter 

adopts the view of scientific research teams as “quasi-firms,” arising as independent knowledge-

creating entities within the university context. What are the key components for assembling a 

research project team, and how does understanding research processes as team-based help to 

reframe our conceptualization of university knowledge production and technology transfer 

activities? Of particular interest for this chapter is an examination of team assembly mechanisms 

and the impact of different aspects of team formation on eventual knowledge outputs. Exploring 

the situation inside research teams, social network analysis can be useful for understanding the 

structure of team member networks and their dynamics over time. How do existing network 

structures affect research team formation and performance? We can use ego-centric network 

analysis to gain insights on an individual principal investigator’s (PI) professional network and 

relationships, while we can use socio-centric network analysis to concentrate on entire groups’ 
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patterns and the formations of teams within the network context. We expect that this kind of 

network analysis will allow us to look inside the more aggregate knowledge production function 

and structures of the research university. Although social network analysis can be helpful for 

understanding the inner workings of team assembly mechanisms and their team dynamics, 

empirical analysis of a sample of research teams, selected from the entire university, is used to 

explore what factors influence academic research team formation and performance.  

The rest of this chapter consists of six sections. Section II reviews the previous studies of social 

network analysis and university collaborative research. This social network analysis covers not 

only economic models and topics, but also insights from the field of scientometrics which is 

concerned with the quantitative features and characteristics of science and scientific research. 

Section III shares summary statistics from an extensive database on Colorado State University of 

research team formation at the college and university level. Section IV analyzes the conceptual 

frameworks of university research teams and its formations. Section V explores two different 

empirical approaches to understand academic research teams, ego-centric social network analysis 

and regression analysis of a sample of research teams. Section VI provides empirical analysis of 

the impacts of outputs by research teams. This section evaluates the quality of research teams by 

different groups and hypotheses. Finally, section VII summarizes and concludes this chapter. 

II. Literature Reviews  

A. Social network analysis and research teams 

Social networks and social network analysis have emerged and influenced many fields of 

endeavor within society and the economy. The scope of this is certainly not limited to Internet 

social media, but also includes co-authorship networks within academic literatures such as 

sociology, economics, computer science, statistical physics, mathematics, and so on. According to 
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Jackson (2008), social networks permeate our social and economic lives and play a central role in 

the transmission of information about everything from job opportunities to the trade of most goods 

and services. He also points out that social networks affect our well-being, making it critical to 

understand how social network structures affects behavior and which network structures are likely 

to emerge within a given part of society. This seeks to follow these crucial insights to analyze the 

formation and structure of academic research team.  

The deeper motivations for exploring research teams emerging from within the structure of 

social networks arise from the seminal insights of Powell (1990) and Spender (1996). First, 

according to Powell, there are three distinct forms of economic organization: market, hierarchy, 

and network. The market formation has a contract normative basis, with a high degree of flexibility, 

low amount of commitment among the parties, and independent actor preferences or choices. The 

hierarchy formation has an employment relationship normative basis, with a low degree of 

flexibility, medium to high amount of commitment among parties, and dependent actor preferences. 

Finally, network has complementary strengths normative basis, with a medium degree of 

flexibility, medium to high amount of commitment among parties, and “inter-dependent” actor 

choices. Therefore, network forms of economic organization entail indefinite and sequential 

transitions, create trust and indebtedness. While transactions with uncertain outcomes and high 

resource costs are more likely to take place within hierarchical organized firms, relational 

contracting and collaboration, relying upon the network connections, can blur the firm’s 

boundaries. 

Second, from Spender, the theory of the firm takes on a new form when we compare the 

resource based view of the firm with a knowledge based view of the firm. The knowledge based 

view of the firm is more strategically significant, but it is also more complex than the resource 
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based view. Both the knowledge based and the resource based views attempt to deconstruct the 

“Black Box” of the production function. However, according to the knowledge based view, 

tangible resources lie outside the firm, while intangible resources such as firm’s specific 

knowledge are what give it a competitive advantage. Again, the organizations based on knowledge 

are viewed as enduring alliances between independent knowledge-creating entities. Moreover, the 

knowledge based view of the firm conforms to Latour’s (1996) Actor-Network Theory (ANT) 

considers social entities, firms, governments, and other social institutions as identifiable actors in 

heterogeneous networks, not only individuals. The overall dynamic complex is called a “quasi-

object”. According to Spender, the firm, or the university, is a quasi-object with complex 

heterogeneous internal epistemological processes. 

B. Academic research teams operate like quasi-firms  

Although these previous studies of social networks focused on explaining the organization of 

economic transactions and the theory of the firm, they provide a useful approach for explaining 

the organization of academic research. The team perspective is also deeply linked with the newer 

mission of the university of outreach or engagement, given the entrepreneurial firm-like qualities 

of research teams (Etzkowitz, 2003). The formation of academic research teams is much better 

understood from a knowledge and social network based view rather than a hierarchical view of 

formations. Across multiple teams, over time, academic researchers create enduring alliances like 

a semi-autonomous organic system. 

One important extension of the team based approach is to understand the collaboration between 

university and private entities, which is one of the important technology transfer activities in 

research universities. They significantly contribute to local economic development and 

commercial innovation through collaborative team based research projects. Private sponsorship of 
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university research consistently averages 5 or 6 percent out of total university research 

expenditures (NSF, 201423). Furthermore, the extent of collaboration by researchers in research 

universities in the U.S. or other advanced countries is not only inter-institutional, but can also be 

international and interdisciplinary.  

The increased extent of external university collaboration may drive an increase in the size of 

research teams as well as more complex research funding arrangements in the university. 

Therefore, the university can be faced with such a dilemma as who is, in effect, the principal and 

who is the agent with respect to the management of research teams. Nevertheless, the size of teams 

—whether measured as the number of co-authors per paper, the number of co-inventors per patent, 

or the number of co-founders of startup companies —has been increasing gradually. According to 

Adams et al (2005), counting co-authors on U.S. scientific papers, research team size increased by 

50 percent over the 19 year period, 1981-1999. They also found that foreign institutional 

collaborators on U.S. scientific papers increased significantly. Academic researchers in private 

universities, in departments whose scientists have earned prestigious awards, and in departments 

that have larger amounts of federal funding tend to participate in larger teams. In addition, they 

find that placement of former graduate students is a key determinant of inter-organizational 

collaborations, especially collaborations with firms and with foreign scientific institutions. 

Lee et al (2015) point out that the increasing dominance of team science highlights the 

importance of understanding the effects of team composition on the creativity of research results. 

They unpack two facets of creativity in science: novelty and impact. They find that increasing team 

size has an inverted-U shaped relationship with novelty. The relationship between team size and 

                                                 
23 Source NSF, Science and Engineering Indicators 2016: Total expenditures of U.S. colleges and universities on 
R&D in all fields totaled $67.3 billion in 2014. However, source of funds from business or private sector was 3.6 
billion in 2014. 
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novelty is due to the greater field or task variety, consistent with an information processing 

perspective. Interestingly, they also find that team size has a continually increasing relationship 

with the likelihood of a high impact paper.  

Previous studies of social network based (or embedded) research teams have focused on co-

authorship networks as recorded in databases of published journal articles. Within this content, 

there are three different areas of research: first is a theoretical approach with mathematical models 

of network formation, dynamics over time, and network design for influencing behavior; second 

is an empirical and experimental approach using data that observes then patterns of real world 

networks in order to test conceptual social network theories; third is a methodological approach to 

the measurement and analysis of networks.  

Some studies have adapted only theoretical or methodological approaches to study research 

teams, but most have utilized both theory and empirical analysis of network data. According to 

Barabasi et al (2002), dynamic and structural mechanisms govern the evolution and topology of 

the complex system of the social network of co-authors on scientific papers. They found three 

complementary approaches. First, empirical measurements make it possible to reveal the 

topological measures that characterize the network at a given moment, as well as the time evolution 

of these quantities. The results indicate that the network is scale-free, and that the network 

evolution is governed by the phenomenon of “preferential attachment”, affecting both internal and 

external links. Second, a simple model captures the network’s time evolution. Third, numerical 

simulations are used to uncover the behavior of characteristics that could not be predicted 

analytically because of the complexity of the system. In addition, Taramasco et al (2010) 

quantitatively explore the social and socio-semantic patterns of collaboration of academic teams. 
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They explain critical features of social networks of knowledge-based collaboration using team-

centered approaches, hypergraphs, and n-adic interactions.  

Guimera et al (2005) investigate the mechanisms by which creative teams self-assemble. They 

proposed three parameters that determine the structure of collaborative research networks: team 

size, the fraction of newcomers in each round of new production, and the tendency of incumbents 

within the network to repeat previous collaborations. Newman (2004) used bibliographic databases 

in biology, physics and mathematics, respectively, to construct networks in which the nodes are 

scientists, and two scientists are connected if they have coauthored a paper. He used these networks 

to answer questions about collaboration patterns, such as the numbers of papers authors write, how 

many people with whom they write, what the typical distance between scientists is through the 

network, and how these patterns vary between subjects and over time. 

III. Trend of Academic Research Teams within Colorado State University 

In terms of the aggregate level of research teams, the overall network of researchers who have 

collaborated at some point in time is distinguished from individual teams of researchers actively 

collaborating at this point in time. However, comparing these two perspectives helps to understand 

the behavior of both an individual team and the ever-evolving groups of research teams. In this 

section, we want to explore research teams both in the university overall and at the college levels. 

As shown in Chapter 1, the knowledge production by researchers at Colorado State University 

(CSU) are measured systematically in range of data, including published journal articles, degree 

awards (masters and doctoral), research contracts and grants, extension outreach activities, 

invention disclosures, patent applications and granted patents, and startup companies. In 

considering descriptions of research teams, publications and patent data have the advantages of 
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data utilization. Moreover, publications are the main research output of university research and 

have a more systematic relationship with research inputs than other types of research output.24  

Figure 20 shows the time trends of total number of papers and average number of authors per 

paper at the university overall level, from 1989 to 2012. Time is on the horizontal axis, and the 

total number of papers and the average number of authors per paper are on the vertical axes, left 

scale and right scale, respectively. The average number of authors per paper generally indicates 

the size of research teams in the university. The figure indicates that research team size has grown 

in proportion with the total number of papers, but their growth trajectories appear have begun 

diverging. By 2012, however, the divergence between these two indicators was the greatest: the 

average number of authors per paper is around five authors and the total number of articles for the 

year is about 2,000. 

 
Figure 20—Time trends of journal articles and average co-author team sizes, at the 

university level, (1989-2012) 

 

                                                 
24 It should be noted, however, that we modified the publication data such that if the total number of authors per 
article is over 30, we removed that article from the dataset. There were 753 journal articles with more than 30 
authors out of 38,916 total articles. Most of these many-multi-authored papers were in the field of physics, 
astronomy, and astrophysics. The maximum number of authors found for a single article is 1,139. Such ‘outliers’ 
can cause statistical bias problems and distort the generality of the results of our analysis. 
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Table 14 reports summary statistics for the total number of papers, average number of authors 

per paper, and total number of citations per paper at the college level, by year, from 1989 to 2012. 

In terms of the total number of publications, College of Veterinary Medicine, the College of 

Natural Sciences, and the College of Engineering are the top three colleges at CSU and together 

have almost 67 percent of all publications at the university, as well as accounting for 73 percent 

of the total number of citations.  

Table 14—Summary statistics of the total number of papers, average number of authors per 
paper, and total number of citations by college levels, (1989-2012) 

  Total number of papers 

Average number of 

authors per paper  Total number of citations  

 Mean Sum Share Mean Mean Sum Share 

Agricultural Sciences 141.8 3,403 8.9% 4.1 2,317.3 55,614 7.3% 

Business 14.6 351 0.9% 2.6 278.5 6,685 0.9% 

Engineering 304.7 7,313 19.2% 3.9 5,209.3 125,023 16.5% 

Health & Human 

Sciences 
61.5 1,477 3.9% 3.5 757.8 18,188 2.4% 

Liberal Arts 101.4 2,433 6.4% 1.8 444.8 10,674 1.4% 

Natural Resources 142.4 3,417 9.0% 3.6 4,256.2 102,149 13.5% 

Natural Sciences 399.7 9,592 25.1% 3.5 10,935.2 262,445 34.6% 

Veterinary Medicine 352.9 8,470 22.2% 4.6 6,897.6 165,543 21.8% 

Others 71.1 1,707 4.5% 3.6 545.2 13,085 1.7% 

Total 1,590.1 38,163 100% 3.8 31,641.9 759,406 100% 

 

Figure 21 represents the trend of the total number of articles (left scale) and average number 

of authors per article (right scale) at the college level, from 1989 to 2012. This figure helps us to 

begin to understand the relationship between the size of research teams and research productivity. 

Except for the College of Natural Sciences, growth in the average number of authors per article, 

which indicates the size of research teams, is roughly as fast as, or faster than, growth in the total 
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number of articles. By contrast, the growth in the size of research teams in the College of Natural 

Sciences is slower than the growth in the total number of articles. The College of Liberal Arts has 

the smallest team size among other colleges, on average, 1.8 authors per article, but their article 

productivity is greater than the College of Business, and the College of Health and Human Sciences. 

In the College of Veterinary Medicine and the College of Engineering, there seems to be a 

positive relationship between the size of research teams and the research productivity, because 

both indicators are growing at similar rates. However, in the College of Agricultural Sciences, the 

size of research teams decreased significantly from 2007 to 2008, but during the same period, the 

total number of articles published did not change significantly.  

 
Figure 21—Trend of the total number of articles and average number of authors 

per article at the college levels, (1989-2012) 
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From the Figure 21, however, we are unable to confirm a positive relationship between the size 

of research teams and research productivity, but we are led to think that it may depend on the 

different research environments and other unobserved factors. Finally, in order to consider the 

relationship between team size and the quality of research, Figure 22 takes citations per article as 

a proxy of article quality into account. As indicated as Figure 22, the citations per article seems 

not to be related to the trend of team sizes across the different colleges.  

 
Figure 22—Trend of citations and authors per article at the college level: 

Citations display a natural right-hand-side truncation of the time 
series of up to ten years, (1989-2012) 

 

For instant, the team sizes in the College of Natural Sciences are smaller than in the College 

of Engineering, but the magnitudes of citations are much greater. Similarly, the College of 

Business has high citation rates per article, but the team size is smaller than in the College of 
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Health and Human Sciences. Thus, we should consider the nature or characteristics of citations, 

including the fact that the distribution of citations is highly skewed across colleges and it has 

evolved over time. Thus, it is more appropriate to treat these in different ways, as discussed in a 

later section.  

IV. Conceptual Frameworks of Academic Research Teams 

In modern universities, research activities and collaboration are not only based on “disciplinary” 

principles but also on “inter-disciplinary” principles. In the same way, the boundaries between 

research activities are no longer limited to the university but also take in participants from outside 

the university. Furthermore, most research universities have been increasingly characterized by 

team-based research rather than to just individual authors or inventors.  

Given these kinds of trends within the university environment, the formation of research teams 

and the evolving structure of collaborative networks is becoming more complicated and difficult 

to follow. Therefore, analysis of team-based research and team formation can help us to understand 

the agency of knowledge production within universities, as well as the agency of knowledge 

production outside of but affected by universities.  

As we have seen from previous sections, exploring the formation of academic research teams 

is bound up with the mission of the university. Etzkowitz (2003) argues that firm-like and even 

commercially oriented qualities of academic research teams are strongly tied with the outreach 

mission of university, contributing to economic and social development. Table 15 provides a 

conceptual framework of academic research teams and their formation, motivated by and adapted 

from previous studies25.  

 

                                                 
25 Especially, Powell (1990), Parker (1992), Spender (1996), Etzkowits (2003), and Guimera et al (2005). 



101 
 

Table 15—A conceptual framework of different types of research teams 

  Types of research teams 

  Functional teams Cross-functional teams Research project teams 
Team size  A few researchers. 

 
 Relatively many researchers. 

Team formation  Employment based on 
hierarchical structure.  
 

 Inter-departmental  The network of the past 
collaborators.  Builds upon the work of 
a functional team.  
 

 Temporary projects.  Self-directed   Extends or builds upon 
the work of cross-
functional team.  

 
Team purpose  PI’s functional expertise.  A common goal among 

the team members. 
 Special projects.  A common goal 

among the team 
members. 
 

Team flexibility  High degree of network 
density. 
 

 Relatively lower degree 
of density than functional 
teams. 
 

 Relatively lower 
degree of density than 
cross-functional teams. 
 

Number of 
principals 

 A single principal.  Multiple principals.  Multiple principals, 
but more affiliations, 
including private 
entities. 
 

Research boundary  Disciplinary.  Highly reliant on the PI’s 
research area. 

 Interdisciplinary.  Generally, bounded in 
the university. 
 

 Can be varied by the 
purpose of a project.  Extends the boundary 
of cross-functional 
teams, but more 
flexible.  
 

Funding system  A single public R&D 
funding source. 
 

 Multiple public R&D 
funding sources.  Single private R&D or 
several smaller private 
R&D funding sources. 
 

 Relatively higher share 
of private R&D 
funding.    

Research outputs  Journal articles.  Some traditional 
university-industry 
collaborationa). 
 

 Relatively more 
traditional university-
industry collaborationa), 
but some newer modes 
of technology transferb)   Journal articles. 
 

 Relative higher in both 
types.  Journal articles. 

Research output 
revenue 

 May earn some revenue 
on fee-for-service basis 
for routine testing, 
conducting trials, etc.  

 Relatively low 
probability of consulting 
revenues or licensing 
royalties. 

 Relatively higher 
probability of 
consulting revenues or 
licensing royalties. 
Low probability of 
revenue from equity in 
startups. 

Note: a) Traditional collaboration is consulting, conferences, collaborative research, co-supervising, and so on. 
b) A newer mode of collaboration is patenting, licensing, and startup companies.  
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University research team formation may follow from and serve the overarching missions of 

university, but it depends on the heterogeneous characteristics of different research environments, 

the intrinsic interests of different fields, the extent of social networks, and the intrinsic research 

abilities of principal investigators, the numbers of potential outside participators, and so on.  

As shown as Table 15, we can characterize three different types of research teams within the 

university: functional teams, cross-functional teams, and self-autonomous teams. First, functional 

teams are composed of organizational team members assembled from within hierarchical or 

vertical employment relationships, in formal units such as colleges, departments, and even 

individual professor’s research labs. These functional teams perform employment-like functions, 

and each team member has relatively low degrees of participation in the creation of knowledge or 

research outputs, even though they may be subordinates of a principal investigator (PI) or the lead 

researcher for a particular laboratory. These teams have a relatively small number of team 

members and their research boundary tends to be limited to their own disciplinary field within the 

university. Research funding sources for these teams rely on institutional budgets, parts of research 

grants allocated for more routine research functions, and fee-for-service activities such as testing 

or conduction trials, etc.  

Cross-functional research teams in the university consist of multidisciplinary or 

interdisciplinary groups of researchers. The cross-functional research teams are generally 

classified into the two broad types. One is the team of experts from different fields and affiliations. 

This type of research team can make decisions on their own management and expertise without 

outside consulting. Another is made up of combinations of different functional teams, a composite 

team to team organization. It is highly probable that these types of research teams have a high 
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density of team members per research output and are supported by sponsorships of multiple 

research grants from both public and private entities.  

Third, the self-governing research teams are effectively the “quasi-firm” postulated by 

Etzkowitz (2003) within the context of the research university. According to Parker (1992), “a 

self-directed team is an intact group … who are responsible for whole work process or segment.  

Moreover, the team members work together to improve their operations, and plan and control 

their work”. In other words, this type of research team, whether as a temporary project team or 

research project team, has come together to execute a specific research project or set of closely 

related research projects. These teams have a high degree of team flexibility and their boundaries 

of collaboration can be extended not only to be interdisciplinary and inter-university, but also to 

include industrial or private entities, as well as cross-national collaborators. The assembly of this 

type of research project teams depends on a variety of factors, such as the existing professional 

network of past collaborators or co-authors, which can span an entire discipline globally, incidental 

meetings at professional conferences, and so on. However, the most important distinction between 

cross-functional teams and autonomous research project teams are the voluntary or self-assembly 

mechanisms of forming the research teams (Newman, 2004; Guimera et al, 2005; Zhu et al, 2013).  

V. Empirical Approaches to Analyzing Academic Research Teams 

In this section, we explore how academic research teams are assembled and what kinds of 

factors are significantly associated with the team assembly mechanisms by using a highly detailed 

institutional dataset on CSU research inputs and outputs from 1989 to 2012. We utilize two 

different empirical approaches, including social network analysis, in particular the analysis of ego-

centric networks, and OLS regression models of a selected sample of research teams and their 

research outputs, including published journal articles and patents.  
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The main purpose of these two empirical approaches is to explore different aspects of team 

assembly mechanisms, both from the perspective of an individual principal investigator (PI) and 

his research teams, which are denoted as “ego-centric research teams”, and from the perspective 

of a random sample of research teams, as distinguished from a departmental or aggregate 

university-wide level of analysis of research teams.  

First, the analysis of ego-centric research teams makes it possible to explore specific 

components internal to research teams and their assembly mechanism, especially the dynamics of 

research team formation and performance. However, an analysis of ego-centric research teams 

concentrates on the individual’s network and relationships, as well as their intrinsic research 

abilities, so it is hard to generalize results to all researchers within the university.  

Second, the analysis of a random sample of research teams has the advantages of analyzing a 

larger and more representative set of research teams and patterns of relationships between team 

characteristics and their performance, but it is more difficult to detect and follow the dynamics of 

research team formation for so many. Therefore, these two empirical approaches can be useful for 

understanding different aspects of academic research team formation and their behavior and 

research performance.  

