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ABSTRACT

WATER-QUALITY DATA ANALYSIS PROTOCOL DEVELOPMENT

Several agencies have developed networks to routinely 

monitor water quantity and quality in an attempt to assess 

society's influence on the environment, including the 

impacts of modern agriculture. Data from these networks are 

often plagued with attributes that inhibit analysis and 

interpretation. As more and more emphasis and public 

pressure is placed upon demonstrating environmental results, 

it is increasingly necessary that a consistent protocol for 

analyzing data from water quality monitoring networks be 

developed.

Common data record attributes which inhibit data 

analysis include distribution applicability, variance 

heterogeneity, seasonality, serial correlation, extreme 

events, censoring, erroneous observations, small sample 

size, missing values, different sampling frequencies, 

multiple observations and measurement uncertainty. Each 

data record attribute is described in this study. In 

establishing a protocol to analyze water quality data, the 

handling of censored data and detection of trends in the 

presence of serial correlation and missing data are
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particularly difficult to quantify. This study focuses on 

these issues of protocol development.

Seventeen procedures are evaluated for estimating the 

mean, median, standard deviation and interquartile range 

from data sets with singly and multiply censored 

observations. The results from this evaluation support 

previous investigations. In addition, the "no censoring” 

rule was found superior to methods which used censored 

observations for estimation of the mean, median and standard 

deviation.

This study also compared the use of the Mann-Kendall 

tau test (and variations) for evaluating monotonie trends in 

water quality data. The Seasonal Kendall (Mann-Kendall) tau 

test should be used for data records with no serial 

correlation and five or less (ten or more) years of record. 

An ideal test for short data records which have serial 

correlation was not found in this study. The Seasonal 

Kendall tau test with serial correlation correction should 

be used for data sets of at least ten years of record and 

serial correlation. Furthermore, if monthly data sets have 

on the order of 40 to 50 percent missing values, monthly 

data should be collapsed to quarterly data by computing 

seasonal means or medians.

Jonathan Brooks Harcum 
Agricultural and Chemical 

Engineering Department 
Colorado State University 
Fort Collins, CO 80523 
Summer, 1990
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CHAPTER I 

INTRODUCTION

Agricultural production has benefited the United States 

economy, and much effort has been devoted towards improving 

production. Arid regions generally unsuited for cash crops 

have been transformed into productive farm land, while 

improved crop varieties, tillage practices, pest management 

and weed control have increased agricultural production 

throughout the United States. Much less effort, however, 

has been placed on evaluating the environmental effects of 

modern agriculture.

Several agencies (U. S. Geological Survey, U. S. 

Environmental Protection Agency, U. S. Fish and Wildlife 

Service, etc.) have developed networks to routinely monitor 

water quantity and quality in an attempt to assess society's 

influence on the environment. In an ideal setting, monitor-

ing networks would provide information identifying areas of 

environmental concern. It is apparent that information 

gathering has failed in areas such as the Chesapeake Bay in 

the Mid-Atlantic region and the Kesterson National Wildlife 

Refuge in California, where agriculture has been identified 

as a key nonpoint source polluter.



A. Evolution of Water Quality Monitoring

Considerable effort has been devoted over the years to 

developing water-quality sampling and laboratory analysis 

protocols in an attempt to improve knowledge about the 

behavior of water-quality variables (e.g., Everett, 1980; 

American Public Health Association, 1985). The vast major-

ity of this effort has been focused on acquiring representa-

tive data, while the methods (protocols) for analyzing the 

data, particularly from a statistical viewpoint, have almost 

been ignored. Ward (1981) points out the problems that will 

arise if data analysis is not built into the water-quality 

monitoring program design and operation. Ward, et al.

(1986) described what has happened in surface water-quality 

monitoring due to a lack of any well defined protocols for 

analyzing water-quality data— a "data rich but information 

poor" syndrome.

Many water-quality monitoring programs have reached the 

point where data are piling up and it is not clear to many 

monitoring program managers exactly how the data will be 

converted to information. In attempts to produce the re-

quired information, a monitoring network manager will often 

use statistical tests. Application of many statistical 

tests is not straightforward for water-quality records, a 

result of the natural variability of water-quality variables 

and the inherent difficulty associated with environmental 

monitoring. For example, to use certain statistical tests, 

the data are sometimes assumed to follow normal or lognormal



probability distributions. Assumption adequacy is not 

checked in many instances. Depending on the statistical 

test used and the degree of assumption violation, false 

conclusions may result.

Problems associated with incomplete data records have

been recognized for some time. GAO (1986) is one of the

more recent publications citing this problem.

