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ABSTRACT 

Water scarcity and uncertainties in forecasting future water availabilities present 
serious problems for basin-scale water management. These problems create a 
need to design intelligent prediction models that learn and adapt to their 
environment in order to provide water managers with decision-relevant 
information related to the operation of river systems. State-of-the-art techniques 
fused into a model paradigm (described in Part I of this manuscript) will be 
demonstrated as decision tools to enhance real-time water management. The 
framework previously discussed in Part I will be able to diagnose abnormality in 
the system. Abnormality in this context is referred to as outliers, false signals 
(e.g., the result of sensor failure) and system behavior "drift" (i.e., non­
stationarity or "concept drift"). The proposed versatile adaptive paradigm might 
be utilized in any control process of a dynamical system in which a quantitative 
characterization of uncertainty is required. The utility and practicality of this 
proposed approach is demonstrated here with an application in a real case study 
river basin. 

APPLICATION FOR REAL TIME MANAGEMENT 

Description of the Study Area 
The Sevier River Basin in rural south-central Utah is one of the state's major 
drainages. A closed river basin, it encompasses 12.5 percent of the state's total 
area. From the headwaters 250 miles south of Salt Lake City, the river flows 
north and then west 255 miles before reaching Sevier Lake (Berger et aI., 2002). 
Irrigation is the primary use of water in the basin. The average amount of water 
diverted annually for cropland irrigation is 903,500 acre-feet. Of this amount, 
approximately 135,000 acre-feet are pumped from groundwater. About 40 
percent of the diversions are return flows from upstream use (Berger et aI., 2002). 
(For a detailed description of the basin and much of the real-time database utilized 
in this research, refer to http://www.sevierriver.org). 
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Effective real-time management of the water of the Sevier River Basin is seen by 
the managers of the irrigation systems in the basin to be extremely important in 
achieving an optimal allocation of their scarce water resources. The main 
functions of an integrated real-time water resources management system are: 
water resources real-time monitoring and data collection, information and 
knowledge mining, and prediction for real-time decision support. Real-time water 
resources management requires a heavily instrumented basin to monitor climatic 
indices, streamflow, and water demands. The Sevier River is a heavily 
instrumented basin of gauges that provide real-time data on all these variables. It 
is therefore a suitable study area to test tools that are not physically based, but that 
"let the data speak". These tools will ultimately be integrated into a water 
resources information management system to be used by the operators of the 
Sevier River water systems, especially in terms of prediction tools to help manage 
irrigation canal diversions and reservoir releases. 

In physically based models, the necessary climatic, hydrologic, and hydraulic 
processes must be represented to provide near real-time forecasts of river and 
canal flows and, ultimately, required reservoir releases. Such models need a 
substantial amount of data that are often costly to obtain, skilled modelers, 
powerful computing devices, and they require solution of a complex system of 
non-linear, partial differential equations. As a result, provision of the necessary 
information base through the development and use of sophisticated physically 
based models is often prohibitively costly in terms of data collection and 
acquisition of modeling capabilities. 

In the Sevier River Basin, real-time operations of the Piute Reservoir must face 
downstream uncertainties in the form of variations in losses and gains on the river 
mainstem. These result in travel times from the reservoir to downstream canal 
diversion points that are uncertain and vary as a function of the quantity of flow in 
the river and antecedent flow conditions. In addition, downstream canal operators 
and farmers change their water management decisions on a day-to-day basis to 
reflect knowledge of current economic and hydrologic conditions. These human 
behavioral factors place additional uncertainty on the shoulders of the reservoir 
operator. To contend with these uncertainties, the Piute Reservoir operator would 
benefit from a tool that would help decide on a near real-time basis how much 
water to release to meet water orders to canal operators located downstream of the 
reservoir. In other words, a common requirement for managing the reservoir that 
is operated on an "on-demand" basis is the anticipation of the quantity of water 
that must be released while accounting for losses or gains along the river and 
changing travel times to each downstream canal diversion point. Operation of the 
Piute Reservoir constitutes a case study were fine resolution decisions have to be 
made to meet downstream demands that will change in uncertain ways over the 
period between the time an action is taken to release water from the reservoir and 
the time when the downstream diversion takes place. A highly instrumented and 
controlled river basin, such as the Sevier, could be operated on an hourly (or more 
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frequent} basis if sufficient detail is available in the information describing the 
present and desired future system state. For the operator of the Piute Reservoir, 
therefore, the desired output of the model is simply the hourly quantity of water 
that should be released from the reservoir. The information that must be made 
available to the model should include the data that describes current, and perhaps 
recent historical, flow conditions, various climate indices in the basin, and desired 
downstream canal diversions. 

