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ABSTRACT

TWO-STEP CODING THEOREM IN THE NEARLY CONTINUOUS CATEGORY

In measurable dynamics, one studies the measurable properties of dynamical systems. A recent

surge of interest has been to study dynamical systems which have both a measurable and a topo-

logical structure. A nearly continuous Z-system consists of a Polish space X with a non-atomic

Borel probability measure µ and an ergodic measure-preserving homeomorphism T on X . Let

f : X → R be a positive, nearly continuous function bounded away from 0 and ∞. This gives

rise to a flow built over T under the function f in the nearly continuous category. Rudolph proved

a representation theorem in the 1970’s, showing that any measurable flow, where the function f is

only assumed to be measure-preserving on a measurable Z-system, can be represented as a flow

built under a function where the ceiling function takes only two values. We show that Rudolph’s

theorem holds in the nearly continuous category.
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1. INTRODUCTION

In the 1940’s, Ambrose and Kakutani[1][2] showed that any measure-preserving R-action on a

Lebesgue probability space is measurably isomorphic to a flow built under a function. Rudolph[16]

simplified this representation further for ergodic R-actions with the Two-Step Coding Theorem.

He showed that given the Ambrose-Kakutani representation of an ergodic R-action, and any irra-

tionally related p, q ∈ R+, there exists a representation where the ceiling function only takes values

p and q. Hence any measure-preserving ergodic R-action can be represented as a flow built under

a function where the ceiling function only takes two values.

The goal of this paper is to prove the Two-Step Coding Theorem in the nearly continuous cat-

egory, where along with the measure theoretic properties, we also study the topological properties

of the underlying systems. Keane and Smorodinsky [8, 9] were the first to investigate the interplay

of measure and topology, and Denker and Keane [5] formalized the category in what they called

almost topological dynamical systems. There thas been a recent spurge of interest in this field

by the works of Hamachi and Keane [7] and followed by works of Roychowdhury [15], [14] and

Rudolph [12], del Junco and Şahin [4] and Del Junco, Rudolph and Weiss [3] repalacing the term

almost topological with nearly continuous. A nearly continuous (n.c.) dynamical system consists

of a Polish space, i.e, a separable and completely metrizable space, equipped with a Borel proba-

bility measure. The group action on this space is nearly continuous, i.e., measure-preserving and

continuous on an invariant Gδ subset of full measure, with respect to the induced topology.

Informally, our result is to show that given any irrationally related p, q ∈ R+, any ergodic n.c.

flow built under a function can be represented as a n.c. flow built under a function where the ceiling

function only takes values p and q.

Note here that we are not saying any n.c. R-action, or even one that is ergodic, can be repre-
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sented as a flow built under a function. We do not yet know if this statement is true. It is an open

question whether the Ambrose-Kakutani result is true in the n.c. category.

In what follows, we give formal definitions and state our result precisely.

Definition 1.1. (X,µ, T ) is called a nearly continuous (n.c) Z-system, whenever X is a Polish

space with a non-atomic Borel probability measure µ and T : X → X is an ergodic measure-

preserving homeomorphism.

Definition 1.2. A function f : X → R+ is called nearly continuous (n.c) if there exists a Gδ-subset

X0 ⊆ X with µ(X0) = 1 such that f is continuous on X0 in the induced topology.

To define the n.c. flow built over T and under the function f we first assume that f : X → R

is a n.c function and uniformly bounded away from 0. We define a space X̃ to be the of all points

that lie under the graph of f , i.e.,

X̃ = {x̃ = (x, s) : x ∈ X, 0 ≤ s < f(x)}

./ with the identification that every point (x, f(x)) on the graph of f is identified with the point

(Tx, 0). The topology on X̃ is given by the product of the topology of X and the usual topology

of R. We let µ̃ denote the completed product measure of µ on X and the Lebesgue measure on R.

Without loss of generality (by rescaling f if necessary) we assume µ̃(X) = 1.

It is easy to check from definitions that X̃ is Polish space with Borel probability measure µ̃.

The n.c. flow built over T and under f is an R-action denoted by {Ut}t∈R and defined by

Ut(x, s) = (T nx, s+ t− f(x, n)) (1.1)

where n ∈ Z such that f(x, n) ≤ s+ t < f(x, n+ 1) and where f(x, n) is given by
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f(x, n) =






n−1∑

i=0

f(T ix) if n > 0

0 if n = 0
−1∑

i=n

f(T ix) if n < 0

. (1.2)

The idea is that every point (x, s) in the space flows vertically up at unit speed until it reaches

the graph of f . The point (x, f(x)) is identified with the point (T (x), 0) in the base and the flow

continues upward as seen in Figure 1.1.

(x, s)

(Tx, 0)

(x, f(x))

(X,µ, T )

f

Fig. 1.1: Flow built over T under f

Definition 1.3. Let X̃ be a Polish space with Borel probability measure µ̃. An R-action {Ut}t∈R

on X̃ is called a nearly continuous flow if there exists a Gδ-subset X0 ⊆ X with µ(X0) = 1 such

that for each t ∈ R, Ut is a measure-preserving homeomorphism of X0 in the relative topology.

It is easy to check that {Ut}t∈R, as defined in (1.1), is an ergodic n.c. R-action on X̃ . Hence-

forth, we will always refer to X as the discrete space and X̃ as the flow space.

Definition 1.4. Let (X̃, µ̃) and (Ỹ , ν̃) be Polish probability spaces and let {Ut}t∈R, {Vt}t∈R be

n.c. R-actions on X̃ and Ỹ respectively. We say {Ut}t∈R is nearly continuously conjugate to

{Vt}t∈R if there exist invariant Gδ-subsets X̃0 ⊆ X̃ , Ỹ0 ⊆ Ỹ with µ̃(X̃0) = ν̃(Ỹ0) = 1 and a

measure-preserving homeomorphism φ : X̃0 → Ỹ0 such that φUt = Vtφ for all t ∈ R.

The goal of this paper is to prove the following theorem:

Theorem 1.5. Let (X,µ, T ) be a Z-system and let f : X̃ → R be a n.c. function such that there

exist constants c, c′ ∈ R satisfying 0 < c < f(x) < c′ < ∞ for all x ∈ X . Let {Ut}t∈R be an
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ergodic n.c. flow built over T under f and let α ∈ R be any positive irrational. Then there exists a

n.c. Z-system (Z, ν, TZ) and a n.c. function g : Z → {1, 1 + α}, such that the n.c. flow built over

TZ under g is n.c. conjugate to {Ut}t∈R.

The main idea in proving the two-step coding theorem in the measurable category is to be able

to identify a measurable cross-section Z of the flow space X̃ so that the orbit of a.e. point visits Z

precisely in time intervals 1 or 1+α. Rudolph achieved this by defining a map φ on X̃ , so that for

a.e. x̃ ∈ X̃ , φ(x̃) is a tiling of R using only intervals of length 1 and 1 + α. The set of all points

whose corresponding tiling has its origin located at the beginning of an interval, will form the set Z.

The map φ is the limit of inductively defined maps φi, where each φi associates a partial orbit

of a point to a partial tiling of R. At stage i + 1, the partial tilings are extended to cover longer

partial orbits, in a manner that they match most of the previously defined partial tilings. As it is not

possible to exactly fill in the gaps between the partial tilings with intervals of length 1 and 1 + α,

the definition of the partial tilings are changed in a measurable way and on a small measure set,

with the measure going to zero, as the induction goes to infinity. Borel-Cantelli Lemma then says

that the set of points where the definition of patches changes infinitely often is a set of measure

zero. Hence a.e. point in X̃ , has its orbit tiled by intervals of length 1 and 1 + α.

We cannot mimic this argument in the n.c. category, as the Borel-Cantelli Lemma does not

allow for any topological control on the set of points where there is convergence of the maps φi,

and thus there is no guarantee that the invariant set of full measure is a Gδ, nor that the section

Z is one either. Instead, to control the topological structure of sets in our construction we use

the template machinery of Rudolph et al., where the idea is to not define the maps φi explicitly,

but rather at every stage, for a large set of points, define a set of choices for φi with the property

that some subset of each set of choices will have the property that the gaps beteween them can be

tiled as needed. In other words, the idea of the template machinery is to defer making a choice

of tilings rather than to make adjustments to the choices that have already been made. This idea
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was introduced in [12] and used extensively in [13, 6] as the scaffolding necessary to control the

topological structure of the constructions.

So far, in every example where the template machinery is used, there has been a natural way of

defining towers in the underlying spaces. As X̃ does not have a natural tower structure, we need

to set one up, which will let us use the template machinery. To do so, we first define a special

sequence of tower decompositions of the discrete space X in Chapter 2. These decompositions are

a generalization of the skeleta machinery of Keane and Smorodinsky [8]. In Chapter 3 we use the

special sequence and construct tower partitions of the flow space X̃ . We give basic definitions of

tilings in Chapter 4, and prove two lemmas that are crucial in the proof of our result.

The proof of Theorem 1.5 consists of two parts. In the first part we construct the maps φi that

converge to a map φ from X̃ to the tiling space. In the second part we construct the Z-system

(Z, ν, TZ) and the n.c. flow built over TZ and under a two-step function, and show that this flow is

n.c. conjugate to {Ut}t∈R. In Chapter 5 we introduce the template machinery and define stencils

and templates. We also give sufficient conditions that the stencils and the templates need to satisfy

to guarantee the convergence of the maps φi. In Chapter 6.3 we prove Theorem 1.5, where we first

inductively construct the stencils and templates and then show that they satisfy the conditions from

Chapter 5. In Chapter 6.3 we finish with the second part of the proof.
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2. SKELETA DECOMPOSITION

Let (X,µ, T ) be a n.c. Z-system. We want to define a sequence of tower partitions of X that

satisfy certain specific properties. These tower partitions play the role of skeleta machinery of

Keane and Smorodinsky[8, 10] in the proof of the finitary isomorphism theorem for Bernoulli

shifts.

Definition 2.1. A clopen tower (or just tower) τ of height h in X is a sequence of pairwise disjoint

clopen subsets E0, E1, ..., Eh−1 of X such that T i(E0) = Ei for i = 0, 1, ..., h−1. We call E = E0

the base of the tower and the sets Ei, i = 0, 1, ..., h− 1 the levels of the tower.

Definition 2.2. If τ is a tower of height h with base E, then a sequence of clopen sets C, TC, T 2C,

..., T h−1C is called a column of τ if C ⊂ E.

The special partitions referred to in the beginning of this chapter, will be denoted by P i, i ≥ 0

and will consist of countably many disjoint clopen towers, i.e., for all i = 0, 1, 2, ..., there exists a

Ji ⊆ Z such that

P i = {τ ij : j ∈ Ji}. (2.1)

These partitions will be defined based on two parameters - an increasing sequence {Ni}∞i=0 and an

L0 ∈ N. The Ni’s play the role similar to that of markers, and L0 plays a role similar to the length

of fillers in the skeleta machinery.

Definition 2.3. Let (X,µ, T ) be a n.c. Z-system, {Ni}∞i=0 be a strictly increasing sequence of

positive integers and L0 ∈ N. A sequence of tower partitions {P i = {τ ij : j ∈ Ji} : i = 0, 1, 2, ...}

of X is called a skeleta decomposition of (X,µ, T ) with respect to {Ni}∞i=0 and L0 if there exists a

clopen subset A ⊂ X with 0 < µ(A) < 1 and the {P i}∞i=0 satisfy the following properties:

(i) for all i = 0, 1, 2, .. and j ∈ Ji, any level of τ ij is either contained in A or disjoint from A.

6



L0

L0

L0

L0

τ i2 τ i3 τ ijτ i4τ i1

A ⊂ X

di2

di4

Ni

di3

τ i−1
j1dij

τ i−1
j3

τ i−1
j2

di1

}
}

}

}

Fig. 2.1: Tower partition P i for i ≥ 1

(ii) for all i = 0, 1, 2, .. and j ∈ Ji, there exists dij ≥ Ni such that

a.
⋃dij−1

n=0 T n(Ei
j) ⊂ A

b. for any m ∈ {dij, dij + 1, ..., hi
j −Ni} we have

⋃m+Ni−1
n=m T n(Ei

j) )⊂ A.

In other words, the initial dij levels are contained in A and after that we do not see Ni

consecutive levels that are all in A. These initial levels
⋃dij−1

n=0 T n(Ei
j) form the discrete

collar of τ ij .

(iii) for all i = 0, 1, 2, .. and j ∈ Ji, the top L0 levels are disjoint from A i.e.,
⋃L0

n=1 T
hi
j−n(Ei

j) ∩

A = ∅.

(iv) for all i ∈ N and j ∈ Ji, the tower τ ij has a unique decomposition into columns from towers

in P i−1 i.e., there exists k ∈ N and j1, ..., jk ∈ Ji−1 such that

τ ij =
k⋃

m=1

hi−1
jm

−1⋃

n=0

T nCm

where

a. Cm ⊂ Ei−1
jm

7



b. T hi−1
jm (Cm) = Cm+1 for all m = 1, 2, ..., k − 1.

The sequence {τ i−1
jm : jm ∈ Ji−1,m = 1, 2, ..., k} ⊂ P i−1, is called the associated sequence

of previous stage towers for τ ij , and for m = 1, 2, ..., k, the column ∪hi−1
jm

−1

n=0 T nCm is called

the mth sub-tower of τ ij .

Note that

dij = di−1
j1 for all i ≥ 2. (2.2)

Hence for a tower τ ij , if there exists an n > i such that dij ≥ Nn, then any column of τ ij that appears

in a tower of P n, can only appear within its bottom most sub-tower.

The following proposition lets us assume without loss of generality that every (X,µ, T ) has a

skeleta decomposition with respect to any given {Ni}∞i=0 and L0 ∈ N.

Proposition 2.4. Let (X,µ, T ) be a n.c Z-system. Given any increasing sequence {Ni}∞i=0 and

L0 ∈ N, there exists a T -invariant Gδ-subset X ′ ⊆ X with µ(X ′) = 1 and a sequence of tower

partitions {P i = {τ ij : j ∈ Ji}}∞i=0 that give rise to a skeleta decomposition of (X ′, µ|X′ , T |X′)

with respect to {Ni}∞i=0 and L0.

Proof. By [4], we know that there exists a T -invariant Gδ-subset X1 ⊆ X with µ(X̃1) = 1 and X1

has a countable base of clopen sets with respect to the induced topology. We first show that there

exists a countably infinite clopen tower decomposition Q = {τj : j ∈ J} of the space X1 such that

if Ej denotes the base and hj denotes the height of the tower τj , then hj > N0 + L0 and hj → ∞.

