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Abstract
Parallel genetic algorithms (PGAs) have been

developed to reduce the large execution times that are
associated with serial genetic algorithms (SGAs). They
have also been used to solve larger problems and to find
better solutions. In this paper, a comparative analysis of
five different coarse-grained PGAs is conducted using
the traveling salesman problem as the basis of this case
study. To make fair comparisons, all of these PGAs are
based on the same baseline SGA, implemented on the
same parallel machine (IBM SP2), tested on the same set
of traveling salesman problem instances, and started
from the same set of initial populations. As a result of
the experiments conducted in this study, a particular
PGA that combines a new subtour technique with a
known migration approach is identified to be the best for
the traveling salesman problem among the five PGAs
being compared.

1. Introduction
Serial genetic algorithms (SGAs) are a promising

search heuristic for finding near-optimal solutions in
large search spaces. To reduce the large amount of com
putation time associated with SGAs, parallel GAs
(PGAs) have been proposed. PGAs have also been used
to solve larger problems and to find better solutions.

There exists a large body of literature that discusses
the parallelization of genetic algorithms for many dif
ferent applications [2]. Previous studies have compared
the performance of PGAs with and without migration,
demonstrating that migration, in general, results in supe
rior performance, e.g., [7, 8]. One of the features that dis
tinguishes this paper from previous work is that it com
pares four conceptually different coarse-grain paralleli-
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zation techniques, including two new approaches along
with the standard independent and migration PGAs. In
addition, it compares a PGA that is a hybrid of a new and
a standard approach. All of these comparisons are done
using a common framework. (This is a summary of the
research presented in [9].)

The traveling salesman problem (TSP) is used as the

basis of this case study. The TSP is a well-known NP
hard combinatorial optimization problem [5]. There are
~ cities and the distance from city i to city j is dij • A tour

is a path that starts from a city, visits each city exactly
once, and goes back to the starting city. A tour is
represented by a vector .!.of C cities. The tour starts from
teO), visits cities in the order they appear in t, and then
goes back to teO) after visiting t(C-l). The goal of the
TSP is to find a tour t with the minimum tour length.

Five 100-city symmetric (dij =dji ) Euclidean TSP
instances with shortest known tour lengths from [6] are
used as test cases. They are the Krolak A (KA), Krolak
C (KC), Krolak D (KD), Reinelt (RE), and lattice (LT)

TSPs.
The hardware platform used in this study was an

IBM SP2 distributed memory MIMD machine [I]. All
SGA experiments were conducted using one thin node;
all PGA experiments were conducted using 16 thin
nodes. To describe the PGAs in a general way, PE is

used to refer to a node or processing element consisting
of a processor-memory pair, and ~ is used as the number

of PEs.
All PGAs were based on the same baseline SGA

(presented in Section 2) and started from the same set of
initial populations. These PGA approaches are described
in Section 3. The experiments quantify each PGA's abil
ity to find quality solutions and to test how quickly the
PGAs can find solutions of similar quality. These experi
ments are presented and analyzed in Section 4.



2. A Baseline Serial Genetic Algorithm for the TSP
From a search of the literature, it was determined

that the SGA in [3] was among the best SGAs for the
TSP (referred to as Jog's SGA in this work). A slightly
modified version of Jog's SGA is used as the baseline
SGA. The chromosome used to represent a tour is the
vector t defined in Section 1. An initial population of
128 chromosomes is randomly generated. At each itera
tion of the baseline SGA, three steps are executed in the
following order: the modified Heuristic crossover step,
the 2-opt step, and the modified Or-opt step. The base
line SGA stopped when the best solution was not
improved for 150 iterations.

The Heuristic crossover step [3] randomly picks
50% of the chromosomes from the population. The
picked chromosomes are then randomly paired and two
offspring chromosomes are generated from each pair.
The Heuristic crossover randomly picks a city as the
starting point for each offspring tour. Then the Heuristic
crossover operation extends the current partially
constructed offspring tour by trying to add the shorter
parental nextcity from the current last city (.0 on this
partial offspring tour. When the next city of c on both
parent tours is already on the current partial offspring
tour, a random city is selected from those that are not yet
on the partial offspring tour. After this crossover
operation, the two offspring tours replace the two parent
tours. In the baseline SGA, a modified Heuristic
crossover is used, where each pair of parent
chromosomes generate only one offspring chromosome,
and this offspring replaces the parent tour with the longer
length to guarantee that the currently best chromosome
will be kept.

