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Abstract. Two different techniques are evaluated in this study to estimate soil salinity in the lower 
Arkansas River Valley area in Colorado for both the sub-basin and field scales. Inverse Distance 
Weight (IDW) and Ordinary Kriging (OK) are evaluated as deterministic and geostatistical 
techniques respectively. Deterministic techniques depend on the assumption that the interpolating 
surface should be influenced mostly by the nearby points and less by the more distant points. 
Kriging techniques rely on the notion of autocorrelation and assume the data comes from a 
stationary stochastic process. The objectives of this study are: 1) compare the performance of the 
deterministic versus the geostatistical kriging techniques on the sub-basin and the field scales; 2) 
evaluate the effect of sampling density on the accuracy of both the deterministic and the 
geostatistical kriging techniques; 3) evaluate the effect of sampling distribution on both techniques; 
and 4) evaluate the effect of the existence of autocorrelation among data for both techniques. 
Different data sets for both field scale and sub-basin scale were collected in the study area where 
soil salinity impacts the crop productivity. Several data sets collected at the field scale and the sub-
basin scale in the downstream area were evaluated. These data sets represent different sampling 
densities and spacing, different data distributions, and different amount of autocorrelation among 
the data. The results of this study indicate that there is no significant difference in the performance 
of both deterministic and geostatistical techniques at the field scale. However, the performance of 
the deterministic technique was significantly better than the geostatistical technique for the sub-
basin scale (due to the lack of autocorrelation at this scale). The data distribution has no significant 
role on the performance of both techniques. 
 
1. Introduction 
  

Soil salinity refers to the presence in soil and water of various electrolytic mineral 
solutes in concentrations that are harmful to many agricultural crops (Hillel 2000). In 1999, 
Postel (1999) stated that worldwide, 1 in 5 ha of irrigated land suffers from a buildup of 
salts in the soil, and vast areas in China, India, Pakistan, Central Asia, and the United 
States are losing productivity. Postel (1999) estimated that soil salinization costs the 
world’s farmers $11 billion/year in reduced income and warned that this amount is 
increasing. The spread of salinization, at a rate of up to 2 million ha/year, is offsetting a 
good portion of the increased productivity achieved by expanding irrigation. It has been 
estimated by Ghassemi et al. (1995) that close to 1 billion ha (about 7% of the earth’s 
landscape) are affected by primary salinity, while about 77 million ha have been salinized 
as a consequence of human activities, with 58% of these concentrated in irrigated areas. 
Salts decrease the availability of water to plants due to increase osmotic potential and have 
direct adverse effects on the plant metabolism (Douaik et al. 2004; Greenway and Munns 
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1980). On average, 20% of the world’s irrigated lands are affected by salts, but this figure 
increases to more than 30% in countries such as Egypt, Iran, and Argentina. The 
development of saline soils is a dynamic phenomenon that needs to be monitored regularly 
in order to secure up-to-date knowledge of their extent, spatial distribution, nature, and 
magnitude (Ghassemi et al. 1995). Crop yield reduction in fields in the Lower Arkansas 
Valley due to salinization is estimated to vary between 0 and 75% with a total revenue loss 
ranging from $0 to $750/ha based on 1999 crop prices (Gates et al. 2002). 
 

Mapping of saline areas is essential for understanding resources for sustainable soil 
uses and management. Control of soil salinity is one of the main challenges in agriculture, 
particularly, where irrigation is used. Meeting that challenge requires efficient and accurate 
quantification and mapping of soil salinity. Geostatistical methods have been widely used 
for sampling and mapping of soil salinity. They provide a way to study the heterogeneity 
of the spatial distribution of soil salinity (Pozdnyakova and Zhang 1999). Kriging is a 
collection of linear regression techniques that takes into account the stochastic dependence 
among data (Olea 1991). Kriging remains the best choice as a spatial estimation tool since 
it provides a single numerical value that is best in some local sense (Deutsch and Journel 
1998). The results of spatial prediction generate reasonable estimates of soil salinity 
regardless of what interpolation method is used (Triantafilis et al. 2001). Kriging models 
estimate the values at unsampled locations by a weighted averaging of nearby samples 
where the correlations among neighboring values are modeled using variograms (Miller et 
al. 2007). Studies have shown that semivariograms of electrical conductivity (EC) can be a 
useful tool in determining the spacing between soil samples for laboratory EC 
determination (Utset et al. 1998). Samra and Gill (1993) used kriging results to assess the 
variation of pH and sodium adsorption ratios associated with tree growth on a sodium-
contaminated soil. Ordinary Kriging (OK) is one of the most basic kriging methods. It 
provides an estimate at an unobserved location of variable z, based on the weighted 
average of adjacent observed sites within a given area. The correlations among 
neighboring values are modeled as a function of the geographic distance between the 
points across the study area, defined by a variogram (Miller et al. 2007). The spatial 
distribution of the soil salinity data was analyzed using the semivariogram, which has been 
widely used to analyze spatial structures in ecology (Phillips 1986; Robertson 1987). 
 