For each n ∈ N, let rj = 1
2j so that

∑
j∈N rj = 1. By Lemma 2(b) in [4] applied to X1 and rj ,

there exist disjoint clopen subsets Bj of X1 such that µ(Bj) = rj . By Lemma 4(b) in [4] applied

to these sets Bj and N0 + L0, we then get clopen towers τj with height j(N0 + L0). Let J = N

and Q = {τj : j ∈ J}.

8



Define sets Λn ⊂ J based on the heights of the towers in Q, i.e., for n ∈ N, define

Λn = {j ∈ J : Nn + L0 ≤ hj < Nn+1 + L0}

We define the set A to be the union of the bottom Nn levels of each tower τj , whenever j ∈ Λn,

i.e.,

A =
⋃

n∈N

⋃

j∈Λn

Nn−1⋃

m=0

Tm(Ej).

Note that at least the top L0 levels of any tower are disjoint from A, and therefore 0 < µ|X1(A) < 1.

As A and Ac are both unions of clopen levels, they are both clopen in the topology of X1. Also as

{τj : j ∈ J} is a tower partition of X1, any point x ∈ X1 satisfies the following conditions:

C1 both the forward and the backward orbit of x visits the set Ac infinitely often.

C2 both the forward and the backward orbit of x see at least N0 consecutive occurrences of the

set A.

To define the sequence of partitions {P i}∞i=0 that give rise to a skeleta decomposition with

respect to {Ni}∞i=0 and L0, we will need condition C2 to be true for all Ni, i=0,1,..., i.e.,

C2’ for all i = 0, 1, ..., both the forward and the backward orbit of x sees Ni consecutive occur-

rences of the set A.

For this, we will need to restrict the space X1 further as follows: Let B1 denote the set of all points

in X1 that never see Ni, i = 1, 2, ..., consecutive occurrences of the set A in either their forward or

backward orbits, i.e.,

B1 =
⋃

i∈N

{x ∈ X1 : ∀n ≥ 0, ∃ 1 ≤ m < Ni such that Tm+n /∈ A}

∪
⋃

i∈N

{x ∈ X1 : ∀n ≥ 0, ∃ 1 ≤ m < Ni such that T−(m+n) /∈ A}

=
⋃

i∈N

⋂

n≥0

Ni−1⋃

m=1

T−(n+m)(Ac) ∪
⋃

i∈N

⋂

n≥0

Ni−1⋃

m=1

T n+m(Ac)

9



and let

B2 =
⋃

n∈Z

T nB1.

Note that B2 is a T -invariant subset of X1 and hence by ergodicity of T has measure 0. Let

X ′ = X1 \ B2. Then X ′ is a T -invariant Gδ-subset of X1 (and hence of X), with µ(X ′) = 1 and

satisfying conditions C1 and C2’ for all x ∈ X ′.

We will use induction to construct the sequence of partitions {P i}∞i=0. For i = 0, let J0 = J

and P 0 = {τ 0j = τj : j ∈ J0}. For each j ∈ J0, define d0j = Nn, whenever j ∈ Λn.

By construction of A we know that for all j ∈ J0, each level of τ 0j is either contained in A or

disjoint from A, the bottom most d0j ≥ N0 levels are all contained in A, and the top h0
j − d0j ≥ L0

levels are all disjoint from A. Hence P 0 satisfies the conditions for skeleta decomposition for N0

and L0.

Now suppose that for some i, there exists Ji ⊆ Z such that P i = {τ ij : j ∈ Ji} satisfies all

conditions in the definition of skeleta decomposition of X ′ with respect to {Ni}∞i=0 and L0. Then

every tower τ ij , j ∈ Ji has its first dij ≥ Ni levels all contained in the set A. Let K ⊂ Ji so that

j ∈ K ⇐⇒ dij ≥ Ni+1.

Fix a j ∈ K. We want to partition the base Ei
j of the tower τ ij in a very specific way so that the orbits

of all points in a partition set visit the same towers τj1 , τj2 , ..., τjm−1 , with j1, j2, ..., jm−1 ∈ Kc,

before first returning to a tower τ ijm , jm ∈ K. For each m ∈ N, j1, j2, ..., jm−1 ∈ Kc, and jm ∈ K,

define

Ei
j(j0 = j, j1, ..., jm) = {x ∈ Ei

j : T
hi
j0x ∈ Ei

j1 , ..., T
∑m−1

k=0 hi
jkx ∈ Ejm}

= Ei
j ∩ T−hi

j0 (Ei
j1) ∩ · · · ∩ T−

∑m−1
k=0 hi

jk (Ejm).

As the Ei
jk
, k = 0, ...,m are all clopen and T is a homeomorphism, the set Ei

j(j0, ..., jm) is

10



clopen in X ′. Let Qi
j = {Ei

j(j0, ..., jm) )= ∅ : m ∈ N, j0 = j, j1, ..., jm−1 ∈ Kc, jm ∈ K}. It

is straight forward to check that it is indeed a partition of Ei
j . For each Ei

j(j0, ..., jm) ∈ Qi
j , let

τ ij(j0, ..., jm) be the tower with base Ei
j(j0, ..., jm) and height

∑m−1
k=0 hi

jk
. Observe that for n =

1, ...,m− 1, we have

T
∑n−1

k=0 hi
jkEi

j(j0, ..., jm) ⊂ Ejn .

Therefore τ ij(j0, ..., jm) is made by stacking columns of towers τ ij0 , ..., τ
i
jm−1

in P i. Define

P i+1 = {τ ij(j0, ..., jm) : j ∈ K,Ei
j(j0, ..., jm) ∈ Qi

j}.

To see that P i+1 is a tower partition of X ′, let x ∈ X ′ and first suppose that x ∈ τ ij for some j ∈

K, then T−nx ∈ Ei
j for some 0 ≤ n < hi

j . Hence x belongs to T nEi
j(j0, ..., jm) ⊂ τ ij(j0, ..., jm)

for some tower in P i+1.

Now suppose x ∈ τ ij for some j /∈ K. As the orbit of x sees Ni+1 occurrences of A in

both its forward and backward orbits, there exist n1, n2 (least) in N, and j′, j′′ ∈ K such that

T−n1x ∈ Ei
j′ and T n2x ∈ Ei

j′′ . This implies that there exists m ≥ 1, j1, ..., jm−1 ∈ Kc such that

x ∈ τ ij(j0 = j′, j1, ..., jm−1, jm = j′′) ∈ P i+1.

All that remains to show is that P i+1 satisfies the properties of skeleta decomposition for X ′.

For convenience, let Ji+1 enumerate the towers in P i+1 and rename the towers in P i+1 as

P i+1 = {τ i+1
j : j ∈ Ji+1},

where each tower τ i+1
j = τ ij0(j0, ..., jm) for some j0 ∈ K, has base Ei+1

j = Ei
j0(j0, ..., jm) and

height hi+1
j =

∑m−1
k=0 hi

jk
.

Every level of τ i+1
j is a subset of a level from some τ ijk , k = 0, ...,m− 1, and therefore is either

11



contained in A or disjoint from A. The tower τ ij0(j0, ..., jm) is made up of columns of towers τ ijk ,

m = k, ...,m − 1 and hence we can define the sequence of previous stage towers for τ i+1
j to be

{τ ijk : k = 0, ...,m− 1}. Clearly di+1
j = dij0 ≥ Ni+1 as j0 ∈ K. Also, the top L0 levels of τ i+1

j are

subsets of the top L0 levels of τ ijm , and therefore are disjoint from A.

By induction, the sequence {P i}∞i=0 satisfies the properties of skeleta decomposition for X ′

with respect to {Ni}∞i=0 and L0.
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3. TOWERS IN THE FLOW SPACE

Recall that {Ut}t∈R is the n.c. flow built over T under f on the flow space X̃ . Given a tower

τ in the discrete space X with base E and height h we define a corresponding tower τ̃ in X̃ with

respect to {Ut}t∈R. Informally, we obtain τ̃ by ”filling in” the flow times to get from one level to

the other in X . More formally, let Ẽ0 = E × {0} ⊂ X̃ and define

τ̃ =
⋃

(x,0)∈Ẽ

⋃

0≤t<f(x,h)

Ut(x, 0).

τ̃

E2

E3

Ẽ0

Ẽ1

Ẽ2

Ẽ3

τ

E0

E1

Fig. 3.1: Towers in X̃

Note that the levels En of τ now correspond to levels Ẽn = En×{0} in τ̃ . The time it takes for

a point (x, 0) ∈ Ẽ to flow to the set Ẽn is f(x, n) and the time any point in Ẽ spends in the tower

τ̃ is f(x, h), as defined in (1.2). As the function f is not constant, these times vary for different

points in Ẽ. Therefore it is not possible to define the height for the tower τ̃ . For future use, we will

want to define the towers in X̃ in such a manner that the variation in the time it takes for two points

in the base Ẽ = E × {0} to reach certain levels Ẽn, is controlled. We will do so by imposing

specific conditions on the skeleta decomposition of space X .

Suppose {P i}∞i=0 is a skeleta decomposition of X . We define a corresponding sequence of

tower partitions in X̃ by {P̃ i} where

13



P̃ i = {τ̃ ij : j ∈ Ji} for i = 0, 1, 2, ... (3.1)

and for each j ∈ Ji, τ̃ ij is the tower that corresponds to the tower τ ij in X . Suppose {εi}i∈N is any

sequence decreasing to 0. We want to assume, without loss of generality, that for any i ∈ N and

j ∈ Ji, if τ̃ ij is a tower in P̃ i with base Ẽi
j and its associated sequence of previous stage towers

{τ̃ i−1
jm : jm ∈ Ji−1,m = 1, 2, ..., k}, then the time it takes for any two points in the base Ẽi

j to flow

to the base of the mth sub-tower i.e., to Ẽi−1
jm for m = 1, 2, ..., k, is within εi of each other. The

following proposition lets us assume so:

Proposition 3.1. Let (X,µ, T ) be a n.c. Z-system and f : X → R be a n.c. function such

that there exist constants c, c′ ∈ R satisfying 0 < c < f(x) < c′ < ∞ for all x ∈ X . Let

L0 ∈ N, {Ni}∞i=0 be an increasing sequence and {εi}i∈N be a sequence with εi decreasing to 0.

Then there exists a T -invariant Gδ-subset X ′ ⊆ X with µ(X ′) = 1 and a skeleta decomposition

{P i = {τ ij : j ∈ Ji}}∞i=0 of (X ′, µ|X′ , T |X′) with respect to {Ni}∞i=0 and L0, such that the P i

satisfy the following properties:

a. for any tower τ 0j ∈ P 0, and for all x, y ∈ E0
j we have

|f(x, h0
j)− f(y, h0

j)| < ε0. (3.2)

b. for any tower τ ij ∈ P i, i ∈ N, j ∈ Ji, with its associated sequence of previous stage towers

{τ i−1
jm : jm ∈ Ji−1,m = 1, 2, ..., k}, and for all x, y ∈ Ei

j and m = 2, ..., k, we have

∣∣∣f(x, hi−1
j1 + · · ·hi−1

jm−1
)− f(y, hi−1

j1 + · · ·hi−1
jm−1

)
∣∣∣ <

εi
2
. (3.3)

Proof. By Proposition 2.1 in [3], there exists a T -invariant Gδ-subset X1 ⊂ X with µ(X1) = 1,

such that f is continuous on X1. By Proposition 2.4 applied to X1, {Ni}∞i=0 and L0, we get a

T -invariant Gδ-subset of X2 ⊂ X1 with µ|X1(X2) = µ(X2) = 1 and a skeleta decomposition
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P̄ i = {τ ij : j ∈ Ji}, i = 0, 1, 2, ... X2 with respect to {Ni}∞i=0 and L0.

For each i = 0, 1, ... and each τ ij ∈ P̄ i, we will define a partition Qi
j = {Ei

j,n} of the base

Ei
j , so that all points x, y ∈ Ei

j,n satisfy (3.2) and (3.3). We will then restrict to an invariant Gδ

subset X ′ ⊂ X2, so that each Ei
j,n is clopen in X2 with respect to the induced topology. Then

letting τ ij,n be the tower with base Ei
j,n and height hi

j , we get a sequence of refined tower partitions

P i = {τ ij,n : Ei
j,n ∈ Qi

j, j ∈ Ji}. Since we only partitioned individual towers in P̄ i to get the

towers in P i, the sequence {P i}∞i=0 will be a skeleta decomposition of X ′ with respect to {Ni}∞i=0

and L0 and in addition, will also satisfy (3.2) and (3.3).

Suppose j ∈ J0 and τ 0j ∈ P̄ 0. Let

a = inf
x∈E0

j

{f(x, h0
j)}, b = sup

x∈E0
j

{f(x, h0
j)}.

If a+ε0/2 > b, then (3.2) is true for all x, y ∈ E0
j . Define Q0

j = {E0
j } and B0

j = ∅. If a+ε0/2 ≤ b,

then choose r ∈ N so that a+ rε0/2 > b and define Q0
j = {E0

j,n : n = 1, ..., r} where

E0
j,n = {x ∈ E0

j : f(x, h0
j) ∈ (a+ (n− 1)ε0/2, a+ nε0/2)}n = 1, ..., r}

= E0
j ∩




h0
j−1∑

m=0

f ◦ Tm




−1

((a+ (n− 1)ε0/2, a+ nε0/2)) .

Since f : X2 → R and T : X2 → X2 are both continuous and E0
j is clopen, each E0

j,n is open in

X2. Also, for each x, y ∈ E0
j,n, (3.2) is now true. Define

B0
j = {x ∈ E0

j : f(x, h0
j) = a+ (n− 1)ε0/2, n = 1, ..., r},

and note that B0
j is a closed set of measure 0 in X2.

Now let i ≥ 1, j ∈ Ji and τ ij be the tower from P̄ i with its associated sequence of previous
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stage towers {τ i−1
jm : m = 1, 2, ..., k}. If m = 1, then Ei

j trivially satisfies (3.3). In this case, let

Qi
j = {E − ji} and Bi

j = ∅.

If m ≥ 2, then for each x ∈ X2 and m = 2, 3, ..., k, let

Fm(x) = f(x, hi−1
j1 + · · ·hi−1

jm−1
).

