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ABSTRACT

MULTI-DAY EVOLUTION OF ORGANIC AEROSOL MASS AND COMPOSITION FROM

BIOMASS BURNING EMISSIONS

Biomass burning is an important source of primary and secondary organic aerosol (POA,

SOA, and together, OA) to the atmosphere. The photochemical evolution of biomass burning

OA, especially over long photochemical ages, is highly complex and there are large uncertainties

in how this evolution is represented in models. Recently, we performed photooxidation

experiments on biomass burning emissions using a small environmental chamber (~150 L) to

study the OA evolution over multiple equivalent days of photochemical aging. In this work, we

use a kinetic, process-level model (SOM-TOMAS; Statistical Oxidation Model-TwO Moment

Aerosol Sectional) to simulate the photochemical evolution of OA in 18 chamber experiments

performed on emissions from 10 different fuels. A base version of the model was able to

simulate the time-dependent evolution of the OA mass concentration and its oxygen-to-carbon

ratio (O:C) at short photochemical ages (0.5 to 1 equivalent days) but substantially

underestimated the enhancement in both metrics at longer photochemical ages (>1 equivalent

day). The OA after several days of equivalent photochemical aging was dominated by SOA

(58%, on average) with the remainder being POA (42%, on average). Semi-volatile organic

compounds, oxygenated aromatics, and heterocyclics accounted for the majority (86%, on

average) of the SOA formed. Experimental artifacts (i.e., particle and vapor wall losses) were

found to be much more important in influencing the OA evolution than other processes (i.e.,

dilution, heterogeneous chemistry, and oligomerization reactions). Adjustments to the kinetic



model seemed to improve model performance only marginally indicating that the model was

missing precursors, chemical pathways, or both, especially to explain the observed enhancement

in OA mass and O:C over longer photochemical ages. While far from ideal, this work contributes

to a process-level understanding of biomass burning OA that is relevant for its evolution at

regional and global scales.
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CHAPTER 1 - INTRODUCTION

Biomass burning, which includes wildfires, prescribed burning, agricultural burning, and

residential wood combustion, is the largest combustion-related source of primary organic aerosol

(POA) and volatile organic compounds (VOCs) to the atmosphere.1–4 Some of the

biomass-burning VOCs undergo photochemical reactions in the atmosphere to form secondary

organic aerosol (SOA), which together with POA, is labeled organic aerosol (OA).5,6 Biomass

burning OA contributes significantly to the global atmospheric aerosol burden7 and consequently

has large impacts on climate,8,9 air quality,10 and human health.11 Although a large body of

research has made significant contributions in characterizing the emissions, chemistry,

microphysics, and atmospheric properties (e.g., water uptake, volatility, nuclei for cloud

formation, optics) of biomass burning OA, its physicochemical evolution is extremely complex

and aspects of this atmospheric evolution still remain uncertain.

In a recent critical review, Hodshire et al.12 analyzed the ‘near-field’ evolution of wildfire

OA, characterized across 13 field and 4 laboratory campaigns.13–29 They concluded that, with

photochemical aging, the OA mass burden in real wildfire plumes remained relatively constant

while the OA mass concentrations consistently increased in laboratory experiments. They further

showed that the degree of oxygenation (i.e., oxygen-to-carbon ratio or O:C) for OA, as well as its

increase with photochemical age, was larger in real wildfire plumes relative to laboratory

experiments. Hodshire et al.12 laid out several hypotheses to explain differences between the field

and laboratory observations. Some of these hypotheses, such as the substitution of evaporated

POA with SOA production to keep the OA mass approximately constant with plume age,30,31

have been examined in some detail.32,33 Yet, other hypotheses, such as the OA evolution close to

the fire or differences in the emissions composition between the field and laboratory, remain
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untested. Regardless, the field campaign data included in Hodshire et al.12 focused on quantifying

the wildfire OA evolution in diluting and chemically reacting plumes over a few hours of

photochemical aging and transported over a few hundred kilometers. Understandably, this is

because it is challenging to study biomass burning emissions in the real atmosphere over

multiple days as the OA dilutes, mixes and interacts with OA from other sources, and is

subjected to varying photochemical and environmental conditions (e.g., temperature, relative

humidity, clouds, precipitation). So, in addition to the discrepancies between field and laboratory

observations outlined in Hodshire et al.,12 the multi-day evolution of biomass burning OA

remains highly uncertain and a topic of significant interest.

Over the past decade, the photochemical evolution of biomass-burning OA has been

extensively studied in laboratory experiments using environmental chambers. Although a full

literature review remains beyond the scope of this work, we highlight some of the important

studies, first for residential wood combustion and then for open burning. Grieshop et al.34,35 and

Heringa et al.36 studied the photochemistry of emissions from three different residential wood

stoves using several different fuels and one pellet burner. Over a total of 25+ experiments, both

studies found strong evidence for SOA formation where the OA mass was enhanced by factors

of 1.5 to 4 after photochemical aging. Bruns et al.37 performed five experiments on emissions

from a modern wood stove and measured an OA mass enhancement between 3 and 7. They

reported, for the first time, that the OA mass enhancement could mostly be attributed to SOA

production from oxidation of phenolic compounds and aromatic hydrocarbons. Hennigan et al.15

performed experiments on combustion emissions from fuels and fuel complexes found in the

western United States (US) and saw an OA mass enhancement of 1.7±0.7. They further argued

that the POA mass (i.e., fresh OA) was rapidly and chemically processed such that it accounted
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for less than 20% of the net OA after several hours of photochemical aging. Tkacik et al.14 used a

novel approach to study the oxidation chemistry of biomass-burning OA. They used a dual

chamber setup in which emissions were added to both chambers but only one of the chambers

was perturbed (e.g., exposure to UV, exposure to O3, addition of NO to vary VOC:NOX) with the

other chamber serving as a control. Although the perturbations were generally found to enhance

OA mass (1.78±0.91), they found that the OA mass enhancement was insensitive to the

perturbation performed. Relying on the data published by Tkacik et al.14, Ahern et al.13 improved

corrections for particle wall losses (average OA mass enhancement was reduced to 1.48, 17%

smaller than Tkacik et al.14) and showed that the VOCs quantified using two-dimensional

gas-chromatography were responsible for the most of the observed SOA. Biogenic VOCs were

found to be the dominant SOA precursors for coniferous fuels and furans were found to be

similarly important for grasses. Finally, Akherati et al.38 performed chamber experiments similar

to Hennigan et al.15 and Tkacik et al.14 and leveraged detailed speciation of SOA precursors to

show that the majority of the SOA formed in these experiments was from the oxidation of

oxygenated aromatic (e.g., phenols, methoxyphenols) and heterocyclic (e.g., furans) VOCs.

Although these chamber data have been extremely insightful in understanding the photochemical

evolution of biomass burning OA, the experiments have only been performed over short

photochemical ages (typically, <12 equivalent hours at an OH concentration of 1.5×106 molec.

cm-3). While these data can and have been used to predict and interpret OA evolution close to the

source (<100 km),33 they say little about the multi-day/week evolution, relevant for regional and

global scales.

Only two studies so far have attempted to study the photochemical evolution of biomass

burning OA over multiple days and up to a week in laboratory experiments. Ortega et al.29
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sampled and oxidized smoke using an oxidation flow reactor (OFR, 13 L) and performed 25

different experiments on emissions from 16 different fuels. The smoke was sampled from a large

room (3000 m3) that was filled by combusting a small amount of fuel (0.1-1 kg). When aged over

an equivalent of five days, they found an average increase of 42% (±36%) in OA mass

concentrations. The enhancement in OA mass was not found to correlate with the mass of

speciated VOCs but did correlate with the initial POA, indicating a key role for semi-volatile

organic compounds (SVOCs) as SOA precursors. Lim et al.39 sampled and oxidized smoke using

a small chamber (150 L) and analyzed 20 different experiments performed on 11 different fuels;

there was significant overlap with the fuels used in Ortega et al.29 The smoke was sampled from

a large exhaust stack that ported biomass burning emissions from a small fire (0.25-6 kg of fuel).

Lim et al.39 saw a much larger enhancement in OA mass concentrations (250%±70%) compared

to Ortega et al.29 and the chamber studies described earlier13–15,34–38 but argued that the higher

enhancement could be explained by differences in photochemical age. In contrast to Ortega et

al.,29 Lim et al.39 found that the OA mass enhancement correlated with fresh emissions of

non-methane organic compounds, specifically those that were smaller than monoterpenes

(molecular weight < 136 g mol-1). Both studies undertook an empirical investigation of the

changes in OA mass and composition with oxidation but neither leveraged models to better

understand the precursors, processes, and properties of OA with photochemical age.