A. Social network analysis 

In order to explore research team formation and assembly mechanisms, we employ ego-centric 

analysis on one particular individual’s research network. Table 16 shows summary statistics of the 

research activities of an individual faculty member, Dr. Jorge J. Rocca, in the Department of 

Electrical and Computer Engineering at CSU, denoted “Rocca’s team”, from 1989 to 2012. We 

analyze the network of relationships evidenced in three different types of research outputs: (1) the 

network of co-authors on published journal articles, (2) the network of co-inventors on published 
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patent documents, and (3) the network of co-founders in one startup company. Dr. Rocca has been 

very prolific, with 315 journal publications, and the average number of authors per article is 7.3 

authors, which is quite large comparing with the average of 4.8 authors per article for the 

Department of Electrical and Computer Engineering, an average of 3.9 authors per article for the 

College of Engineering, and an average of 3.6 authors per article for CSU overall. The maximum 

total number of authors per a single article involving Dr. Rocca as a co-author is 31 authors, and 

the minimum is one, naturally being only Dr. Rocca himself. 

1. The structure of ego-centric research teams 

The boundaries of the ego-centric network, which is essentially the cumulative aggregation of 

multiple research teams formed over the years around specific research projects, can be defined 

by the members’ affiliations.  

Table 16—Summary statistics of the ego-centric research network of Dr. Jorge J. Rocca, of 
the Department of Electrical and Computer Engineering at CSU, (1989-2012) 

 Research Outputs 

  Articles Patents Startup 

Total number of each type of research output 315 6 1 

Total number of individual as co-authors/co-

inventors/co-founders 
311 20 3 

Mean individuals per output 7.3 4.2 1 

Max individuals per output 31 7 1 

Min individuals per output 1 1 1 

Total number of individuals in the same dept. 154 20 3 

Total number of individuals in other CSU depts 17 0 0 

Total number of individuals outside of CSU 139 0 0 

Total number of grant awards 217 

from public sector sponsors 173 

from private sector sponsors 44 

Total value of grant awards (million $) 51 

The share of value from public sector sponsors (%) 98 

The share of value from private sector sponsors (%) 2 
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The number of co-authors in Dr. Rocca’s network who are affiliated in the Department of 

Electrical and Engineering is 154; the number of co-authors who are affiliated with another CSU 

department, is 17, and finally the number of co-authors who are affiliated outside of CSU is 139. 

Because of data limitations, we cannot fully identify the affiliations of the outside members, but 

we can safely assume that many of these outside members likely are former graduate students and 

research staff (post-docs), who may now be faculty members at other institutions including 

overseas, as well as employees of private firms, and so on. Still, Rocca’s network is highly 

concentrated on his own department, which is almost 50 percent. The cumulative value of research 

grants and contracts, from 1989 to 2012, is $51 million, and it is also highly concentrated on public 

sector (largely federal) sources, accounting for 98 percent. 

 
Figure 23—An ego centered co-authorship network, with all types of affiliations, (1989-

2012) 
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The ego-centric network consists of nodes and ties. It describes the network around a single 

node, the ego, with a number of other nodes. In this case, Dr. Rocca is the ego node and his co-

authors, co-inventors, and co-founders are the others, the alter nodes. Figure 23 represents the co-

author network that has formed around Dr. Rocca over the time frame studied. The conceptual 

basis of this graphical analysis is managed in matrix form, which is called an “adjacency matrix26”. 

This network diagram illustrates the data found in each row or column in a 311 x 311 matrix. The 

ego network analysis is processed here by UCINET 6.027 . According the Scott (2012), 

understanding graph theory in terms of an adjacency matrix significantly improves the 

sophistication of analysis.  

In Figure 23, the large green box in the center is the ego’s node, the small blue boxes are those 

alters in the same department with the ego, the yellow circles are the alters in other CSU 

departments, and the red triangles are the alters outside of CSU, who consist of a variety of 

affiliations, such as industry researchers, faculty members of other universities, former graduate 

students and research staff, and so on. This diagram shows a co-authored network of 310 other 

individuals anchored around the ego. The density, a measure of the overall degree of linkage 

among the nodes within the network, is 0.067, accounting for 6.7 percent of possible links, which 

is relatively low density. Network density can be calculated by equation (28)28.  

( 1) 2

l
Density

n n
        (28) 

                                                 
26 When appropriating the adjacency matrix, “1” is denoted as the presence of a relation or tie and “0” is denoted 
absence of a relation with the ego.  
27 A software package for social network analysis. It is open access, 
https://sites.google.com/site/ucinetsoftware/home , and many scholars of social network analysis have adopted 
UCINET for research on social network theory (see Jackson, 2008; Scott, 1991; Borgatti et al, 2013).  
28 Social Network Analysis by John Scott (1992). 

https://sites.google.com/site/ucinetsoftware/home
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Where l is the number of links, n is the number of nodes, and n(n-1) is the sum of degree. This 

measure can vary from 0 to 1. If the density is one, there are relationships between all nodes in the 

network, and if it is zero, there are no relationships (and thus, effectively, no network). Another 

measure of network connection is ‘distance’ which is the shortest path for a node to reach all other 

nodes, also called ‘geodesic distance’. The average geodesic distance measures the average 

number of steps to reach all co-authors in the ego’s network, and in the case of Dr. Rocca’s co-

author network is 1.933 steps. In the ego-centric network, there tends to be a shorter average 

geodesic distance than in a randomly generated ‘reference’ social network, because each co-author 

by definition already has a co-authorship relationship with the ego. 

Now, we can decompose the ego’s co-authorship network based upon different affiliations and 

measure the structural shape of each of the sub-networks, which indicates the extent to which the 

ego’s contacts are connected to each other, including measures such as ego-net density, structural 

holes, and ego betweenness (Borgatti et al, 2012). Table 17 presents summary statistics of these 

decomposed ego-centric sub-networks by different affiliations. The sub-networks of co-authors in 

the same department and co-authors in other CSU departments have similar network densities, at 

12 percent and 14 percent, respectively, but, the sub-network of co-authors outside CSU, perhaps 

not surprisingly, has a relatively lower density, at about 9 percent.  

Table 17—Summary statistics of decomposed subsets of the ego-centric network by different 
affiliations 

  Density No. of Ties Std. Dev 

Avg. 

Degree 

No. of 

authors 

Effective 

size 

Same department with ego 0.12 2777 0.32 17.92 154 136.08 

Cross departments 0.14 44 0.35 2.44 17 14.56 

Outside of CSU 0.09 1794 0.29 12.81 139 126.19 

Overall network 0.07 6498 0.25 20.89 310 289.11 
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However, judging from the standard deviation, the sub-network of co-authors outside of CSU 

has a relatively smaller variance than the other sub-networks. Likewise, Figure 23 shows that there 

are two relatively tidy clusters of the sub-network, so it is highly probably that the network of 

outside co-authors are compactly anchored around each other. Thus, it seems reasonable to assume 

that the research teams associated with the network of outside co-authors are more likely to have 

formed a specific research project team.  

In addition, in order to measure the structural shape of the ego-centric network, we adopt the 

concept of a structural hole, which is the lack of a tie between two alters within an ego network 

(Burt, 1995). The disconnected nodes or alters provide the ego’s different points of view. 

Measuring the effective size is commonly used in a structural hole. The effective size can be 

measured as ego’s degree, the number of co-authors in the network minus the average degree of 

the ego’s alters within the network (Borgatti et al, 2012).  

In Table 17, for example, the total number of co-authors represent the ego’s degree, so 310 

would be an ego’s degree in the overall network and the average degree of ego’s alters is 20.89. 

The effective size can be calculated by 310 minus 20.89, so the effective size of the overall network 

is 289.11. If no alter or node has ties with each other, the effective size is directly the number of 

authors, 310, and if all nodes are connected with each other, the effective size is one29.  

2. The dynamics of ego-centric research teams 

One of the advantages of analyzing ego-centric research teams is the opportunity to explore 

the formations and sizes of discrete teams over time, as evidenced in each of the articles, patents, 

and startups associated in teams. Figure 24 displays the time of occurrence of patent applications 

                                                 
29  From Table 3, the total number of authors is 311, included in Dr. Rocca, the ego. If all alters are had ties with all 

of the others, the average degree becomes 310, which equals the total number of co-authors without the ego. Thus, 
the effective size is 1, which can be calculated by 311 minus 310.  
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and article publications, as well as the timing of the startup company within the ego-centric 

network. It also indicates the different individual project-based team sizes, in terms of numbers of 

co-authors per article.  

 
Figure 24—The dynamics of ego-centric research teams, (1989-2012): the time of 

occurrence of patent application & publication, and startup companies 

 
On the horizontal axis, the first four digits represent years and the next four digits indicate the 

article ID number. The vertical axis is the number of authors per article which indicates the 

separate project team sizes. The linear trend-line in the team sizes per article is upward sloping 

over time. The most vigorous research activities of the project teams were between 2002 and 2007. 

In these time periods, Rocca’s project-based research teams produced more than 100 research 

articles, accounting for 32 percent out of total article output, as well as submitting 5 patent 

applications and receiving 2 granted patents. At the same time, his research teams hit the largest 
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team sizes, at 31 authors per article, in 2005. Eventually, in 2009, the ego and his co-founders 

established a startup company. Figure 25 decomposes the network by year and thereby represents 

the temporally distinct research teams that formed in the different years, and their relative sizes 

and densities, from 2002 to 2007. The distance between the ego and other alters is similar across 

the different years, but the team densities changed over time.  

 
Figure 25—The dynamics of ego-centric research teams, (2002-2007): team 

formations and densities 

 
It is reasonable from the figures that in 2004 and again in 2005 he participated with a large 

group of authors outside CSU on an individual publication which affect the size of the ego-centric 

network in those years significantly, as the pattern of the co-author teams for each of these 
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publications is clustered tightly with high density. Thus, the ego’s research boundaries and 

networks are clarified between those that are more predominantly inside and those that are outside 

the ego’s own university. In addition, as shown in the previous section, the formation of a research 

team, especially as a project-based autonomous team, typically involves members with multiple 

affiliations per team (as evidenced by co-authors per article). In most cases we expect that all of 

the team members have come together to execute a special research project, and the team might 

include researchers affiliated with commercial or private sector entities. 

 
Figure 26—The dynamics of ego-centric research teams, (1989-2012): 

team size and share of non-CSU authors per article 

 
For example, in Figure 25, in the network for year 2006, a cluster located on top consists of 

team members with all three types of affiliations, with two co-authors in the same department with 

the ego, one cross-departmental co-author, and two co-author outside CSU. So this network cluster 
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is a good example of self-autonomous or a temporary research project team. Again, most of the 

team members in the self-directed team come together and work together based on their own 

decisions to improve their own research careers, and they jointly plan the operations and control 

the project.  

 
Figure 27—The dynamics of ego-centric research teams, (1989-2012): 

team size and density 

 
Finally, the analysis of team dynamics not only considers the changes of team formations, but 

also the change between the size and density of teams over time. Figure 27 represents the dynamics 

of ego-centric research teams’ sizes and densities over time. As indicated in the figure, team sizes 

tended to increase steadily over time, but conversely, the team density had a downward tendency. 

From equation (1), team density is defined as the average strength of ties across all possible 

nodes, so the higher density rates refer to the higher degree of interconnection within the ego’s 
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network. Therefore, the ego’s research activities were bounded up with closer relationships among 

all of the co-authors. Especially between 1991 and 1992, the team density was one, which means 

that all member knows each other and they have a perfect closed relationship. In other words, the 

team formation was more likely to be a hierarchy or a single large publication on which everyone 

participated together. Recently, over 5 years, the average team density is 0.218, in which lower 

density represents that the ego-centric teams have been characterized by more multiple smaller 

network-based or research project team formations.  

B. Regression analysis  

This section will continue to examine the assembly mechanism of research teams. The previous 

section, using ego-centric social network analysis, showed the components and the dynamic of 

research team formations within the context of an individual PI’s research teams which, over time, 

built up that PI’s network. However, it may be possible that the results are skewed due to field 

specific characteristics or the PI’s inherent research environment, even though the analysis is still 

meaningful for exploring the formation of academic research teams. In this section, we select a 

random sample of research teams from the entire population of our database. From this sampling 

there are two different groups: one is 1,527 research teams drawn from co-authors on published 

journal articles between 1989 and 2012; the other is 123 research teams drawn from co-inventors 

on patent documents, from 1990 to 2011.  

1. Hypotheses for academic research teams and its formations 

The size of research teams plays a significant role in the collaboration activities across different 

fields and institutions. Relatively small sized teams tend to rely heavily on solitary authors or 

inventors, whereas relatively large sized teams consist of various affiliations and fields and tend 

to depend on the synergy effects of teamwork and an effective division of labor (Biffl and Gutjahr, 
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2001; Guimera et al, 2005; Wuchty et al, 2007). As shown in Table 15, the conceptual framework 

of research-team formations characterizes both cross-functional and self-autonomous research 

teams to have a larger number of team members than functional (hierarchical) teams. The team 

size also refers to the team flexibility and research boundaries. However, bigger is not always 

better, at least once a certain threshold is exceeded. As teams grow beyond a certain size the 

coordination costs increase and the marginal value of contributions of additional members with 

complementary skills decrease.  

Therefore, we want to examine how the size of a team can vary and what factors affect the 

optimal team size. First, we assume that the number of participating research units and departments 

within the university, and the proportion of members in the team from outside the university, 

including the number from private entities, are crucial factors when it comes to the size of research 

teams. Although this assumption seems plausible, it requires further examination in the next 

section. 

[H1] The extent to which the team members, who are from private companies and different 

research units and departments in the university, participate in the research project and the team 

plays a crucial role in determining the size of research teams and their assembly mechanism. 

Furthermore, we want to examine the relationships between the size of the teams and their 

capability of utilizing R&D investments. From Table 15, it is clear that the funding system is one 

of the criteria for assessing the different types of team formation and their assembly mechanism, 

because the functional teams generally utilize the PI’s grants or a single public R&D investment 

for their research budget. However, the larger teams are able to use a wider variety of funding 

sources and have higher chances of attracting both publically and privately sponsored R&D 

investment. 
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[H2a] The capability of attracting R&D investment and supporting research expenditures 

(financial components) is one of the most important criteria for assessing the types of team 

formations and their assembly mechanism. 

[H2b] The magnitude and types of R&D investment and research expenditures have a positive 

relationship with the size of research teams. 

[H3] The field variety takes on a much greater role in large-sized teams that are cross-functional 

than in relatively small-sized teams that are hierarchical or functional. Thus, we expect a positive 

relationship between the degree of field variety and the size of research teams. 

In addition, we assume that there is a significant relationship between the field variety and the 

size of the research teams. However, signs of this relationship are still open to questioning. 

Although the importance of a multiple disciplinary perspective exists not only in cross-functional 

teams but also in functional teams, the field diversity and variety are more likely to have a positive 

relationship with large-sized research teams than small-sized teams.  

2. University research teams generating published journal articles 

We selected 1,527 sample research teams or journal publications by CSU-affiliated authors, 

covering 1989 to 2012. These sample teams were selected by several criteria: (1) the team must 

include at least one industry co-author, (2) in order to maintain consistent results, any teams with 

more than 30 authors per article were removed from the sample, and (3) the affiliations of all 

members of the team are identified. Table 18 represents the descriptive statistics of 1,527 sample 

research teams for the published journal articles from Thomson Reuters' Web of Science via CSU 

Library and Table 19 is its correlation matrix of all variables, from 1989 to 2012. 
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Table 18―Summary statistics of research teams generating published journal articles: 1,527 
sample research teams from journal publications, (1989-2012) 

  Summary Statistics  

Variables Obs. Mean Std. Dev Min Max 

1. Team size: Total number of authors per article 1527 5.49 3.01 2.00 27.00 

2. The proportion of non-CSU affiliations per article (%) 1527 0.67 0.19 0.10 0.95 

3. Number of participating private firms per article 1527 1.14 0.42 1.00 4.00 

4. Number of CSU departments per article 1527 1.12 0.37 1.00 4.00 

5. Number of WOS fields per article 1527 2.00 1.23 1.00 5.00 

6. Field (dummy) 1527 0.13 0.34 0.00 1.00 

7. Public R&D investment (million $) a) 1526 7.45 7.91 0.00 35.35 

8. Private R&D investment (million $) b) 1526 0.99 1.30 0.00 5.37 

9. R&D expenditure (million $) c) 1526 9.79 9.13 0.00 37.86 

10. Value of R&D equipment stock per article (million $) d) 1527 1.24 1.41 0.00 7.15 

Note:  a) The value of public grant awards of PI or first author’s department at each year, b) The value of private 
sponsorship grant awards of PI or first author’s department at each year, c) Total R&D expenditure of PI or first 
author’s department at each year, d) 3 years stock of the value of equipment at each year. 

 

Table 19―Correlation matrix of all variables in Table 18: 1,527 sample research teams from 
journal publications, (1989-2012) 

  Correlation 

Variable 1 2 3 4 5 6 7 8 9 10 

1. Team size (count) 1.00          
2. Proportion of non-CSU members (%) 0.47 1.00         
3. Participating firms (count) 0.18 0.11 1.00        
4. CSU departments (count) 0.06 -0.32 0.00 1.00       
5. WOS fields (count) -0.04 -0.01 0.00 -0.05 1.00      
6. Field variety (dummy) -0.34 -0.22 -0.07 -0.08 0.57 1.00     
7. Public R&D investment (million $) 0.21 0.23 0.00 -0.06 0.00 -0.10 1.00    
8. Private R&D investment (million $) 0.06 0.17 0.09 -0.05 -0.18 -0.10 0.04 1.00   
9. R&D expenditure (million $) 0.22 0.24 0.00 -0.07 -0.08 -0.14 0.92 0.19 1.00  

10. R&D equipment (million $) 0.18 0.24 0.06 -0.12 -0.03 -0.11 0.58 0.11 0.62 1.00 

Note: Bold numbers are the correlation with significance level for each entry at p < 0.5. 

 

1) Dependent variables 

a. Team size  

One of the dependent variables in the assembly mechanism of research teams is the total 

number of authors per article. From the previous studies, there are various measures of the team 
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size. One method is to handle the team size as the natural logarithm of total number of authors 

divided by total number of articles per year for the affiliated department or research unit, which 

represents the mean value of team size. This measurement is generally used in more aggregate 

levels of data, but not in team levels (Adams et al, 2005). Alternatively, we adopt the team size as 

the natural logarithm of total number of authors per article, as in Lee et al (2015). As shown in 

Table 18, the mean of team size is 5.49 authors per article, the minimum is 2 authors per article, 

and the maximum is 27 authors per article.  

b. Relative proportion of non-CSU affiliations 

The idea of this dependent variable comes from Adams et al (2005), and equation (29) shows 

their formulation. The Pi is a share of non-CSU authors per article i, and the entire term of equation 

(2) is called the natural logarithm of the relative proportion of non-CSU authors in team i.  

ln , 1, ,1527
1

i

i

p
where i

p

          (29) 

The main reasons for adopting the relative proportion of non-CSU affiliation in the research 

team as a dependent variable is to explore the structure and components of outside university 

members, and to examine what kinds of factors affect the participation of outside members. Again, 

the non-CSU authors generally consisted of research employees at private firms, faculty members 

from other universities, both of which may be former research staff (post-docs) and graduate 

students of CSU professors, or vice versa.  

2) Independent variables  

We adopt several different independent variables, which are each related with the different 

hypotheses. First of all, we assume that field diversity or variety is one of the key factors 

characterizing the assembly mechanism, and we want to examine the relationship between the field 
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variety and team size. There are two different measures of field variety. One is the number of Web 

of Science (WoS) disciplinary field categories per article, and another is the dummy variable of 

field variety. The dummy variable is configured in binary terms. The first step is to calculate the 

ratio between the total number of WOS field categories and the total number of authors per article. 

If the ratio is over one, which means that the number of fields is greater than the number of authors, 

then we denote the article as having high field diversity, and assign a dummy variable value of 1. 

If the ratio is equal to or less than one, we denote the article as having low or moderate field 

diversity. Thus, the field dummy variable indicates that if the team has high field diversity, it is 

one, and if otherwise, it is zero.  

Second, we also assume that R&D expenditure or investment is one of the important factors 

influencing team assembly. So, we use three different financial variables that serve effectively as 

proxies for the financial resources available to the team, total research expenditures, grant awards, 

and the value of research equipment of the home department of the lead CSU author. However, as 

shown as Table 19, these financial variables are highly correlated with each other. Thus, we will 

not use all of them at the same model. Again, the three financial variables indicate the size and 

relative research funding of PI or first author’s department or organization.  

3) Control variables 

For testing the assembly mechanism of research teams, we use four control variables, which 

are in a generally accepted sense of the team components, (1) participating number of private firms 

per article (which is at least one, given the sample selection criteria), (2) participating number of 

the CSU departments per article, (3) proportion of non-CSU authors per article, and (4) afield 

category variable30. We want to examine the relationship between the number of private companies 

                                                 
30  This one is distinguished from field variety dummy.  
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and the size of university-based research team. This relationship might indicate the degree of team 

flexibility and multiple principals in the team. By the same token, there also exists the significant 

relationship between the number of CSU departments and the team size. In the field category 

dummy variable, the Web of Science’s subject research areas are comprised by 255 areas in science, 

social sciences, and arts & humanities. In our sample research teams’ database, we have 174 WoS 

research categories and the 6 aggregate categories31.  

4) Regression results 

Table 20 displays the result of OLS regression of the team assembly mechanism of published 

journal articles for the 1,527 sample research teams from 1989 to 2012. The regression results 

consist of 6 different team size models and the dependent variable is the natural logarithm of total 

number of authors per article, representing the size of the research team that produced the 

knowledge codified and published in that article. All models have same control variables, which 

are observed to strongly influence the results of team size. The six field categories of dummy 

variable are present in all of the regression models.  

The logarithm of the number of participating private firms per article is positively related to 

the size of research team, at the 1 percent level of statistical significance across all six models. 

Moreover, the logarithm of the participated CSU departments per article also affects the team size, 

at 1 percent level. Although there exists a positive relationship between these two variables and 

the size of research teams, it does not directly reflect the total number of authors, but it might be 

considered to be related to the number of principals to which members of the team, as individual 

agents, are at least partly responding.  

