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ABSTRACT

THREE ESSAYS ON THE ECONOMICS OF UNIVERSITY KNOWLEDGE PRODUCTION
AND COMMERCIAL INNOVATION: THE CASE OF COLORADO STATE UNIVERSITY

RESEARCH AND TECHNOLOGY TRANSFER

The central aim of this study is to analyze the research production and R&D activities of
Colorado State University (CSU) across its different colleges, departments and other research units,
and to evaluate how those activities impact the Colorado economy’s agriculturally-related sectors.

The study consists of three main chapters, to introduce the dynamics of university knowledge
transfer to local agricultural economies.

Chapter 1 explores CSU research production and technology-transfer activities, using a unique
panel date set for each of 54 academic departments over the period of 1989-2012. In order to
estimate the empirical knowledge-production function (KPF), this chapter attémptsld a
negative binomial panel regression model with a polynomial distributed lags (PDL) of research
expenditures. Three categories of research outputs are modelled, including (1) published journal
articles, (2) industry collaboration, and (3) technology transfer mechanisms. In the regression
results, publications are clearly the most common research outputs of the university, with a more
systematic relationship between research inputs and publications than the other two types of
research outputs. Moreoveit, appears to exhibit decreasing returns to scale, whereas the
collaborative and tech transfer research outputs appear to show increasing returns to scale. In the
results of a seemingly unrelated regressions (SUR) model among the three different types of
research outputs, publications and the tech transfer mediated research outputs are the primary

research outputs in the university and have the maximum impact from past research expenditures.



Furthermore, results indicate that collaboration mediated outputs are substitutional relative to the
more formal tech transfer outputs.

Chapter 2 explores the agency of knowledge production, viewing scientific research teams as
“quasi-firms” arising as independent knowledge-creating entities within the university context
First, the findings from the ego-centric social network showed that the participation of outside
members makes it possible to increase the size of the ego-centric teams and the growth patterns of
the percent share are an obvious parallel to the patterns of team size. Particularly, the growth rate
of team size is opposite of the percent share of ego’s home department co-authors with upward
and downward tendencies, respectively. Second, the findings from the regression results showed
that the number of CSU departments per team is statistically significant in the team’s assembly
mechanism for both the article teams and patent teams. Thus, it seems reasonable to conclude that
cross-functional team formation is more effective and common in the university research team
formation and has a positive impact on the size of research teams. Finally, the quality of research
teams’ knowledge production tells us that the group with multiple departments per article has a
higher research impact than a group using a single department per article. By the same token,
larger-sized teams have higher impacts than relatively smaller-sized teams, as well as field variety.
The group with multiple references per patent had a higher impact than the groups with a single or
no reference per patent. This result tells us that the citation mapping from backward citations to
forward citations is a significant factor for testing the researahste@pacts on the economic
and social benefits with respect to knowledge spillover.

Chapter 3 has focused on CSWnowledge spillovers within agriculturally related fields and
technologies. The findings indicated that academic knowledge spillovers are geographically

bounded, but they are not strictly limited to the regional scale. Crucially, the impact of university



spillovers on agriculturally-related industries depends upon which type of knowledge
dissemination channel is utilized by university researchers. Broadly speaking this chapter
evaluates four types of channehcluding the publication mechanism, the industry collaboration
and extension mechanism, the technology patenting/licensing mechanism, and the venture creation
mechanism-each of which are variously adapted to transmitting different degrees of sticky (tacit)
versus slippery (codified) knowledge. The results showed that in both aggregate level of
technology and six different technological categories, the spillover impacts of journal pubdication
are rarely localized within Colorado; rather, the geographic scope s#ithpacts are national

and even global. However, the extent to which the spillover impacts of patented knowledge is
localized within Colorado is open to question because it is possible to control permissions for use,
but at the same time it is impossible to lirNtryone’s awareness and use of it, particularly in
foreign jurisdictions where patents are not taken out by the university. However, the collaboration
mechanism requires closer interaction and greater geographic proximity, which usually prevents
global dissemination. Thus, we observe geographic proximity is significantly important for these
channels. However, there are even distinctions within these. For example, we find industry
coauthorship on articles to be less likely to be localized than privately sponsored grant awards
Nevertheless, the stickiness of these channels might depend also on the different technological
categories. As mention as above, the geographic proximity is important only in aggregate level of
technology, but it can be varied across the different technological categories, especially the
slippery form of knowledge in animal health and nutrition health technology. Finally, university
start-ups are highly geographically bounded near universities because in the early staggs start

companies need support from their host university.
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OVERALL INTRODUCTION

In recent years, numerous studies have explored the economic impacts of university research
and technology transfer on industrial research and development (R&D) and commercial innovation.
These studies have contributed to the understanding that university research leads to positive social
returns as well as economic growth through stimulating commercial innovation (Adams &
Griliches, 1998; Cohen, Nelson, & Walsh, 2002; Jaffe, 1989).

The importance of university technology transfer has been addressed by economists for only a
few decades. Of particular importance in this regard is the potential of university knowledge
production activities to affect both commercial innovation directly and economic growth indirectly.
According to Adams & Griliches (1998), universities account for about 50 percent of basic
research conducted in the U.S., and basic research is one of the mainsprings of industrial
innovation. If universities’ research productivities were to decline overall or were to shift in
composition away from basic research, a critical input into industrial research would grow more
slowly. Following Cohen, Nelson, & Walsh (2002), university research is of at least moderate
importance to a number of industries, including both high technology and more traditional
industries. Studies by Mansfield (1991 & 1995), Henderson, Jaffe, & Trajtenberg (1998), Agrawal
& Henderson (2002), and others, have sought to model and measure the contributions of academic
research to industrial innovation through different knowledge transmission channels and different
modes of impact. Moreover, these seminal studies have shown that technological innovation across
various industries, including both new products and new processes, have been based on to some
extent on academic research. At the same time these studies emphasize the importance of the role

of university research in the creation of human capital, arguably the most significant resource in



industry and society, through the training of graduate students, many of whom become industrial
scientists, engineers, and inventors.

However, these roles and missions of the research university have been transformed by
histories of university institutional and national government policy changes. Before the nineteenth
century, the function of the university was primarily teaching, i.e. the preservation and
dissemination of knowledge. Beginning in the nineteenth century, the university was transformed
into the research university, in what is often called the first academic revolution in wasgaach
mission was integrated with the teaching mission (Etzkowitz, 2003). In the early- to mid-twentieth
century, the third mission of university emerged, emphasizing outcomes such as economic and
social development, in which is called the second academic revolution (Etzkowitz, 2003). In the
course of changing their roles and missions, universities have dealt with important policy changes.
Although changes in the roles and missions of the university, and changes in policy have been
interdependent, with causality flowing in both directions, in general, policy changes have
accelerated the speed of university transformation and supported or suggested the dissemination
of new missions across the population of universities. In the U.S., universities have encountered
several important policy changes, such as the Morrill Land-Grant Act of 1862, the Hatch Act of
1887, the Smith-Lever Act of 1914, the Bayh-Dole Act of 1980, and so on.

Following these policy changes, the Land Grant universities in the U.S. have generally come
to embrace three missions: an educational mission, a research mission, and an outreach mission.
First, the educational mission is to prepare and educate knowledge workers for statewide,
nationwide, and even worldwide labor markets. The university graduates become knowledge
workers-whether scientists, engineers, faculty members, or political leadargibuting the

most important factor of production in the knowledge economy, human capital. Second, the



research mission is to produce new knowledge, which can be observed as outputs such as journal
articles, student theses and dissertations, or even invention disclosures and patent applications. The
university output of new knowledge can contribute to industrial innovation and technological
progress both indirectly through basic research and directly through development of high
technology. Finally, the outreach mission encompasses not only the traditional forms such as
public lectures, extension services, and consulting and collaborative R&D with industry partners,
but also newer forms such as the licensing of patents and the startup of new companies.

However, in most previous studies of academic knowledge transfer, some important
knowledge indicators such as publications, degree awards, private sponsorships, and extension
activities are far less fully explored and catalogued than are patents, licenses, and royalties.
Furthermore, relatively few studies have been devoted to understanding the multiple knowledge
channels of the university, but most of them have been highly skewed toward just one or two
knowledge dissemination channels, because of data limitations. This study takes into consideration
a full range of potential knowledge dissemination channels, as indicated by such measures as
academic journal publications, degrees awarded (master and doctoral), industry co-authorship on
publications, private sponsorship of research projects, extension activities, invention disclosures,
patent applications, licenses, and startups, all from data collected at the level of the different
departments or research units of Colorado State University, from 1989 to 2012. These various
measures make it possible to analyze the extent to which the different types of knowledge
dissemination channels work.

The concept of multiple knowledge channels in this study can be understood as informed by
Samuelson’s (1954) classic comparison of excludability and rivalry dimensions in “The Pure

Theory of PublicExpenditure.” As such, four types of knowledge channels are introduced (see



Figure 1). First, what we call the “public domain mechanism” of knowledge dissemination is most
appropriate for those outputs of research that have the strongest public good attributes, defined as
non-excludable and non-rivalrous. Thus, it is impossible to exclude anyone from accessing this
knowledge and to prevent simultaneous use or access, which means full freedom of use and open
access.

Second, the “collaboration mechanism” of knowledge dissemination is defined as a common
good that is norxcludable and, yet, more rivalrous, due to the tacit or “sticky” nature of the
knowledge, with it skills or routines, thus preventing global dissemination via publication or even
making simultaneous contact or contract with multiple parties less than effective. Dissemination

or transfer of the knowledge requires close interaction, such as apprenticeship or collaboration.

Non-Rivalrous Rivalrous
(“Slippery” information, lower (“Sticky” information, higher
transaction costs, lower capacity transaction costs, higher capacity
requirements) requirements)
Non-excludable Release via Public Domain Collaboration
Invoked exclusion Patenting/Licensing Venture Creation

Figure 1—The concept of Four Types of Knowledge Dissemination Channels

Third, the utilization of the intellectual property rights and contracts characterize the
“patenting/licensing mechanism” of knowledge transfer, which is best suited when a certain degree
of excludability is required to create sufficient incentives for follow-on investment in an otherwise
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non-excludable and non-rivalrous knowledge output. Thus, by virtue of the IP and contracts, it is
possible to exclude others from accessing and making use of it. Finally, the “venture creation
mechanism” of knowledge dissemination is best for raising private investment in the further
development of knowledge treating it most like a private good, by virtue of IP making it relatively
excludable and, by virtue of its intrinsic stickiness or context dependence, being relatively non-
rivalrous, so it is possible to exclude others from accessing this knowledge and making
simultaneous use of it.

The main goal of this study is to analyze the economics of Colorado State University (CSU)’s
knowledge production and its spillover activities on the commercial innovation and invention.
There are three main objectives: (1) to understand the historical trends and system of university
knowledge production and R&D activities across the different colleges, departments, and research
units in terms of a full range of potential knowledge dissemination channels, (2) to understand
recent changes in the organization of knowledge creation activities, called the rise of the
“entreprencurial university” by Etzkowitz et al (2000), such as university research team structures
and assembly mechanisms, and (3) to understand the dynamics of university knowledge spillovers
and the geographic scope of their commercial and economic impacts on our society and economy,
especially in the agriculturally-related sectors in Colorado and beyond.

This study consists of three main chapters, and each chapter pursues the three objectives of the
study in different ways. Chapter 1 analyzes the system of CSU’s knowledge production and
transfer activities. This chapter introduces several advances to the literature. First, while previous
studies have limited their analysis, due to data, to the institutional level, this analysis shows how
knowledge production works at the more disaggregated level of the different colleges, departments,

and research units within the university. Second, most other studies explore the relationship



between research inputs and one type of output, typically research papers or patents. This analysis
considers production of several different knowledge outputs that are disseminated through
different channels and analyzes how the input output relationship differs across them. This chapter
addresses questions of how efficiency of knowledge production can be assessed across the
different types of knowledge, why they have different productivity, and what important factors
may be related to improving productivity. Finally, this first chapter introduces a novel empirical
technique for estimating the knowledge production function that combines a panel count data
model with polynomial distributed lags between the inputs and the outputs of the knowledge
production function. This approach makes it possible to estimate the input-output relationships
systematically across the entire university at the disaggregate level of analysis, and for each of the
different types of knowledge outputs.

Chapter 2 explores how knowledge production within the research university works, by
analyzing the structure and composition of academic research teams as quasi-firms or the agents
of innovation. This is a speculative and preliminary exploration into new concepts about the
agency and organization of early-stage innovation, an attempt to look inside the black box of the
production function. To this purpose, this study aims to examine what are the main components
and structures of research teams, who can be characterized as principals and as agents of the
research production process, what kinds of research environments or other factors determine the
sizes of scientific research teams, and what sorts of team structures characterizes the relationship
between university researchers and industry collaborators.

Chapter 3 examines CSU’s knowledge dissemination and its impact on commercial innovation
through the several different types of knowledge dissemination channels introduced above. This

chapter focuses on the geospatial patterns of CSU’s knowledge spillovers and its commercial



economic impact especially within Colorado’s agriculturally related sectors and industries, but

also nationally and globally. This chapter describes CSU’s publications, its collaborative activities,

such as indicated by data on university-industry co-authorship of articles and private sponsorship
of research, its licensing of inventions, and its startup of new ventures in agricultural and food
technologies. This chapter traces the locations of private industry innovators impacted by or
associated with CSU agricultural research across different types of technology, and a systematic
relationship between the types of CSU knowledge transfer mechanisms employed the geographic

proximity to CSU of the commercial user of that knowledge.



CHAPTER 1. EMPIRICAL EVIDENCE OF THE UNIVERSITY KNOWLEDEG
PRODUCTION FUNCTION AND KNOWLEDGE DISSEMINATION ACTIVITIES: THE

CASE OF COLORADO STATE UNIVERSITY

|. Introduction

Knowledge production and transfer activities are an important source of commercial
innovation and economic development, such that knowledge spillovers have attracted the attention
of many economists and policy makers. Furthermore, university research accounts form0 perce
of basic research in the U.S., and the university research is one of the mainsprings of industrial
innovation, and the introduction of new products and processes (Mansfield, 1991, 1995; Adams
and Griliches, 1998). Although studies of knowledge production had developed steadily for
decades, around the 1980s the area blossomed with seminal papers by Griliches (1979), Pakes &
Griliches (1980, 1984), Hausman, Hall, & Griliches (1984, 1986), Jaffe (1989), and Pardey (1989)
Since that time, the main conceptual ideas and empirical techniques for analyzing knowledge
production have progresseak the quantity of studies has increased. In most previous studies,
including those of both industrial research and development (R&D) and university research,
empirical results of the input-output relationship between past research expenditures and current
research outputs, respectively, remain ambiguous (Crespi & Geuna, 2008). This is largely due to
two major problems: the quality of data and empirical model misspecifications.

In the United States, total R&D spending in 2bbas $447 billion of which academic R&D

expenditureswere $66 billion, nearly 15 percent of the total. According to the National Science

! Source: 2014 Global R&D Funding Forecast, Battelle, R&D Magazine, International MoFRetat, World Bank,
CIA Fact Book.

2 Source: Rankings by total academic R&E expenditures, National Cengeiémce and Engineering Statistics
(NCSES), National Science Foundation (NSF).



Foundation, the industry investment was the largest performance of U.S. total R&D, accounting
for 71 percent, and the research universities were the second largest performer (NSF, 2015).
Furthermore, from 1996 to 2010, the economic impact of university and non-profit patent licensing
was estimated to be $388 billion on the U.S. gross domestic product and $836 billion on the U.S.
gross industrial outputsSince 1980, startup companies affiliated with universities were more than
4,000. In the same period, universities and piiit entities’ patent licensing created more than

3 million jobs in U.S. (AUTM, 2015).

There is a growing body of evidence that academic research and technology transfer activities
are an important source of ideas and inputs for commercial research and innovation, including both
basic and high technology industries (Cohen et al, 2002). Yet, many of the recent studies of
academic knowledge output and its commercial impact focus on patenting and licensing as the
newer, more controversial channels of knowledge dissemination by academics. Although patents
are a significant output of academic knowledge production and represent one channel of its impact
on economic growth and development, other research outputs such as journal articles, degree
awards, and more traditional relationships of university-industry collabctatierstill the major
channels by which research universities affect commercial activity (Agrawal & Henderson, 2002).
To create a more accurate holistic picture, analysis of the impacts of academic knowledge
production should take into account the full range of potential knowledge dissemination channels.
Also, previous studies of academic knowledge production and transfer have focused their analyses
at the institutional level, largely because of data limitations. Again, a more accurate picture of

academic knowledge production should be possible from a more disaggregated, yet systematic

3 Source: the AUTM Briefing Book: 2015.
4 Collaborative channels include consulting to state governments and locstieglilseminars and workshops,
informal conversation, co-supervising, personnel exchange, and so on
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accounting of research activities within the diverse structure of the contemporary research
university.

The main purpose of this chapter is to analyze the disaggregated system of knowledge
production and transfer activities within a major research university. In so doing, this chapter
introduces a uniquely detailed dataset together with a novel empirical technique for estimating the
knowledge production function. First, this chapter introduces and explores data that characterizes
the full range of knowledge production inputs and outputs across all of the available accounting
units—the different colleges, departments, and research-uofteur home institution, Colorado
State University (CSU), over more than two decades, accessed from both open access and private
sources within the administration of CSU, to explore some basic questions: how does this
relationship differ for the differertypes of knowledge output that impact the economy through
different knowledge transfer or dissemination channels; how does the efficiency of knowledge
production vary across the different disciplines and research units of the university; and what
factors might explain why they vary in output productivity.

Second, this chapter introduces a panel count data modeé wilynomial distributed lag
scheme to estimate the input-output relationship of knowledge production using the CSU
knowledge production and transfer dataset. This unique data allows for more detailed modelling
of systematic input-output relationship of academic knowledge production and its relationship with
the wider economy, overcoming some of the typical data limitations confronted in prior
investigations.

The rest of this chapter is organized into six sections. Section Il reviews the literature and
describes previous studies of knowledge production. Section 1ll describes a technique for

estimating the knowledge production function involving panel count data within a polynomial
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distributed lag scheme. Section IV describes research inputs-outputs data set. Section V shows
results for the four main types of research output, by the fifty-four separate academic departments
and research units of Colorado State University from 1989 to 2012, within an adapting a seemingly
unrelated regression (SUR) system of knowledge production functions. In addition, this section
presents a structural change analysis within this regression framework for one of the three types
of research outputs, comparing technology transfer metrics before and after the restructuring of
the technology transfer office at CSU. Section VI discusses some the main characteristics of the
university departments’ knowledge production in terms of classical production theory, including
the output elasticity of knowledge production with respect to research inputs and returns to scale
of knowledge production across the main research outputs. The section also discusses limitations
of this study and future directions for this research. Section VIl summarizes the main conclusions
and insights of this chapter.
II. Literature Review
A. The Knowledge Production Function: Theory and Empirical Analysis

The knowledge production function is based on the concept of the neo-classical production
function, and it is useful for describing the unobservable, yet valuable, additions that research
contributes to the stock of knowledge capital. The concept of a knowledge production function
was first introduced by Griliches (1979) and further developed by Pakes & Griliches (1980, 1984).
These initial papers analyzed the rate of “production” of patents, considered a useful indicator of
unobservable knowledge increments, resulting from the research and development (R&D)
activities of U.S. industry, and set up an empirical model of the relationship between past R&D

expenditures and the output of patented inventions.
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In one of the early applications of the Griliches knowledge production function to academic
research, Jaffe (1989) modeled a production function of commercial spillovers from university
R&D, examining the importance of geographical proximity between university research and
commercial innovation. The same year, Pardey (1989) analyzed the input-output relationship of
knowledge production at the state agricultural experiment stations (SAES) of a number of major
state universities in the U.S. using a panel data set. The model was also based on the Griliches
knowledge production function to explore the relationship between past research expenditures and
research outputs, as indicated by research publications and their citations. This paper provides that
the quality of the publications depends on the number of citations and increases the research output
elasticity. Moreover, levels of research expenditure showed little evidence of systematic short-run
or pointto-point influence in the input-output relationship, but only a long-run or average
influence.

Adams & Griliches (1998) explored research performance and productivity within a set of U.S.
universities, with a model based on the Griliches knowledge production function. They show that,
at the aggregate level, research outputs such as publications and citations tend to follow constant
returns to scale, but, at the individual institutional level, they follow diminishing returns to scale.
Moreover, the paper analyzes variations in the relationship between research outputs and R&D
expenditures across different fields, types of universities (public versus private), funding sources,
and degree awards.

Subsequently, few other studies have extended and developed Griliches’ knowledge
production function, especially empirically. According to Crespi and Geuna (2008), previous
studies provide little systematic evidence that such investments lead to increased levels of

knowledge outputs, such as scientific publications, patenting, or other measures of innovation, and

12



ultimately to better economic performance. Crespi and Geiitigue several common methods
used in estimating Griliches’ knowledge production function, including the misspecifications of a
Cobb-Douglas functional form and problems with Koyck lags. They instead introduce a
polynomial distributed lags (PDL) model for this input-output relationship.

This paper seeks to develop a new empirical approach, utilizing both a more detailed dataset
and a polynomial distributed lags model to analyze how R&D inputs relate to knowledge outputs
within the university context.

B. Different Types of Knowledge Dissemination Channels

First, we begin with a recognition that the type of university knowledge outputs (and the type
of knowledge dissemination channels on which they tend to rely) can vary across the many
different research environments and disciplines found within the university. In general, basic
knowledge outputs in the university can be measured by scientific publications, citations made to
those publications, and graduate degrees awarded. There is a long tradition of “unpublished” or
“prepublication” collaborative exchange of new knowledge with industry, via a range of formal
and informal contacts, such as joint conduct of research, workshops and seminars, extension
activities, personnel exchanges, and consulting relationships. Newer types of academic knowledge
outputs include invention disclosures, patents, and even, occasionally, hi-tech startup ventures
founded by university researchers. Many previous studies of academic knowledge production have
tended to focus on just one type of research output in their empirical models, particularly favoring
journal publications, citations, or patents (see Jaffe, 1989; Johnes & Johnes, 1995; Mansfield, 1995;
Narin et al., 1997; Adams & Griliches, 1998; Henderson et al., 1998; Crespi & Geuna, 2008;

Whalley, 2013).

13



Because of data limitations, it has been challenging to take multiple types of knowledge output
systematically into account. Agrawal & Henderson (2002) attempted to consider various types of
knowledge outputs. They introduced relative importance of university knowledge channels such
as publications, conferences, consulting, informal conversations, collaborative research, patents &
licenses, recruiting of graduates, and co-supervising. These channels were not analyzed within
empirical or other statistics methods, but simply summarized as percentages and ratios, relative to
one another, across the entire university at an institutional-wide level of analysis.

This study exploits an extensive data set of knowledge ipatduding grant and contract
awards, research expenditures, researcher FTEs, laboratory space, equigsnevell as
outputs—including publications, graduate degrees awarded, proxies for university-industry
collaboration and extension activities, invention disclosures, patent applications and grants, license
agreements, and startup companies. All data are collected at the lowest possible institutional level
of analysis, that of the academic department or research unit, as annual counts, over more than

twenty years for many of the series.

[11. Model Framework
A. Empirical Model Framework
1. Functional Forms for Modelling Knowledge Production

In classical production theory, various functional forms are used to represent the relationship
between inputs and outputs: linear, log-log, quadratic, Cobb-Douglas, constant elasticity of
substitution (CES), transcendental, von Liebig, Mitscherlich-Baule, traretiogjowever, most
previous empirical studies of knowledge production have utilized one of most common, the Cobb-

Douglas production function, because of its amenability to econometric techniques but also
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because of its suitable representation of some of the inherent characteristics of knowledge
production.

Although Griliches’ concept of knowledge production originates in neo-classical production
theory, the production of knowledge differs somewhat from that of normal economic goods. There
are two major differences. First, the profit maximization problem is rarely applied to the
knowledge production problem due to the lack of a stable, appropriated market price of research
outputs. In other words, markets fail to form for most knowledge outputs, for a variety of reasons
that will be discussed later. Second, the units or incremeatsuaf or “underlying” economically
valuable technological knowledge are often unobservable. According to Pardey (1989), empirical
studies of knowledge production is limited in large part because of the difficulties of obtaining
suitable indicators of research outputs. However, we can still be confident that there exists a
systematic input-output relationship between research inputs and new knowledge outputs.

The university knowledge production function developed here is based on previous models
(Griliches, 1979; Pakes & Griliches, 1984; Jaffe, 1989; Pardey, 1989; Adams & Griliches, 1998)
using classical microeconomic assumptions of production theory. The knowledge production
function, describing the technical relationship between research inputs and outputs, is structurally
analogous to the neoclassical production function. Consider an accounting center within the
university—a college, department, or research-umithin which known amounts of inputs, such
as salaries of R&D staff, equipment, laboratory space, are used and within which research
outputs—such as datasets, software, research publications, inveni@wasproduced. The
knowledge production function defines the technical relationship by which the observed research

inputs are transformed into the observed research outputs.
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Equation (1) represents the empirical functional form for panel data analysis of the university

knowledge production that relates research inputs to outputs.

Y =a+gﬂj Ri+A L +AEQ+A G +4, 1)
wherei stands for thé" department or research unit anstands for thé" time period.Y is the
vector of university research outpuisrepresents research expenditurethe current and thie
lagged time periodd. is the count of full-time-equivalent (FTE) researchers, which consists of
faculty, research staff, and graduate research assistants employed in timet, pasiddiman
capitaP. EQ represents the value of research equipment, or physical capital, employed in research.
C are other control variables. The variable is an independent and identically distributed panel
disturbance term. This term can be comprised of a group-variant but time-invariant errar ferm,
and a group and time-variant idiosyncratic error tegm,in which case it is decomposed to the
following:

& =U +8 2
Assuming that these are characterized by mean zero and homoscedastic variance, such that

u ~(0,07), ¢, ~(0,07) andcov(u , g, )=0, and assuming no serial correlation, such that

cov(q’t , 35) , V t= <, then equation (3) follows from equations (1) and (2),

Yi’tz(a+q)+i,8j R,+A L+A EQ+4 C+.& (3)

5 There exists a positive relationship between FTEs and research expenditures besearch expenditures
include the salary of faculty members, GRAs and research staffs. Tiiagse a collinearity problem, which we
can control, if it is detected, by adopting an alternative model.
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where the slope coefficieng,,--, B.,/3. .5, and . are constant in every group, Hut+u,)

vary by group, such that this latter term measures the heterogeneity of research environments and
inherent characteristics across colleges and research units, sometimes called a varyiiemtoeff
model.

In contrast, another useful panel disturbance term consists of two components, where one is

time-variant but group-invarianty, , and the other is both time and group-variant, as depicted in
equation (4),

&, =Mk +8, 4)
Again, it is assumed these components are characterized by mean zero, with homoscedastic

variance and no serial correlation. Equation (5) is the modified model from equations (1) and (4):
K
Yiytz(a+,ut)+jz_(;ﬁj R,+AL+AEQ+A G+e (5)
So, these two variants control only one or the other source of variation, either group or time
heterogeneity, and are thus considered a one-way error componenf model.
2. Count Data as Research Output
Most academic research outputs are measured by courftsiata,as the number of articles
published per year, the number of graduate degrees conferred per year, the number of articles with
co-authors from industry per year, the number of invention disclosures or patent applications per

year, and the number of startups created per year. The fundamental variable in each of these

measures is discrete, taking only a finite number of non-negative, integer values. For count data,

6 A two-way error component model would control both unobserved groufiraadeterogeneities at the same
time. However, in this two-way method many degrees of freadouid be lost, so our analysis will not use the
method.

" A type of data in which the observations can take only the non-negatiger values {0, 1, 2, 3, ...} and where

these integers arise from counting rather than ranking.
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the Poisson and negative binomial maximum likelihood regression models are well established
First, when a Poisson model is appropriate for research outputs with count data, the probability

distribution function is given by

0'e’
f(Yj0)={ w1 YO ©)

0 ; Otherwise
where @ is known as the population rate parameter, and the Poisson PDF has an equal-dispersion
property whereE(Y)=6 ando” =6.
Second, the negative binomialas extension of the Poisson with a probability distribution

given by

( r jrr(”Yi)( 0 jYi;Y=o,1,2,..
f(¥0)=4\r+6) Yir(r)\r+o) " " (7)
0 : Otherwise

wherer is the dispersion parameter ahdis the gamma function. The negative binomial does

not have the equal-dispersion property, and different values for mean and variance allow for over-

2
dispersion, withE(Y) =6 and o = 0+2.
r

In many cases of count data, the value of the sample variance is, indeed, greatenvtidaa the
of the sample mean, indicating over-dispersion; yet, the Poisson distribution does not allow for
variance to be adjusted independently of the mean. In such cases, the negative binomial
distribution can be used. In general, in testing for over-dispeisismot sufficient merely to
compare sample mean and variance, but it is necessary to proceed with a hypothesis test with a

null hypothesisH, : Dependent variable Poisson distributi. However, if such a tess not

feasible, alternatively, information criteria, such as the Akaike information criteria (AIC) and the
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Schwarz Bayesian information criteria (SBJ€an be used, as the Poisson distribution is a special
case of the negative binomial distribution, with simply a zero value of the dispersion parameter,
r =0in equation (7) above.

The first step of negative binomial maximum likelihood estimation is to derive the log
likelihood function with independently and identically distributed disturbances from equation (7),
the negative binomial probability distribution:

o) T evin) T W[4 | e

i=1 i=1 t

Next, taking the logarithm on the both sides of equation (8), we obtain the log-likelihood

function for negative binomial maximum likelihood estimation,

S

ZN:[InF(Y +1)=In(Y,!)-In F(r)] (9)

i=1

e In(r)-n(r+6,)]+¥, -2 [In(4,)-In(r+4,)]

i=1

where, = E[Y,] X, ]~ exp{ X' ex{zk(;ﬂj R,+4 L+R EQ+A ‘Qj

Equation (9) is maximized with respect to the unknown paraméterthe mean of the

negative binomial process.
3. Polynomial Distributed Lags (PDL) Model

Much of the literature has shown that past research expenditures are the main input of
knowledge production. A number of previous studies haveathysted research expenditures as

the primary research input and have usdisdtributed-lag model with a finite lag ktime periods.
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A few have adopted the Koyck approach to modelling the distributed lag, which is based on the

assumption that coefficients decline geometrically as the lag lengthens. See the Figure 2.

Lag (time)

0
Source: D.N. Gujarati (2004) Basic Econometriésdition

Figure 2—Koyck Scheme (Declining Geometric Distribution)

Pakes & Griliches (1984) Pardey (1989)

Figure 3—Coefficient Patterns of Pakes & Griliches (1984) and Pardey (1989)

However, the assumption higitations in estimating a knowledge production function, and
in particular in estimating lagged research expenditures. In Figure 3, the slope coefficients of Pakes
& Griliches (1984) and Pardey (1989) do not seem to follow a geometrically decreasing pattern,

but appear to follow something more like a fourth-degree polynomial pattern, such that the Koyck
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scheme of distributed-lags does not appear to work as well in these cases &wedistributed
lag scheme.

In the current studyAlmon’s (1965) scheme, with a polynomial of degree m and a lag length
k of past inputs will be adapted to the knowledge production function model. The advantages are
an increased goodness-of-fit of the regression model and more accurate verification of the
regression results. However, there are few examples in the literature, see Crespi & Geuna (2008),
that employ this methodology in the knowledge production context, which is a disadvantage, along
with the risk of model misspecification. However, in light of the failure of the Koyck assumption,
the polynomial distributed lag (PDL) model is more precise thaaddrocdistributed lag model.

A panel count polynomial distributed-lag model (PDL) is derived from equation (1) and the
negative binomial maximum likelihood equation. First, equation (10) is a polynomial distributed
lag scheme generated by different degrees of polynomial. In this the maximum degrethe
polynomial, p=0,1,2;-- m, must be smaller than the maximum 13g; 0,1,2;-- k #m< Kk):

ﬂj=a)0+a)l~j+w2.j2+---+wm-jmzzm:wp-j P (10)
b0
Second the corresponding equation nefdegree and k lags of unrestricted polynomial

distributed lag is

Yi,t:a+iwpzp,i,t+ﬁL I-r1+:BE EQ;"'ﬁc C;I+git (11)

where z,;, =i] Ri.i=R+ R+ R+ R+ K

Kk

Z R = RU+2ZR +3R ++ kR

K
=Z "Ry = =R 1 F2TR L3R g+ KR
0
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The degree of the polynomial and the length of the lag can be tested by two common measures
for comparing maximum likelihood models, the Akaike information criterion (AIC) and the
Schwarz Bayesian information criterion (SBI@)However, the slope coefficients,, from

equation (11) are not true values of the model estimators, but the true slope coefficients need to be

recovered. The formulae for recovered slope coefficients are the following:

ﬂoza’o
L=+ @+ Oyt + @,

By =0+ 20,+ 40, +---+ 20, (12)
B = @y + koo + Ky +-+ K'dd_

Thus, the,[?s from equation (12) are the estimated slope coefficients, and the unrestricted PDL

model is
Y :a+ZBiURt—i +AL+AEQ+A . (13)

The unrestricted PDL model has a@iriori restrictions, but a restricted PDL model can be
limited by endpoint restrictions on the current andkher k+1% lagged coefficients, which are
zero. If imposing this restriction on the coefficiefithe current time period’s input variable, it is
cdled a left restriction or a near-end restriction. If imposing the restriction ok"tloe k+1%"
lagged coefficient, it is called a right restriction or a far-end restriction. Following Gujarati (2004),
such restrictions are explained by psychological, institutional, or technical reasons. In this paper,
we assume that unobservable inputs made beyonki"tteey year no longer impact the current

research outputs, but that research expenditures in the current year do have impact.

8 AIC=-2xIn(Likelihood Function} 2 p and SBIC=-2x In(Likelihood Function} In(N ¥ f wherep is number of
parameters estimated aNds number of observations.
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For example, setting~4, k=6, and far endpoint=73,in equation (14) is the far endpoint
restriction for the regression model:

B, =0+ (o,+4%,+ 34%,+ 240d,= O

(14)
= @0, =—(w,—4%,— 34%,— 240d,

Equation (14) is substituted into equation (11) and then the result is:
Yo=a+o(z, 7%, )+oy 3,-49% )+o{ §-343g)+o [ - 240%¢)+¢s (15)
Then, recovering the true estimated slope coefficients from equation (15) by the same manner

as in the unrestricted model, equation (16) is the resulting restricted PDL model:
6 ~
Yi=a+) R, +A L+R EQ+A G (16)
j=0

In knowledge production, there is no doubt that past research expenditures impact current
research outputs, but there are some ambiguities between near-endpoint, far-endpoint, and both-
endpoint restrictions. In general, these depend on the type of research output, the inherent
characteristics of the research environments, and the different purposes of R&D projects across
the different departments or research units.

4. Effective Labom Knowledge Production Function

In classical production theory, the primary input variables in the production function are capital
and labor. In a similar way, research expenditures and full time equivalent (FTE) researchers can
be considered the main input variables in the knowledge production function. Since, most of
research expenditures go toward the salaries of faculty members, research staff, and graduate
students, these two input variables in the knowledge production function interact with each other.
Thus, this section introduces one of the alternative ways for avoiding the resulting problems. In

Solow's (1956) model, human knowledge cannot be removed from the labor input, so knowledge
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and labor enter multiplicatively, which is referred to as an effective labor, labor-augmenting, or
Harrod-neutral model.Moreover, according to Romer (1986, 1990), the stock of human or
knowledge capital determines the rate of growth and is a non-rival and semi-excludable resource
in his alternative specification known as endogenous technological change. Even though these
growth models are macroeconomic, they are based on the notion of the production function,
sometimes called “the microfoundations of macroeconomid$ In general, aggregate data of
production functions assume constant returns to scale instead of diminishing returns to scale, as in
individual firm data. However, if we follow this and assume constant returns to scales with respect
to labor in the knowledge production function for the university, we can generate equajion (17
below

f(uR ul, nEQ=p- f(R L EQ

R EQ _1. Lo 1
= f(t,l,T)—L f(R, L, EQ), |f,Ll—L

(«))

By assuming a Cobb-Douglas functional form, and taking the logarithm on both sides of
equation (17), we can denote research output per unit of effective labor (in our case, FTES) as a
function of research expenditures per unit of effective labor (or FTES) and the value of research

equipment per unit of effective labor (or FTES), as in equation (18

In(%‘t]:a+§ﬂj In(RI:Ij ]+ﬁE In( Ii?“}+gi,t

< (18)

k
Yis =(05+‘4)+Z:BJ T t4&-eq + 8
j=0

9 Romer (2001) “Advanced Macroeconomics” 2" edition.
10 The microeconomics of individual agenbehavior such as households or firms that underpins a manmeim
theory.
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It should be noted that equation (18) is still a panel group fixed-effects model with polynomial
distributed lags of research expenditures, but it is not a negative binomial maximum likelihood
equation. At the department level, there are many zero values that causes the estimation routine to

drop the observations due to the characteristics of the logarithm.

V. Data Descriptions

The data describing both research inputs and research outputs was collected from a variety of
sources, and was denominated at the smallest common organizational unit that proved feasible
across the entire set of data sources, which was the department or analogous research unit (e.qg.
various semi-autonomous research centers or services) within the university.
A. Research Input Data

Research input data collected for the university consist of three different categories, broadly
representing financial capital, human capital, and physical capital. Total research expenditures and
awards of grants and contracts are the financial capital variables collected. Full-time equivalents
(FTESs) of researchers represent the human capital input. Office and laboratory space and the value
of research equipment are the physical capital variables collected.
1. Financial Capital

Total Research Expenditures: CSU research expenditures are reported from 1989 to 2012 for
the university overall, and from 2003-2012 at two more disaggregate levels, including colleges as
well as departments and other research units that, combined, make up the tbllbgss.data
come from the Office of Vice President of Research and the University Fact Book Online compiled

by the Institutional Research office at CSU. In 2012, theeusity’s overall level of total research

11 Given the more limited data reporting at the departmental level, estimatesdanuagal research expenditures
were “back cast” for the period from 1989 to 2002, based on the total university research expenditures for those
years, subdivided according to the average share of total university reseaecilitures observed for each
department during the period of 2003-2012.
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expenditure was $371.6 million. Among colleges, the College of Veterinary Medicine and
Biomedical Sciences was the top ranked in 2012 in terms of total research expenditures, at $63.3

million (see Figure 4).
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Note: CEMML is Center of Environmental Management of Military Lands,@8HS is the Colorado State
Forest Service. These distinct programs’ research budgets are of sufficient size to be counted alongside the
eight academic colleges. “Others” include the Vice President for Research (VPR) Office, the libraries, and
other central functions that have research budgets.

Figure 4—Annual trends of total research expenditures, by college, (1989-2012)

Grant and Contract Awards: Another measure of financial input is the announced awarding of
research funding from external sources via grants and contracts, the records of which are
characterized by investigator names, project titles, funding sources, award amounts, college and
department affiliations of investigators, and the date and year when the award was announced,
from 1989 to 2012. The total number of awards announced over this time period was 38,792 and

the total amount dollar was $3,951.3 million. The data comes from the online Proposal and Award
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Search at the Research Data Center of the CSU Office of Vice President for Research
(http://web.research.colostate.edu/datacenter/). In 2012, the value of overall grant awards
announced totaled $257.4 million, and the top ranked college was College of Engineering, at $61.2
million. The disaggregated grant and contract awards and total research expenditures at the
departmental level are highly correlated. Moreover, grant awards do not represent actual
expenditures, so total research expenditures are considered a better measure of financial inputs to
research. The additional information on individual investigators and funding sources, and the fact
that it is at a more disaggregate level can make grant and contract award data usefut for othe
purposes.
2. Human Capital

Full-time equivalent (FTE) researchers: The research human capital within the university

consists of faculty, research staff, postdoctoral fellows, and graduate research assistants (GRAS).
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Figure 5—Full-time equivalent (FTE) researchersfor the university overall, (1989-2012)
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The data on university research staff is tabulated for the full university, as well as for individual
colleges and departments. The data comes from the Office of Institutional Research at CSU, but
the time period is only 10 years, from 2003 to 2012 rather than 24 years. Totals for other years
within the range of this study, from 1989 to 2002, are collected from the CSU Fact Book report.

