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ABSTRACT 

SOFTWARE FOR THE USE OF PROTEIN FRAGMENT RECOMBINATION AND 

REGRESSION IN PROTEIN STRUCTURE DETERMINATION AND DESIGN 

 

Recombination of protein structural fragments, in combination with regression-based scoring 

schemes, provides an alternative to existing iterative strategies for conducting a search over 

protein conformations. We developed software to define astronomically large combinatorial 

protein conformation search spaces, and to efficiently search those spaces. We demonstrate that 

such methods may be applicable to the structure prediction of cytochrome P450 chimeras. More 

generally, we demonstrate that such methods can be used to produce high-quality protein 

structural models given only low-resolution X-ray diffraction data. 
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I. INTRODUCTION AND BACKGROUND 

MOTIVATION 

A key difference between small molecules and proteins is that proteins have hundreds of 

degrees of freedom that determine their conformation, leading to an astronomical number of 

possible protein conformations. Several grand-challenge problems in computational structural 

biology are intractable in part because of the inability of current methods to efficiently search 

through the space of protein conformations. These problems include protein structure prediction, 

protein design, and the refinement of protein structure models to better fit experimental data. 

 Current algorithms for searching large conformational spaces tend to be iterative, 

evaluating one conformation at a time. Even when the evaluation calculation is rapid, such 

methods are unequal to the required conformational sampling tasks. For example, consider a 

refinement problem which would benefit from a systematic search of protein conformations that 

are similar to a non-ideal starting conformation. Even the set of similar protein conformations is 

far too large to enumerate. For some problems, it is feasible to limit the conformational space to 

the combinatorial placement of discrete sidechain positions. In this case, finding the optimal 

combination is still a very challenging computational problem (i.e. NP-complete), but powerful 

combinatorial optimization algorithms have been developed (Kirkpatrick 1983, Desmet 2002). 

 This thesis develops the tools necessary to pursue a robust approach to searches over 

protein conformations. Instead of executing an iterative search through protein conformations, 

testing tweaks for each step, we reframe the protein conformational search as a combinatorial 

optimization problem. To do so, we break the protein into discrete blocks, provide alternative 

poses for each block, and deploy powerful combinatorial optimization and approximation 

algorithms to efficiently search for the best pose combinations. 
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 The long range goal here is ambitious, developing a novel sampling approach with broad 

applicability to important problems in computational protein modeling and design. Given the 

timeframe of a Master’s thesis, we had to be quite selective as to which applications we could 

pursue. Ultimately, we pursued several model applications. (1) Template-based protein structure 

prediction in the absence of experimental data (Section III). This is a very challenging problem, 

and we limited our efforts here to demonstrating that pose combinations could closely 

approximate an actual goal structure. (2) We next applied pose recombination to the modeling of 

protein structures that are themselves recombined at the sequence level. Specifically, we 

recombined fragments from a family of cytochrome P450 crystal structures (Section IV). We 

were able to recapitulate target chimeras with high fidelity (<1Å) using fragments drawn only 

from other chimeras. (3)  Our final application was the preparation of high-quality protein 

models that fit low-resolution X-ray diffraction (XRD) data (Sections IV and V). In this case, we 

efficiently identified combinations of poses drawn from homologous proteins that could 

accurately fit simulated low-resolution XRD data, circumventing several limitations associated 

with the conventional refinement of models to fit low-resolution XRD data. 

 

BACKGROUND: ITERATIVE PROTEIN CONFORMATIONAL SEARCH METHODS 

We define an iterative protein conformational search method to be any method that 

executes a search through protein conformations and evaluates a single conformation at each 

step. Iterative refinement methods are surprisingly pervasive. Molecular dynamics simulations 

and conventional Monte Carlo protein structure prediction fall into this category, as do 

simulations that support the refinement of models to fit Nuclear Magnetic Resonance 

spectroscopy (NMR) data or XRD data. 
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In the case of XRD, an initial model is iteratively altered to minimize the discrepancy 

between the observed reflections and the reflections predicted by the model. Almost all XRD 

refinement algorithms depend upon human intervention. Several rounds of refinement are 

typically applied, as are various algorithms that reposition the model to best explain the data 

(Emsley 2010). Due to the central importance of XRD structures to the ongoing revolution in 

structural biology, significant effort has been spent trying to design algorithms that assist with 

molecular replacement (Stein 2008, Vagin 2010, Hahn 2010, Winn 2011) and iterative 

refinement techniques (Perrakis 1999, Langer 2008, Emsley 2010, Adams 2010, Murshudov 

2011). However, a human being must typically review the output of the algorithm to check for 

accuracy and computer error.  

 

BACKGROUND: LOW-RESOLUTION X-RAY DATA 

Several factors cause iterative refinement methods to struggle with low-resolution (>3Å) 

data. First, there is a tendency for the refinement process to lead to significant bias as indicated 

via a large gap (>0.05) between the Rwork and Rfree. Second, automated refinement steps often 

distort the structure. For example, sidechains may be pushed into the mainchain density. Third, 

manual refinement steps are challenging in that even highly experienced practitioners can find it 

difficult to interpret low-resolution density. 

Although refining low-resolution models can be challenging, the models are still valuable 

scientific data. Such models prove useful in the absence of higher-resolution alternatives. For 

example, Borhani et al. examined low-resolution data to gain insight into the shape of complexes 

that bind lipoprotein to lipid molecules; a structure of 4Å resolution was sufficient (Borhani 
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1997). Similarly, it is possible to glean valuable structural information about polymorphic 

enzymes with low-resolution data (Bourne 1999). 

Insight into structure can also be used to guide subsequent modeling; later efforts at 

interpreting X-ray data benefit from low-resolution models. Molecular replacement can make use 

of a lower-resolution model as a starting point, and even low-resolution models can form 

families with recognizable features. Additionally, structures and complexes are growing larger 

and low-resolution data is becoming more commonplace (Jiang 2001). For these reasons, several 

methods which attempt to make use of lower resolution data have been devised. 

The simplest use of low-resolution data models is to serve as a useful starting point for 

later work. Low-resolution structural information can lead to improved models, as demonstrated 

by Stuart et al. when examining a bacteriophage. They used molecular replacement to obtain a 

low-resolution (7Å) model that was then improved upon with electron microscopy. This 

combination of techniques works particularly well on viruses (Stuart 2013). Many methods seek 

to inform low-resolution structures with additional Sources of data that suggest specific 

structural information absent in the X-ray data (Ward 2013). For example, Koparde et al. 

incorporated hydrostatic interactions to achieve high-quality structures from low-resolution data 

(Koparde 2011). Additionally, the bond angles of homologous proteins have been used to guide 

low-resolution XRD interpretation (Schröder 2010).  

One of the intrinsic challenges of developing new methods to improve models derived 

from low-resolution data is that increasing the sampling of alternative structures will also tend to 

increase the bias by over-fitting noisy data. Such an increase in bias can be avoided by 

determining the possible structures up front; our method, which recombines structures but 

otherwise does not alter them, should be resilient to Rwork – Rfree bias. 
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BACKGROUND: PROTEIN RECOMBINATION 

Recombination in protein design typically refers to recombination at the level of the 

primary sequence. DNA sequences that encode protein sequences are recombined, resulting in 

protein “Chimeras” that incorporate sequence segments from two or more parent sequences. It is 

a routine technique used by protein engineers who create libraries of diversified amino acid 

sequences in pursuit of improved variants. Such libraries form sequence search spaces for the 

design process. 

Recombination is one of several ways of adding variety to the sequence library. Other 

methods include random mutagenesis and targeted mutagenesis (Bloom 2005). Recombination 

has the advantage that it searches through a space that can be reasonably expected to have good 

answers “baked in”. If both parents are reasonable designs, Chimeras thereof are expected to be 

highly enriched in functional variants. 

 

Figure 1: Chimeras represent structures that have a high probability of retaining the properties present in 

their parents. Unlike a mutant, a Chimera occupies a part of conformation space likely to contain preferable answers. 
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Fragments of the Parent proteins are rejoined at areas of the sequences called crossover 

sites. A crossover site represents the part of the Chimera that separates two different sequence 

sources. These sites are chosen with a variety of techniques that are designed to minimize the 

disruption of coherent and stable fragments within the protein (Voigt 2002, Zheng 2009); 

proteins are inherently divisible into substructures larger than individual amino acids but smaller 

than whole proteins.  The technique of recombination has become a mainstay for protein 

engineers seeking to improve the stability and activity of proteins. It is particularly interesting 

that the Arnold lab was repeatedly able to rationalize the thermostability of protein chimeras 

using only crude regression models that account for 1-body contributions from each sequence 

block (Voigt 2002, Otey 204, Li 2007, Trudeau 2013). These Results suggest that protein 

fragments can make surprisingly modular contributions to the overall protein structure and 

stability. We expect that protein structure models produced via fragment recombination are 

particularly well suited for accurately representing the structures adopted by protein chimeras. 