                                                 
31  Field 1: biology, chemistry, medical, agriculture, and life sciences (809 papers). Field 2: engineering, computer 

sciences, mathematics, and physics (422 papers). Field 3: environmental science and Geosciences (206 papers). 
Field 4: economics and business (13 papers). Field 5: social sciences and behavioral sciences (69 papers).  
Field 6: others (8 papers). 
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Thus, the involvement of members from multiple organizations, reflecting the involvement of 

multiple principals, indirectly affect the size of research teams. Besides, the factor of multiple 

principals in the research team represents a degree of the team flexibility, and it is more like a 

cross-functional research team, which is highly connected with the number of principals, such as 

collaborating between university teams and private firm’s teams, and cross department teams.  

Table 20―Regression results of team assembly mechanism from journal publications, 
dependent variable is team size measured by log (number of authors) 

  Models (Dependent variable: Team size) 

Variable  [1] [2] [3] [4] [5] [6] 

Number of WOS research areas 
-0.0237 

― 
-0.0250 

― 
-0.0311 

― 
(0.0228) (0.0222) (0.0233) 

Field variety (dummy) ― 
-0.5256*** ― 

-0.5100*** ― 
-0.5247*** 

(0.0279) (0.0259) (0.0281) 

Value of R&D equipment  
0.0380*** 0.0360*** 

― ― ― ― 
(0.0088) (0.0081) 

R&D expenditure  ― ― 
0.0598*** 0.0484*** 

― ― 
(0.0113) (0.0103) 

Public R&D investment ― ― ― ― 
0.0427*** 0.0404*** 

(0.0102) (0.0098) 

Private R&D investment ― ― ― ― 
-0.0210** -0.0142* 

(0.0084) (0.0078) 

Participating firms 
0.2735*** 0.2466*** 0.2841*** 0.2590*** 0.3010*** 0.2773*** 

(0.0425) (0.0408) (0.0424) (0.0405) (0.0424) (0.0402) 

Participating Departments 
0.4724*** 0.3734*** 0.4703*** 0.3720*** 0.4674*** 0.3674*** 

(0.0499) (0.0489) (0.0469) (0.0460) (0.0514) (0.0500) 

Proportion of non-CSU authors 
0.5565*** 0.4601*** 0.5710*** 0.4863*** 0.5589*** 0.4692*** 

(0.0533) (0.0484) (0.0515) (0.0469) (0.0543) (0.0499) 

Field categories YES YES YES YES YES YES 

Root MSE 0.4324 0.4006 0.4295 0.3974 0.4324 0.4005 

Adjust R2 0.2287 0.3380 0.2517 0.3593 0.2378 0.3462 

F-statistics  48.32 160.24 56.57 171.22 39.15 126.18 

p-value  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Observation 1,433 1,433 1,520 1,520 1,391 1,391 

Note: The parentheses are White’s robust standard error. *** 1%, ** 5%, and * 10% levels of statistically 
significant. 
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The logarithm of the proportion of non-CSU authors per article has a positive and statistically 

significant relationship, at the 1 percent level, with the size of research teams. Again, the non-CSU 

authors comprise outside team members, such as research employees of private companies and 

faculty members from other universities. The share of non-CSU authors is related with the size of 

research teams and the magnitude of estimated slope coefficients are higher than other variables. 

For example, in model 3, ceteris paribus, when there is a 1 percent increase in the proportion of 

non-CSU authors per article is associated with an increase the size of research teams by 0.57 

percent. We have two different measures of the degree of field variety in the team. First, the 

logarithm of the number of WoS research fields per article is insignificant and the estimated slope 

coefficients are quite small across the model 1, 3 and 5. Furthermore, it has a negative relationship 

with the size of research teams. 

Presumably, it might have some liner relationships with other independent variables, such as a 

collinearity problem, given that the values of the adjusted R-squared and F-statistics in model 1, 

3, and 5, are smaller than in the other models, which do not include in the number of WoS research 

fields. Alternatively, the field variety dummy variable might be related to the size of research 

teams, at 1 percent statistically significant and the magnitude of estimated slope coefficients are 

much higher than the number of WoS field areas. However, both variables have a negative 

relationship with size of team. These indicate, for example in model 6, ceteris paribus, for every 

1 percent increase in the field variety, the logarithm of the total number of authors per article will 

be decreased by 0.52 percent with 99 percent confidence. Thus, we expect that although it is still 

a negative impact on the size of teams, there still exist meaningful interpretations. First, literally, 

the field variety is not merely to predict the size of research teams, but it is to evaluate the quality 
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of the research at the team level. Second, the field variety is possibly linked with the PI’s subjective 

research interests or the purpose of team projects.  

As shown as Table 19, the correlation matrix, the value of R&D equipment, R&D expenditures, 

and public & private contributions to grant and contract awards are highly correlated with each 

other, especially between public grants and contracts and R&D expenditures, and between the 

value of R&D equipment and R&D expenditures. Thus, in order to prevent a multicollinearity 

problem, we handle these financial variables within separate models. First, in model 1 and 2, the 

logarithm of the value of R&D equipment, which is a 3 year sum of investments in new equipment 

by the PI’s or first author’s department. This measure of the value of R&D equipment has a positive 

relationship with the size of research teams, at 1 percent statistical significance. This implies that 

the magnitudes of physical research capital is positively related to the size of research team. By 

the results, 1 percent increase in the value of R&D equipment of a department is associated with a 

larger size of research teams of 0.038 percent in model 1 and by 0.036 percent in model 2.  

In model 3 and 4, we measure the overall magnitude of R&D conducted in the PI or first 

author’s department using the logarithm of total R&D expenditures (Lee et al 2015). The results 

indicate that the overall magnitude of R&D is related to the size of research teams: the expenditures 

make it possible to hire more team members, such as research staff and GRAs, and to spend 

investment for the R&D equipment, see Table 18. In model 3, for every 1 percent increase in the 

R&D expenditures will make to increase the team size by 0.06 percent with 99 percent confidence.  

Finally, we want to know how different types of R&D investments affect the size of research 

teams, so we attempted to run OLS regressions with public sector and private sector R&D 

investments. In models 5 and 6 of Table 20, the logarithm of public R&D investment has a positive 

impact on the size of research teams, at 1 percent level of significance, but the logarithm of private 
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investment has a negative relationship with team size, at 5 and 10 percent in models 5 and 6, 

respectively. Interestingly, the results tell us that a 1 percent increase in the private R&D 

investment is associated with a smaller size of research team by 0.021 percent in model 5 and 

0.014 percent in model 6. 

Table 21―OLS regression results of team assembly mechanism (journal publications), 
dependent variable is relative proportion of non-CSU authors: log(proportion/(1-
proportion))  

   Models (Dependent variable: Relative non-CSU author contribution) 

Variable  [1] [2] [3] [4] [5] [6] 

WOS research areas 
0.0565 

― 
0.0763** 

― 
0.0572 

― (0.0379) (0.0368) (0.0384) 

Field variety (dummy) ― 
0.0108 

― 
0.0916 

― 
0.0470 

(0.0615) (0.0564) (0.0624) 

Value of R&D equipment  
0.0899*** 0.0907*** 

― ― ― ― (0.0154) (0.0155) 

R&D expenditure  ― ― 
0.0919*** 0.0906*** 

― ― (0.0199) (0.0196) 

Public R&D investment ― ― ― ― 
0.1292*** 0.1308*** 

(0.0212) (0.0214) 

Private R&D investment ― ― ― ― 
0.0508*** 0.0495*** 

(0.0135) (0.0135) 

Team size 
1.0090*** 1.0103*** 1.0287*** 1.0531*** 0.9969*** 1.0077*** 

(0.0393) (0.0446) (0.0384) (0.0436) (0.0410) (0.0468) 

Participated firms 
-0.0015 -0.0024 0.0345 0.0317 0.0543 0.0529 

(0.0823) (0.0823) (0.0819) (0.0821) (0.0835) (0.0836) 

Field categories YES YES YES YES YES YES 

Root MSE 0.7529 0.7535 0.7541 0.7546 0.7389 0.7393 

Adjust R2 0.3633 0.3623 0.3683 0.3673 0.3933 0.3925 

F-statistics  198.96 191.87 212.78 204.86 165.36 162.61 

p-value  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Observation 1,433 1,433 1,520 1,520 1,391 1,391 

Note: The parentheses are White’s robust standard error. *** 1%, ** 5%, and * 10% levels of statistically 
significant. 

 
On the contrary, for every 1 percent increase in the logarithm of public R&D investment will 

make to increase the size of research teams by 0.043 percent in model 5 and 0.040 percent in model 
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6. Publicly funded science tends to be larger scale. Private grants and contracts, conversely, tend 

to be awarded to departments where research is conducted by smaller and more discrete team 

efforts. 

As a final exercise with the random sample of research teams drawn from journal articles, 

Table 21 analyzes the proportional contribution of the various factors to the number of non-CSU 

authors on the research team. From equation (29), the dependent variable is the logarithm of the 

relative proportion of non-CSU authors per article. For the reason of taking this variable is how 

the non-CSU authors per article are assembled and what kinds of factor affect the assembly 

mechanism. The control variables are the logarithm of the total number of authors per article as 

team size and the logarithm of the number of participating private firms. In addition, the field 

category variable is included in all models. The structures and components are similar to Table 20, 

team assembly mechanism models. 

Remarkably, the field variety and the number of participated private companies per article are 

not significant on the assembly mechanism of non-CSU authors, except model 3 with WoS 

research areas. Moreover, the logarithm of private R&D investment has a positive impact on the 

assembly non-CSU authors per article. Thus, to compare between Table 19 and 7, private R&D 

investment only affects the assembly mechanism in terms of non-CSU authors, but is not related 

to the total number of authors per article.  

Team size is also found to be positively related to the relative proportion of non-CSU authors 

per article, with 1 percent level of statistical significance in all models. Ceteris Paribus, for every 

1 percent increase in the size of research teams will make to increase the relative proportion of 

non-CSU authors per article by 1.053 percent in model 4.  
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3. University research teams producing patented inventions 

As shown as in Chapter 1, the knowledge production function varies across the different 

research units as well as across the different types of knowledge dissemination channels, or 

research outputs. 

Table 22―Summary statistics research teams producing patented inventions: 123 sample 
research teams (patents), (1989-2012)  

  Summary Statistics 

Variables Obs. Mean Std. Dev Min  Max 

1. Inventor teams 123 3.04 1.68 1.00 9.00 

2. Proportion of Non-CSU inventors (%) 123 0.18 0.26 0.00 0.83 

3. CSU departments (count) 123 1.24 0.56 1.00 3.00 

4. Time lag (?) 123 2.21 2.05 0.00 12.00 

5. Cited Patents (count) 123 19.63 70.05 0.00 643.00 

6. Cited non-patents (count) 123 24.61 69.46 0.00 544.00 

7. DWPI family members (count of documents) 122 6.22 9.17 1.00 68.00 

8. DWPI family countries (count of countries) 122 66.11 51.36 1.00 125.00 

9. Assignees (Count) 123 1.65 1.43 1.00 10.00 

10. Count of Participating firms 123 0.32 0.53 0.00 2.00 

11. Public R&D grants and contracts to lead 

department ($ millions) 123 7.12 6.60 0.26 35.35 

12. Private R&D grants and contracts to lead 

department ($ millions) 123 0.84 1.05 0.00 5.37 

13. R&D equipment acquisitions by lead 

department ($ millions) 123 1.57 1.24 0.00 6.10 

14. R&D Expenditures by lead department 

($ millions) 123 9.38 7.79 0.69 37.86 

Note:  a) The value of public grant awards of PI or first author’s department at each year.  
b) The value of private sponsorship grant awards of PI or first author’s department at each year. 
c) Total R&D expenditure of PI or first author’s department at each year. 
d) 3 years stock of the value of equipment at each year. 

 
Following that line of reasoning, we assume that there may be significant disparity between 

the assembly of teams that tend to produce patented inventions and the assembly of research teams 

that only produce published journal articles. Table 22 provides summery statistics for a sample of 

research teams that created the inventions for the 123 patents assigned to CSU, from 1989 to 2012.  
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We have selected data on several variables, which might be related with the team assembly 

mechanism. Table 23 displays the correlation matrix of these variables. As we have seen in the 

previous section, the financial variables, such as R&D expenditures, the value of R&D equipment, 

and public and private R&D investments, are structurally analogous to each other, especially 

between public R&D investment and R&D expenditures where there is almost 90 percent 

correlation. Thus, we run these variables in different models. 

Table 23―Correlation matrix of all variables: 123 research teams (from CSU patents), 
(1989-2012) 
  Correlation 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. Inventors 1.00              

2. Non-CSU inventors 0.59 1.00             

3. CSU departments 0.42 0.24 1.00            

4. Time lag -0.15 -0.05 0.03 1.00           

5. Cited Patents -0.01 0.00 0.07 -0.01 1.00          

6. Cited non-patents -0.01 -0.08 0.06 0.08 0.85 1.00         

7. Family members  0.01 0.03 0.39 0.18 0.19 0.15 1.00        

8. Family countries 0.10 0.12 0.08 -0.25 0.02 -0.01 0.19 1.00       

9. Assignees 0.37 0.40 0.17 -0.16 -0.02 -0.05 -0.02 0.28 1.00      

10. Participated firms 0.03 -0.06 0.08 0.08 -0.08 -0.08 0.02 -0.05 -0.07 1.00     

11. Public R&D -0.06 -0.03 -0.16 -0.19 0.07 -0.08 -0.09 0.07 0.05 -0.09 1.00    

12. Private R&D 0.10 0.14 0.22 -0.18 -0.10 -0.11 -0.12 0.24 0.12 0.01 0.05 1.00   

13. R&D equipment  0.03 -0.10 -0.13 -0.31 -0.12 -0.19 -0.18 0.26 0.19 -0.03 0.51 0.12 1.00  

14. R&D Expenditures -0.07 -0.02 -0.16 -0.14 -0.04 -0.14 -0.12 0.09 0.06 -0.11 0.90 0.13 0.42 1.00 

Note: Bold numbers are the correlation with significance level for each entry at p < 0.5. 

 

1) Dependent variable 

The dependent variable in the assembly mechanism of patent research teams is the total number 

of inventors per patent, similar to our previous analysis of research teams on published journal 

articles. By comparison with the article team assembly mechanism, the mean value of patent team 

size is relatively small: it is 3.04 inventors per patent, but the mean value of article team size is 
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5.49 authors per article. Similarly, the maximum value of patent team size is 9 inventors per patent, 

but in the maximum authors per article is 27. (See Tables 17 and 21.)  

2) Independent and control variables  

Most of independent variables are identical with those used in the previous section to analyze 

formation of research teams on published journal articles, including public and private R&D grants 

and contracts made to the lead department, the value of R&D equipment acquisitions by the lead 

department, and R&D expenditures by the lead department, and the new variables here are the 

count of Derwent World Patents Index (DWPI) family members and countries32 per patent. The 

control variables consist of (1) the number of participating CSU departments per patent, (2) the 

proportion of non-CSU inventors per patent, (3) the number of assignees33 per patent, and (4) the 

number of private firms per patent.  

3) Regression results 

As shown as Table 24, we run six different models, analogous to the models in the previous 

section. The logarithm of the number of participating CSU departments is positively related to the 

size of co-inventor research teams on patents across all models with 1 percent level of significance. 

Similarly, the proportion of non-CSU co-inventors also has a positive relationship with the team 

size at 1 percent statistical significance. Interestingly, according to the regression results in both 

article and patent team assembly mechanism, the variable of participating CSU departments seems 

to be a significant factor for university research team formations.  

However, the case of multiple departments in the CSU into one team is one of the different 

types of the cross-functional team formation: again, as shown as previous section IV, there are 

                                                 
32 The DWPI family members and countries are a set of either patent applications or granted patents taken in 
multiple countries to protect a single invention by a common inventor 
33 The inventor(s) can make the assignment of the rights granted under the patent, as an assignor, to a third-person 
party or business, which is the assignee. 
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several different types of cross-functional team formation, such as combinations of different 

functional teams in the university, a composite team to team organization, (cross universities or 

university and private sector), a team supported by sponsorships of multiple research grants, and 

so on.  

Table 24―Regression results of team assembly mechanism (patents), dependent variable is 
team size: log(inventors)  

  Models (Dependent variable: Team size) 

Variable  [1] [2] [3] [4] [5] [6] 

DWPI family members  
-0.0162 

― 
-0.0190 

― 
-0.0222 

― 
(0.0491) (0.0453) (0.0451) 

DWPI family countries ― 
0.0082 

― 
0.0085 

― 
0.0047 

(0.0237) (0.0231) (0.0234) 

Private R&D investment 
0.0659 0.0653 

― ― ― ― 
(0.0449) (0.0449) 

Public R&D investment 
-0.0117 -0.0105 

― ― ― ― 
(0.0352) (0.0350) 

R&D expenditure  ― ― 
0.0583 0.0573 

― ― 
(0.0496) (0.0488) 

Value of R&D equipment  ― ― ― ― 
0.0595* 0.0580 

(0.0352) (0.0362) 

CSU Departments 
0.6244*** 0.6173*** 0.6277*** 0.6155*** 0.6388*** 0.6258*** 

(0.1186) (0.1165) (0.1064) (0.1038) (0.1065) (0.1022) 

Proportion of non-CSU inventors 
0.6375*** 0.6370*** 0.6142*** 0.6160*** 0.6355*** 0.6356*** 

(0.1619) (0.1619) (0.1499) (0.1496) (0.1549) (0.1542) 

Count of assignees 
0.1635* 0.1492* 0.1626** 0.1486* 0.1629* 0.1529* 

(0.0845) (0.0890) (0.0814) (0.0858) (0.0822) (0.0853) 

Participated firms 
0.0739 0.0723 0.0624 0.0605 0.0727 0.0706 

(0.0870) (0.0857) (0.0870) (0.0859) (0.0844) (0.0836) 

Field categories YES YES YES YES YES YES 

Root MSE 0.4650 0.4649 0.4635 0.4635 0.4612 0.4615 

Adjust R2 0.2615 26.1800 0.2716 0.2717 0.2682 0.2672 

F-statistics  8.0900 8.1500 10.5900 10.6900 11.0400 11.3100 

p-value  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Observation 117 117 122 122 120 120 

Note: The parentheses are White’s roďust standard error. *** ϭ%, ** 5%, and * ϭϬ% levels of statistiĐally 
significant. 
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Although, we need to consider more types of the cross-functional team formation, this result 

seems to show one possibility of the importance of cross-functional teams for the size of research 

team. However, it does not mean that the variable is also an important factor for research impact, 

such as measured by citations in the next section. The logarithm of the count of assignees per 

patent affects the positive influence to the size of research teams of patents. For example, every 1 

percent increase in the number of assignees per patent corresponds to an increase the size of 

research teams by 0.163 percent, at 5 percent level of statistical significance in model 3: the other 

models have a positive correlation, but 10 percent level of significance. However, the variable of 

the number of participating private companies per patent is insignificant across all models. From 

the point of view of the heterogeneous research environments across the different knowledge 

outputs, the major purpose of patenting the inventors or teams’ idea and invention is to protect 

their knowledge. In other words, it is deeply aligned with the intellectual property rights (IPRs). 

Thus, there is a contrast between article and patent team assembly mechanisms.  

Another possibility of the results is the different perspectives between university and business 

inventors. Basically, the university is a non-profit organization and most often pursues a public 

domain mechanism even though the research team formations in modern universities are like small 

businesses (Etzkowitz, 2003). However, the private company is a profit maximizer and more often 

pursues a IP based mechanism, so if the purpose of university patenting is for protecting knowledge, 

the degree of participation of private firms is quiet low. As shown as Table 22, the mean value of 

participating private firms is 0.32 per patent.  

In counterpoint to the article team assembly mechanism in Table 20, most of the financial 

variables are insignificant across all models in Table 24, except the value of R&D equipment in 

model 5. It is quite probable that financial factors might not be important for the assembly 
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mechanism of research teams of the patents, because patents are imperfect indicator of the number 

of new inventions and are applied for at an intermediate stage in the process of transforming 

research input into benefits from knowledge output (Pakes and Griliches, 1989).  

Finally, DWPI patent family in both family members and countries per patent is insignificant 

and the family members per patent has a negative impact on the size of research teams, but not the 

count of family countries. Again, the DWPI family members and countries are a set of either patent 

application or publications taken in multiple countries to protect a single invention, so it seems not 

to seriously affect the size of research, but we expect that it affects to the research impact like the 

number of citation per patent as the quality of research, which is further examined in the next 

section. 

VI. Impacts of Team Research 

The impacts of the team based organization of research influences not only the quality of 

research, but also plays a role in the economic and social benefits with respect to knowledge 

spillovers generated. Moreover, engagement in a team setting is beneficial for the researchers, in 

terms of developing new skills, improving their methodologies, and extending their professional 

networks. In general, the number of citations per article or patent is one of the measurements or 

assessments of research quality and impact34.  

However, the impact of research outputs, such as citation rates of published journal articles 

and patents, tends to have highly skew distributions in the most academic fields and technologies, 

(Scherer and Harhoff, 2000). Moreover, when collecting data on journal articles via Web of 

Science or other sources, there exists a time lag problem in citation counts. Therefore, regression 

analysis is not likely the best measurement of testing the impact of research with the number of 

                                                 
34  In some cases, journal impact factors and top 1 %, high impact of paper are to measure the quality of research.  
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citation counts directly. In addition, this chapter will examine the difference between team based 

research impact and departmental or aggregate level of research impact.  

A. Impact of published journal articles as research output 

In order to measure the impact of research on the published journal articles, we attempt to 

classify binary or categorical groups. Table 25 provides summary statistics of times cited of 

published journal articles for different groups: 1) single private firm per article versus multiple 

private firms per article, 2) single CSU department per article versus multiple CSU departments 

per article, 3) three different team sizes, such as large sized teams (more than 9 authors per article), 

mid-sized teams (between 4 and 9 authors per article), and small sized teams (less than 4 authors 

per article), and 4) four different disciplinary field groupings. 