Over the past few decades, chambers and OFRs have served as workhorses, providing the

underlying data needed to develop, evaluate, and optimize gas/aerosol chemical mechanisms and

parameterizations for use in air quality and climate models. But while chambers and OFRs aim

to simulate the photochemical evolution in the real atmosphere, this oxidation chemistry and

microphysics is subject to experimental artifacts. For example, chambers and flow reactors are
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subject to both particle and vapor wall losses, artifacts that can significantly influence

measurements of aerosol mass and properties. Particle wall losses are relatively easy to correct

for, if size and time dependent loss rates can be measured.40 Vapor wall losses, on the other hand,

require a kinetic treatment of the uptake and release of organic species, which have been shown

to depend on volatility and composition.41,42 Furthermore, at the unusually high oxidant

concentrations encountered, especially in OFRs (factors of 20 to 100 higher than those in the

ambient atmosphere), the timescales for oxidation are much shorter than those for gas/particle

partitioning.43,44 This timescale difference leads to an organic species undergoing multiple

generations of oxidation in the gas phase without partitioning to the particle phase, leading to

highly oxygenated products and conditions ripe for new particle formation, processes that are

much less frequent in the real atmosphere. Finally, high oxidant concentrations in OFRs also tend

to elevate the importance of heterogeneous oxidation reactions, which tend to reduce aerosol

mass through fragmentation reactions followed by evaporation of the semi-volatile/volatile

products.45,46 Recently, He et al.47 showed that when different aerosol processes and their

corresponding timescales were appropriately simulated using a kinetic model, the model was

able to reproduce observed differences in aerosol formation and composition between a chamber

and OFR study for 𝛼-pinene SOA. Similar kinetic models need to be used to simulate and

interpret chamber and OFR data.

In this work, we combined laboratory data (Lim et al.)39 and a process-level kinetic model

(SOM-TOMAS) to simulate the photochemical evolution of OA in 18 environmental chamber

experiments performed on combustion emissions from 10 different fuels. The model-simulated

dilution, multigenerational gas-phase chemistry, phase-state-influenced gas/particle partitioning,

heterogeneous oxidation, oligomerization reactions, and experimental artifacts (i.e., particle and
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vapor wall losses). Model predictions were compared to measurements of VOCs and OA mass

and composition. A suite of sensitivity simulations were performed to study the influence of

individual processes on OA evolution and to diagnose model performance at higher

photochemical ages.
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CHAPTER 2 - MATERIALS AND METHODS

2.1 Environmental Chamber Data

Table 1: Summary of initial and final data for the 18 chamber experiments performed on 10
different fuels by Lim et al.39 Experiments are ordered alphabetically by fuel.

Fire
ID Fuel

Initial
OA
[µg m-3]

Initial
OA
O:C

Initial
SOA
Precursors
[ppbv]

Initial
Seed
Surface
Area
[m3]

Final
OA
[µg m-3]

Final
O:C

OH
Exposure
[molec.
cm-3]

Dilution
Rate
(hr-1)#

62 Bear Grass 120 0.33 67 2.4×10-9 60 0.70 2.1×1011 2.8
28 Chaparral #1 84 0.29 70 4.3×10-9 9.1 0.81 6.8×1011 2.9
30 Chaparral #2 130 0.32 117 5.5×10-9 26 0.69 2.2×1011 3.2
33 Chaparral #3 96 0.32 91 4.1×10-9 101 0.90 8.9×1011 2.7
31 Douglas Fir #1 240 0.62 153 4.9×10-9 4.5 0.83 14×1011 2.6
57 Douglas Fir #2 120 0.48 53 3.7×10-9 14 0.93 10×1011 2.8
64 Douglas Fir #3 330 0.39 202 7.7×10-9 37 0.74 1.2×1011 3.6
50 Dung 300 0.21 134 6.0×10-9 33 0.85 7.1×1011 3.0

25 Engelmann
Spruce #1 16 0.35 11 6.9×10-108.8 0.71 5.9×1011 2.2

26 Engelmann
Spruce #2 33 0.20 40 6.7×10-1010 0.76 8.8×1011 2.4

52 Engelmann
Spruce #3 47 0.40 27 1.9×10-9 11 1.21 14×1011 3.1

61 Excelsior 56 0.52 48 3.2×10-9 15 1.02 6.4×1011 2.0
53 Loblolly Pine 66 0.35 52 1.8×10-9 24 0.96 5.3×1011 2.8

21 Lodgepole Pine
#1 48 0.25 15 9.8×10-1018 0.74 6.8×1011 2.1

41 Lodgepole Pine
#2 23 0.38 12 4.2×10-1022 1.28 8.2×1011 2.1

38 Ponderosa Pine
#1 29 0.36 18 1.1×10-9 9.9 0.92 8.6×1011 2.4

39 Ponderosa Pine
#2 240 0.31 123 4.4×10-9 38 0.76 3.4×1011 2.9

56 Subalpine Fir 42 0.24 96 8.5×10-1039 0.76 2.5×1011 3.5

63* Lodgepole Pine
#3 180 0.37 85 7.8×10-9 1.0 0.64 N/A 3.3

#First-order dilution rate from single exponential fit; *Dark experiment used to determine the
bulk particle wall loss rate

In this work, we simulated the photochemical evolution of biomass burning OA for the

chamber experiments described in Lim et al.39 We take advantage of the knowledge gained from

7
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prior papers written using FIREX data (Hatch et. al., Ahern et. al., Hennigan et. al.),64,13,15 and

build on the tools from another (Akherati et. al.) to explore the following experiments. A

detailed account of the physical and instrument setup, design of experiments, and chamber

operation is provided in Lim et al.,39 with additional details in McClure et al.48 and Cappa et al.49

A brief description, relevant to the data used in this work, is provided below. The chamber

experiments outlined in Lim et al.39 were performed at the Fire Sciences Laboratory (FSL) in

Missoula, MT as part of the Fire Influence on Regional and Global Environments Experiment in

2016 (FIREX-2016).50 During these experiments, a small amount of fuel (0.25 to 6 kg) was

combusted using an electric igniter and emissions from these burns were channeled into a large

stack (1.6 m diameter, 17 m tall), located right above the fuel bed. A long duct (0.2 m diameter,

30 m long) was used to port emissions from the stack and eventually into one of two PFA

(perfluoroalkoxy) environmental chambers using an ejector-diluter system. The scope of this

work includes only experiments where emissions were sent from the stack to the “mini” (150L)

environmental chamber. Residence times in the duct were about 2 s, which should have

minimized losses of gasses and particles during transport. Ozone (O3) was continuously added to

the chamber after smoke addition and a single UV-C light with a peak at 254 nm was used to

photolyze the O3 to produce high concentrations of hydroxyl radicals (OH). The photooxidation

experiments were performed for a length of 30 to 60 minutes before the chamber was flushed

with clean air to prepare for the next experiment.

A Scanning Electrical Mobility Spectrometer (SMPS), High-Resolution Aerosol Mass

Spectrometer (HR-AMS), and Single-Particle Soot Photometer (SP2) were used to characterize

aerosol mass concentrations and composition. A Proton Transfer Reaction - Time of Flight -

Mass Spectrometer (PTR-ToF-MS) was used to measure mixing ratios for VOCs that included

8
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key SOA precursor classes: oxygenated aromatics, heterocyclics, aromatic hydrocarbons, and

biogenic VOCs.51–53 We should note that measurements from the same instrument were used in

Akherati et al.38 to analyze and simulate SOA formation from biomass burning VOCs. Lim et

al.39 performed a total of 56 chamber experiments but characterized the photochemical evolution

in only half of those experiments. In this work, we simulated the OA evolution for 18 chamber

experiments where complete VOC, aerosol, and environmental data were available.

Experimental details including the fuels used are listed in Table 1.

To orient the reader, we describe the OA data from Lim et al.40 used in this work (i.e., 18

chamber experiments). Two-thirds of the chamber experiments were performed on coniferous

fuels (Douglas Fir, Engelmann Spruce, Loblolly Pine, Lodgepole Pine, Ponderosa Pine, and

Subalpine Fir) and the remaining third were performed on a variety of different fuels (grass (Bear

Grass), shrub (Chaparral), and other (Excelsior or wood shavings, Dung)). The dilution and

particle-wall-loss corrected OA mass concentrations and OA O:C are shown in Figures S1 for all

18 chamber experiments. The initial OA mass concentrations and O:C varied between 16 and

330 µg m-3 and between 0.20 and 0.62, respectively. With photochemical aging, the OA mass

concentrations and OA O:C increased in nearly all chamber experiments with significant

variability in the enhancement across experiments (0.9-4.8× for OA mass concentrations and

1.3-4.0× for OA O:C). The final photochemical age varied between slightly less than 1

equivalent day to nearly 11 equivalent days. We did not observe a relationship between initial

OA and O:C (not shown) but the initial OA mass concentrations showed a strong positive

correlation with several SOA precursor classes (Figure S1a-e). On average, the total SOA

precursors were more than a factor of two larger than the initial POA, highlighting the large

potential to form SOA with oxidation (Figure S1a). The SOA precursor composition varied some
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between the chamber experiments but had an average profile of 40% heterocyclics, 29%

oxygenated aromatics, 20% aromatic hydrocarbons, and 11% biogenic VOCs, roughly consistent

with Akherati et al.39 SVOCs were considered to be SOA precursors but since they were

estimated in this work from the initial OA measurements (see Section 2.2.2), they were expected

to correlate with initial OA and hence not shown in Figure S1. The OA mass enhancement,

calculated as an initial value subtracted from the final value, exhibited a positive correlation with

the initial POA mass concentrations (R2=0.54) (Figure S2a), similar to what Ortega et al.29

discovered, and with the initial SOA precursor concentrations (R2=0.43) (Figure S3c). In

contrast, the O:C enhancement, calculated as an initial value subtracted from the final value,

exhibited a weaker negative correlation with the initial POA mass concentrations (R2=0.17)

(Figure S2e) and with the initial SOA precursor concentrations (R2=0.20) (Figure S2g). The

correlations were much weaker when the OA mass and O:C enhancement were calculated as a

ratio of the final value to the initial value (Figure S2b, S2d, S2f, S2h). Regardless, Figure S2a-d

suggest that the OA enhancement might be driven by the oxidation of SVOCs, which are in

equilibrium with POA, in addition to the VOCs.
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Figure 1: (a) Dilution and particle-wall-loss corrected measurements of OA mass concentration
and (b) suspended OA O:C for the 18 chamber experiments studied in this work. Colors
indicated different fuels. Different lines (solid, dashed, dash-dotted) with the same color are used
to show experiments with the same fuel.