3. Physical Capital

Laboratory Space: Physical research capital is accounted for across the full university, as well

as the level of individual colleges and departments. The data source is the Department of Business

and Financial Services, Cost Accounting Division, at CSU.

Total Research Space by CSU Total (sq ft)
2,000,000 1,899,843
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Figure 6—Three different types of research space for the university overall,
(2008 and 2013)

However, laboratory space has only been inventoried at two points in time during the range of
this study, in 2008 and again in 2013. Even though it does not provide an annual time series, it is

still valuable for investigating heterogeneity of physical research capital across the university. |
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Figure 4, the total research space for CSU overall in 2008 was 1,680,562 square ft. and in 2013
was 1,899,843 square ft., considering laboratory space, office space, and other research facility
space (see Figure 6). By the mean value between 2008 and 2013, the College of Veterinary
Medicine was the top ranked, with 29% of the university total, and the College of Business was

the lowest, with 2% of total.
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Figure 7—Value of resear ch equipment acquisition, by college, (1981-2013)

Research Equipment: Finally, value of equipment as physical capital is characterized for the
university, colleges, and departments from 1981 to 2013. The data comes from the Department of
Business and Financial Services, Cost Accounting Division, at CSU. The value of equipment is
recorded by acquisition date. Technically, for the value of research equipment to be suitable as an
annualized capital input variable for the empirical model, each single piece of equipment would

need to be depreciated independently in estimating the value of the stock of equipment. However,
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even just acquisition values are valuable for examining the heterogeneity across the university;
and moreover, we find that annual acquisition values are highly correlated with our preliminary
calculation of the value of equipment stock using uniform depreciation rates. In the empirical
model, to capture some of this, the equipment acquisitions variable is transformed by a moving
window, the sum of the value of research equipment acquisition in the current year and two or
three previous years’ values.
B. Research Output Data

Research output data were categorized according to the main mechanism or channel of impact
they were most likely to represent. We develop a simple taxonomy of three mechanisms: the public
domain mechanism; the mechanism of direct collaboration with industry users; or the mechanism
of technology transfer mediated by formal intellectual property, including licensing of patents or
the creation of startup ventures.

1. Outputs Disseminated via the Public Domain Mechanism
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Figure 8—Annual published academic journal articles, by college, (1989-2012)
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Published academic articles: This primary proxy of research output is characterized by journal
names, author names, publication dates, keywords, citation counts, numbers of references, and
organizational details such as college, department, and academic disciplinary field. The data was
collected from the Web of Knowledge (Thomson Reuters) accessed via CSU Libraries. The total
count of CSU affiliated publication, from 1989 to 2012 is 38,916, within which the highest annual
count was 2,211 in 2011. Moreover, among colleges, the College of Natural Sciences had the
largest annual count of publication, with 603, in 2011, and at the departmental level, the

Department of Chemistry had the highest annual count, at 252, in 2006.
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Figure 9—Total (research based) masters and doctoral degree awards, by the
university overall, (1989-2012)

Masters and doctoral degree awaiSisice not all research conducted by graduate students is
published as articles, this additional measure of research output is characterized by colleges and

departments, and the years of coverage is from 1989 to 2012. The data source is Institutional
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Research Online at CSU. Note that professional degrees, that are not considered research based,
such as MBA and Doctor of Veterinary Medicine are excludethl iumbers of master’s degrees
and doctoral degrees awarded from 1989 to 2012 were 16,839 and 4,609, respectively.
2. Outputs Disseminated via the Collaboration Mechanism

Given the challenge of measuring directly the results of collaboration between university
researchers and industry R&D, several indirect measures are devised to ascertain the research

output that has impact via the channel of collaboration.
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Figure 10—Contract and grant awards from industry sponsorsas a share of the

total contract and grant awards to the university overall, (1989-
2012), million $

Grant and Contract Awards from Industry Sponsors: Even though, technically speaking, grants
or contracts are considered an input to research, the extent of private sector sponsorship of grants

to a given department can be considered an indication of the amount of research conducted in that
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department of which the impact is realized, at least in part, via collaborative interaction with
industry sponsors. Grant awards data is characterized by principle investigator names, project titles,
funding source, college and department of the investigator, award amount, and award dates from
1989 to 2012.

The source is the online Research Data Center (http://web.research.colostate.edu/datacenter/
of the Vice President for Research at CSU, under Proposal and Award Search. The nature of the
sponsor, if it was a public sector (federal or state) entity or an industry sponsor, was ascertained
by hand. The total number of industry sponsored awards made from 1989 to 2012 is 4,387. Over
the 24 years, on average, the value of industry sponsored contract and grant awards to the
university makes up 7% percent of total value of awards. In 2012, the value of industry sponsored
awards was $21.8 million. The largest single year’s industry award to an individual college was to
the College of Veterinary Medicine in 2007, at $8.5 million, which was largely driven by the
largest single award to a single department, to the Department of Clinical Sciences in 2007, at $5.2
million.

Published academic articles with industry co-authGosauthorship on research articles with
someone from industry is another indication of the collaboration mechanism at work. While the
article itself indicates an impact via the public domain, the fact that the research was conducted
and the publication was authored jointly with industry R&D personnel indicates that likely other
results of the research, such as tacit skills, and possibly technical findings of relevance to the
industry partner, could have arisen and been exchanged more informally. The data source for
academic articles is the Web of Knowledge, accessed via CSU Libraries (as already detailed
above). All authors on the academic articles associated with CSU were labelled based on their

affiliation, being either “CSU”, “other public sector”, or “private sector” affiliation. Total number
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of the articles published from 1989 to 2012 with at least one CSU author and at least one private
sector author is 2,960 (or 7.6% of total articles published during this time period). The single
largest observation for a single college in a single year was the College of Veterinary Medicine

with 94 articles with a private sector co-author in 2006.
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Figure11—T otal published academic articleswith industry co-authors, for the
university overall, (1989-2012)

Departmental level expenditures on Extension: Extension activities, especially when involving
appointments in academic departments, is considered another form of the collaboration mechanism
of disseminating research impact. Faculty with extension appointments tend to be engaged with
private sector stakeholders throughout the state, communicating their own research results as well
as those of their colleagues. Other indicators of extension activity, such as contact hours, numbers

of consultations, etc., were not found to be systematically collected across all departments.
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Figure 12—T otal annual departmentally-administered expenditureson
extension activities, (1989-2012), million $

Again even though expenditures on extension appointments may be technically considered an
“input” variable, the level of department level extension expenditures is likely to indicate, in a
reasonably systematic and comparable way, across departments and across years, the amounts of
engagement with stakeholders outside the university made by extension appointed faculty
members of a department. Extension budgets are characterized both at the college and the
department level, in dollars per year, with coverage from 1989 to 2012. The data for the college
and the department level was provided by accountants in the Agricultural Business Center, of the
College of Agricultural Sciences at CSU, from 2003 to 2012. Total extension budget for the
remaining period, from 1989 to 2002, was collected from the CSU Fact Book, and the share of

expenditures for individual departments over these years was estimated from the annual total,
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based on average departmental shares in the observed data from 2003-2012. Naturally, some

colleges and departments have no extension budget or activity.
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Figure 13—Annual combined industry research collaboration index, by college,
(1989-2012), million $
Collaboration Index: The three different collaboration proxigglustry co-authorship on
academic articles, research grant awards from industry sponsors, and departmental extension
expenditures-were found to be relatively uncorrelated and thus independent of one another
Therefore, a combination of these thremia sinde variable could best represent the level of
industry collaboration activities. In constructing such an index, however, in order to compare
industry co-authorship on articles, which is count data, with the other two variables which are
financial data, we transformed the publications count data into financial-type data based on
average overall research expenditures observed per published article for each respective

department or research unit.
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3. Outputs Disseminated via Technology Transfer Mechanism

Invention Disclosures: The first indicator of research results that have impact via the
technology transfer mechanisms mediated by formal intellectual property are inventions that result
from university research formally disclosed to the university’s technology transfer office.
Invention disclosures are characterized by names of inventor, funding sources that supported the
research that led to the disclosed invention, resulting patents related to the invention, percent
contribution, as well as the college and department affiliation of the inventor(s). This data spans
from 1989 to 2012. The data was provided by CSU Ventures, which serves as the technology
transfer office, located within the CSU Research Foundation, on behalf of the university. The total
number of CSU invention disclosures was 1,564 from 1989 to 2012. The highest single year, by

college, was by the College of Engineering, with 49 invention disclosures in 2009.
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Figure 14—Annual summation of invention disclosures by college level, (1989-2012)
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Published Patent Applications and Granted Patents: A second indicator of the
patenting/licensing mechanism of impact is patent data. Patent data is characterized by inventor
names, published or issued dates, assignee, technology classifications, numbers of citations, and
were augmented with the college and department of the CSU affiliated inventors, from 1990 to
2011. Patent data was collected from the Thompson Innovation database by Thompson Reuters.
The total number of CSU patents application between 1990 and 2011 was 195. The single largest

annual count was from the College of Engineering, with 17 in 2008.
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Figure 15—Annual summation of published patent applications and granted
patents by college level, (1989-2012)

Startup companies arising from university research are the main indicator of the venture
creation mechanism of impact. Data on CSU startup companies is characterized by names of the

companies, names of founders, incorporation dates, current employee count, capital raised, as well
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as college and department of the CSU founder, spanning from 1989 to 2012. During this time CSU

research has led to 41 startup companies. The data source is again the CSU Ventures database.
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Figure 16—Annual combined tech transfer metric, by college, from 1989 to 2012

Combined Tech Transfer Metrics Index: This numerical value measures the combination of
invention disclosures, patent applications and issued or granted patents, and the number of startup
companies. These three variables represent publicly observable university tech transfer activities.
The combined tech transfer metrics index is conceptually distinguished from the previously
introduced collaboration index, as it is more based on intellectual property rights and the
“patenting/licensing mechanism” and the “venture creation” mechanism of research output, rather

than the “collaboration mechanism” of research output.
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V. Empirical Results

In order to assess the efficiency of knowledge production across the different disciplines and
research units of the university and to test the effects of changes in research inputs on the various
knowledge outputs that impact the economy through different channels, several empirical
relationships were estimated. This section consists of two parts of regression models results. One
involves regression models which show the results of different knowledge dissemination channels
independently. The other involves a system of equations, which provides a test of the
interrelationships among the three sets of independent regression models. In addition, we examine
the structural changes in the model around the time period of the creation of CSU Ventures, as the
technology transfer office (TTO) for Colorado State University.

Table 1 provides summary statistics of the research input and output variables for 54 research
units. As detailed in the previous section, we have collected data on several major research inputs,
including total annual research expenditures, research FTEs employed, value of research
equipment acquisitions, and other control variables. Two of the input variables introduced in
Section Ill, contract and grant awards and research space, were not employectgnetsson
models, due to the fact that they were found to be highly correlated with some of the other input
variables? and issues with the quality of d&tarespectively.

In addition, we have eight research output variables, most of which occur as count data, but
some of which, including contract and grant awards from industry sponsors and departmental level

expenditures on extension, are financial Hatdoreover, some of the data collected are used as

2 Total research expenditures and total grant awards are highly correlated eaabaih®0.4%. In addition, total
research expenditure is actual spending and total grant award is an announerimring grants.

B We have only two data points within the time period, in 200828148, for laboratory space.

14 Thus, these research output models will not be measured in the sane asaother research output models,
negative binomial maximum likelihood estimation (MLE). This problem vélelsplairdin a later section. In the
collaboration index, the index values were constructed as counts (in oetepltmy negative binomial MLE) by the
combination of annual counts of industry co-audltlarticles, dollars awarded in grants & contacts from private
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control variables, including graduate student enrollment by department, which consists of both
masters and doctoral degrees. Some departmentslhaveidentified their master’s and doctoral
enrollment, but others are nasclearly specified because of different policies of their academic

programs.

Table 1—Summary statistics: resear ch inputs and outputs at department level, (1989-2012)

Summary statistics at department level: research input-output variables from 1989 to 2012

Std.
Mean Dev. Min Max Sum Group Obs

Research inputs

Research expenditures (million $) 2.7 4.6 0 37.9 3,546 54 1,296

Full-time equivalent researchers (FTEs) 56.8 46.1 0 282.4 73,592 54 1,296

Value of equipment (3) (million $) 0.3 0.7 0 7.2 380 54 1,296

Value of equipment (2) (million $) 0.2 0.5 0 4.2 264 54 1,296
Research outputs

Published academic articles (counts) 28.6 35.9 0 252.0 37,029 54 1,296

Doctoral degree awards (counts) 3.4 5.4 0 54.0 4,415 54 1,296

Industry co-authored articles (counts) 2.2 5.0 0 58.0 2,872 54 1,296

Private grant awards (million $) 0.2 0.5 0 5.4 230 54 1,296

Extension budget (million $) 0.1 0.2 0 1.3 106 54 1,296

Invention disclosures (counts) 1.1 3.0 0 28.0 1,470 54 1,296

Patent apps and granted patents (counts) 0.12 0.5 0 9.0 160 54 1,296

Startup companies (counts) 0.03 0.2 0 3.0 40 54 1,296
Research output index

Collaboration index (counts) 44.8 98.6 0 812.0 58,096 54 1,296

Tech Transfer metrics (counts) 1.3 3.4 0 29.0 1,670 54 1,296

Other control variables
Enrollment (counts) 124.1 132.0 0 1,075.0 160,717 54 1,296

Note: 1. The number is window width: (3) is the summation of current value and two previous years that is called three
years of window, similarly (2). 2. Graduate level enrollment.

Given the inherent characteristics of panel data analysis, given that it contains both cross-
section and time-series, two significant issues that must be controlled for are heteroscedasticity

and autocorrelation, respectively.

sponsors, and departmental level of extension expenditures. Sintharggmbined tech transfer metrics index was
also constructed as a count variable by the combination of counts of pdtieetisgng and venture creation
research outputs. The formulas and methodologies are explained in adtter.s
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Table 2—The results of augmented Dickey-Fuller unit root test of all research inputs and

outputs
Augmented Dickey-Fuller Unit Root Test
. . Modified
Inverse chi- Inverse Inverse logit inv. chi-
squared (108) normal t(274) squared
Research Inputs
Total research expenditures 206.58*** -1.93** -3.15%** 6.71%**
FTE researchers 289.72%** -9.48*** -9.87*** 12.36***
Value of equipment (2) 165.05%** -3.66*** -3.80*** 3.88%**
Value of equipment (3) 209.21*** -3.92%** -4, 71¥** 6.89%**
Research Outputs
Publications 281.27*** -9.89*** -9.95*** 11.79***
Degree (PhD) 366.71*** -12.82%** -13.49*** 17.60***
Co-authorship articles 307.25%** -9.42%** -10.29%*** 13.56%**
Private grant awards 251.73%** -8.33%** -8.57*** 9.78%**
Extension budget 108.97 -1.91** -1.78** 0.07
Collaboration index 178.08*** -3.46*** -3.72%** 4.77***
Patent applications & grants 266.29%** -8.53%** -8.89%** 10.77%**
Invention disclosures 258.15%** -8.96%** -8.92%** 10.22%**
Startup companies 185.27%** -4 41%** -4, 75%** 5.26%**
Tech transfer metrics 258.95%** -9.13*** -9.02%** 10.27***

Note: *** 1%, ** 5%, and * 10% levels of statistically significant

First, time-series analysis assumes that the data represents a stationary process, that the
statistical properties of the distribution from which the observations are drawn does not change
over time. If, however, a non-stationary process is detectadiby root test, the analysis should
be estimated bg first difference, period to period change. A well-established unit root test is the
augmented Dickey-Fuller (ADF) test. Table 2 displays the results of ADF unit root tests for the
variables summarized in Table 1. These test statistics indicate a stationary process for most of the
input and output variables at a 1 percével of statistical significare, by four different
methodologies. In considering potential heteroscedasticity, the negative binomial maximum
likelihood estimation has the advantage of controlling for heteroscedasticity problems with the
Huber White sandwich variance-covariance estimation, bootstrap estimation, Jackknife estimation,

and others.
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A. Research hypotheses
1. Identifying research inputs on the knowledge production function

According to the Pakes and Griliches (1984), a knowledge production function translates past
research expenditures and a disturbance term, encompassing unobserved inputs, into inventions.
However most previous studies use only past research expenditures because of the quality of data
In this study, we attempt to decompose the disturbance term and extract some important research
input variables from it. In particular, we seek to test the statistical reliability of the stock of human
capital, as indicated as FTEs, and stock of physical research capital, as indicated by the value o
research equipment, on the knowledge production function. Although adding more independent
variables into the objective function has both advantages and disadvantages, these two variables
makes it possible to derive the best linear unbiased estimators of a knowledge production
function'®, and improve on the connection to classical production td@ofherefore, we
hypothesize that both FTEs and the value of equipment are positively related to the measures of
university research outputs.
2. Model specification on the lags of research expenditures

Crespi and Geuna (2008) point out that only a few studies have focused on the relationship
between investment in science and measures of research outputs. As shown as previous section,
we want to build an empirical model of knowledge production function, employing polynomial
distributed lags (PDL) of research expenditures, and to test the comparison between the PDL
model and previous studies’ model which employad hoclags of research expenditures on the

knowledge production function. We hypothesize that the PDL model should have statistically

15 The error term is to converge into zero and the model has the lowest vafidme@stimate. It is also called
GaussMarkov theorem
18 |n classical production function, the major inputs consist of lab@ndial capital, and physical capital.
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better results than ad hoc lag models and better explains unobservable effects of past research
expenditures.
3. Research productivity and long-run effect

In order to assess university research productivity, there are some important indicators, which
came from the classical production theory. Each slope coefficient on the knowledge production
function model represents the elasticity of production, which is an indicator of short-run
productivity. The sum of all independent variables’ slope coefficients is the returns to scale of
production, which is an indicator of long-run productivity. Basically, we expect that the
productivity of university knowledge can be varied across the different types of knowledge
dissemination channels because of their own inherent characteristics. First, we hypothesize that
the public domain mechanisms of knowledge such as the published journal articles and doctoral
degree awards exhibit degreasing returns to scale. According to Adams and Griliches (1998), at
the aggregate data, the publication as research outputs follows constant returns to scale, but at the
individual university level, the result follows decreasing returns to scale.

Second, we hypothesize that research outputs based on the invention and innovation, such as
patenting/licensing mechanisms of knowledge exhibit increasing returns to scale. Artz et al (2010)
study the innovation productivity of firms, examining the relafidp between a firm’s
commitment to R&D and its outcomes in terms of innovations and inventions, and the impact of
these outcomes on firm performance. Their findings show that the output of patents exhibits
increasing returns to scale with respect to R&D spending, which contradicts previous studies with
decreasing returns to scale, but which is consistent with an economic argument for advantages of
scale in innovation, similar to findings in Henderson and Cockburn (1996) and Bettencourt et al,

(2007).
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B. Independent Regression Model Results

This section shows the results of independent regression models across the different knowledge
outputs, in which we take into account a full range of potential knowledge dissemination channels:
(1) published journal articles, (2) doctoral degree awards, (3) the collaboration index, and (4) the
technology transfer index. The output measures associated with each of the knowledge
dissemination channel are estimated with four different types of knowledge production function
model, which are introduced in Section Ill, at the department level. We examine in this section th
results of the knowledge production function models across the different knowledge dissemination
channels, and how the heterogeneous characteristics of each knowledge channel may explain
economic intuitions of research production in the university.

1. Estimating Output of Published Journal Articles

Published journal articles are the primary research output of knowledge production across the
different colleges, departments, and research units of the university. Both Adams & Griliches
(1998) and Pardey (1989) found that journal articles as an output of knowledge production were
increasing in research expenditures, with some lag.

The total count of published journal articles by CSU authors from 1989 to 2012 was 38,916,
compared to just 1,470 invention disclosures over the same time period. 10,275 or 26 percent of
the university’s total publications were from authors in the College of Natural Sciences, followed
by 22 percent from the College of Veterinary Medicine, and 19 percent from the College of
EngineeringThus, these three colleges account for 67 percent, or two thirds, of the university’s
total research publications. Adding two more colleges, the College of Agricultural Sciences and
the College of Natural Resources, altogether accounts for almost 85 percent (see Figure 7).

Similarly in the department level, a relatively small number of departments account for a relatively
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large percentage of the university. Thus, the distributions of the publication production are highly
skewed toward a few colleges or departments. In other worlds, a few number of colleges,
departments, or research units shares of the total capacity or production of publications in the
university (Scherer and Harhoff, 2000).

Table 3 displays the results of the panel estimation of the production function of published
journal articles as a function of lagged research expenditures for the fifty-four departments of the
university from 1989 to 2012. The model structures are based on Pakes and Griliches (1980, 1984),
and the empirical technique follows closely from Crespi and Geuna (2008). However, it is
distinguished from those earlier papers in that we have adopted a negative binomial maximum
likelihood estimation (MLE) with polynomial distributed lags (PDL). The four different model
approaches: model 1 is an unrestricted polynomial distributed lags (PDL) model; model 2 is a
restricted PDL model with end-point restriction (k+1=0); model 3 is an ordinary distributed lag
model orad hocdistributed lag model similarly with previous studies; model 4 is a log-log PDL

model with White’s robust standard error, effective labor model, but not negative binomial MLE.

H =(fre ~ Bec) [Var(Bee) - va Beg) | (B ve= 5 v (19)

All four models assumed a group fixed effect. Equation (19) is the Hausman test, of which the
result for model 1 rejects the null hypothesis of a random effect model at the 1 percent level of
statistical significance; the Chi-square statistics is 25.88, and the p-value is 0.0005. Thus, the
assumption of group fixed effects can be used in model 1. The test results of other models are
comparable. There are several criteria for choosing the maximum length of tlke dad, the
degree of the polynomiah). The preferred model is the one with minimum values of the AIC and
SBIC. Further, we assumed that the end of the lag window"tti@e period, must be statistically

significant at least 5% level and that the maximum length of the lag cannot be greater than 10 years
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to prevent the loss of degrees of freedom. Using a top-down approach, we choose the lag length,

k, and, in a similar manner, degree of polynonmal,

Table 3—Regression results: Published journal articles at the department level, (1989-2012)
Published Journal Articles (1989-2012)

Unrestricted PDL3 Restricted PDL* ODL? (k=6)" Effective labor
(k=6, m=2)* (k=6, m=2)! PDL® (k=6, m=2)*
[1] (2] 3] [4]
Negative Binomial YES YES YES NO
Fixed Effect YES YES YES YES
Expenditure (t-0) 0.0375*** 0.0269*** 0.0478*** 0.1073***
(0.0071) (0.0068) (0.0120) (0.0411)
_t1 0.0072* 0.0152%** -0.0142 0.1632***
(0.0037) (0.0030) (0.0164) (0.0374)
_t-2 -0.0111** 0.0061*** -0.0099 0.1906***
(0.0050) (0.0013) (0.0160) (0.0455)
_t-3 -0.0174%*** -0.0004 -0.0100 0.1895***
(0.0053) (0.0026) (0.0166) (0.0431)
_t4 -0.0117*** -0.0042 -0.0041 0.1600***
(0.0038) (0.0034) (0.0179) (0.0339)
_t-5 0.0061 -0.0054* -0.0335* 0.1020**
(0.0045) (0.0033) (0.0180) (0.0506)
_t-6 0.0360*** -0.0040* 0.0754*** 0.0155
(0.0112) (0.0021) (0.0202) (0.1045)
Total lag multipliers 0.0466*** 0.0342*** 0.0514*** 0.9280***
(0.0080) (0.0075) (0.0084) (0.1712)
Mean lag 2.9511 1.5521 3.5935 2.5385
FTEs (t_5) 0.0044*** 0.0044*** 0.0045%**
(0.0011) (0.0011) (0.0011) -
Equipment (3)° 0.0497** 0.0495** 0.0526*** 0.0069
(0.0199) (0.0202) (0.0201) (0.0286)
Cons 2.0221*** 2.0339*** 2.0275*** 2.3774%**
(0.1082) (0.1069) (0.1054) (0.5715)
AIC? 5747.4 5758.7 5748.8 528.6
SBIC’ 5776.6 5783.0 5797.4 546.2
log-likelihood -2867.7 -2874.4 -2864.4 -260.3
Obs 954 954 954 589
Group 53 53 53 43

Note: 1. k is the length of lags and m is the degree of polynomial, 2. Ordinary distributed lag or ad-hoc model, not PDL,
3. Unrestricted PDL model, 4. End-point restriction PDL model (k+1=0), 5. Output per unit of FTE with PDL model, 6. Window
width is three, 7. Akaike Information Criterion and Schwarz' Bayesian Information Criterion. *** at 1%, ** at 5%, and * at 10%
level of statistically significant. Parentheses are standard errors, but model 4 has White’s robust standard errors
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In Table 3, the maximum length of lag in the publication models is 6 years and the better fit is
obtained with a second-degree polynomial. In particular, the information criteria for the PDL
models are much smaller than for the ODL model, with the one exception of the AIC for the
restricted PDL modél. Moreover, the ODL model is not statistically significant in the middle
time periods, from years 1 to 4, but the results of the PDL models are statistically significant at
least at the 5 percent level, particularly in the unrestricted PDL model and the effective labor model.

In model 2, the restricted PDL model, the end-point restriction assumes that there is no impact
beyond six years of lagged research expenditures on current year publications, yet the estimation
result tells us that only three ye&ts-the current, and the first and second lagged years’
expenditures-affect strongly and positively the current year’s publications. Similarly, model 4
finds that multiple years of past research expenditures per unit of FTE positively and significantly
affect current publication counts, also measured per unit of FTE. This fourth model finds no
negative effects of past research expeines and finds the 2nd lagged time period’s research
expenditures to have the maximum impact. The other three models do not have a maximum point.
However, model 1 does indicate small negative impacts for several years of lagged research
expenditures.

The total lag multiplier represents a long-run or total impact of past and current research
expenditures on current year publications. It measures how the log count of publications at
department change in response to changes in research expenditures. All four models have
statistical significance, while model 3 has a higher magnitude of the coefficients than the others.

Thus, research expenditures have a positive and significant long-run impact on publication counts

" The interpretation of AIC & SBIC is that the difference between 0 asa@ly weakly significant, between 2 and
6 is significant, between 6 and 10 is strongly significant, and b¥és very strongly significant.
8 This is likely due to the characteristics 6f 8egree of polynomial PDL.
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according to all models. The results also shed some light on the nature of the time lag between
expenditures and resulting publications. The mean lag represents a weighted average ofgime in th
short-run, and the formula for calculating it is shown in equation (20) below. This corresponds, for
exanple, to the average lag between a research project’s inception and completion. (In practice,
actual expenditures typically begin some time after project inception, due to the delay in applying
for and receiving funding. While at the same time, publications occur some time after project
completion, due to the similar delay in submitting and publishing articles.) Model 1 tells us that,
on average, research teams spend 2.95 years, or almost three years of their time on average in
generating a publication: similarly, model 2 finds a mean lag of 1.55 years; model 3, 3.59 years;
and model 4, 2.53 years.

By comparison, in previous studies, Pardey’s mean lag of citation adjusted publications is 3.87
years in his OLS model, 3.30 years in‘sthin” model, 4.64years in his‘betweeii model, and
3.62 years i@NEGLS model. In Crespi and Geuna’s results, the unrestricted PDL model shows a
mean lag of 3.48 years and the restricted PDL model, 4.16 years. Thus, this analysis finds a
somewhat smaller mean lag compared to previous studies. The difference may be related to the
different research settings: while this study uses data at a university department level, Pardey
analyzed state agricultural experiment station (SAES) data at an institutional level; Crespi and
Geuna used 14 countries of higher education research and development (HERD) data at a national

level.

NA

Meanlag==—_—— (20)

> IA
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The full-time equivalent (FTE) researchers, lagged 5 y&ams measure of human capital
research input has positive and statistically significant (at the 1 percent level) impact on publication
counts. This variable represents tbetieris paribusfor every unit increase in reseagckTE, the
log count of publications five years later is increases by approximately 0.0044 in model 1 and 2
and by 0.0045 in model 3. In model 4, the FTE variable was controlled for as effective labor.

Next, we include the value of research equipment as a physical input to the research production
process. There are several ways that equipment could be represented: as a fixed or stock variable
that changes over time with the addition of new pieces of equipment and the depreciation of
existing ones, or as a stream of services provided by the existing stock of equipment in any given
year. The collected data represents the value of equipment at time of acquisition, but does not
include the (highly heterogeneous) depreciation rates for each of those, making depreciation
calculations impractical.

Understanding that the production of research outputs in a given year should be affected by
equipment acquired in that same year as well as previous years cumulatively, we assume that this
can be reasonably approximated by an average value of acquisitions within a moving window. In
these models, the width of the window used is three years, which was selected by model
specification tests, information criteria (AIC and SBIC), and the statistical sigréadrtheir
estimated coefficients relative to windows of other sizes. The three-year moving averageabf annu
values of equipment acquisitions in model 1 to model 3 have statistical significance at least at the
5 percent level, but the estimated coefficient on the variable in masleigignificant. Thus, the
value of research equipment per FTE, does not affect publications per FTE by depaitroent. S

model 1 to model 3 are negative binomial MLEs and thus their slope coefficients do not directly

1 The lag length is also chosen by the smallest value of AIC and SiEi@amparing other lagged years and by
stronger statistically significant of their estimated slope coefficients.
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reveal the marginal effect, it needs to be calcufdtdastead, an alternative option is to report an
incident rate ratio (IRR) for coefficients estimated in the negative binomial MLE model. The IRR
displays the change in the research output, in this case publications, in terms of a percentage
increase or decrease, with the precise percentage determined by the amount by which the IRR,
deviates above or below one. Table 4 represents incident rate ratio of the three negative binomial
MLE models, models 1 to 3, with the IRR values transformed by taking the exponent of the slope

coefficients in Table 3.

Table 4—Negative binomial incident rateratio (IRR): Published journal articles
Incident Rate Ratio (IRR): Published Journal Articles (1989-2012)
Unrestricted Restricted PDL

PDL (k=6, m=2) (k=6, m=2) ODL (k=6)

(1] (2] (3]
Expenditures (t-0) 1.0382*** 1.0272%** 1.0489%***
_t1 1.0072%* 1.0153%** 0.9859
_t2 0.9889** 1.0061*** 0.9901
_t3 0.9827*** 0.9996 0.9900
_t4 0.9884*** 0.9958 0.9959
_t5 1.0062 0.9946* 0.9670*
_t-6 1.0366*** 0.9960* 1.0784%**
Total lag multipliers 1.0477*** 1.0348%*** 1.0527%**
FTEs (t_5) 1.0044*** 1.0044%*** 1.0046***
Equipment (3) 1.0510** 1.0508** 1.0540***

In order to interpret the IRR values and take into account the marginal effects of the
independent variable, the conversitiRR-1)-100= %is more clear: effectively, the marginal
value of the independent variable’s impact on the dependent variable is the value by which its IRR

value exceeds or falls below 1. For example, in the unrestricted PDL, the IRR value suggests that,

ceteris paribusfor every one percent increase in lagged year 1 research expenditures, the number

2 OE(Y, 0 1
( %( _oexp( X %K; _ pexp(X,.5)
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of publications are expected to increase by approximately 0.72 percent, with a statistical
significance at the 10 percent level. In contrast, for every one percent increase in lagged yea
research expenditures, publications decrease by 1.11 percent. Over the long-run, puldieations
increased by approximately 4.7 percent for every percent increase in researchtergse with
1 percent level of statistical significze

At the margin, FTEs lagged 5 years hayositive impact on current publication counts, with
1 percent level of statistical significagin all models.Ceteris paribusfor every one percent
increase in FTE, lagged 5 years, current year publications can be expected to increase
approximately 0.44 percent. Considering the value of research equipment acquisitions, one percent
increase in the three year moving average value of research equipment acquisitiongpactéd e
to increase current year publications by approximately 5.1 percent.
2. Estimating Output of Doctoral Degree Awards

Similar to published articles, doctoral degree awards represent an important output of the
knowledge production process at the university. Each doctoral dissertation represents a body of
research conducted at the university. In this section, we estimated doctoral degree awards as a
function of research expenditures by department. We do not estimate master’s degree awards,
because the counts contain not only thosedriaslegrees from research-based programs but also
professional degree programs such as MBA, masters of social work, fine arts performance, and so
on. In the same vein, we removed Doctor of Veterinary Medicine (DVM) degree awards from the
count of doctoral degree awards. The departments of veterinary medicine as well as animal science
do offer research-based PhD degrees, which were included.

Table 5 presents the regression results of doctoral degree awards at the department level from

1989 to 2012. The set of regression models is the same as in the previous section: unrestricted
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PDL, restricted PDL, ordinary distributed lag, and effective labor models. All four have same lag
length, k=8, and the three PDL models have the same degree of polynomial, m=4. Results of the
PDL models generally show greater statistical significance than the ODL model, except for the
restricted PDL model. Model 1, the unrestricted PDL, shows that research expenditures lagged 1,
5, 6, and 7 years affect positively the current year’s number of doctoral degree awards. In particular,

we might interpret the strong significance of research expenditures lagged 5 and 6 years to reflect
the average total time to completion of a doctoral program. The investment decision for admitting
and funding new Ph.D. students likely proceeds or corresponds to the first year of the program.

The slope coefficients on the middle range of lagged research expenditures, from years 2 to 4,
indicate a negative relationship to the current year’s count of doctoral degree awards; however,
these statistically insignificant. However, these lags correspond to the time periods in the degree
cycle when most students are taking core classes as well as preliminary or qualifmegMean
lags show that the average lag times between research expenditures and awardeis GefPees
years in model 1: similarly, it is 4.50 years in model 2; 5.99 years in model 3; and 4.38 years in
model 4. These results generally correspond with the reflections above on average time periods
for the completion of doctoral degree programs.

In these regressions, FTEs and value of research equipment are insignificant. We expect,
naturally, that the number of FTEs and the annual number of doctoral degree awards are highly
correlated with each other, as the FTEs variable contains graduate research assistants as well as
faculty who serve as Ph.D. advisors. Model 2, the PDL with endpoint restriction, k+1=0, shows
that all estimated slope coefficients of lagged research expenditures are insignificant as well as

FTEs and value of equipment variables. Only graduate enrollment is significant.
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Table 5—Regression results: Doctoral degree awards at the department level, (1989-2012)

Doctoral Degree Awards (1989-2012)

. . Effective
oy et oo ot
! ! (k=8, m=4)!
(1] (2] (3] (4]
Negative Binomial YES YES YES NO
Fixed Effect YES YES YES YES
Expenditures (t-0) -0.0043 0.0208 -0.0171 0.3835**
(0.0247) (0.0235) (0.0287) (0.1689)
_t1 0.0270* -0.0144 0.0607 0.3635%**
(0.0164) (0.0144) (0.0375) (0.1318)
_t-2 -0.0033 -0.0079 -0.0477 0.0251
(0.0148) (0.0149) (0.0381) (0.1200)
_t-3 -0.0251 0.0111 0.0031 -0.2595***
(0.0156) (0.0128) (0.0404) (0.0736)
_t4 -0.0058 0.0235 -0.0125 -0.3026***
(0.0158) (0.0149) (0.0392) (0.1070)
_t-5 0.0490*** 0.0198 0.0496 -0.1013
(0.0142) (0.0131) (0.0396) (0.1104)
_t-6 0.0965%** 0.0004 0.1082* 0.1627
(0.0260) (0.0132) (0.0616) (0.1214)
_t-7 0.0559* -0.0243 0.0622 0.1232
(0.0297) (0.0237) (0.0643) (0.1232)
_t-8 -0.1915*** -0.0345 -0.2062*** -0.7709***
(0.0463) (0.0266) (0.0551) (0.2770)
Total lag multipliers -0.0015 -0.0055 0.0002 -0.3763*
(0.0270) (0.0278) (0.0274) (0.2175)
Mean lag 6.4006 4.5001 5.9983 4.3794
FTEs (t_2) 0.0023 0.0025 0.0023 _
(0.0027) (0.0027) (0.0027)
Equipment (2)° -0.0361 -0.0019 -0.0394 -0.0319
(0.0477) (0.0472) (0.0477) (0.0359)
Enroliment (t_4)” 0.0022*** 0.0022*** 0.0022*** 0.4540***
(0.0003) (0.0003) (0.0003) (0.1104)
Cons 4.5634** 3.6873%** 4.8101 -4.6806***
(2.3020) (1.0116) (2.9509) (0.6112)
AlC® 1947.7 1963.3 1953.9 537.5
SBIC? 1985.8 1997.2 2009.0 565.1
log-likelihood -964.8 -973.6 -963.9 -261.8
Obs 512 512 512 383
Group 32 32 32 30

Note: 1. k is the length of lags and m is the degree of polynomial, 2. Ordinary distributed lag or ad-hoc model, not PDL,
3. Unrestricted PDL model, 4. End-point restriction PDL model (k+1=0), 5. Output per unit of FTE with PDL model, 6. Window
width is two, 7. Graduate enrollments, 8. Akaike Information Criterion and Schwarz' Bayesian Information Criterion.
*** at 1%, ** at 5%, and * at 10% level of statistically significant. Parentheses are standard errors, but model 4 has White’s
robust standard errors
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There are two possible explanations for this result: one would be model misspecification and
another would be the characteristics of the imposed restriction. First of all, if there were model
misspecification, then the unrestricted PDL model should also be insignificant, because both
models are strongly related to each other. Considering the second possibility, endpoint restrictions
are generally imposed to cut off the effect of longer lagged time periods on the current output
variable. As this seems a more likely explanation, we expect that doctoral degree awards are
connected with longer and cumulative lagged years of research expenditures as well agitsvestme
in graduate education. To the extent that doctoral degree awards reflect at least as much about the
educational attributes of a department, as the research attributes, it is not surprising to find that

doctoral degree awards are observed to have a less systematic relationship with research inputs.

Finally, model 4 in Table 5 shows that only two years’ of research expenditures per FTE, the
current and one lagged year, affect positively the department’s doctoral degree awards per research
FTE. With regard to the negative relationship observed for research expenditures lagged 3 to 5
years, this may again reflect the doctoral program’s gestation period, that of taking core classes
and qualifying exams. However, we expect that the current year and the one prior year t@h doctor
degree grant are generally the time periods of doctoral students doing their dissertation, such that
the research expenditures per unit of FTE during those years affect positively doctoral degree
awards per unit of FTEs.

Table 6 displays the incident rate ratio (IRR) of three negative binomial MLE models. First,
model 1’s IRR shows that, ceteris paribus, for every one percent increase in research expenditures,
the log count of doctoral degree awards is expected to increase by 5.03 percent five years later and

by 10.14 percent 6 years later, with 1 percent level of statistical significance.
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Table 6—Negative binomial incident rate ratio (IRR): Doctoral degree award
Incident Rate Ratio (IRR): Doctoral Degree Awards (1989-2012)

Unrestricted PDL Restricted PDL
(k=8, m=4) (k=8, m=4) ODL (k=8)
(1] (2] (3]

Expenditures (t-0) 0.9957 1.0210 0.9830
_t1 1.0274* 0.9857 1.0625
_t2 0.9967 0.9921 0.9534
_t3 0.9752 1.0112 1.0032
_t4 0.9942 1.0238 0.9876
_t-5 1.0503*** 1.0200 1.0508
_t-6 1.1014%*** 1.0004 1.1142%*
_t-7 1.0575* 0.9759 1.0642
_t-8 0.8257%** 0.9661 0.8137***
Total lag multipliers 0.9985 0.9945 1.0002
FTEs (t_2) 1.0023 1.0025 1.0023
Equipment (2) 0.9645 0.9981 0.9614
Enroliment (t_4) 1.0022%** 1.0022%** 1.0022%**

3. Estimating Output captured in the Collaboration Index

For many years, the role of the university has included not only basic research and education,
but also outreach and informal knowledge transfer actiyiiesectimes referred to as the “third
mission” of the university. Faculty members in the university have long worked with industry and
private sectors recipients of their knowledge through a variety of relationships, including
consulting, conferences, informal conversations, practitioner networks, collaborative research, and
co-supervising or internship programs for training R&D staff. Such activities emerged early in the
history of the research university in the"1&nd early 20 centuries and became embedded as
important knowledge dissemination channels from the university to industry.