This was the impetus for applying structural recombination to the modeling of the cytochrome 

P450 structures (Section III) obtained by the Arnold laboratory (Snow, unpublished results). 

 

BACKGROUND: REGRESSION & ENERGY FUNCTIONS 

Regression is a powerful tool to uncover the relationship between a dependent variable 

and one or more independent variables. In the current case, the dependent variable is the output 

value from a calculation (particularly a computationally expensive calculation) applied to a 

protein structure. Meanwhile, the independent variables correspond to the presence or absence of 

various mutually exclusive options such as amino acids in a design calculation, sidechain 

positions in a repacking calculation, or backbone fragments in a discrete backbone search 
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problem. Necessarily, the regression model only approximates the results from the more 

expensive calculation. The benefit is the dramatic increase in speed, since the predicted score for 

any discrete combination covered by the regression model can be computed nearly 

instantaneously. Thus, if the regression model has sufficient accuracy, it can be used to 

effectively search through enormous search spaces. 

Energy functions are used to evaluate structures and test them for plausibility. The 

Rosetta energy function (Das 2008) is a well-known example, as are the energy functions 

employed by AMBER (Salomon-Ferrer, 2013). Both of these are scoring functions, although 

there are important differences, with the former including “knowledge-based” terms derived 

from protein structure statistics, and the latter intended as a “force field” containing only 

physics-based, molecular mechanics terms. Generally, energy functions take the form of a sum of 

interaction terms that approximate various interactions between atoms in a protein. The 

complexity of energy functions used for protein design is often immense. Electrostatic 

interactions, bond angles, solvation energy; many mathematical terms may be combined in an 

effort to improve the accuracy of an energy function. Regression models can be used to 

approximate these energy functions. 

 

BACKGROUND: CLUSTER EXPANSION 

The use of regression to accelerate otherwise intractable protein calculations has been 

popularized in recent years by Gevorg Grigoryan with the particular nomenclature of Cluster 

expansion (MacKerell 1998, Stein 2008, Vagin 2010). Cluster-expansion is a regression-

dependent technique that was initially made to study alloys (Apgar 2009), but it has been put to 

use on proteins by Grigoryan et al. In particular, cluster expansion techniques have been used to 
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approximate a variety of functions (i.e. the Rosetta energy function score for varying protein 

designs, or the specificity of coiled coils) using a model that depend upon a sum of protein 

sequence terms. At heart, cluster expansion relies on regression to fit the expensive calculation 

(e.g. the stability of a protein evaluated via repacking calculations). The terms may be single 

(e.g. 1-body terms:  residue-10-is-an-arginine), pairwise (e.g. 2-body terms: arginine-10-and-

glutamate-18-are-both-present), triple, or higher-order. Regression is used to determine the value 

of the terms. The key benefit is that the dependent variable, the expensive calculation, can be 

arbitrarily sophisticated. An important limitation, however, on the sophistication of the 

regression model is the need for training data sufficient to avoid over-fitting a large number of 

free parameters. 

 One drawback of cluster expansion in particular, and regression in general, is the 

necessity of training the regression model with a large set of initial calculations; typical training 

sets contain tens of thousands of calculations. To save computational time,  it is preferred to have 

the minimum training set possible (as evaluating each member of the training set can be 

expensive), but up to an extent a larger training set leads to a better approximation. Eventually 

increasing the size of the training set will not lead to improved accuracy; at this point it has been 

saturated, and adding additional terms to the regression is more likely to lead to an improvement 

(Hahn, 2010). 

Perhaps surprisingly, the regression performed by Grigoryan et al. found a flexible 

backbone easier to approximate than a rigid backbone (Grigoryan 2006). One might expect that 

allowing the backbone to move would increase the computational load of a design strategy. 

However, their regression was more accurate even with fewer terms if the backbone was allowed 

to move. In this case it was suggested that allowing the backbone to move minimized 
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confounding clashes between individual residues. This meant that pairwise terms were sufficient 

for the flexible backbone regression; whereas 3-body terms were typically necessary to 

adequately represent the clashes that a flexible backbone avoids. 

 Ng and Snow also found that lower-order terms were sufficient for the prediction of an 

energy function. Specifically, the AMOEBA (Ehrenreich 1994) polarization energy function, 

which is not pairwise decomposable, was approximated for combinatorial sidechain 

optimization. Higher-order terms are subject to a combinatorial explosion, and therefore become 

computationally prohibitive. However, lower-order (first, second and third order) terms were 

shown to be sufficient to accurately approximate the multi-body polarization effects. In addition, 

sets of lower-order terms can be used to predict which higher-order terms are relevant. If the 

pairwise terms for amino acids at three positions had significant magnitude, it is worth 

attempting to add a third-order term for those three amino acids. Snow and Ng's work revealed 

that one can filter out (i.e. ignore) almost 80% of third order terms and thereby reduce the 

complexity of the regression with this simple check. Techniques like this can also be applied to 

terms above third order (Ponder 2010). 

 The method we developed is similar to those outlined above. However, instead of 

individual amino acids, our method works upon fragments of structure. It is subject to similar 

constraints as those outlined for Cluster Expansion methods. Specifically, a larger training set 

means more accuracy (until saturation); fewer terms are required if clashes are allowed to 

minimize in some way; and finally, we developed techniques to reduce the search space by 

eliminating terms. This is a powerful way of approaching a difficult problem; the method of 

Cluster Expansion can be applied to a variety of sequence-dependent design problems (Ng 

2011). Our method is designed to be similarly flexible and applicable to a variety of problems. 
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BACKGROUND: CYTOCHROME P450 CHIMERAS AND PROTEINS HOMOLOGOUS TO 

THE TEM1 Β-LACTAMASE 

We tested our method on two different families of proteins. The first was a set of 

cytochrome P450 Chimeras that had been constructed by the Arnold lab (Otey 2004, Li 2007). 

Cytochrome P450s are diverse and catalyze a variety of reactions. They have already been used 

for drug design, but are promising enzymes as well (Salomon-Ferrer, 2013). We possess 

structural information computed from X-ray data for 21 different Chimeras generated from 3 

Parent proteins. Approximating the structure of these Chimeras was the first challenge we 

pursued (Section III). 

 The second family of proteins that we considered was the β-lactamase family. 

Specifically, we considered a large number of proteins homologous to the TEM1 β-lactamase 

from E. coli. This family is well studied, with hundreds of crystal structures, because these 

enzymes confer antibiotic resistance to β-lactam containing antibiotics such as ampicillin 

(Negron 2013). 
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II. OUTLINE OF THE METHOD AND SPECIFIC CAPABILITIES 

OVERVIEW 

The method follows a generic algorithm regardless of the particular problem. The general 

technique is described below. 

First, Sources of structure are identified.  Sources may represent structural information 

from multiple entries in the Protein Data Bank, or 

they may be configurations that are diversified from a 

single structure. The Sources are divided into Blocks. 

Different possible configurations for each Block are 

obtained and called Poses (Fig. 2A). These Poses can 

be recombined into Pose Combinations, or Combos 

for short. An initial set of Combos are scored 

(Instantiated) (Fig. 2B). This set is divided into two 

subsets; one to test the regression, and one to train the 

terms of the regression (Fig. 2C). The regression 

itself approximates Instantiation values for the 

Training set (Fig. 2D). Then, the resulting regression 

model can be applied to rapidly predict low-scoring 

Combos, called Targets. The Targets are also 

Instantiated and their information is added to the 

training set, where it can be used to form an update 

regression. This process repeats until a good approximation can be achieved with the regression 

and an optimal set of Targets has been found (Fig. 2F). If Instantiation represents a slow 

Figure 2: Method Overview. The 

complexities involved at each step 

will be expanded upon in Section II. 
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calculation, even a modestly accurate regression model approximation thereof can accelerate the 

search for superior combinations (Apgar 2009, Ng 2011). 

 

BLOCK BOUNDARY DIVISIONS 

The protein backbone must be divided into segments. The interfaces of these segments 

are called Block Boundaries. Block Boundaries occur at specific residues and can be chosen in a 

variety of ways. 

 The simplest method for choosing Block Boundaries is to manually select them after 

inspecting the structural model in PyMol or another protein visualization program. In this case, 

Block Boundary selection relies on biophysical intuition. For example, Blocks Boundaries could 

separate secondary structure into individual Blocks; a loop should be disconnected from a helix 

which itself should be removed from a beta sheet. PyMol in particular is useful for manual 

selection as its 'cartoon' display automatically distinguishes secondary structure. 

 Automatic block boundary selection methods were tested as well. Two automatic 

boundary selection methods were used in particular; block division with Normal Modes analysis, 

and a measurement we designed called Divergence. 

 Normal mode analysis involves simulating the protein as an elastic network, which may 

be thought of as a mesh of points connected by various springs. Software made by Joseph N. 

Stember and Willy Wriggers (Stember 2009) performs this calculation. This software produces 

several 'snapshots' (coordinate files) of a protein backbone simulated to be flexing along its 

normal modes. The variance among the coordinates for individual residues was used to select 

block boundaries at points of inflection. Inflection points make logical sense as Block 
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Boundaries; to some extent, the protein segments contained within move as rigid subgroups with 

those points as hinges. 