2.2 Kinetic Organic Aerosol Model

2.2.1 SOM-TOMAS Model

The SOM-TOMAS model, or Statistical Oxidation Model (SOM)-TwO Moment Aerosol

Sectional (TOMAS) model, was used to simulate the photochemical evolution of OA for the 18

chamber experiments described above. The SOM uses a two-dimensional carbon-oxygen grid

and a statistical approach to simulate the multigenerational oxidation chemistry of organic

compounds and its oxidation products, in addition to calculating the volatility of the oxidation

products.54 The TOMAS model uses a two-moment scheme to track number and mass size

distributions and simulates the microphysical processes of coagulation, condensation,

evaporation, and nucleation.55 The SOM-TOMAS model has been used extensively to study the

formation and evolution of OA in laboratory experiments 32,47,56,57 and field environments.58 More

specifically, it has been used to study the photochemical evolution of OA in chamber
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experiments performed on biomass burning emissions38 and in wildfire plumes sampled during

an aircraft-based field campaign.33 The primary difference between the chamber experiments of

Akherati et al.38 and Lim et al.39 is the size of the chamber and the photochemical exposure

achieved in those two studies (<10 hours versus up to 11 days, respectively).

A detailed description of the SOM-TOMAS model and the governing equations can be

found in previous publications.38,47 A brief overview is provided below. Within SOM, five

parameters are used to track the oxidation chemistry of the VOC and its oxidation products (i.e.,

model species) by explicitly simulating functionalization and fragmentation reactions: (i-iv) pf,1

to pf,4, mass yields for four functionalized products that add one, two, three, and four oxygen

atoms to the carbon backbone, respectively; and (v) mfrag, a parameter used to calculate the

probability of fragmentation (Pfrag) based on the O:C ratio of the model species (

. ΔLVP, a sixth parameter, is used to quantify the decrease in volatility of𝑃𝑓𝑟𝑎𝑔 = 𝑂: 𝐶( )𝑚𝑓𝑟𝑎𝑔 )
the model species with the addition of an oxygen atom. The volatility (c*) and reaction rate

constant with OH (kOH) are parameterized as a function of the model species’ carbon (NC) and

oxygen (NO) number. Based on the diffusive-reactive framework described in Zaveri et al.,59 the

SOM-TOMAS model simulates the kinetic gas/particle partitioning of the model species by

considering the particle-phase diffusivity of the absorbing organic aerosol. The SOM-TOMAS

model was recently updated to simulate autoxidation reactions, heterogeneous oxidation via OH,

and oligomerization reactions.47 Autoxidation is modeled by directly prescribing an empirical

yield for highly oxygenated organic molecules (HOM), informed by previous laboratory

experiments.60 Heterogeneous oxidation is modeled as a surface reaction of a model species in

the particle phase with OH and assuming that the subsequent chemistry is the same as that in the

gas phase; collisions between the model species and OH that lead to a chemical reaction are
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modulated by the uptake coefficient (𝛾).46 Finally, oligomerization is modeled by tracking the

reversible formation and dissociation of dimers, characterized by forward and reverse reaction

rates, respectively.61

The SOM-TOMAS model can simulate size-dependent losses of particles to the chamber

walls. However, in this study, only a single, bulk particle wall-loss rate was available to model

particle wall losses (details described in Section 2.2.2). Vapor losses to the chamber walls are

modeled, following the work Matsunaga and Ziemann.62 Here, the first-order uptake to the walls

is assumed to be equal to kvap,on and the release of vapors from the walls (kvap,off) is modeled using

absorptive partitioning theory with the chamber wall serving as an absorbing mass with an

effective mass concentration of Cw mg m-3; Cw is parameterized as a function of the partitioning

model species’s c*, following Krechmer et al.41

2.2.2 Model Inputs

Select measurements were used to create experiment-specific inputs to initialize and run the

SOM-TOMAS model. Below, we describe the inputs used to model dilution, initialize SOA precursors,

POA, and SVOCs, prescribe OH concentrations, and inform particle and vapor wall losses.

Lim et al.39 diluted the chamber with clean air to offset the volume sampled out by the

instruments and to keep the chamber volume constant at 150 L. This dilution was significant

enough (2 to 3.6 hr-1) that dilution ended up being the most important process that affected

concentrations inside the chamber. Therefore, we decided to explicitly model dilution in the

SOM-TOMAS model since it was likely to strongly affect gas/particle partitioning of OA. The

dilution rate was calculated by first fitting a double exponential function to the mixing ratios for

hydrogen cyanide (HCN) and then using the function to determine a time-dependent dilution

rate, fitted to a double exponential decay that was specific to each chamber experiment. We

assumed HCN to be an inert tracer that did not react with OH or O3 and was not lost to the walls.
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Previous work has tended to use acetonitrile as an inert tracer but we did not find significant

differences in the bulk dilution calculated using HCN or acetonitrile. The HCN data were

preferred since they were both smoother and larger in concentration than that of acetonitrile.

Numerically, dilution was modeled at each model time step by multiplying the chamber

concentrations in the model with the incremental dilution rate. Time series data for HCN for a

representative chamber experiment (Ponderosa Pine) and the corresponding time-dependent

dilution rate are shown in Figure 2.

Figure 2: An example of the measured hydrogen cyanide (HCN) mixing ratios and the double
exponential fit (where t is time in seconds) used to calculate time-dependent dilution rate for one
such chamber experiment performed on Ponderosa Pine emissions (Fire 38). An interpretable
first order dilution rate is shown, calculated using a single exponential decay for
demonstrational purposes only.

PTR-ToF-MS data were used to initialize mixing ratios for the SOA precursors. The

PTR-ToF-MS data have been described in detail in Coggon et al.53 and the SOA precursor

treatment was identical to that described in Akherati et al.38 A total of 86 unique VOCs were
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considered to form SOA and the full list of precursors is provided in Table S1 (reproduced from

Akherati et al.).38 The 86 VOCs were assigned to one of nine SOA precursor surrogates

(benzene, toluene, m-xylene, naphthalene, isoprene, 𝛼-pinene, phenol/guaiacol, syringol, alkyl

furans) for which SOM-TOMAS parameters have been developed from historical chamber data.

SOM-TOMAS parameters for these surrogates are provided in Table S2a (reproduced from

Akherati et al.),38 noting that these parameters are representative of SOA formation under high

NOX conditions. Coggon et al.53 argued, based on simulating the gas-phase chemistry for a few

of the Lim et al.39 fires, that peroxy radicals (RO2) from higher carbon number VOCs exclusively

reacted with the hydroperoxyl radical (HO2) (~75%) or with itself (i.e., forms gas-phase dimers)

(~25%). Accordingly, the oxidation chemistry is expected to be more representative of that

encountered under low NOX conditions. Chamber walls, however, can serve as a source for NO

in the presence of NO2, a pathway Coggon et al.53 did not consider, and may confound the choice

between using high versus low NOX parameters to simulate SOA formation. Because of this, we

decided to run a Low NOx simulation as a model sensitivity case. SOM-TOMAS parameters for

surrogates in this use case can be found in table S2b. We should point out that since the SOM

parameters only inform the trajectory of the oxidation chemistry in the carbon-oxygen grid,

model predictions of the SOA mass yield for a specific precursor are likely to be different from

that for the surrogate. Although the SOM-TOMAS model was run to simulate the oxidation

chemistry separately for each of the 86 VOCs, VOC and SOA data were aggregated to present

results across four broad precursor classes: oxygenated aromatics, heterocyclics, aromatic

hydrocarbons, and biogenic VOCs.

POA from biomass burning sources is known to be semi-volatile and reactive.63–65 Hence,

we used the volatility distribution reported in May et al.65 to distribute POA and the semi-volatile
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organic compounds (SVOCs) in equilibrium with POA, within the SOM grid. This was done by

first determining the POA+SVOC mass distribution in a volatility basis set (VBS) and then

mapping the mass from each c* bin in the VBS to the SOM model species that had a matching c*.