IDW and kriging techniques are two of the most commonly used interpolation 
techniques (Kravchenko and Bullock, 1999). The IDW procedure has been used primarily 
because it is simple and quick while kriging has been used because it provides best linear 
unbiased estimates. Many studies have compared IDW and kriging. In some cases, the 
performance of kriging was generally better than IDW (Tabios and Salas, 1985; Hosseini 
et al., 1994; Dalthorp et al., 1999; Kravchenko and Bullock, 1999). In other studies, IDW 
generally out performed kriging (Weisz et al., 1995; Nalder and Wein, 1998; Weber and 
Englund, 1992). Often, however, the results have been mixed (Gotway et al., 1996; Kollias 
et al., 1999; Schloeder et al., 2001; Mueller et al., 2001; Lapen and Hayhoe, 2003). The 
outcomes of these studies depend on the methods used for analyses. Some have assessed 
predicted and measured values using independent validation data sets to compare IDW and 
ordinary kriging (Tabios and Salas, 1985; Laslett et al., 1987; Wartenberg et al., 1991; 
Weber and Englund, 1992; Weisz et al.; 1995; Gotway et al., 1996; Mueller et al., 2001; 



Using Deterministic and Geostatistical Techniques to Estimate Soil Salinity 

3 

Kravchenko, 2003). Others have used cross-validation (Isaaks and Srivastava, 1989) to 
compare differences between kriging and IDW (Tabios and Salas, 1985; Hosseini et al., 
1994; Nalder and Wein, 1998; Kravchenko and Bullock, 1999; Schloeder et al., 2001; 
Lapen and Hayhoe, 2003). 
 

All interpolation methods have been developed based on the theory that points closer to 
each other have higher correlation and similarities than those farther away. In the IDW 
method, it is assumed that the rate of correlations and similarities between neighbors is 
proportional to the distance between them. It is assumed that this correlation can be 
defined as a reverse distance function of every point from neighboring points. The 
definition of the neighboring radius and the related power to the reverse distance function 
are considered as important factors. The main factor affecting the accuracy of the IDW 
interpolator is the value of the power parameter p (Isaak and Srivastava, 1989). Few 
researchers have attempted to explain the underlying factors that impact the relative 
performance of ordinary kriging and IDW. One study investigated the impact of scale of 
sampling on the relative performance of ordinary kriging and IDW (Mueller et al., 2004). 
The performance of kriging improved relative to IDW interpolation as sampling intensity 
increased. The impact of scale is important because sampling intensities may vary widely. 
The degree to which spatial structure is known impacts the relative performance of IDW 
and kriging. One study found that by better resolving the spatial structure with additional 
closely spaced samples, ordinary kriging generally outperformed IDW (Mueller et al., 
2001). In a simulation study (Kravchenko, 2003), IDW was compared with kriging with 
known (i.e., semivariogram models were determined from an exhaustive dataset) and 
unknown (i.e., semivariogram models were determined from the sample dataset) spatial 
structure. As might be expected, the performance of kriging improved relative to IDW 
when the spatial structure was known. Given the importance of the spatial structure, it may 
be possible to use geostatistical indices to predict the relative performance of ordinary 
kriging and IDW. Despite the work done in this area, little is known about the factors that 
impact the relative performance of IDW and kriging at sampling intensities used for site-
specific management. Therefore, three objectives will be considered for this study. The 
first is to evaluate the sampling spaces. The second is to evaluate the data distribution, and 
the third is to evaluate the autocorrelation among the samples. 
 