However, such collaborative activities by university researchers are often hard to detect in
terms of their magnitude, size, and scope, particularly in a systematically consistent way across
the entire institution. In a regression analysis, this problem can cause empirical model specification

errors and distort estimation results. To overcome this, we propose three separate variables as
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reasonable proxies of knowledge outputs disseminated through channels based on collaboration or
close interaction between university and industry: (1) industry co-authorship on academic journal
articles, (2) the value of grants and contracts awarded from private sector sponsors, and (3) the
departmental level expenditures on cooperative extension appointments and activities. Again, a
major advantage is that each of these can be collected systematically for all departments and
research units across the university.

First, the total count of journal articles with at least one industry co-author was 2,960 from
1989 to 2012. The College of Veterinary Medicine and the College of Engineering have published
1,059 and 810, respectively representing about 63 percent of the university total. At the department
level, the Department of Clinical Sciences (in the College of Veterinary Medicine) and the
Department of Electrical and Computer Engineering (in the College of Engineering) have
published 523 and 286 articles with industry co-authors, respectively.

Second, across all of CSU, the total amount of private grant and contract awards was $268.7
million, which represents about 6.8 percent of total grant awards the university total of $3,95
billion from 1989 to 2012. The College of Veterinary Medicine and College of Engineering have
received $93.1 and $66.8 million in private contract and grant awards, respectively.

Third, CSUs total amount of departmental level expenditures on extension was $108.5 million
from 2003 to 2014, with the College of Agricultural Sciences accounting for the largest college
level share at $24.4 million. One problem with this data is that most departments have no extension
expenditures.

In this section, we estimate the collaboration-based activities of the university departments as
a single research output variable by combining these three proxy variables into one single count

or index. First of all, since three different variables have different data types, including both count
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and financial data, we transform the count data of industry co-authored articles into a comparable

financial-type metric, according to equation (21),

DIA, _[(TPF;Jb% ]_ ]'IAM (21)

t

whereDIA is the dollar-equivalent value attributexindustry co-authored article§Pubsis the
total publication countA is industry co-authored articles, a subset of total publications, and R is
research expenditures, all of which are specific to departmamd time period. In effect, in
equation (21), the ratio between research expenditures and total publications peprgsants
the amount of (non-lagged) research expenditures attributed to a single paper in that year. Thus,
DIA is effectively the research expenditure value that can be associated wiipatii@ent’s sum
of articles co-authored with an industry collaborator in that year, in millions of dollars.

Then, as described in equation (22) we create a linear combination of the three proxy variables

for collaboration activities, denoting this tbellaboration index

Coll,, =DIA, +PGrant, + Extensiqn (22)

wherePGrantis the value of contract and grant awards from private sector spons@stansion

is the extension budgétfor department in time periodt. This collaboration indexColl, is
essentially financial data type (million $). In order to make appropriate for use within the negative
binomial MLE and consistent with other research outputs, including publications, doctoral degree
awards, and our tech transfer index (see next section), we simply transform the collaboration index

into a count data type by rounding off to units of ten thousand dollar increments: see equation (23

21 The time coverage of extension budget is from 2003 to 2012 comytheimther two variables from 1989 to
2012
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Collu, =(Coll, (23)

)'1OqRound off all decimal point

The correlation between equation (22), the continuous variable, and (23), the rounded-off count
variable, is 0.9999, almost perfectly correlated.

Table 7 presents regression results of the collaboration index, at the department level, from
1989 to 2012. Models 1 to model 3 are negative binomial MLE models and model 4 is log-log
PDL model with White’s robust standard error, an effective labor model. As in previous sections,
all of the PDL models have better fit than the ordinary distributed lag model. Model 1, the
unrestricted PDL, shows that the 2nd and 3rd years of lagged research expenditures are positively
related to a given year’s collaboration activities, as well as, interestingly, the 9th year’s lagged
research expenditures. However, research expenditures from lagged years 4 to 8 years have a
negative relationship with given year’s level of collaborations.

The cumulative effect of the positive coefficients, at 0.2835, is somewhat greater than that of
the negative coefficients, at -0.2464 (not considering their statistical significance). All three of the
count models (i.e. except for model 4), have certain continuous strings of years indicating a
negative impact of research expenditures on the collaboration index in the current year t=0. There
may be several explanations. One possibility is that this may reflect a search costloratitig
with private sector partners. Or, it may indicate that private sector collaboration is a strategy
adopted in the wake of several ‘lean’ years of research funding. In other words, the negative
relationship is effectively inverse: when research expenditures are down, the collaboration index
goes up. Or, conversely, this result may indicate that in the years following overall increased
research expenditures, the large bulk of which comes from federal and state sources, industry

collaboration activities tend to gétrowded odit.
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Table 7—Regression results: Collaboration count at the department level, (1989-2012)

Collaboration count (1989-2012)

Effective
Unrestricted Restricted PDL*
3 o _ o 0oDL2 (k=9)* labor PDL®
PDL? (k=9, m=4) (k=9, m=4) (k=9, m=2)!
[1] (2] (3] (4]
Negative Binomial YES YES YES NO
Fixed Effect YES YES YES YES
Expenditures (t-0) 0.0326 -0.0173 0.0459 0.3181***
(0.0214) (0.0210) (0.0288) (0.1061)
_t1 0.0206 0.0365*** -0.0031 0.2248***
(0.0128) (0.0123) (0.0435) (0.0862)
_t-2 0.0249* 0.0298** 0.0476 0.1570
(0.0132) (0.0143) (0.0427) (0.0989)
t-3 0.0204** -0.0006 0.0199 0.1146
(0.0101) (0.0098) (0.0382) (0.1111)
_t4a -0.0037 -0.0287*** 0.0020 0.0977
(0.0109) (0.0098) (0.0328) (0.1099)
t-5 -0.0444*** -0.0388*** -0.0593* 0.1061
(0.0122) (0.0125) (0.0357) (0.0938)
t-6 -0.0842*** -0.0256** -0.1250* 0.1400%
(0.0194) (0.0123) (0.0661) (0.0723)
t-7 -0.0920*** 0.0057 -0.0404 0.1994**
(0.0275) (0.0126) (0.0652) (0.0831)
t-8 -0.0221 0.0396** -0.0501 0.2841*
(0.0218) (0.0167) (0.0677) (0.1494)
t-9 0.1850*** 0.0498*** 0.1999*** 0.3943
(0.0403) (0.0167) (0.0560) (0.2506)
Total lag multipliers 0.0370* 0.0503** 0.0375* 2.0362***
(0.0226) (0.0232) (0.0218) (0.4669)
Mean lag 6.3400 5.0117 6.2293 4.8431
FTEs (t_6) 0.0116*** 0.0102%** 0.0121%**
(0.0019) (0.0019) (0.0019) o
Equipment (2)° 0.1049** 0.1627*** 0.1171** -0.0123
(0.0530) (0.0505) (0.0571) (0.0608)
Cons -1.0137*** -0.9856*** -1.0507*** 6.0247%**
(0.1111) (0.1122) (0.1136) (1.3813)
AIC? 4922.8 4936.5 4928.8 10254
SBIC? 4959.4 4968.5 4988.3 1041.6
log-likelihood -2453.4 -2461.2 -2451.4 -508.7
Obs 720 720 720 427
Group 48 48 48 41

Note: 1. k is the length of lags and m is the degree of polynomial, 2. Ordinary distributed lag or ad-hoc model, not PDL,
3. Unrestricted PDL model, 4. End-point restriction PDL model (k+1=0), 5. Output per unit of FTE with PDL model, 6. Window
width is two, 7. Akaike Information Criterion and Schwarz' Bayesian Information Criterion. *** at 1%, ** at 5%, and * at 10%
level of statistically significant. Parentheses are standard errors, but model 4 has White’s robust standard errors
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The total lag multipliers, reflecting the total or long-run impact of research expenditures,
indicate they have a positive impact on the current collaboration count, with at least eetd per
level of statistical significance across all four models. Mean lags in each model can be interpreted
to represent the average lag between effective inputs and the measured output, or the so-called
gestation period. These values show that changes in research expenditures seem to affect
collaboration activities 6.34 years later in model 1: similarly, 5.011 years later model 2; 6.23 years
in model 3; and 4.84 years in model 4. The lags here are two or three years longer than those
observed in the publications equations and similar to the years observed with doctoral degree
awards equations.

The number of FTES, lagged 6 years, impacts the current collaboration index, at the 1 percent
level of confidence, in models 1 toQ@eteris paribusfor every one unit increase in FTEs, the log
of the collaboration index six years later increases by 0.0116 in model 1, by 0.0102 in model 2,
and by 0.0121 in model 3. This may reflect that growth in the number of researchers in a
department will, over time, expand capacity or opportunities for diversification by members of
that department into engagement with industry.

The two-year moving window of the value of research equipment acquisitions has a positive
and statistically significant relationship, at the 5 percent level, with the collaboration index.
Interestingly, the magnitude of the estimated slope coefficient for equipment acquisitions is much
higher than those of other input variables in these models. This might reflect that collaborative
research is often associated with specific laboratory and engineering equipment. In general, we
find that in the publication models and the doctoral degree award models, the magnitudes of the
parameter estimates on the equipment variable are much smaller than in the collaboration models

and the tech transfer models.
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Table 8—Negative binomial incident rate ratio (IRR): Collaboration count
Incident Rate Ratio (IRR): Collaboration count (1989-2012)

Unrestricted Restricted PDL
PDL (k=9, m=4) (k=9, m=4) OBL (k=9)

(1] (2] (3]
Expenditures (t-0) 1.0331 0.9828 1.0470
_t1 1.0208 1.0372*** 0.9969
_t2 1.0252* 1.0302%** 1.0487
_t3 1.0206** 0.9994 1.0201
_t4 0.9963 0.9717*** 1.0020
_t5 0.9566%** 0.9619%** 0.9425*
_t-6 0.9192%** 0.9747%** 0.8825*
_t-7 0.9121*** 1.0057 0.9604
_t-8 0.9781 1.0404%** 0.9512
_to9 1.2032%** 1.0511%** 1.2213%**
Total lag multipliers 1.0377* 1.0516** 1.0382*
FTEs (t_6) 1.0116%** 1.0102%** 1.0121%**
Equipment (2) 1.1106** 1.1767*** 1.1242%*

Table 8 shows the incident rate ratio (IRR) of the collaboration index models, derived from
Table 7 by taking the exponents of the slope coefficients. These show us that, for example, in
model 1,ceteris paribusfor every one percent increase in research expenditures, the log count of
the collaboration index after a two year lag will be increased by 2.52 percent, with 90 percent
confidence and after a three year lag will be increased by 2.06 percent with 99 percent confidence.

However, research expenditures tend to have a decreasing effect on the collaboration index,
lagged four to eight years. As discussed above, this negative relationship between research
expenditures and the collaboration index may represent either a search cost, reliance gn industr
collaboration as an alternative when public funding sources are lacking, or a crowding out of
industry collaboration by publicly funded research, over the time period 4 to 8 years €atkes
paribus for every one percent increase in research expenditures over this time period, the

collaboration index will be subsequently decreased by approximateB623.7
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4. Estimating Output of Combined Tech Transfer Metrics

In terms of university knowledge dissemination and impact, traditional collaborations, as
introduced in the previous section, have limited scope of activities, subject to constraints such as
geographical proximity, non-divisibility of time and persons, higher transaction costs, informality
strategic and political considerations, and so on, even though they represent one of the major
knowledge dissemination channels available in the university research context. Alternatively,
patenting and licensing, and the creation of startup companies, represent a more recently
emphasized mode of dissemination and impact, which, as such, have received much attention and
analysis, particularly regarding the role and use of intellectual property rights (IPRs) in the
commercialization of university knowledge. However, these IPR-mediated technology transfer
activities, when compared with the other knowledge dissemination channels of the university, are
still a minor mechanism. Yet, it may have potential for growth as a mechanism for managing
knowledge outputs and as well as generating reagfou the university in the future.

In this section, we estimate CSU’s production of research outputs disseminated via such tech
transfer activities, using the same empirical regression models and methodology employed in the
previous sections for research outputs disseminated via the public domain and research outputs
disseminated via collaboration, even though the overall magnitude of tech transfer activities is
considerably smaller.

CSU’s total invention disclosures from 1989 to 2012 was 1,564, and of these 488 were made
by the College of Engineering and 455 were from the College Veterinary Medicine. Thus, overall,
60 percent came from just these two colleges. At the department level, the Department of Electrical
and Computer Engineering has the highest count of invention disclosures, at 229. Following the

disclosure of an invention comes the decision to make a patent application. The university’s total
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count of patent applications filed and on which patents were granted were 195 from 1989 to 2012.
The College of Engineering, College Veterinary Medicine, and College of Natural Sciences
accounted for 69, 58, and 49 patent filings, respectively. The university’s total count of startup

companies was 41 from 1989 to 2012.
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Figure 17—Frequency of invention disclosuresand patent filings at 24 yearsoverall,
(1989-2012)

In the empirical model, which considers invention disclosures, patent filings, and startups made
by each department each year, these three variables have very few obsdofatioasro, or just
one or two inventions by department per year), as shown in Figure 17. Thus, these variables cannot
be estimated without a zero inflated count model regression procedure. Another possibility is to
create a linear combination of these three variables into a single variable. This, in turn, may
introduce multi-counting of single inventions. The typical technology transfer process can consist
of invention disclosures, patent applications, issued patents, licensing contracts, and even startup
companies, all around a single invention. Although, it might be interpreted that a linear
combination of the three count variables thus gives more weight to those inventions that proceed

further through the typical technology transfer process.
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Equation (24) represents the combined variable, which we cadichéransfer metric€T TM)
index, which consists of the sum of invention disclosure®(tior), patent applications & granted
patents, jgaten), and the number of startup companies by CSU inventstartypg, for

department in time period.

TTM,, = invension + patent+ startyp (24)

As shown Table 9, we run four different models, the same as we have done for the other
research output models in previous sections. All three PDL models have greater statistical
significance and better goodness of fit than the ODL model. In model 1, the unrestricted PDL has
positive and significant lag coefficients of research expenditures from the current year to the 4th
lagged year. Similarly, model 2, the endpoint restricted PDL (k+1=0), shows positive and
significant impacts of research expenditures from the current year through year 3, but this model
also has a longer period of zero or negative relationships between research expenditures and tech
transfer activities, from lagged years 4 to 9.

According to Heher (2007), the tech transfer process typically takes six to ten years from the
moment of invention disclosure to the time when significant income can be generated from a
license. In this regard, the negative relationship with research expenditures over longer time
periods could be connected with the gestational or provisional periods of innovation, proof of
concepts, and such. It also may be an artifact of the data: as before a major restructuring in the
university’s tech transfer office in 2007, invention disclosures, patent filings, and startups were
relatively quiet, even though research expenditures had been growing rapidly. After 2007 the
positive relationship may have been restored. The possibility of a structural break in this

relationship is explored further below.

65



Table 9—Regression results: Combined tech transfer metrics at the department level, (1989-

2012)
Combined Tech Transfer Metrics (1989-2012)
Unres:tricte_d F:DL3 Rest_ricted_ PI?L4 ODL? (k=9)" I:;fs::;is
(k=9, m=2) (k=9, m=2) (k=9, m=2)!
(1] (2] 3] (4]
Negative Binomial YES YES YES NO
Fixed Effect YES YES YES YES
Expenditures (t-0) 0.0414%** 0.0470%** 0.0766** 0.0326
(0.0179) (0.0177) (0.0385) (0.1476)
_t1 0.0415%** 0.0303*** -0.0240 0.2075**
(0.0112) (0.0103) (0.0591) (0.0939)
_t-2 0.0380*** 0.0162*** 0.1021* 0.3263***
(0.0102) (0.0046) (0.0609) (0.0786)
_t3 0.0308*** 0.0049* -0.0716 0.3891***
(0.0114) (0.0029) (0.0599) (0.0877)
_ta 0.0200* -0.0038 0.0994* 0.3958%**
(0.0117) (0.0055) (0.0528) (0.0964)
_t5 0.0054 -0.0099 -0.0265 0.3463%**
(0.0102) (0.0076) (0.0526) (0.0956)
_t-6 -0.0128 -0.0132 0.0162 0.2408***
(0.0087) (0.0086) (0.0919) (0.0867)
_t-7 -0.0347*** -0.0139* -0.0082 0.0792
(0.0120) (0.0084) (0.0898) (0.0831)
_t-8 -0.0603*** -0.0120* 0.0412 -0.1385
(0.0213) (0.0069) (0.0954) (0.1094)
_t9 -0.0896*** -0.0073* -0.2206*** -0.4122**
(0.0349) (0.0041) (0.0821) (0.1719)
Total lag multipliers  -0.0203 0.0381* -0.0155 1.4670%**
(0.0325) (0.0227) (0.0352) (0.3735)
Mean lag 5.1411 5.1520 5.0149 4.7344
FTEs (t_6) 0.0071%** 0.0053* 0.0076**
(0.0032) (0.0032) (0.0035) -
Equipment (2) 0.1365** 0.1260* 0.1609** -0.0491
(0.0683) (0.0704) (0.0769) (0.0410)
Cons 0.0896 0.0679 0.0041 0.7170
(0.2963) (0.2948) (0.3143) (1.1022)
AIC 1351.7 1355.3 1359.3 480.9
SBIC 1377.9 1377.1 1416.1 495.2
log-likelihood -669.8 -672.6 -667.0 -236.5
Obs 585 585 585 260
Group 39 39 39 33

Note: 1. k is the length of lags and m is the degree of polynomial, 2. Ordinary distributed lag or ad-hoc model, not PDL,
3. Unrestricted PDL model, 4. End-point restriction PDL model (k+1=0), 5. Output per unit of FTE with PDL model, 6. Window
width is two, 7. Akaike Information Criterion and Schwarz' Bayesian Information Criterion. *** at 1%, ** at 5%, and * at 10%
level of statistically significant. Parentheses are standard errors, but model 4 has White’s robust standard errors
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Overall, the total or long-run impact of research expenditures on the tech transfer metric is not
significant in models 1 & 3, but it is positive and significant in models 2 & 4. Mean lags indicate
that the average lag time between research expenditures and the observation of an invention
disclosure or other tech transfer event is 5.14 years in model 1: similarly, 5.15 years in model 2;
5.01 years in model 3; and 4.73 years in model 4. These time periods seem to be shorter than those
calculated by Heher, but his measure includes the time required to realize positive royalty incomes,
which typically involves a significantly longer wait. In Heher’s result, the average time between
the invention disclosure and final patent granted is 6 years, which is sufficiently close to the mean
lag estimates here.

The human capital input variable, research FTEs, lagged 6 years, is also found to affect the
combined tech transfer metric index positively, with a 5 percent level of statistical significance in
models 1 & 3, an@ 10 percent level of significance in model 2. This time lag of the influence of
changes in the size of a department’s research FTES on its combined tech transfer metrics index
value is similar to the time lag of its influences on the collaboration index in the previous section.
Whether in the more traditional or the newer mode of knowledge transfer to industry, the timing
of impact from increases in FTEs are similar.

The physical capital input variable, a two year moving average of the value of research
equipment acquisitions, is significant in all except model 4, and it has a much higher magnitude
of the estimated coefficient than do the other input variables. Again, this result is very similar to
the results in the collaboration index model, in the previous section. Therefore, it appears that
research equipment is important to the kinds of research that lead to both our measures of

collaboration index and the combined tech transfer metrics.
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Table 10 displays the incident rate ratio (IRR) of the tech transfer models. Model 1 indicates
that, ceteris paribus for every one percent increase in research expenditures, the log of the
combined tech transfer metrics index is expected to increase by approximately 4.22 percent,
similarly the log of tech transfer outputs increase by 4.24 percent from an increase of research
expenditures lagged 1 year, by 3.88 percent from an increase in research expenditures lagged 2
years, by 3.31 percent, from an increase in expenditures lagged 3 years, and by 2.02 percent from
an increase lagged 4 years. Model 1 has an (insignificant) negative long-run relationship of

research expenditures to tech transfer metrics, but model 2 indicates the opposite.

Table 10—Negative binomial incident rate ratio (IRR): Combined tech transfer metrics
Incident Rate Ratio (IRR): Combined Tech Transfer Metrics (1989-2012)

Unrestricted PDL Restricted PDL

(k=9, m=2) (k=9, m=2) DL (k=9)

[1] (2] (3]
Expenditures (t-0) 1.0422** 1.0481*** 1.0797**
_t1 1.0424%** 1.0307*** 0.9763
_t2 1.0388%** 1.0164%** 1.1075*
_t3 1.0313%** 1.0049* 0.9309
_t4 1.0202* 0.9962 1.1045%
_t5 1.0054 0.9902 0.9738
_t-6 0.9873 0.9868 1.0163
_t7 0.9659%** 0.9862* 0.9918
_t-8 0.9415%** 0.9881* 1.0421
_t9 0.9143*** 0.9927* 0.8020***
Total lag multipliers  0.9799 1.0389* 0.9847
FTEs (t_6) 1.0071** 1.0053* 1.0076%*
Equipment (2) 1.1463** 1.1343* 1.1746**

5. Returns to scale and long-run productivity

In this section, we consider the university’s research productivity, across the different
knowledge dissemination channels in the long-run. In the production of knowledge measured by
published journal articles, the interpretation of estimated slope coefficients in the effective labor

or log-log PDL model (model 4 in Table 3) are marginal effects directly, due to the logarithm of
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the Cobb-Douglas production function. They also represent output elasticities with respect to each
lagged value of research expenditures. In the previous section, it was hypothesized that university
knowledge production should exhibit decreasing returns to scale, which would mean the sum of
all estimated slope coefficients in this model equals one in absolute value, but in the estimates of
the model, is 0.9349, or slightly below one, which indicates instead “very slightly” decreasing

returns to scale (DRTS) in the publications output model. We expect that publications have
significant public good attributes and represent the most basic knowledge output within the
university. Therefore, it is more closely associated with classical production theory’s production

function with the law of diminishing marginal returns.

In the production of knowledge measured by doctoral degree awards, the sum of estimated
slope coefficients (in model 4 in Table 5) is 0.0458; as it is below one that can be interpreted to
indicate decreasing returns to scale. As in the case of publication (see model 4 in Table 3), doctoral
degree awards are understood to be a proxy for a kind of knowledge output that has public-good
attributes; the result of doctoral research is, predominantly, one of the basic knowledge outputs
within the university context. However, the results of long-run productivity in the publication and
doctoral degree awards are different each other even though they exhibit decreasing returns to
scales with respect to all input variables, as is consistent with classical production theory. The
doctoral degree awards have a much lower productivity in the long-run than the publications,
because of the different characteristics. The doctoral degree awards are more liketjoge to
the educational mission in the university, so it is distinguished from the general research outputs.

In contrast, the sum of all the estimated slope coefficients in the effective labor model of the
collaboration index (in model 4 in Table 7) is 2.023, which is interpreted as indicating that the

collaborative types of research outputs exhitmteasing returns to scal@ith respect to all input
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variables. Similarly, Model 4 in the regressions (Table 9) shows that, similarly, the combined tech
transfer metrics index per FTE increases significantly from greater research expenditkidsspe

in the time periods one to six years earlier. Again, the sum of all slope coefficients, at 1.4179, is
greater than one, indicating increasing returns to scale. Generally interpreted this means that a
doubling in R&D spending would lead to more than a doubling of the tech transfer outputs, and,
thus in long-run, it exhibits an economies of scale.

In terms of production of knowledge associated with inventions and innovations, the
assessment of productivity is complicated, especially in an empirical study, because of prior
conditions and variation in propensity to patent across different technologies and fields. However,
the result of increasing returns to scale is still meaningful in the knowledge production. Another
possibility of the results of increasing returns to scale in the collaboration and formal tech transfer
outputs might be an empirical bias introduced from the linear combination of different proxy
variables or the related skewed distribution of observations across the different departments and
research units. Nevertheless, it is important that we test the hypothesis, that in the long-run, the
productivity of university knowledge production is varied across the different types of knowledge
dissemination channels. Our findings indicate that the publication and doctoral degree award
modds of knowledge disseminated via the public domain mechanism exhibit diminishing returns
to scale with respect to all input variables. Meanwhile, the collaboration and tech transfer models
exhibit increasing returns to scale of knowledge production.

C. System of Equation Model Results

So far, we have assumed that the different types of knowledge creation are independent of one

another. However, it is certainly reasonable to assume that the various types of research outputs

are interrelated as co-products of the underlying knowledge production efforts of the university.
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Moreover, if the error terms among the models of different types of research outputs are correlated
for a given department, but are uncorrelated across departments, we cannot derive efficient and
best linear unbiased estimators from independent regression models of each research output, as we
have attempted in the previous sections. A better approach is a seemingly unrelated regression
(SUR) model (Zellner, 1962), a system of linear equations that consigtnear regression
equations for departments antkime periods.

In the previous sections, we utilized four sets of independent regression models, one each for
publications, doctoral degree awards, collaborative outputs, and tech transfer metrics, but in this
section, we use only three output measupeblications, the collaboration index, and the
combined tech transfer metriesithin a system of equations. Moreover, because of the non-linear
regressiof?, we use the effective labor model, a log-PDL model with White’s robust standard
errors. Equation (25) represents a matrix version of the seemingly unrelated regression with group
fixed effect panel polynomial distributed lag (PDL) model for departmant time period, and

eqguation (26) is a compact version of the matrix:

1
b
Yita (a1+uiv1) fia - Fi—go3 0 0 0 eq, ° €
= & 25
Yite |= (a2+q’2) Fiz2 - Fokoaalow 220tk nafitk 280 ||, [7] Qe (25)
Yita (0‘3+Ui,s) fra o Gikeayafivk-23lit-ke palitk 380, 8 €3
k
B |
Y=X-B+E (26)

Where the third subscript represents the output type: 1=publication, 2=collaboration, and 3=

tech transfery is a logarithm of the respective research output per unit of labor (per research FTE),

22 There exists a non-linear SUR model technically, see Winkelmann (2000).
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r is the logarithm of research expenditures per unit of labor (per research FTIe) ignithe

logarithm of the two year moving window of value of research equipment acquisitions per unit of
labor (per research FTEY, is atime-invariant error term ané, is a group and time-variant

idiosyncratic error term for each equation.is 3x1 matrix that consists of a 3x12 matrix of

regressors included in a constant teXm,a 12x1 matrix of coefficientd3 , and a 3x1 matrix of

error termsE . f}, to f, are slope coefficients of the calculated and recovered lag scheme of the

polynomial distributed lag (PDL) model with lag lendttand degreen. (For more detail, see
Section Ill.)

Table 11 presents regression results of the estimated SUR model, with bootstrapped standard
errors, that consists of four different sets of equations at the department level from 1989 to 2012
as well as polynomial distributed lag (PDL) slope coefficients of research expenditures. First is a
system of (1) research publications and (2) the collaboration index as measures of output; second
is a system of (1) research publications and (3) the combined tech transfer metrics as measures of
output; third is (2) the collaboration index and (3) combined tech transfer metrics; and fourth is
the system of all three together, (1), (2), and (3).

First, considering the research publications regression without considering correlations of the
residuals, it is evident that the magnitude of estimated slope coefficients in model 1 in Table 11
are larger and their standard errors are smaller than in model 2 and 4. However, all three SUR
models that include publications indicate a negative impact in the last lagged year of research
expenditures, comparable to some of the results of the independent regression models in the
previous section. In general, comparing between the independent regression models and the three
SUR models that include publications as a research output, there are no notable changes or

surprises.
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Table 11—The regression results of SUR model with PDL of research expenditures at department level, (1989-2012)

System of Equations: Seemingly Unrelated Regression PDL (1989-2012)

[1] [2] [3] [4]
. Collaboratio Publication Tech Collaboratio Tech . Collaboratio Tech
Publications Transfer Transfer Publications Transfer
n Index (k=6, X n Index i n Index .
(k=6, m=2) (k=9, m=2)" m=2)1 Metrics (k=9, m=2)1 Metrics (k=6, m=2)! (k=9, m=2)1 Metrics
’ (k=9, m=2)1 ’ (k=9, m=2)1 ’ (k=9, m=2)1
Width of Equip? 3 5 3 4 5 4 3 5 4
Expend (t_0) 0.1039* 0.3180%*** 0.1710* 0.0359 0.3621* 0.0149 0.1569** 0.3641* 0.0192
(0.0594) (0.1141) (0.0878) (0.2679) (0.1981) (0.1680) (0.0737) (0.1986) (0.1683)
t 1 0.1827***  (0.2253%*** 0.1741***  0.2142 0.1893 0.1960* 0.1897*** 0.1935 0.2051*
(0.0306) (0.0768) (0.0495) (0.1877) (0.1222) (0.1084) (0.0451) (0.1229) (0.1098)
t 2 0.2157***  0.1579* 0.1629%**  (.3347** 0.0686 0.3206*** 0.1910*** 0.0740 0.3321%**
(0.0465) (0.0862) (0.0499) (0.1396) (0.1073) (0.0894) (0.0607) (0.1079) (0.0911)
t 3 0.2030***  0.1157 0.1376***  (0.3975%** 0.0000 0.3886%*** 0.1608** 0.0055 0.4002%**
(0.0528) (0.1026) (0.0511) (0.1202) (0.1225) (0.0959) (0.0672) (0.1231) (0.0969)
t 4 0.1444***  0.0987 0.0980**  0.4025%** -0.0164 0.4000%*** 0.0990* -0.0120 0.4095%**
(0.0420) (0.1058) (0.0471) (0.1152) (0.1303) (0.1018) (0.0576) (0.1309) (0.1022)
t_5 0.0402 0.1071 0.0441 0.3499%** 0.0192 0.3548%** 0.0056 0.0216 0.3598%**
(0.0387) (0.0922) (0.0731) (0.1111) (0.1205) (0.0965) (0.0596) (0.1210) (0.0967)
t_6 -0.1099 0.1406** -0.0239 0.2395** 0.1070 0.2530%** -0.1193 0.1062 0.2513***
(0.0883) (0.0681) (0.1437) (0.1059) (0.1013) (0.0820) (0.1155) (0.1007) (0.0825)
t 7 0.1994%** 0.0714 0.2469** 0.0947 0.2419** 0.0839
- (0.0697) - (0.1125) (0.1110) (0.0779) a (0.1076) (0.0794)
t 8 0.2835** -0.1544 0.4389** -0.1203 0.4286** -0.1424
- (0.1323) - (0.1503) (0.1854) (0.1168) a (0.1800) (0.1189)
t 9 0.3928* -0.4379 0.6831** -0.3918** 0.6663** -0.4276**
- (0.2324) - (0.2241) (0.3091) (0.1964) a (0.3024) (0.1984)
Equipment 0.0274 -0.0127 0.0577 -0.0465 -0.0162 -0.0421 0.0616 -0.0145 -0.0383
(0.0242) (0.0539) (0.0441) (0.0602) (0.0807) (0.0548) (0.0389) (0.0796) (0.0539)
cons 2.0269%**  5.93G7*** 2.3217***  0.8504 7.4098***  1.0913 2.0684%** 7.3840%** 1.0361
(0.3427) (1.0779) (0.6285) (1.4448) (1.3881) (1.0427) (0.5759) (1.3595) (1.0516)
R-sq 0.8054 0.5397 0.7196 0.5274 0.6073 0.5313 0.6977 0.6073 0.5313
Chi2 1763.28 499.51 667.47 290.59 383.49 281.17 573.14 383.06 281.66
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Obs 426 426 260 260 248 248 248 248 248

Note: 1. k is lag length and m is degree of polynom2alWindow width. All models are unrestricted PDL. .*** at 1%, ** at 5%, and * at 10% levelParentheses are Bootstrap

standard erros.
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The SUR models indicate a lower returns to scale than the independent model, even though all
still evidence diminishing returns to scale. This is consistent with the idea that publications as a
research output are the most fundamental knowledge product, widely generated across all of the
departments and research units of the university.

Second, considering the collaboration index as a measure of research output, without
considering correlations of residuals for the moment, we see that the regression results of model 1
in Table 11 are similar to the independent models in the previous section; however, the
collaboration index results in models 3 and model 4, including it in systems with the combined
tech transfer metrics and with all other research outputs, respectively, are significantly different
from the results of the independent models, including smaller slope coefficients and larger standard
errors as well as differences in the statistical significance and the signs of each coefficient.

These results might be due to the characteristics of tradition collaborations between university
and private sectors, in that there are many kinds of informal relationships and most of them are not
measured here. We speculate that industry collaborations may be complements, or preliminary
activities leading to other research outputs involving private sector pamn#éiese research
activities picked up in the combined tech transfer metrics.

Finally, looking at the combined tech transfer metrics models, without considering correlations
of residuals, we see that the statistical significance of models 3 and 4 in Table 11 are somewhat
better than model 2. Moreover, the magnitudes and signs of the slope coefficients of the SUR
models are quite similar to those in the independent regression models in the previous section.
This research output was infrequently occurring relative to the other research outputs within each
of the respective systems of equations. Thus, we expect that although the tech transfer-outputs

which consist of invention disclosures, patent applications, granted or issued patents, and startup
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companies—are still at an early stage of development and smaller than other research outputs,

seem to have potentiata channel of knowledge dissemination in the university.

The pattern of slope coefficients of research expenditures

sl bl 300G T LAY ahoraticn

Figure 18—Comparison of estimated slope coefficients of three research outputs in
model 4

Figure 18 represents the comparison of estimated slope coefficients of lagged research
expenditures from the full system of equations, model 4 in Table 11. As shown in the figure,
publications and combined tech transfer metrics have similar patterns of slope coefficients across
lagged research expenditures, each following an invertelghpé- or “projectilé’ trajectory. In
contrast, the pattern of coefficients on lagged research expenditures for the collaboration index
equation shows a U-shape. From the figure, we can interpret that, holding the degree of polynomial
constant, publications and combined tech transfer metrics as research outputs have a maximum

impact, in terms of time lagged research expenditures per FTE, between the second and fourth
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year, respectively, after research expenditures, but the collaboration index exhilmigiarmin

terms of impact from research expenditures made within roughly the same lagged time frame.
Moreover, interestingly, the minimum impact of lagged research expenditures on the

collaboration index corresponds exactly to the maximum impact of lagged research expenditures

on the combined tech transfer metrics, which may indicate that more traditional mechanisms of

collaboration and newer tech transfer mechanisms have a substitutional relationship, at least within

the time period of this analysis. In other words, departmsnmesearch expenditures are tending

to result in tech transfer outputs rather than the more traditional collaboration activities.

Table 12—The test results of correlation of residuals

Collaboration

Publications & Publications & X .
. . index & Combined
collaboration Combined tech All research outputs
. . tech transfer
index transfer metrics

metrics
[1] [2] [3] [4]
0.0336 for pub&coll*
-0.0041 0.0599 -0.0662 0.0824 for pub&ttm?
-0.0662 for coll&ttm3

Correlation of
residuals

Breusch-Pagan
test of chi2(1)=0.007 chi2(1)=0.932 chi2(1)=1.087 chi2(3)=3.052
independence (0.9333) (0.3344) (0.2971) (0.3837)

Note: 1. Correlation of residuals between publications & collaboration index, 2. Correlation of residuals between publications
& combined tech transfer metrics, 3. Correlation of residuals between collaboration index & combined tech transfer metrics.
The Parentheses are p-values.

Finally, Table 12 displays the correlation of residuals in each system of equations model. In
model 1, correlation between the errors in the two equations of publications and the collaboration
indexis -0.0041, and the Breusch-Pagan Lagrange multiplier test for error independence indicates
this is not significady different from 0. In other words, there is no significant correlation. Model
2 indicates a slightly positive, but insignificant correlation; and model 3, a slightly negative, but

insignificant correlation. Model 4, the system of all three research output equations, has positive
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correlation of the residuals between publications and the collaboration index, in contrast to model
1, but the other two combinations of research outputs have correlations in the same directions as
the comparable models 2 and 3, respectively.

Therefore, we reject the null hypothesis that the different types of research outputsede relat
with each other and their error terms are correlated. Instead it is appropriate to estimate
independent regressions for each research output. However, without considering the correlation of
residuals in SUR models, it would not be possible to support the intuitions and results we consider
in the overall results and conclusions of this chapter.

D. Structural Changes

Panel data is based on both time series and cross sectional data. In time series data, there can
be structural changes in the relationship between the dependent variable, in this caseathe resea
output, and one or more of the independent variables, in this case the research inputs. By structural
change, we mean that the value of the parameters of the model do not remain the same through the
entire time period, from 1989 to 2012. Structural change can occur at some point in time as a result
of changes in policy, consumer preferences, new institutions and technical systems, or some other
external shock. In particular, we want to test for structural changes in the model around the time
of the creation of CSU Ventures as the technology transfer office (TTO) for Colorado State
University.

In 1963, Colorado State University Research Foundation (CSURF) was officially established
as an independent non-profit entity to hold and manage certain capital assets on behalf of the
university, which, in time, came to include management of intellectual property arising from
inventions made at the university. In a major restructuring of the technology transfer operations of

CSURF in 2007, CSU Ventures was founded as a wholly-owned subsidiary of CSURF. Since CSU
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Ventures specializes in the commercialization of university inventions, including the management
of patenting and licensing, as well as the launch of startups, we want to test only the combined
tech transfer metrics research output variable, which consists of the combination of the department
level count of invention disclosures, patent applications and granted patents, and startup companies

founded.

Tech Transfer Metrics
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Figure 19—The time trend of the combined tech transfer metrics at CSU overall,
(1989-2012)

In our database, the total sum of these combined tech transfer metrics is 1,779 for the entire
university from 1989 to 2012. (For more detail, see Section 1V). However, in the time period
following the creation of CSU Ventures, 2008-2012, the total count was 792, which is about 45
percent of total tech transfer activities in just five years or 21 percent of the total time period

covered in this study, 1989-2012.

78



Figure 19 shows the time trend of the combined tech transfer metrics at CSU overall from 1989
to 2012. There was a remarkable increase of combined tech transfer metrics after 2007. However,
the explanation for this increase is not only the foundation of the new tech transfer office (TTO),
but it may also represent the cumulative effects from previous research as well as témh trans
activities. Nevertheless, it is important to test a structural change because of the enormous changes
that occurred in 2007 and persist for all of the years thereafter.

The Chow test is the most commonly used technique for the analysis of structural changes, and
is generally used for testing for a structural change of known timing. There are two different
methods of Chow test for the structural change: one is a sum of squared error prediction and
another is a dummy variable model. Most statistic software packages can generate both test
methods. We want to test two different time periods, the pre-period 1989-2006, and the post-period
of 2007-2012, and assume that CSU Ventures significantly affects the number of university
invention disclosures, patent applications & published or granted patents, and startup companies
during 2007 to 2012.

Using a Chow test based on the dummy variable metlecaiopt a log-log PDL model with
White’s robust standard errors, with the combined tech transfer metric research output per research
FTE as a function of research expenditures per research FTE, following a PDL scheme and a two-
year moving-window average of the value of research equipment acquisitions per research FTE,
as in Section IV-A-4. Equation (27) shows the structural changes in the knowledge production

function with group fixed effects and a polynomial distributed lag scheme of research expenditures,

Yit :(a"'q)‘*'%q +45 +of D+ Bk +tef D+ 4N

27
+ QX kD + fe€0, +oc eq, D+ g @0

79



where D isadummy variable with a value of zero for years 1989 through 2006 and a value of one
for years 2007 through 2012.

Running the regression, we assume a null hypothesis of no structural change between 2007
and 2012 and an alternative hypothesis that not all the dummy variable coefficients are zero. If the
critical values of the F-distribution are smaller than the F-statistic values from the hypothesis test,
within a 1 or 5 percent level of statistically significance, we can reject the null hypothesis. If

otherwise, we must accept the null of no structural break in the data.

Table 13—The results of Chow test for the structural change after 2007 on thetech transfer
metrics model at the department level, (1989-2012)

Chow Test
Sum of squared

Dummy variable

errors of ..
prediction of prediction
F-statistics 8.4657 8.6402
p-value 0.0001 0.0001
Group* 33 33

Table 13 shows Chow test results for the structural changes after 2007 on the combined tech
transfer metrics at the department level from 1989 to 2012. The result displays the values of F-
statistics are greater than the critical value, so we can reject the null hypothesis at 1 percent level
of statistical significance. This is strong evidencastfuctural change in the relationship between
the combined tech transfer activities and the independent variables measuring research inputs after
2007.