The 2-optstep [3] randomly selects one half of the
remaining chromosomes of the population (25% of the
total chromosomes). On each selected tour, ten 2-opt
attempts are made to try to shorten the tour length, each
time randomly picking two pairs of adjacent cities on the
tour. The 2-opt operator takes these two pairs of
adjacent cities (a, b) and (c, d) from a tour. If
dab + dod> dao+ dbd, then the paths between cities a, b
and cities c, d on the tour are removed and replaced by
the new paths between cities a, c and cities b, d.

The Or-opt step [3] applies the Or-opt operator to
the rest of the chromosomes of the population (25% of
the total chromosomes). In each chromosome selected,
all s-city.subtours are chosen one by one (where s is first
three, then two, and then one). If the subtour considered
can be relocated between two other adjacent cities to
form a shorter length tour, the appropriate tour changes
are made. In Jog's SGA, for each s-citysubtour, one
pair of adjacent cities (not on the subtour) is randomly
chosen for consideration of the s-city subtourrelocation.
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In the baseline SGA, for each s-city subtour of a chosen
tour, rather than only attempt to relocate this subtour
between one pair of cities that is randomly chosen, the
modified Or-opt step considers all possible pairs of cities
for the relocation exhaustively, and the subtour is put
between a pair of cities that results in the shortest tour
length.

To test the baseline SGA, a total of 50 runs were
conducted on each TSP instance. Define the percentage
quality difference, .Q., of one run of a given GA (SGA or
PGA) to be the length of the shortest tour found by that
GA minus the length of the shortest known tour, divided
by the length of the shortest known tour. Table 1 shows
the performance of the baseline SGA in terms of solution
quality and algorithm execution time.

In [3], Jog, et al., also used the KA and LT TSP
instances. The baseline SGA achieved better
performance on these TSP instances; however, it
typically took longer to execute than Jog's SGA. For the
PGA study, it was decided to use the baseline SGA as a
basis because it could achieve results within 1% ofthe
best known solutions for the TSPs considered.

3. PGA Definitions
The simplest way of parallelizing a CJA is to execute

multiple copies of the same SGA, one on eachPE.. Each
of the 16 PEs starts with a different initial subpopulation
(128/16 chromosomes), and evolves and stops
independently. The complete PGA halts when all PEs
stop. There are no inter-Pls communications. The
advantage of this independent F'GAapproach is that each
PE starts with an independent subpopulation. Such
subpopulation diversity reducesfhe chance that all PEs
prematurely converge to the same poor quality solution.
This approach is equivalent to simply taking the best
solution after multiple executions of the SGA on
different initial populations.

The second PGAtested,. the migration PGA

approach, augments the. independent appr()achwith
periodic chromosome migrations among the. PEs to
prevent premature convergence and share high quality
solutions (see Figure 1). The migration approach in this
research used the scheme proposed in [7]. Chromosome .
migrations occur every five iterations, with each PE
sending a copy of its locally best .chromosome to PE
P + 1 modulo N at the first migration step, then to PE
P + 2 modulo N at the second migration step, and so on
[7]. The chromosome received replaces the locally worst
chromosome unless an identical chromosome already
exists in the local population,

A third way of parallelizingGAs is to partition the
search space into disjoint subspacesandto force PEs to
search in different subspaces, The only difference



between this partitioned PGA approach and the
independent PGA approach is that in the partitioned
approach each PE searches in a different subspace while
in the independent approach all PEs search in the entire
search space. This approach was the worst in terms of
solution quality and execution time for each TSP
instance because most PEs were limited to searching
subspaces that did not contain good solutions [9].

A novel PGA proposed in this research specifically
for the TSP involves tour segmentation and
recombination. This segmentation PGA approach starts
by segmenting tours into subtours. Then after subtour
improvements, the subtours are recombined into longer
subtours. This subtour improvement and recombination
is performed repeatedly until full tours are formed. The
execution time of an iteration on subtours is shorter than
that on full tours. Each PE performs versions of the
modified Heuristic crossover, 2-opt, and modified Or-opt
that are restricted for operation on local subtours [9].
Iterations on full tours stop when the same stopping
criterion used in the other PGAs is met.

At the initial population generation step, each of the
I tours is segmented into N disjoint subtours. PE P is
assigned the P-th subtour of each chromosome. The
length of each subtour is the distance from the first city
of the subtour being considered to the first city of the
next subtour of the same full tour. Each PE also knows
the first city of the next segment of each full tour.

For each chromosome, at the evaluation step, each
PE first locally computes the subtour length from this
subtour's first city to the first city of the next subtour.
Then all the PEs that share a chromosome perform a
recursive doubling operation to get full lengths of all
tours. These full tour lengths are used in the crossover
step for deciding which parent tour to be replaced by the
offspring tour and in the recombination step below.