2. Study area 

 
This research was conducted as part of a project that Colorado State University is 

conducting in the Arkansas River Basin in southern Colorado (Fig. 1). Salinity levels in the 
irrigation canals along the river increase from 300 ppm total dissolved solids near Pueblo 
to over 4,000 ppm at the Colorado-Kansas border (Gates et al. 2002, 2006). Soil salinity 
was measured in these fields using an electromagnetic induction instrument (EM-38). 
Crops in this area include alfalfa, corn, wheat, onions, cantaloupe, and other vegetables. 
These crops are irrigated by a variety of irrigation systems including border and basin, 
furrow, center pivots, and a few subsurface drip systems. The lower Arkansas River Basin 
of Colorado has been continuously irrigated since the 1870s and began to develop high 
saline water tables by the early part of the twentieth century (Miles 1977). Currently, the 
Arkansas River is one of the most saline rivers in the United States (Tanji 1990; Miles 
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1977). Crop yield reduction in fields in the Lower Arkansas Valley due to salinization has 
been estimated to be 0–75% with a total revenue loss ranging from $0–$750/ha based on 
1999 crop prices (Gates et al. 2002). Many factors could affect the crop vegetation 
appearance such as: soil characteristics, irrigation schemes, weather conditions, diseases, 
pests, and crop management. Some areas might be heavily affected by one or more factors 
rather than the others depending on the conditions and agricultural practices of that area. 
However, many of these factors are temporary and therefore only affect either crops for a 
portion of an irrigation season or part of a field. However, the impacts of soil salinity on a 
particular crop are more consistent over time and in areas with severe problems the impacts 
are wide spread. 

 
Figure 1. The study area in the lower Arkansas River Valley of Colorado. 
 
3. Data collection 
 

Determining soil salinity using the soil saturation-extract electrical conductivity-ECe 
method requires considerable resources for field sampling and laboratory analysis. Corwin 
and Lesch, (2003) mentioned that soil saturation-extract is ill-suited for characterizing and 
mapping the extreme variability of salinity at field scales and larger due to only measuring 
a very small sample area. The EM-38 was introduced as the first choice for measuring soil 
salinity in a geospatial context (Rhoades et al., 1999; Corwin and Lesch, 2003). It 
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measures the apparent bulk soil electrical conductivity (ECa), which is closely related to 
soil salinity (ECe). The EM-38 (Geonics Ltd, Canada) is designed to measure salinity in 
the agriculturally significant part of the soil (i.e. root zone), typically, to a depth of 1 or 2m 
depending on whether it is held in the horizontal or vertical mode of operation, 
respectively (Rhoades et al., 1999). The EM-38 is a non-destructive technique that does 
not require contact with the soil. Measurements can be taken in the field quickly and the 
large volume of soil measured reduces local-scale variability. However, the EM-38 
measurements must be calibrated using conventional sampling techniques for specific soil 
types and water content conditions. Thus, it is essential to establish an accurate ECe-EM 
relationship using a limited number of soil samples. The EM-38 readings are affected by 
soil moisture and soil temperature and must be calibrated. For the calibration of the EM-38 
in the study area, soil moisture readings, soil temperature readings and EM-38 readings 
were taken in a number of fields throughout the study area. An equation was developed to 
calibrate the EM-38 reading by taking into consideration both soil moisture content and 
soil temperature (Wittler et al. 2006). Data evaluated in this study represents both the field 
scale and the sub-basin scale. The spacing between the soil salinity readings (EM-38) 
varies from 30 meters to 60 meters. This small spacing among the soil salinity readings 
increases the chance of auto-correlation among the soil salinity readings. For the sub-basin 
scale, it is impossible to cover the whole sub-basin (50 km * 10 km) at the same spacing as 
the field scale which requires an intensive effort, time and money. Therefore, several fields 
were selected to represent the sub-basin. These fields represent different ranges of soil 
salinity in the study area from low, moderate to high. In each of the selected fields, 50 to 
100 points were collected and the mean values of the collected points were considered to 
represent these fields. The spacing between these fields varies from 1,500 meters to 2,000 
meters.   
 