The mapping was done while ensuring that the SOM-predicted POA O:C aligned with initial

observations of POA O:C. The chemical evolution of the POA+SVOC mass was simulated

assuming that the oxidation chemistry was the same as that for multi-ring aromatics (naphthalene

served as the surrogate), based on the work of Akherati et al.33

Following Barmet et al.,66 dilution-corrected mixing ratios of deuterated butanol (D9)

were used to calculate time-dependent OH concentrations, specific to each chamber experiment.

Dilution-corrected data for D9 and the corresponding OH concentrations and exposures for a

representative chamber experiment (Ponderosa Pine) are shown in Figure 3. The average OH

concentration was 4×108 molec. cm-3 and the OH exposure by the end of the experiment was

equivalent to 6.6 days of photochemical aging at an OH concentration of 1.5×106 molec. cm-3.

Figure 3: (a) Dilution-corrected mixing ratios for deuterated butanol (D9). (b) OH
concentrations estimated from D9 decay and the Gaussian fit to the data. (c) Raw and fit OH
exposure. All data are from the chamber experiment performed on Ponderosa Pine emissions
(Fire 38)
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Lim et al.39 determined a bulk particle wall loss (PWL) rate (kPWL=0.028 min-1, 𝜏PWL=36

min) by fitting an exponential function to dilution-corrected POA mass concentration data from a

‘dark’ chamber experiment performed on Lodgepole Pine; in this specific experiment the lights

were not turned on and there was no photochemistry. This particle wall loss rate represents an

upper bound estimate since the POA mass could have evaporated with dilution67 or from losses

of semi-volatile vapors in equilibrium with the POA to the chamber walls.68 To account for these

additional loss processes, we ran the SOM-TOMAS model for this dark experiment and

simulated dilution, kinetic gas/particle partitioning, and particle and vapor wall losses; all

chemical reactions were turned off. The model was run with several particle wall loss rates (𝜏PWL

= 36, 72, 108, and ∞ min) and results are presented in Figure 4. We found that a particle wall loss

rate of kPWL=0.014 min-1 (𝜏PWL = 72 min) best reproduced the observations, indicating that the rate

presented in Lim et al.39 was likely overestimated. The same bulk particle wall loss rate was used

to model losses of particles to the chamber walls for all 18 chamber experiments.

Figure 4: Dilution-corrected predictions of OA mass concentrations compared against
measurements for different particle wall loss rates (𝜏 of 36, 72, and 108 minutes) and
assumptions about POA (semi-volatile versus non-volatile). Also shown is the particle wall loss
rate used estimated in Lim et al.39 Model predictions and measurements are from a ‘dark’
experiment performed on a Ponderosa Pine Fire.
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The vapor wall loss rate has not been quantified for the chamber used by Lim et al.39

Assuming that the vapor wall loss rate scales as a linear function of the surface area to volume

ratio for the chamber,69 we used historical estimates for five separate environmental chambers to

calculate a kvap,on of 2×10-2 s-1 (𝜏VWL = 0.8 min) for the Lim et al.39 chamber; Paul Scherrer

Institute (5.5 m3, kvap,on of 3.3×10-3 s-1, 𝜏VWL = 5 min),70 University of Colorado Boulder (8 m3,

kvap,on of 1.7×10-3 s-1, 𝜏VWL = 10 min),41 Colorado State University (10 m3, kvap,on of 1.3×10-3 s-1,

𝜏VWL = 13 min),56 Georgia Institute of Technology (13 m3, kvap,on of 6.1×10-4 s-1, 𝜏VWL = 27 min),71

and California Institute of Technology (30 m3, kvap,on of 4×10-4 s-1, 𝜏VWL = 42 min).42

2.2.3 Simulations and Sensitivity Analysis

The primary results in this work are from simulations performed with the ‘Base’

configuration of the SOM-TOMAS model. In this configuration, we modeled dilution,

multigenerational gas-phase chemistry, phase-state-influenced kinetic gas/particle partitioning,

heterogeneous oxidation, oligomerization, and particle and vapor wall losses. The end result is

temporal model outputs of OA mass, and OA composition (O:C and OA precursor contribution

to OA). We assumed a liquid-like phase state for OA (particle-phase diffusion coefficient (Db) of

10-10 m2 s-1) and an uptake coefficient (𝛾) of 1 to simulate heterogeneous oxidation reactions. For

oligomerization, we used dimer formation (kf = 10-24 cm3 molec.-1 s-1) and dissociation (kr =

1.6×10-2 s-1) rates based on our previous work with 𝛼-pinene SOA.57 All SOM species were

assumed to participate in oligomerization reactions. In addition, we performed two types of

sensitivity simulations. In the first type, we performed simulations where a single process was

turned off or scaled to examine the sensitivity in model predictions to that specific process (e.g.,

dilution, particle wall losses, heterogeneous oxidation, etc.).
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In the second type, we performed simulations to examine the sensitivity in model

predictions to several adjustments in model inputs or chemical schemes. These are described

below. First, the heterogeneous oxidation scheme was simplified such that the model species’

reaction with OH was assumed to form a single oxidation product with four oxygen atoms added

to the reactant. This scheme, which simulated an aggressive uptake of oxygen into the particle

phase, was used to run simulations with two different uptake coefficients (𝛾 = 1, 6). Second,

Coggon et al.53 were able to speciate more than 150 VOCs using the PTR-ToF-MS, of which

only 86, as identified by Akherati et al.,38 were considered to form SOA. To investigate whether

the remaining 42 VOCs were responsible for SOA formation, we aggregated the VOCs by

carbon and oxygen number, inputted them into a SOM grid, and simulated their oxidation

chemistry using n-dodecane as a surrogate. Third, we explored how an average SOA precursor

profile based on an average of 57 fires sampled during FIREX-201651 affected model

predictions. Initial SOA precursor concentrations for each chamber experiment were determined

by multiplying the emissions ratio of the SOA precursor with acetonitrile with the initial

acetonitrile concentrations. Finally, we performed 100 Monte-Carlo simulations where we

randomized the distribution of POA+SVOC mass in the SOM grid while ensuring that the mass

distribution reproduced the volatility behavior observed by May et al.65 and matched the initial

OA O:C. The Base and both types of sensitivity simulations were performed on all 18 chamber

experiments.
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CHAPTER 3 - RESULTS

3.1 Example Results from a Ponderosa Pine Chamber Experiment

Predictions from simulations performed with the SOM-TOMAS model for a

representative fuel and experiment (Ponderosa Pine, Fire 38 in Table 1) are compared against

measurements in Figure 5. This specific experiment was chosen since it was illustrative of the

model performance across all 18 chamber experiments (described in Section 3.2 and showcased

in Figures 2, 3, and 4). Model predictions in Figure 5a and 5b are from the Base simulation (solid

line) and from sensitivity simulations (dash-dotted lines) performed by systematically turning off

or adjusting a specific process. Predictions and measurements of OA mass concentrations

presented in panels (a), (b), and (d) have been corrected for dilution and particle wall losses;

being a ratio, the O:C data remain uncorrected and represent those for the suspended OA.

As shown in Figure 5a, predictions from the Base simulation seemed to reproduce the

increase in OA mass concentrations, within the range of the measurement uncertainty, over the

entire experiment. By the end of the experiment, predictions for OA mass concentrations showed

a net increase of 33% while measurements had increased by 99%, relative to the initial OA.

However, the modeled trends with photochemical age did not align with trends in the

measurements. For instance, over one equivalent day of photochemical aging, the model

produced a rapid increase in OA mass concentrations while the measurements were relatively

flat. At photochemical ages longer than one equivalent day, the model produced a marginal

increase in the OA mass concentrations, which deviated from the measurements that continued to

rise sharply. Model predictions of OA O:C, as shown in Figure 5b, closely followed the

measurements up to one equivalent day of photochemical aging. While model predictions of OA

O:C continued to increase after one equivalent day of photochemical aging, the modeled increase
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Figure 5: SOM-TOMAS model predictions for (a) OA mass concentration and (b) OA O:C
compared against measurements as a function of photochemical age (assuming an OH
concentration of 1.5×106 molec. cm-3) for the Ponderosa Pine chamber experiment (Fire 38). (c)
‘Base’ model predictions resolved by precursor class compared against bulk measurements of
OA mass concentration. (d) Initial (t0) and final (tf) gas- and particle-phase predictions resolved
by precursor class from the ‘Base’ simulation. In panels (a-c), mean measurements are shown
with a gray solid line with the shaded region representing the 2-𝜎 uncertainty. Sensitivity
simulation results in (a) and (b) are shown with dash-dotted lines. The hatching in (d) shows
precursor concentrations in the gas-phase. The OA mass concentrations in panels (a,b,d) have
been corrected for dilution and particle wall losses.

with respect to the initial OA O:C was dwarfed (50%) relative to the increase experienced by the

measurements (157%). The increase in the predicted OA and O:C stemmed from the production

of SOA (Figure 5c), primarily driven by the oxidation of SVOCs, oxygenated aromatics, and

heterocyclics, with minor contributions from aromatic hydrocarbons and biogenic VOCs. After

21



slightly more than six equivalent days of photochemical aging, the OA was dominated by POA

(56%) with a smaller contribution from SOA (44%).