V1. Discussion
A. Knowledge Production Based on the Theory of Classical Production
In classical production theory, the principal goal of a firm, farmer, or other type of producer is

to maximize the difference between the costs and the revenues from turning inputs into outputs,
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and the production function describes the quantitative relationship by which they turn inputs into
outputs. The production function of a rational profit maximizing producer necessarily exhibits
certain characteristics, such as non-negativity, weak essentiality, non-decreasing in input variables,
and concavity. Several key concepts or measures used to describe production decision-enaking ar
marginal productivity, the scale of production, and elasticity. The knowledge production function
is based on the same basic theories and assumptions. However, because knowledge is an intangible
asset, which distinguishes it from the physical outputs of firms and farmers, not all of the typical
production function characteristics and assumptions necessarily hold when describing the
relationships between research inputs and outputs. Thus, the productivity of inputs with respect to
research outputsespecially when measured by proxies such as publications or intellectual
properties in both public and private res#arvaries due to the heterogeneous characteristics of
the different types of research outputs and the different research environments across the colleges,
departments, and research units of the university.

In section IV, the functions describing the “production” of publications and doctoral degrees
exhibit decreasing returns to scale, at 0.9349 and 0.0458, respectively with respect to all inputs,
past research expenditures and the value of research equipment. However, the functions describing
“production” of the other two research outputs, those measured by the collaboration index and the
combined tech transfer metric, exhibit increasing returns to scale, at 2.0239 and 1.4179,
respectively (See model 4 for the effective labor PDL in the regression results otsaaith
output model.) In light of these results, publications and doctoral degree awards might be
understood to conform more closely to the typical assumptions of the theory of classical production,
specifically the law of diminishing marginal productivity, than do the other two types of research

outputs. The publication model’s weighted average lag, which can be interpreted as the mean lag
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between research project inception and completion, is two or three years, which is shorter than the
lag estimated for the other research outputs. In other words, production of a publication, as the
predominate research output in the university, is faster than that of other research outputs, even
without considering factors related to productivity.

Furthermore, with regard to lagged research expenditures in the effective labor PDL models,
publications and combined tech transfer metrics have a concave production function, but the
collaboration index has a convex production function, and doctoral degree award have a cubic
production function. Thus, publications and tech transfer metrics have an estimated maximum
point of impact among past research expenditures, but the collaboration index, on the other hand,
has a minimum point; the doctoral degree award has both local minimum and local maximum
points. One interpretations are that publications are the fundamental research output in the
university while tech transfer represents are a newer channel of research output that, while it has a
lot of potential for the future of research outcoratthe universityjt is still in its early stages of
implementations. In the long run, publications and tech transfer metrics are less elastic than is the
collaboration index with respect to the past research expenditures. A possible interpretation is that,
over the long run, conventional collaboration activities, such as collaborative R&D, informal
conversations, consulting, co-supervising, and so on, are more sensitive to changes in research
expenditures. This interpretation could be derived from the theories of classical produdtkian,
publications and combined tech transfer metrics seem to have the attribbtriesesfsary goad
within the university.

B. Knowledge Production in a Single Institutional Data versus an Aggregation Data
According to Adams & Griliches (1998), in aggregated data research outputs exhibit constant

returns to scale, but, they find, within individual universities, exhibit decreasing returns to scale,
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which they interpret to be because data errors are more important at the single institution level and
because research spillovers exists only at the aggregate level. In our database, however, the
regression results partially follow the critique of Adams and Griliches, as the results seemed to
ignore the heterogeneous characteristics of the different research outputs, as in the increasing
returns to scale for the collaboration index and combined tech transfer metrics.

Nevertheless, both advantages and disadvantages exist for the use of single institutional data.
First, certain types of data are only available within the single institutional context, such as
department level faculty extension budgets, collaborative contacts with industry, etc., which are
rarely reported in aggregation datasets. Second, single institutional data makes it possible to
investigate deeply within one institution or region, controlling for a host of exogenous
characteristicsby holding them relatively constant. These advantages therefore present the
opportunity to unravel the universitygsearch system’s generally unobservable and inherent
characteristics, the inner workings of its so-called black box, and their implications for knowledge
spillovers.

However, conclusions drawn from single institutional data may compromise findings’
generality relative to other institutions or to aggregate data, because each institution has its own
idiosyncratic conditioning characteristics, including levels of research expenditures, management
skills, administrative policies, and so on. Thus, these factors may inherently bias findings based
on single institutional data. In the optimistic view, we still hope to open a meaningful debate using
data and empirical results from a single university, CSU, which in future analyses can be compared
or combined withother universities’ results. This makes it possible to discover the unobservable

and heterogeneous research systems of different institutions, and eventually, their aggregation.
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VI1l. Conclusion

This chapter has analyzed research production and technology transfer activities of the
academic departments of a large research university (Colorado State University) and introduced a
novel empirical technique for estimating knowledge production functions. First, we have utilized
four different knowledge production functions as an empirical regression model and adopted a
group fixed effect of panel negative binomial MLE with polynomial distributed lag (PDL) or
Almon scheme of past research expenditures. The results show that PDL models have more
statistically significant estimated slope coefficients, better model specification, and smaller AIC
and SBIC values thaad hocor Koyck scheme models, especially of slope coefficients within the
mid-range lagged years. It is important to emphasize that the PDL scheme may unravel the
unobserved lag effects found in previous studies. With regard to considering important input
variables that have rarely appeared in previous studies of knowledge production, both full-time
equivalent (FTE) of researchers as a labor variable and value of research equipment as a fixed
input variable make it possible to better connect with neo-classical production theory, and these
input variables increase the statistical significance of estimators as the best linear unbiased
estimators (BLUE). These help overcome model misspecification errors, especiallgdomitt
relevant variables, affecting previous studies estimating knowledge production functions.

Further, an effective labor PDL model gives more intuitive results in this paper, having been
adapted for investigating returns to scale of knowledge production, output elasticity, and the degree
of co-production of outputs in a system of equations (SUR) model. The greatest advantage of this
effective labor model is to control for the lag effects of the FTE variable, following the labor-
augmenting or Harrod-neutral approach, with knowledge and labor entering multiplicatively.

Human knowledge capital is generally unmeasurable in the production function system.
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Second, merely from the summary statistics, publications as a knowledge dissemination
channel seem to be a more productive and common research output across departments and
research units than other research outputs. Indeed, most colleges and departments report the
number of published journal articles as their major research output each year. In this regard, our
empirical results have shown that in the estimated models publications have a more systematic
relationship with research inputs, as well as a shorter lag length with respect to research
expenditures. The mean lag between research project inception and the output of publications is
two or three years shorter than for the output of other typgs are, on average, 2.66 years for
publications; 5.32 years for doctoral degree awards; 5.61 years for collaboration; @unip &1
years for tech transfer outputs. Thus, the speed of output is fastest even without considering the
quality of publications.

Publications are more closely linked with the assumptions of classical production theory,
including the law of diminishing marginal productivity, and are less elastic with respect to past
research expenditures than are the other research outputs. In contrast, the collaboratibn and tec
transfer outputs exhibit increasing returns to scale with respect to all inputs and are more elastic
with respect to past research expenditures than publications. In the models estimating doctoral
degree award, impacts are less significant in all models, especialtgstneted PDL model.
Besides, the FTE and value of equipment variables are insignificant in all of the models. Hence,
there does not seem to be a systematic relationship between research inputs and doetsal degr
as an output. Doctoral degree awards maymore related to the education mission of the
university, but not seem to be directly related to research outcomes.

Third, we hypothesizedo-production relationships among the different research outputs,

expecting they would have a positive and significant correlation of residuals within departments
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or research units. This hypothesis was tested by SUR system of equations among the different
types of research outputs. The results suggest that conventional collaboration activities may be
substitutional oex anteactivities to the other research outputs, especially the tech transfer outputs.
Furthermore, by the results of SUR models, estimations of the production of tech transfer outputs
and collaboration outputs have inverse patterns of estimated slope coeffig@entave and
convex over time, respectivelyand the maximum point of impact of past research expenditures

on the combined tech transfer metrics exactly matches the minimum point of impact of past
research expenditures in the collaboration index.

Proceeding from what has been said above, it should be concluded that knowledge production
and productivity in the university should rely on the heterogeneous characteristics of research
outputs and research environments across the different departments and research units. Basic
research outputs such as publications and doctoral degree awards are more closely connected with
classical production theory, and publications and combined tech transfer metrics are the most
primary research outputs in the departments and research units of the university. Furthermore,
empirical model specifications, which should help to unravel the complex research system in the
university, are also the central point of this chapter. Our proposed empirical models of the
knowledge production functiom negative binomial MLE with both unrestricted and end-point
restricted PDL models, and an effective labor PDL model, improve upon the statistical sigaifican
results of the relationship between research outputs and inputs, compared to previous studies. In
general, further improvement upon the methods outlined may be fruitful particularly when

combining multipleuniversities’ data or utilizing aggregate data.
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CHAPTER 2. SCIENTFIC TEAMS AS QUASI-FIRMS: A NEW FRAMEWORK FOR
UNDERSTANDING THE AGENCY OF KNOWLEDGE PRODUCTION WITHIN THE

UNIVERSITY CONTEXT

l. Introduction

In the knowledge economy or information society, a knowledge-based view of economic
activity is increasingly central to understanding production of new products and pséass
guiding the strategic management of the firm, and even for pioneering new market systems. This
new knowledge-based paradigm can also lead to new conceptions of economic structures
involving social networks. According to Spender (1996), organizations based on knowledge are
best characterized asduring alliances between “independent knowledge-creating entities”.
Theseindependent entitiesconsisting of individuals or teams, together with tangible resoutces
generally have attributes afsemi-autonomous organic system, but its specific attributes depend
on the type of organization. If the organization basore hierarchical structure and culture, the
degree of autonomy of the knowledge-creating entities within the organization may be low and
thear identity more machine-like. However, if the organization has a more network structure and
culture, the independent knowledge creating entities that comprise the organizatibevenay
high degree of autonomy aradself-regulating system. The organization based dynamic and
network types of knowledge creation have positive advantages: pooling heterogeneous intangible
resources or assets, increasing the speed of technological innovation, reducing externalities, and
managing uncertaintyr risk, and so orMWhile this new conceptualization is deeply rooted in the
ideas of 1990s of its basis reaches to the years before World War Il (Powell, 1990; Spender, 1996;

Latour, 1993; Bush, 1945; Schumpeter, 1942).
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In recent years, exploration of the inner logic of academic operations in the research university
have suggested a firm-like quality of research teams (Etzkowitz, 2003), similar in many respects
to the “independent knowledge creating entities” of Spender (1996). This conceptualization of
research groups or scientific teams as quasi-firms operating within the context of the research
university suggests a new paradigm for study of the organizational formation and evolution of the
research university. According to Wuchty et al (2007), the traditional university ethos emphasized
the role of individual genius in scientific discovery, but in recent developments, most academic
research has shifted from an individual model to a teamwork model.

The study of university research teams is linked with the study of university knowledge
production as well as university technology transfer. This approach views research project teams
as the primary agents that contribute to new knowledge creation within the university, including
potentially commercializable innovations, whether in the form of patented inventions or in the
form of collaborative research projects conducted jointly with private sector industry partners.
Project teams based in universities can have not only an interdisciplinary or inter-university
composition but can also include team members from industry or from private entities. They can
also extend across state and national borders. Regarding the formation of academic research teams,
their size and composition @& important factor affecting the extent to which the university is
fulfilling its outreach mission of economic and social development.

In U.S. research universities, the size of scientific teams increased by 50 percent between 1981
and 1999 (Adams, 2005). In recent times it has become much less cdmiitwh scientific
articles that have one author, and usually there are several authors on a paper or projeatdn the ¢

of Colorado State University (CSU), the number of authors per paper increased by 58 percent over
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the 24-year period between 1989 and 2012, while laboratory-based research papers were more
prevalent than non-laboratory-based ones.

The most important reason for the organization of a research team is to generate efficient and
synergic knowledge production that reduces the cost and time of knowledge production; in other
words, they make it possible to produce a maximum amount or quality of research outputs with
respect to the naturally limited inputs to the knowledge creation process, such as research
expenditures, research equipment, highly specialized and talented personnel, etc. This impetus has
led to experimentation with and the creation of new organizational forms within research
universities, and, in this process, academic research teams have come to operate more and more
like “quasi-firms,” run like small businesses, optimizing their collective behavior albeit without
being directly profit making (Etzkowitz, 2003).

The purpose of this chapter is to explore the agency of knowledge production. The chapter
adopts the view of scientific resch teams as “quasi-firms,” arising as independent knowledge-
creating entities within the university context. What are the key components for assembling a
research project team, and how does understanding research processes as team-kased help
reframe our conceptualization of university knowledge production and technology transfer
activities? Of particular interest for this chapter is an examination of team assembly mechanisms
and the impact of different aspects of team formation on eventual knowledge outputs. Exploring
the situation inside research teams, social network analysis can be useful for understanding the
structure of team member networks and their dynamics over time. How do existing network
structures affect research team formation and performance? We can use ego-centric network
analysis to gain insightsn an individual principal investigator’s (PI) professional network and

relationships, while we can use socio-centric network analysisnt@ntrate on entire groups’
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patterns and the formations of teams within the network context. We expect that this kind of
network analysis will allow us to look inside the more aggregate knowledge production function
and structures of the research university. Although social network analysis can be helpful for
understanding the inner workings of team assembly mechanisms and their team dynamics,
empirical analysis of a sample of research teams, selected from the entire university, is used to
explore what factors influence academic research team formation and performance.

The rest of this chapter consists of six sections. Section Il reviews the previous studies of social
network analysis and university collaborative research. This social network analysis covers not
only economic models and topics, but also insights from the field of scientometrics which is
concerned with the quantitative features and characteristics of science and scientific research.
Section Il shares summary statistics from an extensive database on Colorado State University of
research team formation at the college and university level. Section IV analyzes the conceptual
frameworks of university research teams and its formations. Section V explores two different
empirical approaches to understand academic research teams, ego-centric social network analysis
and regression analysis of a sample of research teams. Section VI provides emplysial @aha
the impacts of outputs by research teams. This section evaluates the quality of research teams by

different groups and hypotheses. Finally, section VII summarizes and concludes this chapter.

II. Literature Reviews
A. Social network analysis and research teams

Social networks and social network analysis have emerged and influenced many fields of
endeavor within society and the economy. The scope of this is certainly not limited to Internet
social media, but also includes co-authorship networks within academic literatures such as

sociology, economics, computer science, statistical physics, mathematics, and so on. According to
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Jackson (2008), social networks permeate our social and economic lives and play a central role in
the transmission of information about everything from job opportunities to the trade of most goods
and services. He also points out that social networks affect our well-being, making it critical to
understand how social network structures affects behavior and which network structures are likely
to emerge within a given part of society. This seeks to follow these crucial insights to analyze the
formation and structure of academic research team.

The deeper motivations for exploring research teams emerging from within the structure of
social networks arise from the seminal insights of Powell (1990) and Spender (1996). First,
according to Powell, there are three distinct forms of economic organization: market, hierarchy,
and network. The market formation has a contract normative basis, with a high degree of flexibility,
low amount of commitment among the parties, and independent actor preferences or choices. The
hierarchy formation has an employment relationship normative basis, with a low degree of
flexibility, medium to high amount of commitment among parties, and dependent actor preferences.
Finally, network has complementary strengths normative basis, with a medium degree of
flexibility, medium tohigh amount of commitment among parties, and “inter-dependent” actor
choices. Therefore, network forms of economic organization entail indefinite and sequential
transitions, create trust and indebtedness. While transactions with uncertain outcomes and high
resource costs are more likely to take place within hierarchical organized firms, relational
contracting and collaboration, relying upon the network connections, can Dblufirtite
boundaries.

Second, from Spender, the theory of the firm takes on a new form when we compare the
resource based view of the firm with a knowledge based view of the firm. The knowledge based

view of the firm is more strategically significant, but it is also more complex than the resource
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based view. Both the knowledge based and the resource based views attempt to deconstruct the
“Black Box” of the production function. However, according to the knowledge based view,
tangible resources lie outside the firm, whilgangible resources such as firm’s specific
knowledge are what give it a competitive advantage. Again, the organizations based on knowledge
are viewed as enduring alliances between independent knowledge-creating entities. Moreover, the
knowledge based view of the firm conforms to Latour’s (1996) Actor-Network Theory (ANT)
considers social entities, firms, governments, and other social institutions as identifiable actors in
heterogeneous networks, not only individudlse overall dynamic complex is called a “quasi-
object’. According to Spender, the firm, or the university, is a quasi-object with complex
heterogeneous internal epistemological processes.
B. Academic research teams operate like quasi-firms

Although these previous studies of social networks focused on explaining the organization of
economic transactions and the theory of the firm, they provide a useful approach for explaining
the organization of academic research. The team perspective is also deeply linked with the newer
mission of the university of outreach or engagement, given the entrepreneurial firm-like qualities
of research teams (Etzkowitz, 2003). The formation of academic research teams is much better
understood from a knowledge and social network based view rather than a hierarchical view of
formations. Across multiple teams, over time, academic researchers create enduring alliances like
asemi-autonomous organic system.

One important extension of the team based approach is to understand the collaboration between
university and private entities, which is one of the important technology transfer activities in
research universities. They significantly contribute to local economic development and

commercial innovation through collaborative team based research projects. Private sponsorship of
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university research consistently averages 5 or 6 percent out of total university research
expenditures (NSF, 203%. Furthermore, the extent of collaboration by researchers in research
universities in the U.S. or other advanced countries is not only inter-institutional, but can also be
international and interdisciplinary.

The increased extent of external university collaboration may drive an increase in the size of
research teams as well as more complex research funding arrangements in the university.
Therefore, the university can be faced with such a dilemma as who is, in effect, the principal and
who is the agent with respect to the management of research teams. Nevertheless, the size of teams
—whether measured as the number of co-authors per paper, the number of co-inventors per patent,
or the number of co-founders of startup compani¢ms been increasing gradually. According to
Adams et al (2005), counting co-authors on U.S. scientific papers, research team size increased by
50 percent over the 19 year period, 1981-1999. They also found that foreign institutional
collaborators on U.S. scientific papers increased significantly. Academic researchers in private
universities, in departments whose scientists have earned prestigious awards, and in departments
that have larger amounts of federal funding tend to participate in larger teams. In addition, they
find that placement of former graduate students is a key determinant of inter-organizational
collaborations, especially collaborations with firms and with foreign scientific institutions.

Lee et al (2015) point out that the increasing dominance of team science highlights the
importance of understanding the effects of team composition on the creativity of research results.
They unpack two facets of creativity in science: novelty and impact. They find that increasing tea

size has an inverted-U shaped relationship with novelty. The relationship between team size and

23 Source NSF, Science and Engineering Indicators 2016: Total expenditures oflldggscand universities on
R&D in all fields totaled $67.3 billion in 2014. However, source ofiufrom business or private sector was 3.6
billion in 2014.
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novelty is due to the greater field or task variety, consistent with an information processing
perspective. Interestingly, they also find that team size has a continually increasing relationship
with the likelihood of a high impact paper.

Previous studies of social network based (or embedded) research teams have focused on co-
authorship networks as recorded in databases of published journal articles. Within this content,
there are three different areas of research: first is a theoretical approach with mathematical models
of network formation, dynamics over time, and network design for influencing behavior; second
is an empirical and experimental approach using data that observes then patterns of real world
networks in order to test conceptual social network theories; third is a methodological approach to
the measurement and analysis of networks.

Some studies have adapted only theoretical or methodological approaches to study research
teams, but most have utilized both theory and empirical analysis of network data. According to
Barabasi et al (2002), dynamic and structural mechanisms govern the evolution and topology of
the complex system of the social network of co-authors on scientific papers. They found three
complementary approaches. First, empirical measurements make it possible to reveal the
topological measures that characterize the network at a given moment, as well as the time evolution
of these quantities. The results indicate that the network is scale-free, and that the network
evolution is governgéby the phenomenon of “preferential attachment”, affecting both internal and
external links. Second, a simple modeptures the network’s time evolution. Third, numerical
simulations are used to uncover the behavior of characteristics that could not be predicted
analytically because of the complexity of the system. In addition, Taramasco et al (2010)

guantitatively explore the social and socio-semantic patterodlaboration of academic teams
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They explain critical features of social networks of knowledge-based collaboration using team-
centered approaches, hypergraphs,raadic interactions.

Guimera et al (2005) investigate the mechanisms by which creative teams self-assemble. They
proposed three parameters that determine the structure of collaborative research networks: team
size, the fraction of newcomers in each round of new production, and the tendency of incumbents
within the network to repeat previous collaborations. Newman (2004) used bibliographic databases
in biology, physics and mathematics, respectively, to construct networks in which the nodes are
scientists, and two scientists are connected if they have coauthored a paper. He used these network
to answer questions about collaboration patterns, such as the numbers of papers authors write, how
many people with whom they write, what the typical distance between scientists is through the

network, and how these patterns vary between subjects and over time.

[11. Trend of Academic Research Teamswithin Colorado State Univer sity

In terms of the aggregate level of research teams, the overall network of researchers who have
collaborated at some point in time is distinguished from individual teams of researchers actively
collaborating at this point in time. However, comparing these two perspectives helps to understand
the behavior of both an individual team and the ever-evolving groups of research teams. In this
section, we want to explore research teams both in the university overall and at the college levels.
As shown in Chapter 1, the knowledge production by researchers at Colorado State University
(CSU) are measured systematically in range of data, including published journal articles, degree
awards (masters and doctoral), research contracts and grants, extension outreach activities,
invention disclosures, patent applications and granted patents, and startup companies. In

considering descriptions of research teams, publications and patent data have the advantages of
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data utilization. Moreover, publications are the main research output of university research and
have a more systematic relationship with research inputs than other types of researéi output.
Figure 20 shows the time trends of total number of papers and average number of authors per
paper at the university overall level, from 1989 to 2012. Time is on the horizontal axis, and the
total number of papers and the average number of authors per paper are on the vertical axes, left
scale and right scale, respectively. The average number of authors per paper geneihg indic
the size of research teams in the university. The figure indicates that research team size has grown
in proportion with the total number of papers, but their growth trajectories appear have begun
diverging. By 2012, however, the divergence between these two indicators was the greatest: the
average number of authors per paper is around five authors and the total number of articles for the

year is about 2,000.
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Figure 20—Timetrends of journal articles and aver age co-author team sizes, at the
university level, (1989-2012)

24|t should be noted, however, that we modified the publication data Isaicii the total number of authors per
article is over 30, we removedattarticle from the dataset. There were 753 journal articles with more than 30
authors out of 38,916 total articles. Most of these many-multi-authored pegrerén the field of physics,
astronomy, and astrophysics. The maximum number of authors found for a single article is 1,139. Such ‘outliers’
can cause statistical bias problems and distort the generality of the result@pélysis.
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Table 14 reports summary statistics for the total number of papers, average number of authors
per paper, and total number of citations per paper at the college level, by year, from 1989 to 2012.
In terms of the total number of publications, College of Veterinary Medicine, the College of
Natural Sciences, and the College of Engineering are the top three colleges at CSU and together
have almost 67 percent of all publications at the university, as well as accounting &c&3t p
of the total number of citations.

Table 14—Summary statistics of thetotal number of papers, average number of authorsper
paper, and total number of citations by college levels, (1989-2012)

Average number of

Total number of papers authors per paper Total number of citations

Mean Sum Share Mean Mean Sum Share
Agricultural Sciences 141.8 3,403 8.9% 4.1 2,317.3 55,614 7.3%
Business 14.6 351 0.9% 2.6 278.5 6,685 0.9%
Engineering 304.7 7,313 19.2% 3.9 5,209.3 125,023 16.5%
;'::::ei‘ Human 615 1,477  3.9% 3.5 757.8 18,188  2.4%
Liberal Arts 101.4 2,433 6.4% 1.8 444.8 10,674 1.4%
Natural Resources 142.4 3,417 9.0% 3.6 4,256.2 102,149 13.5%
Natural Sciences 399.7 9,592 25.1% 35 10,935.2 262,445 34.6%
Veterinary Medicine 3529 8,470  22.2% 4.6 6,897.6 165,543 21.8%
Others 711 1,707 4.5% 3.6 545.2 13,085 1.7%
Total 1,590.1 38,163 100% 3.8 31,641.9 759,406 100%

Figure 21 represents the trend of the total number of articles (left scale) and average number
of authors per article (right scale) at the college level, from 1989 to 2012. This figure helps us to
begin to understand the relationship between the size of research teams and research productivity.
Except for the College of Natural Sciences, growth in the average number of authors per article,

which indicates the size of research teams, is roughly as fast as, or faster than, growth in the total
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number of articles. By contrast, the growth in the size of research teams in the College of Natural
Sciences is slower than the growth in the total number of articles. The College of Liberal Arts has
the smallest team size among other colleges, on average, 1.8 authors per article, but their article
productivity is greater than the College of Business, and the College of Health and Human Sciences.
In the College of Veterinary Medicine and the College of Engineering, there seems to be a
positive relationship between the size of research teams and the research productivity, because
both indicators are growing at similar rates. However, in the College of Agricultural Sciences, the
size of research teams decreased significantly from 2007 to 2008, but during the same period, the

total number of articles published did not change significantly.
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From the Figure 21, however, we are unable to confirm a positive relationship between the size
of research teams and research productivity, but we are led to think that it may depend on the
different research environments and other unobserved factors. Finally, in order to consider the
relationship between team size and the quality of research, Figure 22 takes citations per article as
a proxy of article quality into account. As indicated as Figure 22, the citations per article seems

not to be related to the trend of team sizes across the different colleges.
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For instant, the team sizes in the College of Natural Sciences are smaller than in the College
of Engineering, but the magnitudes of citations are much greater. Similarly, the College of
Business has high citation rates per article, but the team size is smaller than in the College of
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Health and Human Sciences. Thus, we should consider the nature or characteristics of citations,
including the fact that the distribution of citations is highly skewed across colleges and it has
evolved over time. Thus, it is more appropriate to treat these in different ways, as discussed in a
later section.

V. Conceptual Frameworks of Academic Research Teams

In modern universities, research activities and collaboration are not only based on “disciplinary”
principles but also on “inter-disciplinary” principles. In the same way, the boundaries between
research activities are no longer limited to the university but also take in participants from outside
the university. Furthermore, most research universities have been increasingly characterized by
team-based research rather than to just individual authors or inventors.

Given these kinds of trends within the university environment, the formation of research teams
and the evolving structure of collaborative networks is becoming more complicated and difficult
to follow. Therefore, analysis of team-based research and team formation can help us to understand
the agency of knowledge production within universities, as well as the agency of knowledge
production outside of but affected by universities.

As we have seen from previous sections, exploring the formation of academic research teams
is bound up with the mission of the university. Etzkowitz (2003) argues that firm-like and even
commercially oriented qualities of academic research teams are strongly tied with the outreach
mission of university, contributing to economic and social development. Table 15 provides a
conceptual framework of academic research teams and their formation, motivated by and adapted

from previous studiés

25 Especially, Powell (1990), Parker (1992), Spender (1996)pkiizk (2003), and Guimera et al (2005).
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Table 15—A conceptual framework of different types of resear ch teams

Types of research teams

Functional teams

Cross-functional teams Resear ch project teams

Team size

Team formation

Team purpose

Team flexibility

Number of
principals

Resear ch boundary

Funding system

Resear ch outputs

Resear ch output
revenue

e A few researchers.

¢ Employment based on

hierarchical structure.

e PI’s functional expertise.

¢ High degree of network

density.

¢ A single principal.

¢ Disciplinary.

o Highly reliant on the PI’s

research area.

¢ A single public R&D
funding source.

e Journal articles.

e Some traditional
university-industry
collaboratio®.

e May earn some revenue
on fee-for-service basis

for routine testing,
conducting trials, etc.

¢ Relatively many researchers.

Inter-departmental

The network of the past
collaborators.

Builds upon the work of
a functional team.

A common goal among
the team members.

Relatively lower degree

of density than functiona

teams.

Multiple principals.

Interdisciplinary.
Generally, bounded in
the university.

Multiple public R&D
funding sourcs.

Single private R&D or
several smaller private
R&D funding sources.

Relatively more
traditional university-
industry collaboratio®,
but some newer modes
of technology transfér
Journal articles.

Relatively low
probability of consulting
revenues or licensing
royalties.

e Temporary projects.
o Self-directed
e Extends or builds upor

the work of cross-
functional team.

Special projects.
A common goal

among the team
members.

Relatively lower
degree of density tima
cross-functional teams

Multiple principals,
but more affiliations,
including private
entities.

Can be varied by the
purpose of a project.
Extends the boundary
of cross-functional
teams, but more
flexible.

Relatively higher share
of private R&D
funding.

Relative higher in both

types.
Journal articles.

Relatively higher
probability of
consulting revenues ol
licensing royalties.
Low probability of
revenue from equity in
startups.

Note: a) Traditional collaboratias consulting, conferences, collaborative researolgsupervising, and so on.

b) A newer mode of collaboration is patenting, licensing, and startupacoesp
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University research team formation may follow from and serve the overarching missions of
university, but it depends on the heterogeneous characteristics of different research environments,
the intrinsic interests of different fields, the extent of social networks, and the intrinsic research
abilities of principal investigators, the numbers of potential outside participators, and so on.

As shown as Table 15, we can characterize three different types of research teams within the
university: functional teams, cross-functional teams, and self-autonomous teams. First, functional
teams are composed of organizational team members assembled from within hierarchical or
vertical employment relationships, in formal units such as colleges, departments, and even
individual professor’s research labs. These functional teams perform employment-like functions,
and each team member has relatively low degrees of participation in the creation of knowledge or
research outputs, even though they may be subordinates of a principal investigator (PI) or the lead
researcher for a particular laboratory. These teams have a relatively small number of team
members and their research boundary tends to be limited to their own disciplinary field within the
university. Research funding sources for these teams rely on institutional budgets, parts of research
grants allocated for more routine research functions, and fee-for-service activities such as testing
or conduction trials, etc.

Cross-functional research teams in the university consist of multidisciplinary or
interdisciplinary groups of researchers. The cross-functional research teams are generally
classified into the two broad types. One is the team of experts from different fields and affiliations.
This type of research team can make decisions on their own management and expertise without
outside consulting. Another is made up of combinations of different functional teams, a composite

team to team organization. It is highly probable that these types of research teams have a high
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density of team members per research output and are supported by sponsorships of multiple
research grants from both public and private entities.

Third, the selfgoverning research teams are effectively the “quasi-firm” postulated by
Etzkowitz (2003) within the coatt of the research university. According to Parker (1992), “a
selfdirected team is an intact group ... who are responsible for whole work process or segment.

Moreover, the team members work together to improve their operations, and plan and control
their work”. In other words, this type of research team, whether as a temporary project team or
research project team, has come together to execute a specific research project or set of closel
related research projects. These teams have a high degree of team flexibility and theirdsounda
of collaboration can be extended not only to be interdisciplinary and inter-university, but also to
include industrial or private entities, as well as cross-national collaborators. The assembly of this
type of research project teams depends on a variety of factors, such as the existing professional
network of past collaborators oo-authors, which can span an entire discipline globally, incidental
meetings at professional conferences, and so on. However, the most important distinction between
cross-functional teams and autonomous research project teams are the voluntary or self-assembly
mechanisms of forming the research teams (Newman, 2004; Guimera et al, 2005; Zhu et al, 2013).
V. Empirical Approachesto Analyzing Academic Research Teams

In this section, we explore how academic research teams are assembled and what kinds of
factors are significantly associated with the team assembly mechanisms by using a highly detailed
institutional dataset on CSU research inputs and outputs from 1989 to 2012. We utilize two
different empirical approaches, including social network analysis, in particular the analysis of ego-
centric networks, and OLS regression models of a selected sample of research teams and their

research outputs, including published journal articles and patents.
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The main purpose of these two empirical approaches is to explore different aspects of team
assembly mechanisms, both from the perspective of an individual principal investigator (PI) and
his research teams, whiale denoted as “ego-centric research teams”, and from the perspective
of a random sample of research teams, as distinguished from a departmental or aggregate
university-wide level of analysis of research teams.

First, the analysis of ego-centric research teams makes it possible to explore specific
components internal to research teams and their assembly mechanism, especially the dynamics of
research team formation and performance. However, an analysis of ego-centric research teams
concentrates on the individual’s network and relationships, as well as their intrinsic research
abilities, so it is hard to generalize results to all researchers within the university.

Second, the analysis of a random sample of research teams has the advantages ofanalyzing
larger and more representative set of research teams and patterns of relationships between team
characteristics and their performance, but it is more difficult to detect and follow the dynamics of
research team formation for so many. Therefore, these two empirical approaches can be useful for
understanding different aspects of academic research team formation and their behavior and
research performance.

A. Social network analysis

In order to explore research team formation and assembly mechanisms, we employ ego-centric
analysis on one particular individual’s research network. Table 16 shows summary statistics of the
research activities of an individual faculty member, Dr. Jorge J. Rocca, in the Department of
Electrical and Computer Engineering at CSU, denoted “Rocca’s team”, from 1989 to 2012. We
analyze the network of relationships evidenced in three different types of research outputs: (1) the

network of co-authors on published journal articles, (2) the network of co-inventors on published
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patent documents, and (3) the network of co-founders in one startup company. Dr. Rocca has been
very prolific, with 315 journal publications, and the average number of authors per article is 7.3
authors, which is quite large comparing with the average of 4.8 authors per article for the
Department of Electrical and Computer Engineering, an average of 3.9 authors per article for the
College of Engineering, and an average of 3.6 authors per article for CSU overall. The maximum
total number of authors per a single article involving Dr. Rocca as a co-author is 31 authors, and
the minimum is one, naturally being only Dr. Rocca himself.
1. The structure of ego-centric research teams

The boundaries of the ego-centric network, which is essentially the cumulative aggregation of
multiple research teams formed over the years around specific research projects, can be defined
by the members’ affiliations.

Table 16—Summary statistics of the ego-centric research network of Dr. Jorge J. Rocca, of
the Department of Electrical and Computer Engineering at CSU, (1989-2012)

Research Outputs

Articles Patents Startup
Total number of each type of research output 315 6 1
;o\;c:llsourr;}:ffc;t;:jel\:lsduaI as co-authors/co 311 20 3
Mean individuals per output 7.3 4.2 1
Max individuals per output 31 1
Min individuals per output 1 1
Total number of individuals in the same dept. 154 20 3
Total number of individuals in other CSU depts 17 0
Total number of individuals outside of CSU 139 0
Total number of grant awards 217
from public sector sponsors 173
from private sector sponsors 44
Total value of grant awards (million S) 51
The share of value from public sector sponsors (%) 98
The share of value from private sector sponsors (%) 2
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The number of cauthors in Dr. Rocca’s network who are affiliated in the Department of
Electrical and Engineering is 154; the number of co-authors who are affiliated with another CSU
department, is 17, and finally the number of co-authors who are affiliated outside of CSU is 139.
Because of data limitations, we cannot fully identify the affiliations of the outside members, but
we can safely assume that many of these outside members likely are former graduate students and
research staff (post-docs), who may now be faculty members at other institutions including
overseas, as well as employees of private firms, and so on. Still, Rocca’s network is highly
concentrated on his own department, which is almost 50 percent. The cumulative value of research
grants and contracts, from 1989 to 2012, is $51 million, and it is also highly concentrated on public

sector (largely federal) sources, accounting for 98 percent.

B Ego’s node H Alters’ nodes (Same field and department with ego in CSU) (O Alters’ nodes (Different fields and department with ego in CSU)
A Alters' nodes (Members of outside CSU)

Figure 23—An ego centered co-author ship network, with all types of affiliations, (1989-
2012)
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The ego-centric network consists of nodes and ties. It describes the network around a single
node, the ego, with a number of other nodes. In this case, Dr. Rocca is the ego node and his co-
authors, co-inventors, and co-founders are the others, the alter nodes. Figure 23 represents the co-
author network that has formed around Dr. Rocca over the time frame studied. The conceptual
basis of this graphical analysis is managed in matrix form, which is called an “adjacency matrix°”.

This network diagram illustrates the data found in each row or column in a 311 x 311 matrix. The
ego network analysis is processed here by UCINET?’6.0According the Scott (2012),
understanding graph theory in terms of an adjacency matrix significantly improves the
sophistication of analysis.

In Figure 23the large green box in the center is the ego’s node, the small blue boxes are those
alters in the same department with the ego, the yellow circles are the alters in other CSU
departments, and the red triangles are the alters outside of CSU, who consist of a variety of
affiliations, such as industry researchers, faculty members of other universities, former graduate
students and research staff, and so on. This diagram shows a co-authored network of 310 other
individuals anchored around the ego. The density, a measure of the overall degree of linkage
among the nodes within the network, is 0.067, accounting for 6.7 percent of possible links, which

is relatively low density. Network density can be calculated by equatiof?.(28)

Density= (28)

n(n-1)/2

“] ’

26 When appropriating the adjacency matrix,
absence of a relation with the ego.

27 A software package for social network analysis. It is open access,
https://sites.google.com/site/ucinetsoftware/hqrard many scholars of social network analysis have adopted
UCINET for research on social network theory (see Jackson, 2008; 141t Borgatti et al, 2013).

28 Social Network Analysis by John Scott (1992).

is denoted as the presence of a relation or tie and “0” is denoted
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Wherel is the number of links) is the number of nodes, an¢h-1) is the sum of degree. This
measure can vary from 0 to 1. If the density is one, there are relationships between all nodes in the
network, and if it is zero, there are no relationships (and thus, effectively, no network). Another
measure of network connection is ‘distance’ which is the shortest path for a node to reach all other
nodes, also called ‘geodesic distance’. The average geodesic distance measures the average
number of steps to reach all eothors in the ego’s network, and in the case of Dr. Rocca’s co-
author network is 1.933 steps. In the ego-centric network, there tends to be a shorter average
geodesic distance than in a randomly generated ‘reference’ social network, because each co-author
by definition already has a co-authorship relationship with the ego.

Now, we can decompose the ego’s co-authorship network based upon different affiliations and
measure the structural shape of each of the sub-networks, which indicates the extent to which the
ego’s contacts are connected to each other, including measures such as ego-net density, structural
holes, and egbetweennes@Borgatti et al, 2012). Table 17 presents summary statistics of these
decomposed ego-centric sub-networks by different affiliations. The sub-networks of co-authors in
the same department and co-authors in other CSU departments have similar network densities, at
12 percent and 14 percent, respectively, but, the sub-network of co-authors outside CSU, perhaps

not surprisingly, has a relatively lower density, at about 9 percent.

Table17—Summary statistics of decomposed subsets of the ego-centric network by different

affiliations
Avg. No. of Effective
Density No. of Ties Std. Dev Degree authors size
Same department with ego 0.12 2777 0.32 17.92 154 136.08
Cross departments 0.14 44 0.35 2.44 17 14.56
Outside of CSU 0.09 1794 0.29 12.81 139 126.19
Overall network 0.07 6498 0.25 20.89 310 289.11
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However, judging from the standard deviation, the sub-network of co-authors outside of CSU
has a relatively smaller variance than the other sub-networks. Likewise, Figure 23 shows that there
are two relatively tidy clusters of the sub-network, so it is highly probably that the network of
outside co-authors are compactly anchored around each other. Thus, it seems reasonable to assume
that the research teams associated with the network of outside co-authors are more likely to have
formed a specific research project team.

In addition, in order to measure the structural shape of the ego-centric network, we adopt the
concept of a structural hole, which is the lack of a tie between two alters within an ego network
(Burt, 1995). The disconnected nodes or alters provide the ego’s different points of view.
Measuring the effective size is commonly used in a structural hole. The effective rsibe ca
measured as ego’s degree, the number of co-authors in the network minus the average degree of
the ego’s alters within the network (Borgatti et al, 2012).

In Table 17, for example, the total number ofaodiors represent the ego’s degree, so 310
would be an ego’s degree in the overall network and the average degree of ego’s alters is 20.89.