4. Methodology 
 
4.1 Data Inventory: 

Soil salinity data collected in 17 fields in the downstream study area during the year 
2008 are presented in this paper. Figures 2 and 3 show two examples of the data 
distribution at the field scale. These figures show the scatter plots, box plots, histograms, 
and Q-Q plots. Scatter plots provide information about the spacing and distance between 
points. Histograms provide information about the mode, an indication of the overall 
variation, and the shape of the distribution, normal, or skewed. Box plots provide 
information about the degree of dispersion, skewness, the middle 50% of the data, the 75th 
and 25th percentile of the data sets, the minimum and maximum data values, and the 
outliers. Q-Q plots provide information about the shape of the distributions (normal or 
skewed). The closer the points to the line, the closer the distribution is to a normal 
distribution. The average distance between the collected soil salinity points is around 30 to 
50 meters. The box plot, the histogram, and the Q-Q plot show that the data distribution in 
the first example is close to the normal distribution. In the second example, the distribution 
is skewed to the right which is supported by the shapes of the box plot, the histogram, and 
the Q-Q plot. The rest of the fields represent widely different cases for the spacing and 
distribution from normal, slightly right skewed, and sharply right skewed.  
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Figure 2. Scatter plot, box plot, histogram, and Q-Q plot for field DS 01 (close to normal distribution). 
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Figure 3. Scatter plot, box plot, histogram, and Q-Q plot for field DS 01 (right skewed distribution). 
 

For the sub-basin scale, usually the data is collected at the early season during May and 
the late season during August. For this study three data sets were selected to be evaluated: 
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2004 early season, 2005 early season, and 2005 late season. These data sets were selected 
because they include the largest number of fields. Figure 4 represents one of the three 
selected sets, the 2005 late season. The scatter plot shows that the average distance among 
the values of the measured points in different fields is between 1,500 meters to 2,000 
meters. The distribution is right skewed which is support by the box plot, the histogram 
and the Q-Q plot. The other two sets have similar average distance among the points and 
similar distribution. 

 

0 50 100 150 200 250

0
10

0
30

0

Scatter Plot

X

Y

4 6 8 10 12

Box Plot

Soil Salinity (dS/m)

DS
 2

00
5 

La
te

 S
ea

so
n

Histogram

Soil Salinity (dS/m)

Fr
eq

ue
nc

y

2 4 6 8 10 12

0
5

10
15

20

-2 -1 0 1 2

4
6

8
10

Q-Q

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

 
Figure 4. Scatter plot, box plot, histogram, and Q-Q plot for field DS 2005 late season (right skewed 
distribution). 

 
Table 1 shows the Moran’s I and Moran’s p-value (2-side) for measuring the 

autocorrelation among the observed data for all individual fields and sub-basin data sets. 
The values of I vary from -1 to 1 while 1 means a perfect positive autocorrelation and -1 
means a perfect negative autocorrelation. P-values of less than 0.05 mean the presence of 
autocorrelation while p-values of more than 0.05 mean no autocorrelation. For the field 
scale, all the individual fields show an existence of autocorrelation except for fields DS10 
and DS21. There is no autocorrelation among the three data sets for the sub-basin scale. 
This is due to the large distance among the point. 

4.2 Using IDW: 

The goal of using inverse distance functions as estimators is to give more importance 
to the closest sampled points (Webster and Oliver, 2001). Power function values lower 
than one are closest to a simple average estimation (Isaaks and Srivastava, 1989). Integer 
power function values of 1, 2, 3, and 4, and 5 are the most commonly used in the literature 
(Kravchenco and Bullock, 1999).  However, in this study, many cases were considered 
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using a number of neighbors of 4, 6, 8, 10, and 12 while optimizing the power function for 
each number of neighbors (using ArcGIS). Of all the cases considered, the one that 
minimized the root mean square error was selected. The size of the neighborhood and the 
number of neighbors are also relevant to the accuracy of the results. 

Table 1. Moran’s I and Moran’s p-value (2-side) for measuring the 
autocorrelation among the observed data for all individual fields 
and sub-basin data sets. 