Table 25―Summary Statistics of times cited of published journal articles by different groups, 
(1989-2012) 

  Summary Statistics (Times cited) 

Variables (different groups) Obs Mean Std. Dev. Min Max 

Single participated firm 1352 17.41 63.30 0.00 1507.00 

Multiple participated firms  175 12.13 18.72 0.00 95.00 

Single CSU department 1366 16.22 61.24 0.00 1507.00 

Multiple CSU departments 161 21.78 47.10 0.00 499.00 

Large sized teams 139 25.78 65.07 0.00 499.00 

Mid-sized teams 993 17.23 67.49 0.00 1507.00 

Small sized teams 395 12.57 30.08 0.00 381.00 

Field dummy for Biology/medical/life sciences 809 18.71 75.70 0.00 1507.00 

Field dummy for Engineering/Computer/Math/Physics 422 16.88 40.24 0.00 499.00 

Field dummy for Environmental/Geosciences 206 12.01 22.04 0.00 215.00 

Field dummy for Social Sciences & Others 90 10.28 24.89 0.00 163.00 

 

1. The impact of participated private companies per article 

Figure 28 represents the cumulative density function (CDF) of citations received by published 

journal articles in binary groups of those with and without participating firms, and the two 

distributions seem to have quite similar patterns of cumulative density.  
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Figure 28―Cumulative Density Function (CDF) of times cited at 

participating private firms: 1527 sample research teams 
(journal publication), (1989 to 2012) 

 

Thus, we cannot say which group has higher impact.  The group with a single firm has 

relatively higher frequency than the group with multiple firms. Moreover, in Table 25, the mean 

value of times cited in the group with a single firm per article is 17.41 which is higher than the 

mean for the group with multiple private firms per article group, at 12.13 per article. Although the 

non-parametric test results are insignificant, the group of articles associated with a single firm per 

article appears to have higher research impact than the group of articles associated with multiple 

firms per article. 

2. The impact of the participation of CSU departments per article 

Figure 29, the group of multiple CSU departments per article has a higher research impact than 

single CSU department. Table 25, the mean value of the multiple departments is 21.78 times cited 

per article, but the mean value of single department is 16.22 per article. Therefore, the group of 
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multiple CSU departments per article has a higher research impact than the group of single 

department per article. 

 
Figure 29―Cumulative Density Function (CDF) of times cited at 

participated CSU departments: 1,527 sample research teams 
(journal publication), (1989-2012) 

 
3. The impact of team size per article  

The role of research team size is still controversial in the study of team assembly mechanisms 

and its research impact. However, most previous studies have shown that the size of teams has a 

positive effect on the quality of research and assembly mechanisms, (Guimera et al, 2005; Adams 

et al, 2005; Wuchty et al, 2007; Zhu et al, 2013; Uzzi et al, 2013; Lee et al, 2015). According to 

Guimera et al (2005), the main purpose of team assembly mechanisms is for incorporating 

individual members with diverse ideas, skills and resources. Although the size of research teams 

is a major carrier of the assembly mechanisms in the previous section, it did not tell us the impact 
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of team sizes. Thus, we want to evaluate the quality of team based research and how the different 

team sizes affect the number of citations per article. 

 
Figure 30―Cumulative Density Function (CDF) of times cited based on 

team sizes: 1,527 sample research teams (journal publication), 
(1989-2012) 

 
Table 25 shows that the mean value of the large sized research teams’ citation counts is 25.78 

per article, which is a relatively higher impact than the mean values of mid-sized and small sized 

teams, 17.23 and 12.57, respectively. Figure 30 displays the CDFs of different team sizes. The 

large sized research teams have the highest research impact on the number of citations per article 

and conversely the small-sized research teams have the lowest impact. According to the results of 

Lee et al (2015), the team size has a continually increasing relation with the likelihood of a high-

impact article, which is analogues in our results of team sizes.  
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In addition, as shown as Figure 22 in Section III, the number of citations per article seems not 

to relate the team size. However, there is a significant disparity between the Figure 22 and 12, 

because it is a different measurement of the team size. In aggregate or department levels, the team 

size can be calculated by the average number of authors per article35, but in team levels, it can be 

measured by the total number of authors per article.  

4. The impact of field categories per article 

 
Figure 31―Cumulative Density Function (CDF) of times cited for four 

different field groupings: 1,527 sample research teams 
(journal publication), (1989-2012) 

 

                                                 
35 The total number of authors are divided by the total number of papers at t time and i department or college. 
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In the regression analysis in the previous section, the field category variable was absorbed in 

the OLS models in order to maintain model stability36, so we could not provide field specific 

differences. However, in this section, non-parametric analysis allows us to consider field effects. 

In Figure 31, the CDF of journal article citations the group of engineering, computer science, 

mathematics and physics have a greater probability than other fields of high citation counts per 

article in the range exceeding 100 times cited.  

However, from Table 25, the mean value of the group of biology, medical, and life sciences, 

which includes the agriculture and veterinary sciences, is 18.71 per article, exceeding the mean 

value of the group of engineering, computer science, mathematics and physics at 16.88 per article. 

The magnitudes of research impact as measured by citation counts do vary across the different 

fields or disciplines. 

B. Research impact of the patents 

Given previous results and interpretations, it appears that the different research outputs of 

published journal articles and patents have different research impacts, likely associated with the 

heterogeneous research environments across the university. Table 26 provides summary statistics 

of citing patents by different groups: 1) corporate co-assignment of patents versus patents assigned 

only to the university, 2) single CSU department versus multiple CSU departments per patent, 3) 

single assignee versus multiple assignees per patent, 4) single cited reference: patents versus 

multiple cited references: patents ,5) single DWPI family versus multiple DWPI families, included 

in family members and countries, 6) different team sizes, and 7) time lags between patent 

application and publication.  

                                                 
36  The absorbing of one categorical factor is designed for datasets with many groups. However, in some cases, field 
dummy variables rather than a category variable make it possible to harm the degrees of freedom in each model.  
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Table 26―Summary Statistics of citing patents by different groups, (1989-2012) 

  Summary Statistics (citing patents) 

Variables (different groups) Obs Mean Std. Dev. Min Max 

No corporate co-assignment per patent 88 6.966 12.871 0 71 

One or more corporate co-assignment per patent 35 4.171 7.106 0 34 

Single CSU department per patent 102 4.990 8.809 0 46 

Multiple CSU departments per patent 21 11.905 19.565 0 71 

Single cited reference: patents 28 2.893 9.678 0 51 

Multiple cited references: patents  95 7.137 11.943 0 71 

Single DWPI family member per patent  18 5.555 10.579 0 45 

Multiple DWPI family members per patent 105 6.276 11.773 0 71 

Single DWPI family country per patent  38 4.131 7.669 0 45 

Multiple DWPI family countries per patent  85 7.082 12.873 0 71 

Large sized teams (more than 5 inventors) 14 11.857 15.913 0 51 

Mid-sized teams (between 5 and 3 inventors) 52 6.096 11.749 0 71 

Small sized teams (two or single inventor)  57 4.842 9.856 0 46 

Time lag btw application and publication (< 1 year) 57 4.526 9.657 0 51 

Time lag btw application and publication (2 or 3 years) 42 9.190 14.797 0 71 

Time lag btw application and publication (> 3 years) 24 4.792 8.193 0 34 

 

1. The impact of the corporate co-assignments per patent 

The impact of collaborations between university and industry is complex and controversial, 

especially privately sponsored research. In the CSU database, the total number of industry 

sponsored grant awards and contracts from 1989 to 2012 is 4,387, and the cumulative value of 

private awards over this period is $268.7 million. In 2012, the value was $21.84 million. The 

average annual growth rate over 24 years is 12.1 percent. According to Wright et al (2014), 

corporate-sponsored research appears valuable for university innovation with private sponsored 

university inventions appearing to be more accessible and useful, having higher patent citation 

rates than inventions sponsored only by grants from the government or non-profit organizations.  
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Figure 32―Cumulative Density Function (CDF) of citations to CSU 

patents with corporate co-assignment of patents, (1989-2012) 

 
However, our empirical evidence appears contrary to the results in Wright et al (2014). Table 

26 shows that the mean value of citing patents to the group of CSU patents with participating 

private firms is 4.171, but the mean value of citing patents to the other group of patents, with no 

firm participation, is 6.966 per patent. In the CSU data, thus, it appears that patented outputs from 

privately sponsored or industry collaborating research teams has less impact than the patented 

outputs from publicly sponsored research teams. In Figure 32, the CDF of citing patents indicates 

that the impact of patents without private firm sponsorship is higher than those with private 

sponsorship.  

Although there are numerous reasons for the different results regarding the role of corporations 

in university research and invention, it seems reasonable to consider initially the size of corporate 

R&D investments as the main factor explaining the differences. This factor is intimately related 



140 
 

with the academic rankings and reputations of universities. For example, Wright et al (2014) report 

that the oil company British Petroleum (BP) announced in 2007 that the company invested $500 

million to fund a decade of alternative energy research at the University of California, Berkeley. 

The size of just that one (major) private R&D funding award was greater than the total sum of 

private R&D investment over 24 years at CSU. In the CSU data, 46 percent of privately sponsored 

patents were from smaller local Colorado companies, and only 6 percent were sponsored by 

relatively large companies like Chevron Corporation.  

2. The impact of the participation of researchers from multiple CSU departments 

 

 
Figure 33―Cumulative Density Function (CDF) of patent citations by 

the number of participating CSU departments, (1989-2012) 

 
As shown as Table 26 and Figure 33, the group of patents with inventors from multiple CSU 

departments has higher citation rates than the group of patents by inventors from a single 
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department. This result is an obvious parallel to the research teams of published journal articles. 

The mean value of citations to patents from multiple departments, at 11.905, is almost twice that 

of patents from single departments, 4.990. Thus, research teams from multiple departments have 

better performance and impact than single department research teams.  

3. The impact of the cited references per patent 

Citation mapping tracks a patent’s cited and citing references to discover technological 

relationships. A “backward” citation is defined as a citation made by a patent to patents that were 

issued earlier.  

 
Figure 34―Cumulative Density Function (CDF) of patent citations received, 

based on the number of patent citations made, (1989 to 2012) 

 
Accordingly, a “forward” citation is a citation made to a patent by more recently issued citing 

patents. Here, we examine how the number of cited patents, or backward citations, related to the 

number of citing patents, or forward citation. The sample is divided into binary groups: 1) those 
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CSU patents that make just a single or no backward citations to earlier patents, and 2) those CSU 

patents that make multiple backward citations to earlier patents. Table 26 shows that the mean 

value of forward citations received by the group of patents with multiple backward citations is 

higher than the other group, at 7.14 and 2.89, respectively. Thus, the number of cited patents is 

positively related to the number of citing patents. 

4. The impact of the DWPI patent family per patent 

A patent family is the set of either patent application or publication taken in multiple countries 

to protect a single invention. The World Intellectual Property Organization (WIPO), currently has 

188 member states, and the Derwent World Patent Index (DWPI) maintained by Thompson 

Reuters covers more than 30.33 million inventions represented in over 64.8 million patent 

documents worldwide.37 The aim of this section is to examine how the DWPI patent family size 

and structure is related to the impact of the research teams patented research outputs, as measured 

by forward patent citations.  

 
Figure 35―Cumulative Density Function (CDF) of patent citations based on the 

number of DWPI family members and the number of countries covered 
by DWPI families, (1989-2012) 

 

                                                 
37  Source: Thomson Reuters Innovation (http://info.thomsoninnovation.com/) 

http://info.thomsoninnovation.com/
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In Table 26, the mean number of citing patents to the group of CSU patents with just a single 

DWPI family member is 5.55 and the mean citations to CSU patents protected in just one country 

is 4.131. These values are slightly smaller than the group of CSU patents with multiple DWPI 

family members and countries. It seems reasonable to assume that patents with multiple DWPI 

family members registered in multiple countries can have more chances to be cited. Moreover, it 

is likely also to increase self-citations within the members of the patent family. But most 

fundamentally, it is likely that patents on inventions with greater importance are likely both to be 

protected more widely, with more patent family members, and at the same time to be cited more 

frequently by subsequent patents. Figure 35 shows the CDFs of two types of DWPI patent family, 

members and countries per patent, by binary groups. 

With regard to the results of patent team assembly mechanisms from previous section, the 

research impact indicated by DWPI patent family members or countries per patent is insignificant 

and has ambiguous results. However, we expect that the binary independent distribution might 

vary across different groupings than those chosen here. For example, the binary groups can be 

organized between above average and below average number of DWPI patent family members or 

countries per patent, rather than single versus multiple family members of countries per patent.  

5. The impact of team size on patent citations 

Figure 36 shows that the group of CSU patents made by large sized research teams, defined 

here as more than 5 inventors per patent, has the highest impact as measured by the number of 

citing patents. Similarly, the group of patents by mid-sized research teams has higher impacts in 

terms of citing patents than the group of patents by small sized teams. In Table 26, the mean value 

of citing patents per patent in the group by large sized teams is 11.85 per patent, which is more 

than two times greater than in the group by small sized research teams, at 4.84 per patent. Thus, it 
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appears to support the conclusion that team size affects the impact of an invention as measured by 

the number of citing patents positively, and the result is an obvious parallel to the number of 

citations per article found in the previous section. 

 
Figure 36―Cumulative Density Function (CDF) of times cited at the 

team size: the citing patents by three sample groups, (1989-
2012) 

 
6. The impact of time lag between application and publication per patent  

According to Heher (2007), the of benchmarking time lags in the technology transfer process 

is typically 6-10 years elapsing from invention disclosure to significant income from a license. 

Moreover, the general time lag between patent application and publication of a granted patent is 

2-3 years in most of the major patent offices. Thus, we examine how the length of time lags affect 

the quality of patents, as measured by the count of citing patents per patent. From Table 26, the 

highest mean value of citing patents is 9.19 for patents in the group with 2 or 3 years of time lag 
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between application and publication. The groups of patents with a lag of one year or less and with 

more than 3 years have similar results, with means of 4.53 and 4.79 citations per patent, 

respectively. Figure 37 displays the CDFs of patent citations per patents based on the time lags 

between patent application and publication by three different sample groups, and shows the group 

with 2-3 year time lags distinguished from the other two groups. 

 
Figure 37―Cumulative Density Function (CDF) of patent citations based on 

the time lag between application and publication, (1989-2012) 

 
VII. Conclusion 

This chapter had attempted to explore the agency of knowledge production, viewing scientific 

research teams as quasi-firms arising as independent knowledge-creating entities within the 

university context. To sum up, the following methods were used: (1) summary statistics of the 

aggregate level of research teams and their time trends; (2) a conceptual framework of research 
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teams; (3) analysis of ego-centric social networks of research teams (4) OLS regression of the 

sample research teams selected from entire groups, and (5) analysis of individual factors on impact 

of team research as measured by forward citations. Proceeding from what has been said above, it 

should be concluded that the size of research teams has a positive impact on university knowledge 

production and technology-transfer activities, and the team assembly mechanisms are significantly 

associated with key factors such as the interdisciplinary structure of teams and the participation of 

outside members. In the empirical approaches attempted, we explore two different views of 

academic-research teams. First, the findings from the egocentric social network illustrate how the 

existing networks and their structures can affect team formations and performances. Particularly, 

the participation of members from outside increases the size of the egocentric research team, and 

the growth patterns of the percent share from outside are an obvious parallel to the patterns of team 

size. Moreover, the pattern of outside members’ networks clustered around each other, defining 

the ego’s external research networks outside the university. As a result, the dynamics of the 

egocentric research teams were that the growth rate of team size came at the cost of reduced team 

density. The downward-sloping trend in density tells us that the egocentric research teams have 

been transformed from closer collaborations to more network-based relationships over time, with 

team size having an upward tendency over time.  

Even though it makes it possible to explore the inside of research teams and their dynamics, 

the egocentric team analysis might be skewed, due to specific field characteristics and the research 

environments or idiosyncratic features of the ego that was selected for the case study. So, as an 

alternative approach, we selected a sample of 1,527 research teams associated with published 

research articles and a sample of 123 research teams associated with patents. The findings of this 

analysis indicate that the number of participating private companies has a positive and significant 
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effect on the research article team’s assembly but an insignificant effect on the patent team’s 

assembly. As shown in Chapter 1, we can expect different results across the different types of 

knowledge outputs.  

Other findings from the regression results show that the number of CSU departments, which 

represents cross-functional and interdisciplinary team formation, is statistically significant in 

influencing the team’s assembly mechanism and resulting team size for teams producing both 

articles and patents as outputs. Thus, it seems reasonable to conclude that cross-functional team 

formation is more effective and common in the university context. Similarly, the proportion of 

outside members, which largely consists of former graduate students, faculty members from other 

institutions, and collaborators at private firms, also had a positive and significant impact on the 

team’s assembly mechanism for both articles and patents. In addition, as hypothesized in Section 

IV, research project team formations are also influenced by private sector participations, such as 

involving members of private entities or attracting privately sponsored R&D investment.  

Finally, when it comes to the quality or impact of research teams’ knowledge production, the 

number of forward citations are evaluated. The cumulative density functions (CDFs) of forward 

citations to published articles tell us that research teams with members from multiple departments 

have a higher research impact than research teams from a single department. By the same token, 

larger-sized teams have higher impact than smaller-sized teams, as well as field variety. In the 

teams that produced patent, those with multiple backward citations per patent had a higher impact 

in terms of forward citations than those with a single or no backward citations per patent. This 

indicates that teams building on already existing inventions may be a significant factor for the 

research teams’ impacts on the economic benefits with respect to knowledge spillovers, which 

follows from previous studies.  
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CHAPTER 3. UNIVERSITY KNOWLEDGE SPILLOVERS TO THE AGRICULTURAL 

ECONOMY: THE IMPACT OF AGRICULTURAL RESEARCH AT COLORADO STATE 

UNIVERSITY ON THE COLORADO ECONOMY, AND BEYOND 

I. Introduction 

Technology or knowledge spillovers are one of the most important sources of externality 

benefits in our society and economy. Defined as the spreading of ideas not mediated by market 

transaction, knowledge spillovers are an important issue for economic development, underlying 

many of our commonly held assumptions about commercial innovation processes. Moreover, 

historically, knowledge was understood by most economists to have largely public-good attributes, 

but more recently, the characteristics of knowledge have come to be viewed as more various, with 

different degrees of appropriability, due to differences in tacitness, embeddedness, or legal 

excludability because of well-developed intellectual property rights. In industry, knowledge is one 

of the most important assets today. Firms protect their knowledge or technology by various types 

of intellectual property and contractual mechanisms, including patenting and licensing. Therefore, 

questions of knowledge spillovers in industrial or commercial innovation have been analyzed 

extensively by many researchers (Jaffe, 1989; Mansfield, 1991 & 1995; Henderson et al, 1998; 

Jensen and Thursby, 2001; Adams, 2002; Cohen et al, 2002; Shane, 2002; Thursby and Thursby, 

2011) and are important to both industry leaders and policymakers. 

In high-tech industries, such as biotechnology and semi-conductors, spillovers of technology 

among similar firms are quickly transmitted and improved upon by rivals’ follow-on inventions 

and innovation. Moreover, in technologically advanced countries, such as the United States, Japan, 

United Kingdom, Germany, France, and Israel, there is an ongoing exchange of people and ideas 

among private firms, universities, and research institutes located in close proximity to one another 
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(Krugman and Wells, 2013). Positive externalities can increase the incentives for cooperative 

research and development (R&D) between universities and industries, and are a fundamental 

reason that governments support the costs of R&D. 

Most research universities in the United States are independent non-profit or state-affiliated 

knowledge organizations. They perform not only an educational function, but they also create and 

disseminate new knowledge through their other core functions as well. The roles and missions of 

universities have been shaped by a long history of national government policy changes, such as 

the Morrill Land-Grant Act of 1862, the Hatch Act of 1887, the Smith-Lever Act of 1914, and the 

Bayh-Dole Act of 1980. Following these formative policies, universities in the United States have 

generally come to embrace three missions: an educational mission, a research mission, and an 

outreach mission.  

These different missions have spurred the emergence of different types of knowledge 

dissemination channels used in universities, such as the public domain, tacit dissemination through 

close collaboration, patenting/licensing of inventions and technical knowledge, and venture 

creation. These encompass not only traditional modes of university knowledge dissemination, such 

as publications, conference presentations, collaborative research with industry partners, consulting, 

co-supervising of internships, and so on, but also newer modes of university knowledge 

dissemination, such as university invention disclosures, patenting and licensing of new 

technologies, and the startup of new tech ventures. In agriculture, the Land Grant universities have 

long focused on agricultural research and the commercial dissemination of university innovations 

for regional and state economic growth, as well as for national and international development.  

The main purpose of this chapter is to examine the geospatial pattern of knowledge spillovers 

from agricultural research at Colorado State University (CSU) and thus, by implication, the 
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geospatial pattern of their commercial economic impacts, within Colorado’s agriculturally-related 

sectors or industries, but also nationally and globally. In particular, this chapter seeks to identify 

how different channels of knowledge dissemination from the university differ in the type and 

location of impact. What is the relationship between geographic distance (proximity) and the types 

of university knowledge dissemination mechanisms used? Can we differentiate between 

knowledge dissemination channels specialized in disseminating ‘sticky’ (tacit) versus ‘slippery’ 

(codified) knowledge? We expect the more tacit or ‘sticky’ knowledge to stay within the local or 

regional economy and the latter more codified or ‘slippery’ types more readily to spill over 

nationally or even globally. Moreover, the use of different knowledge dissemination channels is 

likely to be varied across different technological categories.  

The rest of this chapter consists of four sections. Section II reviews and discusses previous 

studies of knowledge spillovers and geographic proximity. Section III provides information on the 

structure of the agricultural economy and the industry value chain within Colorado. Section IV 

shows an empirical analysis of university knowledge spillovers across different dissemination 

channels. Finally, Section V summarizes the main conclusions. 

II. Literature Review 

A. Technology change and interaction between university and industry 

The extent of new knowledge diffusion from universities and public research labs is important 

for private R&D activities and economic growth. Many studies have addressed and evaluated the 

effects of university knowledge spillovers with respect to commercial invention and innovation. 