 Normal mode analysis produces Block Boundaries at residues that are inflection points 

for variety among the snapshots provided by the analysis. The variety among groups of 

homologous proteins can similarly guide Block Boundary selection. First the structural 

coordinates for the backbones for a group of homologous proteins are aligned. Then, for each of 

the N alpha carbons in the backbone of the Goal model, the sum of distances between that alpha 

carbon in each of the P Source backbones (𝛼) and the equivalent alpha carbons in every other 

Source backbone (𝛽) is calculated. This sum represents the magnitude of the spread of the 

structures for each residue, i, in the backbone. It is a measure of variety that we called the 

Divergence, D, of that residue, where r is the distance between the alpha carbons: 

 

𝑟𝑖,𝛼𝛽 = √(𝑥𝑖,𝛼 − 𝑥𝑖,𝛽)
2

+ (𝑦𝑖,𝛼 − 𝑦𝑖,𝛽)
2

+ (𝑧𝑖,𝛼 − 𝑧𝑖,𝛽)
2
 

𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝑖) = ∑ ∑ 𝑟𝑖,𝛼𝛽

𝑃

𝛽=1

𝑃

𝛼=1

 

 

 Block Boundaries are chosen at residues with a Divergence just below the mean 

Divergence for all residues, the logic being that a transition from large variation to small 

variation among Source structures marks a natural Block Boundary point. Areas with large 

variation will require more Poses, while areas with less variation will have redundancies among 

the Sources—it is good to separate these regions. Note that the minimum Pose size is three 

residues; if a suggested Block boundary would trigger Poses smaller than this, it was skipped. 

Otherwise, the size and number of Poses is not fixed. 
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Figure 3: Block Boundary location selection. Block boundary points (♦) are automatically chosen at 

transition points from high Divergence (○) to low Divergence (x). 

 

CLUSTERING ALGORITHMS 

Redundancy is eliminated through the use of a clustering algorithm. In particular, the 

Affinity Propagation software utility designed by Frey et al. was used (Frey 2007). This 

clustering algorithm chooses exemplars from a list of potential representatives. It requires a list 

of potential representatives and similarity scores between each pair in the list as inputs. In our 

case, the potential representatives come from groups of homologous proteins, while the measure 

of similarity is the sum of standard deviation (SSD) between the alpha carbons of each pair of 

proteins. The clustering algorithm is used initially to eliminate redundant Sources from 

consideration when calculating the Divergence and choosing Block Boundaries. Source pairs 

with a low SSD value between them are redundant. Their only effect is to flatten the graph of the 

Divergence, so they can be safely removed. 

(Å
2

) 
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 We also used Affinity Propagation to eliminate Poses that are too similar to each other 

from consideration. In this case we are comparing the structure of specific Poses instead of that 

of entire Sources. The elimination of redundancy speeds downstream calculations and minimizes 

the size of the search space. In the specific case of interpreting low-resolution XRD with 

homologous proteins, 16 or approximately 9% of the Poses for each Block were eliminated with 

affinity propagation. This reduced the number of combinations in the search space by 80%. The 

removal of Poses can be tuned with a constant supplied to the Affinity Propagation software. 

 

POSE GENERATION AND THE POSEMANIPULATOR OBJECT 

Poses can be constructed in a variety of ways. A simple way of obtaining Pose variety is 

choosing homologous proteins from the PDB and using them as Sources. In this case, all Source 

structures are aligned to a Basis and mutated with SHARPEN (www.sharp-n.org) to match the 

sequence of the Goal structure. Finally, the structures are optimized (combinatorial sidechain 

repacking) with SHARPEN (Loksha 2009). 

 A more complicated method of Pose generation involves Normal Modes Analysis (15). 

This program, as mentioned above, produces snapshots of flexing protein backbones. These 

snapshots can serve as superposition targets for the placement of individual Poses. In this case, 

the variety generated is not among the relative coordinates of the Poses; it is in the position of the 

Poses themselves. Furthermore, the rotations and translations calculated for one flexing 

backbone can be applied to Poses that originate from another, or to Poses that have been 

displaced with other methods. 
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 Pose generation is assisted by the PoseManipulator object. This Python object accepts a 

list of Sources as input and can perform various operations on them to generate new Poses for 

downstream use. It can: 

 Align Sources and Poses to specific structures with SHARPEN 

 Divide Poses into smaller Poses by adding Block Boundaries 

 using normal modes 

 using Divergence 

 By visual inspection 

 Add Poses using snapshots produced by normal mode analysis on a specific 

structure 

 by aligning Poses to snapshots 

 by applying the motion between snapshots to Poses 

 Remove redundant poses with Affinity Propagation 

 Create data structures needed for downstream processing 

The PoseManipulator object helps keep things clear and consistent. It defines the search 

space. Sometimes a problem will require three thousand Poses; keeping track of these Poses 

would be a potential source of errors without the assistance of an object. Additionally, the search 

space can be reduced by removing redundancy among Poses and by intelligently choosing Block 

Boundaries. The PoseManipulator object ensures that the space contains useful, unrepeated 

structural information and that the numbering for Poses and the Block Boundaries is consistent. 
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INSTANTIATION OF TARGETS AND THE BACKBONESEARCH OBJECT 

The BackboneSearch object keeps track of Pose Combinations (Combos) and their 

instantiated value. Instantiation is simply the scoring of any Combo; it may be the SSD of that 

Combo when compared to a standard, or the Rosetta Energy score of the structure, or any other 

measure related to proteins. Instantiation itself is the process that regression learns to 

approximate. 

 A certain number of random Combos are instantiated at the outset. These Combos are 

separated into two groups; the Training Batch and Test Batch. The Training Batch is used in a 

later step to kick off the regression, while the Test Batch is held in reserve to test the progress of 

regression. A BackboneSearch Object is capable of generating random Combos for these 

Batches.  

In addition to generating random Combos, the BackboneSearch can: 

 Store the values resulting from Instantiation calculations 

 Store Instantiated values for partial Combos (if the Instantiation method permits 

it) 

 Retrieve pairwise, triple, or higher-order terms for a specific combination 

 Suggest new terms to add to the regression by their presence in a 

combination 

 Systematically instantiate Combos corresponding to segments of a larger Combo 

 Keep track of and save Taboo (disallowed) combinations 

 Represent the data above concisely using a hypergraph data structure 

Two of these features merit additional explanation. First is the ability to use Taboo terms; 

Taboo terms are pairs (or triples, or higher-order terms) that are not 'allowed' to be used in any 
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Combo. It was with Rosetta in mind that we added the functionality. If instantiation involves 

rebuilding the Combo and calculating its Rosetta energy, then a Taboo combination might 

correspond to a set of Poses with an irreconcilable clash. Taboo terms need not be pairwise, even 

in the case of clashing structure; sometimes the choice of three or more specific Poses will lead 

to a clash. The inclusion of Taboo terms speeds later steps by removing implausible Combos 

from the search space. 

 To speed up calculations, we use a hypergraph datastructure. Hypergraphs are a 

generalization of the generic graph structure. Whereas edges in a graph always connect two 

nodes, the hyperedges in a hypergraph connect an arbitrary number of nodes. Thus, the 

hypergraph data structure is perfectly suited to store calculations or approximation terms that are 

defined not just over 2-body, but also 3-body terms, 4-body terms, etc. Anticipating the utility of 

such models, the SHARPEN software platform contains an EnergyHyperGraph datastructure. To 

our knowledge, this is a unique feature of the SHARPEN package compared to other protein 

modeling software platforms. 

 The BackboneSearch object can be fundamentally transformed with the use of an energy 

hypergraph. The object is typically set to automatically Instantiate a combination if the Combo 

has not previously been Instantiated. Instead of Instantiation, however, the value of a Combo can 

be calculated by adding up the values of the edges of a hypergraph that correspond to the terms 

in that Combo. This process takes microseconds, leading to significant time savings. A properly 

constructed hypergraph is an end result of a trained regression model, and allows for a rapid 

approximation of Instantiation for any Combo. Such an approximation is particularly useful 

when determining new Targets. 
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REGRESSION AND THE REGRESSIONPROBLEM OBJECT 

After the Training Batch is constructed, regression can start in earnest. First, terms are 

chosen. The regression software will try to ascribe values to these terms so that any Combo can 

be approximated just by adding up the appropriate terms. Single terms are nearly always 

considered. These terms correspond to individual Poses directly. Higher order terms are often 

used as well. In the jargon of cluster expansion, these terms are called pairwise, contiguous 

double, etc. They are discussed below. 

 The CVXopt software package (S. Anderson, 2013) is used to perform a regression with 

the Test Batch supplying the needed Combos and Instantiated values. Once that is complete, any 

Combo can be quickly approximated by summing the terms that are logical subsets of the 

combination. 