Field I P-value (2-side) 
DS01 0.080 0 
DS02 0.109 0 
DS04 0.157 0 
DS05 0.161 0 
DS06 0.224 0 
DS07 0.146 0 
DS09 0.041 0 
DS10 0.003 0.254 
DS11 0.081 0 
DS13 0.118 0 
DS16 0.082 0.004 
DS17 0.082 0 
DS18 0.139 0 
DS19 0.074 0 
DS20 0.168 0 
DS21 -0.084 0.7 
DS22 0.100 0 
DS2004 early season 0.002 0.448 
DS2005 early season 0.010 0.272 
DS2005 late season 0.006 0.71 

 
4.3 Using OK: 
 

Semivariograms describe the correlation in the data measured at sample locations. 
Exponential, Gaussian and Spherical models were fitted to the sample semivariograms 
using a weighted least-squares method (Robertson 1987). The semivariogram model with 
the smallest AICC (Akakie Information Corrected Criteria) was selected to describe the 
spatial dependencies in the soil salinity data. Nugget variance is the variance at zero 
distance, Sill is the lag distance between measurements at which one value for a variable 
does not influence neighboring values and Range is the distance at which values of one 
variable become spatially independent of another (Lopez-Granadoz et al. 2002). In this 
study, the number of neighbors was selected based on the number that minimizes the 
variance of the prediction. The lag size was selected to be closer to the average distance 
between the measured points and the number of lags was selected as the number of lags 
multiplied by the lag size which should be close to half the distance between the farthest 
pairs of points. 

 
4.4 Model Evaluation: 
 

Comparing the estimated values with the observed values as well as cross validation 
was used to evaluate the performance of both the IDW and OK techniques. Also, the 
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distributions and normality of the observed data and the predicted values using both the 
IDW and OK techniques were analyzed using the histograms, the box plots, and the Q-Q 
plots.  The performance of both techniques, in terms of the accuracy of estimates, was 
assessed by comparing the deviation of the soil salinity estimates from the measured data 
through the use of cross-validation (Isaak and Srivastava, 1989; Webster and Oliver, 
2001). In such a procedure, sample values are deleted from the data set, one at a time and 
then the value in turn is interpolated by performing the interpolation algorithm with the 
remaining sample values. This yields a list of estimated values of the variable data paired 
to those measured at sampled locations. In this study the comparison of the performance 
between the interpolation techniques was achieved by using the Mean Absolute Error 
(MAE) and the Root Mean Square Error (RMSE) (Zar, 1999). 

 
5. Results 
 

The distance between the soil salinity readings plays an important role in the 
performance of the geostatistical models. For the field scale, the average distance among 
the soil salinity readings is between 30 meters and 60 meters, while the average distance 
among the mean values of the soil salinity readings in the selected fields for the sub-basin 
is from 1,500 meters to 2,000 meters. Smaller distances among the soil salinity readings at 
the field scale tend to generate more reasonable variograms. However, larger distances 
among the mean values of the soil salinity readings in the selected fields at the sub-basin 
scale makes it harder to generate reasonable variograms. The performance of kriging 
techniques depends mainly on the variograms. In this study three different variograms: 
spherical, Gaussian, and exponential were evaluated. The evaluation was based on the 
Akakie Information Corrected Criteria (AICC), the model that minimized the AICC value 
was selected. In most cases either at the field scale or sub-basin scale, the spherical model 
performed the best.  Figure 5 shows three examples of variagram models for fields DS04, 
DS17 and DS20 for the field scale.  The figure shows that for DS04 the spherical 
variogram best fits the points then DS20 and last DS17.  Figure 6 shows three examples of 
variagrams for the three sub-basin datasets.  The figures show that the model does not fit 
well due to the large distance among the points which affects the performance of the OK 
model. 