The temporal trends in OA mass concentrations, shown in Figure 5, can be explained as

follows. The OH reactivities (i.e., reaction rate constant with OH × OH concentration) for the

key SOA precursor classes (i.e., SVOCs, oxygenated aromatics, heterocyclics) were high enough

that the precursor mixing ratios were depleted within 1 equivalent day of photochemical aging.

Model predictions and measurements of precursor decay, summed and resolved by precursor

class, with photochemical age are shown in Figure 6 for this experiment. Model predictions of

precursor decay seemed to agree the most with observations for aromatic hydrocarbons but were

largely inconsistent with the measurements for the three other precursor classes. This was mostly

likely because there were significant interferences at the mass-to-charge ratios used to track the

precursors, from fragmentation of oxidation products during ionization in the PTR-ToF-MS.53

The high OH reactivities and rapid precursor decay resulted in an initial burst in SOA

production. However, with few precursors left after one equivalent day, the model was unable to

produce any more SOA. This also indicated that there were minor contributions to SOA from

slower reacting precursors (i.e., aromatic hydrocarbons) and from the multigenerational

chemistry of the residual oxidation products left behind after the initial SOA burst. Furthermore,

any SOA production past one equivalent day of photochemical aging was balanced by

evaporation of POA and SOA from dilution of the chamber volume (2.4 hr-1). The end result was

that the predictions of OA mass concentrations increased earlier in the experiment but continued

to slow down with aging.
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Figure 6: Model predictions of dilution-corrected SOA precursor mixing ratios compared
against measurements for the chamber experiment performed on Ponderosa Pine emissions (Fire
38). Individual SOA precursors were aggregated by the precursor class.

Results from the sensitivity simulations provided additional insight on the relative

importance of the various processes. Simulations performed with no dilution, heterogeneous

oxidation, and oligomerization and a non-volatile and non-reactive POA, individually, resulted in

no significant change in OA mass concentrations (±10%), relative to the Base simulation. Also

included is a sensitivity simulation using model parameters conducive to a low NOx

environment. This had a medium effect, but brought OA further from the measurements. In

contrast, simulations performed with particle wall losses turned off (PWL Off) or particle wall
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loss rates doubled (PWL×2) seemed to produce a stronger change in OA mass concentrations

(±45%). While the PWL-Off simulation produced slightly better agreement with the OA mass

concentration measurements, it is unlikely that there were no losses of particles to the chamber

walls. Rather, this suggests that a bulk, time-independent particle wall-loss rate informed by a

single dark experiment and used to correct for losses in all experiments may add to the

uncertainty in simulating the experiment-specific trends in OA evolution. The VWL-Off

simulation predicted a large spike in OA mass concentrations at short photochemical ages

highlighting that vapor wall losses are an important artifact to consider for this small chamber.

We should note that VWL likely plays a dynamic role in these experiments since vapors lost to

the walls initially when the concentrations are higher may be released from the walls later in the

experiment when the concentrations are depleted from continuous dilution of the chamber

volume. The run using low NOx parameters impacted results, but not significantly enough to

justify using these parameters as a new base case. Most of the sensitivity simulations produced a

smaller spread in the OA O:C evolution and even when they did (i.e., dilution off, VWL off), the

predictions significantly underestimated the change in measured OA O:C after one equivalent

day of photochemical aging.

To illustrate the highly oxidizing environment inside the chamber, we plot the initial and

final precursor (and OA) concentrations in Figure 5d. Over the course of six equivalent days of

photochemical aging (~35 mins of clock time), nearly all of the primary precursors (oxygenated

aromatics, heterocyclics, aromatic hydrocarbons, and biogenic VOCs) were consumed. Although

it might appear that only a small fraction of the SVOCs (semi-volatile vapors in equilibrium with

the POA) reacted by the end of the experiment, the net change in SVOCs was a result of

competing processes: reaction with OH (loss), evaporation of POA with dilution (gain), and
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exchange of SVOCs between the chamber and the chamber walls (loss initially but gain later).

Based on the net loss of VOC and net production of SOA, we calculated an end-of-experiment

SOA mass yield of 13% for the SOA precursors. A similar mass yield calculation was not

possible to perform for the SVOCs due to the reasons mentioned above.

3.2 Photochemical Evolution of OA from Eighteen Different Fires

Model predictions of OA mass concentrations and O:C are compared against

measurements for 18 chamber experiments in Figures 2 and 3, respectively. Results are shown

for the Base simulations and also for simulations where particle wall losses were turned off since

this simulation offered the most optimal performance for the Ponderosa Pine chamber

experiment shown in Figure 5. In addition, predictions of the normalized OA composition from

the Base simulations for the 18 chamber experiments are shown in Figure 9 at two different time

points: 0.5 equivalent days and at the end of the experiment. In Figures 2 and 3, the

model-measurement comparison was highly variable (more so for OA mass concentrations) but

there were still a few findings of note. First, generally speaking, model predictions of OA mass

concentrations seemed to agree with the measurements at shorter photochemical ages but the

model-measurement comparison varied quite significantly at longer photochemical ages; a

logarithmic scale was used for photochemical age to highlight this finding. Yet, the heterogeneity

in photochemical ages across the chamber experiments makes this hard to notice in Figure 7 and

we reexamined this comparison, resolved by photochemical age, in Figure 10 (described later in

this section). In 6 out of 18 chamber experiments, the model-predicted OA mass concentration

was outside the measured uncertainty range by the end of the experiment; overestimated in 3 and

underestimated in 3 chamber experiments. The modeled OA mass concentration profile with

photochemical age was contained within the measurement uncertainty envelope in 9 out of the
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18 chamber experiments and in only 4 out of 18 chamber experiments did the model predictions

follow the mean in the measurements.

Figure 7: SOM-TOMAS model predictions from the Base and PWL-Off simulations compared
against measurements of OA mass concentration. Each panel has a unique y-axis scale but the
same x-axis scale. Experiments based on the same fuel have been numbered serially and the
panels have been organized alphabetically by fuel. Mean measurements are shown with a gray
solid line with the shaded region representing the 2-𝜎 uncertainty. All OA mass concentrations
have been corrected for dilution and particle wall losses.
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Figure 8: Same as Figure 7 but for OA O:C. The OA O:C is calculated for the suspended OA
and it did not require corrections for dilution or particle wall losses. Model predictions from the
PWL-Off simulation are hidden behind those for the Base simulation and, hence, they cannot be
seen.
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Figure 9: Model-predicted, normalized OA composition for all 18 chamber experiments as well
as the arithmetic average. Composition includes POA and SOA resolved by precursor class.
Results are presented at 0.5 equivalent days of photochemical aging and at the end of the
experiment.

Second, VOC oxidation led to SOA formation in all 18 experiments and contributed to

the increase in model predictions of OA mass concentrations and O:C. While there was some

variability in SOA formation across chamber experiments, SOA contributed to 30% to 60% of

the total OA at 0.5 equivalent days of photochemical aging and 44 to 70% of the total OA by the

end of the chamber experiment. On average, SOA accounted for 47% and 58% of the total OA at

those two time points, respectively. The end-of-experiment SOA mass yield across all 18

chamber experiments ranged from 11% to 38%. Similar to the conclusions made by Akherati and
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coworkers who simulated the OA evolution in laboratory fires38 and wildfire plumes,33 the SOA

formation was dominated by oxidation of SVOCs (average contribution of 37%), oxygenated

aromatics (primarily, phenols and methoxyphenols; average contribution of 33%), and

heterocyclics (primarily, furanic VOCs; average contribution of 17%). Biogenic VOCs also

contributed to SOA formation but it was limited to a handful of chamber experiments performed

on coniferous fuels; 3 out of 18 where biogenic SOA was ~8% of total SOA. Differences in the

OA mass composition between 0.5 equivalent days (Figure 9a) and the end of the experiment

(Figure 9b) were marginal with the exception that the SOA contribution from aromatic

hydrocarbons at 0.5 equivalent days was much smaller (average contribution of 3%), relative to

that at the end of the experiment (average contribution of 4.3%). Similar to the trends observed

in Figure 5, SOA formation slowed after one equivalent day of photochemical aging in nearly all

chamber experiments and this was linked to the near depletion of dominant SOA precursors over

that timescale. Overall, that SOA could be up to half of biomass burning OA with prolonged

aging aligns well with recent findings from empirical analyses of aircraft measurements,5

numerical modeling,12,72 and studies that have combined both33 for wildfire OA.

Third, while there were a couple of exceptions (e.g., Dung, Subalpine Fir), model

predictions of OA O:C from the Base simulations matched the observed increase in OA O:C

over 12 to 24 equivalent hours (0.5 to 1 day) of photochemical aging but systematically

underestimated the observed O:C increase with additional aging. Except for Douglas Fir #1, the

model heavily underestimated the OA O:C for 17 fires by the end of the experiment. Across all

18 chamber experiments, the model-predicted increase in OA O:C was primarily linked to SOA

production. This was because the fresh POA had an initial O:C of 0.35 and the SOA added from

oxidation of SVOCs, oxygenated aromatics, and heterocyclics had a higher O:C (0.4-0.6, 0.8-1,
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and 0.85, respectively)56,73. Hence, SOA condensation onto existing POA coupled with

heterogeneous oxidation of POA led to an increase in OA O:C, at least until SOA production

was sustained. The model performance was unaffected by the treatment for particle wall losses.