As f : X2 → R and T : X2 → X2 are both continuous, so is Fm. Note that for all x ∈ Ei
j , Fm(x)

is precisely the time it takes x to reach the base of the mth sub-tower. For each m = 2, ..., k, define

em = inf
x∈Ei

j

{Fm(x)}, dm = sup
x∈Ei

j

{Fm(x)}.

If em + εi/2 > dm, then define Qm = {Ei
j}. If em + εi/2 ≤ dm, then choose rm ∈ N so that

em + rmεi/2 > dm and define Qm = {Em,n : n = 1, ..., rm} where

Em,n = {x ∈ Ei
j : Fm ∈ (em + (n− 1)εi/2, em + nεi/2)}n = 1, ..., rm}

= Ei
j ∩ (Fm)

−1 ((em + (n− 1)εi/2, em + nεi/2)) .

Since Fm is continuous and E0
j is clopen, each E0

j,n is open in X2. Let Qi
j = ∨k

m=2Qm and note

that every E ∈ Qi
j is open in X2, and every x, y ∈ E satisfy (3.3). Let

Bi
j =

k⋃

m=2

{Ei
j ∩ F−1

m ({em + (n− 1)εi/2}) : n = 1, ..., rm},

so that Bi
j is a closed set of measure in X2. Finally let

X ′ = X2 \
⋃

n∈Z

T n(∪∞
i=0 ∪j∈Ji B

i
j).

Then X ′ is a T -invariant Gδ-subset of X with µ|X2(X
′) = µ(X ′) = 1, and restricted to X ′, each
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Qi
j is a clopen partition of Ei

j . For each Ei
j,n ∈ Qi

j , let τ ij,n be the column of τ ij , with base Ei
j,n and

height hi
j. Let P i = {τ ij,n : Ei

j,n ∈ Qi
j, j ∈ Ji}. It is easy to check that {P i}∞i=0 forms a sequence

of clopen tower partitions of X ′ and that the sequence {P i}∞i=0 is a skeleta decomposition of X ′

with respect to {Ni}∞i=0 and L0 satisfying (3.2) and (3.3) as desired.
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4. TILINGS

In this chapter, we introduce some definitions and notations about tilings which we use in this

paper, and refer the reader to [11] for standard definitions and details. We also introduce two lem-

mas that will be used heavily in the proof of Theorem 1.5.

Any closed interval of R is called a tile. Let α ∈ R be a fixed positive irrational. We will only

consider tiles that have length 1 or 1+α, i.e., all tiles will be of the form [b, b+1] or [b, b+1+α]

for some b ∈ R. If [a, b] is a tile, call the location a ∈ R the base point of the tile, and b ∈ R the

end point of the tile.

A tiling Γ of R is a collection of tiles such that any two tiles have pairwise disjoint interiors

and their union covers R. Let Y denote the space of all tilings of R by tiles of length 1 and 1 + α.

For any Γ ∈ Y and t ∈ R, define the translation of Γ by t, denoted by St(Γ), to be the tiling

obtained by shifting each tile of Γ to the left by t i.e.,

St(Γ) = {D − t : D ∈ Γ}.

A patch ω is a finite subset of a tiling Γ ∈ Y , such that the union of tiles in ω is connected. This

union is called the support of ω and written supp(ω). If ω1 and ω2 are patches in Y and ω1 ⊂ ω2

then ω1 is a called a sub-patch of ω2.

Note that if t ∈ R and ω is any patch in Y , then

supp(Stω) = supp({D − t : D ∈ ω}) = supp(ω)− t. (4.1)

The topology on the tiling space Y is based on the idea that two tilings are close if after a small

18



translation they agree on a large interval around the origin. Let Γ1,Γ2 ∈ Y . The tiling metric d is

defined by

d(Γ1,Γ2) = inf{{ 1√
2
} ∪ {0 < r <

1√
2
: ∃ patches ωi ∈ Γi, i = 1, 2, covering (−1

r
,
1

r
)

and t ∈ (−r, r) such that Stω1 = ω2}}

Given a patch ω with support K ⊂ R and ε > 0, the cylinder set given by ω and ε, denoted by

C(ω, ε), is defined by

C(ω, ε) = {Γ ∈ Y : ∃ t ∈ (−ε, ε) so that StΓ = ω on K}.

The cylinder sets are open, and form the basis for the topology on Y . By [11], Y is compact and

the translation {St}t∈R is a continuous R-action on Y . In this paper we will use special patches,

called grid patches, which consist of a union of successive translates of the patch{[0, 1], [1, 2+α]}.

Definition 4.1. A patch ω ∈ Y with supp(ω) = [a, b] is called a grid patch whenever b = a +

n(2+α) for some n ∈ N and ω is a concatenation of the patches S−a−m(2+α){[0, 1], [1, 2+α]} for

m = 0, 1, ..., n− 1.

The following lemma from [16], will play an important role in our proof:

Lemma 4.2. If α ∈ R is irrational, then given any ε > 0, there exists an M ∈ N, such that for any

γ ∈ (−2− α, 2 + α), there exist u, v ∈ Z with |u|+ |v| < M and

|u+ v(1 + α)− γ| < ε.

We will also need the following lemmas in the proof of Theorem 1.5. Suppose we have a γ ∈ R

with |γ| < 2 + α and a patch in the tiling space, consisting of three sub-patches, the first and the

third being grid patches. Suppose we want to rearrange the tiles in such a way that the middle
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patch remains the same, but is shifted by a distance which is approximately γ. Lemma 4.3 says

that there is a way to do this, provided the grid patches have appropriate lengths. Lemma 4.4 is a

one-sided version of Lemma 4.3. These lemmas are also the key lemmas used by Rudolph in [16],

to prove the measurable version of Theorem 1.5.

Lemma 4.3. Given any ε > 0 there exists an M ∈ N such that for all γ ∈ (−2− α, 2 + α), if ω is

a patch in Y with supp(ω) = [a, b] for some a, b ∈ R and there exist p, q ∈ R, a < p < q < b such

that ω|[a,p] and ω|[q,b] are grid patches with

p− a, b− q ≥ M(2 + α) (4.2)

then there exists a patch ω′ ∈ Y with supp(ω′) = [a, b] such that ω|[p,q] = Stω′
[p+t,q+t] for some

|γ − t| < ε.

Proof. Let ε > 0. Then by Lemma 4.2, there exists M ∈ N such that for any γ ∈ (−2−α, 2+α),

there exist u, v ∈ Z with |u|+ |v| < M and |u+ v(1 + α)− γ| < ε. Let t = u+ v(1 + α), and let

ω be a patch satisfying the hypothesis. Let ω1 = ω|[a,p], ω2 = ω|[p,q] and ω3 = ω|[q,b].

Suppose u > 0 and v < 0. Equation (4.2) guarantees that we have at least M tiles each of

length 1 and 1 + α in the patches ω1 and ω3. As |u|, |v| < M , we can interchange |u| tiles of

length 1 in ω3 with |v| tiles of length 1 + α from ω1. This will shift ω2 to the left by a distance of

|u| −| v|(1 + α) = u+ v(1 + α) = t.

Call this modified patch ω′ and note that ω2 appears in ω′ at location p + t, as desired. The

other cases can be argued in a similar manner.

Lemma 4.4. Given any ε > 0 there exists an M ∈ N such that for all γ ∈ (−2 − α, 2 + α), if

ω is a patch in Y with supp(ω) = [a, b] for some a, b ∈ R and there exists p ∈ R, a < p < b
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such that ω|[a,p] is a grid patch with p − a ≥ M(2 + α), then there exists a patch ω′ ∈ Y with

supp(ω′) = [a, b+ t] such that ω|[p,b] = Stω′
[p+t,b+t] for some |γ − t| < ε.

Proof. Let ω be a patch in Y satisfying the hypothesis. Let θ be the concatenation of ω and a grid

patch with support [b, b+M(2 + α)], where M is obtained by applying Lemma 4.2 to ε.

Apply Lemma 4.3 to θ to get a patch θ′ and t ∈ R, |t− γ| < ε. Let ω′ be the restriction of θ′ to

the interval [a, b+ t].
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5. STENCILS AND TEMPLATES

In this chapter, we introduce the template machinery to define the maps φi, as discussed in

Chapter 1. Recall that (X,µ, T ) is a Z-system and f is a n.c function on X . The n.c. flow built

over TZ under f is given by {Ut}t∈R. We want to define maps φi so that they converge to give a

near conjugacy φ between X̃ and the tiling space Y . The maps φi will be defined as point-to set

maps, using the towers from {P̃ i}, corresponding to a skeleta decomposition {P i} of the discrete

space X . To every tower τ̃ ij ∈ P̃ i, we will associate a patch λi
j , and for points x̃ ∈ τ̃ ij , we will

define φi(x̃) to be a cylinder set given by λi
j . To understand this better, we define stencils and

templates, and ask the reader to refer to Figure 5.1 for a geometrical interpretation.

Definition 5.1. Let τ be a tower in X with base E and height h. Let τ̃ be the corresponding tower in

X̃ with base Ẽ. An ε-stencil for τ̃ is a 3-tuple (λ,G, φ) where λ is a patch in the tiling space Y with

supp(λ) ! [0, inf(x,0)∈Ẽ f(x, h)], G ⊂ τ̃ is of the form G = ∪s∈(p,q)Us(Ẽ) with (p, q) ⊂ supp(λ)

and φ is a point-to-set map defined on G by φ(x̃) = C(Ssλ, ε) whenever x̃ ∈ Us(Ẽ).

φ

G

q

p

C(λ, ε)

τ̃

λ

Fig. 5.1: ε-stencil (λ,G, φ) for a tower τ̃

Definition 5.2. Let P be a tower partition of (X,µ, T ) and P̃ denote the corresponding towers in

X̃ . Let (λj, Gj, φj) be ε-stencils for towers τ̃j ∈ P, j ∈ J . A template for P̃ is a 2-tuple (G, φ)

where G = ∪j∈JGj and φ is a point-to-set map defined on G by φ(x̃) = φj(x̃) whenever x̃ ∈ Gj .
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To define the map φ, we will first define εi-stencils (λi
j, G

i
j, φ

i
j) for each tower in τ̃ ij ∈ P̃ i.

Using these stencils, we will then define templates (Gi, φi) for each P̃ i. The following proposition

gives sufficient conditions to guarantee that the template maps φi converge to a near conjugacy

φ : X̃ → Y , and also that the cross-section Z consisting of all points whose corresponding tiling

has its origin located at the base point of a tile, is indeed a Gδ-subset of X̃ .

Proposition 5.3. Let (X,µ, T ) be a n.c. Z-action, f : X → R+ be continuous and {εi}i∈N be

a decreasing sequence of reals with εi decreasing to 0. Let Y denote the space of all tilings of

R by tiles of length 1 and 1 + α. Let {P i}i∈N be a sequence of tower partitions of X , with

P i = {τ ij : j ∈ Ji}, i = 1, 2, ... Let (X̃, µ, {Uf
t }t∈R) denote the n.c. flow built under the function

and let P̃ i = {τ̃ ij : j ∈ Ji}, i = 1, 2, ... denote the corresponding tower partitions of X̃ . Suppose

for each i ≥ 1 and j ∈ Ji, there exist εi-stencils (λi
j, G

i
j, φ

i
j) for τ̃ ij and their corresponding

templates (Gi, φi) for P̃ i satisfying:

(a) for any x̃ ∈ X̃ and t1, t2 ∈ R, there exists an i ∈ N and j ∈ Ji such that the partial orbit

∪s∈[t1,t2]Usx̃ is contained in Gi
j.

(b) G1 ⊂ G2 ⊂ ..., and

(c) for any i ∈ N and x̃ ∈ Gi, φi(x) ⊃ φi+1(x̃).

Then there exists a map φ : X̃ → Y such that for all x̃ ∈ X̃ and t ∈ R we have

φ(Utx̃) = St(φx̃).

Furthermore, for each i ∈ N and j ∈ Ji, if Gi
j = ∪s∈(pij ,qij)UsẼ1

j with (pij, q
i
j) ⊂ supp(λi

j), then let

Zi
j = {

⋃

η∈(pij+2εi,qij−2εi)

⋃

|η−s|<εi

UsẼ
i
j : η is the basepoint of a tile in λi

j}

and Zi = ∪j∈JiZ
i
j . Suppose for each i ∈ N, the sets Zi satisfy

(d) Gi ∩ Zi+1 ⊂ Zi and
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(e) Z1 ∩ Zi )= ∅.

Then the set of all points x̃ ∈ X̃ such that the origin is located at the base point of a tile in φ(x̃),

forms a non-empty Gδ-subset of X̃ .

Proof: For any x̃ ∈ X̃ , by (a) and (b), there exists an n(x̃) ∈ N such that x̃ ∈ Gi for all i ≥ n(x̃).

Hence, using (c), we get that the sequence {φi(x̃)}i≥n(x̃) forms a decreasing sequence of nested

cylinder sets. Since each φi(x̃) = φi
j(i)(x̃) = C(St(i)λi

j(i), εi) for some j(i) ∈ Ji and t(i) ∈ R, such

that x̃ ∈ Ut(i)Ẽi
j(i), and Y is compact, we have

⋂

i≥n(x̃)

φi(x̃) =
⋂

i≥n(x̃)

C(St(i)λ
i
j(i), εi) ⊃

⋂

i≥n(x̃)

C(St(i)λi
j(i), εi/2) )= ∅, (5.1)

as Y is compact. By (a) and (b), there also exists a strictly increasing sequence {ik}k≥1 such that

i1 ≥ n(x̃) and ∪s∈[−k,k]Usx̃ ∈ Gik
j(ik)

. As x̃ is at height t(ik) in the tower τ̃ ikj(ik), we then have

[t(ik)− k, t(ik) + k] ⊂ (pikj(ik), q
ik
j(ik)

) which by definition is a subset of supp(λik
j(ik)

). This implies

that [−k, k] ⊂ supp(λik
j(ik)

)− t(ik) = supp(St(ik)λ
ik
j(ik)

). Therefore

lim
k→∞

supp(St(ik)λ
ik
t(ik)

) = R,

which in turn implies that

lim
i→∞

supp(St(i)λ
i
t(i)) = R.