Eldeiry and García 

10 

0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

xp

yp

DS04

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

xp

yp

DS17

0 200 400 600 800

0
2

4
6

8
10

xp

yp

DS20

 
Figure 5. The fitted spherical variogram model for the fields DS04, DS17, and DS20. 
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Figure 6. The fitted spherical variogram model for the data sets of the sub-basin scale: for year 2004 early 
season, 2005 early season, and 2005 late season, 
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Figures 7, 8, and 9 show three examples for three different fields: DS04, DS17, and 

DS20. These fields were presented because they show different distributions. DS04 shows 
an example close to a normal distribution; DS17 shows a distribution slightly right skewed, 
and DS20 shows a distribution highly skewed to the right. The performance of IDW is 
slightly better than the performance of OK in field DS04. The performance of OK is 
slightly better than the performance of IDW in field DS17. The performance of both IDW 
and OK was very close in field DS20.  Figure 10 shows the box plot, the histogram and the 
Q-Q plots for the 2004 early season dataset at the sub-basin scale.  The figure shows that 
IDW outperformed the OK techniques which can be attributed to the lack of autorelation 
among the observed points (from 1,500 meters to 2,000 meters). Also the figure shows that 
the kriging underestimate the high estimated values which is clearly seen in the distance 
between the whiskers of the box plot. 
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Figure 7. Comparison among the distributions of observed data, the predicted data using IDW, and the 
predicted data using OK for field US04 which is slightly right skewed. 
 



Eldeiry and García 

12 

3 4 5 6 7 8

Observed

Soil Salinity (dS/m)

D
S1

7

3 4 5 6 7 8

IDW

Soil Salinity (dS/m)

D
S1

7

3 4 5 6 7 8

OK

Soil Salinity (dS/m)

D
S1

7

Observed

Soil Salinity (dS/m)

Fr
eq

ue
nc

y

4 5 6 7

0
5

15
25

IDW

Soil Salinity (dS/m)

Fr
eq

ue
nc

y

4.0 4.5 5.0 5.5 6.0 6.5 7.0
0

5
15

25

OK

Soil Salinity (dS/m)

Fr
eq

ue
nc

y

4 5 6 7

0
5

15
25

-2 -1 0 1 2

3
4

5
6

7
8

Observed

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

-2 -1 0 1 2

3
4

5
6

7
8

IDW

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

-2 -1 0 1 2
3

4
5

6
7

8

OK

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

 
Figure 8. Comparison among the distributions of observed data, the predicted data using IDW, and the 
predicted data using OK for field US17 which is close to a normal distribution. 
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Figure 9. Comparison among the distributions of observed data, the predicted data using IDW, and the 
predicted data using OK for field US20 which is highly skewed to the right. 
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Figure 10. Comparison among the distributions of observed data, the predicted data using IDW, and the 
predicted data using OK for the sub-basin scale for the 2004 early season. 

 
Figures 11 and 12 show the box plots of the observed and predicted data using IDW 

and OK for the three data sets at the sub-basin scale and the individual fields at the field 
scale respectively. Figure 11 shows the box plots for the three data sets that represent the 
sub-basin scale. The performance of IDW was better than the performance of OK. The OK 
underestimates the predicted values. The large distance among the observed data and the 
lack of autocorrelation violates the assumptions of OK which makes the model perform 
poorly.  Figure 12 shows that there is no significant difference between the observed and 
predicted data using IDW and OK techniques. This means that with the small distance 
between samples and the existence of autocorrelation among the data, the performance of 
both IDW and OK is gets better.     
 
5.1 Model Evaluation:  
 

The MAE and the RMSE are used to evaluate the accuracy of the IDW and OK 
predictions. The MAE is similar to the RMSE but is less sensitive to large forecast errors. 
For small or limited data sets the use of MAE is preferred. The RMSE is the square root of 
the variance of the residuals. It indicates the absolute fit of the model to the data, how close 
the observed data points are to the model’s predicted values. Whereas R-squared is a 
relative measure of fit, RMSE is an absolute measure of fit. As the square root of a 
variance, RMSE can be interpreted as the standard deviation of the unexplained variance, 
and has the useful property of being in the same units as the response variable. Lower 
values of RMSE indicate a better fit. 
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Figure 11. Comparing the observed data and the predicted data using IDW and Ok for three data sets for the 
sub-basin scale. 
 