The effective size can be calculated by 310 minus 20.89, so the effective size of the ovendl netwo
is 289.11. If no alter or node has ties with each other, the effective size is directly the number of
authors, 310, and if all nodes are connected with each other, the effective siZ& is one

2. The dynamics of ego-centric research teams

One of the advantages of analyzing ego-centric research teams is the opportunity to explore
the formations and sizes of discrete teams over time, as evidenced in each of the articles, patents,

and startups associated in teams. Figure 24 displays the time of occurrence of patent applications

2% From Table 3, the total number of authors is 311, included in Dr. Ritecago. If all alters are had ties with all
of the others, the average degree becomes 310, which equals the total afuzobeuthors without the ego. Thus,
the effective size is 1, which can be calculated by 311 minus 310.
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and article publications, as well as the timing of the startup company within the ego-centric
network. It also indicates the different individual project-based team sizes, in terms of numbers of

co-authors per article.
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Figure 24—The dynamics of ego-centric research teams, (1989-2012): the time of
occurrence of patent application & publication, and startup companies

On the horizontal axis, the first four digits represent years and the next four digits indicate the
article ID number. The vertical axis is the number of authors per article which indicates the
separate project team sizes. The linear trend-line in the team sizes per article is upward sloping
over time. The most vigorous research activities of the project teams were between 2002 and 2007.
In these time periods, Rocca’s project-based research teams produced more than 100 research
articles, accounting for 32 percent out of total article output, as well as submitting 5 patent

applications and receiving 2 granted patents. At the same time, his research teams hit the largest
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team sizes, at 31 authors per article, in 2005. Eventually, in 2009, the ego and his co-founders
established a startup compafigure 25 decomposes the network by year and thereby represents
the temporally distinct research teams that formed in the different years, and their relative sizes
and densities, from 2002 to 2007. The distance between the ego and other alters is similar across

the different years, but the team densities changed over time.

Density=0.31
Distance=1.69
Team Size=11.3

Density=0.37
Distance=1.63 Distance=1.66
Team Size=7.30 Team Size=8.27

Density=0.38
Distance=1.62 Distance=1.77
Team Size=11.41 Team Size=7.95 Team Size=8.48

Density=0.23 Density=0.29

Distance=1.71

[ Ego's node
m Alters' nodes (same department with the ego in CSU)

© Alters' nodes (cross departments with the ego in CSU)
A Alters' nodes (outside CSU)

Figure 25—The dynamics of ego-centric research teams, (2002-2007): team
formations and densities

It is reasonable from the figures that in 2004 and again in 2005 he participated with a large
group of authors outside CSU on an individual publication which affect the size of the ego-centric

network in those years significantly, as the pattern of the co-author teams for each of these
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publications is clustered tightly with high density. Thus, the ego’s research boundaries and

networks are clarified between those that are more predominantly inside and those that are outside
the ego’s own university. In addition, as shown in the previous section, the formation of a research
team, especially as a project-based autonomous team, typically involves members with multiple
affiliations per team (as evidenced by co-authors per article). In most cases we expect that all of
the team members have come together to execute a special research project, and the team might

include researchers affiliated with commercial or private sector entities.

Team size per year
% share of outside CSU member per team
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Figure 26—The dynamics of ego-centric research teams, (1989-2012):
team size and share of non-CSU authors per article

For example, in Figure 25, in the network for year 2006, a cluster located on top consists of
team members with all three types of affiliations, with two co-authors in the same departiment wit

the ego, one cross-departmental co-author, and two co-author outside CSU. So this network cluster
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is a good example of self-autonomous or a temporary research project team. Again, most of the
team members in the self-directed team come together and work together based on their own
decisions to improve their own research careers, and they jointly plan the operations and control

the project.

Right Axis R
|

Team size per year
Team density per year

Years

I Tcam Density

[ Team Size

Figure 27—The dynamics of ego-centric research teams, (1989-2012):
team size and density

Finally, the analysis of team dynamics not only considers the changes of team formations, but
also the change between the size and density of teams over time. Figure 27 represents ttee dynamic
of egoeentric research teams’ sizes and densities over time. As indicated in the figure, team sizes
tended to increase steadily over time, but conversely, the team density had a downward tendency.

From equation (1), team density is defined as the average strength of ties across all possible

nodes, so the higher detysrates refer to the higher degree of interconnection within the ego’s
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network. Therefore, the ego’s research activities were bounded up with closer relationships among
all of the co-authors. Especially between 1991 and 1992, the team density was one, which means
that all member knows each other and they have a perfect closed relationship. In other words, the
team formation was more likely to be a hierarchy or a single large publication on which everyone
participated together. Recently, over 5 years, the average team density is 0.218, in which lower
density represents that the ego-centric teams have been characterized by more multiple smaller
network-based or research project team formations.
B. Regression analysis

This section will continue to examine the assembly mechanism of research teams. The previous
section, using ego-centric social network analysis, showed the components and the dynamic of
research team formations within the context of an individual PI’s research teams which, over time,
built up hat PI’s network. However, it may be possible that the results are skewed due to field
specific characteristics or the PI’s inherent research environment, even though the analysis is still
meaningful for exploring the formation of academic research teams. In this section, we select a
random sample of research teams from the entire population of our database. From this sampling
there are two different groups: one is 1,527 research teams drawn from co-authors on published
journal articles between 1989 and 2012; the other is 123 research teams drawn from co-inventors
on patent documents, from 1990 to 2011.
1. Hypotheses for academic research teams and its formations

The size of research teams plays a significant role in the collaboration activities across different
fields and institutions. Relatively small sized teams tend to rely heavily on solitary authors or
inventors, whereas relatively large sized teams consist of various affiliations and fields and tend

to depend on the synergy effects of teamwork and an effective division of labor (Biffl and Gutjahr,
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2001; Guimera et al, 2005; Wuchty et al, 2007). As shown in Table 15, the conceptual framework
of research-team formations characterizes both cross-functional and self-autonomous research
teams to have a larger number of team members than functional (hierarchical) teams. The team
size also refers to the team flexibility and research boundaries. However, bigger is not always
better, at least once a certain threshold is exceeded. As teams grow beyond a ceitaen size
coordination costs increase and the marginal value of contributions of additional members with
complementary skills decrease.

Therefore, we want to examine how the size of a team can vary and what factors affect the
optimal team size. First, we assume that the number of participating research units and departments
within the university, and the proportion of members in the team from outside the university,
including the number from private entities, are crucial factors when it comes to the size of research
teams. Although this assumption seems plausible, it requires further examination in the next
section.

[H1] The extent to which the team members, who are from private companies and different
research units and departments in the university, participate in the research project and the team
plays a crucial role in determining the size of research teams and their assembly mechanism.

Furthermore, we want to examine the relationships between the size of the teams and their
capability of utilizing R&D investments. From Table 15, it is clear that the funding system is one
of the criteria for assessing the different types of team formation and their assembly mechanism,
because the functional teams generally utilize the PI’s grants or a single public R&D investment
for their research budget. However, the larger teams are able to use a wider variety of funding
sources and have highchances of attracting both publically and privately sponsored R&D

investment.
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[H2a] The capability of attracting R&D investment and supporting research expenditures
(financial components) is one of the most important criteria for assessing the types of team
formations and their assembly mechanism.

[H2b] The magnitude and types of R&D investment and research expenditures have a positive
relationship with the size of research teams.

[H3] The field variety takes on a much greater role in large-sized teams that are cross-functional
than in relatively small-sized teams that are hierarchical or functional. Thus, we expect a positive
relationship between the degree of field variety and the size of research teams.

In addition, we assume that there is a significant relationship between the field variety and the
size of the research teams. However, signs of this relationship are still open to questioning.
Although the importance of a multiple disciplinary perspective exists not only in cross-functional
teams but also in functional teams, the field diversity and variety are more likely to have a positive
relationship with large-sized research teams than small-sized teams.

2. University research teams generating published journal articles

We selected 1,527 sample research teams or journal publications by CSU-affiliated authors,
covering 1989 to 2012. These sample teams were selected by several criteria: (1) the team must
include at least one industry co-author, (2) in order to maintain consistent results, any teams with
more than 30 authors per article were removed from the sample, and (3) the affiliations of all
members of the team are identified. Table 18 represents the descriptive statistics of 1,527 sample
research teams for the published journal articles from Thomson Reuters' Web of Science via CSU

Library and Table 19 is its correlation matrix of all variables, from 1989 to 2012.
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Table18—Summary statistics of resear ch teams generating published journal articles: 1,527
sample resear ch teams from journal publications, (1989-2012)

Summary Statistics

Variables Obs. Mean  Std. Dev Min Max
1. Team size: Total number of authors per article 1527 5.49 3.01 2.00 27.00
2. The proportion of non-CSU affiliations per article (%) 1527 0.67 0.19 0.10 0.95
3. Number of participating private firms per article 1527 1.14 0.42 1.00 4.00
4. Number of CSU departments per article 1527 1.12 0.37 1.00 4.00
5. Number of WQOS fields per article 1527 2.00 1.23 1.00 5.00
6. Field (dummy) 1527 0.13 0.34  0.00 1.00
7. Public R&D investment (million $) 1526 7.45 7.91 0.00 35.35
8. Private R&D investment (million $) ©) 1526 0.99 1.30 0.00 5.37
9. R&D expenditure (million $) © 1526 9.79 9.13 0.00 37.86
10. Value of R&D equipment stock per article (million $) 9 1527 1.24 141  0.00 7.15

Note: a) The value of public grant awards of PI or fitshor’s department at each year, b) The value of private
sponsorship grant awards of PI or first author’s department at each year, c¢) Total R&D expenditure of PI or first
author’s department at each year, d) 3 years stock of the value of equipment at each year.

Table19—Correlation matrix of all variablesin Table 18: 1,527 sampleresearch teamsfrom
journal publications, (1989-2012)

Correlation

Variable 1 2 3 4 5 6 7 8 9 10
1. Team size (count) 1.00
2. Proportion of non-CSU members (%) 0.47 1.00
3. Participating firms (count) 0.18 0.11 1.00
4. CSU departments (count) 0.06 -0.32 0.00 1.00
5. WOS fields (count) -0.04 -0.01 0.00 -0.05 1.00
6. Field variety (dummy) -0.34 -0.22 -0.07 -0.08 0.57 1.00
7. Public R&D investment (million $) 021 0.23 000 -0.06 0.00 -0.10 1.00
8. Private R&D investment (million $) 0.06 0.17 0.09 -0.05 -0.18 -0.10 0.04 1.00
9. R&D expenditure (million $) 0.22 0.24 0.00 -0.07 -0.08 -0.14 092 0.19 1.00
10. R&D equipment (million $) 0.18 0.24 0.06 -0.12 -0.03 -0.11 0.58 0.11 0.62 1.00

Note: Bold numbers are the correlation with significance level for each entry at p < 0.5.

1) Dependent variables
a. Team size

One of the dependent variables in the assembly mechanism of research teams is the total

number of authors per article. From the previous studies, there are various measures of the team
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size. One method is to handle the team size as the natural logarithm of total number of authors
divided by total number of articles per year for the affiliated department or research unit, which
represents the mean value of team size. This measurement is generally used in more aggregate
levels of data, but not in team levels (Adams et al, 2005). Alternatively, we adopt the team size as
the natural logarithm of total number of authors per article, as in Lee et al (2015). As shown in
Table 18, the mean of team size is 5.49 authors per article, the minimum is 2 authors per article,
and the maximum is 27 authors per article.

b. Relative proportion of non-CSU affiliations

The idea of this dependent variable comes from Adams et al (2005), and equation (29) shows
their formulation. Thé; is a share of non-CSU authors per ariictand the entire term of equation

(2) is called the natural logarithm of the relative proportion of non-CSU authors in.team

In (Lj where i=1,---,1527 (29)
1-p

The main reasons for adopting the relative proportion of non-CSU affiliation in the research
team as a dependent variable is to explore the structure and components of outside university
members, and to examine what kinds of factors affect the participation of outside members. Again,
the non-CSU authors generally consisted of research employees at private firms, faculty members
from other universities, both of which may be former research staff (post-docs) and graduate
students of CSU professors,\ice versa
2) Independent variables

We adopt several different independent variables, which are each related with the different
hypotheses. First of all, we assume that field diversity or variety is one of the key factors

characterizing the assembly mechanism, and we want to examine the relationship between the field
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variety and team size. There are two different measures of field variety. One is the number of Web
of Science (WoS) disciplinary field categories per article, and another is the dummy variable of
field variety. The dummy variable is configured in binary terms. The first step is to calculate the
ratio between the total number of WOS field categories and the total number of authors per article.
If the ratio is over one, which means that the number of fields is greater than the number of authors,
then we denote the article as having high field diversity, and assign a dummy variable value of 1.
If the ratio is equal to or less than one, we denote the article as having low or moderate field
diversity. Thus, the field dummy variable indicates that if the team has high field diversity, it is
one, and if otherwise, it is zero.

Second, we also assume that R&D expenditure or investment is one of the important factors
influencing team assembly. So, we use three different financial variables that serve effectively as
proxies for the financial resources available to the team, total research expenditures, grant awards,
and the value of research equipment of the home department of the lead CSU author. However, as
shown as Table 19, these financial variables are highly correlated with each other. Thus, we will
not use all of them at the same model. Again, the three financial variables indicate the size and

relative research funding of PI or first author’s department or organization.

3) Control variables

For testing the assembly mechanism of research teams, we use four control variables, which
are in a generally accepted sense of the team components, (1) participating number of private firms
per article (which is at least one, given the sample selection criteria), (2) participating number of
the CSU departments per article, (3) proportion of non-CSU authors per article, and (4) afield

category variabf. We want to examine the relationship between the number of private companies

30 This one is distinguished from field variety dummy.
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and the size of university-based research team. This relationship might indicate the degree of team
flexibility and multiple principals in the team. By the same token, there also exists the significant
relationship between the number of CSU departments and the team size. In the field category
dummy variable, the Web of Science’s subject research areas are comprised by 255 areas in science,

social sciences, and arts & humanities. In our sample research teams’ database, we have 174 WoS

research categories and the 6 aggregate catefjories

4) Regression results

Table 20 displays the result of OLS regression of the team assembly mechanism of published
journal articles for the 1,527 sample research teams from 1989 to 2012. The regression results
consist of 6 different team size models and the dependent variable is the natural logarithm of total
number of authors per article, representing the size of the research team that produced the
knowledge codified and published in that article. All models have same control variables, which
are observed to strongly influence the results of team size. The six field categories of dummy
variable are present in all of the regression models.

The logarithm of the number of participating private firms per article is positively related to
the size of research team, at the 1 percent level of statistical significance across all six models.
Moreover, the logarithm of the participated CSU departments per article also affects the team size,
at 1 percent level. Although there exists a positive relationship between these two variables and
the size of research teams, it does not directly reflect the total number of authors, but it might be
considered to be related to the number of principals to which members of the team, as individual

agents, are at least partly responding.

3! Field 1: biology, chemistry, medical, agriculture, and life sciences @08rg). Field 2: engineering, computer
sciences, mathematics, and physics (422 papers). Field 3: environmenta atidrGeosciences (206 papers).
Field 4: economics and business (13 papers). Field 5: social sciences and hebeeinces (69 papers).

Field 6: others (8 papers).
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Thus, the involvement of members from multiple organizations, reflecting the involvement of

multiple principals, indirectly affect the size of research teams. Besides, the factor of multiple

principals in the research team represents a degree of the team flexibility, and it is more like a

cross-functional research team, which is highly connected with the number of principals, such as

collaborating between university teams and private firm’s teams, and cross department teams.

Table 20—Regression results of team assembly mechanism from journal publications,

dependent variable isteam size measured by log (number of authors)

Models (Dependent variable: Team size)

Variable [1] 2] 3] [4] [5] [6]
-0.0237 -0.0250 -0.0311
Number of WOS research areas (0.0228) — (0.0222) (0.0233) —
Field variety (dummy) _ -0.5256%** _ -0.5100%*** _ -0.5247%**
(0.0279) (0.0259) (0.0281)
_ 0.0380***  0.0360***
Value of R&D equipment (0.0088) (0.0081) — — — —
_ 0.0598***  0.0484***
R&D expenditure — — (0.0113) (0.0103) - -
0.0427***  0.0404%**
Public R&D investment — — — — (0.0102) (0.0098)
_ _ -0.0210**  -0.0142*
Private R&D investment — — — — (0.0084) (0.0078)
S 0.2735%**  0.2466***  0.2841*** (0.2590***  (.3010%** 0.2773***
Participating firms (0.0425)  (0.0408) (0.0424)  (0.0405) (0.0424)  (0.0402)
o 0.4724***  0.3734***  0.4703*** (0.3720%**  0.4674*** (0.3674***
Participating Departments (0.0499)  (0.0489) (0.0469)  (0.0460) (0.0514)  (0.0500)

o of 0.5565%**  0.4601***  0.5710*** 0.4863***  (.5589%***  (.4692***
Proportion of non-CSUauthors g533)  (0.0484)  (0.0515)  (0.0469) (0.0543)  (0.0499)
Field categories YES YES YES YES YES YES
Root MSE 0.4324 0.4006 0.4295 0.3974 0.4324 0.4005
Adjust R2 0.2287 0.3380 0.2517 0.3593 0.2378 0.3462
F-statistics 48.32 160.24 56.57 171.22 39.15 126.18
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Observation 1,433 1,433 1,520 1,520 1,391 1,391

Note: The parentheses White’s robust standard error. *** 1%, ** 5%, and * 10% levels of statistically

significant.
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The logarithm of the proportion of non-CSU authors per article has a positive and statistically
significant relationship, at the 1 percent level, with the size of research teams. Again, the non-CSU
authors comprise outside team members, such as research employees of private companies and
faculty members from other universities. The share of non-CSU authors is related with the size of
research teams and the magnitude of estimated slope coefficients are higher than other variables.
For example, in model geris paribus when there is a 1 percent increase in the proportion of
non-CSU authors per article is associated with an increase the size of research teams by 0.57
percent. We have two different measures of the degree of field variety in the team. First, the
logarithm of the number of WoS research fields per article is insignificant and the estimated slope
coefficients are quite small across the model 1, 3 and 5. Furthermore, it has a negative relationship
with the size of research teams.

Presumably, it might have some liner relationships with other independent variables, such as a
collinearity problem, given that the values of the adjusted R-squared and F-statistics in model 1,
3, and 5, are smaller than in the other models, which do not include in the number of WoS research
fields. Alternatively, the field variety dummy variable might be related to the size of research
teams, at 1 percent statistically significant and the magnitude of estimated slope coefficients are
much higher than the number of WoS field areas. However, both variables have a negative
relationship with size of team. These indicate, for example in modeléis paribusfor every
1 percent increase in the field variety, the logarithm of the total number of authors per article will
be decreased by 0.52 percent with 99 percent confidence. Thus, we expect that although it is still
a negative impact on the size of teams, there still exist meaningful interpretations. First, literally,

the field variety is not merely to predict the size of research teams, but it is to evaluate the quality
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of the research at the team level. Second, the field variety is possibly linked with the PI’s subjective
research interests or the purpose of team projects.

As shown as Table 19, the correlation matrix, the value of R&D equipment, R&D expenditures,
and public & private contributions to grant and contract awards are highly correlated with each
other, especially between public grants and contracts and R&D expenditures, and between the
value of R&D equipment and R&D expenditures. Thus, in order to prevent a multicollinearity
problem, we handle these financial variables within separate models. First, in model 1 and 2, the
logarithm of the value of R&D equipment, which is a 3 year sum of investments in new equipment
by the PI’s or first author’s department. This measure of the value of R&D equipment has a positive
relationship with the size of research teams, at 1 percent statistical significance. This implies that
the magnitudes of physical research capital is positively related to the size of research team. By
the results, 1 percent increase in the value of R&D equipment of a department is associated with a
larger size of research teams of 0.038 percent in model 1 and by 0.036 percent in model 2.

In model 3 and 4, we measure the overall magnitude of R&D conducted in the PI or first
author’s department using the logarithm of total R&D expenditures (Lee et al 2015). The results
indicate that the overall magnitude of R&D is related to the size of research teams: the expenditures
make it possible to hire more team members, such as research staff and GRAs, and to spend
investment for the R&D equipment, see Table 18. In model 3, for every 1 percent increase in the
R&D expenditures will make to increase the team size by 0.06 percent with 99 percent confidence.

Finally, we want to know how different types of R&D investments affect the size of research
teams, so we attempted to run OLS regressions with public sector and private sector R&D
investments. In models 5 and 6 of Table 20, the logarithm of public R&D investment has a positive

impact on the size of research teams, at 1 percent level of significance, but the logarithm of private
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investment has a negative relationship with team size, at 5 and 10 percent in models 5 and 6
respectively. Interestingly, the results tell us that a 1 percent increase in the private R&D
investment is associated with a smaller size of research team by 0.021 percent in model 5 and

0.014 percent in model 6.

Table 21—OLS regression results of team assembly mechanism (journal publications),

dependent variableisrelative proportion of non-CSU authors: log(proportion/(1-
proportion))

Models (Dependent variable: Relative non-CSU author contribution)

Variable [1] [2] [3] (4] [5] [6]
0.0565 0.0763%* 0.0572
WOS research areas (0.0379) - (0.0368) - (0.0384) -
_ _ 0.0108 0.0916 0.0470
Field variety (dummy) - (0.0615) - (0.0564) - (0.0624)

] 0.0899***  0.0907***
Value of R&D equipment (0.0154) (0.0155) - - o B

0.0919***  0.0906***

R&D expenditure — - (0.0199) (0.0196) - —
_ _ 0.1292***  0.1308***
Public R&D investment - - — — (0.0212) (0.0214)
_ , 0.0508***  0.0495%**
Private R&D investment — — — — (0.0135) (0.0135)
) 1.0090***  1.0103***  1.0287***  1.0531*** (0.9969***  1.0077***
Team size (0.0393) (0.0446) (0.0384) (0.0436) (0.0410) (0.0468)
. . -0.0015 -0.0024 0.0345 0.0317 0.0543 0.0529
Participated firms (0.0823) (0.0823) (0.0819) (0.0821) (0.0835) (0.0836)
Field categories YES YES YES YES YES YES
Root MSE 0.7529 0.7535 0.7541 0.7546 0.7389 0.7393
Adjust R2 0.3633 0.3623 0.3683 0.3673 0.3933 0.3925
F-statistics 198.96 191.87 212.78 204.86 165.36 162.61
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Observation 1,433 1,433 1,520 1,520 1,391 1,391
Note: The parentheses White’s robust standard error. *** 1%, ** 5%, and * 10% levels of statistically
significant.

On the contrary, for every 1 percent increase in the logarithm of public R&D investment will

make to increase the size of research teams by 0.043 percent in model 5 and 0.040 percent in model
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6. Publicly funded science tends to be larger scale. Private grants and contracts, conversely, tend
to be awarded to departments where research is conducted by smaller and more discrete team
efforts.

As a final exercise with the random sample of research teams drawn from journal articles,
Table 21 analyzes the proportional contribution of the various factors to the number of non-CSU
authors on the research team. From equation (29), the dependent variable is the logarithm of the
relative proportion of non-CSU authors per article. For the reason of taking this variable is how
the non-CSU authors per article are assembled and what kinds of factor affect the assembly
mechanism. The control variables are the logarithm of the total number of authors per article as
team size and the logarithm of the number of participating private firms. In addition, the field
category variable is included in all models. The structures and components are similar to,Table 20
team assembly mechanism models.

Remarkably, the field variety and the number of participated private companies per article are
not significant on the assembly mechanism of non-CSU authors, except model 3 with WoS
research areas. Moreover, the logarithm of private R&D investment has a positive impact on the
assembly non-CSU authors per article. Thus, to compare between Table 19 and 7, private R&D
investment only affects the assembly mechanism in terms of non-CSU authors, but is not related
to the total number of authors per article.

Team size is also found to be positively related to the relative proportion of non-CSU authors
per article, with 1 percent level of statistical significance in all mo@ateris Paribusfor every
1 percent increase in the size of research teams will make to increase the relative proportion of

non-CSU authors per article by 1.053 percent in model 4.
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3. University research teams producing patented inventions

As shown as in Chapter 1, the knowledge production function varies across the different
research units as well as across the different types of knowledge dissemination channels, or
research outputs.

Table 22—Summary statistics research teams producing patented inventions: 123 sample
resear ch teams (patents), (1989-2012)

Summary Statistics

Variables Obs. Mean  Std. Dev Min Max
1. Inventor teams 123 3.04 1.68 1.00 9.00
2. Proportion of Non-CSU inventors (%) 123 0.18 0.26 0.00 0.83
3. CSU departments (count) 123 1.24 0.56 1.00 3.00
4. Time lag (?) 123 2.21 2.05 0.00 12.00
5. Cited Patents (count) 123 19.63 70.05 0.00 643.00
6. Cited non-patents (count) 123 24.61 69.46 0.00  544.00
7. DWPI family members (count of documents) 122 6.22 9.17 1.00 68.00
8. DWPI family countries (count of countries) 122 66.11 51.36 1.00 125.00
9. Assignees (Count) 123 1.65 1.43 1.00 10.00
10. Count of Participating firms 123 0.32 0.53 0.00 2.00
11. Public R&D grants and contracts to lead

department (S millions) 123 7.12 6.60 0.26 35.35
12. Private R&D grants and contracts to lead

department (S millions) 123 0.84 1.05 0.00 5.37
13. R&D equipment acquisitions by lead

department ($ millions) 123 1.57 1.24 0.00 6.10
14. R&D Expenditures by lead department

(S millions) 123 9.38 7.79 0.69 37.86

Note: a) The value of public grant awards of PI or first author’s department at each year.
b) The value of private sponsorship grant awards of PI or first author’s department at each year.
¢) Total R&D expenditure of PI or first author’s department at each year.
d) 3 years stock of the value of equipment at each year.

Following that line of reasoning, we assume that there may be significant disparity between
the assembly of teams that tend to produce patented inventions and the assembly of research teams
that only produce published journal articles. Table 22 provides summery statistics for a sample of

research teams that created the inventions for the 123 patents assigned to CSU, from 1989 to 2012.
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We have selected data on several variables, which might be related with the team assembly
mechanism. Table 23 displays the correlation matrix of these variables. As we have seen in the
previous section, the financial variables, such as R&D expenditures, the value of R&D equipment,
and public and private R&D investments, are structurally analogous to each other, especially
between public R&D investment and R&D expenditures where there is almost 90 percent
correlation. Thus, we run these variables in different models.

Table 23—Correlation matrix of all variables: 123 research teams (from CSU patents),
(1989-2012)

Correlation

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1. Inventors 1.00
2. Non-CSU inventors 0.59 1.00
3. CSU departments 0.42 0.24 1.00
4.Time lag 015 005 003 100
5. Cited Patents 001 000 007 001 100
6. Cited non-patents 001 008 006 008 085 100
7. Family members 001 003 039 018 019 015 100
8. Family countries 010 012 008 -0.25 002 0.0l 019 100
9. Assignees 037 040 017 -0.16 002 005 -002 028  1.00
10. Participated firms 003 -006 008 008 -008 -0.08 002 -005 -007 100
11. Public R&D 006 003 -016 -019 007 -008 -0.09 007 005 -009 100
12. Private R&D 010 014 022 -018 -010 011 -012 024 012 001 005 1.00
13. R&D equipment 003 -010 -013 -031 012 -019 -018 026 019 -003 051 012 100
14. R&D Expenditures 007 002 -016 014 -004 -014 012 009 006 -011 090 013 042 100

Note: Bold numbers are the correlation with significance level for each entry at p < 0.5.

1) Dependent variable

The dependent variable in the assembly mechanism of patent research teams is the total number
of inventors per patent, similar to our previous analysis of research teams on published journal
articles. By comparison with the article team assembly mechanism, the mean value of patent team

size is relatively small: it is 3.04 inventors per patent, but the mean value of article team size is
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5.49 authors per article. Similarly, the maximum value of patent team size is 9 inventors per patent,
but in the maximum authors per article is 27. (See Tables 17 and 21.)
2) Independent and control variables

Most of independent variables are identical with those used in the previous section to analyze
formation of research teams on published journal articles, including public and private R&D grants
and contracts made to the lead department, the value of R&D equipment acquisitions by the lead
department, and R&D expenditures by the lead department, and the new variables here are the
count of Derwent World Patents Index (DWPI) family members and coufitpiespatent. The
control variables consist of (1) the number of participating CSU departments per patent, (2) the
proportion of non-CSU inventors per patent, (3) the number of asstgpeepatent, and (4) the
number of private firms per patent.
3) Regression results

As shown as Table 24, we run six different models, analogous to the models in the previous
section. The logarithm of the number of participating CSU departments is positively related to the
size of co-inventor research teams on patents across all models with 1 percent level of significance.
Similarly, the proportion of non-CSU co-inventors also has a positive relationship with the team
size at 1 percent statistical significance. Interestingly, according to the regression results in both
article and patent team assembly mechanism, the variable of participating CSU departments seems
to be a significant factor for university research team formations.

However, the case of multiple departments in the CSU into one team is one of the different

types of the cross-functional team formation: again, as shown as previous section IV, there are

32 The DWPI family members and countries are a set of either patent appsaatigranted patents taken in
multiple countries to protect a single invention by a common inventor

33 The inventor(s) can make the assignment of the rights grantedthedeatent, as an assignor, to a third-person
party or business, which is the assignee.
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several different types of cross-functional team formation, such as combinations of different
functional teams in the universitg,composite team to team organization, (cross universities or
university and private sector), a team supported by sponsorships of multiple research grants, and
SO on.

Table 24—Regression results of team assembly mechanism (patents), dependent variableis
team size: log(inventors)

Models (Dependent variable: Team size)

Variable [1] 2] 3] [4] [5] 6]
_ -0.0162 -0.0190 -0.0222
DWPI family members (0.0491) - (0.0453) - (0.0451) -
_ _ 0.0082 0.0085 0.0047
DWPI family countries — (0.0237) — (0.0231) — (0.0234)

0.0659 0.0653

Private R&D investment (0.0449) (0.0449) — — - _

. . -0.0117 -0.0105
Public R&D investment (0.0352) (0.0350) — — - _

0.0583 0.0573

R&D expenditure - — (0.0496) (0.0488) - —

) 0.0595%* 0.0580
Value of R&D equipment - — - — (0.0352) (0.0362)

0.6244*** 0.6173*** 0.6277*** 0.6155*** 0.6388*** (0.6258***

CSU Departments (0.1186)  (0.1165)  (0.1064)  (0.1038)  (0.1065)  (0.1022)

_ _ 0.6375%** (.6370*** 0.6142%** 0.6160*** 0.6355%** (.6356%**
Proportion of non-CSUinventors g 1619)  (0.1619)  (0.1499)  (0.1496)  (0.1549)  (0.1542)

0.1635* 0.1492* 0.1626**  0.1486* 0.1629* 0.1529*

Count of assignees (0.0845)  (0.0890)  (0.0814)  (0.0858)  (0.0822)  (0.0853)

L ) 0.0739 0.0723 0.0624 0.0605 0.0727 0.0706
Participated firms (0.0870)  (0.0857)  (0.0870)  (0.0859)  (0.0844)  (0.0836)
Field categories YES YES YES YES YES YES
Root MSE 0.4650 0.4649 0.4635 0.4635 0.4612 0.4615
Adjust R2 0.2615 26.1800 0.2716 0.2717 0.2682 0.2672
F-statistics 8.0900 8.1500 10.5900 10.6900 11.0400 11.3100
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Observation 117 117 122 122 120 120
Note: The parentheses are White’s robust standard error. *** 1%, ** 5%, and * 10% levels of statistically

significant.
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Although, we need to consider more types of the cross-functional team formation, this result
seems to show one possibility of the importance of cross-functional teams for the size of research
team. However, it does not mean that the variable is also an important factor for research impact,
such as measured by citations in the next section. The logarithm of the count of assignees per
patent affects the positive influence to the size of research teams of patents. For example, every 1
percent increase in the number of assignees per patent corresponds to an increase the size of
research teams by 0.163 percent, at 5 percent level of statistical significance in model 3: the other
models have a positive correlation, but 10 percent level of significance. However, the variable of
the number of participating private companies per patent is insignificant across all models. From
the point of view of the heterogeneous research environments across the different knowledge
outputs, the major purpose of patenting the invenioteams’ idea and invention is to protect
their knowledge. In other words, it is deeply aligned with the intellectual property rights (IPRs).
Thus, there is a contrast between article and patent team assembly mechanisms.

Another possibility of the results is the different perspectives between university and business
inventors. Basically, the university is a non-profit organization and most often pursues a public
domain mechanism even though the research team formations in modern universities are like small
businesses (Etzkowitz, 2003). However, the private company is a profit maximizer and more often
pursues a IP based mechanism, so if the purpose of university patenting is for protecting knowledge,
the degree of participation of private firms is quiet low. As shown as Table 22, the mean value of
participating private firms is 0.32 per patent.

In counterpoint to the article team assembly mechanism in Table 20, most of the financial
variables are insignificant across all models in Table 24, except the value of R&D equipment in

model 5. It is quite probable that financial factors might not be important for the assembly
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mechanism of research teams of the patents, because patents are imperfect indicator of the number
of new inventions and are applied for at an intermediate stage in the process of transforming
research input into benefits from knowledge output (Pakes and Griliches, 1989).

Finally, DWPI patent family in both family members and countries per patent is insignificant
and the family members per patent has a negative impact on the size of research teams, but not the
count of family countries. Again, the DWPI family members and countries are a set of eitnér pat
application or publications taken in multiple countries to protect a single invention, so it seems not
to seriously affect the size of research, but we expect that it affects to the research impact like the
number of citation per patent as the quality of research, which is further examined in the next

section.

V1. Impacts of Team Research

The impacts of the team based organization of research influences not only the quality of
research, but also plays a role in the economic and social benefits with respect to knowledge
spillovers generated. Moreover, engagement in a team setting is beneficial for the researchers, in
terms of developing new skills, improving their methodologies, and extending their professional
networks. In general, the number of citations per article or patent is one of the measurements or
assessments of research quality and infpact

However, the impact of research outputs, such as citation rates of published journal articles
and patents, tends to have highly skew distributions in the most academic fields and technologies,
(Scherer and Harhoff, 2000). Moreover, when collecting data on journal articles via Web of
Science or other sources, there exists a time lag problem in citation counts. Therefore, regression

analysis is not likely the best measurement of testing the impact of research with the number of

34 In some cases, journal impact factors and top 1 %, high imppapef are to measure the quality of research.
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citation counts directly. In addition, this chapter will examine the difference between tsadth ba
research impact and departmental or aggregate level of research impact.
A. Impact of published journal articles as research output

In order to measure the impact of research on the published journal articles, we attempt to
classify binary or categorical groups. Table 25 provides summary statistics of times cited of
published journal articles for different groups: 1) single private firm per article versus multiple
private firms per article, 2) single CSU department per article versus multiple CSU departments
per article, 3) three different team sizes, such as large sized teams (more than 9 authors per article),
mid-sized teams (between 4 and 9 authors per article), and small sized teams (less than 4 authors
per article), and 4) four different disciplinary field groupings.

Table25—Summary Statisticsof timescited of published journal articlesby different groups,
(1989-2012)

Summary Statistics (Times cited)

Variables (different groups) Obs Mean  Std. Dev. Min Max
Single participated firm 1352 17.41 63.30 0.00 1507.00
Multiple participated firms 175 12.13 18.72 0.00 95.00
Single CSU department 1366 16.22 61.24 0.00 1507.00
Multiple CSU departments 161 21.78 47.10 0.00 499.00
Large sized teams 139 25.78 65.07 0.00 499.00
Mid-sized teams 993 17.23 67.49 0.00 1507.00
Small sized teams 395 12.57 30.08 0.00 381.00
Field dummy for Biology/medical/life sciences 809 18.71 75.70 0.00 1507.00
Field dummy for Engineering/Computer/Math/Physics 422 16.88 40.24 0.00 499.00
Field dummy for Environmental/Geosciences 206 12.01 22.04 0.00 215.00
Field dummy for Social Sciences & Others 90 10.28 24.89 0.00 163.00

1. The impact of participated private companies per article

Figure 28 represents the cumulative density function (CDF) of citations received by published
journal articles in binary groups of those with and without participating firms, and the two
distributions seem to have quite similar patterns of cumulative density.
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Figure 28—Cumulative Density Function (CDF) of times cited at

participating private firms: 1527 sample research teams
(journal publication), (1989 to 2012)

Thus, we cannot say which group has higher impact. The group with a single firm has
relatively higher frequency than the group with multiple firms. Moreover, in Table 25, the mean
value of times cited in the group with a single firm per article is 17.41 which is higher than the
mean for the group with multiple private firms per article group, at 12.13 per article. Although the
non-parametric test results are insignificant, the group of articles associated with a single firm per
article appears to have higher research impact than the group of articles associated with multiple
firms per article.

2. The impact of the participation of CSU departments per article

Figure 29, the group of multiple CSU departments per article has a higher research impact than

single CSU department. Table 25, the mean value of the multiple departments is 21.78 times cited

per article, but the mean value of single department is 16.22 per article. Therefore, the group of
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multiple CSU departments per article has a higher research impact than the group of single

department per article.
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Figure 29—Cumulative Density Function (CDF) of times cited at

participated CSU departments: 1,527 sample research teams
(journal publication), (1989-2012)

3. The impact of team size per article

The role of research team size is still controversial in the study of team assembly mechanisms
and its research impact. However, most previous studies have shown that the size of teams has a
positive effect on the quality of research and assembly mechanisms, (Guimera et al, 2005; Adams
et al, 2005; Wuchty et al, 2007; Zhu et al, 2013; Uzzi et al, 2013; Lee et al, 2015). According to
Guimera et al (2005), the main purpose of team assembly mechanisms is for incorporating
individual members with diverse ideas, skills and resources. Although the size of research teams

is a major carrier of the assembly mechanisms in the previous section, it did not tell us the impact
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of team sizes. Thus, we want to evaluate the quality of team based research and how the different

team sizes affect the number of citations per article.
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Times Cited (Team sizes) from 1989 to 2012

——— Large sized teams (between 10 and 27 authors per paper)
—4—— Mid-sized teams (between 4 and 9 authors per paper)
——— Small sized teams (between 2 and 3 authors per paper)

Figure 30—Cumulative Density Function (CDF) of times cited based on

team sizes: 1,527 sampleresear ch teams (jour nal publication),
(1989-2012)

Table 25 shows that the mean value of the large sized researchdeatioa counts is 25.78
per article, which is a relatively higher impact than the mean values of mid-sized and small sized
teams, 17.23 and 12.57, respectively. Figure 30 displays the CDFs of different team sizes. The
large sized research teams have the highest research impact on the number of citatiorle per artic
and conversely the small-sized research teams have the lowest impact. According to the results of
Lee et al (2015), the team size has a continually increasing relation with the likelihood of a high-

impact article, which is analogues in our results of team sizes.

135



In addition, as shown as Figure 22 in Section Ill, the number of citations per article seems not
to relate the team size. However, there is a significant disparity between the Figure 22 and 12,
because it is a different measurement of the team size. In aggregate or department levels, the team
size can be calculated by the average number of authors pefartiaten team levels, it can be
measured by the total number of authors per article.

4. The impact of field categories per article
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Figure 31—Cumulative Density Function (CDF) of times cited for four

different field groupings. 1,527 sample research teams
(journal publication), (1989-2012)

35 The total number of authors are divided by the total number of papdimatand department or college.

136



In the regression analysis in the previous section, the field category variable was absorbed in
the OLS models in order to maintain model stabifitgo we could not provide field specific
differences. However, in this section, non-parametric analysis allows us to consider field effects.
In Figure 31, the CDF of journal article citations the group of engineering, computer science,
mathematics and physics have a greater probability than other fields of high citation counts per
article in the range exceeding 100 times cited.

However, from Table 25, the mean value of the group of biology, medical, and life sciences,
which includes the agriculture and veterinary sciences, is 18.71 per article, exceeding the mean
value of the group of engineering, computer science, mathematics and physics at 16.88 per article.
The magnitudes of research impact as measured by citation counts do vary across the different
fields or disciplines.