Identification of Inputs 

The degree to which a dataset is judged to be of use to better predict optimal 
system operations decisions could be measured by many different functions, such 
as mutual information. In this study the relevancy evaluations were subjective as 
they depend on a perception of the relatedness of the given dataset. 

Streamflow is the result of interactions between many hydrologic events, such as 
precipitation, snowmelt, evapotranspiration, infiltration, and groundwater 
recharge, and anthropogenic influences, such as reservoir releases and irrigation 
diversions. In this paper the short-term predictions of required reservoir releases 
are supported by hourly streamflow data that are available from 2000 to 2003. 

Irrigation demands represent the quantities of water that farmers request be 
delivered to their head gates. Such requests are made one day in advance of when 
the deliveries are to take place, and are expressed to the reservoir operator by the 
various canal operators in the form of hourly measurements of canal diversions. 
Hourly data on these irrigation diversions for all the canals in the study area of the 
Sevier River are available for the years 2000 through 2003. 

Weather information can directly influence the behavior of farmers and canal 
operators in the basin. The inclusion of temperature, relative humidity, wind 
speed, solar radiation, and total precipitation data as predictors can enhance the 
model performance. Historical daily and hourly weather data are available at 
many weather stations in the Sevier River Basin. 

Management Approach 

Establishing a reliable dynamic model for providing the necessary information to 
support advanced water resources decision making has always been an important 
concern for researchers and field operators. A real-time management approach 
within the context of data fusion is employed here. Figure 1 provides an abstract 
description of the set of functions and processes that may comprise a useful 
paradigm of machine learning and data modeling implementation for real time 
management of river basin facilities (modified from Mackay, 1992). Having a 
suitable database, one aims to estimate or predict entity states that provide 
insightful information to decision makers. This level of induction, which is the 
very first bold box in Figure 1, could be obtained by non-Bayesian methods, e.g., 
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artificial neural networks (ANNs) and support vector machines (SVMs), or with 
Bayesian solutions such as relevance vector machines (RVMs). 

r - - - - - - - - - - - - - - --- - -- - ----- -- - -- - - - -- - - - - - - - - - - - - - - ------ - - - - - - - - - - - - - ---
Macbine learning 

Figure 1: Abstraction of the data modeling process 

Owing to its remarkable features and superior performance over non-Bayesian 
algorithms, RVMs have been adopted to the purpose of the models discussed 
here. Since there are a considerable number of design choices for RVMs, the 
second step of machine learning is to assign preferences for the set of plausible 
models, the second bold box of Figure 1. In this manuscript and for the objective 
of a fully automated machine, adaptive simulated annealing (ASA) is used to 
perform this level of inference (lgnber et aI., 2004). This is known as models 
comparison, yet Bayesian methods are also used in this level by employing a 
quantitative Occam's Razor to penalize the selection of complex models and infer 
the most plausible model given the data; in other words, Bayesian methods have 
been implemented to determine the most plausible model in the sense that one 
maximizes the marginal likelihood of the data 1J given the set of hypotheses 11 
(i.e. different model structure) p(1J 111). 

Having built the most plausible model, the second level of the framework is to use 
the machine as a decision support system. Hence its performance must be 
monitored and the model should be updated when needed. There are two events 
that might occur that indicate the model should be updated. One is the presence of 
a new data set that has not been previously exploited; the other is the case where 
there is concept drift, i.e., new trends in the data that the machine has not learned. 
For this purpose, SVMs have been used to detect an abnormality or novelty and 
thereby trigger the machine to adapt to these events by retraining. 
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Figure 2 illustrates the process flow from the raw data to the decision-making 
level, and where the concepts of model building (RVM), model selection (ASA), 
and novelty detection (SVM) fit in a fully automated data-driven paradigm. 