 The search problem can benefit from repeatedly running regression, to improve the 

approximation as new combinations are tested. To organize the learning process, we rely on 

RegressionProblem objects with the following capabilities: 

 Supplying terms to add to the model 

 all single terms 

 all pairwise terms 

 all contiguous double terms (explained below) 

 triple terms from error (explained below) 

 triple terms from presence in low-or-high-scoring Combos 

 Automatic Target Instantiation 

 Dissection of Combos 

 Updating the regression model 
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 Producing plots and other feedback for measuring progress 

 

The ability of regression to produce accurate approximations is predicated on the ability 

of terms to stand in for more complicated processes. Term selection is important. Suppose a 

backbone is divided into 16 Blocks with 8 Poses each. There will be at least 16 ∗ 8 = 128 1-

body terms—an eminently manageable number. Single terms are ubiquitous, but higher order 

terms are optional. A common strategy is to simply include all pairwise terms: in the case above 

that would be 105 ∗ 82 = 6720 additional terms. 

 An excessive number of terms will result in overfitting. Consequently, it is desirable to 

eliminate terms whenever possible. A simple way of eliminating pairwise terms is to only 

consider ‘contiguous terms’—terms that correspond to Poses in adjacent Blocks. Poses that are 

adjacent are more likely to interact with each other and are thus prime targets for additional 

terms. This elimination reduces the number of added terms to 15 ∗ 82 = 960. 

 Adding the entirety of triple or higher order terms requires that the problem be 

significantly more tractable than sixteen blocks with eight poses each. However, it is possible to 

selectively add terms instead. Triple terms may be added in response to unexpected deviations 

from predictions. Terms found in Combos that are poorly predicted are prime candidates for 

addition to the regression model. Terms may also be added to improve the approximation in 

certain score regimes. For example, it is desirable to add terms corresponding to triples that are 

present in low-scoring Combos because the low-scoring area of the search space needs to be 

approximated accurately for the search to be successful. 
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Controlling the areas in which the regression is accurate is not limited to term selection. 

Regression weighting is another strategy we employed. Weighting allows low-scoring Combos 

to disproportionately affect the magnitude of the terms in the regression. 

 

𝑊𝑐𝑜𝑚𝑏𝑜 = e
(

SC𝑐𝑜𝑚𝑏𝑜,𝑠ℎ𝑖𝑓𝑡𝑒𝑑

SC𝑚𝑖𝑛,𝑠ℎ𝑖𝑓𝑡𝑒𝑑
∗𝐹)

 

 

The weight W of a Pose combination in the regression is proportional to the exponent 

raised to a factor F multiplied by the ratio of the Pose combination’s shifted score, 

𝑆𝐶𝑐𝑜𝑚𝑏𝑜,𝑠ℎ𝑖𝑓𝑡𝑒𝑑, to that of the minimum scoring Combo, 𝑆𝐶𝑚𝑖𝑛,𝑠ℎ𝑖𝑓𝑡𝑒𝑑. The shifted score is just 

the score of a Combo minus the maximum Score that has been found. This means that all SC are 

negative, with 𝑆𝐶𝑚𝑖𝑛,𝑠ℎ𝑖𝑓𝑡𝑒𝑑  being the largest in magnitude.  F, the weight factor, is typically 10. 

This means that the weight of the lowest score has weight 𝑊𝑚𝑖𝑛 = e(10) = 22026 while the 

weight of the highest score is 𝑊𝑚𝑎𝑥 = e(0) = 1. With a weight factor of 10, the lowest scoring 

combination is weighted at about twenty thousand times the importance of the highest scoring 

combination. The effect is to consider the squared error in prediction for the lowest scoring 

combination twenty thousand times more important than the squared error in the highest scoring 

combination. This reflects the fact it is most important to correctly approximate the lowest 

scores. Even so, the regression tends to produce reasonably accurate predictions for higher 

scoring Combos. 

 Weighting like this is useful because (in general) lower scores tend to correspond to better 

solutions to problems. The traditional Rfree and Rwork measures are best when low, as is the 

Rosetta Energy function and RMSD from a specific Goal structure. Instantiation methods are 

constructed such that lower scoring combinations are preferred. 
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 In addition to weighted regression, the RegressionProblem object can also perform ridge 

regression. This technique penalizes terms that deviate from zero. The ridge regression strategy 

can be useful to suppress overfitting. It is important, however, to setup the problem so that the 

value of the terms should indeed be small numbers. In the cases we have tested, we have used a 

free fitting constant so as to permit the remaining terms to adopt small values without degrading 

the overall fit. 

 

TARGET SELECTION AND ITERATION 

A group of Targets are chosen; these are Combos that are predicted to score favorably 

after Instantiation. If only single terms were used, then the Targets with the best predictions are 

directly computable by adding each of the Poses with the lowest score for each Block together. 

More generally, a low-scoring Target is found by applying the CHOMP FasterPacker function, 

based upon the Faster algorithm designed by Desmet et al. (Desmet 2002). This method was 

originally designed for selecting protein sidechain conformations. It utilizes ‘batch relaxation’—

a technique of altering all sidechain positions (or in this case, all Poses) at once, and changing 

them to minimize an energy score. Subsequently, it iteratively substitutes alternate sidechain 

conformations at each position (in this case, Poses at each Block) and each pair of positions, 

while accepting favorable changes with some probability.  

To generate diverse Targets, MonteCarlo substitution is applied to the Target found by 

FasterPacker. A MonteCarlo substitution with increasing temperature can be used to generate any 

number of Targets, but typically 1000 were selected. By using MonteCarlo we can collect 

diversity in the Combinations. A wide variety of Combos will be chosen as Targets when most 
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combinations in the training set have similar scores; conversely, when certain Combos are 

scoring very well, Targets are probabilistically likely to be similar to those Combos. 

 The Targets are then Instantiated and added to the Training Batch, which is then used to 

choose new Targets. The sequence of Regression / Target-selection / Instantiation is repeated 

until a convergence criterion is satisfied; typically a cessation of improvement in the average 

score of the Targets is the end point. After several rounds of regression, a reasonable 

approximation can be achieved, as can an ensemble of favorable Targets. If the goal is to 

improve the approximation for the search space at all levels, the error in predictions can be 

examined instead of Target score. Similarly, Target selection itself can be random or based upon 

previous errors in predictions. Targets that are a few substitutions away from previously poorly-

predicted Targets will likely provide an improvement to the regression, as they contain 

interactions that the regression previously misjudged. 

 

COMBO DISSECTION 

Combos that are found to have unusually high/low scores or unusually high error may be 

“dissected” to gain insight. Dissection involves Instantiating sub-combinations formed from the 

Pose selections within the Combo. Pose pairs then Pose triplets are systematically instantiated; 

corresponding terms are added to the regression to capture the higher order effects of these 

groups of Poses. For example, it may be found that three specific Poses incur a penalty to the 

score when they are chosen together. For example, if Instantiation involves repacking the side 

chains, one can easily imagine three poses necessitating unusual side chain positions. The 

addition of a term that corresponds to the three Poses may improve the accuracy of the 

approximation found by Regression. The added term will likely be contain a penalty—in that 
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case, the regression is effectively deciding the penalty that those three poses will receive if they 

are chosen in conjunction with each other. Of course, this method of Dissection requires that 

Instantiation be a process that can be applied to incomplete combinations; some methods of 

Instantiation require full Combos and Dissection cannot be applied to them. 

 

INSTANTIATION METHODS 

It was mentioned earlier that Instantiation is simply the scoring of a Combo. We have 

focused on three different types of Instantiation, outlined below, but these are by no means the 

only forms that Instantiation might take. The only requirement for an Instantiation method is that 

it be a function that accepts a Combo and produces a score.  

 For example, consider a search space representing possible protein conformations. It 

would be useful to know if this space contains a close match to candidate target structures before 

expending the energy function computations necessary to search the space. If a Goal has been 

chosen for recapitulation then the sum of squared deviations (SSD) to ensure the construction of 

a quality search space. The squared coordinate differences between every alpha carbon are 

summed for a pair of proteins. 

𝑆𝑆𝐷 = ∑(𝑥𝑛,𝛼 − 𝑥𝑛,𝛽)
2

+ (𝑦𝑛,𝛼 − 𝑦𝑛,𝛽)
2

+ (𝑧𝑛,𝛼 − 𝑧𝑛,𝛽)
2

𝑁

𝑛=1

 

n: specific residue 

N: total number of residues 

𝛼, 𝛽: specific proteins 

x,y,z: alpha carbon coordinates 
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Root mean square deviation is very similar. It is often used as a measure of differences 

between two proteins structures. For our purposes, RMSD is calculated for alpha carbon 

coordinates unless otherwise noted. 