Finally, we make two additional comments about the model-measurement comparisons

for multiple experiments performed on the same fuel. The model appeared to do well on both

OA mass concentrations and OA O:C for two of the three chamber experiments performed on

Chaparral and two of the three chamber experiments performed on Douglas Fir. In contrast, the

model systematically underestimated both the OA mass concentrations and O:C for all chamber

experiments performed on Engelmann, Lodgepole Pine, and Ponderosa Pine, except for OA

mass on one Ponderosa Pine chamber experiment. Regardless, there were no discernible

differences in the model performance across the different fuel types (conifer, shrub, grass, and

dung) although the ability to distinguish was affected by the small sample size of the dataset.

To investigate the model performance at the same photochemical age, we compared

model predictions of the OA mass and O:C enhancement ratios (final to initial) against

measurements at four different photochemical ages - 0.5, 1, 2, and 4 days - in Figure 10. Since

there was significant variability in the maximum photochemical age achieved across the 18

chamber experiments, the model-measurement comparisons had to be performed on a sample

size that decreased with photochemical age (from N=18 at 0.5 days to N=13 at 4 days). For OA

mass enhancement ratios at 0.5 equivalent days of photochemical aging, the model exhibited

little to no bias (Normalized Mean Bias (NMB)=9%) and a modest error (Normalized Mean

Error (NME)=20%), alongside poor model skill. A small bias meant that the average and range

of the OA mass enhancement ratios predicted by the model (average=1.5, range=1.1-2.0) were

very similar to that for the measurements (average=1.4, range=0.9-2.5). With one exception, the
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bias (i.e., NMB), error (i.e., NME), and skill in model predictions got progressively worse with

photochemical aging. At 4 equivalent days of photochemical aging, the model exhibited a

negative bias (NMB=-25%), a larger error (NME=40%), and little to no model skill. While most

of the model predictions for the OA mass enhancement ratio were within 50% of the

measurements at 0.5 and 1 equivalent days (14/18 and 14/17, respectively), only 6 of the 13

chamber experiments were within the 50% envelope at 4 equivalent days. The model

performance for OA mass enhancement ratios at the shorter photochemical ages (0.5 and 1

equivalent days) was consistent with two previous modeling studies based on chamber

experiments specifically performed over short photochemical ages (<12 equivalent hours).13,38

Figure 10: Model predictions of (a-d) OA mass enhancement ratio and (e-h) OA O:C
enhancement ratio compared to measurements at four different photochemical ages (a,e) 0.5
days, (b,f) 1 day, (c,g) 2 days, and (d,h) 4 days. Different colors are used to denote different fuels
with the patterns (plus, cross) used to separate multiple experiments performed on the same fuel.
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In contrast, the model performance for OA O:C enhancement ratios was much easier to

interpret. The model exhibited good skill in predicting the enhancement in OA O:C, that

improved at longer photochemical ages. As shown in Figure 8, the model was able to generally

reproduce the observed O:C enhancement up to one equivalent day of photochemical aging

(NMB=-25%, NME=25%) but the model steadily underestimated the observed OA O:C

enhancement with additional aging. By 4 equivalent days of photochemical aging, the model

underestimated the OA O:C enhancement ratio by ~50% (NMB=-32%, NME=32%). All or most

of the model predictions for the OA O:C enhancement ratio were within 50% of the

measurements at 0.5 and 1 equivalent days (18/18 and 13/17, respectively) while only 8 of the 13

chamber experiments were within the 50% envelope at 4 equivalent days. Tentatively, the

comparisons in Figure 10 suggest that the model is missing precursors, processes, or both that

may be relevant for OA mass and O:C enhancement linked to POA processing and SOA

production at longer photochemical ages (>1 days).

We probed the model’s underestimation and poor skill by performing a variance analysis

on the OA mass concentrations at 4 equivalent days of photochemical aging. By fixing the

photochemical age to 4 equivalent days, we were analyzing the model performance in a region

where it performed poorly, noting that our analysis was limited to a subset of experiments

(N=13). Using values from the end of the experiment would have increased the sample size to 18

but would have made it difficult to account for differences in photochemical age. Results from

the variance analysis, which included variables present within the model (initial POA, SOA

precursors, and OA O:C) and those not considered in the model (modified combustion efficiency,

fuel moisture content, fuel type), are shown in Figure 11. The model error in OA mass, expressed

as a ratio of modeled to measured OA, showed a weak positive correlation with initial
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concentrations of SOA precursors (R2=0.25) and POA (R2=0.13) (Figure 11b). Specifically, the

model underestimated the OA mass when the SOA precursor and POA concentrations were

lower suggesting that a different set of SOA precursors than those measured by the PTR-ToF-MS

might be responsible for SOA formation in these experiments. Defining the model error as

[modeled OA - measured OA] or a ratio of the modeled ΔOA to measured ΔOA produced a

variance analysis that was identical to that shown in Figure 11 (not shown). The model error

exhibited a poor relationship, or the absence of one, with the remaining variables: modified

combustion efficiency (R2=0.03), fuel moisture content (R2=0.07), and fuel type. We admit that

we do not know how to interpret the weak positive correlation of the model error in OA mass

with the initial O:C.

3.3 Model Sensitivities

We studied sensitivity in model predictions to individual processes and results from this

analysis for all 18 chamber experiments are shown in Figure S10. Here, we compared model

predictions of OA mass concentration and O:C from the sensitivity simulations to those from the

Base simulations. The presentation of the sensitivity analysis (N=13) was done at four equivalent

days of photochemical aging as one of the reasons for performing the sensitivity analysis was to

study the reasons for the model’s poor performance at longer photochemical ages. Analogous to

the findings in Figure 5, turning particle and vapor wall losses off resulted in the largest change

in OA mass concentrations (median increase of 60% and 45%, respectively), relative to the Base

results. In contrast, turning dilution, heterogeneous oxidation, and oligomerization off resulted in

much smaller changes in the OA mass concentrations (median change of 7%, 15%, and -10%,

respectively). Treating POA as non-volatile and non-reactive had the least effect on OA mass

concentrations (median increase of 5%). Except for dilution, the model response (i.e., sensitivity)

33



Figure 11: Model variance in OA mass expressed as a ratio of the modeled to measured OA
compared against (a) MCE, (b) initial SOA precursors, (c) initial OA O:C, (d) fuel moisture
content, (e) initial POA, and (f) fuel type (conifers versus others). Variance analysis is performed
at a photochemical age of 4 equivalent days.

the findings in Figure 5, turning particle and vapor wall losses off resulted in the largest change

in OA mass concentrations (median increase of 60% and 45%, respectively), relative to the Base

results. In contrast, turning dilution, heterogeneous oxidation, and oligomerization off resulted in

much smaller changes in the OA mass concentrations (median change of 7%, 15%, and -10%,

respectively). Treating POA as non-volatile and non-reactive had the least effect on OA mass

concentrations (median increase of 5%). Except for dilution, the model response (i.e., sensitivity)

to a particular process varied modestly across the 18 chamber experiments, despite comparisons
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in the model output at the same photochemical age. Given that particle and vapor wall losses

influence model predictions significantly, one potential reason for the poor model performance at

longer photochemical ages might be the use of a single, time-independent value to determine

those wall loss rates. Interestingly, model predictions of OA O:C were only mildly sensitive to

turning dilution and vapor wall losses off (median increase of 12% and 8%, respectively) and

nearly insensitive to all other processes. Therefore, an experiment-specific particle or vapor wall

loss rate is unlikely to influence the model performance for OA O:C.

Results from simulations performed with model adjustments for the Ponderosa Pine

chamber experiment are shown in Figure 12. Similar to the motivation for performing the

sensitivity analysis described earlier, these simulations were used to study reasons for the

model’s poor performance at longer photochemical ages. The heterogeneous oxidation schemes

that rapidly produced lower-volatility and more oxygenated products increased model

predictions of OA mass concentrations and O:C modestly (up to a 18% increase in OA mass and

15% increase in OA O:C by the end of the experiment), relative to the Base results. Despite this

increase, model predictions of OA O:C were still significantly underestimated at higher

photochemical ages. As expected, the smaller but slower-reacting VOCs, which were nearly

similar in magnitude to the initial SOA precursors, did not affect SOA production significantly to

alter the OA evolution. The use of an average SOA precursor profile boosted OA mass

concentrations and O:C much more so than the modified heterogeneous oxidation schemes. This

was because the average SOA precursor profile, based on measurements in the stack,51 resulted

in higher initial precursor concentrations compared to the direct chamber measurements

described in Coggon et al.53 and Lim et al.39 We did not find this to be surprising. Akherati et al.38

had shown that there were meaningful losses of SOA precursors in the duct used to port smoke
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Figure 12: Model predictions of (a,b) OA mass concentrations and (c,d) OA O:C compared
against measurements. Predictions are from simulations performed with a modified treatment for
heterogeneous oxidation, SOA formation from smaller and slower-reacting VOCs, and
Monte-Carlo simulations.

from the stack to their larger chamber. These losses were found to be a function of c* with higher

losses observed for lower c* species and vice versa (c.f. Figure S6 in Akherati et al.)38; Lim et

al.39 had used a similar duct setup to port smoke emissions into their smaller chamber. As to why

the initial SOA precursor concentrations would be larger than those directly measured in the

chamber and used in the Base simulations is unclear to us. Randomly varying the distribution of

POA+SVOC mass in the SOM grid seemed to produce some variability in model predictions of
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OA mass concentrations (±27%) and O:C (±8%) but these variations were not significant enough

to explain the underestimation in at longer photochemical ages.