Data on the performance of treatment 
plants are fairly abundant after comple-
tion of construction-grant upgrades but 
fairly sparse before that time. This 
makes before-and-after comparisons dif-
ficult. Much the same problem pertains, 
in reverse, to the evaluation of data 
from water quality monitoring stations.
Consistent and complete sets of water 
quality monitoring data from before and 
after the construction of a 
construction-grant project are rare.

The above quote is in reference to analyzing data for im-

provements due to upgrades in treatment plants. While not a 

causal relationship, one may speculate on the difficulties 

in assessing water quality for nonpoint source pollution 

with incomplete data records.

B. Objectives

In order to effectively manage our natural resources, 

it is clearly necessary to have a consistent procedure for 

analyzing data from monitoring networks. At this point, no 

complete water-quality data analysis protocol is available. 

Several data analysis issues have been identified that must 

be addressed before it is possible to develop a data



analysis protocol. These issues become the objectives of 

the study and are as follows:

1. Identify water-quality conditions and data record at-

tributes common to many water-quality monitorinq net-

works .

2. Discuss the assumptions and logic incorporated in the 

procedures that have been recommended for water-quality 

data analysis.

3. Recommend a framework which is appropriate for data 

analysis.

4. Recommend and evaluate procedures for alleviating the 

following shortcomings in past procedures:

a) estimating average conditions in the presence of 

censoring,

b) detecting changes in water quality in the presence of 

serial correlation and

c) detecting changes in water quality in the presence of 

missing values.

Although a data analysis protocol is not produced in this 

study, this work is viewed as a further step towards devel-

oping a water-quality data analysis protocol.

C. Scope

There are many issues associated with environmental 

monitoring and data analysis. This study is necessarily 

limited in several respects.



1.

2.

4.

5.

6 .

7.

This study is not intended for intensive monitoring 

strategies which are used to understand physical 

processes such as chemical dispersion, adsorption, etc. 

This study is intended to be applicable to networks 

where one is interested in understanding water-quality 

conditions from a management standpoint.

The study is limited to protocols for evaluating average 

and changing conditions.

Water-quality indices and applications of biological 

monitoring will not be discussed.

The coupling of statistical data analysis and 

water-quality hydrologic models is not considered.

No new statistical techniques will be developed.

D. Organization

Chapter II is an introduction to water-quality condi-

tions that are commonly encountered in water-quality moni-

toring networks. Data record attributes which inhibit stan-

dard data analysis are discussed. Chapter III contains a 

review and discussion of present data analysis protocols. A 

framework for this study is identified and developed in 

terms of information flow.

The next three chapters address specific water-quality 

data analysis issues that must be addressed more quantita-

tively before water-quality data analysis protocols can be 

developed. Chapter IV contains the details of a current 

study to determine effective procedures for evaluating



average conditions from censored data. Both single and 

multiple censoring are considered. Chapter V presents 

details of another concurrent study addressing serial 

correlation and effective procedures for evaluating changing 

conditions. Chapter VI presents the results from a 

simulation study which addresses the computational problems 

introduced by missing values.

Chapter VII highlights key topics covered in this study 

and lists recommendations for further work.



ATTRIBUTES INHIBITING DATA ANALYSIS

CHAPTER II

Information goal assessment will typically involve the 

evaluation of the water-quality average, changing and 

extreme conditions. Ward and Loftis (1986) have found that 

many management decisions can be made by analyzing these 

conditions. This chapter serves as an introduction to 

water-quality conditions that are commonly encountered as 

well as data record attributes that are typically found in 

water-quality data records.

A. Water-Quality Conditions

What is the quality of water? To answer this question, 

the network manager is typically faced with describing the 

average water-quality conditions. The mean or median pro-

vides information about the central tendency and the stan-

dard deviation or interquartile range provides information 

about the variability (or spread) of a water-quality vari-

able. Average conditions are useful in spatial displays 

(e.g., plume contours), load estimations and general report-

ing. Uncertainty should be indicated by reporting estimates 

with confidence limits or percentiles (Ward and Loftis,

1986).



8

Network managers are faced with detecting changing 

water-quality conditions. Has the quality of water gotten 

better or worse? Generally, we are interested in detecting 

changes over time or space. Step and monotonic trend tests 

are applicable for this data analysis aspect.

There have been a number of studies (e.g., U. S. 

Environmental Protection Agency, 1984a and 1984b; U. S. 