Using this and the fact that εi → 0 as i → ∞, we get

⋂

i≥n(x̃)

φi(x̃) =
⋂

i≥n(x̃)

C(St(i)λ
i
j(i), εi) (5.2)

is at most a singleton. By (5.1) and (5.2), the map φ : X̃ → Y defined by

φ(x̃) =
⋂

i≥n(x̃)

φi(x̃)
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is then well-defined on X̃. Also note that for any n ≥ n(x̃), we have φ(x̃) ∈ ∩i≥nφi(x̃) and by the

same arguments as in (5.1) and (5.2), is a singleton. Therefore

φ(x̃) = ∩i≥nφ
i(x̃) for any n ≥ n(x̃). (5.3)

Now suppose that x̃ ∈ X̃ and t ∈ R. We will show that φ(Utx̃) = St(φx̃). By (a) and (b),

there exists an n ≥ max{n(x̃), n(Utx̃)} such that x̃,Utx̃ ∈ Gi
j(i) for all i ≥ n, j(i) ∈ Ji. Then

φi(x̃) = φi
j(i)(x̃) = C(St(i)λi

j(i), εi), where t(i) ∈ R such that x̃ ∈ Ut(i)Ẽi
j(i). This implies that

Utx̃ ∈ Ut+t(i)Ẽi
j(i) and hence

φi(Utx̃) = φi
j(i)(Utx̃) = C(St+t(i)λ

i
j(i), εi) = StC(St(i)λ

i
j(i), εi) = Stφ

i(x̃).

Using (5.3), we then have

φ(Utx̃) =
⋂

i≥n

φi(Utx̃) =
⋂

i≥n

Stφ
i(x) = St

⋂

i≥n

φi(x) = Stφ(x̃).

Let Z denote the set of all points x̃ ∈ X̃ such that the origin origin is located at the base point

of a tile in φ(x̃). To show Z is Gδ, first note that Ei
j is clopen in X for any i ∈ N and j ∈ Ji, and

therefore ∪|s−η|<εiUsẼ is open in X̃ . As a result all Zi
j , and hence Zi, are open subsets of X̃ . We

will show that Z = ∩n≥1 ∪i≥n Zi, and hence will be a Gδ-subset of X̃ .

Suppose x̃ ∈ Z. By definition, there exists n(x̃) ∈ N such that φ(x̃) = ∩i≥n(x̃)φi(x̃). Hence

for each i ≥ n(x̃), there exists a j(i) ∈ Ji and t(i) ∈ R such that x̃ ∈ Ut(i)Ẽi
j(i) ⊂ Gi

j(i) and

φi(x̃) = φi
j(i)(x̃) = C(St(i)λi

j(i), εi). Since x̃ ∈ Z, the origin origin is located at the base point of a

tile in φ(x̃). As φ(x̃) ∈ C(St(i)λi
j(i), εi) there exists η(i) ∈ (t(i) − εi, t(i) + εi) such that η is the

base point of a tile. This implies x̃ ∈ Ut(i)Ẽi
j(i) and |t(i)−η(i)| < εi, and therefore x̃ ∈ Zi

j(i) ⊂ Zi.

Hence x̃ ∈ ∩i≥n(x̃)Zi ⊂ ∩n≥1 ∪i≥n Zi.
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Now suppose x̃ ∈ ∩n≥1 ∪i≥n Zi. Then there exists a strictly increasing sequence {nk} such

that x̃ ∈ Znk for all k ≥ 1. Note that for any i ∈ N, and j ∈ Ji, Ei
j is clopen in X , and therefore

Zi =
⋃

j∈Ji

⋃

η∈(pij+2εi,qij−2εi)

⋃

|s−η|≤εi

UsẼ ! Gi.

Hence for each k ≥ 1, we have Znk ⊂ Gnk . Now x̃ ∈ Znk ∩Znk+1 and Gnk ⊂ Gnk+r for all r ≥ 1,

implies x̃ ∈ Gnk+1−1 ∩ Znk+1 . Using (d) we then get x̃ ∈ Znk+1−1. By the same argument, using

(d) repeatedly, we get x̃ ∈ Znk+1−2, ..., Zn1+1. This is true for all k ≥ 1 and therefore x̃ ∈ Zi for

all i ≥ n1. Hence for all i ≥ n1, there exists j(i) ∈ Ji and η(i) ∈ R such that η(i) is the base point

of a tile in λi
j(i) and x̃ ∈ Ut(i)Ẽi

j for some |t(i)− η(i)| < εi, and

φi(x̃) = φi
j(i)(x̃) = C(St(i)λ

i
j(i), εi) ⊂ C(Sη(i)λ

i
j(i), 2εi).

In other words, for every tiling in φi(x̃), the origin is located within 2εi of the base point of a tile.

Since εi → 0 as i → ∞ and φ(x̃) ∈ φi(x̃), we see that the origin is located at the base point of

a tile in φ(x̃). Therefore x̃ ∈ Z. All that remains to show now is that Z )= ∅. For each i ≥ 1, let

Ki = Z1 ∩ Zi. By (e) Ki )= ∅. and Ki+1 = Z1 ∩ Zi+1 = ∩i+1
n=1Z

n ⊃ Z1 ∩ Zi = Ki. Therefore

{Ki} is a nested decreasing sequence of closed sets in X̃ and have a non-empty intersection as X̃

is complete.

Using (d) and the fact that Z1 ⊂ G1 ⊂ Gi, we get

Ki+1 ⊂ Z1 ∩ Zi+1 ⊂ Gi ∩ Zi+1 ⊂ Zi.

Therefore

Z =
⋃

n≥1

⋂

i≥n

Zi ⊃
⋃

n≥1

⋂

i≥n

Ki+1 )= ∅.
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6. PROOF OF THEOREM 1.5

We are now ready to give a proof of Theorem 1.5. We will first define the sequences {Ni}∞i=0,

{εi}∞i=1 and an L0 ∈ N, and then define a skeleta partition of {P̃ i}∞i=0 of X̃ with respect to {Ni}∞i=0

and L0. Then in Section 6.1, we will do an inductive construction using the sequence {P̃ i}∞i=0, so

that at the end of stage i, we would have associated to each tower τ̃ ij ∈ P̃ i
i , an εi-stencil (λi

j, G
i
j, φ

i
j).

In Section 6.2, we will show that for all i ≥ 1, j ∈ Ji, the εi-stencils (λi
j, G

i
j, φ

i
j) and their corre-

sponding templates (Gi, φi) satisfy the hypothesis of Proposition 5.3. In the last Section, we will

define the Z-system (Z, ν, TZ) and the function g : Z → {1, 1 + α}, and conclude the proof of

Theorem 1.5 by showing that the n.c. flow built over TZ under g is n.c. conjugate to the flow

{Ut}t∈R on X̃ .

Proof of Theorem 1.5: Let (X,µ, T ) be a n.c. Z-system and f : X̃ → R be a n.c. function such

that there exist constants c, c′ ∈ R satisfying 0 < c < f(x) < c′ < ∞ for all x ∈ X . Let {Ut}t∈R

be the n.c. flow built over T under f , and let α ∈ R be a positive irrational. Define L0 ∈ N such

that

cL0 > 4(2 + α). (6.1)

Define a sequence {εi}i∈N so that
∞∑

i=0

εi <
1

3
(6.2)

and

εi+1 <
εi
4
, for all i ∈ N. (6.3)

Apply Lemma 4.2 to the sequence {εi}i∈N to get {Mi}i∈N with the property that for all i ∈ N and

γ ∈ (−2− α, 2 + α), there exist ui, vi ∈ Z such that

|ui|+ |vi| < Mi and |ui + vi(1 + α)− γ| < εi+1. (6.4)
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Without loss of generality, we can assume

Mi+1 > Mi + 2, for all i = 0, 1, 2, ... (6.5)

Define the sequence {Ni}∞i=0 so that for all i ∈ N, we have Ni > Ni−1 and

cNi ≥ 6

(
1 +

i∑

n=0

Mn

)
(2 + α). (6.6)

Apply Proposition 3.1 to {Ni}∞i=0, L0 ∈ N and {εi}i∈N to obtain a T -invariant Gδ-subset X ′ ⊂ X

with µ(X) = 1 so that there exists a clopen set A ⊂ X ′ and a skeleta decomposition {P i}∞i=0 of

X ′ satisfying equations (3.2) and (3.3). In the end, we will show that the flow {Ut}t∈R restricted to

the flow space X̃ ′ with the Z-system (X ′, µ|X′ , T |X′) as its base, is continuously conjugate to the

two-step flow built under the function g. Therefore, without loss of generality, we will assume that

(X,µ, T ) itself is such that there exists a clopen set A ⊂ X and the sequence of tower partitions

{P i}∞i=0 is a skeleta decomposition of X satisfying equations (3.2) and (3.3).

Let {P̃ i}∞i=0 to be the sequence of tower partitions of the flow space X̃ , corresponding to the

skeleta decomposition of the discrete space X .

We want to define a flow collar for each tower τ̃ ij ∈ P̃ i. The purpose for doing so is to leave

ourselves enough room to be able to construct εi+1-stencils at stage i + 1, from the εi-stencils at

stage i. The height of the flow collar of a tower will help control the size of the gaps between the

supports of patches in the stencils at any given stage. We will use Lemmas 4.3 and 4.4 heavily to

build the patches of the stencils. Recall from those lemmas

that to be able to shift a patch ω by a distance within εi of a γ ∈ (−2 − α, 2 + α), we need to

be able to concatenate ω on both sides by grid patches of lengths at least Mi−1(2 + α), and hence

the gaps between shorter patches needs to be at least 2Mi−1(2 + α). If we want to shift a patch

independently by a distance within εn of γn ∈ (−2− α, 2 + α), for all n = 0, 1, ..., i, we will need

the gaps to be at least 2
∑i−1

k=0 Mk(2 + α) long. For technical reasons, we demand that the gaps,
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and hence the heights of the flow collar of towers, be at least 6
∑i−1

k=0 Mk(2 + α).

Collar

τ̃ ij τ̃ ij

ai
j

dij

Ẽ
dij

cdij

τ ij

Fig. 6.1: Collar of τ̃ ij

Also, recall that for i ∈ N, j ∈ Ji, dij is the number of levels in the discrete collar of the corre-

sponding tower τ ij in X . We want to define the height of the flow collar of τ̃ ij in such a manner that

if x̃ belongs to the flow collar of τ̃ ij and has the form x̃ = (x, 0) for some x ∈ X , then x should

belong to the discrete collar of τ ij in X . This means that we want the height of the flow collar of τ̃ ij

to be at most cdij , as for any x ∈ X , we have f(x) ≥ c.

Therefore we want to define the height of the flow collar of τ̃ ij such that it is in between

6
∑i−1

k=0 Mk(2 + α) and cdij . Let aij denote the height of the flow collar of τ̃ ij and define

aij =

(
1 + 6

n∑

k=0

Mk

)
(2 + α) (6.7)

where n ≥ i is such that Nn ≤ dij < Nn+1. By (6.6) and the fact that Nn ≤ dij , we get

6
i−1∑

k=0

Mk(2 + α) ≤ aij ≤ cNn < cdij. (6.8)

as desired. For ease of notation, let

rij = 1 +
n∑

k=1

Mk, (6.9)
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and rewrite

aij = 6rij(2 + α). (6.10)

Also, for i ≥ 1, as dij = di−1
j1 , the number of levels in the discrete collar of τ ij in X is the same as

the number of levels in the discrete collar of its first sub-tower. This gives us the same relationship

for the heights of the flow collars

aij = ai−1
j1 for all i ≥ 1, (6.11)

i.e., the height of the flow collar of any tower τ̃ ij is the same as that of its first sub-tower. Also

recall from the proof of Proposition 3.1, that if {τ̃ i−1
jm : m = 1, ..., k} is the associated sequence of

previous stage towers for τ̃ ij ∈ P̃ i, then Fm(x) is the time it takes for a point (x, 0) ∈ Ẽi
j to reach

the base of the mth sub-tower and

em = inf
(x,0)∈Ẽi

j

{Fm(x)}. (6.12)

By (3.3), we know that for any x̃ = (x, 0) ∈ Ẽi
j ,

|em − Fm(x̃)| ≤
εi
2
< εi. (6.13)

Also note that since ai−1
j1 < F2(x) and εi < 2 + α, using (6.11) and (6.13), we have

aij < em + ai−1
jm for all m ≥ 2. (6.14)

6.1 Constructing the εi-stencils.

We now describe an inductive construction in X̃ , using the skeleta decomposition {P̃ i}∞i=0. At

the end of stage i, we will associate to every tower τ̃ ij ∈ P̃ i
i , its (εi)-stencil (λi

j, G
i
j, φ

i
j). We will

also associate to this stencil two numbers ui
j and vij , which will help construct the εi+1-stencils at
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stage i+ 1.

Before starting the induction, we define patches λ0
j for each tower τ̃ 0j ∈ P̃ 0 at stage 0. Let τ̃ 0j

be a tower from P 0. Let b0j denote the largest multiple of 2+α so that b0j is at least (2+α) smaller

than f(x, h0
j) for any (x, 0) in the base E0

j , i.e.,

b0j + (2 + α) < inf
(x,0)∈Ẽ0

j

f(x, h0
j) < b0j + 2(2 + α). (6.15)

Since |f(x, h0
j)− f(y, h0

j)| < ε0 for all (x, 0), (y, 0) ∈ Ẽ0
j , we then have

f(x, h0
j)− 2(2 + α) < b0j < f(x, h0

j)− (2 + α) + ε0. (6.16)

As f(x) > c for all x ∈ X , and the fact that the tower τ 0j in X has at least d0j + L0 levels,

we know that the time each point (x, 0) ∈ Ẽ0
j spends in τ̃ 1j is at least c(d0j + L0). Hence using

(6.16), we get b0j + 2(2 + α) > c(d0j + L0) and by choice of a0j and L0 in (6.10) and (6.1), we get

b0j + 2(2 + α) ≥ a0j + 4(2 + α). Therefore

b0j > a0j + 2(2 + α) for all (x, 0) ∈ E0
j . (6.17)

Let λ0
j be the grid patch of length l0j = b0j − a0j with supp(λ0

j) = [a0j , b
0
j ]. It follows from (6.16)

and (6.17) that supp(λ0
j) ⊂ [0, inf(x,0)∈Ẽ0

j
f(x, h0

j)].

Stage 1: Let τ̃ 1j ∈ P̃ 1, and let {τ̃ 0j1 , τ̃
0
j2 , ...τ̃

0
jk
} be its associated sequence of previous stage tow-

ers. We will first construct the patch λ1
j and define u1

j , v
1
j and then define the ε1-stencil (λ1

j , G
1
j , φ

1
j).