B. Research impact of the patents

Given previous results and interpretations, it appears that the different research outputs of
published journal articles and patents have different research impacts, likely associated with the
heterogeneous research environments across the university. Table 26 provides summary statistics
of citing patents by different groups: 1) corporate co-assignment of patents versus patents assigned
only to the university, 2) single CSU department versus multiple CSU departments per patent, 3)
single assignee versus multiple assignees per patent, 4) single cited reference: patents versus
multiple cited references: patents ,5) single DWPI family versus multiple DWPI families, included
in family members and countries, 6) different team sizes, and 7) time lags between patent

application and publication.

3¢ The absorbing of one categorical factor is designed for datasets wigtgnoaips. However, in some cases, field
dummy variables rather than a category variable make it possible to harm tesdefgreedom in each model.
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Table 26—Summary Statistics of citing patents by different groups, (1989-2012)

Summary Statistics (citing patents)

Variables (different groups) Obs Mean Std. Dev. Min Max
No corporate co-assignment per patent 88 6.966 12.871 0 71
One or more corporate co-assignment per patent 35 4171 7.106 0 34
Single CSU department per patent 102 4,990 8.809 0 46
Multiple CSU departments per patent 21 11.905 19.565 0 71
Single cited reference: patents 28 2.893 9.678 0 51
Multiple cited references: patents 95 7.137 11.943 0 71
Single DWPI family member per patent 18 5.555 10.579 0 45
Multiple DWPI family members per patent 105 6.276 11.773 0 71
Single DWPI family country per patent 38 4131 7.669 0 45
Multiple DWPI family countries per patent 85 7.082 12.873 0 71
Large sized teams (more than 5 inventors) 14 11.857 15.913 0 51
Mid-sized teams (between 5 and 3 inventors) 52 6.096 11.749 0 71
Small sized teams (two or single inventor) 57 4.842 9.856 0 46
Time lag btw application and publication (< 1 year) 57 4.526 9.657 0 51
Time lag btw application and publication (2 or 3 years) 42 9.190 14.797 0 71
Time lag btw application and publication (> 3 years) 24 4.792 8.193 0 34

1. The impact of the corporate co-assignments per patent

The impact of collaborations between university and industry is complex and controversial,
especially privately sponsored research. In the CSU database, the total number of industry
sponsored grant awards and contracts from 1989 to 2012 is 4,387, and the cumulative value of
private awards over this period is $268.7 million. In 2012, the value was $21.84 million. The
average annual growth rate over 24 years is 12.1 percent. According to Wright et al (2014),
corporate-sponsored research appears valuable for university innovation with private sponsored
university inventions appearing to be more accessible and useful, having higher patent citation

rates than inventions sponsored only by grants from the government or non-profit organizations.
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Times cited corporate co-assignment of patents from 1989 to 2012

——e—— corporate co-assignment of patents ——a——No-corporate co-assignment of patents

Figure 32—Cumulative Density Function (CDF) of citations to CSU
patentswith cor porate co-assignment of patents, (1989-2012)

However, our empirical evidence appears contrary to the results in Wright et al (2014). Table
26 shows that the mean value of citing patents to the group of CSU patents with participating
private firms is 4.171, but the mean value of citing patents to the other group of patents, with no
firm participation, is 6.966 per patent. In the CSU data, thus, it appears that patented outputs from
privately sponsored or industry collaborating research teams has less impact than the patented
outputs from publicly sponsored research teams. In Figure 32, the CDF of citing patents indicates
that the impact of patents without private firm sponsorship is higher than those with private
sponsorship.

Although there are numerous reasons for the different results regarding the role of corporations
in university research and invention, it seems reasonable to consider initially the size of corporate

R&D investments as the main factor explaining the differences. This factor is intimately related
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with the academic rankings and reputations of universities. For example, Wright et al (2014) report
that the oil company British Petroleum (BP) announced in 2007 that the company invested $500
million to fund a decade of alternative energy research at the University of California, Berkeley
The size of just that one (major) private R&D funding award was greater than the total sum of
private R&D investment over 24 years at CSU. In the CSU data, 46 percent of privately sponsored
patents were from smaller local Colorado companies, and only 6 percent were sponsored by
relatively large companies like Chevron Corporation.

2. The impact of the participation of researchers from multiple CSU departments

IR T S T I
Times Cited (Participated CSU departments) from 1989 to 2012

———— Single CSU Department —4—— Multiple CSU Departments

Figure 33—Cumulative Density Function (CDF) of patent citations by
the number of participating CSU departments, (1989-2012)

As shown as Table 26 and Figure 33, the group of patents with inventors from multiple CSU

departments has higher citation rates than the group of patents by inventors from a single
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department. This result is an obvious parallel to the research teams of published journal articles.
The mean value of citations to patents from multiple departments, at 11.905, is almost twice that
of patents from single departments, 4.990. Thus, research teams from multiple departments have
better performance and impact than single department research teams.
3. The impact of the cited references per patent

Citation mapping tracks a patent’s cited and citing references to discover technological
relationships. A “backward” citation is defined as a citation made by a patent to patents that were

issued earlier.
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Figure 34—Cumulative Density Function (CDF) of patent citationsreceived,
based on the number of patent citations made, (1989 to 2012)
Accordingly, a “forward” citation is a citation made to a patent by more recently issued citing
patents. Here, we examine how the number of cited patents, or backward citations, related to the

number of citing patents, or forward citation. The sample is divided into binary groups: 1) those
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CSU patents that make just a single or no backward citations to earlier patents, and 2) those CSU
patents that make multiple backward citations to earlier patents. Table 26 shows that the mean
value of forward citations received by the group of patents with multiple backward citations is
higher than the other group, at 7.14 and 2.89, respectively. Thus, the number of cited patents is
positively related to the number of citing patents.
4. The impact of the DWPI patent family per patent

A patent family is the set of either patent application or publication taken in multiple countries
to protect a single invention. The World Intellectual Property Organization (WIPO), currently has
188 member states, and the Derwent World Patent Index (DWPI) maintained by Thompson
Reuters covers more than 30.33 million inventions represented in over 64.8 million patent
documents worldwidé’ The aim of this section is to examine how the DWPI patent family size
and structure is related to the impact of the research teams patented research outputs, as measured

by forward patent citations.

P
o i 14 ————— S
._‘.l

=
# . R

:‘I sl g B

s —:—.’.,_.,7

e

T8 8 F 8§ & & I & °% :

N
Times Cited (Derwent World Patents Index family members) from 1989 to 2012

T T T
P © & &
Times Cited (Derwent World Patents Index family countries) from 1989 to 2012

| ———— Single DWP| family member ——a&—— Multiple DWPI family members | | .

Single DWPI family country - Multiple DWPI family coun(ries‘

Figure 35—Cumulative Density Function (CDF) of patent citations based on the

number of DWPI family members and the number of countries covered
by DWPI families, (1989-2012)

37 Source: Thomson Reuters Innovatititty://info.thomsoninnovation.coin/
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In Table 26, the mean number of citing patents to the group of CSU patents with just a single
DWPI family member is 5.55 and the mean citations to CSU patents protected in just one country
is 4.131. These values are slightly smaller than the group of CSU patents with multiple DWPI
family members and countries. It seems reasonable to assume that patents with multiple DWPI
family members registered in multiple countries can have more chances to be cited. Mdreove
is likely also to increase self-citations within the members of the patent family. But most
fundamentally, it is likely that patents on inventions with greater importance are likely both to be
protected more widely, with more patent family members, and at the same time to be cited more
frequently by subsequent patents. Figure 35 shows the CDFs of two types of DWPI patent family,
members and countries per patent, by binary groups.

With regard to the results of patent team assembly mechanisms from previous section, the
research impact indicated by DWPI patent family members or countries per patent is insignificant
and has ambiguous results. However, we expect that the binary independent distribution might
vary across different groupings than those chosen here. For example, the binary groups can be
organized between above average and below average number of DWPI patent family members or
countries per patent, rather than single versus multiple family members of countries per patent.

5. The impact of team size on patent citations

Figure 36 shows that the group of CSU patents made by large sized research teams, defined
here as more than 5 inventors per patent, has the highest impact as measured by the number of
citing patents. Similarly, the group of patents by mid-sized research teams has higher impacts in
terms of citing patents than the group of patents by small sized teams. In Table 26, the mean value
of citing patents per patent in the group by large sized teams is 11.85 per patent, which is more

than two times greater than in the group by small sized research teams, at 4.84 per patent. Thus, it
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appears to support the conclusion that team size affects the impact of an invention as measured by
the number of citing patents positively, and the result is an obvious parallel to the number of

citations per article found in the previous section.

© ® P o> w P S &N $

Times Cited (Size of teams) from 1989 to 2012

——— Large size teams (more than 5 inventors)
——— Medium size teams (between 3 & 5 inventors)
——— Small size teams (1 or 2 inventors)

Figure 36—Cumulative Density Function (CDF) of times cited at the

team size: the citing patents by three sample groups, (1989-
2012)

6. The impact of time lag between application and publication per patent

According to Heher (2007), the of benchmarking time lags in the technology transfer process
is typically 6-10 years elapsing from invention disclosure to significant income from a license.
Moreover, the general time lag between patent application and publication of a granted patent is
2-3 years in most of the major patent offices. Thus, we examine how the length of time lags affect
the quality of patents, as measured by the count of citing patents per patent. From Table 26, the

highest mean value of citing patents is 9.19 for patents in the group with 2 or 3 years of time lag
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between application and publication. The groups of patents with a lag of one year or less and with
more than 3 years have similar results, with means of 4.53 and 4.79 citations per patent,

respectively. Figure 37 displays the CDFs of patent citations per patents based on the time lags
between patent application and publication by three different sample groups, and shows the group

with 2-3 year time lags distinguished from the other two groups.
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Times Cited (Time lags between application and publication) from 1989 to 2012

—=—— 1 orless than 1 year lag —a&—— 2or3yearslag
—*—— More than 4 years lag

Figure 37—Cumulative Density Function (CDF) of patent citations based on
the time lag between application and publication, (1989-2012)
VI1. Conclusion
This chapter had attempted to explore the agency of knowledge production, viewing scientific
research teams as quasi-firms arising as independent knowledge-creating entities within the
university context. To sum up, the following methods were used: (1) summary statistics of the

aggregate level of research teams and their time trends; (2) a conceptual framewaarohres
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teams; (3) analysis of ego-centric social networks of research teams (4) OLS regression of the
sample research teams selected from entire groups, and (5) analysis of individual factors on impact
of team research as measured by forward citations. Proceeding from what has been said above, it
should be concluded that the size of research teams has a positive impact on university knowledge
production and technology-transfer activities, and the team assembly mechanisms are significantly
associated with key factors such as the interdisciplinary structure of teams and the participation of
outside members. In the empirical approaches attemptedxplore two different views of
academic-research teams. First, the findings from the egocentric social network illustrate how the
existing networks and their structures can affect team formations and performances. Particularly
the participation of members from outside increases the size of the egocentric research team, and
the growth patterns of the percent share from outside are an obvious parallel to the patterns of team
size. Moreover, the pattern of outside members’ networks clustered around each other, defining

the ego’s external research networks outside the university. As a result, the dynamics of the
egocentric research teams were that the growth rate of team size came at the cost of reduced team
density. The downward-sloping trend in density tells us that the egocentric researchaeams h
been transformed from closer collaborations to more network-based relationships oveittime, w
team size having an upward tendency over time.

Even though it makes it possible to explore the inside of research teams and their dynamics,
the egocentric team analysis might be skewed, due to specific field characteristics andritte resea
environments or idiosyncratic features of the ego that was selected for the case stuslyanSo, a
alternative approach, we selectedample of 1,527 research teams associated with published
research articles aradsample of 123 research teams associated with patents. The findings of this

analysis indicate that the number of participating private companies has a positive and significant
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effect on the research articdleam’s assembly but an insignificant effect on the patent team’s
assembly. As shown in Chapter 1, we can expect different results across the different types of
knowledge outputs.

Other findings from the regression results show that the number of CSU departments, which
represents cross-functional and interdisciplinary team formation, is statistically significant in
influencing the team’s assembly mechanism and resulting team size for teams producing both
articles and patents as outputs. Thus, it seems reasonable to conclude that cross-functional team
formation is more effective and common in the university context. Similarly, the proportion of
outside members, which largely consists of former graduate students, faculty members from other
institutions, and collaborators at private firms, also had a positive and significant impact on the
team’s assembly mechanism for both articles and patents. In addition, as hypothesized in Section
IV, research project team formations are also influenced by private sector participations, such as
involving members of private entities or attracting privately sponsored R&D investment.

Finally, when it comes to the quality or impa€tresearch teams’ knowledge production, the
number of forward citations are evaledtThe cumulative density functions (CDFs) of forward
citations to published articles tell us that research teams with members from multiple departments
have a higher research impact than research teams from a single department. By the same toke
larger-sized teams have higher impact than smaller-sized teams, as well as field variety. In the
teams that produced patent, those with multiple backward citations per patent had a higher impact
in terms of forward citations than those with a single or no backward citations per patent. This
indicates that teams building on already existing inventions may be a significant factor for the
research teams’ impacts on the economic benefits with respect to knowledge spillovers, which

follows from previous studies.
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CHAPTER 3. UNIVERSITY KNOWLEDGE SPILLOVERS TO THE AGRICULTURAL
ECONOMY: THE IMPACT OF AGRICULTURAL RESEARCH AT COLORADO STATE

UNIVERSITY ON THE COLORADO ECONOMY, AND BEYOND

l. Introduction

Technology or knowledge spillovers are one of the most important sources of externality
benefits in our society and economy. Defined as the spreading of ideas not mediated by market
transaction, knowledge spillovers are an important issue for economic development, underlying
many of our commonly held assumptions about commercial innovation processes. Moreover,
historically, knowledge was understood by most economists to have largely public-good attributes,
but more recently, the characteristics of knowledge have come to be viewed asnmaos: wath
different degrees of appropriability, due to differences in tacitness, embeddedness, or legal
excludability because of well-developed intellectual property rights. In industry, knowledge is one
of the most important assets today. Firms protect their knowledge or technology by various types
of intellectual property and contractual mechanisms, including patenting and licensing. Therefore,
guestions of knowledge spillovers in industrial or commercial innovation have been analyzed
extensively by many researchers (Jaffe, 1989; Mansfield, 1991 & 1995; Henderson et al, 1998;
Jensen and Thursby, 2001; Adams, 2002; Cohen et al, 2002; Shane, 2002; Thursby and Thursby,
2011) and are important to both industry leaders and policymakers.

In high-tech industries, such as biotechnology and semi-conductors, spillovers of technology
among similar firms are quickly transmitted and improved uporivals’ follow-on inventions
and innovation. Moreover, in technologically advanced countries, such as the United States, Japan,
United Kingdom, Germany, France, and Israel, there is an ongoing exchange of people and ideas

among private firms, universities, and research institutes located in close proximity to one another
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(Krugman and Wells, 2013). Positive externalities can increase the incentives for cooperative
research and development (R&D) between universities and industries, and are a fundamental
reason that governments support the costs of R&D.

Most research universities in the United States are independent non-profit or state-affiliated
knowledge organizations. They perform not only an educational function, but they also create and
disseminate new knowledge through their other core functions as well. The roles and missions of
universities have been shaped by a long history of national government policy changes, such a
the Morrill Land-Grant Act of 1862, the Hatch Act of 1887, the Smith-Lever Act of 1914, and the
Bayh-Dole Act of 1980. Following these formative policies, universities in the United States have
generally come to embrace three missions: an educational mission, a research mission, and
outreach mission.

These different missions have spurred the emergence of different types of knowledge
dissemination channels used in universities, such as the public domain, tacit dissemination through
close collaboration, patenting/licensing of inventions and technical knowledge, and venture
creation. These encompass not only traditional modes of university knowledge dissemination, such
as publications, conference presentations, collaborative research with industry partners, consulting,
co-supervising of internships, and so on, but also newer modes of university knowledge
dissemination, such as university invention disclosures, patenting and licensing of new
technologies, and the startup of new tech ventures. In agriculture, the Land Grant universities have
long focused on agricultural research and the commercial dissemination of university innovations
for regional and state economic growth, as well as for national and international development.

The main purpose of this chapter is to examine the geospatial pattern of knowledge spillovers

from agricultural research at Colorado State University (CSU) and thus, by implication, the
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geospatial pattern of their commercial economic impacts, within GolBragriculturally-related
sectors or industries, but also nationally and globally. In particular, this chapter seeks to identify
how different channels of knowledge dissemination from the university differ in the type and
location of impact. What is the relationship between geographic distance (proximity) and the types
of university knowledge dissemination mechanisms used? Can we differentiate between
knowledge dissemination channels specialized in disseminaticgy’ (tacit) versus‘slippery
(codified) knowledge? We expettie more tacit or ‘sticky’ knowledge to stay within the local or
regional economy anche latter more codified or ‘slippery’ types more readily to spill over
nationally or even globally. Moreover, the use of different knowledge dissemination channels is
likely to be varied across different technological categories.

The rest of this chapter consists of four sections. Section Il reviews and discusses previous
studies of knowledge spillovers and geographic proximity. Section Ill provides information on the
structure of the agricultural economy and the industry value chain within Colorado. Section IV
shows an empirical analysis of university knowledge spillovers across different dissemination

channels. Finally, Section V summarizes the main conclusions.

II. Literature Review
A. Technology change and interaction between university and industry

The extent of new knowledge diffusion from universities and public research labs is important
for private R&D activities and economic growth. Many studies have addressed and evaluated the
effects of university knowledge spillovers with respect to commercial invention and innovation.
Mansfield (1991 & 1995), Henderson, Jaffe, & Trajtenberg (1998), and Adams and Griliches
(1998) study trends in university research and their effects on industrial innovation in the United

States, finding that a range of new products and processes are based on academic research, and
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that some industriesuch as electrical equipment, instruments, chemicals, drugs, mining, and
petroleum-would not have developed in the way they did without the influence of academic
research. University knowledge production activities have the potential both to directly affect
commercial innovation and indirectly affect economic growth and development.

Universities, as a group of knowledge creating entities, are a fundamental source of highly
skilled human capital to industry, and labor-augmenting technological change is a major factor of
endogenous economic growth. According to Romer (138@ Grossman and Helpman (1991),
the role of knowledge capital, together with the stock of human capital, determines the rate of
aggregate economic growth. Moreover, the distinguishing feature of knowsddtige it is a non-
rival, but potentially excludable good. As mentioned before, however, the range of university
knowledge is various, characterized by not only public good attributes (non-rivalry and non-
excludability) but also some degree of private good attributes (rivalry and excludability). Agrawal
and Henderson (2002) study the impacts of university knowledge spillovers focusing on MIT.
They explore the magnitude, direction, and impact of patenting activities. According to this study,
universty R&D activities, especially faculty members’ research, have a variety of knowledge
dissemination channels, such as publications, conferences, consulting, informal conversations,
collaborative research, patents/licenses, co-supervising, and so on. As such, different firms use
different channels to access knowledge coming from the university. Similarly, Cohen et al (2002)
and Laursen and Salter (2004) study the influence and role of university and government
laboratory research on industrial R&D. These studies suggest that university research has a
considerable impact on industry’s new R&D projects and activities, across the different knowledge

channels.
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B. Geographic proximity and localization

Active interaction between university researchers and indissitmportant for dissemination
of some types of knowledge. Because of this, the geographic location of impacts is arguably
influenced by the characteristics of the knowledge being disseminated. Jaffe (1989) studies the
importance of geographically mediated spillovers from universities and research labs to
commercial innovation at the state level. He provides evidence that corporate patenting activities
depend on university research, indicating that the university research system can increase local
commercial innovations, but these effects are clearer within specific technical areas, such as drugs,
chemicals, and electronics than in total. Jaffe et al (1993) compare the geographic location of citing
patents with the patents they cite. The proportion of citations that geographically matched the
originating patents indicate that that inventors are more likely to cite patents from the same country,
state, and even the same metro area (MSA) and thus that the geographic location of knowledge
spilloversis localized.

According to Adams (2002), the localization of university knowledge spillovers is greater than
that of industrial spillovers. He finds the degree of localizations depends on the nearby stocks of
R&D, but the degree of localization decreases with the size of firms. This study suggests that the
results on localized university spillovers reflects the dissemination of normal science and the
industry-university cooperative movement, implying that geographic localization occurs with the
public good attributes of academic research. Similarly, Ponds et al (2009) find that university
spillovers can be localized by geographically bounded mechanisms, but university-industry
collaborations are not limited to the regional scale. Their findings show that university research
impacts local innovation and inventions not only due simply to geographic proximity, but also due

to collaboration networks.
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Buenstorf and Schacht (2013) study the geographic information about patent licensing
activities of the German Max Planck Society. They point out that proximity does not always
effectively lead to better commercialization outcomes. Sometimes, proximity causes a negative
association with foreign licensees. Moreover, there is little evidence to support that local licensees
have superior information about the quality of academic inventions. Hong and Su (2013) study
Chinese patent data for collaborations between university and industry. This study indicates that
geographic distance is an obstructive factor in achieving university-industry collaborations in some
cases, such as a central government system, and the problem of lock-in, indicating a lack of
openness and flexibilityNevertheless, a university’s research and knowledge dissemination
activities still play a significant role in providing knowledge inputs to industry innovation and
inventions within its region, at least in particular fields and technologies (Anselin et al, 1997 and
2000).

Evaluating both the public and the private benefits of university knowledge spillovers relies
considerably on the different types of knowledge dissemination. According to Jaffe (1989), when
the channel is published journal articles, then geographic proximity is unimportant, but when the
channel is informal interaction, then geographic locations is important in capturing the benefits of
spillovers. According to Lester (2004), university contributions to regional commercial innovation
processes can be achieved in various ways. Many universities are searching to develop their
discoveries and findings by patenting and licensing to local companies, yet the most important
contribution of the university may be through education and informal interactions as a public

service to local communities and businesses.
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[11. The Regional Agricultural Economy and Value Chains

The state economy of Colorado had long depended on agriculture and innovation as drivers of
economic growth and development. In 2011, the supply of agricultural inputs by Colorado
agribusinesses contributed $2 billion, crop and livestock sales contributed more than $8 billion,
and commodity marketing, processing, and food/beverage manufacturing contributed $15 billion
to the state economy (Graff et al, 2013). Also in the one year of 2011, in agriculturally related
fields®, CSU researchers received just over $5 million in grants and contracts awarded from
businesses in or closely related to agriculture, co-authored 65 scientific articles with industry
partners, made 22 invention disclosures, submitted 11 patent applications, and founded one new
startup company, again all involving technologies related to agriculture.

Colorado has a diverse agriculture and food sector, and several subsectors play important roles
in the state economy. Colorado State University, as the Land Grant university in Colorado and a
world leader in agricultural sciences, has had economic impact on these subsectors. Colorado is a
major producer of beef and dairy, at both the farm level and in processing and manufacturing.
Colorado State University has leading programs in veterinary medicine and animal science with
emphases on large animal and bovine. Colorado is'ttegest producer of potatoes in U.S., and
CSU’s Potato Breeding Selection Program has developed more than 60 percent of the potato
varieties that are planted in Colorado. Colorado is a major wheat producing state and is home to
the largest wheat milling company in the U.S., and the Colorado Wheat Breeding and Genetics
program at CSU has improved more than 30 percent of wheat varieties grown in Colorado (CSU

Ventures” Annual Report, 2012). Colorado maintains a good reputation for organic and natural

38 In that year, the range of research fields were included in animal hitih(organic milk), pest control, crop
varieties, soil fertilizer, ground water & irrigation, and food proces&ipgcking.
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foods. And Colorado hosts not only the two top brewing companies in the nation, but is also known

for the high quality of local brewing firm$

Table 27—The numbers of actively innovating private companies within Colorado’s
agricultural and food value chain in 2014, congregated into technological

categories, with cumulative Web of Science (WoS) publicationsand U.S. patents
in each category, (1990-2013)

Technology No. of No. of WoS No. of U.S.

company publications patents

1. Water technology, infrastructure, analytics, and 93 488 94
management

2. Soil fertility and pest control 23 21 68

3. Plant genetics and new crop varieties 20 30 527

4. Animal health, nutrition, and herd management 49 339 329

5. Agricultural information systems 22 3 97

6. Sensor_s, testing, and analytics for product quality 37 119 99
and biosafety

7. Bio-energy & fuel 25 7 250

8. Commodity processing and food manufacturing 38 50 514

9. Dairy production and dairy product manufacturing 12 14 88

10. Beer, wine, & spirits production and marketing 67 26 37

11. Natural, organic, and local foods and marketing 33 7 36

12. “Fast & Fresh” food service 13 0 0

13. Other emergent subsectors 33 5 74

Total 460 1109 2,213

Source: Graff, Berklund, and Rennels, 2014.

According to Graff et al (2014), an innovation cluster in the agricultural and food industries
appears to be forming in the Colorado Front Range. Innovation clusters can be defined as the
geographically proximate sets of interconnected companies and associated institutions in particular
fields and technologies. The structure of the value chai@obérado’s agriculture and food
industries is closely associated with the emerging innovation cluster. The agricultural value chain
in Colorado includes 550 innovators, of which 460 are private-sector companies and 90 are public-

sector (academic, nonprofit, and government) organizations, and the innovating organizations are

3% Source: Colorado Office of Economic Development & International Tradev.advancecolorado.com
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caegorized according to a dozen areas corresponding to different subsections of the value chain.

Table 27 displays these areas of agricultural innovation going on in Colorado, and Figure 38 shows

the geographitandscape of Colorado’s agricultural innovation.

A. Scientific jour nal publications
in agricultural and food
related fields, by city of
author’s institutional
affiliation

@

(5}

B. U.S. patentson agricultural and
food related techniologies filled
and granted by city of
inventor’s residence

Source: Gréff, Berklund, and Rennels, 2014.

Figure 38—A landscape analysis mapping two agricultural R&D outputs. scientific
journal publicationsand U.S. patentsfilled and granted, (1990-2013)
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The two most active areas in Colorado in terms of scientific research are water and animal
agriculture (Table 27). Water related companies in Colorado are highly involved in scientific
research papers and engage in projects for water storage, transmission, and irrigation infrastructure.
Many of these companies consist of consulting and analytics firms or civil engineering firms.
Moreover, the companies associated with animal health and nutrisioch as beef, dairy cattle,
horses and sheegparticipate actively in R&D for improving the quality of animal health and
nutrition and herd management. Furthermore, as shown in Figure 38, the geographical locations
of Colorado authors in the agricultural value chain are highly concentrated in Northern Colorado,
between Denver, the main urban center, and Fort Collins, where CSU is located.

In addition, over the 5 years, 2008-2012, the College of Veterinary Medicine and Biomedical
Sciences at CSU was top ranked in terms of privately sponsored grant awards and contracts, at an
average of $5.8 million per year, and industry co-authored journal articles comprised an average
of 75.6 articles per year. Moreover, the College of Engineering was second ranked direethat
period, and the Department of Civil and Environment Enginegwhgh is the center of CSU’s
water related research, received private sector grants averaging $1.2 million per year, and
published an average of 12.8 articles per year with industry co-authors. From this evidence, we
might expect that the roles and missions of land-grant universities are crucially important for the
local commercial innovation and inventions in the agricultural value chain, as well as the
importance of geographical proximity.

V. Empirical Study of University Knowledge Spilloversin Agriculture

We seek to take into consideration the full range of potential knowledge dissemination

channels, as indicated by such measures as academic journal publications, industry co-authorship

on journal publications, private sponsorship of research grants and contracts, patent applications
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and granted patents, and startup companies, all from data collected at the level of the different
research units of Colorado State University (CSU), from 1989 to 2012. These various measures
make it possible to analyze the extent to which the different types of knowledge dissemination
channels work. Four general types of knowledge channels are introduced in Chapter 1, including
(1) the public domain channel, (2) the collaboration channel, (3) the intellectual property rights

and licensing contracts channel, and (4) the venture creation channel.

Table 286—Summary of data used to measure four different types of agriculture and food-
related knowledge dissemination channels

Ag. Related CSU Knowledge Channels Years Sum

1. Public Domain Channel
Published journal articles 2008-2010 1,202
Citations of these published journal articles 2008-2012 6,883

2. Collaboration Channel

Privately sponsored grant awards and contracts 1989-2012 543
Total amount of the private grant awards (million $) 1989-2012 17.58
Industry co-authored journal articles 1989-2012 290

3. Patenting/Licensing Channel
Patent applications and granted patents 1990-2013 76
Citations of these patents (Excluding self-cites) 1990-2013 1,868

4. Venture Creation Channel
CSU affiliated startups 1989-2012 11

In this section, we examin€SU’s knowledge dissemination and its impact on commercial
innovation within the state economy, specifically in sectors related to agricultural industry, in
terms of the four different types of knowledge dissemination channels. Moreover, this chapter
attempts to determine the locations of private industry innovators impacted by or associated with
CSU agricultural research in both agricultural and related sectors, to confirm the relationship

between geographic distance and the types of CSU knowledge transfer mechanisms employed. In
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agriculture and food-related research activity, the four different types of knowledge channels are
measured using the citations a sample of CSU journal publications, privately sponsored grants
awards and industry co-authorship on articles, citations of CSU patent applications and granted
patents, and CSU startups.

Table 28 provides summary statistics of the data used to measure activity in four different types
of knowledge dissemination channels for CSU’s agriculture and food-related research activities.
First, within the context of agriculture (using Web of Science keywords, including agmegultur
agronomy, entomology, food science, horticulture, plant sciences, soil science, veterinary science,
and water) we select a target sample of 1,202 journal publications by CSU authors from the Web
of Science database, published from 2008 to 2010. Using the Web of Science forward citations
reporting tool, we find these 1,202 CSU articles have been cited 6,883 times, collecting from 2008
to 2012. We then analyze the location of the authors and other characteristics of these citing papers
to understand the geographic footprint and the nature of spillovers via the public domain channel.

Second, from 1989 to 2012, 543 grant and contract awards were received by CSU from private
sector sponsors to conduct agriculturally related research. The total amount of these awards was
$38 million, and came from 169 private companies engaged in some aspect of agriculture or food
related business. CSU researchers have collaborated with and co-authored 290 agriculture and
food-related journal publications with authors from 194 private companies from 1989 to 2012. We
then analyze the locations and characteristics of these companies that awarded grants and contracts
to CSU and the companies that co-authored with CSU to understand the geographic footprint and
the nature of spillovers via the research collaboration channel.

Third, CSU inventors had 76 agriculture and food-related patent applications and granted

patents from 1990 to 2013. By 2015, all of these patent applications and grants had received 1,868
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forward citations from other patents, owned by 206 companies. We then analyze the location of
the inventors and the assignee firms of these citing patents to understand the geographic footprint
and the nature of spillovers that occur via the intellectual property licensing channel.

Finally, 11 startup companies were created from 1989 to 2012 from research in CSU’s
departments and research units around technologies that can be associated with or applied in the
agriculture or food industries. We analyze the locations and characteristics of these startup
companies to understand the geographic footprint and the nature of spillovers via the venture
creation channel.

Across these four different types of knowledge dissemination channels, this section seeks to
determine the locations of private industry innovators in agricultural sectors that utilize the
university’s knowledge outputs, to ascertain the relationship between geographic distance and the
type of channel employed. We expect the different channels to specialize in dissemirekiyng sti
or slippery (tacit or codified) forms of knowledge in agriculturally related sectors, with some
staying within Colorado and others more readily spilling over nationally or even globally.

A. Geographic footprint of university knowledge spillovers
1. Public domain mechanism of knowledge dissemination

Journal publications are the major research output of universities, and knowledge primarily
disseminated througihe public domain channel has the strongest public good attributes, defined
as being both non-excludable and non-rivalrous. Once published (and if not otherwise protected,
such as by a patent), it is not possible to exclude anyone from accessing this knowledge or to
prevent simultaneous use or access, which means full freedom of use and open access. Again,
according to Jaffe (1989), when the mechanism of dissemination is primarily journal publications,

then geographic location is generally unimportant for recipientscesa the knowledge transfers.
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Journal publications are the channel most likely to be used to trésigppery” information, that

which is relatively codifiable and transmissible at lower transaction costs, so that there is no
boundary of the knowledge spillovers. These spillovers are effectively worldwide, and tieey ha
the highest speed of transmission.

Table 29—The location of authors of the 6,883 articles that cite a randomly sampled target

set of 1,202 agriculturally-related journal articles by CSU authors in several
different agricultural research fields and technologies

Average

No. of citing No. of citing distance

No. of citing articles, by articlesby  from CSU

articles, by  authorsin US authors (miles) for

authorsin  but outside of outside the those in

Research Field/Technology Colorado Colorado us U.S. only

1. Water tech & management 133 (9.8) 444 (32.7) 782 (57.5) 950.46
2. Crop genetics, soil fertility, & pest control 209 (8.3) 861 (34.4) 1,433 (57.3) 1,032.24
3. Animal health & nutrition 202 (10.3) 680 (34.6) 1,086 (55.2) 976.01
4. IT and data systems in food & agriculture 13 (8.9) 53 (36.3) 80 (54.8) 1,071.91
5. Bioenergy 34 (10.8) 106 (33.5) 176 (55.7) 962.49
6. Food & beverage processing & manufacturing 63 (10.7) 195 (32.9) 333 (56.3) 930.47
Total 654 (9.5) 2,339 (34.0) 3,890 (56.5) 988.79

Note: Parentheses are percent share of total citing papers.
See the names and addresses of company in Appendix

Table 29 shows a target sample of articles citing a randomly selected subset of CSU’s
agriculturally-related journal publicationsithin seven Web of Science’s categories chosen for
disciplines encompassing the whole agricultural value chain. In Table 29, of the total of 6,883
citing articles, 3,890, or 56.5 percent, ageauthors in other countries. Of the total, only 654
articles are by Colorado authors, accounting for just 9.5 percent. Within the United States, the
average distance from CSUwhich is located in Fort Collins, Coloraddo the location of citing
papers’ authors is 989 miles. While this is a somewhat simplistic measure, it provides a basic sense

of the geographic footprint of spillovers WizgSU’s agriculturally-related journal publicatian
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Among the various sub-fields or technology categories, the farthest average distance within the

US is 1,072 miles from CSU, in the research field of IT and data systems for food and agriculture.
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Figure 39—Heat map of the geographiclocationsin theU.S. of author sof papers
citing CSU’s agriculturally-related journal publications

Figure 39 displays the mapping of the geographic footprint in the United States of the location
of authors of articles citin@SU’s journal publications. Significantly, there are relatively high
densities of citing authors located in northern Colorado, northern California (the San Francisco
Bay area), southern Texas, Wisconsin, Florida, North Carolina, New York, and the Boston area.
These geographic locations are all associated with the location of land-grant universities in the
United States, other universities with a similar profile of research in agricultural sciences and
veterinary health. Similarly, Figure 40 displays the geographic locations of citing papet®base
authors’ affiliations within Colorado. Citations of CSU’s agriculture-related journal publications
are highly concentrated in three locations within the state, each associated with a major research
institutiont Fort Collins (CSU), Boulder (University of Colorado), and Golden (Colorado School

of Mines and the National Renewable Energy Laboratory). Moreover, among the other minor
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locations are those associated with the experimental farms of the Colorado State Agricultural

Experimental Station (SAES).

Figure 40—Heat map of the geographic locationsin Colorado of authors of
papers citing CSU’s agriculturally-related journal publications

Therefore, knowledge spillovers of CSU’s agriculture-related journal publications via the
public domain mechanism have impact lbgahationaly, and globdl. As previous studies have
pointed out, the knowledge channel of journal publications does not depend upon geographic
proximity for realizing the social and economic benefits of knowledge transfers.

2. Collaboration mechanism of knowledge dissemination

The collaboration mechanism of knowledge commercialization is characterized by close
interaction between university and industry researchers, such as in research collaboration or
outreach activities. It is generally well suited for conveying tacit or sticky knowledgeltyrac
members in the university work with colleagues in the private sector in a number of ways,

including consulting, conference presentations, informal consultations, collaborative research
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projects, co-supervising of interns, and such. However, these collaboration activities are harder to
detect and to systematically measure in terms of their magnitude, size, and scope. So we proposed
three proxy variables in Chapter 1, including (1) the number of industry co-authored journal
publications, (2) privately sponsored grant awards, and (3) departmental level cooperative
extension budgets. Two of these measures contain information about the geographic location of
the collaborating industry partrdhe industry co-authored journal publications and the privately
sponsored grant awards. Thus, in this section, we utilize these two to assess the geographic scope

of impact of collabration as a mechanism for CSU’s knowledge dissemination within agriculture.

1) Grants and contracts awarded from private sector sponsors

One of the proxy measures of university traditional collaboration activities is the announced
award of research funding from external sources via grants and contracts. The total value of
privately sponsored grants and contracts in agriculturally-related sectors from 1989 to 2012 is
$17.6 million, in awards from 169 private companies. Table 30 presents summary data on private
sponsors of grants and contracts across the different agriculturally related sub-fields and
technologies. The average distance from CSU to the locations of private sponsors in U.S. is 663
miles. Among the sub-fields or technology categories, the nearest average distance is 279 miles,
in the field of water technology and management.

The 13 companies associated with water technology located in Colorado account for 76.5
percent of all of CSU’s private sector collaboration on water—related research and projects. These
in-state companies have invested $1.43 million in their collaborations with CSU, which is almost
73 percent out of total private R&D investment in water-related research and projects at CSU.
Moreover, there is only one foreign company, KOWACO-Korean Water Resources Corporation,

and significantly, this company is strongly associated with the Department of Civil Engineering at
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CSU. Similarly, almost 50 percent of companies associated with IT and data systems in food &
agriculture, in bioenergy, and in food and beverage manufacturing technologies are located in
Colorado. However, only 15 percent of the collaborating companies in animal health technology

are located in Colorado.

Table30—Thelocation of privately sponsorsof contract and grant awardsto CSU in several
different agricultural research fields and technologies

No. of

firmsin Average

theUS No. of distance
No. of but firms from CSU Amount
firmsin outsideof outside (milesin of awards
Resear ch Field/Technology Colorado Colorado theUS U.S. only) (million$)
1. Water tech & management 13 (76.5) 3(17.6) 1 (5.9) 278.87 1.97
2. Crop genetics, soil fertility, & pest control 19 (38.8) 23(46.9) 7(14.3) 575.51 2.96
3. Animal health & nutrition 5(14.7) 25(73.5) 4(11.8) 1051.27 6.24
4. 1T and data systems in food & agriculture 9(429) 10(47.6) 2 (9.5 727.26 1.28
5. Bioenergy 5 (50.0) 4 (40.0) 1 (10.0) 620.33 0.95
6. Food & beverage processing & manufacturing 16 (42.1) 19 (50.0) 3(7.9) 570.32 4.19

18

Total 67 (39.6) 84 (49.7) (10.7) 662.90 17.58

Note: Parentheses are percent share of total firms.
See the names and addresses of company in Appendix.

Figure 41 display the geographic footprint across the U.S. of private firms that have awarded
grants and contracts for agriculturally related research at CSU. Although sponsoring companies
are distributed widely throughout the various states in the U.S., many of them are in the northern
Front Range of Colorado. Figure 42 shows the geographic footprint within Colorado, and the
locations of companies are relatively compacted in the Front Range of Colorado, particularly in

northern Colorado near CSU and around the Denver Technology Center (DTC) in south Denver.

40 The Department of Civil Engineering at CSU and KOWACO have a sisterhood relatjdnshipich many
faculty members in the Department of Civil Engineering at CSU have participatational water projects in
South Korea via KOWACO.
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2) Industry co-authorship on academic journal articles

Co-authored journal publication is another more direct indicator of the university collaboration
activities with industry. We find a total number of 290 papers in agriculturally related fields by
CSU authors written with catthors at 194 companies. While this particular knowledge output
(the article being published) is being placed in the public domain, we assume that it is indicative
of associated tacit knowledge being generated that is transferred through the mechanism of
interpersonal contact and collaboration. As such, we assume that it may have greater reliance upon
geographic proximity. Major characteristics of this channel is that it is significantly associated with
CSU authors’ social and professional research networks, and their capacity of maintaining

collaboration activities with these private sector colleagues.