Mansfield (1991 & 1995), Henderson, Jaffe, & Trajtenberg (1998), and Adams and Griliches 

(1998) study trends in university research and their effects on industrial innovation in the United 

States, finding that a range of new products and processes are based on academic research, and 
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that some industries--such as electrical equipment, instruments, chemicals, drugs, mining, and 

petroleum--would not have developed in the way they did without the influence of academic 

research. University knowledge production activities have the potential both to directly affect 

commercial innovation and indirectly affect economic growth and development.  

Universities, as a group of knowledge creating entities, are a fundamental source of highly 

skilled human capital to industry, and labor-augmenting technological change is a major factor of 

endogenous economic growth. According to Romer (1990), and Grossman and Helpman (1991), 

the role of knowledge capital, together with the stock of human capital, determines the rate of 

aggregate economic growth. Moreover, the distinguishing feature of knowledge is that it is a non-

rival, but potentially excludable good. As mentioned before, however, the range of university 

knowledge is various, characterized by not only public good attributes (non-rivalry and non-

excludability) but also some degree of private good attributes (rivalry and excludability). Agrawal 

and Henderson (2002) study the impacts of university knowledge spillovers focusing on MIT. 

They explore the magnitude, direction, and impact of patenting activities. According to this study, 

university R&D activities, especially faculty members’ research, have a variety of knowledge 

dissemination channels, such as publications, conferences, consulting, informal conversations, 

collaborative research, patents/licenses, co-supervising, and so on. As such, different firms use 

different channels to access knowledge coming from the university. Similarly, Cohen et al (2002) 

and Laursen and Salter (2004) study the influence and role of university and government 

laboratory research on industrial R&D. These studies suggest that university research has a 

considerable impact on industry’s new R&D projects and activities, across the different knowledge 

channels.  
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B. Geographic proximity and localization 

Active interaction between university researchers and industry is important for dissemination 

of some types of knowledge. Because of this, the geographic location of impacts is arguably 

influenced by the characteristics of the knowledge being disseminated. Jaffe (1989) studies the 

importance of geographically mediated spillovers from universities and research labs to 

commercial innovation at the state level. He provides evidence that corporate patenting activities 

depend on university research, indicating that the university research system can increase local 

commercial innovations, but these effects are clearer within specific technical areas, such as drugs, 

chemicals, and electronics than in total. Jaffe et al (1993) compare the geographic location of citing 

patents with the patents they cite. The proportion of citations that geographically matched the 

originating patents indicate that that inventors are more likely to cite patents from the same country, 

state, and even the same metro area (MSA) and thus that the geographic location of knowledge 

spillovers is localized.  

According to Adams (2002), the localization of university knowledge spillovers is greater than 

that of industrial spillovers. He finds the degree of localizations depends on the nearby stocks of 

R&D, but the degree of localization decreases with the size of firms. This study suggests that the 

results on localized university spillovers reflects the dissemination of normal science and the 

industry-university cooperative movement, implying that geographic localization occurs with the 

public good attributes of academic research. Similarly, Ponds et al (2009) find that university 

spillovers can be localized by geographically bounded mechanisms, but university-industry 

collaborations are not limited to the regional scale. Their findings show that university research 

impacts local innovation and inventions not only due simply to geographic proximity, but also due 

to collaboration networks.  
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Buenstorf and Schacht (2013) study the geographic information about patent licensing 

activities of the German Max Planck Society. They point out that proximity does not always 

effectively lead to better commercialization outcomes. Sometimes, proximity causes a negative 

association with foreign licensees. Moreover, there is little evidence to support that local licensees 

have superior information about the quality of academic inventions. Hong and Su (2013) study 

Chinese patent data for collaborations between university and industry. This study indicates that 

geographic distance is an obstructive factor in achieving university-industry collaborations in some 

cases, such as a central government system, and the problem of lock-in, indicating a lack of 

openness and flexibility. Nevertheless, a university’s research and knowledge dissemination 

activities still play a significant role in providing knowledge inputs to industry innovation and 

inventions within its region, at least in particular fields and technologies (Anselin et al, 1997 and 

2000).  

Evaluating both the public and the private benefits of university knowledge spillovers relies 

considerably on the different types of knowledge dissemination. According to Jaffe (1989), when 

the channel is published journal articles, then geographic proximity is unimportant, but when the 

channel is informal interaction, then geographic locations is important in capturing the benefits of 

spillovers. According to Lester (2004), university contributions to regional commercial innovation 

processes can be achieved in various ways. Many universities are searching to develop their 

discoveries and findings by patenting and licensing to local companies, yet the most important 

contribution of the university may be through education and informal interactions as a public 

service to local communities and businesses.  
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III. The Regional Agricultural Economy and Value Chains 

The state economy of Colorado had long depended on agriculture and innovation as drivers of 

economic growth and development. In 2011, the supply of agricultural inputs by Colorado 

agribusinesses contributed $2 billion, crop and livestock sales contributed more than $8 billion, 

and commodity marketing, processing, and food/beverage manufacturing contributed $15 billion 

to the state economy (Graff et al, 2013). Also in the one year of 2011, in agriculturally related 

fields38, CSU researchers received just over $5 million in grants and contracts awarded from 

businesses in or closely related to agriculture, co-authored 65 scientific articles with industry 

partners, made 22 invention disclosures, submitted 11 patent applications, and founded one new 

startup company, again all involving technologies related to agriculture.  

Colorado has a diverse agriculture and food sector, and several subsectors play important roles 

in the state economy. Colorado State University, as the Land Grant university in Colorado and a 

world leader in agricultural sciences, has had economic impact on these subsectors. Colorado is a 

major producer of beef and dairy, at both the farm level and in processing and manufacturing. 

Colorado State University has leading programs in veterinary medicine and animal science with 

emphases on large animal and bovine. Colorado is the 5th largest producer of potatoes in U.S., and 

CSU’s Potato Breeding Selection Program has developed more than 60 percent of the potato 

varieties that are planted in Colorado. Colorado is a major wheat producing state and is home to 

the largest wheat milling company in the U.S., and the Colorado Wheat Breeding and Genetics 

program at CSU has improved more than 30 percent of wheat varieties grown in Colorado (CSU 

Ventures’ Annual Report, 2012). Colorado maintains a good reputation for organic and natural 

                                                 
38 In that year, the range of research fields were included in animal health, dairy (organic milk), pest control, crop 

varieties, soil fertilizer, ground water & irrigation, and food processing & packing. 
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foods. And Colorado hosts not only the two top brewing companies in the nation, but is also known 

for the high quality of local brewing firms39. 

Table 27―The numbers of actively innovating private companies within Colorado’s 
agricultural and food value chain in 2014, congregated into technological 
categories, with cumulative Web of Science (WoS) publications and U.S. patents 
in each category, (1990-2013) 

Technology 
No. of 

company 

No. of WoS 

publications 

No. of U.S. 

patents 

1. Water technology, infrastructure, analytics, and 

management 
93 488 94 

2. Soil fertility and pest control 23 21 68 

3. Plant genetics and new crop varieties 20 30 527 

4. Animal health, nutrition, and herd management 49 339 329 

5. Agricultural information systems 22 3 97 

6. Sensors, testing, and analytics for product quality 

and biosafety 
32 119 99 

7. Bio-energy & fuel 25 7 250 

8. Commodity processing and food manufacturing 38 50 514 

9. Dairy production and dairy product manufacturing 12 14 88 

10. Beer, wine, & spirits production and marketing 67 26 37 

11. Natural, organic, and local foods and marketing 33 7 36 

ϭϮ. ͞Fast & Fresh͟ food service 13 0 0 

13. Other emergent subsectors 33 5 74 

Total  460 1109 2,213 

Source: Graff, Berklund, and Rennels, 2014. 

 
According to Graff et al (2014), an innovation cluster in the agricultural and food industries 

appears to be forming in the Colorado Front Range. Innovation clusters can be defined as the 

geographically proximate sets of interconnected companies and associated institutions in particular 

fields and technologies. The structure of the value chain of Colorado’s agriculture and food 

industries is closely associated with the emerging innovation cluster. The agricultural value chain 

in Colorado includes 550 innovators, of which 460 are private-sector companies and 90 are public-

sector (academic, nonprofit, and government) organizations, and the innovating organizations are 

                                                 
39  Source: Colorado Office of Economic Development & International Trade. www.advancecolorado.com  

http://www.advancecolorado.com/
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categorized according to a dozen areas corresponding to different subsections of the value chain. 

Table 27 displays these areas of agricultural innovation going on in Colorado, and Figure 38 shows 

the geographic landscape of Colorado’s agricultural innovation. 

 

A. Scientific journal publications 
in agricultural and food 
related fields, by city of 
author’s institutional 
affiliation  

 

B. U.S. patents on agricultural and 
food related techniologies filled 
and granted by city of 
inventor’s residence 

Source: Graff, Berklund, and Rennels, 2014. 

Figure 38—A landscape analysis mapping two agricultural R&D outputs: scientific 
journal publications and U.S. patents filled and granted, (1990-2013) 
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The two most active areas in Colorado in terms of scientific research are water and animal 

agriculture (Table 27). Water related companies in Colorado are highly involved in scientific 

research papers and engage in projects for water storage, transmission, and irrigation infrastructure. 

Many of these companies consist of consulting and analytics firms or civil engineering firms. 

Moreover, the companies associated with animal health and nutrition—such as beef, dairy cattle, 

horses and sheep—participate actively in R&D for improving the quality of animal health and 

nutrition and herd management. Furthermore, as shown in Figure 38, the geographical locations 

of Colorado authors in the agricultural value chain are highly concentrated in Northern Colorado, 

between Denver, the main urban center, and Fort Collins, where CSU is located.  

In addition, over the 5 years, 2008-2012, the College of Veterinary Medicine and Biomedical 

Sciences at CSU was top ranked in terms of privately sponsored grant awards and contracts, at an 

average of $5.8 million per year, and industry co-authored journal articles comprised an average 

of 75.6 articles per year. Moreover, the College of Engineering was second ranked over that time 

period, and the Department of Civil and Environment Engineering, which is the center of CSU’s 

water related research, received private sector grants averaging $1.2 million per year, and 

published an average of 12.8 articles per year with industry co-authors. From this evidence, we 

might expect that the roles and missions of land-grant universities are crucially important for the 

local commercial innovation and inventions in the agricultural value chain, as well as the 

importance of geographical proximity.  

IV. Empirical Study of University Knowledge Spillovers in Agriculture  

We seek to take into consideration the full range of potential knowledge dissemination 

channels, as indicated by such measures as academic journal publications, industry co-authorship 

on journal publications, private sponsorship of research grants and contracts, patent applications 
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and granted patents, and startup companies, all from data collected at the level of the different 

research units of Colorado State University (CSU), from 1989 to 2012. These various measures 

make it possible to analyze the extent to which the different types of knowledge dissemination 

channels work. Four general types of knowledge channels are introduced in Chapter 1, including 

(1) the public domain channel, (2) the collaboration channel, (3) the intellectual property rights 

and licensing contracts channel, and (4) the venture creation channel.  

Table 28—Summary of data used to measure four different types of agriculture and food-
related knowledge dissemination channels 

Ag. Related CSU Knowledge Channels Years Sum 

1. Public Domain Channel   

Published journal articles  2008-2010 1,202 

Citations of these published journal articles  2008-2012 6,883 

2. Collaboration Channel   

Privately sponsored grant awards and contracts 1989-2012 543 

Total amount of the private grant awards (million $) 1989-2012 17.58 

Industry co-authored journal articles  1989-2012 290 

3. Patenting/Licensing Channel   

Patent applications and granted patents 1990-2013 76 

Citations of these patents (Excluding self-cites) 1990-2013 1,868 

4. Venture Creation Channel   

CSU affiliated startups  1989-2012 11 

 

In this section, we examine CSU’s knowledge dissemination and its impact on commercial 

innovation within the state economy, specifically in sectors related to agricultural industry, in 

terms of the four different types of knowledge dissemination channels. Moreover, this chapter 

attempts to determine the locations of private industry innovators impacted by or associated with 

CSU agricultural research in both agricultural and related sectors, to confirm the relationship 

between geographic distance and the types of CSU knowledge transfer mechanisms employed. In 
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agriculture and food-related research activity, the four different types of knowledge channels are 

measured using the citations a sample of CSU journal publications, privately sponsored grants 

awards and industry co-authorship on articles, citations of CSU patent applications and granted 

patents, and CSU startups. 

Table 28 provides summary statistics of the data used to measure activity in four different types 

of knowledge dissemination channels for CSU’s agriculture and food-related research activities. 

First, within the context of agriculture (using Web of Science keywords, including agriculture, 

agronomy, entomology, food science, horticulture, plant sciences, soil science, veterinary science, 

and water) we select a target sample of 1,202 journal publications by CSU authors from the Web 

of Science database, published from 2008 to 2010. Using the Web of Science forward citations 

reporting tool, we find these 1,202 CSU articles have been cited 6,883 times, collecting from 2008 

to 2012. We then analyze the location of the authors and other characteristics of these citing papers 

to understand the geographic footprint and the nature of spillovers via the public domain channel. 

Second, from 1989 to 2012, 543 grant and contract awards were received by CSU from private 

sector sponsors to conduct agriculturally related research. The total amount of these awards was 

$38 million, and came from 169 private companies engaged in some aspect of agriculture or food 

related business. CSU researchers have collaborated with and co-authored 290 agriculture and 

food-related journal publications with authors from 194 private companies from 1989 to 2012. We 

then analyze the locations and characteristics of these companies that awarded grants and contracts 

to CSU and the companies that co-authored with CSU to understand the geographic footprint and 

the nature of spillovers via the research collaboration channel.  

Third, CSU inventors had 76 agriculture and food-related patent applications and granted 

patents from 1990 to 2013. By 2015, all of these patent applications and grants had received 1,868 
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forward citations from other patents, owned by 206 companies. We then analyze the location of 

the inventors and the assignee firms of these citing patents to understand the geographic footprint 

and the nature of spillovers that occur via the intellectual property licensing channel.  

Finally, 11 startup companies were created from 1989 to 2012 from research in CSU’s 

departments and research units around technologies that can be associated with or applied in the 

agriculture or food industries. We analyze the locations and characteristics of these startup 

companies to understand the geographic footprint and the nature of spillovers via the venture 

creation channel. 

Across these four different types of knowledge dissemination channels, this section seeks to 

determine the locations of private industry innovators in agricultural sectors that utilize the 

university’s knowledge outputs, to ascertain the relationship between geographic distance and the 

type of channel employed. We expect the different channels to specialize in disseminating sticky 

or slippery (tacit or codified) forms of knowledge in agriculturally related sectors, with some 

staying within Colorado and others more readily spilling over nationally or even globally.  

A. Geographic footprint of university knowledge spillovers 

1. Public domain mechanism of knowledge dissemination 

Journal publications are the major research output of universities, and knowledge primarily 

disseminated through the public domain channel has the strongest public good attributes, defined 

as being both non-excludable and non-rivalrous. Once published (and if not otherwise protected, 

such as by a patent), it is not possible to exclude anyone from accessing this knowledge or to 

prevent simultaneous use or access, which means full freedom of use and open access. Again, 

according to Jaffe (1989), when the mechanism of dissemination is primarily journal publications, 

then geographic location is generally unimportant for recipients to access the knowledge transfers. 



161 
 

Journal publications are the channel most likely to be used to transfer “slippery” information, that 

which is relatively codifiable and transmissible at lower transaction costs, so that there is no 

boundary of the knowledge spillovers. These spillovers are effectively worldwide, and they have 

the highest speed of transmission.  

Table 29―The location of authors of the 6,883 articles that cite a randomly sampled target 
set of 1,202 agriculturally-related journal articles by CSU authors in several 
different agricultural research fields and technologies 

Research Field/Technology 

No. of citing 

articles, by 

authors in 

Colorado 

No. of citing 

articles, by 

authors in US 

but outside of 

Colorado 

No. of citing 

articles by 

authors 

outside the 

US 

Average 

distance 

from CSU 

(miles) for 

those in 

U.S. only 

1. Water tech & management 133   (9.8) 444 (32.7) 782 (57.5) 950.46 

2. Crop genetics, soil fertility, & pest control 209   (8.3) 861 (34.4) 1,433 (57.3) 1,032.24 

3. Animal health & nutrition 202 (10.3) 680 (34.6) 1,086 (55.2) 976.01 

4. IT and data systems in food & agriculture 13   (8.9) 53 (36.3) 80 (54.8) 1,071.91 

5. Bioenergy 34 (10.8) 106 (33.5) 176 (55.7) 962.49 

6. Food & beverage processing & manufacturing  63 (10.7) 195 (32.9) 333 (56.3) 930.47 

Total  654 (9.5) 2,339 (34.0) 3,890 (56.5) 988.79 

Note: Parentheses are percent share of total citing papers.  
          See the names and addresses of company in Appendix 

 
Table 29 shows a target sample of articles citing a randomly selected subset of CSU’s 

agriculturally-related journal publications, within seven Web of Science’s categories chosen for 

disciplines encompassing the whole agricultural value chain. In Table 29, of the total of 6,883 

citing articles, 3,890, or 56.5 percent, are by authors in other countries. Of the total, only 654 

articles are by Colorado authors, accounting for just 9.5 percent. Within the United States, the 

average distance from CSU—which is located in Fort Collins, Colorado—to the location of citing 

papers’ authors is 989 miles. While this is a somewhat simplistic measure, it provides a basic sense 

of the geographic footprint of spillovers via CSU’s agriculturally-related journal publications. 
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Among the various sub-fields or technology categories, the farthest average distance within the 

US is 1,072 miles from CSU, in the research field of IT and data systems for food and agriculture.  

 
Figure 39—Heat map of the geographic locations in the U.S. of authors of papers 

citing CSU’s agriculturally-related journal publications 
 

Figure 39 displays the mapping of the geographic footprint in the United States of the location 

of authors of articles citing CSU’s journal publications. Significantly, there are relatively high 

densities of citing authors located in northern Colorado, northern California (the San Francisco 

Bay area), southern Texas, Wisconsin, Florida, North Carolina, New York, and the Boston area. 

These geographic locations are all associated with the location of land-grant universities in the 

United States, other universities with a similar profile of research in agricultural sciences and 

veterinary health. Similarly, Figure 40 displays the geographic locations of citing papers based on 

authors’ affiliations within Colorado. Citations of CSU’s agriculture-related journal publications 

are highly concentrated in three locations within the state, each associated with a major research 

institution: Fort Collins (CSU), Boulder (University of Colorado), and Golden (Colorado School 

of Mines and the National Renewable Energy Laboratory). Moreover, among the other minor 
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locations are those associated with the experimental farms of the Colorado State Agricultural 

Experimental Station (SAES). 

 
Figure 40—Heat map of the geographic locations in Colorado of authors of 

papers citing CSU’s agriculturally-related journal publications 
 

Therefore, knowledge spillovers of CSU’s agriculture-related journal publications via the 

public domain mechanism have impact locally, nationally, and globally. As previous studies have 

pointed out, the knowledge channel of journal publications does not depend upon geographic 

proximity for realizing the social and economic benefits of knowledge transfers.  

2. Collaboration mechanism of knowledge dissemination  

The collaboration mechanism of knowledge commercialization is characterized by close 

interaction between university and industry researchers, such as in research collaboration or 

outreach activities. It is generally well suited for conveying tacit or sticky knowledge. Faculty 

members in the university work with colleagues in the private sector in a number of ways, 

including consulting, conference presentations, informal consultations, collaborative research 
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projects, co-supervising of interns, and such. However, these collaboration activities are harder to 

detect and to systematically measure in terms of their magnitude, size, and scope. So we proposed 

three proxy variables in Chapter 1, including (1) the number of industry co-authored journal 

publications, (2) privately sponsored grant awards, and (3) departmental level cooperative 

extension budgets. Two of these measures contain information about the geographic location of 

the collaborating industry partner--the industry co-authored journal publications and the privately 

sponsored grant awards. Thus, in this section, we utilize these two to assess the geographic scope 

of impact of collaboration as a mechanism for CSU’s knowledge dissemination within agriculture. 

1) Grants and contracts awarded from private sector sponsors 

One of the proxy measures of university traditional collaboration activities is the announced 

award of research funding from external sources via grants and contracts. The total value of 

privately sponsored grants and contracts in agriculturally-related sectors from 1989 to 2012 is 

$17.6 million, in awards from 169 private companies. Table 30 presents summary data on private 

sponsors of grants and contracts across the different agriculturally related sub-fields and 

technologies. The average distance from CSU to the locations of private sponsors in U.S. is 663 

miles. Among the sub-fields or technology categories, the nearest average distance is 279 miles, 

in the field of water technology and management.  

The 13 companies associated with water technology located in Colorado account for 76.5 

percent of all of CSU’s private sector collaboration on water–related research and projects. These 

in-state companies have invested $1.43 million in their collaborations with CSU, which is almost 

73 percent out of total private R&D investment in water-related research and projects at CSU. 

Moreover, there is only one foreign company, KOWACO-Korean Water Resources Corporation, 

and significantly, this company is strongly associated with the Department of Civil Engineering at 
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CSU40. Similarly, almost 50 percent of companies associated with IT and data systems in food & 

agriculture, in bioenergy, and in food and beverage manufacturing technologies are located in 

Colorado. However, only 15 percent of the collaborating companies in animal health technology 

are located in Colorado.  

Table 30―The location of privately sponsors of contract and grant awards to CSU in several 
different agricultural research fields and technologies 

Research Field/Technology 

No. of 
firms in 

Colorado 

No. of 
firms in 
the US 

but 
outside of 
Colorado 

No. of 
firms 

outside 
the US 

Average 
distance 

from CSU 
(miles in 

U.S. only) 

Amount 
of awards 
(million $) 

1. Water tech & management 13 (76.5) 3 (17.6) 1   (5.9) 278.87 1.97 

2. Crop genetics, soil fertility, & pest control 19 (38.8) 23 (46.9) 7 (14.3) 575.51 2.96 

3. Animal health & nutrition 5 (14.7) 25 (73.5) 4 (11.8) 1051.27 6.24 

4. IT and data systems in food & agriculture 9 (42.9) 10 (47.6) 2   (9.5) 727.26 1.28 

5. Bioenergy 5 (50.0) 4 (40.0) 1 (10.0) 620.33 0.95 

6. Food & beverage processing & manufacturing  16 (42.1) 19 (50.0) 3 (7.9) 570.32 4.19 

Total  67 (39.6) 84 (49.7) 
18 

(10.7) 
662.90 17.58 

Note: Parentheses are percent share of total firms.  
          See the names and addresses of company in Appendix. 