If k = 1 then τ̃ 1j consists of a column from a single tower τ̃ 0j1 . In this case, let b1j = b0j1 and

note that a1j = a0j1 . As h1
j = h0

j1 , by (6.17) we have b1j < f(x, h1
j) for all (x, 0) ∈ Ẽ1

j ⊂ E0
j1 . Let

λ1
j = λ0

j1 and note that supp(λ1
j) = [a1j , b

1
j ] ! [0, inf(x,0)∈Ẽ1

j
f(x, h1

j)]. Define u1
j = v1j = 0.
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Suppose k ≥ 2. For m = 2, 3, ..., k, recall that em as defined as in equation (6.12), is the the

approximate entry time of a point in Ẽ1
j to the mth sub-tower τ̃ 0jm . Then em + a0jm is the approx-

imate height where the collar of the mth sub-tower ends in τ̃ 1j . Ideally, we want to define λ1
j in

such a way that when we look at the sub-patch covering the interval [em + a0jm , em + a0jm + l0jm ], it

matches the patch λ0
jm of the corresponding sub-tower, as seen in Figure 6.2. The natural thing to

do would be to place the the λ0
jm as sub-patches covering the intervals [em + a0jm , em + a0jm + l0jm ],

and fill the gaps between the sub-patches by intervals of length 1 and 1 + α. Note that e1 = 0 and

a0j1 is a multiple of 2 + α, and therefore there is no problem placing the patch λ0
j1 as a sub-patch

of λ1
j , starting at the desired location a1j . But for m = 2, ..., k, as em (and hence em + a0j ) are not

necessarily linear combinations of 1 and 1+α, it would not possible to tile all the gaps as desired.

We will define a patch λ1
j which does not quite achieve the goal described above. Instead it will

satisfy the property that for each m = 2, ..., k, the sub-patch λ0
jm will appear at a location within ε1

of the desired location em + a0jm .

We construct λ1
j by modifying a grid patch. For m = 2, ..., k, choose βm ∈ N so that βm(2+α)

is the closest 2 + α multiple to em + a0jm as seen in Figure 6.2, i.e.,

|em + a0jm − βm(2 + α)| ≤ 1

2
(2 + α) (6.18)

and let b̂1j = βk(2 + α) + l0jk . Note that since l0jk is a multiple of 2 + α, so is b̂1j . Let λ̂1
j be the grid

patch with support [a1j , b̂1j ].

As each λ0
jm is a grid patch, the idea is to think of λ0

jm as being the sub-patch of λ̂1
j covering the

interval [βm(2 + α), βm(2 + α) + l0jm ]. This sub-patch will have to be moved if it were to appear

in the perfect location, i.e., beginning at location em + a0jm . For m = 2, ..., k, let |γm| denote the

distance to be shifted, i.e.,
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e2 + a0j2

τ̃ 1j





λ0
j1




λ0
j2




λ0
j3

ideal λ1
j

e3

e2

e1

a1j

b̂1j

e3 + a0j3




ω3

ρ2
β2(2 + α)

ρ3

β3(2 + α)

β1(2 + α)

λ̂1
j

ω2






Fig. 6.2: A flow tower, indicating the approximate locations of sub-towers, the approximation of these loca-
tions by multiples of 2 + α, and the patches ωm

γm = em + a0jm − βm(2 + α).

Then from (6.18), we have |γm| ≤ (2 + α)/2.

To move the sub-patch λ̂1
j |[βm(2+α),βm(2+α)+l0jm ] by γm, we will use Lemmas 4.3 and 4.4, and

therefore need these sub-patches to be preceded and followed by grid patches of appropriate

lengths. Recall that all towers in P̃ 1 have flow collar heights a1j = 6r1j (2 + α) where r1j =

1 +M0 +M1. For m = 2, ..., k, define

ρm = (βm − 3r0jm)(2 + α),

and let ωm denote the sub-patches of λ̂1
j covering the intervals [ρm, ρm+1] for m = 2, ..., k − 1

and [ρm, b̂1j ] for m = k, as shown in Figure 6.2. Geometrically, the sub-patch ωm is the patch λ1
jm

concatenated before and after with grid patches λ̂1
j |[ρm,βm(2+α)] and λ̂1

j |[βm(2+α)+l0jm ,ρm+1] that cover

half of the flow collars of the mth and the m+1th sub-towers respectively. Since these grid patches
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have supports about 3rijm(2 + α) and 3rijm+1
(2 + α) respectively, and since rijm , r

i
jm+1

> M0, the

supports are longer than M0(2 + α). Therefore the patch ωm satisfies the hypothesis of Lemma

4.3. Apply Lemma 4.3 to ωm with γm and ε1, to get a patch ω′
m with

supp(ω′
m) = supp(ωm) = [ρm, ρm+1] (6.19)

and such that the sub-patch λ̂1
j |[βm(2+α),βm(2+α)+l0jm ] is shifted to a location beginning within ε1 of

em + a0jm as seen in Figure 6.3.

(βm+1 − 4r0jm+1
)(2 + α)ρm βm(2 + α)

ρm ρm+1

ρm+1

}

γm

ωm :

ω′
m : }

less than ε1

λ0
jm

em + a0jm

Fig. 6.3: ωm and ω′
m

Similarly, for m = k, the grid patch λ̂1
j |[ρk,βk(2+α)] acts as the grid patch preceding λ̂1

j |[βm(2+α),b̂1j ]

and is longer than M0(2 + α). Therefore ωk satisfies the hypothesis of Lemma 4.4. Apply Lemma

4.4 to ωk with γk and ε1, to get a patch ω′
k with supp(ω′

k) = [ρk, b̂ij + t], where t = u + v(1 + α)

for some u, v ∈ Z with |u|+ |v| < M0 and |t− γk| < ε1, and such that the sub-patch λ̂1
j |[βk(2+α),b̂ij ]

is now shifted to a location beginning within ε1 of ek + a0jk . Note here that by using Lemma 4.4,

we pretended that we had a grid patch after λ̂1
j |[βm(2+α),b̂1j ]

of length longer than M0(2 + α). The u

and v keep track of the number of intervals interchanged, so that in later stages, when this tower τ̃ 1j

appears as a sub-tower within a tower in P i for i ≥ 2, we will be able to reconcile this interchange

of tiles using a part of the flow collar that appears above it.

Also note that the support of ω′
k starts at the same location as the support of ωk. By (6.19),

we know that supp(ωm) = supp(ω′
m) for all m = 2, ..., k − 1. Therefore, we can construct a new

patch λ1
j on the interval [a1j , b̂1j + t], by replacing all sub-patches ωm with ω′

m for all m = 1, ..., k.
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We want to show that the support of this new patch λ1
j is strictly contained in [0, inf

(x,0)∈Ẽ1
j

f(x, h1
j)].

Geometrically speaking, supp(λ1
j) is the same as supp(λ̂1

j) up to ρk. The only difference comes

from the part where we shifted λ0
jk

to begin at the location βk(2 + α) + t, instead of beginning at

βk(2+α). As βk(2+α) is within (2+α)/2 of ek + a0jk and βk(2+α) + t is within ε1 of ek + a0jk ,

we have moved closer to the desired location ek + a0jk . Now, for any point x̃ = (x, 0) ∈ Ẽ1
j , the

part of its orbit from time Fk(x) to f(y, h0
jk
), where (y, 0) = UFk(x)x̃ ∈ Ẽ0

jk
, is the part that belongs

to the kth sub-tower. By (6.13), we know that |Fk(x)− ek| < ε1. Therefore the difference between

where the patch λ0
jk

begins in λ1
j , i.e., βk(2 + α) + t, and where we expect it to begin in relation to

the partial orbit of x̃ i.e., at location Fk(x) + a0jk , is at most 2ε1. Hence

|Fk(x) + a0jk − βk(2 + α)− t| < 2ε1. (6.20)

Let b1j denote the end point of λ1
j , i.e.,

b1j = βk(2 + α) + t+ (b0jk − a0jk).

Then (6.20) implies b1j < Fk(x) + 2ε1 + b0jk . By (6.16) we know b0jk < f(y, h0
jk
) − (2 + α) + ε0.

Using this and the fact that Fk(x) + f(y, h0
jk
) = f(x, h1

j) we get

b1j < f(x, h1
j)− (2 + α) + 2(ε0 + ε1). (6.21)

To show that a1j < b1j , recall from (6.14) that a1j < ek + a0jk as k ≥ 2. Since ek + a0jk is within ε1 of

βk(2 + α) + t, we get a1j < βk(2 + α) + t+ ε1. Therefore using (6.17), we get

b1j − a1j > b0jk − a0jk − ε1 > 2(2 + α)− ε1.

Therefore supp(λ1
j) = [a1j , b

1
j ] ! [0, inf(x,0)∈Ẽ1

j
f(x, h1

j).
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For future reference, we also compute a lower bound for b1j . By (6.20) again, we have b1j >

Fk(x)− 2ε1 + b0jk . Using (6.16), we then get

b1j > Fk(x)− 2ε1 + f(y, h0
jk
)− 2(2 + α) = f(x, h1

j)− 2(2 + α)− 2ε1.

Let l1j = b1j − a1j denote the length of supp(λ1
j). Define u1

j = u and v1j = v Note that

l1j − u1
j − v1j (1 + α) = l1j − t = b̂1j

and hence is a multiple of 2 + α. Also note that

|u1
j |+ |v1j | < M0.

Define

p1j = a1j +
1

2
q1j = b1j −

1

2
+ ε0,

and let

G1
j =

⋃

p1j<s<q1j

UsẼ
1
j .

For all x̃ ∈ UsẼ ⊂ G1
j , define the map φ1

j(x̃) = C(Ssλ1
j , ε1). Clearly, (λ1

j , G
1
j , φ

1
j) forms an ε1-

stencil for τ̃ 1j .

Stage i+1: Now suppose for i ∈ N, every tower τ̃ ij ∈ P̃ i is assigned an εi-stencil (λi
j, G

i
j, φ

i
j)

with supp(λi
j) = [aij, b

i
j] ! [0, inf(x,0)∈Ẽi

j
f(x, hi

j) and such that

f(x, hi
j)− 2(2 + α)− 2

i∑

n=1

εn < bij < f(x, hi
j)− (2 + α) + 2

i∑

n=0

εn. (6.22)

Let lij = bij − aij satisfy
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lij > 2(2 + α)−
i∑

n=1

εn. (6.23)

Suppose Gi
j =

⋃
pij<s<qij

UsẼi
j where

pij = aij + 1/2 and qij = bij − 1/2 +
i−1∑

n=0

εn. (6.24)

Also suppose that ui
j, v

i
j are such that

|ui
j|+ |vij| <

i−1∑

m=0

Mm (6.25)

and

lij − ui
j − vij(1 + α) is a multiple of (2 + α). (6.26)

Fix a τ̃ i+1
j ∈ P̃ i+1. Let {τ̃ ij1 , τ̃

i
j2 , ...τ̃

i
jk
} be its associated sequence of previous stage towers. Again

we first construct the patch λi+1
j and define ui+1

j , vi+1
j and then define the εi+1-stencil for τ̃ i+1

j .

If k = 1 define λi+1
j = λi

j1 and bi+1
j = bij1 . Note that ai+1

j = aij1 , and as hi+1
j = hi

j1 , we have

(6.22) is satisfied. Therefore supp(λi+1
j ) = [ai+1

j , bi+1
j ] ! [0, inf(x,0)∈Ẽi+1

j
f(x, hi+1

j )]. Also define

ui+1
j = ui

j1 , v
i+1
j = vij1 and li+1

j = lij1 . It is clear that (6.23), (6.25) and (6.26) are also true.

Suppose k ≥ 2. We will follow what we did in Stage 1 almost exactly with the exception

that the patch λ̂i+1
j will not be a grid patch to begin with. The patches λi

jm , corresponding to the

sub-towers τ̃ ijm , for m = 1, ..., k from the previous stage are not grid patches any more. We will

construct the patch λ̂i+1
j by placing λi

jm as sub-patches beginning at the nearest 2 + α multiple of

the final desired location, and fill in the gaps with patches constructed using ui
j, v

i
j and grid patches

of appropriate lenghts. Having once constructed λ̂i+1
j , the rest of the construction will be the same

as in Stage 1.
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Recall from (6.12) that em is the approximate entry time of a point in Ei+1
j to the mth sub-tower

τ̃ ijm . For each m = 2, 3, ..., k, choose βm ∈ N, to be the closest 2 + α multiple of em + aijm i.e.,

|em + aijm − βm(2 + α)| ≤ 1

2
(2 + α) (6.27)

and let β1(2 + α) = ai+1
j = aij1 . Let M =

∑i
m=0 Mm and for m = 1, ..., k − 1 let sm =

M − ui
jm + (M − vijm)(1 + α). The role of sm is to help define a patch θm that reconciles the

interchange of tiles that took place in the top sub-tower of τ̃ ijm at Stage i. To construct λ̂i+1
j , we

will concatenate the sub-patches λi
jm with the patches θm, and fill in the gaps with grid patches, as

shown in Figure 6.4.

For m = 1, ..., k− 1, define θm to be a patch consisting M− ui
jm tiles of length 1 followed by

M− vijm tiles of length 1 + α and covering the interval [βm(2 + α) + lijm , βm(2 + α) + lijm + sm].

By hypotheses we have |ui
jm | + |vijm | < M, and therefore |supp(θm)| = sm < 2M(2 + α). We

claim that βm(2+α)+ lijm + sm is a multiple of 2+α and is smaller than (βm+1− 4rjm+1)(2+α).

By (6.26), lij − ui
j − vij(1 + α) is a multiple of (2 + α) and therefore

βm(2 + α) + lijm + sm = βm(2 + α) + 2M+ (lij − ui
j − vij(1 + α))

is also a multiple of 2 + α.

We now show βm(2+α) + lijm + sm < (βm+1 − 4rjm+1)(2+α). Using (6.27) and the fact that

for any (x, 0) ∈ Ẽi+1
j , em approximates Fm(x) within εi+1, we get

(βm+1 − βm)(2 + α) > Fm+1(x)− Fm(x) + aijm+1
− aijm − (2 + α)− 2εi+1.

Since Fm+1(x) − Fm(x) = f(y, hi
jm) for (y, 0) = UFm(x,0), which by (6.22), is greater than bijm ,

we in turn get
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(βm+1 − βm)(2 + α) > bijm + aijm+1
− aijm − (2 + α)− 2εi+1. (6.28)

Now by definition, we have rijm+1
= 1+M, and aijm+1

= 6rijm+1
(2+α). Since sm < 2M(2+α) <

2ri−1
jm1

(2 + α)− 2(2 + α), we get

aijm+1
> 4rijm+1

(2 + α) + sm + 2(2 + α).