Table 31—Thelocation of industry co-authorson journal publicationswith CSU authorsin
several different agricultural research fields and technologies

Average

No. of distance
firmsin No. of from No. of
No.of theUSbut firms csu Cco-
firmsin  outside of outside  (milesin authored
Resear ch Field/Technology Colorado Colorado US U.S only) papers
1. Water tech & management 21 (60.0) 12(34.3) 2 (5.7) 482.85 54
2. Crop genetics, soil fertility, & pest control 9 (21.4) 25 (59.5) 8(19.0) 854.26 55
3. Animal health & nutrition 6 (16.2) 23 (62.2) 8(21.6) 1094.93 62
4. IT and data systems in food & agriculture 12 (48.0) 13(52.0) 0 (0.0) 636.48 31
5. Bioenergy 6 (42.9) 7(50.00 1 (7.2) 758.92 19
6. Food & beverage processing & 10 (24.4)  24(585)  7(17.1) 622.07 69

manufacturing

Total 64 (33.0) 104 (53.6) 26 (13.4) 749.92 290

Note: Parentheses are percent share of total firms.
See the names and addresses of company in Appendix.

The average distance in Table 31 is 750 miles, which is slightly longer than the average
distance of 663 miles, in Table 30 in the previous section, to companies that sponsored grants and

contracts, an alternative measure of the collaboration channel. By the same token, Figure 43
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displays the geographic footprint of co-authors from private companies, and it is virtually identical
with that of Figure 41 of private sector co-authoring companies, with a relatively high density in
Colorado. However, there is some contrast between Figure 42 and 44, with the locations of private
sector co-authors more highly concentrated near CSU. This may be due to the fact that the kind
of relationship involved in sponsoring may require more active interaction than the kind of

relationship involved in co-authoring.
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Figure 43—Heat map of the geographic location of companiesin the U.S. that

have co-authored journal publications with CSU researchers in
agriculturally related fields

Privately sponsored grants and contracts and industry co-authored journal publications as
proxy measures of the traditional collaboration mechanism of knowledge dissemination that are
more likely to involve transfer of sticky or tacit forms of knowledge, which has relatively higher
transaction costs and capacity requirements. It is possible to exclude others from accessing (at least
some key aspects of) this knowledge, by virtue of its intrinsic stickiness, merely by not including
them in the collaborative relationship. Therefore, geographic proximity is relatively more

important. Within these two proxy measures of traditional collaboration, we find the geographic
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location of industry co-authors on journal articles have a longer average distance from CSU,
perhaps because it involves more codified forms of knowledge than the other measure of grant and

contract awards from private sponsors.

Figure 44—Heat map of the geographic location of companies in Colorado that
have co-authored journal publications with CSU researchers in

agriculturally related fields

3. Patenting/licensing mechanism of knowledge dissemination

The patenting and licensing mechanism for knowledge commercialization, which is
characterized by the utilization of the intellectual property rights (IPRs) and licensing contracts to
control access, is best suited when a certain degree of excludability is required to create sufficient
incentives for follow-on investments in otherwise non-excludable and non-rivalrous knowledge
outputs. To better understand the geographic impact of CSU’s patented knowledge, we utilize
citation mapping. In general, citation mapping of patents consists of connecting cited and citing

references (backward and forward, respectively), which allows us to track the relationships
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between existing and new technologies, as well as the impacts of the existing technologies on the
emergence of new technologies in the field. CSU inventors filed for protection on 76 inventions
in agricultural and food related technologies between 1989 and 2013. Our analysis found 1,868
newer patents had made citations to these CSU patents and patent applications. Table 32
summarizes data on these citing patent documents across the different research fields and
technologies related to agriculture.

Table 32—Patent documents citing CSU’s portfolio of patent applications and granted
patents acr oss the different agricultural technologies

No. of No. of citing No. of
citing patents by citing Average
patents by inventorsin  patents by distance from
inventors the U.S. but inventors CSU (miles)
in outside of  outside of for those in
Research Field/Technology Colorado Colorado the U.S. the U.S. only
1. Water tech & management 0 (0.0) 25 (71.4) 10 (28.6) 1278.18
2. Crop genetics, soil fertility, & pest control 1 (8.0) 103 (75.2) 23 (16.8) 1037.57
3. Animal health & nutrition 187 (29 3) 329 (51.5) 123 (19 2) 888.06
4. IT and data systems in food & agriculture 5 (4.7) 466 (87.3) 3 (8.1) 994.82
5. Bioenergy 6 (2.0) 233 (77.9) 60 (20 1) 1303.70
6. Food & beverage processing & manufacturing 16 (7.1) 145 (64.7) 63 (28.1) 886.25
Total 245 (13.1) 1301 (69.6) 322 (17.2) 1001.87

Note: Parentheses are percent share of total citing patents.
See the inventors’ affiliated companies in Appendix.

As shown as Table 32, the average distance from CSU to the locations of inventors of citing
patents is 1002 miles, which is similar to the average distance seen for citing papers, in the public
domain knowledge dissemination channel, and longer than the average distance to private sector
research sponsors grants and co-authors, in the collaboration knowledge dissemination channel.
Thus, by virtue of the slippery nature of information codified within patents, geographic proximity
is unimportant for spillovers, at least to the extent of other inventors learning about the new
technology disclosed by the patent documents. Although it is still possible to exclude others from

accessing and using the technology described in the patents in those jurisdictions where the patents
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are issued. We note that the share of foreign inventors citing CSU’s patents, at 17 percent, is

relatively much smaller than the share of foreign authors citing CSU’s journal publications, at 57
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Figure 45—Heat map of the geographic location in the U.S. of inventors on
patents that cite CSU’s agriculturally related patent applications

and granted patents

Figure 45 displays the geographic locations of inventors on the patents that are citing CSU’s
agricultural technology patents. This map demonstrates the commercial spillovers of CSU’s
agriculture-related research throughout the U.S. The distribution of the geographic footprint is
similar to that of authors citing CSU’s agricultural journal publications in Figure 39, but not all of
the geographic locations are the same. It seems reasonable to assume that the distinction between
citing patents and citing papers can be explained by not only by the different magnitude®of citati
rates, but also the different characteristics of the respective knowledge dissemination channels.
Both channels specialize in disseminating relatively slippery forms of knowledge, but the patents

have an invoked exclusion by virtue of IPRs.
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Figure 46—Heat map of the geographic location within Colorado of inventors

on patents that cite CSU’s agriculturally related patent applications
and granted patents

Similarly, Figure 46 shows the location of inventors within Colorado that are citing CSU’s
agriculturally related patents. Of these, 91 percent are concentrated near CSU and elséwvehere in
northern Front Range, and we observe that many of these areas are strongly associated with the
presence of CSU’s startup companies. Therefore, spillovers via the patenting and licensing
mechanism appears to have a wide impact on commercial innovation in agriculturally-related
sectors. While a patented invention is a codified or slippery form of knowledge, it is possible to
exclude others from accessing and making use of it, which is the key distinction from research
results only disseminated via journal publications through the public domain mechanism.

4. Venture creation mechanism of knowledge dissemination

The venture creation mechanism of knowledge commercialization is perhaps best suited for

raising private capital for the further development of knowledge, treating that knowledge most like

a private good, which has intrinsic stickiness or context dependence, making it possible to exclude
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others from accessing this knowledge. Both patenting/licensing and venture creation are newer
mechanisms of knowledge disseminations, distinguished from some of the more traditional
industry collaboration activities.

Table 33 summarizes data about the ten startup companies created by CSU across a range of
technologies related to agriculture and food. Nine of the ten startup companies are located in
Colorado, mostly near the CSU campus, while one company recently moved from Fort Collins,

CO, to Navasota, TX.

Table 33—CSU’s startup companies across the different agricultural technologies

Startups in Average

the US but Startups distance from

Startups in outside of  outside the CSU (miles in

Technology Colorado Colorado us U.S. only)

1. Water tech & management 1(100.0) 0 (0.0) 0(0.0) 5.00
2. Crop genetics, soil fertility, & pest control 2 (100.0) 0 (0.0) 0(0.0) 27.00
3. Animal health & nutrition 3 (75.0) 1(25.0) 0(0.0) 257.75
4. Bioenergy 2 (100.0) 0 (0.0) 0(0.0) 12.50
5. Food & beverage processing & manufacturing 2 (100.0) 0 (0.0) 0(0.0) 33.50
Total 10 (90.9) 1 (9.1) 0(0.0) 107.45

Note: Parentheses are percent share of total startup companies.
See the names and addresses of company in Appendix.

Figure 47 illustrates the geographic locations of these startup companies, almost entirely
limited to Colorado, and Figure 48 shows that the startups are mostly located near CSU in the
northern Front Range. Thus, the venture creation mechanism appears to be highly reliant upon
geographic proximity. Involving quite sticky knowledge and context dependence, it has much
higher transaction costs and capacity requirements than the other knowledge dissemination

channels we have considered.
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B. Non-parametric tests of university knowledge dissemination channels

In this section, we attempt to examine the different degrees of knowledge “stickiness” across
CSU’s dissemination channels by estimating the one-sample Kolmogorov-Smirnov non-
parametric test, which is based on Kolmogorov (1933), Smirnov (1933), and Conover (1999). This

test involves measuring a random sample from some unknown distribution for testing the null
hypothesis, which specifies some distribution functien(x) as the cumulative distribution
function.

A random sampleX,;, X,,---, X, is drawn from some population, such as the geographic
distances of university knowledge spillovers, and it is compared with the true distribution function
of the random sample;” (X) . In the test, we hypothesize that the true distribution is a normal
distribution. In order to compare the random sample tiix) , the empirical distribution

function of the random sample is defined by DefinitiortY(1)

Definition (1) Let X, X,,---, X, be a random sample. The empirical distribution functs() ,
is a function o, which equals to the fraction of, s that are less than or equalxto
for eachx, —o< X< 0.

The equation (30) represents the empirical distribution function and Wp,grg(xi) is the

indicator function, which equals to 1 X, < x and equals to zero if otherwise.
1 n
S(X):EZ L (X) (30)
i=1

So, this test definition can compare the empirical distribution funcB6R,, with the

theoretical distribution functionE"(x) , to see if there is good agreement.

41W.J, Conover (1999)
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The geographic distances of university knowledge spillovers data consist of a random sample,

X, X,,++, X, of sizen associated with some unknown distribution function, denotef (Y.

Hypothesis (1)Let F (x) be a completely specified theoretical distribution function, such as a
normal distribution: Two-sided test

Hy:F (X)= F(X) V x from—oo tooo
H,:F (x)= F(X) for at least one value of

Suppose that the Kolmogorov-Smirnov statidii¢cbe the greatest vertical distance between
the empirical distribution functiois( ¥ , and the theoretical distribution functid® (x) , which is
given in equation (31) below.

D:SUQF* Q()—S(xj (31)

Where the “D” equals the supremum, over all x, of the absolute value of the difference,
F (-3

Thus, for testing the “stickiness” or the characteristic behaviors of the tacit versus codified
forms of university knowledge, the one-sample Kolmogorov-Smirnov non-parametric teSts (K-
tests) and its CDFs can be used to compare empirical distribution function and the normal
distribution function across the different types of university knowledge dissemination channels.

Table 34 shows summary statistics of the geographic distances from the location of CSU to
the recipients of spillovers, across the different knowledge dissemination channels. The table
considers only distances to those in the United States; it excludes foreign distances. As shown in
previous sections, the mean distance between CSU and the location of authors on citing papers
and the location of inventors of citing patents in the United States are the farthest and are similar
to each other. Thus, these channels seem to involve more slippery forms of knowledge, the

spillovers of which are less likely to be geographically bounded. Figure 49 displays the results of
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the K-S nonparametric tests, which consist of D-values and their statistical probability values, and
the CDFs of the geographic distances from the location of CSU across the different knowledge
dissemination channels in the United States.

Table 34—Summary statistics: Geographic distances from the location of CSU (U.S. only)
acrossthe different knowledge dissemination channels (All technology)

Summary Statistics (U.S. miles)

Knowledge Channels Obs. Mean Std. Dev Min Max
Citing papers 2,989 988.79 637.99 5 3,037
Privately sponsored grant awards 148 662.90 623.33 5 1,852
Industry co-authored papers 167 749.92 676.79 5 3,010
Citing patents 1,546 1,010.27 550.24 5 2,183
Startups 11 107.45 298.67 5 1,006

The one-sample nonparametric test results show that the K-S tests reject the null hypothesis at
a 1% level of statistical significance, which means the empirical distributions cannot converge to
a normal distribution. In other words, at the given level of significance0.01, the KS
statistical value exceeds the critical value of the quantiles of the K-S test statistic. However, it is
still meaningful for testing the mechanisms of university knowledge dissemination channels by
assessing the CDFs andKs D-value.

Figure 49, of the citing papers, has the smallest D-value of all, which means the distribution of
citing papers is more likely to converge to a normal distribution than the others, even though it is
insignificant. Thus, the channel is not likely to be localized and, rather, therefore likely inaolves
slippery form of knowledge. The CDF plot seems not to be skewed within 300 miles but rather to
extend over several thousand miles. Similarly, the CDF plot of citing patents is less likely to be
within Colorado, but it is skewed around 1,000 miles, with the maximum distance between CSU

and a citing patents being 2,183 miles, which is shorter than the maximum for citing papers.

177



4 ———————— 14
I
p fr"
f =
8 8
=
' i
6 : 6 /f
_f,l’
//
4 44
- 3
2 = Kolmogorov-Smirnov Distance 21 Kolmogorov-Smirnov Distance
. D-value: 0.1350%** 3 D-value: 0.2246***
N ’ N N S S g J ) S 3 N g g
B S & S & ') & & & o & oS
Citing papers: Distance from CSU (U.S. miles) Private sponsored grant awards: Distance from CSU (U.S. miles)
g b= 1 e
" §
+ .
8- i 8- ==
6 y 6 rj/
e
/ et
4 1, PHB
/
%
21 _.—J Kolmogorov-Smirnov Distance -2- Kolmogorov-Smirnov Distance
" r D-value: 0.1775%** . D-value: 0.2023***
N N N S S $ g N ) S S N N S
S S & o & ') & S & S & oS
Citing patents (forward citations): Distance from CSU (U.S. miles) Industry co-authored papers: Distance from CSU (U.S. miles)
1 S
i
.84 /’
|
6 )
|
4
21 Kolmogorov-Smirnov Distance
—-— Empirical distribution " D-value: 0.4696**
J ) N g S J N
Y &P & S & ¥

Startup companies affiliated by CSU: Distance from CSU (U.S. miles)
Note: *** at 1%, ** at 5%, and * 10% level of statistical significance.

Figure 49—The CDF plots and one-sample Kolmogorov-Smirnov non-parametric

tests: Geographic distances from the location of CSU (U.S. only) across
the different knowledge dissemination channels: All technology.

It is highly probable that the inherent characteristics of both knowledge dissemination channels

are non-rivalrous, but the patents involve a certain degree of excludapilityyizing intellectual
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property rights and contracts, so the citing patents are likely to involve a less slippery form of
knowledge than citing papers.

Of particular interest is the collaboration mechanism of knowledge dissemination. The
privately sponsored grant awards and industry coauthored papers are relatively localized, with
almost 40 percent of them within 200 or 300 miles. These channels apparently mwabve
sticky form of knowledge, and geographic proximity is more important for these collaboration
activities. Nevertheless, they have different scopes of geographic locations. In Table 34, the
maximum distance between CSU and industry coauthored articles is much longer than the
maximum distance for privately sponsored grant awa®l®10 miles and 1,852 miles,
respectively—because again of the heterogeneous features between the channels. It should be
pointed out that the inherent characteristics of industry coauthored journal articles involve both
public domains and collaboration mechanisms of knowledge dissemination, so it may be less likely
to involve sticky forms of knowledge. In addition, the D-value of industry coauthored journal
articles is smaller than that of the privately sponsored grant awards.

Finally, the start-up companies affiliated with CSU appear to involve the stickiest form of
knowledge, and their D-value is much larger than other channels at 0.4696. The start-up companies
are highly localized, within 10 or 20 miles of the university, because most of the founders and
employees are CSU faculty members, research staff, or GRAs, as well as local, private entities. In
addition, in the early stage start-up companies need support from their original university (e.g., for
the utilization of university facilities and equipment), whicharsimportant part of the venture

creation knowledge transfer mechanism.
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Note: *** at 1%, ** at 5%, and * 10% level of statistical significance.
Figure 50—The CDF plots and one-sample K olmogor ov-Smirnov non-parametric tests. Geographic distances from the
location of CSU (U.S. only) across the different knowledge dissemination channels: 6 different technologies
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Again, according to Jaffe (1989), “the effect of geographically mediated spillovers from
university to local commercial innovation comes through more clearly within technical areas than
it does in the total across areas”, as well as (Anselin et al, 1997 and 2000). Figure 50 represents
the results of the K-S tests and the CDFs of geographic distances from the location of CSU across
the four different knowledge dissemination channels in the United States, congregated into six
different technological categories in agriculture.

The one-sample nonparametric test results across the different technological categories are
distinguished from the results of aggregate levels in Figure 49. First, the CDF patterns and D-
values of citing papers seem not to change significantly across the different technologies, but in
statistical result, the technological category of IT and data systems in food and agriculture is to
converge to a normal distribution by accepting null hypothesis. Thus, CSU’s published journal
articles as the public domain mechanism of knowledge, and its citing papers are more likely to
have a slippery form of knowledge across the different technologies.

However, the stickiness of other types of knowledge dissemination channel can be varied
across the different technological categories. Figure 50, in looking at the private sponsored grant
awards, it is localized to within 200 or 300 miles, accounting for almost 70-40 percent, across the
water, crop genetics, IT & Data systems, bioenergy, and food processing. By contrast, the animal
health and nutrition technology seems to involve a slippery form of knowledge and it is localized
to within 200 miles, accounting for less than 20 percent. Similarly, in the industry co-authored
papers, water, IT & data systems, bioenergy, and food processing technologies are highly skewed
within Colorado, accounting for 60-40 percent, but crop genetics, and animal health technologies

do not be localized to within Colorado area.
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In the geographic location of citing patents, excluding @&lf; the extent to which CSU’s
knowledge spillovers are geographically localized is considered across the different technological
categories. As shown as Figure 50, the citing patents in technological categories of crop genetics,
IT& data systems, bioenergy, and food processing can be seen as analogous to the results of
aggregate levels in Figure 49, such as the long tail to the left, but not in water and animal health
technologies. In water technology, the locations of inventor who cite CSU’s patents are highly
concentrated on between 800 and 1000 miles from the location of CSU. However, in animal health,
it is highly localized to within Colorado area, accounting for 40 percent.

Therefore, the sticky versus slippery forms of knowledge dissemination channel are more
likely to rely on the technological categories rather than aggregate level of technology. In other
words, the evaluation of the benefits for university knowledge spillovers to commercial innovation
should be considered not only across the different knowledge dissemination channels, but also

across the different technological categories.

V. Conclusions

Despite debate about the geographic proximity of university-industry collaborations,
university knowledge spillovers do appear to generate localized impacts on regional commercial
innovation that are likely to beneficial both to private industry and the public. Particularly in
agriculture, the land-grant universities play a significant role in agricultural research and
innovation in the agribusiness sectors. Howewmegher than thinking that “one size fits all,” the
spillover benefits from university knowledge generation should be considered by the different
types of dissemination channels that are utilized. In this chapter, we have focused on Colorado
State University (CSU)’s knowledge spillovers within agriculturally related fields and

technologies.
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We have examined the various mechansiof university knowledge spillovers and the
geographic scope of impact on the agricultural economy associated with each. We find evidence
that academic knowledge spillovers are geographically bounded, but they are not strictly limited
to the regional scale. Crucially, the impact of university spillovers on agriculturally-related
industries depends upon which type of knowledge dissemination channel or transfer mechanism
is utilized by university researchers. Broadly speaking we evaluate four typésrofets—
including the public domain or publication mechanism, the industry collaboration and extension
mechanism, the technology patenting/licensing mechanism, and the venture creation
mechanism—each of which are variously adapted to transmitting different degrees of sticky (tacit)
versus slippery (codified) knowledge.

Our findings show that in both aggregate level of technology and six different technological
categories, the spillover impacts of journal publicatjoimrough the public domain mechanism of
knowledge dissemination, are rarely localized within Colorado; rather, the geographic scope of
theseimpacts are national and even global. Thus, geographic proximity is not a question with this
channel. However, the extent to which the spillover impacts of patented knowledge is localized
within Colorado is open to question because it is possible to control permissions for use, but at the
same time it is impossible fanit everyone’s awareness and use of it, particularly in foreign
jurisdictions where patents are not taken out by the university. Therefore, the degree of localization
of university knowledge spillovers when using the patent and licensing mechanism might depend
on the different types of technology involved as well as the intellectual property and contract
strategy pursued. Thus, university journal publications and patents are most appropriate for

dissemination of more slippery forms of knowledge, but commercial innovation impacts can be
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localized nearer to the location of a university when using patents and licensing than when usin
journal publications alone.

However, the collaboration mechanism of knowledge dissemination, such as indicated by
industry coauthorship on journal articles and private sponsorship of grants and contracts, which
are more rivalrous by virtue of the more tacit qualities of knowledge being disseminated and
because of the higher transaction costs, requires closer interaction and greater geographic
proximity, which usually prevents global dissemination. Thus, we observe geographic proximity
is significantly important for these channels. However, there are even distinctions within these.
For example, we find industry coauthorship on articles to be less likely to be localized than
privately sponsored grant awards. Nevertheless, the stickiness of these channels might depend also
on the different technological categories. As mention as above, the geographic proximity is
important only in aggregate level of technology, but it can be varied across the different
technological categories, especially the slippery form of knowledge in animal health and nutrition
health technology. Finally, university start-ups are highly geographically bounded near
universities because in the early stages start-up companies need support from their host university.

One conclusion we can draw from this study is that both public and private benefits of
university knowledge transfers rely on the different types of knowledge dissemination channels
and the intrinsic characteristics of the different types of technology being disseminated. Moreover,
our unique data set of Colorado State University’s research activities and a full range of potential
knowledge dissemination channels make it possible to examine the extent to which the different
types of knowledge dissemination channels work within the context of agricultural fields and
technologies. Most previous studies of university-industry collaboration activities have used

aggregate data.
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Despite these interesting preliminary findings, there are at least two major shortcomings in our
approach. First, which we hope to address in further studies, we will attempt to build relevant
regression models for measuring university knowledge spillovers, via mechanisms of knowledge
dissemination for both sticky and slippery types of knowledge. Second, although both advantages
and disadvantages exist for the use of single institutional data, it may compromise findings’
generality relative to other institutions or to more aggregate economy-wide data bexduse e
institution has its own idiosyncratic conditioning characteristics, including levels of research
expenditures, management skills, administrative policies, and so on. Thus, we hope to add more

institutional data and compare the results.
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OVERALL CONCLUSION

This study analyzes the economic impacts of university knowledge production and spillover
activities, especially on innovations in agriculturally-related industries. The three chapters provide
insights into the dynamics of university knowledge production and dissemination from three
interrelated perspectives: (1) the university knowledge production function, (2) the organization
and agency of research production within research teams, and (3) the geographical scope of
economic impacts from university knowledge dissemination. The overall finding of this study
shows how university research and its knowledge spillovers drive and create benefits to society
and the economy, both publicly and privately. As the roles and missions of the university have
changed, the composition of the university research system has also been transformed, affecting
the trend of its impact on industrial innovation directly, and on economic growth indirectly. In
agriculture, especially, the land grant universities play a significant role in supporting and
stimulating commercial technological innovation within the state’s agricultural value chain, and
beyond.

To sum up, chapter 1 has analyzed Colorado State University’s research production,
disaggregated across the different colleges, departments, and research units, range of knowledge
dissemination channels. This chapter introduced and utilized a uniquely detailed dataset together
with a novel empirical technique for estimating three different knowledge production function
models, including unrestricted and restricted negative binomial polynomial distributed lag (PDL)
models and an effective labor log-log PDL model. The empirical test results indicated that the PDL
models have advantages over the ad hoc lag scheme common in the literature, in terms of: (1)
better goodness of fit according to two information criteria (AIC & SBIC), and (2) more

meaningful explanations of unknown lag effects.
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The effective labor PDL model provides some preliminary economic intuition regarding the
“returns to scale” of knowledge production. The results showed that published journal articles and
doctoral degree awards, outputs disseminated via the public domain channel, exhibit decreasing
returns to scale, which is closely linked with the law of diminishing marginal productivity, whereas
outputs disseminated via the other two channels, of collaboration and tech transfer, exhibit
increasing returns to scale. The regression results also indicate that the mean gestation lag between
research expenditures inception and completion of journal articles is 2.5 years, which is two or
three years shorter than the gestation on collaborative outputs (4.8 years) and tech transfer outputs
(4.7 years). In the SUR models, journal articles and tech transfer outputs have positive
relationships with past research expenditures, whereas collaborative outputs have a negative
relationship with past expenditures. Perhaps, researchers turn to collaboration activities when their
research funds from public sources dry up. And, the collaboration index and the combined tech
transfer metrics have an inverse relationship.

Chapter 2 has explored a new framework for understanding the agency of knowledge
production within the university context. First, findings from an exploration of an ego-centric
social network provide insights and intuition about research team participation dynamics over the
course of the career of an individual university researcher. It finds that the share of co-authors from
outside CSU contributes the size gbeentric research teams, with the time trend between the
share of outside team members and research team size both grow over the time. Conversely, the
trends of the teams’ percent share of co-authors from the ego’s home department and team size
have opposite patterns over time with downward and upward tendencies, respectively. Moreover,
the downward trend of the percent share of team members from the ego’s home department

interpreted as “inverse team flexibility” tells us that the ego-centric research teams have been
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transformed from closer collegial or hieratical forms to broader network or project-based
relationships.

Second, regression results from a representative sample of research teams shows that
participation of authors from other CSU departments, other institutions, and private firms all
contribute to the size of research teams. Interestingly, field variety seems to affect the size of
research teams negatively, but it does affect the inclusion of non-CSU authors positively. R&D
expenditures generally have a positive influence on team size. However, private R&D money has
a small but negative relationship with team size, but it affects the inclusion of non-CSU authors
positively. It is possible that private R&D investments and field variety affect the size of research
team indirectly, rather than directly.

Finally, research quality is analyzed by comparing CDFs of various indicators. These indicate
that both in teams generating journal articles and in teams generating patents, the involvement of
team members from multiple CSU departments improves the impact of their research. There is no
significant difference between teams that include members from just a single private firm and those
that include members from multiple firms. Larger teams are more likely to have higher impacts
than small teams in generating both articles and patents.

Chapter 3 has examined the geospatial pattern of Colorado State University (CSU) knowledge
spillovers and their commercial economic impact, especially within Colorado’s agriculturally-
related sectors. The geographical scope of impacts and benefits realized are determined by the
different types of knowledge dissemination channels suitable for different inherent characteristics
of (sticky versus slippery) knowledge. Our findings show that the spillover impacts of journal
publications are rarely localized within Colorado; rather, the geographic scope of these impacts is

national and even global. For this slippery form of knowledge geographic proximity is unimportant.

188



However, the extent to which the spillover impacts of patented knowledge is localized within
Colorado is open to question because it is possible to control permissions for use, but at the same
time it is impossible to limit everyone’s awareness and use of it, particularly in foreign jurisdictions
where patents are not taken out by the university. By contrast the knowledge disseminated via the
collaboration mechanism, such as indicated by industry coauthorship on journal articles and
private sponsorship of grants and contracts, is more sticky; it is more rivalrous and excludable by
virtue of the more tacit qualities of knowledge being disseminated. The location of private sector
collaborators is closer to CSU, but can still be national in scope. Looking at the venture creation
mechanism, also involving sticky knowledge, we see university start-ups are highly geographically
bounded and located near the university, likely because early stage start-up companies need
support from their faculty founder and the host institution. Because of the higher transaction costs,
these channels require closer interaction and greater geographic proximity, which usually prevents
global dissemination. Thus, the geographic proximity is significantly important for the
collaboration and venture creation channels.

Despite these interesting preliminary findings, one major issue in this dissertation is its reliance
upon a single institution’s data and perspective. There are both advantages and disadvantages in
the use of single institutionalata. It may compromise findings’ generality relative to other
institutions or to more aggregate economy-wide data because each institution has its own
idiosyncratic conditioning characteristics, including levels of research expenditures, management
skills, administrative policies, and so on. Thus, we hope to add more institutional data and compare
the results. Nevertheless, we expect the results of this study to be of value in future economic
studies of university knowledge production and impact on commercial innovation, as well as of

practical value to CSU administration as well as state and federal policymakers.

189



REFERENCES

Adams, J.D. “Comparative Localization of Academic and Industry Spillovers.” Journal of
Economic Geography002, Vol. 2, pp. 253-278.

Adams, J.D., and J.R. Clemmons. “The role of search in university productivity: inside, outside,
and interdisciplinary dimensiorisIndustrial and Corporate Chang&011, Vol. 20, No.1, pp.
215-251.

Adams, J.D., and Z. Griliches. "Research Productivity in a System of Universitiesihales
d'Economie et de StatistiquE998, Vol. 49/50, pp.127-162.

Adams, J.D., G.C. Black, J.R. Clemmons, and P.E Stephen. "Scientific Teams and Institutional
Collaborations: Evidence from U.S. Universities, 198199."Research Poligy2005, Vol. 34,
pp.259-285.

Agrawal, A. and R. Henderson. “Putting Patents in Context: Exploring Knowledge Transfer
from MIT.” Management Scienc&anuary 2002, Vol. 48, No.1, pp. 44-60.

Almon, S. “The Distributed Lag Between Capital Appropriations and Expenditures
Econometrical965, Vol. 33, No. 1, pp. 178-196.

Ancona, D.G., and D.F. Caldwell. “Bridging the Boundary: External Activity and Performance
in Organizational Teanis Administrative Science Quarterl§992, Vol. 37, No. 4, pp. 634-
665.

Ansdin, L., and A. Varga. “Entrepreneurship, Geographic Spillovers and University Research.”
ESRC Centre for Business Research, University Cambridge Working, R8p&r No. 59.

Ansdlin, L., A. Varga, and Z. Acs. “Geographical Spillovers and University Research: A Spatial
Econometric Perspectivé&rowth and Change2000, Vol. 31, pp. 501-515.

Ardlano, M., and B. Honore. “Panel Data Models: Some Recent Developmehtandbook of
Econometrics, Amsterdam, North Hollara®01, Vol. 5, pp. 3229-3296.

Arora, A., P.A. David, and A. Gambardella. “Reputation and Competence in Publicly Funded
Science: Estimating the Effects on Research Group Productivitywales d'Economie et de
Statistique 1998, Vol. 49/50, pp.163-198.

Artz, K.W., P.M. Norman, D.E. Hatfield, and L.B. Cardinal." A Longitudinal Study of the
Impact of R&D, Patents, and Product Innovation on Firm Performadmerhal of Innovation
Management2010, Vol. 27, pp. 725-740.

Aube, C., V. Rousseau, and S. Trembley. “Team Size and Quality of Group Experience: The
more the Merrier?Group Dynamics: Theory, Research, and Practk@l1, Vol. 15, No. 4,
pp. 357-375.

Audretsch, D.B., and E.E. Lehmann. "Mansfield’s Missing Link: The Impact of Knowledge
Spillovers on Firm Growtfi Journal of Technology Transfe2005, Vol. 30, pp. 207-210.

190



Barabasi, A.L., H. Jeong, Z. Neda, E. Ravasz, A. Schubert, and T. Vicsek. “Evolution of the
Social Network of Scientific CollaboratioriPhysica A2002, Vol. 311, pp.590-614.

Belenzon, S., and M. Schankerman. “Spreading the Word: Geography, Policy, and university
Knowledge Diffusion.” LSE STICERD Research Paper, 2010, No. EI 50.

Bettencourt, L.M.A, J. Lobo, and D. Strumsky. "Invention in the city: Increasing returns to
patenting as a scaling function of metropolitan siReSearch Policy2007, Vol. 36, pp. 107-
120.

Biancani, S., and D.A. McFarland. “Social Networks Research in Higher Education.” Springer
Science Pres2013, Higher Education: Handbook of Theory and Research, Ch.4, pp.151-215.

Biffl, S., and W. Gutjahr. “Influence of Team Size and Defect Detection Technique on Inspection
Effectiveness.” Software Metrics Symposium, METRICS, IEEBD1, pp.63-75.

Borgatti, S.P., M.G. Everett, and J.C. Johnson. “Analyzing Social Networks”, Sage Publication
Press,2013.

Boschma, R.A. “Proximity and Innovation: A Critical AssessmgriRegional Studie2005, Vol.
39, No. 1, pp.61-74.

Buenstorf, G., and A. Schacht. "We need to talk- or do we? Geographic distance and the
commercialization of technologies from public researBeSearch Policy2013, Vol. 42, pp.
465-480.

Bulut, H., and G. Moschini. “U.S. Universities’ Net Return from Patenting and Licensing: A
Quantile Regression Analysis.” Economics of Innovation and New Techno|df09, Vol.18,
No.2, pp. 123-137.

Burt, R.S. “Structure Holes: The Social Structure of Competition.” Harvard University Press,
1995.

Bush, V. “Science, the Endless Frontier: A report to the President by Vannevar Bush, Director of
the Office of Scientific Research and Developnigdniversity of Michigan Library1945.

Chamberlain, G. “Analysis of Covariance with Qualitative Ddt&eview of Economic Studjes
1980, Vol. 47, pp. 225-238.

Cohen, W.M. “Patents and Appropriation: Concerns and Evidence.” Journal of Technology
Transfer 2005, Vol. 30, pp. 5771.

Cohen, W.W., R.R. Nelson and J.P. Walsh. “Links and Impacts: The Influence of Public
Research on Industrial R&D.” Management Sciencéanuary 2002, Vol. 48, No.1, pp. 1-23.

Conover, W.J. "Practical Nonparametric Statistic§Viley, 1999, 3rd edition.

Crane, D. “Social Structure in a Group of Scientists: A Test of the "Invisible College" Hypathesis
American Sociological RevieWw969, Vol. 34, No. 3, pp. 335-352.

Crespi, G.A., and A. Geuna. “An Empirical Study of Scientific Production: A Cross Country
Analysis, 19812002.” Research PoligyVol. 37, 2008, pp.565-579.

191



Etzkowitz, H., A. Webster, C. Gebhardt, and B.R.C. Terra. “The Future of the University and
the University of the Future: Evolution of Ivory Tower to Entrepreneurial Paradigesearch
Policy, 2000, Vol. 29, pp. 313-330.

Etzkowitz, H., and L. Leydesdorff. “The Dynamics of Innovation: from National Systems and
"Mode 2" to a Triple Helix of Universityindustry-Government RelatiorisResearch Policy
2000, Vol. 29, pp. 109-123.

Etzkowitz, H. “Research Groups as ‘Quasi-firms’: the Invention of the Entrepreneurial
University” Research Policy2003, Vol.32, pp.109-121.

Feller, 1., and M. Feldman. “The Commercialization of Academic Patents: Black Boxes,
Pipelines, and Rubik’s Cubes.” Journal of Technology Transfe2010, Vol. 35, pp. 597-616.

Graff, G.D., A. Heiman and D. Zilberman. “University Research and Offices of Technology
Transfer.” California Management Reviewall 2002, Vol. 45, No.1, pp. 88-115.

Graff, G.D., R. Mortenson, R. Goldbach, et al. “The Value Chain of Colorado Agriculture.”
Colorado State universityrebruary 2013.

Graff, G.D., A. Berklund, and K. Rennels. “The Emergence of an Innovation Cluster in the
Agricultural Value Chain along Colorado's Front Rahgeéolorado State university
November 2014, pp. 1-87.

Graff, G.D., G.C. Rausser, and A.A. Small. “Agricultural Biotechnology’s Complementary
Intellectual Assets.Review of Economics and StatstiMay 2003, Vol.85, No.2, pp. 349-
363.

Greene, W.H. “Econometric Analysis.” Prentice Hall 2011, Seventh Edition.

Griliches, Z. “Issues in Assessing the Contribution of R&D to Productivity Growth”. Bell Journal
of Economics1979, Vol.10, pp. 92-116.

--------------- . “Productivity, R&D, and the Data Constraint.” American Economic Revig@994,
Vol.84, pp. 1-23.

Grossman, G.M., E. Hel[pman. “Innovation and Growth in the Global Economy.” MIT Press
1991.

Guimera, R., B. Uzz, J. Spiro, and L.A. Numes Amaral. “Team Assembly Mechanisms
Determine Collaboration Network Structure and Team Performance.” Science, New Series
2005, Vol. 308, N0.5722, pp.697-702.

Gujarati, D.N. “Basic Econometrics.” McGraw Hill, 2009, Fifth edition.

Hall, B.H. “Exploring the Patent Explosion.” Journal of Technology Transfe2005, Vol. 30, pp.
35-48.

Harhoff, D., F. Narin, F.M. Scherer., and K. Vopel. “Citation Frequency and the Value of
Patented InventiorisReview of Economics and Statistit899, Vol. 81, No. 3, pp. 511-515.

192



Hausman, J.B., H. Hall, and Z. Griliches. “Econometric Models for Count Data and with
Application to the PatenfR&D Relationship.” Econometrica 1984, Vol.52, No.4, pp.909-
938.

Heckman, J. “Statistical Models for Discrete Panel Data. Structural Analysis of Discrete Data
with Econometric Applicationd MIT Press: Cambridge, 1981.

Henderson, R., A.B. Jaffe, and M. Trajtenberg. “Universities as a Source of Commercial
technology: A Detailed Analysis of University Patenting, 19688.” Review of Economics
and StatisticsFebruary 1998, Vol. 80, No. 1, pp. 119-127.

Henderson, R., and |. Cockburn. "Scale, Scope, and Spillovers: The Determinants of Research
Productivity in drug discovery.RAND Journal of Economic4996, Vol. 27, No. 1, pp. 32-
59.

Heher, A.D. “Benchmarking of Technology Transfer Offices and What it means for Developing
Countries.” Intellectual property management in health and agricultural innovation: a
handbook of best practice2007, Vol. 1 and 2, pp. 207-228.

Herrigel, G.B. “Power and the Redefinition of Industrial Districts: the Case of Baden-
Wirttemberg’ The Embedded Firm: On the Socioeconomics of Industrial Networks. London:
Routledge 1993, pp.227-251.

Hong, W., and Y. Su. “The Effect of Institutional Proximity in Non-local Universindustry
Collaborations: An Analysis Based on Chinese Patent’DRtsearch Policy2013, Vol. 42,
pp. 454-464.

Huffman, W.E., and R.E. Just. “Setting Efficient Incentives for Agricultural Research: Lessons
from Principal-Agent Theory American Journal of Agricultural Economic2000, Vol. 82,
No. 4, pp.828-841.

Jackson, M.O. “Social and Economic Networks.” Princeton University Pres2008.

Jaffe, A.B. “Real Effects of Academic Research.” American Economic Reviemecember 1989,
Vol. 79, No. 5, pp. 957-970.

Jaffe, A.B., M. Trajtenberg, and R. Henderson. “Geographic Localization of Knowledge
Spillovers as Evidenced by Patent Citatididuarterly Journal of Economi¢c4993, Vol. 108,
No. 3, pp. 577-598.

Jaffe, A.B., and M. Trajtenberg. “Flows of Knowledge from Universities and Federal
Laboratories: Modeling the Flow of Patent Citations over Time and across Institutional and
Geographic Boundaries.” National Academy of Scien¢eld96, Vol. 93, No. 23, pp. 12671-
12677.

Jensen, R., and M.C. Thursby.. “Proofs and Prototypes for Sale: The Licensing of the University
Inventions.” American Economic RevieWarch 2001, Vol. 91, No. 1, pp. 240-259.

Johnes, J. and G. Johnes. “Research Funding and Performance in UK University Departments
of Economics: a Frontier Analysis.” Economics of Education RevieWol. 14, pp. 301-314.

193



Jones, B.F., S. Wuchty, and B. Uzzi. “Multi-University Research Teams: Shifting Impact,
Geography, and Stratification in Scieric8cience2008, Vol. 322, No. 5905, pp. 1259-1262.

Katz, J.S,, and B.R. Martin. “What is Research Collaboration?” Research Policy1997, Vol. 26,
pp.1-18.

Kolmogorov, A.N. “Sulla Determinazione Empirica di Una Legge di Distribuzione” Giornale
dell’ Istituto Italiano degli Attuar, 1933, Vol. 4, pp. 83-91

Krugman, P., and R. Wélls. “Microeconomics.” Worth Publishers34 edition.