5.1.1 Comparing the observed and predicted values: 
 

Table 2 shows the MAE and RMSE for comparing the observed and predicted values 
of IDW and OK for all individual fields and the three data sets of the sub-basin. The values 
of MAE and RMSE for the field scale are small and reasonable except for a few fields such 
as DS11 and DS22. There are a few fields where the MAE and the RMSE are slightly high 
for both the IDW and OK such as DS05, DS06, and DS07. In general, there is no 
significant difference in the MAE and RMSE values between IDW and OK. However, for 
the sub-basin scale, the IDW outperformed the OK which can be contributed to the lack f 
autocorrelation among the data since the distance between the observed points is between 
1,500 meters and 2,000 meters. 
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Figure 12. Comparing the observed data and the predicted data using IDW and Ok for all individual fields in 
the field scale. 
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Table 2. MAE and RMSE for comparing the observed and predicted values of IDW and OK for all 
individual fields and the three data sets of the sub-basin. 

Field IDW OK 
 MAE RMSE MAE RMSE 
DS01 0.08 0.10 0.12 0.15 
DS02 0.00 0.03 0.05 0.06 
DS04 0.00 0.23 0.16 0.25 
DS05 0.01 1.34 1.14 1.72 
DS06 0.00 1.23 0.53 0.97 
DS07 0.00 1.43 1.04 1.50 
DS09 0.00 0.61 0.46 0.82 
DS10 0.00 0.03 0.07 0.08 
DS11 0.04 2.08 1.73 2.57 
DS13 0.01 0.22 0.12 0.19 
DS16 0.00 0.03 0.14 0.22 
DS17 0.00 0.39 0.13 0.20 
DS18 0.00 0.49 0.12 0.45 
DS19 0.00 0.52 0.26 0.44 
DS20 0.00 0.58 0.39 0.79 
DS21 0.00 0.03 0.04 0.05 
DS22 0.03 2.14 0.78 1.27 
DS2004 early season 0.11 0.17 1.54 2.01 
DS2005 early season 0.06 0.08 1.19 1.55 
DS2005 late season 0.09 0.13 1.37 1.81 

 
 
5.1.2 Cross validation:  
 

Cross validation is as important as comparing the predicted values with the observed 
ones. Table 3 shows the cross validation results for IDW and OK for all individual fields 
and the three data sets of the sub-basin. The MAE the RMSE values are used to measure 
the differences between values predicted by the IDW and OK models and the observed 
values. For the field scale the MAE values for both IDW and OK are close to zeros except 
for field DS22 when using IDW. For almost half of the fields the values of RMSE are very 
small (less than 0.5). Six fields have values larger than one. Similarly to the previous table, 
fields DS11 and DS22 show the worst results for both IDW and OK. In general the results 
shown in Table 3 are very similar to the results from Table 2. However, in contrast to 
Table 2, the results for the sub-basin scale show that there is no significant difference in 
the values of MAE and RMSE. This means that the IDW was significantly better than the 
OK in estimating the values from the observed data but are similar to the OK values in 
terms of cross validation. Therefore, as presented earlier and cited from the literature, this 
reduces the overall performance of the IDW method. 

 
Figure 13 shows the generated maps of soil salinity predicted surfaces using IDW and 

OK for fields DS04, DS17, and DS20 at the field scale. The 3-D maps were selected to 
show the generated maps for both IDW and OK because they has the option of adding the 
observed points to the surface which makes it easier to compare the results of both models 
with the observed values. The figure shows that there is no significant difference between 
both predicted surfaces using the IDW and OK techniques. In general there are some 
spikes in the generated surfaces using IDW while the surface generated using OK is 
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smoother. Even though these three fields presented in the figure have different 
distributions these distributions do not have significant impact on the results of models. 
 
 

Table 3. MAE and RMSE values of the cross validation results for comparing the performace of the 
IDW and OK for all individual fields and the three data sets of the sub-basin. 