Substituting in (6.28), we get (βm+1−βm)(2+α) > bijm −aijm +4rjm+1 +sm and hence our claim.

βm(2 + α)βm(2 + α) βk(2 + α) βk(2 + α)β1(2 + α)

+lijm +lijm + sm

βm+1(2 + α)βm(2 + α)

θm a grid patch

+lijk

λi
jm

λi
jk

Fig. 6.4: The patch λ̂i+1
j

Let b̂i+1
j = βk(2 + α) + lijk . We define λ̂i+1

j on on the interval [ai+1
j , b̂i+1

j ], using the patches

patches λjm , θm and grid patches. For m = 1, 2, ..., k, define λ̂i+1
j to be the patch λi

jm on the

interval [βm(2 + α), βm(2 + α) + lijm ], i.e.,

λ̂i+1
j |[βm(2+α),βm(2+α)+lijm ] = Saijm−βm(2+α)λ

i
jm .

For m = 1, 2, ..., k − 1, define λ̂i+1
j to be the patch θm on the intervals [βm(2 + α) + lijm , βm(2 +

α) + lijm + sm], i.e.,

λ̂i+1
j |[βm(2+α)+lijm ,βm(2+α)+lijm+sm] = S−βm(2+α)−lijm

θm, (6.29)

As βm(2 + α) + ljm + sm is a multiple of 2 + α, fill the remaining gaps, i.e the intervals [βm(2 +

α) + lijm + sm, βm+1(2 + α)] for m = 2, ..., k − 1, with grid patches of appropriate lengths.

We can now use Lemmas 4.3 and 4.4 to modify λ̂i+1
j to λi+1

j so that for each m = 2, 3, ..., k.
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the sub-patch λi
jm appears at a location within εi+1 of em+aijm within λi+1

j . For m = 2, ..., k define

γm = em + aijm − βm(2 + α)

and

ρm = (βm − 3rijm)(2 + α).

By (6.27), |γm| ≤ (2 + α)/2. Let ωm denote the sub-patches covering the intervals [ρm, ρm+1]

for m = 2, ..., k − 1 and [ρm, b̂ij] for m = k. Note that the sub-paches λ̂i+1
j |[ρm,βm(2+α)] and

λ̂i+1
j |[βm(2+α)+lijm+sm,ρm+1] act as the grid patches preceding and succeeding the patch

λ̂i+1
j |[βm(2+α),βm(2+α)+lijm+sm] in ωm. Since rijm , r

i
jm+1

≥ M > Mi each of the above two grid

patches have length at least Mi(2 + α). Therefore for m = 2, ..., k − 1, ωm satisfy the hypothesis

of Lemma 4.3. Apply Lemma 4.3 to ωm and with γm and εi+1 to get a patch ω′
m with

supp(ω′
m) = supp(ωm) = [ρm, ρm+1] (6.30)

and note that the sub-patch λ̂i+1
j |[βm(2+α),βm(2+α)+lijm

] is shifted to the location beginning βm(2 +

α) + tm with |em + aijm − βm(2 + α)− tm| < εi+1.

For m = k, in a similar fashion, ωk satisfies the hypothesis of Lemma 4.4. Applying Lemma

4.4 to ωk with γk and εi+1, we get a patch ω′
k with supp(ω′

k) = [ρk, b̂
i+1
j +t], where t = u+v(1+α)

for some u, v ∈ Z, with |u|+|v| < Mi and |t−γk| < εi+1. Note that the sub-patch λ̂i+1
j |[βk(2+α),b̂i+1

j ]

is now shifted to the location the location beginning βm(2+α)−tk with |em+aijk−βm(2+α)−tk| <

εi+1.

Also note that the support of ω′
k starts at the same location as the support of ωk. By (6.30), we

know that supp(ωm) = supp(ω′
m) for all m = 2, ..., k − 1. Therefore, we can construct a new

patch λ1
j on the interval [a1j , b̂1j + t], by replacing all sub-patches ωm with ω′

m for all m = 2, ..., k.

We then have
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λi+1
j = Saijm−βm(2+α)−tmλ

i
jm (6.31)

on the interval [βm(2 + α) + tm, βm(2 + α) + tm + lijm ] with

|em + aijm − βm(2 + α)− tm| < εi+1 (6.32)

Define

bi+1
j = βk(2 + α) + tk + (bijk − a1jk). (6.33)

Using the same arguments as in Stage 1, it is easily shown that

f(x, hi+1
j )− 2(2 + α)− 2

i+1∑

n=1

εn < bi+1
j < f(x, hi+1

j )− (2 + α) + 2
i+1∑

n=0

εn (6.34)

for all (x, 0) ∈ Ẽi+1
j and

li+1
j = bi+1

j − ai+1
j > 2(2 + α)−

i+1∑

n=0

εn. (6.35)

Therefore supp(λi+1
j ) = [ai+1

j , bi+1
j ] ! [0, inf(x,0)∈Ẽi+1

j
f(x, hi+1

j )]. Let ui+1
j = ui

jk
+ u, vi+1

j =

vijk + v. Note that

|ui+1
j |+ |vi+1

j | = |ui
jk
|+ |vi+1

j |+ |u|+ |v| <
i∑

m=0

Mm.

Using (6.33) and the fact that tk = u+ v(1 + α), we get

li+1
j − ui+1

j − vi+1
j (1 + α) = βk(2 + α) + lij − ui

j − vij(1 + α)
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and hence li+1
j − ui+1

j − vi+1
j (1 + α) is a multiple of 2 + α. Define

Gi+1
j =

⋃

pi+1
j <t<qi+1

j

UtẼ
i+1
j

where

pi+1
j = ai+1

j +
1

2
and qi+1

j = bi+1
j − 1

2
+

i∑

n=0

εn. (6.36)

For all x̃ ∈ UsẼ ⊂ Gi+1
j , define the map φi+1

j (x̃) = C(Ssλ
i+1
j , εi+1). It is then clear that

(λi+1
j , Gi+1

j , φi+1
j ) forms an εi+1-stencil for τ̃ i+1

j .

6.2 The εi-stencils for τ̃ ij ∈ P̃ i satisfy the hypothesis of Proposition 5.3.

Recall that there exists a clopen set A ⊂ X and a skeleta decomposition {P i}∞i=0 of X with

respect to L0 and {Ni}∞i=0, as defined in (6.1) and (6.6). Also recall that the sequence {P̃ i}∞i=0

denotes the corresponding sequence of tower partitions for the flow space X̃ . For each i ≥ 1

and τ̃ ij ∈ P̃ i, (λi
j, G

i
j, φ

i
j) are the εi-stencils for τ̃ ij from Section 6.1. Let (Gi, φi) denote the

corresponding templates, so that Gi = ∪j∈JiG
i
j and φi(x̃) = φi

j(x̃) whenever x̃ ∈ Gi
j . To show

that the sets Gi
j satisfy condition (a) of Proposition 5.3 in the flow space X̃ , we first show that a

similar condition holds true in the discrete space X .

Lemma 6.1. Let x ∈ X and n1 ≤ n2 ∈ Z. Then there exists i ∈ N and τ ij ∈ P i such that T nx ∈ τ ij

for all n1 ≤ n ≤ n2, and away from the discrete collar of τ ij i.e., if T n2−mx ∈ Ei
j , then m ≥ dij.

Proof. Choose m1,m2 ∈ Z so that m1 ≤ n1 ≤ n2 ≤ m2 and Tm1x, Tm2x /∈ A. Choose i ∈ N

so that Ni > m2 −m1 + 1. Then there exists j ∈ Ji such that both Tm1x and Tm2x belong to the

tower τ ij . If not, Tm1x and Tm2x belong to different towers, and as the bottom most Ni levels of

every tower in P i are contained in the set A, there exist at least Ni occurrences of A between Tm1x

and Tm2x. This is a contradiction as Ni > m2 −m1 + 1.
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Therefore Tm1x and Tm2x belong to the same tower τ ij which implies

T nx ∈ τ ij for all m1 ≤ n ≤ m2.

Also, as Tm1x /∈ A, and the lower dij levels of τ ij are all contained in A, we have Tm2x is not in the

first dij levels of the tower. This implies that if Tm2−mx ∈ Ei
j then m ≥ dij. Therefore the result is

true for m1,m2, and follows for n1, n2.

Lemma 6.2. For any x̃ ∈ X̃ and any t1 < t2 ∈ R, there exists an i ∈ N and j ∈ Ji such that

{Utx̃ : t1 ≤ t ≤ t2} ⊂ Gi
j.

Proof. Let x̃ = (x, s) ∈ X̃ for x ∈ X and 0 ≤ s < f(x). It suffices to show that there exists an

i ∈ N and j ∈ Ji such that Ut1x̃ is at a height greater than pij and Ut2x̃ is at a height smaller than qij

in τ̃ ij .

First choose n1 ≤ n2 ∈ Z so that

Ut1x̃ = (T n1x, s1) for some 0 ≤ s1 < f(T n1x)

and

Ut2x̃ = (T n2−1x, s2) for some 0 ≤ s2 < f(T n2−1x).

Recall that the ceiling function f satisfies f(x) > c for all x ∈ X . Now choose k ∈ N so that

ck > 5(2 + α) and choose m1,m2 ∈ Z so that m1 < n1 − k ≤ n2 + k < m2. By Lemma 6.1

applied to m1,m2, there exist i ∈ N and j ∈ Ji so that Tm1x, Tm2x ∈ τ ij , and away from the collar

of the tower, i.e., dij < m1 < m2 < hi
j .

Therefore in the tower τ̃ ij , we have Ut1x̃ = (T n1x, s1) is at height greater than or equal to

c(m1+k)+ s1 > c(dij +k)+ s1. As cdij ≥ aij and aij +1/2 = pij , we get Ut1x̃ is at a height greater

than aij + 5(2 + α) + s1 > pij in τ̃ ij .
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Also, Ut2x̃ = (T n2−1x, s2) is at height at least c(m2 − n2) > ck > 5(2 + α) below (Tm2x, 0) in

the tower τ̃ ij . In other words, if Ut2(x̃) = (y, t) for some (y, 0) ∈ Ei
j , then t + 5(2 + α) < cm2 <

f(y, hi
j). By definition, qij = bij − 1/2 +

∑i−1
n=0 εn, and by (6.34), we know bij > f(y, hi

j)− 2(2 +

α)− 2
∑i

n=0 εn. Therefore qij > f(y, hi
j)− 3(2 + α) > t+ 2(2 + α). Hence Ut1x̃,Ut2x̃ ∈ Gi

j.

The following lemma shows that the sets Gi, i ∈ N satisfy condition (b) of Proposition 5.3.

Lemma 6.3. For all i ∈ N, Gi ⊂ Gi+1.

Proof. Suppose x̃ ∈ Gi for some i ∈ N. Then there exists r ∈ Ji such that x̃ ∈ τ̃ ir and x̃ ∈ Us1Ẽ
i
r

for some pir < s1 < qir. As P̃ i+1 is a tower partition of the flow space X̃ , there exists j ∈ Ji+1 and

s2 ≥ 0 such that x̃ ∈ τ̃ i+1
j , and x̃ ∈ Us2Ẽ

i+1
j for some s2 ≥ 0. To show that x̃ ∈ Gi+1, it suffices to

show that pi+1
j < s2 < qi+1

j .

Now x̃ ∈ τ̃ ir ∩ τ̃ i+1
j implies that τ̃ ir ∈ {τ̃ ijm : m = 1, ..., k}, the associated sequence of previous

stage towers of τ̃ i+1
j , i.e., r = jm for some m = 1, 2, ..., k. Hence either s2 = s1 if m = 1 or

s2 = s1+Fm(y) if m > 1 for some (y, 0) ∈ Ẽi+1
j . If m = 1, then pi+1

j = pj1 < s1 = s2. If m )= 1,

then Fm(y) > pi+1
j and therefore s2 > pi+1

j .

It remains to show that s2 < qi+1
j . Suppose not i.e., qi+1 ≤ s2. This implies that x̃ belongs to

the top sub-tower of τ̃ i+1
j , i.e., s2 = s1 + Fk(y). As |Fk(y) − ek| < εi+1 and s1 < qijk , we get

qi+1
j ≤ s2 < qijk + em − εi+1. Using (6.36) and replacing qijk and qi+1

j in terms of bijk and bi+1
j , we

get bi+1
j + εi < bijk + ek + εi+1, or equivalently εi < ek + bjk − bi+1

j + εi+1.

By definition of bi+1
j from (6.33), bi+1

j = βk(2 + α) + (bijk − aijk) + tk, and by (6.32), we know

|ek + aijk − βk(2 + α)− tk| < εi+1. Therefore we get

εi < ek + aijk − βk(2 + α)− tk + εi+1 < 2εi+1
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which is a contradiction as 4εi+1 < εi for all i.

Hence s2 < qi+1
j .

We next show that the template maps φi, i ∈ N, are consistent from stage i to i+ 1.

Lemma 6.4. If x̃ ∈ Gi, then φi(x̃) ⊃ φi+1(x̃).

Proof. Let x̃ ∈ Gi ⊂ Gi+1, then x̃ ∈ τ̃ i+1
j ∩ τ̃ ijm , where τ̃ ijm is a sub-tower of τ̃ i+1

j . Therefore we

can write x̃ in two ways:

x̃ = Us1 ỹ1for some ỹ1 = (y1, 0) ∈ Ẽi
jm ,

and

x̃ = Us2 ỹ2for some ỹ2 = (y2, 0) ∈ Ẽi+1
j

where s2 = s1 + Fm(y2). This implies

φi
jm x̃ = C(Ss1λ

i
jm , εi)

and

φi+1
j x̃ = C(Ss2λ

i+1
j , εi+1).

We need to show that C(Ss1λ
i
jm , εi) ⊃ C(Ss2λ

i+1
j , εi+1). Let Γ ∈ C(Ss2λ

i+1
j , εi+1). Then there

exists r ∈ (−εi+1, εi+1) such that

SrΓ = Ss2λ
i+1
j

on

supp(Ss2λ
i+1
j ) = supp(λi+1

j )− s2 = [ai+1
j − s2, b

i+1
j − s2].
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If m = 1, then s1 = s2, ai+1
j = aij1 and λi+1

j = λi
j1 on supp(λi

j1). This means

SrΓ = Ss1λ
i
j1 on supp(Ss1λ

i
j1),

and |r| < εi+1 < εi. Hence Γ ∈ C(Ss1λ
i
jm , εi) as desired.