𝑅𝑀𝑆𝐷 = √
1

𝑁
[∑(𝑥𝑛,𝛼 − 𝑥𝑛,𝛽)

2
+ (𝑦𝑛,𝛼 − 𝑦𝑛,𝛽)

2
+ (𝑧𝑛,𝛼 − 𝑧𝑛,𝛽)

2
𝑁

𝑛=1

] 

 

The difference between RMSD and SSD is of scale. Whereas RMSD is a widespread and 

concise way of measuring and summarizing the differences between two structures, SSD 

“penalizes” deviations without masking those deviations through the mean or the root. We prefer 

SSD as a target for Instantiation since it is “extensive” rather than “intensive”, and better mimics 

the scaling of an energy function. 

 A reasonable use of our method is to approximate one protein in terms of another; 

however, for testing it is useful to be aware of the best possible approximation. We can test the 

structural differences between a Combo and a Goal that is regarded to be the 'Gold Standard'--a 

best answer by some definition. This method of instantiation makes it easy to see how close it is 

possible to get to a Goal structure from the provided Poses in a test case (Section III). 

 A practical challenge for our method is the approximation of the Rosetta energy function. 

This function is used to gauge how reasonable a protein conformation is when one considers 

various interactions between the atoms of the protein and the solvent. It takes into account 

charged groups, hydrogen bonding, ideal bond lengths and angles, and hydrophobic interactions 

(23). Instantiation, in this case, involves repacking the side chains of a Combo and evaluating the 

Rosetta energy function on the result. Structures with lower Rosetta energy scores are more 

plausible protein conformations. A suitably trained regression model could dramatically 
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accelerate the identification of the most favorable combinations according to the Rosetta energy 

function. 

 The final method of instantiation that we demonstrated is somewhat more complicated. 

We endeavored to fill low-resolution X-ray data (XRD) with fragments of homologous proteins. 

This challenge is highly practical; determining quality structures from low-resolution X-ray data 

is a contemporary challenge. The validity of a structure that fills X-ray data is typically measured 

via the R-values, R𝑤𝑜𝑟𝑘 and R𝑓𝑟𝑒𝑒. R-values are a measure of how well a model explains 

collected XRD. The predicted structure factors are compared to the observed structure factors, 

normalized, and summed. R𝑤𝑜𝑟𝑘 is used to guide XRD interpretation and contains the majority 

of structure factors, while R𝑓𝑟𝑒𝑒 consists of structure factors held in reserve as a sanity check. If 

there is a large R𝑤𝑜𝑟𝑘-R𝑓𝑟𝑒𝑒 gap, the model is said to be biased (in favor of R𝑤𝑜𝑟𝑘). R-values are 

widely used in protein structure determination. 

However, we devised an alternate metric that was superior for the regression-based 

optimization process. Specifically, the score coming out of the Instantiation and the target 

quantity for the regression model was the Accumulated Correlation Coefficient (ACC) score as 

defined below. 

𝐴𝐶𝐶 = 100 ∗ ∑
1 − 𝐶𝐶𝑛

𝑁

𝑁

𝑛=1

 

 Correlation Coefficient (CC) is the correlation between the implied density surrounding a 

residue n in a proposed structure and the density calculated from X-ray data and the proposed 

structure. Density is measured at a cloud of 'probe points' around each residue, and a CC of 1 

represents perfect correlation. PHENIX can generate a list of CC scores for a structure it has 
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refined (Adams 2010). The sum of all of CC for all of N residues captures how well an entire 

structure fits into XRD. 

We used ACC to measure how well a Combo filled X-ray data for a few key reasons. 

Chief among them is that poor real-space correlation coefficient (CC) in a single region is likely 

to noticeably penalize the entire score, whereas Rwork might shift imperceptibly. However, the 

per-residue normalization and the fact that good scores are closer to zero were also features we 

desired. 

 Note that, initially, ACC score was not normalized by residue. Without normalization 

Poses that are missing residues are misidentified as more accurate solutions; their ACC score 

would be inherently lower. At first this was a non-issue, as every Pose had the same number of 

residues; however, with increasing variety among the source structures it became an issue and 

was corrected. The un-normalized ACC score will be called uACC, and its equation appears 

below. 

𝑢𝐴𝐶𝐶 = ∑ 1 − 𝐶𝐶𝑛

𝑁

𝑛=1
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III. INITIAL TESTS AND RESULTS 

ROSETTA ENERGY FUNCTION AND REPACKING 

Predicting the Rosetta energy function was our first test of the code's functionality. The 

goal is to see if the Rosetta energy is a good metric for distinguishing plausible Combos. We 

divided the (relatively) small protein 3FYM (130 residues) into 6 Blocks for this test. 

 

Figure 4: Blocks and Poses for protein 3FYM. There are 6-blocks, each with 13 Poses 

generated via a normal mode sampling approach. 

 The first test was to see if the repack-Rosetta method of instantiation could distinguish 

the Gold Standard from other positions. Alternate poses were generated using Normal modes. 

Instantiation included a ‘linker rebuilding’ step where the ends of each of the Poses were rebuilt 

in order to form a contiguous backbone. In this case the Gold Standard was the original 3FYI 

structure from the Protein Data Bank. This test is not arbitrarily easy; it is not obvious that the 
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Gold Standard will have the lowest Rosetta energy score, or that the software will correctly 

recognize that the combination of Poses from the Gold Standard will produce that score. Perhaps 

the poses from the Gold Standard are only favorable in conjunction with each other? Maybe the 

search space is not favorably shaped, and other combinations are local minima? However, the 

test was mostly successful; the Rosetta energy typically allowed the regression to choose the 

Gold standard at 7 of 8 positions. 

 

SSD TESTING 

The RegressionProblem code was next applied to a simple test problem; use fragments of 

proteins to directly build the structure of another protein. Instantiation in this case is simply 

measuring the SSD difference between the fragments indicated by a Combo and the Goal 

structure. This sort of test is less difficult, but it has implications for the use of fragments in these 

sorts of problems. Specifically, SSD testing can be used to determine whether the generated 

space can recapitulate the Goal at all. It removes the intermediate requirement of distinguishing 

reasonable answers by measuring Combos in some way. This technique obviously cannot be 

used to solve real problems (for which there is not yet an answer), but it is important to show that 

the method can get to an answer if one exists. 

 In this case, the Goal structures were cytochrome P450 Chimeras made by the Arnold lab 

(Otey, 21, and Li, 20). The source structures were other Chimeras that have been successfully 

crystallized. Poses came from Chimeras with an identical Parent at a specific Block within the 

protein. No sequence alteration was performed. 
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Figure 5: Overview of P450 Chimeras. (A): Chimeras were constructed from 3 P450s that served as 

parents. They share 65-68% sequence identity. (B): PyMol visualization of P450 Chimera Poses that have been 

moved. The closely aligned structures are 0.25Å distant while the third structure is 1.7Å away. (C): Block boundary 

points and the residue number they occur at. With 3 Sources and 8 Blocks, there are 83 = 512 possible Combos. 

 The simplest test was to hide the Goal structure itself among the Sources. With 

instantiation being a simple comparison of structures, it was easy for the regression to recognize 

the exact answer among the sources provided. The initial search for the ‘correct’ answer among 

others was mostly a sanity check. 

 A more challenging test involved seeing if a good answer is available among the 

structures from all other Chimeras. This is an important question; if the Chimeras cannot 

approximate each other structurally, there is no point in downstream attempts to predict the 

favorable Chimera structure. The idea was to apply our technique to Goals with known structures 

to assess the likely utility of the method for predicting unknown structures.  
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 The second test was also successful; the search space does indeed contain structures close 

to that of the Goal. The simple SSD instantiation method demonstrated that the search space 

contained solutions for two test Goal structures, X38.4 and X8.5, with SSD<600 (or 

RMSD<1.18).  
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IV. FITTING X-RAY DATASETS VIA RECOMBINATION 

CHIMERAS AND UACC 

For our primary application focus the specific goal was to accurately recreate a Chimera's 

structure using the X-ray data for that chimera and the structure of other Chimeras. Instantiation 

consisted of PHENIX rigid-body refinement followed by ACC scoring. The ACC score was not 

normalized during these experiments, and will be called uACC (unnormalized ACC) for short. 

 The first test of this instantiation method was to distinguish the Gold standard from other 

Sources. A specific chimera named X8 was chosen as the Goal. The dataset was low-resolution 

(3.06Å), motivating the use of recombination as an alternative to conventional refinement 

methods. We were cognizant of the possibility that other chimera fragments could better fill the 

X-ray data than the previously made structure. The previously made XRD structures might not 

be perfect; it is possible that the Gold Standard, or the structure previously made to explain the 

XRD, could be worse than the best Combo. Also, the Gold standard uACC had to be quantified 

before it could be used as a benchmark, so we therefore Instantiated the complete Gold Standard 

at the outset. It had a uACC score of 87.6. If any combination produced a score of 87.6 or lower 

we would consider it a success. We also coded the capability of considering uACC score by 

Block to gain insight into each Pose's contribution. To Instantiate large numbers of combinations 

we used the ENS HPC computer cluster. The chimera had 24 Blocks (8 Blocks for each of 3 

Chains) with 11-53 Poses per block. The total search space size was 1.11 ∗ 1036 possible 

combinations. 