Overall, of the model adjustments undertaken here, the use of an alternative

heterogeneous oxidation scheme and an average SOA precursor profile helped marginally

improve the model performance at longer photochemical ages without significantly affecting the

performance at shorter photochemical ages (Figure 13). Broadly, the sensitivity simulations and

model adjustments discussed in this section strengthen the argument that the model is missing

precursors, pathways, or both that can help explain the strong increase in OA mass

concentrations and O:C at longer photochemical ages.
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Figure 13: Model predictions of (a,b) OA mass enhancement ratio and (c,d) OA O:C
enhancement ratio compared to measurements at 4 photochemical days for two model
adjustments, an Average VOC profile based on initial acetonitrile (a,c), and an alternative
heterogeneous oxidation scheme (b,d).
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CHAPTER 4 - SUMMARY, DISCUSSION, AND FUTURE WORK

In this work, we simulated the photochemical evolution of biomass burning OA in 18

separate chamber experiments performed in a small environmental chamber. The simulations

were performed with a process-level kinetic model (i.e., SOM-TOMAS) that simulated dilution,

multigenerational gas-phase chemistry, phase-state-influenced gas/particle partitioning,

heterogeneous oxidation, oligomerization reactions, and chamber artifacts (i.e., particle and

vapor wall losses). We found that the model was able to generally reproduce the OA mass and

O:C evolution at short photochemical ages (0.5-1 equivalent days), consistent with earlier work,

but the model performed less optimally at longer photochemical ages (>1 equivalent day). For

instance, at four equivalent days of photochemical aging, the model underestimated both the

enhancement in OA mass and O:C but showed good skill in predicting the increase in OA O:C.

Neither the variance analyses nor the sensitivity simulations were able to provide conclusive

evidence for why the model performance deteriorated with photochemical age. We tentatively

argue that the model performance would have been better if we had access to

experiment-specific and time-dependent particle and wall loss rates although neither of these

would have helped with the model’s ability to accurately predict the increase in OA O:C.

Simulations performed with adjustments made to the heterogeneous oxidation scheme and higher

inputs for initial SOA precursor concentrations offered modest improvements in model

performance at longer photochemical ages.

The SOM-TOMAS model can be used to determine aerosol mass yields for SOA

precursors that would be relevant for photochemical evolution over multiple days. The dilution-

and particle-wall-loss-corrected SOA mass yields from the end of the experiment varied between

11% and 38% over the 18 chamber experiments. If these were further corrected for vapor wall
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losses, the SOA mass yields increased to between 22% and 40%. In these chamber experiments

where the SOA precursors were 2.4× the initial POA emissions (Figure S3), these yields were

found to enhance the OA mass burden even when some of the POA was lost to dilution-driven

evaporation. However, Akherati et al.33 discovered that SOA precursor emissions were on the

same order as POA emissions in real wildfire plumes sampled using a research aircraft in the

western US. Hence, these SOA mass yields are likely to boost OA mass burdens by at least

~30% over regional scales even if the emitted POA is not subject to evaporation. Furthermore,

this SOA is bound to alter the chemical, microphysical, and optical properties of biomass

burning aerosol with photochemical age. Biomass burning is an important source of SOA

precursor emissions, just like it is for POA emissions, and these precursors have significantly

large yields that they need to be considered in air quality climate models if we are to simulate

SOA production and the physicochemical evolution of biomass burning OA.

The SOM-TOMAS model currently does not account for aqueous processing or

photolysis of organic compounds in the particle phase. Both of these processes have been shown

to alter SOA production and loss rates in model systems.74,75 We do not anticipate the lack of

aqueous chemistry to be a severe limitation since the Lim et al.39 chamber experiments were

performed under low relative humidity conditions (25-40%). However, we cannot fully discount

the effects from water taken up by a rapidly evolving OA. Coggon et al.53 argued that except for

a few photolabile species (e.g., furfural), the 254 nm UV-C light used by Lim et al. (2019) had a

negligible impact on the photooxidation of biomass burning VOCs. Yet, the impact from

absorption of UV-C light by OA remains uncertain. Aqueous processing and photolysis will need

to be explicitly modeled.
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Our work was motivated to better understand the chemistry and microphysics of biomass

burning OA at long photochemical ages, which could shed light on its evolution in the real

atmosphere at regional and global scales. Results from this work provided key insights on the

transformation of OA mass and composition with aging while indicating that we may be missing

key precursors, processes, or both that become more important at longer photochemical ages. We

recommend future work should continue to combine kinetic modeling with laboratory and field

datasets to improve our understanding of biomass burning aerosol. Such modeling will be

important in developing mechanisms and parameterizations to represent biomass burning aerosol

in three-dimensional models, a prerequisite to studying the impact of biomass burning on

climate, air quality, and human health.
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SUPPLEMENTARY INFORMATION

Table S1: VOC species measured by the PTR-ToF-MS and considered as SOA precursors in our
model. Reproduced from the supporting information in Akherati et al.38

Species name Species
Formula

kOH
[s cm3

molecules-1]

c*
[µg m-3]