Suppose m > 1. Then by equation (6.31) we know that

λi+1
j = Saijm−βm(2+α)−tmλ

i
jm

on the interval [βm(2 + α) + tm, βm(2 + α) + t+ lijm ] and for some |tm| < εi+1. Therefore

SrΓ = Ss2λ
i+1
j = Ss2+aijm−βm(2+α)−tmλ

i
jm

on the interval [βm(2 + α) + tm − s2, βm(2 + α) + tm + lijm − s2].

By (6.32) and (6.13), we know |Fm(y2)− em| < εi+1 and |em+ aijm −βm(2+α)− tm| < εi+1.

Hence |Fm(y2) + aijm − βm(2 + α)− tm| < 2εi+1. Since s2 − s1 = Fm(y2), we get

|(s2 + aijm − βm(2 + α)− tm)− s1| = |Fm(y2) + aijm − βm(2 + α)− tm| < 2εi+1.

We can then write s2 + aijm − βm(2 + α)− tm = s1 + r′ for some |r′| < 2εi+1, and βm(2 + α) +

tm − s2 = aijm − s1 − r′. This implies

SrΓ = Ss1+r′λ
i
jm on [aijm − s1 − r′, aijm − s1 − r′ + lijm ] = [aijm − s1 − r′, bijm − s1 − r′],

which in turn implies

Sr−r′Γ = Ss1λ
i
jm on [aijm − s1, b

i
jm − s1] = supp(Ss1λ

i
jm).
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As |r − r′| < 3εi+1 < εi, we get Γ ∈ C(Ss1λ
i
jm , εi).

For each i ≥ 1 and j ∈ Ji, let

Zi
j = {

⋃

η∈(pij+2εi,qij−2εi)

⋃

|η−s|<εi

UsẼ
i
j : η is the basepoint of a tile in λi

j}

and let Zi = ∪j∈JiZ
i
j . The following lemmas shows that the sets Zi satisfy conditions (d) of

Proposition 5.3.

Lemma 6.5. Gi ∩ Zi+1 ⊂ Zi for all i ∈ N.

Proof. Let x̃ ∈ Gi ∩ Zi+1. As P̃ i and P̃ i+1 are tower partitions of X̃ , there exist j ∈ Ji+1 and

jm ∈ Ji such that x̃ ∈ τ̃ i+1
j ∩ τ̃ ijm , where τ̃ ijm denotes the mth sub-tower of τ̃ i+1

j . Then we can write

x̃ in two ways

x̃ = Us1 ỹ1, for some ỹ1 = (y1, 0) ∈ Ẽi
jm

and

x̃ = Us2 ỹ2, for some ỹ2 = (y2, 0) ∈ Ẽi+1
j

where s2 = s1 + Fm(y2).

As x̃ ∈ Gi, pijm < s1 < qijm and since x̃ also belongs to Zi+1, there exists η′ ∈ R such that η′

is the basepoint of a tile in λi+1
j and x̃ ∈ Us2Ẽ

i+1
j with |η′ − s2| < εi+1. By (6.31), we have

λi+1
j = Saijm−βm(2+α)+tmλ

i
jm

on the interval [βm(2 + α) + tm, βm(2 + α) + tm + lijm ]. Therefore

η = η′ + aijm − βm(2 + α) + tm
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is the base point of a tile in λi
jm with supp(λi

jm) = [aijm , b
i
jm ]. Hence, by (6.13) and (6.32), we get

|η′ − s1 − em| < 2εi+1 and hence |s1 − η| ≤ 3εi+1 < εi.

Now pijm < s1 < qijm implies that η ∈ (pijm − εi, qijm + εi). Note that pijm = aijm + 1/2

and aijm is the base point of the first tile in the patch λi
jm . Since all tiles have length at least 1, and

∑∞
n=0 εn < 1/6, we will never see the base point of a tile in the interval (aijm+1/2−εi, aijm+1/2+

2εi) = (pijm − εi, pijm + 2εi). Similarly, as bijm is the end point of the last tile in λi
jm , we will never

see the base point of a tile in the interval (bijm −1/2+
∑i−1

n=1 εn−2εi, bijm −1/2+
∑i−1

n=1 εn+ εi) =

(qijm − 2εi, qijm + εi). Therefore all base points in (pijm − εi, qijm + εi) are actually contained in

(pijm + 2εi, qijm − 2εi). This means that

x̃ = Us1(ỹ1), for some ỹ1 ∈ Ẽi
jm and |η − s1| < εi

and η is the base point of a tile in λi
jm such that η ∈ (pijm+2εi, qijm−2εi). Therefore x̃ ∈ Zi

jm ⊂ Zi.

We introduce a notation here to describe the difference in heights of two points in the same

tower from any given P̃ i. Let x̃, ỹ ∈ τ̃ ij for some i ≥ 1 and j ∈ Ji, and suppose they located at

heights t and s respectively i.e., x̃ ∈ UsẼi
j and ỹ ∈ UtẼi

j . Then we define

|x̃, ỹ|i = |s− t|.

In the following lemma, we show that if two points x̃, ỹ are close in a tower in P̃ i+1, with x̃ ∈ Zi

and ỹ ∈ Zi+1, then ỹ ∈ Zi.

Lemma 6.6. For i ≥ 1 and j ∈ Ji+1, let τ̃ i+i
j ∈ P̃ i+1 and let τ̃ ijm be its mth sub-tower. Suppose

x ∈ Zi
jm ∩ τ̃ i+1

j and ỹ ∈ τ̃ i+1
j with |x̃, ỹ|i+1 < 2εi+1. Then ỹ ∈ Zi

jm and |x̃, ỹ|i < 2εi.

Proof. Since x ∈ τ̃ ijm ∩ τ̃ i+1
j , we have x̃ = Us1(x1, 0) for some (x1, 0) ∈ Ẽi+1

j and x̃ = Us2(x2, 0)
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where (x2, 0) = UFm(x1)(x1, 0) ∈ Ẽi
jm with s2 = s1 = Fm(xi). As x̃ ∈ Zi

jm , there exists an η such

that η is the base point of a tile inλi
jm and |s2 − η| < εi.

As ỹ ∈ τ̃ i+1
j , we know ỹ = Ur1(y1, 0) for some (y1, 0) ∈ Ẽi+1

j and as |x̃, ỹ|i+1 < 2εi+1, we

have |s1 − r1| < 2εi+1. Let (y2, 0) = UFm(y1)(y1, 0) ∈ Ẽi
jm and r2 = r1 − Fm(y1). By Proposition

3.1, we know |Fm(x1)− Fm(y1)| < εi+1. Therefore we get

|r2 − η| = |r1 − Fm(y1)− η| < |s1 − Fm(x1)− η|+ 3εi+1 = |s2 − η|+ 3εi+1 < 4εi+1.

As εi > 4εi+1, we get |r2 − η| < εi which implies that ỹ ∈ ∪|s−η|<εiUs|Ei
jm ⊂ Zjim and |x̃, ỹ|i =

|s2 − r2| < |s2 − η| −| r2 − η| < 2εi.

Corollary 6.7. Suppose x̃ ∈ Zn for all n ≤ i, and ỹ ∈ Zi such that |x̃, ỹ|i < 2εi. Then ỹ ∈ Zn for

all n ≤ i.

Proof. Let x̃ ∈ Zn for all n ≤ i and ỹ ∈ Zi with |x̃, ỹ|i < 2εi. Then by Lemma 6.6 applied to

x̃ ∈ Zi−1, we know ỹ ∈ Zi−1 with |x̃, ỹ|i−1 < 2εi−1. Applying Lemma 6.6 successively, we get

ỹ ∈ Zn for all n = i− 1, i− 2, ..., 1.

Lemma 6.8. For all i ≥ 1, Z1 ∩ Zi )= ∅.

Proof. We prove the result by induction on i. As Z1 )= ∅, the result is true for i = 1. Suppose the

result is true for some i = n, i.e., Z1 ∩ Zn )= ∅. We will show that Z1 ∩ Zn+1 )= ∅.

Let x̃ ∈ Z1 ∩ Zn. By skeleta decomposition, there exists a j ∈ Jn+1, jm ∈ Jn, such that

x̃ ∈ τ̃n+1
j ∩ τ̃njm and τ̃njm is the mth sub-tower of τ̃n+1

j . Hence we can write x̃ = Us1(x1, 0) for some

(x1, 0) ∈ Ẽn+1
j and x̃ = Us2(x2, 0) where (x2, 0) = UFm(x1)(x1, 0) ∈ Ẽn

jm with s2 = s1 = Fm(xi).
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As x̃ ∈ Zn
jm , there exists an η such that η is the base point of a tile in λn

jm and |s2− η| < εn. By

(6.31), we know λn+1
j = Sanjm−βm(2+α)−tmλ

n
jm on the interval [βm(2+α)+tm, βm(2+α)+tm+lnjm ].

for some |em + anjm − βm(2 + α)− tm| < εi+1. Hence η′ = η − anjm − βm(2 + α)− tm is the base

pooint of a tile in λn+1
j .

Choose a (y1, 0) ∈ Ẽn+1
j and an r1 ∈ R such that |r1 − η′| < εn+1 and let ỹ = Ur1(y1, 0) in

τ̃n+1
j . Then ỹ ∈ Zn+1

j ⊂ Zn+1. We will show that ỹ ∈ Z1.

Let (y2, 0) = UFm(y1)(y1, 0) ∈ Ẽi
jm and r2 = r1−Fm(y1). By (6.13), we know |em−fm(y1)| <

εn+1, and therefore

|r2 − η| = |r1 − em − η′ − anjm + βm(2 + α) + tm|+ εn+1 < |r1 − η|+ 2εn+1.

As |r1 = η| < εn+1, we have |r2−η| < 3εn+1 < εn. This implies ỹ ∈ Zi
jm and as |r2−η| < εn, we

get |r2−s2| < 2εn. By Corollary 6.7, we get ỹ ∈ Zk for all k = 1, 2, ..., n. Hence ỹ ∈ Z1∩Zn+1 )=

∅.

We have now proved that for all i ∈ N, the εi-stencils (λi
j, G

i
j, φ

i
j) and the templates (Gi, φi)

satisfy the hypothesis of Proposition 5.3.

6.3 The two-step n.c. flow

By Proposition 5.3, we get a map φ : X̃ → Y so that the set Z, consisting of all points x̃ ∈ X̃

such that the origin is located at the base point of a tile in φ(x̃), forms a non-empty Gδ-subset of X̃ .

Let Z inherit the subspace topology from X̃ . As X̃ is Polish, Z forms a Polish space with respect

to the subspace topology. In this section, we will define a homeomorphism TZ : Z → Z and a

continuous map g : Z → {1, 1 + α}. We will then show that the topological space Ẑ consisting

of the points under the graph of g over (Z, TZ), with every point (z̃, g(z̃)) identified with (TZ z̃, 0),
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and endowed with the product topology of Z and R, is homeomorphic to X̃ . In the end, we will

show that there exists a Borel measure ν on Z such that the flow built under the function g over

(Z, ν, Tz) is n.c. conjugate to {Ut}t∈R on X̃.

First note that every point z̃ ∈ Z has the property that the origin is located at the base point of

a tile in φ(x̃). As all tiles in Y have length either 1 or 1 + α, we get either U1z̃ ∈ Z or U1+αz̃ ∈ Z,

depending on the length of the tile that begins at the origin of φ(z̃). And similarly, either U−1z̃ ∈ Z

or U−1−αz̃ ∈ Z depending on the length of the tile that ends at the origin. We use this property to

define four sets Zi, i = ±1,±2 as follows:

Z1 = {z̃ ∈ Z : U1z̃ ∈ Z} = Z ∩ U−1Z (6.37)

Z2 = {z̃ ∈ Z : U1+αz̃ ∈ Z} = Z ∩ U−1−αZ

Z−1 = {z̃ ∈ Z : U−1z̃ ∈ Z} = Z ∩ U1Z

Z−2 = {z̃ ∈ Z : U−1−αz̃ ∈ Z} = Z ∩ U1+αZ

Note that Z = Z1 ∪ Z2 = Z−1 ∪ Z−2.

Lemma 6.1. The sets Zi, i = ±1,±2 are open subsets of Z.

Proof. We only show that Z1 is open in Z. The argument for openness of the remaining sets is sim-

ilar. Let z̃ ∈ Z1. Then the origin is located at the base point of a tile of length 1 in φ(z̃). By Lemma

6.2, there exists an i ∈ N and a j ∈ Ji such that the partial orbit {Usz̃ : s ∈ (−2 − α, 2 + α)} is

contained in Gi
j of the tower τ̃ ij . Therefore z̃ = Utx̃ for some x̃ ∈ Ẽi

j and t ∈ (pij+2+α, qij−2−α).

As z̃ ∈ Z, there exists an t0 ∈ (t − εi, t + εi) so that the patch λi
j has the base point of a tile

of length 1 located at t0. Now let U = ∪s∈(t0−2εi,t0+2εi). Then U is open in X̃ and z̃ ∈ U . Also,

for every point ỹ ∈ U ∩ Z, the origin is also located at the base point of a tile of length 1 in φ(ỹ).

Hence U ∩ Z ⊂ Z1, implying Z1 is open in Z.
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Define a map TZ : Z → Z based on the time of first return to the set Z, with respect to the flow

{Ut}t∈R, as follows:

TZ z̃ =






U1z̃ if z̃ ∈ Z1

U1+αz̃ if z̃ ∈ Z2

(6.38)

Lemma 6.2. Tz is a homeomorphism on Z.

Proof. It is clear from definition that TZ is well-defined on Z. To see that TZ is 1-to-1, suppose

there exist z̃1, z̃2 ∈ Z such that TZ z̃1 = TZ z̃2. Without loss of generality, assume z̃1 ∈ Z1. Then

τZ z̃1 = U1z1.

By definition, TZ z̃2 is either U1z̃2 or U1+αz̃2. If TZ z̃2 = U1+αz̃2, then U1z1 = U1+αz̃2, which

implies z1 = Uαz̃2, and hence φ(z̃1) = φ(Uαz̃2) = Sαφ(z̃2). Now both z̃1 and z̃2 are in Z, therefore

both φ(z̃1) and φ(z̃2) have base points of some tiles at their origins, which means φ(z̃1) cannot be

the same as Sαφ(z̃2), as there are no tiles or patches of length α in the tiling space Y . Therefore

TZ z̃2 = U1z̃2 = U1z1, which implies z̃1 = z̃2 as U1 is a homeomorphism of X̃ .