Laband, D.N., and R.D. Tollison, “Intellectual Collaboratiofi Journal of Political Economy
2000, Vol. 108, No. 3, pp. 632-662.

Latour, B. “We have Never been Modern.” Harvard University Press]993.
------------- . “Aramis or the Love of Technology.” Harvard University Pressl 996

Laursen, L. and A. Salter. “Searching High and Low: What Types of Firms Use Universities as
a Source of Innovation?” Research Policy2003, Vol. 33, pp. 1201-1215.

Lazega, E., M. Jourda, L. Mounier, and R. Stofer. “Catching up with Big Fish in the Big Pond?
Multi-level NetworkAnalysis through Liked Design.” Social Network2008, Vol. 30, pp. 159-
176.

Lester, R.K. “Universities, Innovation, and the Competitiveness of Local Economics” MIT
Industrial Performance Center Working Pap2005, No. 05-010.

Lee Y., J.P. Walsh, and J. Wang. “Creativity in Scientific Teams: Unpacking Novelty and
Impact” Research Policy2015, Vol. 44, pp.684-697.

Lee, Y.S. “Technology Transfer and the Research University: a Search for the Boundaries of
University—Industry Collaboration.” Research Poligyl996, Vol. 25, pp. 843-863.

Liu, S. “Spillovers from Universities: Evidence from the Land-Grant Program.” Journal of Urban
Economics2015, Vol. 87, pp. 25-41.

Lissoni, F., P. Lierena, M. McKelvey, and B. Sanditov. "Academic Patenting in Europe: New
Evidence from the KEINS Databas®&search Evaluatiqr2008, Vol. 17, No. 2, pp. 1-16.

Mansfield, E. “Academic Research and Industrial Innovation.” Research Policy1991, Vol. 20,
pp. 1-12.

--------------- . “Academic Research Underlying Industrial Innovations: Sources, Characteristics,
and Finaning, ” Review of Economics and Statistieebruary 1995, Vol. 77, No.1, pp. 55-65.

Min, I, and P. Choi. “STATA Advanced Panel Data Analysis.” Jiphil Mediag 2012, First Edition.
Min, I, and P. Choi. “STATA Time Series Data Analysis.” Jiphil Media 2014, First Edition.

Moody, J. “The Structure of a Social Science Collaboration Network: Disciplinary Cohesion from
1963 to 1999 American Sociological Review004, Vol. 69, No. 2, pp. 213-238.

194



Mowery, D.C., and B.N. Sampat. “University Patents and Patent Policy Debates in the USA,
19254980.” Industrial and Corporate Chang@001, Vol. 10, No. 3, pp. 781-814.

-------------------- . “The Bayh-Dole Act of 1980 and Universitndustry
Technology Transfer A Model for Other OECD Governmehtgdeurnal of Technology
Transfer 2005, Vol. 30, pp. 11827.

Narin, F., K. Hamilton, and D. Olivastro. “The increasing Linkage between US Technology and
Public Science.” Research Policyl997, Vol. 26, pp. 317-330.

Newman, M.E.J. “Clustering and Preferential Attachment in Growing Networks” Physical
Review E2001, Vol. 64, Issue. 2, pp.1-13.

-------------------- . “Coauthorship Networks and Patterns of Scientific Collaboration” PNAS 2004,
Vol. 101, Suppl. 2, pp.5200-5205.

O’Shea, R.P., T.J. Allen, A. Chevalier, and F. Roche. “Entrepreneurial orientation, technology
transfer and spinoff performance of U.S. universitidResearch Policy2005, Vol. 34, pp.
994-1009.

Pagano, M., and M. J. Hartley. “On Fitting Distributed Lag Models Subject to Polynomial
Restrictions,” Journal of Econometri¢sl981, Vol. 16, pp 171-198.

Pakes, A., and Z. Griliches. “Patents and R&D at the Firm Level: A First Report.” Economics
Letter, 1980, Vol.5, pp. 377-381.

---------------------------------- .’Patents and R&D at the Firm Level: A First Look.” NBER Book
Title: R & D, Patents, and Productivityniversity of Chicago Presd984, Ch. 3, pp. 55-72.

Pardey, P.G. “The Agricultural Knowledge Production Function: An Empirical Look.” Review of
Economics and Statistic$989, Vol. 71, No. 3, pp.453-461.

Parker, G.M. “Cross-functional Teams: Working with Allies, Enemies, and other Strangers.”
Wiley press1992.

Payne, A., and A. Siow. "Does Federal Research Funding Increase University Research Output?"
Advances in Economic Analysis and Pql2§03, Vol. 3, Iss 1, Art. 1.

Paytas, J., R. Gradeck, and L. Andrews. “Universities and the Development of Industry
Clusters.” Carnegie Mellon Center for Economic Development Administration, U.S.
Department of Commerc2004.

Ponds, R., F. van Oort, and K. Frenken. “Innovation, Spillovers and University-Industry
Collaboration: an Extended Knowledge Production Function Approach.” Journal of Economic
Geography 2010, Vol. 10, pp. 231-255.

Powell, W.W. “Neither Market nor Hierarchy: Network Forms of Organization.” Research in
Organizational Behaviqr1990, Vol, 12, pp.295-336, ISBN: 1-55938-029-2.

Rasmussen, E., S. Mosey, and M. Wright. “The Influence of University Departments on the
Evolution of Entrepreneurial Competencies in Spin-off Venttiifegesearch Poligy2015, Vol.
43, pp. 92-106.

195



Rasmussen, E., O. Moen, and M. Gulbrandsen. “Initiatives to promote commercialization of
university knowledg€ Technovation2006, Vol. 26, pp. 518-533.

Rodriguez, M.A., and A. Pepe. “On the relationship between the structural and socio-academic
communities of a coauthorship netwgrkournal of Informetrics2008, Vol. 2, pp. 195-201.

Romer, P.M. “Increasing Returns and Long-Run Growtdournal of Political Economy1986,
Vol. 94, No. 5, pp. 1002-1037.

---------------- . “Endogenous Technological Change.” Journal of Political Economy1990, Vol. 98,
No. 5, pp. S71-S102.

Ruef, M. “A Structural Event Approach to the Analysis of Group CompositicghSocial Networks
2002, Vol. 24, pp. 135-160.

Samuelson, P.A. “The Pure Theory of Public Expenditure.” Review of Economics and Statistics
1954, Vol.36, No.4, pp.387-389.

Scherer, F.M., and D. Har hoff. “Technology policy for a world of skew-distributed outcoriies
Research Policy2000, Vol. 29, pp. 599-566.

Schumpeter, J.A. “Capitalism, Socialism, and Democracy.” Harper and Brothers Pres4942.
Scott, J. “Social Network Analysis.” Sage Publication Pres012, & edition.

Shane, S. "Selling University Technology: Patterns from MITManagement Scienc2002, Vol.
48, No. 1, pp. 122-137.

Smangs, M. “The Nature of the Business Group Social Network PerspectiveOrganization
2006, Vol. 13, No. 6, pp. 889-909.

Smirnov, N.V. “Estimate of Deviation between Empirical Distribution Functions in Two
Independent Sampl&sBulletin Moscow Universityl933, Vo. 2, pp.3-16.

Solow, R.M. “A Contribution to the Theory of Economic GrowthQuarterly Journal of
Economics1956, Vol. 70, No. 1, pp. 65-94.

Spender, J.C. “Making Knowledge the Basis of a Dynamic Theory of the Firm.” Strategic
Management Journall996, Vol. 17, pp.45-62.

Stokols, D., K.L. Hall, B.K. Taylor, and R.P. Moser. “The Science of Team Science: Overview
of the Field and Introduction to the Supplenyémerican Journal of Preventive Medicjne
2008, Vol. 35, No. 2S, pp. S77-S89.

Sunding, D.,and D. Zilber man. “The Agricultural Innovation Process: Research and Technology
Adoption in a Changing Agricultural Sector.” Handbook of Agricultural Economic2001, Vol.
1, Chapter 4, pp. 207-261.

Taramasco, C., J. Cointet, and Camille Roth. “Academic Team Formation as Evolving
Hypergraphs$’ Scientometrics2010, Vol. 85, pp.721-740.

Thursby, J.G., AW.Fuller, and M.C. Thursby. "US faculty patenting: Inside and outside the
university."Research Policy2009, Vol.38, pp. 14-25.

196



Thursby, J.G. and M.C. Thursby. “University-Industry Linkages in Nanotechnology and
Biotechnology: Evidence on Collaborative Patterns for New Methods of Invéhfiogrnal
of Technology TransfeR011, Vol. 36, pp. 605-623.

-------------------- - ---. “University Licensing and the Bayh-Dole AttScience
2003, Vol. 301, pp. 1052.

Tohidi, H., and M.J. Tarokh. “Productivity Outcomes of Teamwork as an Effect of Information
Technology and Team SiZdnternational Journal of Production Economj@&006. Vol. 103,
pp.610-615.

Uzzi, B., S. Mukherjee, M. Stringer, and B. Jones. “Atypical Combinations and Scientific
Impact.” Science, 2013, Vol. 342, No. 25, pp.468-472.

Uzzi, B., J. Spiro. “Collaboration and Creativity: The Small World Problémmerican Journal
of Sociology 2005, Vol. 111, No. 2, pp. 447-504.

Wagner, C.S,, and L. Leydesdorff. “Network Structure, Self-organization, and the Growth of
International Collaboration in Scient&kesearch Policy2005, Vol. 34, pp. 1608-1618.

Whalley, A, and J. Hicks. “Spending Wisely? How Resources Affect Knowledge Production in
Universities.” Economic Inquiry, 2014, Vol. 52, No. 1, pp. 35-55.

Wooldridge, J.M. “Econometric Analysis of Cross Section and Panel Data.” MIT Press 2001,
First Edition.

Wuchty, S, B.F. Jones, and B. Uzzi. “The Increasing Dominance of Teams in Production of
Knowledge.” ScienceMay 2007, Vol. 316, pp.1036-1039.

Zhu, M., Y. Huang, and N.S. Contractor. “Motivations for Self-assembling into Project Teams.”
Social Networks2013, Vol. 35, pp.251-264.

197



APPENDIX

Table A-1—Major companies active in water technology, infrastructure, analytics, and

management innovation

Privately
sponsored

grant WoS Citing

Company Country State awards articles Patents

3DGeo Dev Inc USA CA SO 1 0
AECOM USA co $10,504 3 0
AGRO ENGN INC USA co S0 1 0
Analyt Technol Inc USA co SO 2 0
Anderson Associates LLC USA Cco $18,265 1 0
Andritz Inc. USA PA SO 0 1
Aqua Engn Inc USA co S0 1 0
AQUA TERRA CONSULTANTS USA CA S0 1 0
Balance Hydrol Inc USA CA S0 1 0
Bay Bioscience Kabushiki Kaisha Japan Foreign SO 0 1
Bioconversion Technologies Limited USA GA S0 0 3
BIO-Logic Environmental USA Cco $2,856 0 0
Black Veatch USA co S0 1 0
Brown & Gay Engineers Inc USA TX SO 1 0
Brown and Caldwell USA co $40,000 0 0
Camp Dresser McKee USA Cco $11,276 1 0
Cbec Ecoengn USA CA S0 1 0
CDM Smith USA co S0 3 0
Centre National De La Recherche Scientifique Frence Foreign S0 0 1
CH2M Hill USA co $83,351 13 0
Chingoo Research Partnership USA CA S0 0 2
Cleareso Llc USA FL SO 0 2
Clearwater Solut USA co S0 1 0
Coastal Waters Biotechnology Group Llc USA CA S0 0 2
Elk River Management Corporation USA AL $1,463 0 0
Endress & Hauser Switzerland Foreign SO 0 2
FRICO-Farmers Reservoir and Irrigation USA Cco $57,689 0 0
GeoTrans Inc USA co $114,549 1 0
Geowatersheds Sci USA AK SO 1 0
-i;:;:gngér Technol Team Chevron Energy USA CA %0 1 0
GST Growth LLC USA DE S0 0 1
Hach Co USA co SO 1 0
Halliburton Company USA TX $53,488 0 0
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Heinz Ploechinger

Hemisphere Gps Llc

HydroQual Inc

Hydrosphere Resource Consultants
IER Niono

Institute Of Geological & Nuclear Sciences
Ltd.

Invitrogen Corporation
KOWACO-Korean Water Resources Corp.

Life Technologies Corporation
Lumiere Diagnostics Inc
MclLaughlin Water Engineering LTD
MWH Amer Inc

NW Hydraul Consultants

Plato Industries Ltd

Porzak Browning & Bushong LLP
Regenesis Manageinent Grp
Riken

Soldier Canyon Filter Plant
Stanley Consultants Inc.
Streamline Automation Llc
Stuart Products Inc.

Swiss Fed Inst Technol Inst Hydromech &
Water Resources Management

Tech Serv Ctr Bur Reclamat Sedimentat &

River Hydraul Grp

Tetra Tech Surface Water Grp

TransAlgae Ltd

TRC Hydro Geo Consultants
Vision For You Llc

WATER ENGN & TECH INC
Western Water Consultants
Wright Water Engn Inc

Yellow Springs Instrument Co Inc

UK
Canada
USA
USA
Mali
New
Zealand
USA

S. Korea

USA
USA
USA
USA
USA
USA
USA
USA
Japan
USA
USA
USA
USA

Switzerland

USA

USA

Israel

USA
USA
USA
USA
USA
USA

Foreign
Foreign
NJ

co

Foreign
Foreign

CA
Foreign

CA
co
co
co
CA
TX
co
co
Foreign
co
1A
AL
TX

Foreign
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Cco

Foreign
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Cco
WY
Cco
OH
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S0
30
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$37,895
SO

S0

SO
$46,140
SO
$5,000
SO

S0
$7,064

SO
$0
$0

$0

S0
S0
S0
SO
S0
SO

O 0O o0 oo kr Pr ORFRr NPFP OO O O O » » N OoOo

[any

N e =

O O O » N

N R

o

O O W B O N O ONOOOON

o

O O O O ~» O

199



Table A-2—Major companies active in soil fertility or pest control innovation

Privately
sponsored

grant WoS Citing

Company Country State awards articles Patents

ACM-Texas LLC USA co $102,084 0 0
Agriliance LLC USA co S0 1 0
American Cyanamid Company USA NJ $101,500 0 0
Amino Chem Co Ltd Japan Foreign S0 1 0
Applied Chemical Magnesias Corp. USA co $16,412 0 0
BASF Corporation Germany Foreign $102,000 0 6
Brotica Inc USA co SO 1 0
Cargill Inc USA co S0 1 0
Chisso Corporation Japan Foreign $18,647 0 0
CIBA-GEIGY Chemical Company Switzerland  Foreign $120,000 0 0
Decagon Devices Inc USA WA SO 1 0
Dow Chemical Company USA M $10,000 0 0
E.l. Dupont Company USA DE $88,190 0 0
EMBRAPA Pecuaria Sul Brazil Foreign SO 1 0
Fluid Fertilizer USA KS $4,250 0 0
Fmc Corporation USA PA S0 0 3
Genetics & IVf Institute USA VA SO 0 4
Hauser Company USA co $22,000 0 0
Ice Nine Environm Consulting USA VT SO 1 0
Isca Technologies USA CA S0 0 2
Isoprime Ltd Cheadle Hulme UK Foreign SO 1 0
Laboratoires Expanscience France Foreign S0 0 3
Lenat Consulting Serv USA NC SO 3 0
LGI Ellsworth USA IA S0 1 0
Nutrinsic Corporation USA Cco SO 0 1
Proviron Holdings Belgium Foreign S0 0 2
Roche Colorado Corp USA co SO 2 0
Roses Inc. USA OK $31,515 0 0
Sekisui Chemical Company Ltd. Japan Foreign $120,000 0 0
Seroctin Research and Technology Inc USA uT S0 0 1
Showa Denko K.K. Japan Foreign $37,760 0 0
ZT(;LIJIiSI?:smesses Sustainabil Coordinat USA VA %0 1 0
Soil Enhancement Technologies USA co $35,235 0 0
Syngenta Crop Protect Inc USA FL S0 1 2
Taensa Inc. USA CT $12,180 0 0
TERRAGEN DIVERS INC Canada Foreign SO 1 0
Thin Air Nitrogen Solutions USA co S0 0 0
TIGR USA MD S0 1 0
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U.S. Borax Inc. USA Cco $12,000 0 0
UGG Ltd Canada Foreign S0 1 0
United Phosphorous Inc USA CA SO 1 0
Valent BioSciences Corporation USA 1A $17,211 0 0
Western Mobile Northern Inc USA co $5,750 0 0
Y::Itmlre Micro-Gen Research Laboratories USA MO %0 0 3
Yulex Corp USA AZ $39,854 1 0

Table A-3—Major companies active in animal health and bio-medical science innovation

Privately
sponsored

grant WoS Citing

Company Country State awards articles  Patents

Advanced Integrative Medicine USA co $0 1 0
Advanced Tissue Sciences Inc USA CA SO 0 1
Agropecuaris CFM Ltd Brazil Foreign S0 2 0
Agroscope Changins Wadenswil ACW Switzerland Foreign SO 1 0
Alltech, Inc. USA KY $204,524 0 0
Alpharma Animal Health USA co $200,253 1 0
American Network of Lipolysis USA co $20,736 0 0
Antel Biosyst Inc USA M SO 2 0
Anthrogenesis Corporation USA NJ $0 0 15
Aperion Biologics, Inc. USA X SO 0 2
Applera Corporation USA CT S0 0 7
Applied Biosystems Inc. USA MA SO 0 10
Balchem Corporation USA NY $42,154 0 0
Bayer Materialscience Llc USA KS SO 1 3
Beckman Coulter, Inc. USA co SO 0 2
Becton Dickinson And Company USA NJ SO 0 6
Biassex Pty Ltd Australia Foreign S0 0 1
Boehringer Ingelheim Animal Health, Inc. Germany Foreign $13,970 0 0
Boston Scientific Scimed, Inc. USA MA SO 1 5
Bovine Reproduction Specialists USA co SO 1 0
Brigham And Women's Hospital USA MA SO 0 1
Btg International Limited UK Foreign S0 0 20
Cancer League of Colorado, Inc. USA co $59,780 0 0
Cedus, Inc. USA co SO 0 0
Cellx Inc. USA MD S0 0 1
CENT Vet Insitute Netherlands Foreign SO 1 0
Centaur Equine Products, Inc. USA PA $4,900 0 0
Codexis, Inc. USA CA SO 0 8
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Coley Pharmaceutical Gmbh
Colgate Palmolive Company
Corlife GbR

CSL Limited

Ctr Med Agr & Vet Entomol,
Dakocytomation Colorado, Inc.
Dfb Pharmaceuticals, Inc.
Doskosil Co Inc

Dr Joyce Donkersgoed Vet Serv Inc
Dymatize Enterprises, Llc
Elanco Animal Health

Embl Heidelberg

Encelle, Inc.

Energy Enzymes, Inc.

FMC Corporation

Fort Dodge Animal Health (old Cyanamid)
Fraunhofer-Gesellschaft Zur Forderung Der

Angewandten Forschung E.V.
Gardens Alive

Geissler Technologies, Llc
Gerigene Medical Corp
Global Animal Products, Inc.
Hancock Jaffe Laboratories
Heska Corp

Hill Top Pharmatest Inc

Hms Veterinary Development Inc
Hoechst-Roussel

Hoffmann La Roche Inc

Icyt Mission Technology, Inc.
IDEXX Laboratories, Inc.
Inguran, Llc

Intervet Inc

IVY Laboratories, Inc.

J. Craig Venter Institute
Juvaris Biotherapeutics, Inc.
LifeCell Corp,

Lifenet Health

Lilly Research Laboratories
Masterrind Gmbh

McMahon Bioconsulting & Stockhausen
Chem

Medarex, Inc.
Merial, Ltd.

Germany
USA
Germany
Australia
USA

USA

USA

USA
Canada
USA

USA
Germany
USA

USA

USA

USA

Germany

USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
USA

Germany
Germany

USA
USA

Foreign
NY
Foreign
Foreign
FL

co

TX

KS
Foreign
TX

IN
Foreign
NC

KS

PA

KS

Foreign

IN
MN
Wi
X
CA
Cco
OH
CA
MO
NJ
IL
co
X
DE
KS
CA
CA
NJ
VA
IN

Foreign
Foreign

NJ
GA

30

S0

30

S0

30

S0

30

S0

30

S0
$652,259
S0
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S0
$57,848
$233,275

S0

$42,956
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$1,012,096
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S0
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Moormans

Mwi Veterinary Supply Co.
Novartis Nutrition Ag

Novus International, Inc.
NPC-Nutrition Physiology Company
Nusirt Sciences, Inc.

Nutri-Turf, Inc.

Optibrand

Organogenesis Inc.

Peptide Technology Ltd

Perkin Elmer Corp, Appl Biosyst Div,
Pfizer Animal Health

Pharmacia & Upjohn Anim Hlth
PIC N Amer

Prairie Aquatech

Qlt Phototherapeutics, Inc.
Quali Tech, Inc.

Roche Vitamins Inc

Sakura Properties, Llc
Schering-Plough Corporation
Select Breeders Serv Inc

Silliker, Inc

SmithKline Beecham Animal Health
Source Integration, Inc.

Swing Aerobics Licensing, Inc.
Syntex

Tei Biosciences, Inc.

Tissue Engineering, Inc.

UCD Sch Agr Food Sci & Vet Med
Upjohn Company

Vet Adm Med Ctr

Vet Canc Specialists

Vet Infect Dis Org

Vet Labs Agcy Lasswade

VET LIFE

Wolfgang Jochle Associates Inc
XY Inc

Zapata Haynie Corporation

Zero Discharge Pty Ltd.

Zymogenet Inc

USA

USA
Switzerland
USA

USA

USA

USA

USA

USA
Australia
USA

USA

USA

USA

USA

USA

USA

USA

USA

USA

USA

USA

USA

USA

USA
Mexico
USA

USA
Ireland
USA

USA

USA
Canada
Scotland
USA

USA

USA

USA
Australia
USA

IL

co
Foreign
MO

OK

TN

FL

co

MA
Foreign
CA

MO

M

TN

SD

co

MN

NJ

uT

NJ

MD

IL

FL

CA

TX
Foreign
MA

NY
Foreign
M

VT
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Foreign
Foreign
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NJ
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MS
Foreign
WA

$28,500
S0

SO
$87,594
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S0
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Table A-4—Major companies active in agricultural information system and business
management innovation

Privately
sponsored

grant WoS Citing

Company Country State awards articles Patents

Advantage Int, USA Wi S0 1 0
AEl Econ Consultants USA Cco SO 1 0
AESOP Enterprises Ltd USA DC S0 1 0
égqne];i;:::ﬁ);zress Travel Related Services USA NY %0 0 14
Appl Geosolut LLC USA NH SO 1 0
Ascendant Partners Inc USA co S0 1 0
At&T Intellectual Property I, L.P USA TX SO 0 5
Battelle Memorial Institute USA OH S0 0 1
Bbi International, Inc. USA ND SO 0 2
Bioprocessh20 Llc USA RI S0 0 1
Broadcom Corporation USA Cco SO 0 2
Camas Technologies, Inc. USA co $57,608 0 0
Care of Smith S, Regenesis Management Grp, USA co SO 1 0
Catalyst International, Inc. USA PA $6,439 0 0
Chemonics USA DC $579,130 0 0
Crosscart, Inc. USA CA SO 0 19
Dfb Technology Holdings, Lic USA TX SO 0 8
DM International, Inc. USA NY $18,900 0 0
E. l. Du Pont De Nemours And Company USA DE SO 0 11
Employers Reinsurance Co USA (0] SO 1 0
Epia:Kk Japan Foreign SO 0 1
Evers Associates, USA MD SO 1 0
lii Holdings 1, Llc USA DE SO 0 2
Invention Science Fund |, Llc. USA WA S0 0 1
Lead Core Fund, L.L.C. USA NY SO 0 3
Lee French Agr Res Inc, USA MN S0 1 0
Optibrand Ltd., Llc USA co SO 0 2
Overseas Projects Corp. Canada Foreign $42,963 0 0
Pragma Corp. USA VA $4,700 0 0
Pursell Industries, Inc. USA CA $900 0 0
Res Management Syst Inc USA Cco SO 1 0
Research Management Systems, Inc. USA Cco $79,905 0 0
Ronco Consulting Corporation USA DC $103,448 0 0
Sci Applicat Int Corp USA (0] SO 2 0
Scientific Methods, Inc. USA IN $23,539 0 0
Southeast Colo. Enterprise Develop. Inc. USA co $9,000 0 0
Tenera Technology, LLC USA co $14,500 0 1
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Terra Global Capital USA CA SO 1 0
Winterlab Limited USA NY SO 0
Xatra Fund Mx, Llc USA DE SO 0 13

Table A-5—Major companies active in sensors, testing, analytics, and equipment for product
quality and biosafety innovation

Privately
sponsore WoS Citing
dgrant article Patent

Company Country State awards S s
Abelbeck Partners, Ltd. USA co SO 0 1
Abs Corporation USA NE S0 0 3
Access Security Protection, Llc USA TX SO 0 1
AgDia Inc, USA IN S0 1 0
Agr Informat Technol, USA SD SO 1 0
AgriHouse Inc USA co S0 2 0
Amc Italy SR L Italy Fore'ﬁ $0 0 1
Amerasia International Technology, Inc. USA NJ SO 0
Analytics Dev Corp USA co S0 1 0
Arryx Inc USA IL SO 0 16
Bella Technologies, Llc USA X S0 0 2
Bellsouth Intellectual Property Corporation USA GA SO 0 2
Best Analyt Serv, USA DC SO 1 0
BH&H Engn Inc, USA co SO 1 0
Bioscience Consultants USA FL S0 0 3
Biotronics, Inc. USA PA SO 0 5
Body Surface Translations, Inc. USA GA SO 0 1
Camas Technol Inc USA co SO 2 0
Canon Japan FOI’EIﬁ SO 0 3
Celleration, Inc. USA MN SO 0 4
COMP ASSISTED DEV INC, USA (6(0) SO 2 0
COMP SCI CORP, USA GA SO 1 0
Cryolife, Inc. USA GA SO 0 21
C-Scan, L.L.P. USA AZ SO 0 1
Goldfinch Solutions, Llc USA NJ SO 0 5
Google Inc. USA CA SO 0 2
Hewlett Packard USA Cco $2,722 0 0
Hid Global Corporation USA co SO 0 2
HydroBio Adv Remote Sensing, USA NM SO 2 0
IEH Labs & Consulting Grp USA co SO 1 0
International Business Machines (IBM) Corporation USA NY SO 0 3
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Kaiser - Hill Company, L.L.C.

Local Independent Administrative Institution Aomori
Prefectural Industrial Technology Research Center

Lumidigm, Inc.
MANTECH ENVIRONM TECHNOL INC,

Marctec, Llc

Mc10, Inc.
Menon & Associates, Inc.

Microbix Biosystems Inc.

Microsoft Corporation

Nickel Brand Software Inc

Non Typical, Inc.

Non Typical, Inc.

Optibrand Ltc. LLC

Phillips Petr Co

Phoenix Research Laboratories
PRAXAIR,Inc.

Renergon International AG

Smart Machine Vision, Inc.

Smartin Technologies, Lic
Smith & Nephew, Inc.

Sony Corporation

St. Jude Medical, Inc.

Systems Research & Applications Corp
United Power

Vibralung, Inc

Y-TEX Corporation

USA
Japan

USA
USA

Australia

USA
USA

Canada

USA
USA
USA
USA
USA
USA
USA
USA

Switzerlan

d
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USA

UK
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USA
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co
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n

NM
OR
Foreig
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Wi
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S0
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S0
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$0
SO
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SO
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SO
S0
$29,900
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$16,380
S0
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Table A-6—Major companies active in bioenergy innovation

Privately

sponsored WoS Citing
Company Country State grant awards articles Patents
Abengoa Bioenergy New Technologies, Inc. USA MO SO 0 5
Algae Systems, LLC USA NV S0 0 1
Algal Scientific Corporation USA M SO 0 1
Algenol Biofuels Switzerland GmbH Switzerland Foreign S0 0 1
Alliance For Sustainable Energy Lic USA co SO 0 1
Amoco Production Company USA IL $15,000 0 0
Anadarko Petroleum Corporation USA TX $78,216 0 0
Aurora Biofuels, Inc. USA CA S0 0 25
Bio Finance Consultants USA ID SO 1 0
Biolite Llc USA NY S0 0 1
Biota N Amer Program, USA NC SO 1 0
Blue Sun Biodiesel USA co $75,600 0 0
Boulder Innovative Technologies, Inc. USA co $10,536 0 0
Carbon Sink, Inc. USA IL SO 0 5
Chevron Energy Technol Co, USA CA S0 3 0
Cobalt Technologies, Inc. USA CA SO 0 7
Community Power Corporation USA co $15,495 0 0
Coulter Corp, USA FL SO 1 0
Edenspace Systems Corporation USA KS S0 0 2
Fairfield & Woods PC, USA co SO 1 0
GENENTECH INC, USA CA S0 1 0
Gevo USA co $21,433 0 0
Global Research Technologies, Llc USA AZ SO 0 3
Globelmmune Pharmaceut USA co S0 1 0
Grad Sch Biotechnol S. Korea Foreign SO 1 0
Hitachi, Ltd. Japan Foreign S0 0 1
Honeywell International Inc. USA NJ SO 0 25
ICF Int USA DC S0 1 0

Intelligent Decis Technol, USA co SO 1

Interlink Biotechnol LLC, USA CA S0 1
logen Energy Corp Canada Foreign SO 0 14
Joule Unlimited Technologies, Inc. USA MA SO 0 3
Kilimanjaro Energy, Inc. USA Wi S0 0 10
Korea Institute Of Energy Research S. Korea Foreign SO 0 1
Mascoma Corporation USA MA SO 0 2
Matheson Gas Prod, USA co SO 1 0
Neatech, Llc USA co SO 0 2
Novozymes North America, Inc USA NC $71,979 0 6
Photofuel Sas Frence Foreign SO 0 2
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Photon$, Inc. USA TX SO 0 1
Phycal Llc USA OH SO 0 1
Phytodetectors, Inc. USA co SO 0 0
Point Source Power, Inc. USA CA SO 0 1
Pond Biofuels Inc. Canada Foreign SO 0 3
Qteros, Inc. USA MA SO 0 4
Ra Energy Corporation USA M SO 0 3
Senesco, Inc. USA NJ SO 0 11
Solar Energy Res Inst USA co SO 3 0
Solix Biofuels USA Co S0 2 1
Sunsource Industries USA IL SO 0 2
Syngenta Switzerland Foreign $236,968 0 0
Targeted Growth, Inc. USA WA $29,575 0 0
Univerve Ltd. Israel Foreign $0 0 1
V35A Enterprises, Lic USA WI SO 0 2
Williams Production RMT Company USA co $88,102 0 0
Xyleco, Inc. USA MA SO 0 13

Table A-7—Major companies active in agricultural commodity processing and management

innovation
Privately
sponsored

grant WoS Citing

Company Country State awards articles  Patents

Agridigit Inc Canada Foreign SO 0 1
Attec Danmark A/S Danmark Foreign SO 0 1
Australian Meat & Live-Stock Corporation Australia Foreign $51,998 0 0
Beijing Poultry Breeding Company China Foreign $158,100 0 0
Bemis Company, Inc. USA Wi $88,018 0 0
Cargill Meat Solution USA KS SO 2 0
CATIE-Centro Agronomico Tropical de Inve Costa Rica Foreign $4,355 0 0
Certified Angus Beef LLC USA OH S0 3 0
Clougherty Packing Co USA CA SO 1 0
Conagra Red Meat Co USA co SO 1 0
ContiBeef LLC USA co $152,345 5 0
CSIRO, Livestock Ind Australia Foreign SO 1 0
Denver Buffalo Company USA co $187,994 0 0
Diamond Bar Land & Livestock USA CA $38,099 0 0
F Menard Canada Foreign SO 2 0
Farm to Table USA Cco $9,000 0 0
Farmland Industries USA MO $14,000 0 0
Farnam Companies, Inc. USA AZ $4,500 0 0
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Five Rivers Ranch Cattle Feeding LLC USA Cco $840,697 2 0
Gerber Agri Inc USA co S0 1 0
Grandin Livestock Handling Syst Inc USA co SO 1 0
JBS Five Rivers Cattle Feeding USA co $58,552 4 8
John Morrell and Company USA OH $17,944 0 0
Keen Ingredients, Inc, USA co SO 0 4
Leachman Cattle Company USA Cco $14,210 1 0
MaGiix Germany  Foreign $16,655 0 0
Magness Land & Cattle Company USA co $10,195 0 0
Meyer Natural Angus, LLC USA co $27,866 0 0
Micro Beef Technologies, Ltd USA X SO 0 16
Monfort, Inc. USA co $13,243 4 0
Paper Pak, Inc. USA CA $5,796 0 0
PIC USA, Inc USA TN $63,472 0 0
Saueressig Gmbh + Co. Germany Foreign SO 0 1
Smithfeld Beef Grp USA Wi S0 2 0
Swift & Company USA (0] $78,450 0 3
Tyson Fresh Meats, Inc. USA SD SO 0 3
Table A-8—Major companies active in plant genetics, and crop variety innovation
Privately
sponsored

grant WoS Citing

Company Country State awards articles Patents

ADM Alliance Nutrition Inc USA IL SO 1 0
Agrigenetics, Inc. USA IN $5,880 0 0
AlgEternal Technologies, LLC USA X SO 0 2
Archer Daniels Midland Co USA IL SO 1 2
AsRes Ltd Zeall\;ivt\jl Foreign SO 1 0
Ayers Associates, USA co SO 1 0
Bartlett Grain Pty. Ltd. Australia Foreign SO 0 1
Bartlett Tree Experts, USA NC SO 1 0
Bayer Cropscience Lp USA NC SO 0 2
E;c;rzem?t(::?““;i,:aft Fuer Biologische Germany Foreign %0 0 3
Blue Valley Ranch USA co $51,816 0 0
Booth Creek Ski Holdings, Inc. USA co $43,678 0 0
Btf Pty, Ltd. Australia Foreign SO 0 1
Busch Agr Resources LLC, USA Cco SO 1 0
Cactus Feeders Inc USA X SO 1 0
Cargill, Inc. USA (0] $28,500 0 2
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Cattlemans Choice Loomix, LLC
Coca-Cola Company

Crenshaw & Douget Turfgrass, Inc.
DAS-Dow AgroSciences, LLC
Diamond V Mills, Inc

Dow AgroSci LLC,

DuCoa

DuPont Stine Haskell Res Ctr,

E.G. & G. Rocky Flats, Inc.

Ecoduna Ag

GAIA Management International, Inc.
Gunnison Hay Products, LLC
Heliae Development, Llc

Hill's Pet Nutrition, Inc.

Horton Feedlot

Jacklin Seed Company

L. Johnson Farms, LLC
Landcare Res NZ Ltd, Palmerston North,

Machinery Developments Ltd

MIN AD Inc

Multigrain Int LLC,

Neptune & Co,

Newleaf Symbiotics, Inc.

Noble Fdn Inc,

Northrup King Lawn/Garden Corp
Nutribasics Company

Oxion, Inc.

PACE Turf,

Penford Food Ingredients Company
Pioneer Hi-Bred International, Inc.
Planalytics Inc,

PLANT TRADEMARK & COPYRIGHT OFF,
Premium Genetics (Uk) Ltd.
ptimal Ag Consulting Inc

Purina Mills, Inc.

Ralston-Purina Company

Rhodia Acetow Ag

RINGGER FEED INC, NUTR,
SEEDEX INC,

Seminis Vegetable Seeds,

Society for Range Management

Tagawa Greenhouse Enterprises, Llc

USA
USA
USA
USA
USA
USA
USA
USA
USA
Germany
USA
USA
USA
USA
USA
USA
USA
New

Zealand
UK

USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
USA
Ireland
USA
USA
USA
Germany
USA
USA
USA
USA
USA

co
Foreign
X

co

Az

KS

co

ID

KS

Foreign

Foreign
TX
co

NM
MO
OK
MN
NY
KS
CA
co
co
PA
CA

Foreign
co
co

MO
Foreign
IL

co

ID

co

co

$160
$219,893
$4,000
$55,092
$33,463
$0
$8,491
$0
$8,320
$0
$72,654
$11,172
$0

S0
$6,600
$17,443
$11,892

S0

SO

S0

SO

S0

SO

$0
$9,629
$57,506
$13,743
$0
$7,976
$56,717
SO

S0

SO

S0
$12,500
$45,986
$13,558
$0

SO

$0
$16,229
$849,700
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The Samuel Roberts Noble Foundation, Inc. USA OK SO 0 3
United Feeds UK  Foreign $3,969 0 1
Vit-E-Men Company, Inc. USA NE $25,356 0 0
W.C. Bradley Co. USA GA SO 0 1
ZedX Inc, USA PA SO 1 0
Table A-9—Major companies active in dairy and food product innovation
Privately
sponsored

grant WoS Citing

Company Country State awards articles Patents

Abbott Laboratories USA IL S0 0 3
ACR, LLC USA co $49,900 0 0
Agrifood Solut Int USA X S0 1 0
American Diabetes Association, Inc. USA Cco $79,167 0 0
Angel Yeast Co., Ltd. China Foreign S0 0 2
Aurora Organic Dairy USA co $281,856 0 0
Bar-S Foods Co. USA AZ $18,000 0 0
Bil-Mar Foods USA M SO 1 0
Cooking Kids Inc USA NM S0 1 0
oMo TS Gomary o 03
CSR LTD, INGHAM,QLD 4850, Australia Foreign SO 1 0
DairyNZ Ltd, Hamilton, Zeall\;vt\j/ Foreign S0 1 0
Energy Enzymes Inc USA MO S0 0 4
Food Friends Inc. USA Cco $30,007 0 0
Food Safety Net Services, Ltd. USA TX $129,041 4 0
Foodbrands Amer USA OK SO 1 0
Hershey Company USA PA S0 0 1
Hormel Foods, Llc USA MN SO 0 1
Hort & Food Res Inst Zeall\;vn\:ll Foreign SO 1 0
IFT Food Microbiol Div USA co S0 1 0
Immucell Corp USA ME SO 1 0
Johnson Res USA ID S0 1 0
Keen Ingredients USA co SO 0 0
Kemin Industries, Inc. USA IA $17,388 0 0
King Soopers USA co $16,500 0 0
Kroger Co USA GA $19,350 1 0
Leprino Foods USA co $88,192 0 0
Mars Incorporated USA WA S0 0 7
McDonalds Corp USA IL SO 2 0
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Minerva Ltd Brazil Foreign SO 1 0
Monsanto USA MO $295,988 4 27
Mountain View Harvest Coop/Gerards Baker USA co $161,015 0 0
MPC-Medical Packaging Corporation USA CA $11,760 0 0
Mrp Group, Inc. USA GA SO 0 1
Nat Way Inc, USA co S0 1 0
Nl O o S ettt fowen S0 01
Nestec S.A. Switzerland Foreign SO 0 4
Procter & Gamble Co USA OH S0 2 0
Purac, Incorporated USA KS $29,609 2 0
Raps Gmbh & Co. Kg Germany Foreign S0 0 2
Ruakura Res Ctr, AgRes Zeall\:l:\ivc\il Foreign SO 1 0
Select Sires Incorporated USA OH $11,963 1 0
SoyPLUS/West Central USA GA $7,572 0 0
SSI Food Serv Inc USA ID SO 1 0
Sweetwater Energy, Inc. USA NY $0 0 6
The Hershey Company USA PA SO 0 1
Voogd Consulting Inc USA IL S0 2 0
WESTERN SUGAR CO, USA NE S0 1 0
Zinpro Corporation USA MN $834,076 1 0
Table A-16—Major companies active in beer and wine production innovation
Privately
sponsored

grant WoS Citing

Company Country State awards articles  Patents

Adolph Coors Company USA co $43,500 0 0
ANHEUSER BUSCH INC, USA MO SO 3 0
Brewer Environmental Industries USA HI $48,742 1 0
New Belgium Brewing Co USA co S0 1 0
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