 A normal weighted regression with only single terms was only able to produce a lowest 

uACC score of 92.2, with six Poses of 24 different from the Gold standard after 3 rounds. In 

response, we altered the regression in various ways to see what would be necessary for the Gold 
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Standard to be found. It became apparent that a certain Combination, which we termed the 

‘Silver Standard’, was often the endpoint for our calculations. It differed at 4/24 Poses. 

Table 1: Summary of Strategies to improve Regression Performance on Chimeras 

Strategy Result 

Single terms Mismatch at 6 positions 

All double terms 

Overfitting, unable to effectively 

search 

Contiguous double terms 

Silver standard (mismatch at 4 posi-

tions) 

High-error triples Unable to effectively search 

Low-scoring triples Unable to effectively search 

Answer 'seeded' Silver standard 

Answer 'seeded' with high energy 

weighting Silver standard 

Training set is a set of low-scoring Com-

bos Silver standard 

Training set is 2-substitutions away from 

Gold Standard Silver standard 

 

At first we applied changes that we would use on a real problem; eventually we tried 

debugging by directly encouraging the algorithm to find the answer. Most methods ended up 

converging to the Silver standard, which had a uACC score of 88.8. 

 After repeated failed attempts that all chose the same solution, we became suspicious of 

an error in our assumptions. It took a while to track down; the Block-by-Block instantiation 

which was used on the Gold standard mistakenly skipped the last residue of each Pose, forcing a 
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uACC score depression of 4. The real Gold Standard value was 91.7, indicating that the Silver 

standard was actually better scoring than the Gold Standard. The regression had been succeeding 

for months. 

 The next step was to determine the level of regression training required to find the best 

answer. X8 remained the Goal, but it was removed from potential Sources. The new problem’s 

lowest scoring discovered Combo has a score of 90.29. Various initial training set sizes were 

tested while various numbers of targets were added in each round. The results appear below. 

Table 2: Regression Performance for X38.8 Chimera Target versus Training Set Size 

Target set size: 3000 1000 500 100 

Initial Size Score* Rounds Score Rounds Score Rounds Score Rounds 

10000 91.6296 11 90.6936 9 90.2942 10 91.6136 9 

5000 91.6891 6 90.6936 8 90.2942 8 91.4116 12 

2500 91.6891 9 90.6936 11 90.2942 12 91.4116 13 

1250 91.9159 8 91.8034 9 94.3083 12 104.3206 6 

625 91.6136 9 98.0664 12 112.8274 2 111.3412 3 

*The best score in any round 
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Figure 6: The convergence of the regression with a starting size of 5000 Combos and varying numbers of 

targets. The upper line is the average score of the newly instantiated Targets during each round, while the lower line 

is the lowest score. With too many targets, the average climbs endlessly. The middle and right figures have spikes 

that represent the regression temporarily making poor predictions, in which the average climbs rapidly when a group 

of targets are mistakenly thought to be low-scoring, and lowers again when the group of targets is better 

approximated. 

 

In this case, the strategy was weighted regression with 4/5ths of the initial set forming the 

training set. The experiment had an important result; as long as the size of the original training 

set is past a certain minimum, the final convergence depends mostly upon the number of targets 

per round. Initial set size is still of paramount importance. With too small of an initial set it 

cannot make progress toward a solution, but with too large of a set the regression required a 

greater number of rounds to converge. It may be confusing that large initials sets slowed the 

progress of the regression in terms of number of rounds, but this can be rationalized as follows: 

with a large initial set the (poorly scoring) initial Combos cause the regression to prefer specific 

values for the terms that accurately reflect the contribution of each Pose to poorly scoring 

Combos, but not favorable Combos. The regression performance suffers when it must 

compensate for a larger amount of “noise” in the form of poor-scoring combinations. 
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 Other interesting phenomenon occurred during the regression process. In some cases, 

presumably due to insufficient Target diversity, the regression appeared to converge upon local 

minima. In that case, the lowest Target energy stagnated. Additionally, the average Target energy 

rose, which is difficult to explain. What is clear, is that a balance must be struck between rapid 

progress and flexibility. 

 The tests of uACC on the set of Chimeras provided insight into the functionality of our 

software. They also afforded opportunities for bug fixing and expansion of capabilities. 

However, we realized that Chimera recombination did not provide a sufficiently rapid route to 

publication; if the software became too specialized for Chimeras, it would be contrary to our goal 

of easing general searches through spaces composed of protein fragments. Protein Chimeras 

might behave in specific ways particularly amenable to Regression. We therefore changed 

direction to focus on a protein family with published structures. 

 

A NEW SEARCH SPACE: TEM1 HOMOLOGOUS PROTEINS 

Instead of continuing work with Chimeras, we switched to the β-lactamase family, 

specifically proteins homologous to TEM1. Chimeras that have been recombined and 

recrystallized might be a special case, and our goal was to show the general nature of our 

algorithm. In addition, we wished to firmly show that our method could be a starting point for 

the interpretation of low-resolution X-ray crystallography data. 

TEM1 is a β-lactamase, a family of proteins with plentiful structural data. A set of 137 

homologous proteins was gathered with the BLASTP (Altshul 1997) alignment tool. From this 

set, multiple Goal structures were chosen; the structures were ordered from low to high 

resolution, with low-resolution structures favored as Goals. For each Goal, the X-ray 
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crystallography data available in the Protein Data Bank was downloaded and truncated. Any 

reflection of resolution < 3 Å was removed. While this is not the ideal method to simulate low-

resolution data, alternative methods such as simulating low-resolution data using the MLFSOM 

program proved difficult to automate. Additionally, Goal structures were required to be single 

chain— only PDB entries with one backbone in each unit cell were considered. This constraint 

merely simplified the problem and ensured that the performance on each Goal structure would be 

directly comparable to that of the other Goal structures. The final constraint placed on Goal 

structures was that they must be different from all previously chosen Goal structures, with a 

sequence identity (I) of less than 0.8. This means that the protein backbone between two Goal 

structures was not allowed to match at 80% or more of the positions. Sequence identity was 

calculated from the output of the Tcoffee alignment program (NotreDame 2000), which takes 

advantage of known PDB structures to align sequences. 

  The Sources used for the recapitulation of each Goal were restricted to 

homologous proteins with sequence identity between 0.3 and 0.8 that were not also Goal 

structures themselves. Valid Sources were similar to a specific Goal structure (I>0.3), but not so 

similar as to be redundant (I<0.8). The difference requirement was meant to ensure that point 

mutants and other structures with too much similarity to the Goal did not weaken the test of the 

method; the similarity requirement prevents the search space from being unduly large. If Source 

proteins had multiple backbones per unit cell in their PDB entries, each backbone was 

considered separated and multiple Poses were taken from that Source. 

The sequences of all Source structures for each specific Goal structure were aligned with 

Tcoffee one more time. Redoing the alignment ensured that restricted structural information from 

Goal and non-Source structures would not accidentally influence the sequence alignment.  
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  For each Goal structure, the Source structure with the greatest sequence identity to 

the Goal was set aside as a Basis. All Sources including the Basis were then remodeled by 

replacing sidechains with the cognate Goal structure amino acids. Sidechain positions were 

optimized with the FasterPacker combinatorial rotamer optimization algorithm (Desmet 2002) in 

SHARPEN—its original use. Next, all mutated Sources were aligned to the Basis. This 

alignment step is essential for choosing Block Boundaries. 

 Block Boundaries were initially chosen using Divergence. This led to 11-16 Blocks per 

Goal structure. Each Source was chopped into Poses. Then, Affinity Propagation was used to 

eliminate redundancy among the Poses, and a final search space was constructed. For example, 

we attempted to recapitulate the structure of 2CC1 by dividing the sequence into 16 Blocks. The 

number of non-redundant Poses for each Block was between 71 and 178 (geometric mean 167.8) 

leading to a search space size of 3.96*10
35

 possible Combos. 
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Figure 7: Setup steps for applying our regression software to a set of homologous proteins. 1: Gather the 

homologous proteins with BLASTP.  2: Use Tcoffee to align them. 3: Choose which proteins will be goal structures. 

4: Choose which proteins will be sources. 5: Realign with Tcoffee to avoid bias. 6: Mutate each sequence to match 

the Goal’s sequence, and repack the sidechains. 7: Align all structures. 8: Perform block division with Divergence. 

 

TEM1 HOMOLOGOUS PROTEINS: ITERATED REGRESSION 

For each Goal structure we Instantiated 20,000 Combos. This dataset was randomly 

divided into 16000-member training and 4000-member test sets. 20,000 was chosen to account 
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for the larger number of possibilities within the search space; earlier experiments indicated that 

the regression will work as long as a certain minimum number of starting Combos are present. 