Figure 2: Model structure and process flow to achieve high-level inference. 

RESULTS AND DISCUSSION 

Reservoir releases must be made to address the conflicting goals of satisfying 
downstream demands with high certainty, while at the same time conserving 
water in the reservoir for use later in the season. This problem evolves from the 
hydraulic and hydrological complexity of the system. The proposed fully 
automated machine has been implemented for real-world data describing the 
Sevier River Piute Reservoir water delivery system. The collection of hourly data 
in the Sevier River basin is ongoing since 2001. Data from the 2001 and 2002 
irrigation seasons were used to build the machine, while data from the 2003 
irrigation season were used to check the validity of the machine when functioning 
in real-world conditions. The irrigation season in the basin generally extends from 
April to the end of October. There are eight inputs for the machine in the form of 
diversion orders at the different downstream canals, three inputs of streamflow 
from measurements made along the river downstream of the reservoir, one input 
representing inflow from Clear Creek (a major gaged tributary that is 
approximately one day travel time downstream of the reservoir), and one input in 
the form of a climate index. Clear Creek is an example of an uncontrolled 
tributary stream that discharges into the river in such a way that its spring and 
early summer diurnal fluctuations make downstream water management more 
difficult. The climate index is the first principal component of temperature, 
relative humidity, solar radiation, wind speed and precipitation. 

Model selection involves the selection of values for the parameters so that the 
model output matches the measured behavior of the system as closely as possible. 
Kernels present nuisance parameters that are generally determined heuristically. 
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Figure 3: Nonnalized parameter space, curves corresponded to a set of Pareto 
solutions (gray), the selected set (solid line). 

Arguably, ASA resulted in a sub-optimal kernel parameter data set, as is shown 
by the model perfonnance illustrated in Figure 3. Douglas et at. (2000) argued 
that for the purpose of using the model for on-line forecasting, it is desirable to 
select a single representative parameter set that provides an acceptable trade-off in 
fitting of the different parts. Thus the bold line in Figure 3 represents the selected 
kernel parameter set. 

Figure 4 shows RVM results for the irrigation season of 2003. Figure 4 also 
illustrates the 95% confidence interval of the predicted values. The machine 
removes the redundant features to improve the generalization abilities and it only 
utilizes 32 relevance vectors (RVs) from the full data set that was used for 
training (2001 and 2002 irrigation seasons). The RVM ignores the irrelevant 
inputs to reduce complexity and spurious overfitting. Therefore, it can be used to 
summarize the infonnation by maintaining the major features of the data set via 
RVs. Some statistics of interest have been evaluated (Table 1) to test the machine 
perfonnance (for more details about goodness-of-fit measures, see David and 
Gregory, 1999). Here, the predicted reservoir releases significantly deviated from 
the observed releases for the 2003 irrigation season over some time periods, and 
the confidence interval on the prediction was often very wide. In order to 
maximize the marginal likelihood of the data, ASA chose a narrow kernel 
parameter for some input dimensions, thereby suppressing their influence on the 
forecast release quantity. 
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Figure 4: Time series plot of the actual versus predicted releases 
with confidence intervals. 
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Again, a SVM has been reformulated to provide a new algorithm, which is in line 
with Vapnik's principle, for detecting outliers and novelty (Scholkopf, 2000). 

Figure 5 shows a plot of the output p = Ljajk(x, x) on the test data set of the 

Piute Reservoir releases. We used a Gaussian kernel, which has the advantage that 
the data are always separable from the origin in feature space (Burges, 1998; 
Cristianini and Shawe-Taylor, 2000; Vapnik, 1995). 