 
Figure 41 display the geographic footprint across the U.S. of private firms that have awarded 

grants and contracts for agriculturally related research at CSU. Although sponsoring companies 

are distributed widely throughout the various states in the U.S., many of them are in the northern 

Front Range of Colorado. Figure 42 shows the geographic footprint within Colorado, and the 

locations of companies are relatively compacted in the Front Range of Colorado, particularly in 

northern Colorado near CSU and around the Denver Technology Center (DTC) in south Denver.  

 

                                                 
40 The Department of Civil Engineering at CSU and KOWACO have a sisterhood relationship, by which many 
faculty members in the Department of Civil Engineering at CSU have participated in national water projects in 
South Korea via KOWACO.  
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Figure 41—Heat map of the geographic footprint of locations in the U.S. of private 

companies that have sponsored research contract and grant awards for 
agriculture and food related research at CSU 

 

 
Figure 42—Heat map of the geographic locations, within Colorado, of private 

companies that have sponsored contract grant awards for 
agricultural and food related research at CSU 
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2) Industry co-authorship on academic journal articles 

Co-authored journal publication is another more direct indicator of the university collaboration 

activities with industry. We find a total number of 290 papers in agriculturally related fields by 

CSU authors written with co-authors at 194 companies. While this particular knowledge output 

(the article being published) is being placed in the public domain, we assume that it is indicative 

of associated tacit knowledge being generated that is transferred through the mechanism of 

interpersonal contact and collaboration. As such, we assume that it may have greater reliance upon 

geographic proximity. Major characteristics of this channel is that it is significantly associated with 

CSU authors’ social and professional research networks, and their capacity of maintaining 

collaboration activities with these private sector colleagues.  

Table 31―The location of industry co-authors on journal publications with CSU authors in 
several different agricultural research fields and technologies 

Research Field/Technology  

No. of 
firms in 

Colorado 

No. of 
firms in 

the US but 
outside of 
Colorado 

No. of 
firms 

outside 
US 

Average 
distance 

from 
CSU 

(miles in 
U.S. only) 

No. of 
co-

authored 
papers 

1. Water tech & management 21 (60.0) 12 (34.3) 2   (5.7) 482.85 54 

2. Crop genetics, soil fertility, & pest control 9 (21.4) 25 (59.5) 8 (19.0) 854.26 55 

3. Animal health & nutrition 6 (16.2) 23 (62.2) 8 (21.6) 1094.93 62 

4. IT and data systems in food & agriculture 12 (48.0) 13 (52.0) 0   (0.0) 636.48 31 

5. Bioenergy 6 (42.9) 7 (50.0) 1   (7.1) 758.92 19 
6. Food & beverage processing & 

manufacturing  
10 (24.4) 24 (58.5) 7 (17.1) 622.07 69 

Total  64 (33.0) 104 (53.6) 26 (13.4) 749.92 290 
Note: Parentheses are percent share of total firms.  
          See the names and addresses of company in Appendix. 

 
The average distance in Table 31 is 750 miles, which is slightly longer than the average 

distance of 663 miles, in Table 30 in the previous section, to companies that sponsored grants and 

contracts, an alternative measure of the collaboration channel. By the same token, Figure 43 



168 
 

displays the geographic footprint of co-authors from private companies, and it is virtually identical 

with that of Figure 41 of private sector co-authoring companies, with a relatively high density in 

Colorado. However, there is some contrast between Figure 42 and 44, with the locations of private 

sector co-authors more highly concentrated near CSU.  This may be due to the fact that the kind 

of relationship involved in sponsoring may require more active interaction than the kind of 

relationship involved in co-authoring.  

 
Figure 43—Heat map of the geographic location of companies in the U.S. that 

have co-authored journal publications with CSU researchers in 
agriculturally related fields 

 

Privately sponsored grants and contracts and industry co-authored journal publications as 

proxy measures of the traditional collaboration mechanism of knowledge dissemination that are 

more likely to involve transfer of sticky or tacit forms of knowledge, which has relatively higher 

transaction costs and capacity requirements. It is possible to exclude others from accessing (at least 

some key aspects of) this knowledge, by virtue of its intrinsic stickiness, merely by not including 

them in the collaborative relationship. Therefore, geographic proximity is relatively more 

important. Within these two proxy measures of traditional collaboration, we find the geographic 
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location of industry co-authors on journal articles have a longer average distance from CSU, 

perhaps because it involves more codified forms of knowledge than the other measure of grant and 

contract awards from private sponsors.  

 
Figure 44—Heat map of the geographic location of companies in Colorado that 

have co-authored journal publications with CSU researchers in 
agriculturally related fields 

 

3. Patenting/licensing mechanism of knowledge dissemination  

The patenting and licensing mechanism for knowledge commercialization, which is 

characterized by the utilization of the intellectual property rights (IPRs) and licensing contracts to 

control access, is best suited when a certain degree of excludability is required to create sufficient 

incentives for follow-on investments in otherwise non-excludable and non-rivalrous knowledge 

outputs. To better understand the geographic impact of CSU’s patented knowledge, we utilize 

citation mapping. In general, citation mapping of patents consists of connecting cited and citing 

references (backward and forward, respectively), which allows us to track the relationships 
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between existing and new technologies, as well as the impacts of the existing technologies on the 

emergence of new technologies in the field. CSU inventors filed for protection on 76 inventions 

in agricultural and food related technologies between 1989 and 2013. Our analysis found 1,868 

newer patents had made citations to these CSU patents and patent applications. Table 32 

summarizes data on these citing patent documents across the different research fields and 

technologies related to agriculture.  

Table 32―Patent documents citing CSU’s portfolio of patent applications and granted 
patents across the different agricultural technologies 

Research Field/Technology 

No. of 

citing 

patents by 

inventors 

in 

Colorado 

No. of citing 

patents by 

inventors in 

the U.S. but 

outside of 

Colorado 

No. of 

citing 

patents by 

inventors  

outside of 

the U.S.  

Average 

distance from 

CSU (miles) 

for those in 

the U.S. only 

1. Water tech & management 0   (0.0) 25 (71.4) 10 (28.6) 1278.18 

2. Crop genetics, soil fertility, & pest control 11   (8.0) 103 (75.2) 23 (16.8) 1037.57 

3. Animal health & nutrition 187 (29.3) 329 (51.5) 123 (19.2) 888.06 

4. IT and data systems in food & agriculture 25   (4.7) 466 (87.3) 43   (8.1) 994.82 

5. Bioenergy 6   (2.0) 233 (77.9) 60 (20.1) 1303.70 

6. Food & beverage processing & manufacturing  16 (7.1) 145 (64.7) 63 (28.1) 886.25 

Total  245 (13.1) 1301 (69.6) 322 (17.2) 1001.87 

Note: Parentheses are percent share of total citing patents.  
          See the inventors’ affiliated companies in Appendix. 

 
As shown as Table 32, the average distance from CSU to the locations of inventors of citing 

patents is 1002 miles, which is similar to the average distance seen for citing papers, in the public 

domain knowledge dissemination channel, and longer than the average distance to private sector 

research sponsors grants and co-authors, in the collaboration knowledge dissemination channel. 

Thus, by virtue of the slippery nature of information codified within patents, geographic proximity 

is unimportant for spillovers, at least to the extent of other inventors learning about the new 

technology disclosed by the patent documents. Although it is still possible to exclude others from 

accessing and using the technology described in the patents in those jurisdictions where the patents 
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are issued. We note that the share of foreign inventors citing CSU’s patents, at 17 percent, is 

relatively much smaller than the share of foreign authors citing CSU’s journal publications, at 57 

percent.  

 
Figure 45—Heat map of the geographic location in the U.S. of inventors on 

patents that cite CSU’s agriculturally related patent applications 
and granted patents 

 

Figure 45 displays the geographic locations of inventors on the patents that are citing CSU’s 

agricultural technology patents. This map demonstrates the commercial spillovers of CSU’s 

agriculture-related research throughout the U.S. The distribution of the geographic footprint is 

similar to that of authors citing CSU’s agricultural journal publications in Figure 39, but not all of 

the geographic locations are the same. It seems reasonable to assume that the distinction between 

citing patents and citing papers can be explained by not only by the different magnitudes of citation 

rates, but also the different characteristics of the respective knowledge dissemination channels. 

Both channels specialize in disseminating relatively slippery forms of knowledge, but the patents 

have an invoked exclusion by virtue of IPRs. 
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Figure 46—Heat map of the geographic location within Colorado of inventors 

on patents that cite CSU’s agriculturally related patent applications 
and granted patents 

 

Similarly, Figure 46 shows the location of inventors within Colorado that are citing CSU’s 

agriculturally related patents. Of these, 91 percent are concentrated near CSU and elsewhere in the 

northern Front Range, and we observe that many of these areas are strongly associated with the 

presence of CSU’s startup companies. Therefore, spillovers via the patenting and licensing 

mechanism appears to have a wide impact on commercial innovation in agriculturally-related 

sectors. While a patented invention is a codified or slippery form of knowledge, it is possible to 

exclude others from accessing and making use of it, which is the key distinction from research 

results only disseminated via journal publications through the public domain mechanism. 

4. Venture creation mechanism of knowledge dissemination  

The venture creation mechanism of knowledge commercialization is perhaps best suited for 

raising private capital for the further development of knowledge, treating that knowledge most like 

a private good, which has intrinsic stickiness or context dependence, making it possible to exclude 
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others from accessing this knowledge. Both patenting/licensing and venture creation are newer 

mechanisms of knowledge disseminations, distinguished from some of the more traditional 

industry collaboration activities.  

Table 33 summarizes data about the ten startup companies created by CSU across a range of 

technologies related to agriculture and food. Nine of the ten startup companies are located in 

Colorado, mostly near the CSU campus, while one company recently moved from Fort Collins, 

CO, to Navasota, TX. 

Table 33―CSU’s startup companies across the different agricultural technologies 

Technology  

Startups in 

Colorado  

Startups in 

the US but 

outside of 

Colorado  

Startups 

outside the 

US 

Average 

distance from 

CSU (miles in 

U.S. only) 

1. Water tech & management 1 (100.0) 0   (0.0) 0 (0.0) 5.00 

2. Crop genetics, soil fertility, & pest control 2 (100.0) 0   (0.0) 0 (0.0) 27.00 

3. Animal health & nutrition 3   (75.0) 1 (25.0) 0 (0.0) 257.75 

4. Bioenergy 2 (100.0) 0   (0.0) 0 (0.0) 12.50 

5. Food & beverage processing & manufacturing 2 (100.0) 0   (0.0) 0 (0.0) 33.50 

Total 10   (90.9) 1   (9.1) 0 (0.0) 107.45 

Note: Parentheses are percent share of total startup companies.  
          See the names and addresses of company in Appendix. 
 

Figure 47 illustrates the geographic locations of these startup companies, almost entirely 

limited to Colorado, and Figure 48 shows that the startups are mostly located near CSU in the 

northern Front Range. Thus, the venture creation mechanism appears to be highly reliant upon 

geographic proximity. Involving quite sticky knowledge and context dependence, it has much 

higher transaction costs and capacity requirements than the other knowledge dissemination 

channels we have considered.  
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Figure 47—Heat map of the geographic locations in the U.S. of CSU’s 

agricultural and food related startup companies. 
 

 
Figure 48—Heat map of the geographic locations within Colorado of 

CSU’s agricultural and food related startup companies. 
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B. Non-parametric tests of university knowledge dissemination channels  

In this section, we attempt to examine the different degrees of knowledge “stickiness” across 

CSU’s dissemination channels by estimating the one-sample Kolmogorov-Smirnov non-

parametric test, which is based on Kolmogorov (1933), Smirnov (1933), and Conover (1999). This 

test involves measuring a random sample from some unknown distribution for testing the null 

hypothesis, which specifies some distribution function, * ( )F x  as the cumulative distribution 

function.  

A random sample 1 2, , , nX X X  is drawn from some population, such as the geographic 

distances of university knowledge spillovers, and it is compared with the true distribution function 

of the random sample, * ( )F x . In the test, we hypothesize that the true distribution is a normal 

distribution. In order to compare the random sample with * ( )F x , the empirical distribution 

function of the random sample is defined by Definition (1)41 

Definition (1) Let 1 2, , , nX X X  be a random sample. The empirical distribution function, ( )S x , 

is a function of x, which equals to the fraction of iX s that are less than or equal to x 

for each x, x  . 

The equation (30) represents the empirical distribution function and where,  [ , ]x iI X  is the 

indicator function, which equals to 1 if iX x  and equals to zero if otherwise.  

 [ , ]
1

1
( )

n

x i
i

S x I X
n 

        (30) 

So, this test definition can compare the empirical distribution function,( )S x , with the 

theoretical distribution function, * ( )F x , to see if there is good agreement.  

                                                 
41 W.J, Conover (1999) 
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The geographic distances of university knowledge spillovers data consist of a random sample,

1 2, , , nX X X , of size n associated with some unknown distribution function, denoted by ( )F x . 

Hypothesis (1): Let * ( )F x  be a completely specified theoretical distribution function, such as a 

normal distribution: Two-sided test  

*
0

*
1

: ( ) ( )

: ( ) ( )

H F x F x x from to

H F x F x for at least one value of x

       

Suppose that the Kolmogorov-Smirnov statistic, D, be the greatest vertical distance between 

the empirical distribution function,( )S x , and the theoretical distribution function * ( )F x , which is 

given in equation (31) below.  

*sup ( ) ( )
x

D F x S x            (31) 

Where the “D” equals the supremum, over all x, of the absolute value of the difference,

* ( ) ( )F x S x .  

Thus, for testing the “stickiness” or the characteristic behaviors of the tacit versus codified 

forms of university knowledge, the one-sample Kolmogorov-Smirnov non-parametric tests (K-S 

tests) and its CDFs can be used to compare empirical distribution function and the normal 

distribution function across the different types of university knowledge dissemination channels.  

Table 34 shows summary statistics of the geographic distances from the location of CSU to 

the recipients of spillovers, across the different knowledge dissemination channels. The table 

considers only distances to those in the United States; it excludes foreign distances. As shown in 

previous sections, the mean distance between CSU and the location of authors on citing papers 

and the location of inventors of citing patents in the United States are the farthest and are similar 

to each other. Thus, these channels seem to involve more slippery forms of knowledge, the 

spillovers of which are less likely to be geographically bounded. Figure 49 displays the results of 
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the K-S nonparametric tests, which consist of D-values and their statistical probability values, and 

the CDFs of the geographic distances from the location of CSU across the different knowledge 

dissemination channels in the United States. 

Table 34―Summary statistics: Geographic distances from the location of CSU (U.S. only) 
across the different knowledge dissemination channels (All technology) 

  Summary Statistics (U.S. miles) 

Knowledge Channels Obs. Mean Std. Dev Min  Max 

Citing papers  2,989 988.79 637.99 5 3,037 

Privately sponsored grant awards  148 662.90 623.33 5 1,852 

Industry co-authored papers  167 749.92 676.79 5 3,010 

Citing patents  1,546 1,010.27 550.24 5 2,183 

Startups  11 107.45 298.67 5 1,006 

 

The one-sample nonparametric test results show that the K-S tests reject the null hypothesis at 

a 1% level of statistical significance, which means the empirical distributions cannot converge to 

a normal distribution. In other words, at the given level of significance, 0.01  , the K-S 

statistical value exceeds the critical value of the quantiles of the K-S test statistic. However, it is 

still meaningful for testing the mechanisms of university knowledge dissemination channels by 

assessing the CDFs and K-S’s D-value.  

Figure 49, of the citing papers, has the smallest D-value of all, which means the distribution of 

citing papers is more likely to converge to a normal distribution than the others, even though it is 

insignificant. Thus, the channel is not likely to be localized and, rather, therefore likely involves a 

slippery form of knowledge. The CDF plot seems not to be skewed within 300 miles but rather to 

extend over several thousand miles. Similarly, the CDF plot of citing patents is less likely to be 

within Colorado, but it is skewed around 1,000 miles, with the maximum distance between CSU 

and a citing patents being 2,183 miles, which is shorter than the maximum for citing papers.  
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Note: *** at 1%, ** at 5%, and * 10% level of statistical significance. 

Figure 49―The CDF plots and one-sample Kolmogorov-Smirnov non-parametric 
tests: Geographic distances from the location of CSU (U.S. only) across 
the different knowledge dissemination channels: All technology. 

 

It is highly probable that the inherent characteristics of both knowledge dissemination channels 

are non-rivalrous, but the patents involve a certain degree of excludability by utilizing intellectual 
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property rights and contracts, so the citing patents are likely to involve a less slippery form of 

knowledge than citing papers.  

Of particular interest is the collaboration mechanism of knowledge dissemination. The 

privately sponsored grant awards and industry coauthored papers are relatively localized, with 

almost 40 percent of them within 200 or 300 miles. These channels apparently involve a more 

sticky form of knowledge, and geographic proximity is more important for these collaboration 

activities. Nevertheless, they have different scopes of geographic locations. In Table 34, the 

maximum distance between CSU and industry coauthored articles is much longer than the 

maximum distance for privately sponsored grant awards—3,010 miles and 1,852 miles, 

respectively—because again of the heterogeneous features between the channels. It should be 

pointed out that the inherent characteristics of industry coauthored journal articles involve both 

public domains and collaboration mechanisms of knowledge dissemination, so it may be less likely 

to involve sticky forms of knowledge. In addition, the D-value of industry coauthored journal 

articles is smaller than that of the privately sponsored grant awards. 

Finally, the start-up companies affiliated with CSU appear to involve the stickiest form of 

knowledge, and their D-value is much larger than other channels at 0.4696. The start-up companies 

are highly localized, within 10 or 20 miles of the university, because most of the founders and 

employees are CSU faculty members, research staff, or GRAs, as well as local, private entities. In 

addition, in the early stage start-up companies need support from their original university (e.g., for 

the utilization of university facilities and equipment), which is an important part of the venture 

creation knowledge transfer mechanism.  
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(A) Water technology and management 

 

(B) Crop genetics, soil fertility, and pest control 

 

(C) Animal health and nutrition 

 

(D) IT and data systems in food and agriculture 

 

(E) Bioenergy 

 

(F) Food/beverage processing and manufacturing 

 
Note: *** at 1%, ** at 5%, and * 10% level of statistical significance. 

Figure 50―The CDF plots and one-sample Kolmogorov-Smirnov non-parametric tests: Geographic distances from the 
location of CSU (U.S. only) across the different knowledge dissemination channels: 6 different technologies 
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Again, according to Jaffe (1989), “the effect of geographically mediated spillovers from 

university to local commercial innovation comes through more clearly within technical areas than 

it does in the total across areas”, as well as (Anselin et al, 1997 and 2000). Figure 50 represents 

the results of the K-S tests and the CDFs of geographic distances from the location of CSU across 

the four different knowledge dissemination channels in the United States, congregated into six 

different technological categories in agriculture.  

The one-sample nonparametric test results across the different technological categories are 

distinguished from the results of aggregate levels in Figure 49. First, the CDF patterns and D-

values of citing papers seem not to change significantly across the different technologies, but in 

statistical result, the technological category of IT and data systems in food and agriculture is to 

converge to a normal distribution by accepting null hypothesis. Thus, CSU’s published journal 

articles as the public domain mechanism of knowledge, and its citing papers are more likely to 

have a slippery form of knowledge across the different technologies. 

However, the stickiness of other types of knowledge dissemination channel can be varied 

across the different technological categories. Figure 50, in looking at the private sponsored grant 

awards, it is localized to within 200 or 300 miles, accounting for almost 70-40 percent, across the 

water, crop genetics, IT & Data systems, bioenergy, and food processing. By contrast, the animal 

health and nutrition technology seems to involve a slippery form of knowledge and it is localized 

to within 200 miles, accounting for less than 20 percent. Similarly, in the industry co-authored 

papers, water, IT & data systems, bioenergy, and food processing technologies are highly skewed 

within Colorado, accounting for 60-40 percent, but crop genetics, and animal health technologies 

do not be localized to within Colorado area.  
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In the geographic location of citing patents, excluding self-cites, the extent to which CSU’s 

knowledge spillovers are geographically localized is considered across the different technological 

categories. As shown as Figure 50, the citing patents in technological categories of crop genetics, 

IT& data systems, bioenergy, and food processing can be seen as analogous to the results of 

aggregate levels in Figure 49, such as the long tail to the left, but not in water and animal health 

technologies. In water technology, the locations of inventor who cite CSU’s patents are highly 

concentrated on between 800 and 1000 miles from the location of CSU. However, in animal health, 

it is highly localized to within Colorado area, accounting for 40 percent.  

Therefore, the sticky versus slippery forms of knowledge dissemination channel are more 

likely to rely on the technological categories rather than aggregate level of technology. In other 

words, the evaluation of the benefits for university knowledge spillovers to commercial innovation 

should be considered not only across the different knowledge dissemination channels, but also 

across the different technological categories.  