  Only single terms were used. We tested higher order terms, but we were surprised 

to find that they did not afford a noticeable improvement in the accuracy of the regression This 

was a striking finding given that the correspondence between a model and X-ray diffraction data 

is explicitly a function of the entire structure, and that contiguous terms at least would improve 

performance when predicting P450 Chimeras 

 

Figure 8: Various Term Selection Strategies 

The test set held in reserve for each problem was used to gauge how well combinations of terms could 

approximate the actual ACC score. We define outliers as Pose combinations with an actual ACC score 5 units higher 

than predicted for the rest of the targets. Less than 1% of random combinations are outliers. (A) The simple 

approximation contains only 1-body terms and achieves a RMS error (for non-outliers) of 0.76. (B) Surprisingly, 

including 2-body terms for adjacent Poses (i.e. contiguous terms) decreased the quality of the predictions for the test 

set (RMS error = 1.26) despite using a training set of 16,000 combinations. (C) Adding terms for all possible Pose 

pairs reduced the RMS to 0.77, approximately that of single terms. (D) Terms meant to capture pairs and triples with 

high error finally afforded an improvement: RMS 0.66.   

In the case of the homologous proteins, there were ~15 ∗ (~168)2 = 400,000 possible 

contiguous double terms. This excessive number might account for the inaccurate nature of the 

regression with contiguous double terms, but why would the pairwise regression perform better 
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with its astronomically large number ~120*(~168)
2
 of terms? Fortunately, single terms proved 

sufficient in guiding the regression toward accurate models, as explained in the next section. 

 Another mystery was the presence of outliers in the predicted data. For random Combos, 

a small number (less than 1%) of Combos are much harder to predict. We rationalized these 

Combos as particularly difficult for PHENIX to place into the X-ray data; they probably 

represent a cutoff where PHENIX struggles to improve their placement and simply leaves them 

where they are initially placed. Chimeras did not produce this issue because Poses from 

Chimeras are inherently more similar to each other and easier to work with. The absence of 

extreme outliers in Targets chosen by the regression supports this hypothesis: low-scoring 

combinations are necessarily amenable to improvement with PHENIX.  

1000 Targets that were predicted to have a low ACC score were added to the training set 

during every round. Despite the utter simplicity of the regression model, it was possible to 

“learn” which Combos produce the lowest ACC scores. If a batch of Targets contained mostly 

false positives, its true nature is revealed during instantiation and the misleading Combos are 

eliminated after a round of regression reveals them to have slightly higher scores. By repeating 

this process 4 to 15 times, we achieved effective machine learning. We judged a regression 

model as completely trained (converged) when the best (lowest) ACC score among the newly 

chosen Combos did not improve from one round of regression to the next. 
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Figure 9: (A) Convergence of the regression can be seen in the gradual improvement of the average Target 

score (upper line, ) and best Target score in each round (lower line, ×) for Goal 2CC1. Dotted lines are a 2
nd

-order 

polynomial fit to illustrate decreasing magnitude of improvements in score for both measures of improvement. (B) 

The test set affords a sanity check on Regression performance during the round with the lowest Target score (RMS 

0.778). 29 outliers (ACC discrepancy >5) of 1000 Combos have been removed. 

 In addition to training the regression over several rounds, we also used the initially 

reserved test set to verify the accuracy of our approximation. The verification could be done at 

each step to check the progress of the regression, but it did not influence the regression itself.  

 

EXPLANATION FOR THE SUCCESS OF SINGLE TERMS WITH X-RAY DATA. 

Two subtleties in technique contributed to the effectiveness of this strategy. The first is 

that the Targets were not chosen simply by taking the lowest predictions (which are trivially easy 

to find when the prediction is a sum of first-order terms). Instead, we found the lowest prediction 

and used Monte Carlo selection to choose other targets. Temperature was increased until a 

minimum number of Combos were readily found. This allowed variety to be preserved in the 

event that many Combos are suitably low-scoring; the strictly lowest set of Combos might not be 

representative of low-scoring Combos in general. Additionally, this method of Target selection is 
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still effective if higher order terms are included and the lowest scoring predictions are not trivial 

to determine. 

 The second subtlety is that our regression approach was weighted to favor accuracy in 

low-scoring Combos. The goal was to more accurately predict the ACC for the Combos that 

better explained the X-ray diffraction data, at the possible expense of being unable to predict 

poorer scoring Combos. This means that after every round of regression, the old Targets strongly 

influence the Regression terms for the next round unless they score poorly, in which case they 

carry little weight. This is part of the explanation for why regression with only first-order terms 

is so successful; the weighting of score in the neighborhood of the optimal Combo provided 

another area of flexibility in the method. 

 

COMPUTATIONAL TIME 

Initially, 20,000 random Combos were evaluated for each Goal structure using rigid-body 

PHENIX refinement calculations. Each of these refinement calculations required approximately 

420 seconds for a Combo containing 16 Blocks. Thus, a brute force search through the possible 

Combos would require 10
27

 to 10
31

 years, depending on the Goal structure. As discussed in 

section V, multiple rounds of regression were effective in improving the score of the models. 15 

rounds of regression with 1000 Targets each, and an initial set of 20,000 random Combos, results 

in a computational time of 170 CPU days. However, this technique is amenable to 

parallelization; wall time was reduced to 12 hours with a compute cluster containing 350 cores. 
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V. TEM1 RESULTS AND DISCUSSION 

INITIAL SET AND RESULTS 

The initial results appear in the table below. A comparison was made between complete 

Source structures, the Goals themselves, Random combinations, and the best Combos as 

determined by ACC score. Whole Sources and Goals were tested, as were Goals and Sources 

divided at the same Block Boundary points used to generate the Combos. With the exception of 

Goal 4JLF, all regression problems were able to choose a Combo that would be a better starting 

point than any single source structure. It can be seen that the best Combos recapitulate the Goal 

structure to better than 0.7Å without human input. 

Table 3: 3Å Truncation Recombination-Based Learning Summary 

  Best Scoring Random Average Whole Sources Whole Goals Divided Sources Divided Goals 

Goal Structure ACC RMSD ACC RMSD ACC RMSD ACC RMSD ACC RMSD ACC RMSD 

2CC1 19.95 0.67 27.93 2.48 26.85 1.38 11.35 0.05 23.11 1.23 11.25 0.15 

3LY4 20.36 0.71 30.16 2.39 28.28 1.04 15.07 0.03 23.37 0.90 13.69 0.14 

1CK3 17.42 0.37 27.43 2.03 21.47 1.04 13.76 0.03 18.02 0.94 13.67 0.12 

4JLF 20.88 2.17 27.26 2.96 25.67 1.36 9.60 0.01 21.11 1.22 9.04 0.12 

1TDG 18.76 0.66 26.78 2.12 23.16 1.21 13.76 0.03 19.37 1.10 13.50 0.14 

3BYD 15.76 0.46 28.54 2.55 20.92 0.56 12.28 0.05 18.76 0.47 12.35 0.13 

 

RMSD values for the lowest scoring Pose combinations as measured by ACC tend to be 

much more favorable than those of random Pose combinations: between 0.8 and 2 lower (Table 

3). The Sources could not approach the combinations’ level of accuracy for 4 of the 6 Goal 

structures, and in the case of 3BYD the best combination was comparable to the best Source. 

Only goal 4JLF was poorly approximated by the best combination. Dividing the Sources at the 

Block Boundary points allowed them to perform slightly better, but still not as good as the 
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combinations. As expected, unaltered Goal structures put through a rigid-body refinement come 

closest to the authentic PDBS. The Goals, however, did best when undivided: division increased 

alpha carbon RMSD from 0.02-0.05 to 0.11-0.15 (Table 3). Alterations can only worsen a near-

perfect model. Notably, ACC could be used to rank all of the structures by RMSD save for the 

undivided goals, which sometimes score slightly worse than the divided goals despite having a 

better RMSD. 

 

RATIONALIZING THE COMPARATIVELY POOR PERFORMANCE FOR THE 4JLF GOAL 

An examination of the resulting structures allowed for insight into the relative failure of 

our method to recreate Goal structure 4JLF. Two factors in particular appear to be contributing to 

the failure. First, there is a section of 4JLF with a shape that cannot be approximated with any 

Source. All sources sacrifice accuracy at a protein loop to maintain accuracy in a beta sheet. It is 

likely that carefully placed additional Block Boundary points would allow the problematic loop 

to be reconstructed. Second, another section of 4JLF appears to frequently be truncated in Target 

combinations. A single short Pose provides a pathological solution. This truncation is preferred 

in ACC score because shorter Poses are less likely to face ACC score penalties from poorly 

approximating structure; adding a penalty to the ACC score for missing residues could 

potentially eliminate this sort of error. PyMol was used to discover these discrepancies. 
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Figure 10: 4JLF and two potential explanations for poor performance. (A): No source 

pose was able to approximate this loop. All poses sacrificed loop accuracy to better fit the 

adjacent beta sheet. Superior Block division might occur at the highlighted Residues (○). (B): A 

small pose was universally chosen to replace a loop. This caused the backbone to skip structure 

at the highlighted regions. 