Table 1: Machine performance using different statistics. Robust performance 
measures have been evaluated of the smallest 85% residuals; raw ones 
are for all the data 

RVM RVM+SVM RVM RVM+SVM 
Statistic Raw Performance Robust Performance 

Correlation coefficient (r) 0.983 0.991 0.990 0.997 
Coefficient of efficiency (E) 0.932 0.981 0.964 0.993 
Bias -29.762 -4.783 -19.834 -2.627 
Root mean square error, cfs 44.080 23.436 29.904 14.951 
Mean absolute error, cfs 33.270 17.219 23.961 12.211 
Index of agreement (d) 0.982 0.995 0.991 0.998 
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Figure 5: SVM results on the testing data. I (f (x)-p) takes the value + 1 in a region 
capturing most of the data points and 0 at the input patterns that show 
either new trends or outliers. 

As shown in Figure 5, the algorithm returns a value of zero to identify outliers and 
new trends in the data; this triggers the machine to retrain while exploiting all the 
new data that hasn't been used for training before. Figure 6 shows the results of 
the machine when linked to the SVM where it has been retrained to account for 
novelty. Due to this adaptation, the number ofRVs increased to 36. The model 
performs remarkably well and Table 1 provides some statistics of interest for the 
full paradigm. These statistics further show that the new combination achieves a 
low error rate. 

It is known that abundant data provide robustness (global robustness) for machine 
learning applications. To ensure good generalization of the inductive learning 
algorithm given scarce data, the machine has been built on many bootstrap 
samples from the original dataset to explore the implications of the assumptions 
made about the nature of the data. Figure 7 shows the results of training using 
different bootstrap samples. 
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Figure 6: Time series plot of the actual versus predicted releases with 
confidence intervals for the RVM+SVM machine. 
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To utilize the model in near real-time, the predicted reservoir releases can be 
provided to the reservoir operator, and then it is possible for the operator and and 
other experts to analyze,judge, and evaluate the results of the machine according 
to their own knowledge and experience. All in all, the performance results have 
demonstrated the successful implementations of Bayesian principles (RVM), 
model selection (ASA), and novelty detection (SVM). 



454 Water Rights and Related Water Supply Issues 

SUMMARY AND CONCLUSIONS 

In the Sevier River Basin the principal water problem is twofold: inadequacy and 
uncertainty of supplies. In this context, a reliable water supply planning policy, 
specifically during the irrigation season, necessitates acceptably accurate 
predictions of future water states. In this paper we have presented an operational 
approach to a decision aid for managing near real-time reservoir releases. While 
machine-learning techniques have great potential to be used in decision support 
systems, we believe they have not been fully exploited in water related issues. 
Growing evidence that there are streamflow variations during the season and from 
season to season, as well as shifts in climate indices (Kahya and Dracup, 1993; 
Lins, and Slack, 1999), has lead us to incorporate a novelty detection algorithm in 
the real-time decision support system. This paper explored the use of 
unsupervised support vector machines in a sequenced learning technique to 
recognize behaviors that are outside the norm, and then to trigger the RVM to 
learn to recognize new patterns. 

One could view the present work as an attempt to provide a framework where 
different algorithms have been fused to better estimate future decisions and detect 
novelty trends. The approach presented uses a concrete paradigm with well­
behaved computational complexity. Beven and Binley (1992) suggested that 
many models are over-parameterized and therefore result in equifinality. 
Equifinality is associated with the multiplicity of different possible combinations 
of values of model parameters. We argue, therefore, that the model structure 
proposed in this manuscript was formulated so as to avoid equifinality and ensure 
parameter uniqueness. Parametrically efficient RVMs (sparseness and 
parsimony), inclusion of many measures each emphasizing a different aspect of 
model behavior in model selection, and use of structural risk minimization via 
SVMs, collectively do not conclude equifinality. 

Finally, one of the shortcomings of this approach is that, regardless of the 
parsimony of the model structure that reflects the most dominant characteristics of 
the system, it cannot be seen how a meaningful physical interpretation can be 
extracted from the resulting model definition. In spite of this, we believe that the 
imposed novelty detection tool ensures the persistence of the basic dominant 
characteristics and reflects any abnormality. One might be able to interpret such 
events in physically meaningful contexts. Another seemingly unavoidable 
disadvantage of the algorithm that handles novelty detection is that it detects an 
abnormality only after new data are available, that is after the learning algorithm 
performance starts to depreciate (Klinkenberg and Joachims, 2002; Olivier et aI., 
1999). 
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