Field IDW OK 
 MAE RMSE MAE RMSE 
DS01 0.001 0.345 0.001 0.352 
DS02 0.011 0.349 0.001 0.360 
DS04 0.049 0.508 0.005 0.491 
DS05 0.037 2.316 0.001 2.287 
DS06 0.145 2.074 0.009 1.958 
DS07 0.018 1.719 0.002 1.703 
DS09 0.004 1.006 0.004 1.077 
DS10 0.014 0.394 0.011 0.414 
DS11 0.171 4.270 0.030 4.281 
DS13 0.017 0.473 0.005 0.454 
DS16 0.029 0.380 0.011 0.410 
DS17 0.004 0.756 0.002 0.773 
DS18 0.005 2.076 0.008 1.980 
DS19 0.021 0.755 0.002 0.736 
DS20 0.046 1.587 0.005 1.565 
DS21 0.009 0.590 0.042 0.618 
DS22 0.276 4.667 0.094 4.660 
DS2004 early season 0.055 2.535 0.093 2.574 
DS2005 early season 0.019 1.748 0.007 1.698 
DS2005 late season 0.042 2.190 0.067 2.122 

 
  

 
Figure 14 shows the generated maps of the soil salinity predicted surfaces using IDW 

and OK for the three data sets in the sub-basin scale. The figure shows a significant 
difference between both predicted surfaces using the IDW and OK techniques. The IDW 
outperformed the OK in estimating values from the observed data. The OK tends to be 
smoother than the IDW which makes it under estimate the high values. As in the previous 
figure there are some spikes in the surface generated using the IDW. In this figure the 
contribution of sampling density or spacing between samples is very significant. The large 
sampling spacing (1,500 meters to 2,000 meters) makes the performance of OK worse than 
the performance of IDW. However, as concluded in Tables 2 and 3, it is not enough to 
evaluate the model performance only through the estimated values. The cross validation 
results show that both model performances are almost the same in this case which makes 
the overall performance of OK similar to the performance of IDW.   
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Figure 13. Generated maps of soil salinity predicted surfaces using IDW and OK for fields DS04, DS17, and 

DS20 at the field scale. 
 



Using Deterministic and Geostatistical Techniques to Estimate Soil Salinity 

19 

DS 2004 Early Season (IDW) DS 2004 Early Season (OK)

DS 2005 Early Season (IDW) DS 2005 Early Season (OK)

DS 2005 Late Season (IDW) DS 2005 Late Season (OK)

X

0

10000

20000

30000
40000

50000

Y

0

5000

10000

15000
20000

Soil Salinty (dS/m
)

0

5

10

15

X

0

10000

20000

30000
40000

50000

Y

0

5000

10000

15000
20000

Soil Salinity (dS/m
)

0

5

10

15

X

0

10000

20000

30000
40000

Y

0

5000

10000

15000

Soil Salinty (dS/m
)

3
4

5
6

7
8

9

X

0

10000

20000

30000
40000

Y

0

5000

10000

15000

Soil Salinity (dS/m
)

3
4

5
6

7
8

9

X

0

10000

20000

30000
40000

50000

Y

0

5000

10000

15000

Soil Salinty (dS/m
) 4

6

8

10

X

0

10000

20000

30000
40000

50000

Y

0

5000

10000

15000

Soil Salinity (dS/m
) 4

6

8

10

 
Figure 14. Generated maps of soil salinity predicted surfaces using IDW and OK for the three sets at the sub-

basin scale. 
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6. Conclusions 
 

The distance between points, the data distribution, and the autocorrelation were set as 
parameters to evaluate both IDW and OK techniques. The different data sets presented in 
this study for both the field scale and sub-basin scale show different spacing among the 
points, different data distributions, and different autocorrelations. The results of this study 
indicate that there is no significant difference in the performance of both geostatistical and 
deterministic techniques at the field scale. However, the performance of the deterministic 
technique was significantly better than the geostatistical technique at the sub-basin scale 
from the point of view of estimating values from the observed data. However, the overall 
performance depends not only on the estimated values but also on the cross validation. The 
OK technique tends to be smoother than the IDW technique which makes it under estimate 
the high values. The contribution of autocorrelation was not significant which can be 
attributed to existence of autocorrelation but it is not significant. Also, for the field scale, 
the sampling density does not have a significant impact on the results of the models. This 
also can be attributed to the fact that both models perform better when samples are closer. 
Even though the contribution of sampling density or spacing was not significant on the 
field scale, it was very significant at the sub-basin scale. The large sampling spacing (1,500 
meters to 2,000 meters) makes IDW outperformed OK from the point of view of 
estimating soil salinity values. However, the cross validation results show that both model 
performances are almost the same for the sub-basin scale. 
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