 

LOWER-RESOLUTION TARGETS 

Further truncation was tested upon three of the Goals. A summary of the results appears 

in the table below. These are the lowest RMSD values found in each set of data. 1000 random 

combinations were compared to the 1000 Targets from the round with the lowest ACC score. 

  



47 

 

Table 4: RMSD from Goal for Best Combo as a Function of Increasing Truncation 

  

3 

Å   

4 

Å   

5 

Å   

6 

Å   

Goal 

Best 

Round 

Random 

Combos 

Best 

Round 

Random 

Combos 

Best 

Round 

Random 

Combos 

Best 

Round 

Random 

Combos 

4JLF 1.16 1.21 1.15 0.91 0.88 1.32 1.05 1.10 

3BYD 0.47 0.74 0.46 0.75 0.54 0.79 0.96 0.92 

2CC1 0.24 0.49 0.29 0.67 0.49 0.71 1.21 0.99 

 

For 3BYD and 2CC1, it can be seen that regression finds a better solution in the 3, 4, and 

5 Å cases. At 6 Å resolution, the regression can no longer effectively search and random 

combinations are comparable to the best of chosen Targets. 4JLF behaves somewhat oddly in this 

case; resolution truncations actually allow the regression to perform more efficaciously with this 

goal structure. We suspect that the failure to accurately recapitulate 4JLF in the higher resolution 

case results from incorrect or misleading sidechain positions for the Poses. As resolution is 

lessened, it would reduce the impact of sidechain position on the PHENIX calculation as there is 

not sufficient information to determine the location of the sidechains. 

 

RWORK AS A SCORING METRIC 

Rwork was tested as an alternative to CC within our regression software. The experimental 

procedure was identical, save for Rwork being the scoring metric instead of CC. This resulted in 

additional bias. Moreover, Rwork did not guide our software to reasonable solutions. 

Improvements in Rwork were smaller and required more rounds of regression. 
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Figure 11: Comparison of ACC (A) and Rwork (B) as guiding functions for interpreting low-resolution X-ray 

data for 2CC1. The top line in each graph is the average Target score for each round of regression, while the bottom 

line is the best score among that round’s Targets. Dotted lines are second-order fits for depicting the general trend. 

Improvements are possible to both metrics, but ACC appears to be more easily optimized. 

Although Rwork did not perform as wells as ACC in guiding the regression, the two 

scoring methods shared an important characteristic. Bias was not increased when fitting low-

resolution data with either method. This is an important result when interpreting low-resolution 

data. 
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Figure 12: Bias among Targets. This figure illustrates the correlation between the ACC score (A) or Rwork 

score (B) predicted for Target combinations vs the Bias in R-values for the Targets. Average Bias for ACC: -0.002. 

Average Bias for Rwork: 0.0003. 

 

ADDITIONAL ROUNDS OF UNRESTRAINED REFINEMENT 

We envision our method as a starting point for further optimization of structures in low-

resolution data. As a preliminary test, we used automated and unrestrained (not rigid-body) 

refinement with PHENIX to attempt to improve the results of the regression. This relaxation of 

restrictions is expected to increase the R𝑤𝑜𝑟𝑘-R𝑓𝑟𝑒𝑒  bias in the Targets from the regression round 

with the lowest ACC score. Limiting the number of rounds of non-rigid refinement can limit the 

increase in bias. The results appear below. 
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Table 5: Assessing the Impact of Unconstrained Refinement  

  
0 rounds  1 round 2 rounds 3 rounds 

Goal Average RMSD Average Bias Average RMSD Average Bias Average RMSD Average Bias Average RMSD Average Bias 

2CC1 0.795 -0.002 0.751 0.018 0.693 0.035 0.656 0.044 

3LY4 0.776 -0.007 0.712 0.006 0.668 0.017 0.642 0.022 

1CK3 1.035 0.017 1.022 0.047 1.014 0.062 1.009 0.067 

4JLF 2.449 0.002 2.433 0.022 2.414 0.042 2.396 0.052 

1TDG 1.178 0.024 1.149 0.042 1.142 0.051 1.141 0.054 

3BYD 0.499 0.008 0.443 0.033 0.416 0.052 0.405 0.053 

 

As expected, the average bias among the targets went up. However, the RMSD of all 

targets (excluding those for Goal 4JLF) went down with additional rounds. An average 

improvement of 0.086 Å is possible before the average R𝑤𝑜𝑟𝑘-R𝑓𝑟𝑒𝑒 gap increases to 0.04, just 

below the widely accepted cutoff of 0.05. It is worth noting that improvements made this way 

have varying effects on the various Goals. 3LY4 achieved an improvement of .13 Å while the 

bias remained below 0.02; to contrast, 1CK3 only achieved an improvement of 0.026 while 

passing the acceptable limit for bias. We expect that manual refinement steps could achieve even 

better results with these low-resolution structure starting points; a refinement that is manually 

customized to each Goal would probably do better. 
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VI. METHOD OUTLOOK 

The results above suggest that fragment recombination has the potential to successfully 

accelerate otherwise challenging searches over protein conformations. Here, we show that the 

method can be used to automate the refinement of high-quality models to fit low-resolution X-

ray data. In this case, the search space is semi-discrete since the Cartesian position of the rigid 

Poses is optimized by PHENIX. In crystallography laboratories (such as the Snow lab) that 

routinely produce low-resolution crystallographic datasets for a family of related crystals, this 

framework could provide a significant increase in the quality of the structural models and an 

immense saving in the time spent in manual refinement of the crystallographic models. 

 In principle, the same strategy and the same code platform can be applied to protein 

structure prediction in the absence of experimental data. In particular, this method could be used 

to compete in the “structure refinement” category of the biennial Critical Assessment of 

Structure Prediction (CASP) blind structural determination competition. The structure refinement 

category might also be called “homology model remediation” in which teams attempt to improve 

upon a slightly-incorrect starting model. 

 Incorporating protein flexibility and conformation change is also a perennial challenge 

for other algorithms such as protein-protein docking, inhibitor design, or fitting detailed protein 

models into low-resolution cryo-electron maps. The methodology described herein might also be 

used to provide efficient protein conformational search in those scenarios. For example, let us 

consider computational protein design. Traditionally, it has been difficult to mesh protein 

backbone flexibility with the combinatorial optimization of amino acid sidechain positions and 

identities that constitutes the design step. Here, however, we need only consider Poses containing 

alternative amino acid sequences to convert the presented method to a protein design calculation. 
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 In sum, the method speeds calculations and allows for rapid exploration of otherwise 

immense search spaces. It was designed to be generally applicable. To ensure continued use, the 

software has been extensively documented, and several tutorial examples have been prepared to 

bring new users up to speed.  
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GLOSSARY OF TERMS 

ACC Score: A method of instantiation. The normalized and inverted sum of CC scores 

for each residue in a protein backbone. Can range from 0-100, with a typical range of 15-50. 

Block: A section of a protein backbone with several possible structural configurations 

called Poses. 

Block Boundary Point: the interface between two Blocks, typically indicated by residue 

number. 

Chimera: A recombined protein, composed of two or more Parents. The Chimeras talked 

about primarily in this thesis are those generated by the Arnold lab (21). Three cytochrome P450 

proteins were recombined to generate the set. 21 out of the resulting 3^8 possibilities have had 

their structures characterized. 

Combo: short for Pose Combination, this is a set of Poses that can be Instantiated 

Dividing Residues: residues that are at a Block Boundary Point. 

Energy Function: a calculation made on a protein backbone that is meant to measure 

some aspect. For example; the Rosetta Energy, a multifaceted measure of a protein's plausibility. 

Goal structure: A structure that is being recreated by recombination. Ideally, the 

structure(s) produced by Instantiation will be close to the Goal structure. 

Gold Standard: When the Goal structure is used to generate the search space, the Combo 

that corresponds to choosing the entire Goal structure is called the Gold Standard. A regression 

that chooses the Gold Standard can correctly distinguish the best answer. 

Instantiation: The scoring of a Combo by some means. It could be, for example, a sum 

of differences calculation to a specific protein, or a Rosetta Energy calculation. Regression 

allows for a fast approximation of Instantiation. Good Combos are low-scoring. 
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Parent: A protein that supplies structure to a Chimera. 

Pose: A specific structural conformation that corresponds to a part of the protein 

backbone called a Block. 

RMSD: Root mean square deviation, typically of the coordinates for protein structures. 

Alpha carbon coordinates are almost exclusively used in this calculation. 

Source: A PDB entry that provides structural information used for the generation of 

Poses. 

Divergence: The sum of coordinate differences between pairs of alpha carbons for a set 

of protein backbones on a per-residue basis. Divergence is used to choose Block Boundary 

points. 

SSD Instantiation: An Instantiation method that is a rough measure of the differences 

between two structures. 

Taboo Term/ Taboo Combo: A Combo or sub combination of any length that is not 

capable of being Instantiated correctly (for example, because of steric clashes between Poses) 

and is therefore not considered when generating new Combos. 

Training/Test Batch: A group of previously Instantiated Combos used for training or 

testing a regression 

 