There are n + 1 phases in the segmentation
approach. Assume that Nand T are powers of two, and
!!. = 10gzN. At a given phase e, 0 s e s n, 2n-e PEs form a
group of PEs that share a set of tours. For phase e, there
are 2e groups, numbered from 0 to 2e

- 1. Each PE

P =Pn-lPn-Z"'PI Po belongs to group Pe--l···PIPo when
e > 0 and belongs to group 0 when e =O. At the first
phase, when e = 0, all PEs start as a single group sharing
all tours, and in the last phase, where e = n, each PE is in
its own group and shares no tours with other PEs.

Each PE contains T/2e subtours, where each
subtour involves C/2n-e cities. Recombination occurs at
the end of each phase e, except for the last phase when
e = n. At the beginning of a recombination, the subtours
contained by a group of PEs are numbered in ascending
order of the corresponding full-tour lengths, which are
known to all PEs in the same group. Therefore, all
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subtours that belong to the same tour have the same order
number across the PEs in a group.

Recombination is performed within each group.
Each PE Pn-IPn-Z· ..Pe+1 0 Pe--I"'PO sends each
corresponding PE Pn-IPn-Z"'Pe+II Pe--I ...PO its odd
numbered subtours, and each PE
Pn-IPn-Z ...Pe+II Pe--I'''PO sends each corresponding PE
Pn-IPn-Z ·..Pe+1 0 Pe--I"'PO its even-numbered subtours.
Each PE then concatenates each received subtour to the
appropriate end of the locally held subtour with the same
tour number. Each PE now has half the number of
subtours it had before, but each subtour is twice as long.

Only one evolution iteration is performed for each
of the first n phases. At the last phase, when e = n, each
PE has TIN chromosomes, each of which is a full tour of
C cities. At this phase, the segmentation approach
becomes the independent approach (see Figure 1).

When N is large, the sum of the time for all of the
first n phases is approximately equal to that of one
iteration of the last phase. However, it is possible that
performing the genetic operations in one iteration on full
tours may result in generating better new populations.
Thus, the experiments in Section 4 are needed to
evaluate the trade-offs.

The last PGA considered in this research is the
segmentation-migration approach, which augments the
segmentation approach with periodic chromosome
migrations. The motivation for designing this algorithm
is to combine the characteristics of both the migration
and the segmentation approaches, both of which
performed well in the initial experimentation.

4. PGA Experiments
To make fair comparisons, the same set of 50

different initial populations of 128 full tours used for
testing the baseline SGA were also used for each PGA
on each TSP instance. In the independent, the migration,
and the partitioned approaches, each initial population
was divided into 16 subpopulations, each of which
resided on a different PE. In each run of the
segmentation and the segmentation-migration
approaches, each full tour in the initial population was
segmented into 16 disjoint subtours.

Two sets of experiments were designed to quantify
the performance of these five PGAs. The purpose of the
first set of experiments was to measure the quality of the
best solution each PGA could find. The purpose of the
second set was to determine how quickly each PGA
could find comparable solutions of high quality.

The first set of experiments used a stopping criterion
of no improvement in the best solution found after 150
iterations. Each run stopped when all PEs achieved this
stopping criterion. On each TSP instance, each PGA was
run 50 times, each time starting from a different initial



population. Table 2 shows the statistics on the execution
times for each PGA on each TSP instance. In this table,
confidence intervals [4] of all mean values were
calculated. In this research, a 90% confidence was used,
which means that if another set of runs were conducted
(the number of which must be statistically significant
(e.g., 50)), there isa 0.9 probability that the sample mean
of this second set of runs will be in the interval between
x ± !lx.

From Table 2, it can been seen that on all TSP
instances the best solutions found by all PGAs, other
than the partitioned approach, were within 1% of the best
known solutions, the same range of the solution quality
found by the baseline SGA. (The partitioned approach
had the worst performance in both the solution quality
and the mean execution time for this set of experiments.)
On each TSP instance, the migration approaches took
significantly shorter mean time to finish than the non
migration approaches. The segmentation-migration
approach had the shortest mean execution time.
Chromosome migration is effective at reducing the total
execution time because the execution time was
determined by when the last PE finished. In migration
approaches, once the globally best solution is found by
one PE, after at most five migration steps all PEs have a
copy of this chromosome. However, each PE in the
PGAs without chromosome migrations stopped
independently.

Comparing the SGA and PGA execution times is
meaningful because all experiments used the same
stopping criterion and (other than the partitioned
approach) all algorithms found comparable quality
solutions. Define speedup to be the mean execution time
of the baseline SGA divided by that of the
segmentation-migration PGA approach ona given TSP
instance. The average speedup over the five TSP
instances was 13.83, which indicates that the
parallelization techniques used by the segmentation
migration PGA approach (i.e., chromosome migration,
and tour segmentation and recombination) is quite
effective in decreasing the execution time while
maintaining the solution quality.