To show that TZ is a homeomorphism of Z, it suffices to show that given any open C ⊂ Z,

both T−1
Z C and TZC are open in Z. Fix an open subset C in Z. Note that

T−1
Z C = (U−1C ∩ Z1) ∪ (U−1−αC ∩ Z2)

and TZC = (U1C ∩ Z−1) ∪ (U1+αC ∩ Z−2)

where Zi, i = ±1,±2, are as defined in (6.37). We first show that U−1C ∩ Z1 is open in Z.

C is open in Z implies that there exists an open V ⊂ X̃ such that V ∩ Z = C. Therefore

U−1C ∩ Z1 = U−1(V ∩ Z) ∩ Z1 = U−1V ∩ U−1Z ∩ Z1 = U−1V ∩ Z1
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as U−1Z ∩ Z1 = Z1. As U−1V is open in X̃ , we have U−1V ∩ Z is open in Z. Also, Z1 is open in

Z. Therefore (U−1V ∩ Z) ∩ Z1 = U−1V ∩ Z1 is open in Z, which means U−1C ∩ Z1 is an open

subset of Z.

Using similar arguments as above, we can show that the sets U−1−αC ∩ Z2,U1C ∩ Z−1 and

U1+αC ∩ Z−2 are also open in Z. Therefore TZ is a homeomorphism of Z.

Next we define a function g : Z → {1, 1 + α} to be the first return time function on Z, given

by

g(z̃) =






1 if z̃ ∈ Z1

1 + α if z̃ ∈ Z2

Lemma 6.3. g is continuous on Z.

Proof. g is continuous as both g−1({1}) = Z1 and g−1({1 + α}) = Z2, are open in Z.

Note that, using the definition of g, we can write TZ in terms of g, so that

TZ z̃ = Ug(z̃)z̃ for all z̃ ∈ Z. (6.39)

Now consider the product space Z × R with the product topology. In this space identify every

point of the form (z̃, g(z̃)) with the point (TZ z̃, 0). With this identification, we let Ẑ to be the part

of Z × R that lie under the graph of g i.e.,

Ẑ = {(z̃, p) : z̃ ∈ Z, 0 ≤ p < g(z̃)}

It is easy to check from definitions that Ẑ forms a Polish space with respect to the identification

topology. Also, for ease of notation, let g(z̃, n) denote the time it takes for a point z̃ ∈ Z to return

n times to Z, under the map TZ , i.e.,
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g(z̃, n) =






n−1∑

i=0

g(T i
Z z̃) if n > 0

0 if n = 0
−1∑

i=n

g(T i
Z z̃) if n < 0

(6.40)

Then, using the identification (z̃, g(z̃)) = (TZ z̃, 0), we get that if t ∈ R, then

(z̃, p+ t) = (T n
Z z̃, p+ t− g(z̃, n)) (6.41)

where n ∈ Z such that g(z̃, n) ≤ p+ t < g(z̃, n+ 1).

We want to show that the spaces X̃ and Ẑ are topologically the same. To understand the

sameness, observe that for every x̃ ∈ X̃ , by definition, φ(x̃) is a tiling consisting of tiles of length

1 and 1+α. Therefore, there exists a unique p such that the origin shows up at a distance p from the

base point of a tile in φ(x̃), where 0 < p < 1 if the origin of φ(x̃) is strictly inside a tile of length

1, 0 < p < 1 + α if the origin of φ(x̃) is strictly inside a tile of length 1 + α or p = 0 if the origin

is located at the base point of a tile. In other words, there exists a unique p such that S−pφ(x̃) has

its origin at the base point of a tile, and 0 ≤ p < the length of this tile. As S−pφ(x̃) = φ(U−px̃),

this means that there exists a unique p such that U−px̃ = z̃ for some z̃ ∈ Z and 0 ≤ p < g(z̃).

Here g(z) is the time it takes for z̃ to return to Z which is in fact, the length of the tile containing

z̃. Therefore, every point x̃ ∈ X̃ can be uniquely represented as

x̃ = Upz̃, for some z̃ ∈ Z and 0 ≤ p < g(z̃). (6.42)

Using the above representation, define a map ψ : X̃ → Ẑ by

ψ(x̃) = (z̃, p). (6.43)
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The uniqueness of the representation implies that ψ is a well-defined bijection between X̃ and Ẑ.

Lemma 6.4. X̃ and Ẑ are homeomorphic via the map ψ.

Proof. We first show ψ is continuous. Suppose A is an open subset of Ẑ and (z̃, p) ∈ A. Let

x̃ = ψ−1(z̃, p), i.e., x̃ = Upz̃ in X̃ .

As A is open in Z, there exists an open C ∈ Z and a < p < b ∈ R such that (z̃, p) ∈

C × (a, b) ⊂ A. Choose n ∈ N such that 4εn < min{p− a, b− p}. By Lemmas 6.2 and 6.3, there

exists an i ≥ n and j ∈ Ji such that z̃ ∈ Gi
j . As z̃ ∈ Z, there exists a t0 ∈ R such that t0 is the

base point of a tile in the patch λi
j and z̃ ∈ R = ∪|s−t0|<εiUsEi

j .

As C is open in Z, there exists an open set U ∈ X̃ so that C = U ∩ Z. This implies that

z̃ ∈ U ∩ R. Let V = Up(U ∩ R). Then V is open in X̃ and x̃ = Upz̃ ∈ V. We will show that

ψ(V ) ⊂ A.

Let ỹ ∈ V . Then U−pỹ ∈ U ∩ R, and we can write U−pỹ = Uqh̃ for some h̃ ∈ (U ∩ R) ∩ Z

and |q| < 2εi. As U ∩ Z = C and εi < εn, we get ỹ = Up+qh̃ for some h̃ ∈ C and p + q ∈

(p− 2εn, p+ 2εn) ⊂ (a, b). Hence, ψ(ỹ) ∈ C × (a, b) ⊂ A and ψ is continuous.

To show that the inverse map ψ−1 is also continuous, let U be an open subset of X̃ . It suffices

to show that for every x̃ ∈ U , there exists an open V ∈ Ẑ such that ψ(x) ∈ V ⊂ ψ(U). Fix an

x̃ ∈ U . Then ψ(x̃) = (z̃, p), where x has the unique representation x̃ = Upz̃ or some z̃ ∈ Z and

0 ≤ p < g(z̃).

Since U is open and x̃ ∈ U , there exists an open A ⊂ X and a, b ∈ R such that x̃ = (x, t) ∈

A× (a, b) ⊂ U . Choose n ∈ N such that 4εn < min{t− a, b− t}. By Lemmas 6.2 and 6.3, there

exists an i ≥ n and j ∈ Ji such that U−px̃ ∈ Gi
j . As U−px̃ = z̃ ∈ Z, there exists a t0 ∈ R such that

55



t0 is the base point of a tile in the patch λi
j and z̃ ∈ R = ∪|s−t0|<εiUsEi

j .

Let C = (R ∩ A × (t − p − εi, t − p + εi)) ∩ Z. Note that C is open in Z and z̃ ∈ C. Let

V = C × (p − εi, p + εi). Then V is open in Ẑ and ψ(x̃) = (z̃, p) ∈ V . It remains to show that

V ⊂ ψ(U).

Let (h, q) ∈ V . Then h ∈ C ⊂ A× (t− p− εi, t− p+ εi) and |p− q| < εi. Therefore we have

Uqh̃ ∈ A × (t − (p − q) − εi, t − (p − q) + εi) ⊂ A × (t − 2εi, t + 2εi) ⊂ A × (a, b) ⊂ U. This

implies (h, q) = ψ(Uqh̃) ∈ ψ(U), and hence ψ−1 is continuous.

Next, we define a measure ν̃ and a σ-algebra of measurable sets G on Ẑ, to be the respective

push forwards of the measure µ̃ and the σ-algebra of measurable sets F on X̃ , i.e.,

G = {A ⊂ X̃ : ψ−1(A) ∈ F} and

ν̃(A) = µ̃(ψ−1A) whenever A ∈ G.

Using ψ, we also define a flow {Vt}t∈R on Ẑ by

Vt = ψ ◦ Ut ◦ ψ−1 for all t ∈ R. (6.44)

Then {Vt}t∈R is measurable with respect to ν̃ on Ẑ and is measurably conjugate to {Ut}t∈R. It is

a straight forward computation to check that {Vt}t∈R satisfies the definition of the flow built over

TZ under the function g, i.e., for all (z̃, p) ∈ Ẑ,

Vt(z̃, p) = (T n
Z z̃, p+ t− g(z̃, n)) (6.45)

where n ∈ Z such that g(z̃, n) ≤ p+ t < g(z̃, n+ 1) and g(z̃, n) is as defined in (6.40).
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At this point we have defined a measure on Ẑ that makes the flows {Ut}t∈R and {Vt}t∈R n.c.

conjugate. We still need to show that Z has a Borel measure ν and with respect to the product of ν

and Lebesgue measure on Ẑ, the flow built over TZ under g is in fact n.c. conjugate to {Ut}t∈R. We

will use the following representation theorem of Ambrose to show the existence of such a measure

ν on Z.

Theorem 6.5 (Ambrose[1]). Let {Vt}t∈R be as defined in (6.45) on Ẑ, with a measure ν̃ on Ẑ. If

{Vt}t∈R is a measurable flow and if the functions F̃ and G̃ defined by

F̃ (z̃, p) = g(z̃), G̃(z̃, p) = p (6.46)

for all (z̃, p) ∈ Ẑ, are both ν̃-measurable, then there exists a measure ν on Z for which g is a mea-

surable function and TZ is a measure-preserving transformation and such that ν̃ is the completed

direct product measure of ν on Z with Lebesgue measure on the vertical axis.

Proposition 6.6. Let (Ẑ, ν̃, {Vt}t∈R) be as defined above. Then there exists a Borel measure ν on

Z such that {Vt}t∈R) forms the flow built over TZ under the function g.

Proof. We will first show that the functions F̃ and G̃ as defined in (6.46) are ν̃-measurable on Ẑ,

and obtain a measure ν on Z so that ν̃ = ν×Lebesgue on Ẑ. We will then show that ν is Borel

and TZ is ergodic with respect to ν. This will imply that (Z, ν, TZ) is a n.c. Z-system and since

{Vt}t∈R satisfies (6.45), and g is continuous on Z, {Vt}t∈R will indeed be the flow built over TZ

under g.

Set F = F̃ ◦ ψ and G = G̃ ◦ ψ on X̃ . To show that F̃ and G̃ are ν̃-measurable, it suffices

to show that F and G are ν̃ measurable, as ν̃ is the push-forard measure of µ̃. Let B ⊂ X̃ be a

fattening the set Z defined by,

B =
⋃

t∈[0, 12 ]

UtZ.
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Since Z = ∩n∈N ∪i≥n Zi, where each Zi = ∪j∈Ji ∪
n(i,j)
m=1 ∪|t−ηm|<εiUtẼi

j , we get

B =
⋂

n∈N

⋃

i≥n

⋃

j∈Ji

n(i,j)⋃

m=1

1
2+ηm+εi⋃

t=ηm−εi

UtẼ
i
j,

and hence is measurable in X̃ . Now

{x̃ : F (x̃) = 1} =
⋃

t∈[0, 12 )∩Q

Ut(B ∩ U1B)

and

{x̃ : F (x̃) = 1 + α} =
⋃

t∈[0, 12 )∩Q

Ut(B ∩ U1+αB)

and therefore F is measurable on X̃ . Similarly, G is also measurable as

{x̃ : G(x̃) = r} =






⋂

t∈[0, 12−r]∩Q

UtB if r ≤ 1
2

⋂

t∈[r− 1
2 ,r]∩Q

UtB if r ≥ 1
2

Hence F̃ and G̃ are ν̃-measurable in Ẑ, and by Theorem 6.5, there exista a measure ν on Z

for which g is a measurable function and TZ is a measure-preserving transformation and ν̃ =

ν×Lebesgue measure. The measure ν and the σ algebra B on Z are defined as follows:

B = {C ⊂ Z : {(z̃, p) : z̃ ∈ C, 0 ≤ p < g(z̃)} ∈ G}, (6.47)

and for all C ∈ B,

ν(C) = 2ν̄(C × (0, 1/2))

We next show that ν is a Borel measure on Z. To see this, let C be an open subset of Z. Let
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C1 = C ∩ Z1 and C2 = C ∩ Z2 be open subsets of Z so that C = C1 ∪ C2. Define

C̄1 = ∪s∈(0,1)UsC1 C̄2 = ∪s∈(0,1+α)UsC2.

By (6.47), to show that C is measurable in Z, is equivalent to showing C̄1∪C1 and C̄2∪C2 belong

to G. Note that Z1 = Z ∩ U−1Z and Z2 = Z ∩ U−1−αZ. Since Z is a Gδ Subset of X̃ , Z1, Z2 are

measurable in X̃ . Hence C1, C2 are measurable in X̃ .

To show is that C̄1, C̄2 ∈ G, note that ψ(C̄1) = C1 × (0, 1) and ψ(C̄2) = C2 × (0, 1 + α),

are open with respect to the product topology on Ẑ. Since Ẑ is homeomorphic to X̃ , C̄1 and C̄2,

are open in X̃ , and therefore measurable in X̃ . Hence C is a measurable subset of Z and ν is Borel.

All that remains to show is that TZ is ergodic with respect to ν. Suppose not, then there exists

a TZ-invariant A ⊂ Z with 0 < ν(A) < 1. Define U ⊂ X̃ to be the set

U =
⋃

s∈[0,1)

Us(A ∩ Z1) ∪
⋃

s∈[0,1+α)

Us(A ∩ Z2).

Then 0 < µ̃(U) < 1 and for any t ∈ R, we have UtU = U . This is a contradiction as Ut is ergodic

on X̃ . Hence TZ is ergodic on Z and as a result, {Vt}t∈R) is indeed the flow built over TZ under

the function g.

Corollary 6.7. (X̃, µ̃, {Ut}t∈R) is continuously conjugate to (Ẑ, ν̃, {Vt}t∈R)

Proof. By Proposition 6.6, {Vt}t∈R is the flow built over TZ under g. By (6.44) and Proposition

6.4, the two flows are continuously conjugate.
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