MW
[g mol-1] Surrogate

Pyrrole C4H5N 1.45×10-10 5.74×107 67.0892 Heterocyclics
Furan C4H4O 4.00×10-11 2.23×109 68.07356 Heterocyclics
Isoprene C5H8 1.00×10-10 2.05×109 68.11702 Biogenics
Dihydropyrrole C4H7N 1.04×10-10 5.15×107 69.10508 Heterocyclics
Tetrahydropyrrole C4H9N 7.85×10-11 2.44×108 71.12096 Heterocyclics
Benzene C6H6 1.22×10-12 4.05×108 78.11184 Aromatics
Pyridine C5H5N 3.70×10-13 5.28×107 79.0999 Heterocyclics
Methylpyrrole C5H7N 1.10×10-10 5.69×107 81.11578 Heterocyclics
MethylFuran C5H6O 7.80×10-11 7.71×108 82.10014 Heterocyclics
Thiophene C4H4S 9.53×10-12 3.64×108 84.13956 Heterocyclics
Furanone C4H4O2 5.66×10-11 1.34×107 84.07256 Heterocyclics
Ethynylpyrrole C6H5N 6.45×10-11 3.95×106 92.11854 Heterocyclics
Toluene C7H8 5.63×10-12 1.42×108 92.13842 Aromatics
2-Furancarbonitrile C5H3NO 7.15×10-12 1.81×105 93.08302 Heterocyclics
MethylPyridine C6H7N 1.10×10-12 4.36×107 93.12648 Heterocyclics
Phenol C6H6O 2.80×10-11 2.11×106 94.11084 Oxygenated Aromatics
4-Pyridinol C5H5NO 7.65×10-11 1.81×106 95.0989 Heterocyclics
C2-pyrroles C6H9N 2.00×10-10 4.16×106 95.14236 Heterocyclics
Furfural C5H4O2 3.56×10-11 1.14×107 96.08326 Heterocyclics
Dimethylfuran C6H8O 2.00×10-10 1.40×107 96.12672 Heterocyclics
Methylthiophene C5H6S 9.51×10-12 1.28×108 98.16614 Heterocyclics
2Methanolfuran C5H6O2 1.04×10-10 3.88×106 98.09914 Heterocyclics
Dihydrofurandione C4H4O3 8.56×10-13 9.00×103 100.0716 Heterocyclics
Phenylacetylene C8H6 8.02×10-12 2.16×106 102.1332 Aromatics
Benzonitrile C7H5N 3.44×10-13 4.62×106 103.1213 Aromatics
Styrene C8H8 5.80×10-11 3.43×107 104.1491 Aromatics
Vinylpyridine C7H7N 2.66×10-11 1.55×106 105.1372 Heterocyclics
Benzaldehyde C7H6O 1.20×10-11 7.30×106 106.1215 Aromatics
C8_Aromatics C8H10 1.32×10-11 4.88×107 106.165 Aromatics
PyridineAldehyde C6H5NO 1.71×10-11 7.85×104 107.1096 Heterocyclics
Dimethylpyridine C7H9N 2.79×10-12 2.05×107 107.1531 Heterocyclics
Benzoquinone C6H4O2 4.51×10-12 8.80×105 108.094 Aromatics
Cresol C7H8O 5.30×10-11 1.34×107 108.1374 Oxygenated Aromatics
Trimethylpyrrole C7H11N 2.00×10-10 1.20×107 109.1689 Heterocyclics
Benzenediol C6H6O2 1.04×10-10 1.10×106 110.1098 Oxygenated Aromatics
Trimethylfuran C7H10O 1.59×10-10 9.27×107 110.1533 Heterocyclics
Dihydroxypyridine C5H5NO2 4.55×10-11 3.78×104 111.0979 Heterocyclics
5-Hydroxy 2-furfural C5H4O3 4.90×10-11 7.36×105 112.0823 Heterocyclics
Nitrofuran C4H3NO3 5.06×10-12 1.64×104 113.0703 Heterocyclics
5-hydroxymethyl-2[3H]-furanone C5H6O3 1.00×10-10 2.59×105 114.0981 Heterocyclics
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5-hydroxy tetrahydro 2-furfural C5H8O3 5.00×10-12 7.36×105 116.114 Heterocyclics
Indene C9H8 7.80×10-11 1.06×107 116.1598 Aromatics
Benzeneacetonitrile C8H7N 2.07×10-12 5.72×105 117.1479 Aromatics
Benzofuran C8H6O 3.70×10-11 1.13×107 118.1322 Aromatics
Methylstyrene C9H10 5.40×10-11 1.14×107 118.1757 Aromatics
Isoindoline C8H9N 8.00×10-11 6.08×105 119.1638 Heterocyclics
Tolualdehyde C8H8O 1.60×10-11 2.39×106 120.1481 Aromatics
C9_Aromatics C9H12 2.20×10-11 1.95×107 120.1916 Aromatics
Salicylaldehyde C7H6O2 2.80×10-11 3.72×106 122.1205 Aromatics
Dimethylphenol C8H10O 5.05×10-11 5.31×106 122.164 Oxygenated Aromatics
Nitrobenzene C6H5NO2 1.40×10-13 1.50×106 123.1086 Aromatics
Hydroxy benzoquinone C6H4O3 1.30×10-11 4.11×105 124.093 Aromatics
Guaiacol C7H8O2 7.53×10-11 9.16×105 124.1364 Oxygenated Aromatics
Hydroxymethylfurfural C6H6O3 1.00×10-10 4.11×105 126.1088 Heterocyclics
Dihydroxymethylfuran C6H8O3 1.29×10-10 4.11×105 128.1247 Heterocyclics
Naphthalene C10H8 2.30×10-11 5.73×105 128.1705 Aromatics
dihydronaphthalene C10H10 6.42×10-11 5.11×106 130.1864 Aromatics
Methylindole C9H9N 2.00×10-10 3.64×104 131.1745 Aromatics
Methyl benzofuran C9H8O 9.75×10-11 3.54×106 132.1588 Heterocyclics
Methyl propenyl benzene C10H12 3.30×10-11 6.76×106 132.2023 Aromatics
3-methylacetophenone C9H10O 2.42×10-12 1.60×106 134.1747 Aromatics
C10_Aromatics C10H14 9.50×10-12 1.04×107 134.2182 Aromatics
Methylbenzoicacid C8H8O2 1.20×10-11 1.66×104 136.1471 Aromatics
Monoterpenes C10H16 1.63×10-10 2.16×107 136.234 Biogenics
Nitrotoluene C7H7NO2 7.72×10-13 5.96×105 137.1352 Aromatics
MethylGuaiacol C8H10O2 3.98×10-11 5.62×105 138.163 Oxygenated Aromatics
Methylnaphthalene C11H10 5.65×10-11 5.20×105 142.1971 Aromatics
Product of levoglucosan
dehydration (pyrolysis) C6H8O4 5.28×10-11 3.81×104 144.1237 Alkanes

Naphthol C10H8O 2.00×10-10 2.71×105 144.1695 Aromatics
Ethylindene C11H12 6.36×10-11 1.67×106 144.213 Aromatics
Dimethylbenzofuran C10H10O 1.20×10-10 2.71×105 146.1854 Aromatics
Methylchavicol C10H12O 5.43×10-11 1.13×106 148.2013 Oxygenated Aromatics
C11_aromatics C11H16 5.00×10-11 4.81×106 148.2447 Aromatics
VinylGuaiacol C9H10O2 5.44×10-11 2.28×105 150.1737 Oxygenated Aromatics
Vanillin C8H8O3 2.73×10-11 7.00×105 152.1461 Oxygenated Aromatics
Acenaphthylene C12H8 7.55×10-11 6.18×104 152.1919 Aromatics
Camphor C10H16O 4.30×10-12 1.98×106 152.233 Biogenics
Syringol C8H10O3 9.66×10-11 1.00×105 154.162 Oxygenated Aromatics
Cineole C10H18O 2.26×10-11 1.63×107 154.2489 Biogenics
1,3-dimethylnaphthalene C12H12 6.94×10-11 8.57×104 156.2237 Aromatics
Decanal C10H20O 3.45×10-11 1.27×106 156.2648 Alkanes
C12_aromatics C12H18 1.13×10-10 1.17×106 162.2713 Aromatics
Isoeugenol C10H12O2 8.84×10-11 1.94×105 188.2217 Oxygenated Aromatics
C13_aromatics C13H20 1.13×10-10 7.17×105 176.2979 Aromatics
Sesquiterpenes C15H24 3.00×10-10 4.58×104 204.3511 Biogenics
5-Methyl furfural C6H6O2 5.18×10-11 1.10×106 110.1098 Heterocyclics
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Table S2a: SOM grids, surrogates, and parameters used in this work (High NOx). Reproduced
from the supporting information in Akherati et al.38
Precursor Class VOC Surrogate ΔLVP mfrag pf,1 pf,2 pf,3 pf,4 Reference
Long alkanes n-dodecane 1.4629 0.2627 0.9657 0.0010 0.0020 0.0314 Loza et al.76
Benzene benzene 1.5495 0.7895 0.0743 0.0213 0.8963 0.0081 Ng et al.77
Toluene toluene 1.4169 1.3064 0.5634 0.3413 0.0016 0.0937 Zhang et al.78
C8+ single-ring
aromatics m-xylene 1.4601 0.0736 0.1418 0.2971 0.4571 0.1040 Ng et al.77

Polycyclic aromatic
hydrocarbons (PAH) naphthalene 1.4922 0.7673 0.8138 0.0072 0.0635 0.1155 Zhang et al.78

Isoprene isoprene 1.8742 0.5207 0.9924 0.0003 0.0065 0.0009 Chhabra et al.73
Terpene α-pinene 1.9139 0.1312 0.5991 0.2923 0.1079 0.0007 Chhabra et al.73
Oxygenated
aromatics phenol, guaiacol 2.023 0.315 0.109 0.048 0.439 0.404 Yee et al.79

Oxygenated
aromatics syringol 1.629 0.148 0.394 0.121 0.071 0.414 Yee et al.79

Heterocyclic
compounds

2-methylfuran,
dimethylfuran 1.459 0.449 0.0005 0.0014 0.998 0.0001 He et al.56

Table S2b: SOM grids, surrogates, and parameters used in this work to perform the low NOX
sensitivity case simulations. Reproduced from the supporting information in Bilsback et al.80

Precursor Class VOC
Surrogate ΔLVP mfrag pf,1 pf,2 pf,3 pf,4 fHOMS Reference

Benzene benzene 2.081 0.001 0.122 0.019 0.709 0.151 0.002 Ng et al.4

Toluene toluene 1.970 0.039 0.197 0.564 0.011 0.228 0.001 Zhang et al.5

C8+ single-ring
aromatics m-xylene 1.994 0.029 0.042 0.045 0.769 0.144 0.014 Ng et al.4

Polycyclic
aromatic
hydrocarbons
(PAH)

naphthalene
1.946 0.029 0.012 0.498 0.48 0.01 0.018

Zhang et al.5

Isoprene isoprene 1.624 0.107 0.426 0.002 0.558 0.015 0 Chhabra et al.6

Terpene α-pinene 1.588 0.112 0.431 0.002 0.552 0.015 0.034 Chhabra et al.6

Oxygenated
aromatics phenol 1.977 0.404 0.067 0.096 0.823 0.014 0.001 Yee et al.7

Heterocyclic
compounds

2-methylfuran,
dimethylfuran Same as high NOX parameters from Table S4 0 He et al.8
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Figure S1: Initial precursor mass concentrations compared against initial OA mass
concentrations for (a) all SOA precursors, (b) oxygenated aromatics, (c) aromatic hydrocarbons,
(d) biogenic VOCs, and (e) heterocyclics. Data are presented for all 18 chamber experiments.
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Figure S2: (a,c) OA added (dOA) and (b,d) OA mass enhancement ratio compared to (a,b) initial
POA mass concentrations and (c,d) initial SOA precursor mass concentrations for all 18 chamber
experiments. (e-h) represent the same for OA O:C. Trend lines are best fits to the data and are
meant to guide the eye.
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Figure S3: Model predictions from the sensitivity simulations ratioed to those from the Base
simulation at four equivalent photochemical days for (a) OA mass concentrations and (b) OA
O:C.
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