For the first set of experiments, the segmentation
migration approach found solutions all within 1% of the
best known solutions with the smallest mean execution
time on each TSP instance. To compare the mean
execution times of different PGA approaches when they
achieve virtually identical quality solutions, a second set
of experiments was conducted.

To make fair comparisons, the longest final solution
found by a PGA (other than the partitioned approach) for
each TSP instance in the first set of experiments was
chosen as the stopping criterion, i.e., the PGA stopped
when any PE found a tour that is at least as good. For
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this second set of experiments, the migration approaches
achieved the shortest mean execution time for each of the
TSP instances. Specifically.-the migration approach was
the best for two of the five TSP instances (KA and LT
TSPs) and the the migration-segmentation approach was
the best for the other three TSP instances. For each TSP
instance, the independent approach always had a longer
mean execution time than. the migration approach, and
the segmentation approach always had a longer mean
execution time than the segmentation-migration
approach.

5. Conclusions
Four conceptually differentPGA approaches and

one hybrid of two of these approaches were compared
using the TSP as an example application problem. For
fair comparisons, allPGAs were developed based on the
same baseline SGA, implemented on the same 16 thin
PEs of an IBM SP2 parallel machine, and tested using
the same set of initial populations on the same set of TSP
instances. Two techniques were identified as the most
effective ones for improvingthePGA performance: (1)
inter-PE information exchange during the evolution
progress (e.g., migration of the locally best
chromosomes) and (2) tour segmentation and
recombination. The segmentation-migration PGA
approach, which combined the above two techniques,
took the shortest execution time in the first set of
experiments (where. a practical stopping criterion was
used). It was shown in the second set of experiments that
the migration and the segmentation-migration
approaches were able to find solutions of similar high
quality faster than the other approaches.
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Table 1. Baseline SGA performance.

0(%) execution time(sec)
TSP Il max Il median
KA 0.00 0.00 399 394
KG 0.00 0.00 419 419
KD 0.04 0.05 459 452
RE 0.09 0.18 490 466
LT 0.31 0.83 393 359

each PE executes the following:
initial population generation;
if segmentation approach

then generate subtours;
evaluation;
if segmentation approach then

do for each of the first IOg2N phases
{ /* all operators are restricted

to local subtours */
modified Heuristic crossover;
2-opt;
modified Or-opt;
evaluation;
recombination;

}
while(stopping criteria not met) {

modified Heuristic crossover;
2-opt;
modified Or-opt;
evaluation;
if migration approach

then perform chromosome migration
every fifth iteration;

}

output best chromosome;

Fig. 1. Outline of the PGA approaches.

Table 2. Performance comparisons of the five PGAs.

0(%) for the five PGAs

independent migration partitioned segmentation segment.-migrat.
TSP Il max Il max Il max Il max Il max
KA O.OO±O.OO 0.00 O.OO±O.OO 0.00 0.12±O.04 0.46 O.OO±O.OO 0.00 O.OO±O.OO 0.00
KG O.OO±O.OO 0.00 O.OO±O.OO 0.00 0.77±O.12 1.67 O.OHO.OO 0.09 O.OO±O.OO 0.00
KD 0.03±0.01 0.07 0.OHO.01 0.07 0.64±0.08 1.21 0.02±O.01 0.07 0.03±0.02 0.45
RE 0.OHO.01 0.43 O.OO±O.OO 0.08 0.69±O.09 1.67 O.OHO.OO 0.09 0.01±O.01 0.43
LT 0.38±0.04 0.83 0.04±0.01 0.83 1.13±O.11 1.66 0.16±0.02 0.83 0.16±0.01 0.83

execution time (sec) for the five PGAs

independent migration partitioned segmentation segment.-migrat.

TSP Il 0- Il 0- Il 0- Il 0- Il 0-

KA 42.04±1.45 6.12 28.24±0.41 1.76 53.93±1.73 7.28 43.35±1.43 6.03 26.89±0.42 1.79
KG 45.92±1.37 5.78 32.42±0.98 4.13 54.8H2.07 8.75 42.50±1.09 4.60 29.37±0.77 3.23
KD 48.70±2.03 8.56 35.80±1.00 4.23 60.38±2.15 9.07 48.76±1.50 6.33 30.97±0.90 3.82
RE 54.08±1.68 7.07 38.33±1.52 6.42 59.28±2.18 9.19 53.1H1.67 7.02 37.92±2.33 9.82
LT 39.59±1.16 4.90 31.65±1.45 6.14 44.76±1.17 4.95 39.93±1.56 6.60 30.04±1.14 4.82
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