V. Conclusions 

Despite debate about the geographic proximity of university-industry collaborations, 

university knowledge spillovers do appear to generate localized impacts on regional commercial 

innovation that are likely to beneficial both to private industry and the public. Particularly in 

agriculture, the land-grant universities play a significant role in agricultural research and 

innovation in the agribusiness sectors. However, rather than thinking that “one size fits all,” the 

spillover benefits from university knowledge generation should be considered by the different 

types of dissemination channels that are utilized. In this chapter, we have focused on Colorado 

State University (CSU)’s knowledge spillovers within agriculturally related fields and 

technologies.  
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We have examined the various mechanisms of university knowledge spillovers and the 

geographic scope of impact on the agricultural economy associated with each. We find evidence 

that academic knowledge spillovers are geographically bounded, but they are not strictly limited 

to the regional scale. Crucially, the impact of university spillovers on agriculturally-related 

industries depends upon which type of knowledge dissemination channel or transfer mechanism 

is utilized by university researchers. Broadly speaking we evaluate four types of channels—

including the public domain or publication mechanism, the industry collaboration and extension 

mechanism, the technology patenting/licensing mechanism, and the venture creation 

mechanism—each of which are variously adapted to transmitting different degrees of sticky (tacit) 

versus slippery (codified) knowledge.  

Our findings show that in both aggregate level of technology and six different technological 

categories, the spillover impacts of journal publications, through the public domain mechanism of 

knowledge dissemination, are rarely localized within Colorado; rather, the geographic scope of 

these impacts are national and even global. Thus, geographic proximity is not a question with this 

channel. However, the extent to which the spillover impacts of patented knowledge is localized 

within Colorado is open to question because it is possible to control permissions for use, but at the 

same time it is impossible to limit  everyone’s awareness and use of it, particularly in foreign 

jurisdictions where patents are not taken out by the university. Therefore, the degree of localization 

of university knowledge spillovers when using the patent and licensing mechanism might depend 

on the different types of technology involved as well as the intellectual property and contract 

strategy pursued. Thus, university journal publications and patents are most appropriate for 

dissemination of more slippery forms of knowledge, but commercial innovation impacts can be 
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localized nearer to the location of a university when using patents and licensing than when using 

journal publications alone.  

However, the collaboration mechanism of knowledge dissemination, such as indicated by 

industry coauthorship on journal articles and private sponsorship of grants and contracts, which 

are more rivalrous by virtue of the more tacit qualities of knowledge being disseminated and 

because of the higher transaction costs, requires closer interaction and greater geographic 

proximity, which usually prevents global dissemination. Thus, we observe geographic proximity 

is significantly important for these channels. However, there are even distinctions within these. 

For example, we find industry coauthorship on articles to be less likely to be localized than 

privately sponsored grant awards. Nevertheless, the stickiness of these channels might depend also 

on the different technological categories. As mention as above, the geographic proximity is 

important only in aggregate level of technology, but it can be varied across the different 

technological categories, especially the slippery form of knowledge in animal health and nutrition 

health technology. Finally, university start-ups are highly geographically bounded near 

universities because in the early stages start-up companies need support from their host university.  

One conclusion we can draw from this study is that both public and private benefits of 

university knowledge transfers rely on the different types of knowledge dissemination channels 

and the intrinsic characteristics of the different types of technology being disseminated. Moreover, 

our unique data set of Colorado State University’s research activities and a full range of potential 

knowledge dissemination channels make it possible to examine the extent to which the different 

types of knowledge dissemination channels work within the context of agricultural fields and 

technologies. Most previous studies of university-industry collaboration activities have used 

aggregate data.  
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Despite these interesting preliminary findings, there are at least two major shortcomings in our 

approach. First, which we hope to address in further studies, we will attempt to build relevant 

regression models for measuring university knowledge spillovers, via mechanisms of knowledge 

dissemination for both sticky and slippery types of knowledge. Second, although both advantages 

and disadvantages exist for the use of single institutional data, it may compromise findings’ 

generality relative to other institutions or to more aggregate economy-wide data because each 

institution has its own idiosyncratic conditioning characteristics, including levels of research 

expenditures, management skills, administrative policies, and so on. Thus, we hope to add more 

institutional data and compare the results.  
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OVERALL CONCLUSION  

This study analyzes the economic impacts of university knowledge production and spillover 

activities, especially on innovations in agriculturally-related industries. The three chapters provide 

insights into the dynamics of university knowledge production and dissemination from three 

interrelated perspectives: (1) the university knowledge production function, (2) the organization 

and agency of research production within research teams, and (3) the geographical scope of 

economic impacts from university knowledge dissemination. The overall finding of this study 

shows how university research and its knowledge spillovers drive and create benefits to society 

and the economy, both publicly and privately. As the roles and missions of the university have 

changed, the composition of the university research system has also been transformed, affecting 

the trend of its impact on industrial innovation directly, and on economic growth indirectly. In 

agriculture, especially, the land grant universities play a significant role in supporting and 

stimulating commercial technological innovation within the state’s agricultural value chain, and 

beyond.  

To sum up, chapter 1 has analyzed Colorado State University’s research production, 

disaggregated across the different colleges, departments, and research units, range of knowledge 

dissemination channels. This chapter introduced and utilized a uniquely detailed dataset together 

with a novel empirical technique for estimating three different knowledge production function 

models, including unrestricted and restricted negative binomial polynomial distributed lag (PDL) 

models and an effective labor log-log PDL model. The empirical test results indicated that the PDL 

models have advantages over the ad hoc lag scheme common in the literature, in terms of: (1) 

better goodness of fit according to two information criteria (AIC & SBIC), and (2) more 

meaningful explanations of unknown lag effects. 
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The effective labor PDL model provides some preliminary economic intuition regarding the 

“returns to scale” of knowledge production. The results showed that published journal articles and 

doctoral degree awards, outputs disseminated via the public domain channel, exhibit decreasing 

returns to scale, which is closely linked with the law of diminishing marginal productivity, whereas 

outputs disseminated via the other two channels, of collaboration and tech transfer, exhibit 

increasing returns to scale. The regression results also indicate that the mean gestation lag between 

research expenditures inception and completion of journal articles is 2.5 years, which is two or 

three years shorter than the gestation on collaborative outputs (4.8 years) and tech transfer outputs 

(4.7 years). In the SUR models, journal articles and tech transfer outputs have positive 

relationships with past research expenditures, whereas collaborative outputs have a negative 

relationship with past expenditures. Perhaps, researchers turn to collaboration activities when their 

research funds from public sources dry up. And, the collaboration index and the combined tech 

transfer metrics have an inverse relationship.  

Chapter 2 has explored a new framework for understanding the agency of knowledge 

production within the university context. First, findings from an exploration of an ego-centric 

social network provide insights and intuition about research team participation dynamics over the 

course of the career of an individual university researcher. It finds that the share of co-authors from 

outside CSU contributes the size of ego-centric research teams, with the time trend between the 

share of outside team members and research team size both grow over the time. Conversely, the 

trends of the teams’ percent share of co-authors from the ego’s home department and team size 

have opposite patterns over time with downward and upward tendencies, respectively. Moreover, 

the downward trend of the percent share of team members from the ego’s home department 

interpreted as “inverse team flexibility” tells us that the ego-centric research teams have been 
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transformed from closer collegial or hieratical forms to broader network or project-based 

relationships. 

Second, regression results from a representative sample of research teams shows that 

participation of authors from other CSU departments, other institutions, and private firms all 

contribute to the size of research teams. Interestingly, field variety seems to affect the size of 

research teams negatively, but it does affect the inclusion of non-CSU authors positively. R&D 

expenditures generally have a positive influence on team size. However, private R&D money has 

a small but negative relationship with team size, but it affects the inclusion of non-CSU authors 

positively. It is possible that private R&D investments and field variety affect the size of research 

team indirectly, rather than directly. 

Finally, research quality is analyzed by comparing CDFs of various indicators. These indicate 

that both in teams generating journal articles and in teams generating patents, the involvement of 

team members from multiple CSU departments improves the impact of their research. There is no 

significant difference between teams that include members from just a single private firm and those 

that include members from multiple firms. Larger teams are more likely to have higher impacts 

than small teams in generating both articles and patents.  

Chapter 3 has examined the geospatial pattern of Colorado State University (CSU) knowledge 

spillovers and their commercial economic impact, especially within Colorado’s agriculturally-

related sectors. The geographical scope of impacts and benefits realized are determined by the 

different types of knowledge dissemination channels suitable for different inherent characteristics 

of (sticky versus slippery) knowledge. Our findings show that the spillover impacts of journal 

publications are rarely localized within Colorado; rather, the geographic scope of these impacts is 

national and even global. For this slippery form of knowledge geographic proximity is unimportant.  
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However, the extent to which the spillover impacts of patented knowledge is localized within 

Colorado is open to question because it is possible to control permissions for use, but at the same 

time it is impossible to limit everyone’s awareness and use of it, particularly in foreign jurisdictions 

where patents are not taken out by the university. By contrast the knowledge disseminated via the 

collaboration mechanism, such as indicated by industry coauthorship on journal articles and 

private sponsorship of grants and contracts, is more sticky; it is more rivalrous and excludable by 

virtue of the more tacit qualities of knowledge being disseminated. The location of private sector 

collaborators is closer to CSU, but can still be national in scope. Looking at the venture creation 

mechanism, also involving sticky knowledge, we see university start-ups are highly geographically 

bounded and located near the university, likely because early stage start-up companies need 

support from their faculty founder and the host institution. Because of the higher transaction costs, 

these channels require closer interaction and greater geographic proximity, which usually prevents 

global dissemination. Thus, the geographic proximity is significantly important for the 

collaboration and venture creation channels. 

Despite these interesting preliminary findings, one major issue in this dissertation is its reliance 

upon a single institution’s data and perspective. There are both advantages and disadvantages in 

the use of single institutional data. It may compromise findings’ generality relative to other 

institutions or to more aggregate economy-wide data because each institution has its own 

idiosyncratic conditioning characteristics, including levels of research expenditures, management 

skills, administrative policies, and so on. Thus, we hope to add more institutional data and compare 

the results. Nevertheless, we expect the results of this study to be of value in future economic 

studies of university knowledge production and impact on commercial innovation, as well as of 

practical value to CSU administration as well as state and federal policymakers.   
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APPENDIX 

Table A-1—Major companies active in water technology, infrastructure, analytics, and 
management innovation 

Company  Country State  

Privately 

sponsored 

grant 

awards 

WoS 

articles 

Citing 

Patents 

3DGeo Dev Inc USA CA $0 1 0 

AECOM USA CO $10,504 3 0 

AGRO ENGN INC  USA CO $0 1 0 

Analyt Technol Inc   USA CO $0 2 0 

Anderson Associates  LLC USA CO $18,265 1 0 

Andritz Inc. USA PA $0 0 1 

Aqua Engn Inc   USA CO $0 1 0 

AQUA TERRA CONSULTANTS  USA CA $0 1 0 

Balance Hydrol Inc   USA CA $0 1 0 

Bay Bioscience Kabushiki Kaisha Japan Foreign $0 0 1 

Bioconversion Technologies Limited USA GA $0 0 3 

BIO-Logic Environmental USA CO $2,856 0 0 

Black Veatch   USA CO $0 1 0 

Brown & Gay Engineers Inc USA TX $0 1 0 

Brown and Caldwell USA CO $40,000 0 0 

Camp Dresser McKee USA CO $11,276 1 0 

Cbec Ecoengn   USA CA $0 1 0 

CDM Smith   USA CO $0 3 0 

Centre National De La Recherche Scientifique Frence Foreign $0 0 1 

CH2M Hill USA CO $83,351 13 0 

Chingoo Research Partnership USA CA $0 0 2 

Cleareso  Llc USA FL $0 0 2 

Clearwater Solut   USA CO $0 1 0 

Coastal Waters Biotechnology Group Llc USA CA $0 0 2 

Elk River Management Corporation USA AL $1,463 0 0 

Endress & Hauser  Switzerland Foreign $0 0 2 

FRICO-Farmers Reservoir and Irrigation USA CO $57,689 0 0 

GeoTrans Inc   USA CO $114,549 1 0 

Geowatersheds Sci   USA AK $0 1 0 

Groundwater Technol Team Chevron Energy 

Technol CO. 
USA CA $0 1 0 

GST Growth  LLC USA DE $0 0 1 

Hach Co   USA CO $0 1 0 

Halliburton Company USA TX $53,488 0 0 
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Heinz Ploechinger UK Foreign $0 0 2 

Hemisphere Gps Llc Canada Foreign $0 0 1 

HydroQual Inc   USA NJ $0 2 0 

Hydrosphere Resource Consultants   USA CO $0 1 0 

IER  Niono   Mali Foreign $0 1 0 

Institute Of Geological & Nuclear Sciences  

Ltd. 

New 

Zealand 
Foreign $0 0 1 

Invitrogen Corporation USA CA $0 0 2 

KOWACO-Korean Water Resources Corp. S. Korea Foreign $473,737 0 0 

Life Technologies Corporation USA CA $0 0 2 

Lumiere Diagnostics  Inc USA CO $0 0 0 

McLaughlin Water Engineering  LTD USA CO $360,400 1 0 

MWH Amer Inc USA CO $37,895 2 0 

NW Hydraul Consultants   USA CA $0 1 0 

Plato Industries Ltd USA TX $0 0 2 

Porzak Browning & Bushong LLP   USA CO $0 1 0 

Regenesis Manageinent Grp USA CO $46,140 1 0 

Riken Japan Foreign $0 0 2 

Soldier Canyon Filter Plant USA CO $5,000 0 0 

Stanley Consultants  Inc. USA IA $0 0 4 

Streamline Automation  Llc USA AL $0 0 3 

Stuart Products  Inc. USA TX $7,064 0 0 

Swiss Fed Inst Technol Inst Hydromech & 

Water Resources Management 
Switzerland Foreign $0 1 0 

Tech Serv Ctr  Bur Reclamat  Sedimentat & 

River Hydraul Grp   
USA CO $0 1 0 

Tetra Tech Surface Water Grp   USA CO $0 1 0 

TransAlgae Ltd Israel Foreign $0 0 1 

TRC Hydro Geo Consultants   USA CO $0 1 0 

Vision For You Llc USA NJ $0 0 1 

WATER ENGN & TECH INC  USA CO $0 1 0 

Western Water Consultants   USA WY $0 1 0 

Wright Water Engn Inc   USA CO $0 1 0 

Yellow Springs Instrument Co Inc USA OH $0 1 0 
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Table A-2—Major companies active in soil fertility or pest control innovation 

Company  Country State  

Privately 

sponsored 

grant 

awards 

WoS 

articles 

Citing 

Patents 

ACM-Texas  LLC USA CO $102,084 0 0 

Agriliance LLC   USA CO  $0 1 0 

American Cyanamid Company USA NJ $101,500 0 0 

Amino Chem Co Ltd Japan Foreign $0 1 0 

Applied Chemical Magnesias Corp. USA CO  $16,412 0 0 

BASF Corporation Germany Foreign $102,000 0 6 

Brotica Inc   USA CO  $0 1 0 

Cargill Inc USA CO $0 1 0 

Chisso Corporation Japan Foreign $18,647 0 0 

CIBA-GEIGY Chemical Company Switzerland Foreign $120,000 0 0 

Decagon Devices Inc   USA WA  $0 1 0 

Dow Chemical Company USA MI $10,000 0 0 

E.I. Dupont Company USA DE $88,190 0 0 

EMBRAPA Pecuaria Sul Brazil Foreign $0 1 0 

Fluid Fertilizer USA KS $4,250 0 0 

Fmc Corporation USA PA $0 0 3 

Genetics & Ivf Institute USA VA $0 0 4 

Hauser Company USA CO $22,000 0 0 

Ice Nine Environm Consulting   USA VT  $0 1 0 

Isca Technologies USA CA $0 0 2 

Isoprime Ltd  Cheadle Hulme UK Foreign $0 1 0 

Laboratoires Expanscience France Foreign $0 0 3 

Lenat Consulting Serv  USA NC  $0 3 0 

LGI  Ellsworth   USA IA $0 1 0 

Nutrinsic Corporation USA CO $0 0 1 

Proviron Holdings Belgium Foreign $0 0 2 

Roche Colorado Corp USA CO $0 2 0 

Roses  Inc. USA OK $31,515 0 0 

Sekisui Chemical Company  Ltd. Japan Foreign $120,000 0 0 

Seroctin Research and Technology Inc  USA UT $0 0 1 

Showa Denko K.K. Japan Foreign $37,760 0 0 

Small Businesses Sustainabil Coordinat 

Acquisit 
USA VA  $0 1 0 

Soil Enhancement Technologies USA CO $35,235 0 0 

Syngenta Crop Protect Inc USA FL $0 1 2 

Taensa  Inc. USA CT $12,180 0 0 

TERRAGEN DIVERS INC Canada Foreign $0 1 0 

Thin Air Nitrogen Solutions USA CO $0 0 0 

TIGR   USA MD  $0 1 0 
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U.S. Borax Inc. USA CO $12,000 0 0 

UGG Ltd Canada Foreign $0 1 0 

United Phosphorous Inc   USA CA  $0 1 0 

Valent BioSciences Corporation USA IA $17,211 0 0 

Western Mobile Northern  Inc USA CO $5,750 0 0 

Whitmire Micro-Gen Research Laboratories  

Inc. 
USA MO $0 0 3 

Yulex Corp USA AZ  $39,854 1 0 

 

Table A-3—Major companies active in animal health and bio-medical science innovation 

Company  Country State  

Privately 

sponsored 

grant 

awards 

WoS 

articles 

Citing 

Patents 

Advanced Integrative Medicine USA CO $0 1 0 

Advanced Tissue Sciences Inc USA CA $0 0 1 

Agropecuaris CFM Ltd Brazil Foreign $0 2 0 

Agroscope Changins Wadenswil ACW Switzerland Foreign $0 1 0 

Alltech, Inc. USA KY $204,524 0 0 

Alpharma Animal Health USA CO $200,253 1 0 

American Network of Lipolysis USA CO $20,736 0 0 

Antel Biosyst Inc USA MI $0 2 0 

Anthrogenesis Corporation USA NJ $0 0 15 

Aperion Biologics, Inc. USA TX $0 0 2 

Applera Corporation USA CT $0 0 7 

Applied Biosystems Inc. USA MA $0 0 10 

Balchem Corporation USA NY $42,154 0 0 

Bayer Materialscience Llc USA KS  $0 1 3 

Beckman Coulter, Inc. USA CO $0 0 2 

Becton Dickinson And Company USA NJ $0 0 6 

Biassex Pty Ltd Australia Foreign $0 0 1 

Boehringer Ingelheim Animal Health, Inc. Germany  Foreign $13,970 0 0 

Boston Scientific Scimed, Inc. USA MA $0 1 5 

Bovine Reproduction Specialists USA CO $0 1 0 

Brigham And Women's Hospital USA MA $0 0 1 

Btg International Limited UK Foreign $0 0 20 

Cancer League of Colorado, Inc. USA CO $59,780 0 0 

Cedus, Inc. USA CO $0 0 0 

Cellx Inc. USA MD $0 0 1 

CENT Vet Insitute Netherlands Foreign $0 1 0 

Centaur Equine Products, Inc. USA PA $4,900 0 0 

Codexis, Inc. USA CA $0 0 8 
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Coley Pharmaceutical Gmbh Germany  Foreign $0 0 2 

Colgate Palmolive Company USA NY $0 0 1 

Corlife GbR Germany  Foreign $0 0 3 

CSL Limited Australia Foreign $0 0 2 

Ctr Med Agr & Vet Entomol,  USA FL  $0 1 0 

Dakocytomation Colorado, Inc. USA CO $0 0 6 

Dfb Pharmaceuticals, Inc. USA TX $0 0 11 

Doskosil Co Inc USA KS $0 1 0 

Dr Joyce Donkersgoed Vet Serv Inc Canada Foreign $0 1 0 

Dymatize Enterprises, Llc USA TX $0 0 2 

Elanco Animal Health USA IN $652,259 14 0 

Embl Heidelberg Germany  Foreign $0 0 3 

Encelle, Inc. USA NC $0 0 4 

Energy Enzymes, Inc. USA KS $0 0 1 

FMC Corporation USA PA $57,848 0 0 

Fort Dodge Animal Health (old Cyanamid) USA KS $233,275 0 0 

Fraunhofer-Gesellschaft Zur Forderung Der 

Angewandten Forschung E.V. 
Germany  Foreign $0 0 1 

Gardens Alive USA IN $42,956 0 0 

Geissler Technologies, Llc USA MN $0 0 1 

Gerigene Medical Corp USA WI $0 0 4 

Global Animal Products, Inc. USA TX $35,878 0 0 

Hancock Jaffe Laboratories USA CA $0 0 4 

Heska Corp USA CO $1,012,096 20 0 

Hill Top Pharmatest Inc USA OH $0 1 0 

Hms Veterinary Development Inc USA CA $0 1 0 

Hoechst-Roussel USA MO $86,249 0 0 

Hoffmann La Roche Inc  USA NJ $0 1 0 

Icyt Mission Technology, Inc. USA IL  $0 0 1 

IDEXX Laboratories, Inc. USA CO  $104,100 0 0 

Inguran, Llc USA TX $0 0 198 

Intervet Inc USA DE $102,942 3 0 

IVY Laboratories, Inc. USA KS $76,189 0 0 

J. Craig Venter Institute USA CA $0 0 2 

Juvaris Biotherapeutics, Inc. USA CA $0 0 2 

LifeCell Corp,  USA NJ  $0 1 0 

Lifenet Health USA VA  $0 0 8 

Lilly Research Laboratories USA IN $36,250 0 0 

Masterrind Gmbh Germany  Foreign $0 0 7 

McMahon Bioconsulting & Stockhausen 

Chem 
Germany  Foreign $6,500 0 0 

Medarex, Inc. USA NJ $0 0 1 

Merial, Ltd. USA GA $11,000 0 0 
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Moormans USA IL $28,500 0 0 

Mwi Veterinary Supply Co. USA CO $0 0 7 

Novartis Nutrition Ag Switzerland Foreign $0 0 2 

Novus International, Inc. USA MO $87,594 0 0 

NPC-Nutrition Physiology Company USA OK $61,194 0 0 

Nusirt Sciences, Inc. USA TN $0 0 1 

Nutri-Turf, Inc. USA FL $12,703 0 0 

Optibrand USA CO $29,237 0 0 

Organogenesis Inc. USA MA $0 0 7 

Peptide Technology Ltd Australia Foreign $0 1 0 

Perkin Elmer Corp, Appl Biosyst Div,  USA CA  $0 1 0 

Pfizer Animal Health USA MO $1,197,386 2 0 

Pharmacia & Upjohn Anim Hlth USA MI $0 1 0 

PIC N Amer USA TN $0 2 0 

Prairie Aquatech USA SD $0 0 2 

Qlt Phototherapeutics, Inc. USA CO $0 0 4 

Quali Tech, Inc. USA MN $48,808 0 0 

Roche Vitamins Inc USA NJ $451,209 1 0 

Sakura Properties, Llc USA UT $0 0 2 

Schering-Plough Corporation USA NJ $22,999 1 0 

Select Breeders Serv Inc USA MD $0 2 0 

Silliker, Inc USA IL $15,000 0 0 

SmithKline Beecham Animal Health USA FL $75,747 0 0 

Source Integration, Inc. USA CA $0 0 1 

Swing Aerobics Licensing, Inc. USA TX $0 0 3 

Syntex Mexico Foreign $43,296 0 0 

Tei Biosciences, Inc. USA MA $0 0 1 

Tissue Engineering, Inc. USA NY $0 0 9 

UCD Sch Agr Food Sci & Vet Med Ireland Foreign $0 1 0 

Upjohn Company USA MI $14,300 0 0 

Vet Adm Med Ctr USA VT $0 1 0 

Vet Canc Specialists USA CO $0 2 0 

Vet Infect Dis Org Canada Foreign $0 1 0 

Vet Labs Agcy Lasswade Scotland Foreign $0 1 0 

VET LIFE USA NC $13,583 0 0 

Wolfgang Jochle Associates Inc USA NJ $0 1 0 

XY Inc USA CO $0 5 298 

Zapata Haynie Corporation USA MS $13,600 0 0 

Zero Discharge Pty Ltd. Australia Foreign $0 0 1 

Zymogenet Inc USA WA $0 1 0 
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Table A-4—Major companies active in agricultural information system and business 
management innovation 

Company  Country State  

Privately 

sponsored 

grant 

awards 

WoS 

articles 

Citing 

Patents 

Advantage Int,  USA WI  $0 1 0 

AEI Econ Consultants USA CO $0 1 0 

AESOP Enterprises Ltd USA DC $0 1 0 

American Express Travel Related Services 

Company, Inc. 
USA NY $0 0 14 

Appl Geosolut LLC USA NH $0 1 0 

Ascendant Partners Inc USA CO $0 1 0 

At&T Intellectual Property I, L.P USA TX $0 0 5 

Battelle Memorial Institute USA OH $0 0 1 

Bbi International, Inc. USA ND $0 0 2 

Bioprocessh20 Llc USA RI $0 0 1 

Broadcom Corporation USA CO $0 0 2 

Camas Technologies, Inc. USA CO $57,608 0 0 

Care of Smith S, Regenesis Management Grp, USA CO  $0 1 0 

Catalyst International, Inc. USA PA  $6,439 0 0 

Chemonics USA DC $579,130 0 0 

Crosscart, Inc. USA CA $0 0 19 

Dfb Technology Holdings, Llc USA TX $0 0 8 

DM International, Inc. USA NY $18,900 0 0 

E. I. Du Pont De Nemours And Company USA DE $0 0 11 

Employers Reinsurance Co USA CO $0 1 0 

Epia:Kk Japan Foreign $0 0 1 

Evers Associates,  USA MD  $0 1 0 

Iii Holdings 1, Llc USA DE $0 0 2 

Invention Science Fund I, Llc. USA WA $0 0 1 

Lead Core Fund, L.L.C. USA NY $0 0 3 

Lee French Agr Res Inc,  USA MN  $0 1 0 

Optibrand Ltd., Llc USA CO $0 0 2 

Overseas Projects Corp.  Canada Foreign $42,963 0 0 

Pragma Corp. USA VA $4,700 0 0 

Pursell Industries, Inc. USA CA $900 0 0 

Res Management Syst Inc  USA CO $0 1 0 

Research Management Systems, Inc. USA CO $79,905 0 0 

Ronco Consulting Corporation USA DC $103,448 0 0 

Sci Applicat Int Corp USA CO $0 2 0 

Scientific Methods, Inc. USA IN $23,539 0 0 

Southeast Colo. Enterprise Develop. Inc. USA CO  $9,000 0 0 

Tenera Technology, LLC USA CO $14,500 0 1 
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Terra Global Capital USA CA $0 1 0 

Winterlab Limited USA NY $0 0 1 

Xatra Fund Mx, Llc  USA DE $0 0 13 

 

Table A-5—Major companies active in sensors, testing, analytics, and equipment for product 
quality and biosafety innovation 

Company  Country State  

Privately 

sponsore

d grant 

awards 

WoS 

article

s 

Citing 

Patent

s 

Abelbeck Partners, Ltd. USA CO $0 0 1 

Abs Corporation USA NE $0 0 3 

Access Security Protection, Llc USA TX $0 0 1 

AgDia Inc,  USA IN  $0 1 0 

Agr Informat Technol,  USA SD  $0 1 0 

AgriHouse Inc USA CO $0 2 0 

Amc Italy S R L Italy 
Foreig

n 
$0 0 1 

Amerasia International Technology, Inc. USA NJ $0 0 2 

Analytics Dev Corp USA CO $0 1 0 

Arryx Inc USA IL  $0 0 16 

Bella Technologies, Llc USA TX $0 0 2 

Bellsouth Intellectual Property Corporation USA GA $0 0 2 

Best Analyt Serv,  USA DC  $0 1 0 

BH&H Engn Inc,  USA CO  $0 1 0 

Bioscience Consultants USA FL $0 0 3 

Biotronics, Inc. USA PA $0 0 5 

Body Surface Translations, Inc. USA GA $0 0 1 

Camas Technol Inc USA CO $0 2 0 

Canon Japan 
Foreig

n 
$0 0 3 

Celleration, Inc. USA MN $0 0 4 

COMP ASSISTED DEV INC, USA CO  $0 2 0 

COMP SCI CORP, USA GA  $0 1 0 

Cryolife, Inc. USA GA $0 0 21 

C-Scan, L.L.P. USA AZ $0 0 1 

Goldfinch Solutions, Llc USA NJ $0 0 5 

Google Inc. USA CA $0 0 2 

Hewlett Packard  USA CO  $2,722 0 0 

Hid Global Corporation USA CO $0 0 2 

HydroBio Adv Remote Sensing,  USA NM  $0 2 0 

IEH Labs & Consulting Grp USA CO $0 1 0 

International Business Machines (IBM) Corporation USA NY $0 0 3 
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Kaiser - Hill Company, L.L.C. USA CO $11,760 0 0 

Local Independent Administrative Institution Aomori 

Prefectural Industrial Technology Research Center 
Japan 

Foreig

n 
$0 0 1 

Lumidigm, Inc. USA NM $0 0 2 

MANTECH ENVIRONM TECHNOL INC, USA OR  $0 2 0 

Marctec, Llc Australia 
Foreig

n 
$0 0 1 

Mc10, Inc. USA MA $0 0 2 

Menon & Associates, Inc. USA CA $0 0 2 

Microbix Biosystems Inc. Canada 
Foreig

n 
$0 0 1 

Microsoft Corporation USA WA $0 0 4 

Nickel Brand Software Inc USA NM $0 0 4 

Non Typical, Inc. USA WI $0 0 1 

Non Typical, Inc. USA WI $0 0 2 

Optibrand Ltc. LLC USA CO $29,237 0 0 

Phillips Petr Co USA TX $0 1 0 

Phoenix Research Laboratories USA CA $0 0 1 

PRAXAIR,Inc. USA CO $29,900 0 0 

Renergon International AG 
Switzerlan

d 

Foreig

n 
$0 0 2 

Smart Machine Vision, Inc. USA WA $16,380 0 0 

Smartin Technologies, Llc USA TX $0 0 2 

Smith & Nephew, Inc. UK 
Foreig

n 
$0 0 5 

Sony Corporation USA NY $0 0 2 

St. Jude Medical, Inc. USA AK $0 0 5 

Systems Research & Applications Corp USA VA $91,576 0 0 

United Power USA CO $17,000 0 0 

Vibralung, Inc USA AZ $32,549 0 0 

Y-TEX Corporation USA WY $6,522 0 0 
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Table A-6—Major companies active in bioenergy innovation 

Company  Country State  

Privately 

sponsored 

grant awards 

WoS 

articles 

Citing 

Patents 

Abengoa Bioenergy New Technologies, Inc. USA MO $0 0 5 

Algae Systems, LLC USA NV $0 0 1 

Algal Scientific Corporation USA MI $0 0 1 

Algenol Biofuels Switzerland GmbH Switzerland Foreign $0 0 1 

Alliance For Sustainable Energy Llc USA CO $0 0 1 

Amoco Production Company USA IL $15,000 0 0 

Anadarko Petroleum Corporation USA TX $78,216 0 0 

Aurora Biofuels, Inc. USA CA $0 0 25 

Bio Finance Consultants USA ID $0 1 0 

Biolite Llc USA NY $0 0 1 

Biota N Amer Program,  USA NC  $0 1 0 

Blue Sun Biodiesel USA CO $75,600 0 0 

Boulder Innovative Technologies, Inc. USA CO $10,536 0 0 

Carbon Sink, Inc. USA IL $0 0 5 

Chevron Energy Technol Co,  USA CA  $0 3 0 

Cobalt Technologies, Inc. USA CA $0 0 7 

Community Power Corporation USA CO $15,495 0 0 

Coulter Corp,  USA FL  $0 1 0 

Edenspace Systems Corporation USA KS $0 0 2 

Fairfield & Woods PC,  USA CO  $0 1 0 

GENENTECH INC, USA CA  $0 1 0 

Gevo USA CO $21,433 0 0 

Global Research Technologies, Llc USA AZ $0 0 3 

GlobeImmune Pharmaceut  USA CO $0 1 0 

Grad Sch Biotechnol S. Korea Foreign $0 1 0 

Hitachi, Ltd. Japan Foreign $0 0 1 

Honeywell International Inc. USA NJ $0 0 25 

ICF Int  USA DC $0 1 0 

Intelligent Decis Technol,  USA CO  $0 1 0 

Interlink Biotechnol LLC,  USA CA  $0 1 0 

Iogen Energy Corp Canada Foreign $0 0 14 

Joule Unlimited Technologies, Inc. USA MA $0 0 3 

Kilimanjaro Energy, Inc. USA WI $0 0 10 

Korea Institute Of Energy Research S. Korea Foreign $0 0 1 

Mascoma Corporation USA MA $0 0 2 

Matheson Gas Prod,  USA CO  $0 1 0 

Neatech, Llc  USA CO  $0 0 2 

Novozymes North America, Inc USA NC $71,979 0 6 

Photofuel Sas Frence Foreign $0 0 2 
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Photon8, Inc. USA TX $0 0 1 

Phycal Llc USA OH $0 0 1 

Phytodetectors, Inc. USA CO $0 0 0 

Point Source Power, Inc. USA CA $0 0 1 

Pond Biofuels Inc. Canada Foreign $0 0 3 

Qteros, Inc. USA MA $0 0 4 

Ra Energy Corporation USA MI $0 0 3 

Senesco, Inc. USA NJ $0 0 11 

Solar Energy Res Inst USA CO $0 3 0 

Solix Biofuels USA CO $0 2 1 

Sunsource Industries USA IL  $0 0 2 

Syngenta Switzerland Foreign $236,968 0 0 

Targeted Growth, Inc. USA WA $29,575 0 0 

Univerve Ltd. Israel Foreign $0 0 1 

V35A Enterprises, Llc USA WI $0 0 2 

Williams Production RMT Company USA CO $88,102 0 0 

Xyleco, Inc.  USA MA $0 0 13 

 

Table A-7—Major companies active in agricultural commodity processing and management 
innovation 

Company  Country State  

Privately 

sponsored 

grant 

awards 

WoS 

articles 

Citing 

Patents 

Agridigit Inc Canada Foreign $0 0 1 

Attec Danmark A/S Danmark Foreign $0 0 1 

Australian Meat & Live-Stock Corporation Australia Foreign $51,998 0 0 

Beijing Poultry Breeding Company China Foreign $158,100 0 0 

Bemis Company, Inc. USA WI $88,018 0 0 

Cargill Meat Solution USA KS $0 2 0 

CATIE-Centro Agronomico Tropical de Inve Costa Rica Foreign $4,355 0 0 

Certified Angus Beef LLC USA OH $0 3 0 

Clougherty Packing Co USA CA $0 1 0 

Conagra Red Meat Co USA CO $0 1 0 

ContiBeef LLC USA CO $152,345 5 0 

CSIRO, Livestock Ind Australia Foreign $0 1 0 

Denver Buffalo Company USA CO $187,994 0 0 

Diamond Bar Land & Livestock USA CA $38,099 0 0 

F Menard Canada Foreign $0 2 0 

Farm to Table USA CO $9,000 0 0 

Farmland Industries USA MO $14,000 0 0 

Farnam Companies, Inc. USA AZ $4,500 0 0 
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Five Rivers Ranch Cattle Feeding LLC USA CO $840,697 2 0 

Gerber Agri Inc USA CO $0 1 0 

Grandin Livestock Handling Syst Inc USA CO $0 1 0 

JBS Five Rivers Cattle Feeding USA CO $58,552 4 8 

John Morrell and Company USA OH $17,944 0 0 

Keen Ingredients, Inc, USA CO $0 0 4 

Leachman Cattle Company USA CO $14,210 1 0 

MaGiix Germany Foreign $16,655 0 0 

Magness Land & Cattle Company USA CO $10,195 0 0 

Meyer Natural Angus, LLC USA CO $27,866 0 0 

Micro Beef Technologies, Ltd USA TX $0 0 16 

Monfort, Inc. USA CO  $13,243 4 0 

Paper Pak, Inc. USA CA $5,796 0 0 

PIC USA, Inc USA TN $63,472 0 0 

Saueressig Gmbh + Co. Germany Foreign $0 0 1 

Smithfeld Beef Grp USA WI $0 2 0 

Swift & Company USA CO $78,450 0 3 

Tyson Fresh Meats, Inc. USA SD $0 0 3 

 

Table A-8—Major companies active in plant genetics, and crop variety innovation 

Company  Country State  

Privately 

sponsored 

grant 

awards 

WoS 

articles 

Citing 

Patents 

ADM Alliance Nutrition Inc USA IL $0 1 0 

Agrigenetics, Inc. USA IN $5,880 0 0 

AlgEternal Technologies, LLC USA TX $0 0 2 

Archer Daniels Midland Co USA IL $0 1 2 

AsRes Ltd 
New 

Zealand 
Foreign $0 1 0 

Ayers Associates,  USA CO $0 1 0 

Bartlett Grain Pty. Ltd. Australia Foreign $0 0 1 

Bartlett Tree Experts,  USA NC  $0 1 0 

Bayer Cropscience Lp USA NC  $0 0 2 

Biocare Gesellschaft Fuer Biologische 

Schutzmittel Mbh 
Germany Foreign $0 0 3 

Blue Valley Ranch USA CO $51,816 0 0 

Booth Creek Ski Holdings, Inc. USA CO  $43,678 0 0 

Btf Pty, Ltd. Australia Foreign $0 0 1 

Busch Agr Resources LLC,  USA CO  $0 1 0 

Cactus Feeders Inc USA TX $0 1 0 

Cargill, Inc. USA CO $28,500 0 2 
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Cattlemans Choice Loomix, LLC USA CO $160 0 0 

Coca-Cola Company USA GA $219,893 0 0 

Crenshaw & Douget Turfgrass, Inc. USA TX $4,000 0 0 

DAS-Dow AgroSciences, LLC USA IN $55,092 0 0 

Diamond V Mills, Inc USA IA $33,463 1 0 

Dow AgroSci LLC,  USA IN  $0 1 0 

DuCoa USA IL $8,491 0 0 

DuPont Stine Haskell Res Ctr,  USA DE  $0 1 0 

E.G. & G. Rocky Flats, Inc. USA CO  $8,320 0 0 

Ecoduna Ag Germany Foreign $0 0 1 

GAIA Management International, Inc. USA TX $72,654 0 0 

Gunnison Hay Products, LLC USA CO $11,172 0 0 

Heliae Development, Llc USA AZ $0 0 1 

Hill's Pet Nutrition, Inc. USA KS  $0 0 20 

Horton Feedlot USA CO $6,600 0 0 

Jacklin Seed Company USA ID $17,443 0 0 

L. Johnson Farms, LLC USA KS $11,892 0 0 

Landcare Res NZ Ltd, Palmerston North,  
New 

Zealand 
Foreign $0 4 0 

Machinery Developments Ltd UK Foreign $0 0 1 

MIN AD Inc USA TX $0 1 0 

Multigrain Int LLC,  USA CO  $0 1 0 

Neptune & Co,  USA NM  $0 1 0 

Newleaf Symbiotics, Inc. USA MO $0 0 1 

Noble Fdn Inc,  USA OK  $0 3 0 

Northrup King Lawn/Garden Corp  USA MN $9,629 0 0 

Nutribasics Company USA NY $57,506 0 0 

Oxion, Inc. USA KS $13,743 0 0 

PACE Turf,  USA CA $0 1 0 

Penford Food Ingredients Company USA CO $7,976 0 0 

Pioneer Hi-Bred International, Inc. USA CO $56,717 5 15 

Planalytics Inc,  USA PA  $0 1 0 

PLANT TRADEMARK & COPYRIGHT OFF, USA CA  $0 2 0 

Premium Genetics (Uk) Ltd. Ireland Foreign $0 0 5 

ptimal Ag Consulting Inc USA CO $0 1 0 

Purina Mills, Inc. USA CO $12,500 0 0 

Ralston-Purina Company USA MO $45,986 0 0 

Rhodia Acetow Ag Germany Foreign $13,558 0 2 

RINGGER FEED INC, NUTR, USA IL  $0 1 0 

SEEDEX INC, USA CO  $0 1 0 

Seminis Vegetable Seeds,  USA ID  $0 1 0 

Society for Range Management USA CO $16,229 0 0 

Tagawa Greenhouse Enterprises, Llc USA CO $849,700 0 3 
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The Samuel Roberts Noble Foundation, Inc. USA OK $0 0 3 

United Feeds UK Foreign $3,969 0 1 

Vit-E-Men Company, Inc. USA NE $25,356 0 0 

W.C. Bradley Co. USA GA $0 0 1 

ZedX Inc,  USA PA  $0 1 0 

 

Table A-9—Major companies active in dairy and food product innovation 

Company  Country State  

Privately 

sponsored 

grant 

awards 

WoS 

articles 

Citing 

Patents 

Abbott Laboratories USA IL $0 0 3 

ACR, LLC USA CO $49,900 0 0 

Agrifood Solut Int USA TX $0 1 0 

American Diabetes Association, Inc. USA CO $79,167 0 0 

Angel Yeast Co., Ltd. China Foreign $0 0 2 

Aurora Organic Dairy USA CO $281,856 0 0 

Bar-S Foods Co. USA AZ $18,000 0 0 

Bil-Mar Foods USA MI $0 1 0 

Cooking Kids Inc  USA NM $0 1 0 

Csb-System Software-Entwicklung & 

Unternehmensberatung Ag 
Germany Foreign $0 0 3 

CSR LTD, INGHAM,QLD 4850, Australia Foreign $0 1 0 

DairyNZ Ltd, Hamilton,  
New 

Zealand 
Foreign $0 1 0 

Energy Enzymes Inc USA MO $0 0 4 

Food Friends Inc. USA CO $30,007 0 0 

Food Safety Net Services, Ltd. USA TX $129,041 4 0 

Foodbrands Amer USA OK $0 1 0 

Hershey Company USA PA $0 0 1 

Hormel Foods, Llc USA MN $0 0 1 

Hort & Food Res Inst  
New 

Zealand 
Foreign $0 1 0 

IFT Food Microbiol Div USA CO $0 1 0 

Immucell Corp USA ME $0 1 0 

Johnson Res USA ID $0 1 0 

Keen Ingredients USA CO $0 0 0 

Kemin Industries, Inc. USA IA $17,388 0 0 

King Soopers USA CO  $16,500 0 0 

Kroger Co USA GA $19,350 1 0 

Leprino Foods USA CO  $88,192 0 0 

Mars Incorporated USA WA $0 0 7 

McDonalds Corp USA IL $0 2 0 
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Minerva Ltd Brazil Foreign $0 1 0 

Monsanto USA MO $295,988 4 27 

Mountain View Harvest Coop/Gerards Baker USA CO $161,015 0 0 

MPC-Medical Packaging Corporation USA CA $11,760 0 0 

Mrp Group, Inc. USA GA $0 0 1 

Nat Way Inc,  USA CO  $0 1 0 

Nederlandse Organisatie Voor Toegepast-

Natuurwetenschappelijk Onderzoek Tno 
Netherland Foreign $0 0 1 

Nestec S.A. Switzerland Foreign $0 0 4 

Procter & Gamble Co USA OH $0 2 0 

Purac, Incorporated USA KS $29,609 2 0 

Raps Gmbh & Co. Kg Germany Foreign $0 0 2 

Ruakura Res Ctr, AgRes 
New 

Zealand 
Foreign $0 1 0 

Select Sires Incorporated USA OH $11,963 1 0 

SoyPLUS/West Central USA GA $7,572 0 0 

SSI Food Serv Inc USA ID $0 1 0 

Sweetwater Energy, Inc. USA NY $0 0 6 

The Hershey Company USA PA $0 0 1 

Voogd Consulting Inc USA IL $0 2 0 

WESTERN SUGAR CO, USA NE  $0 1 0 

Zinpro Corporation USA MN $834,076 1 0 

 

Table A-10—Major companies active in beer and wine production innovation 

Company  Country State  

Privately 

sponsored 

grant 

awards 

WoS 

articles 

Citing 

Patents 

Adolph Coors Company USA CO $43,500 0 0 

ANHEUSER BUSCH INC, USA MO $0 3 0 

Brewer Environmental Industries USA HI $48,742 1 0 

New Belgium Brewing Co USA CO $0 1 0 

 