Environmental Protection Agency and U. S. Fish and Wildlife 

Service, 1984; U. S. Geological Survey, 1984; Association of 

State and Interstate Water Pollution Control Administrators, 

1984 and Gilliom et al., 1985) which have focused on evalu-

ating the average and changing water-quality conditions. For 

example, the before-and-after studies (U. S. Environmental 

Protection Agency, 1984a) evaluated construction grant 

program performance by comparing observations before and 

after the upgrade of treatment plants. The National 

Fisheries Survey (U. S. Environmental Protection Agency and 

U. S. Fish and Wildlife Service, 1984) examined the ability 

of the Nation's rivers to support fish. While the 

information goals are different for each study, the water- 

quality conditions evaluated were similar.

Extreme conditions are important as well, since most 

ecological systems have limited assimilative capacity. 

Management goals oriented towards compliance with regulatory 

requirements and environmental disaster prevention (e.g., 

fish kill) will typically involve extreme water-quality 

condition evaluation.



Much attention has been focused on what procedures are 

appropriate for analyzing average and changing water-quality 

conditions. As a result, some consensus regarding appropri-

ate procedures (see section III.A for further discussion) 

has been reached. Unfortunately, the same is not true for 

extreme condition evaluation. Extreme conditions are usual-

ly connected to standard violations. In many situations, 

zero exceedences of a standard are acceptable and one or 

more exceedences are not acceptable. This type of regula-

tion has been the subject of much debate. Many of the 

arguments against this type of evaluation have been sum-

marized by McBride and Pridmore (1987) and Loftis and Ward 

(1981). Since water quality can be viewed as a random 

variable, it is possible that a violation will occur which 

is the result of natural variation— not the result of socie-

ty. Designers must also "over-design” facilities so that 

accidental violation (e.g., due to possible digester break-

down) do not occur.

As an alternative approach, McBride and Pridmore (1987) 

suggested replacing an absolute standard with an upper 

percentile, where a specified number of exceedences are 

allowable over a specified time frame. They cited three 

primary reasons for supporting percentile standards in New 

Zealand.

1. Percentiles would aid treatment facility designers and 

reduce over-design.

2. Treatment plant performance would be more easily
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evaluated. More efficient use of past data would 

result.

3. Percentile standards are more reliably estimated than 

absolute standards.

McBride and Pridmore (1987) recognized that a percentile 

standard does not protect against gross exceedences. They 

recommended that maximum allowable standards should be 

incorporated with percentile standards to produce a two-tier 

monitoring program.

Loftis and Ward (1981) used cumulative density 

functions to estimate the probability that a single grab 

sample would be in violation. A procedure was presented for 

calculating confidence limits around the cumulative density 

function for normal and nonparametric models. Their study 

describes a water-quality variables's past behavior based on 

collected data and compared the past behavior to a stream 

standard for changes in violation frequency.

More recently, debate has centered around biological 

monitoring applicability. Are fixed monitoring stations and 

physical properties appropriate monitoring strategies for 

evaluating extreme conditions? Should we place biological 

organisms below facilities to integrate water quality over 

time as well as different physical and chemical water- 

quality variables? As a result, it is difficult to judge 

what the most appropriate data analysis procedures are at 

this time. Due to the lack of consensus on general



approaches to measuring extreme conditions, this study will 

not consider extreme condition evaluation.

11

B. Data Record Attributes

Water-quality condition evaluation is made more dif-

ficult by data record attributes. In order to understand 

the procedures which have been suggested to handle these 

attributes, it is first necessary to identify attributes 

most important in water-quality monitoring. Data record 

attributes can be divided into two groups: Statistical 

characteristics and data limitations. Both groups have an 

impact on the statistical methods which are used to meet 

information goals as well as method reliability.

Statistical characteristics are data record attributes 

resulting from the natural variation of water-quality vari-

ables. Five commonly found statistical characteristics are 

distribution applicability, variance homogeneity, seasonal-

ity, serial correlation and extreme events. While these 

attributes do not cause computational problems, they may 

violate typical statistical assumptions and result in false 

conclusions.

Data limitations are, for the most part, man-induced 

data record attributes. Data limitations often result in 

less reliable observations, less information for a given 

data set and greater analysis complexity. Common data 

limitations include: Missing values, different sampling
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frequencies, multiple observations, measurement uncertainty, 

censoring, small sample size and erroneous observations.

B.l Statistical Characteristics

Water-quality data sets come from a large family of 

underlying probability density functions. Most applicable 

distributions are characterized by a coefficient of skew 

greater than or equal to zero. Montgomery et al. (1987) 

found 66 out of 172 ground water records which passed nor-

mality tests (the skewness coefficient was insignificantly 

different from zero and the null hypothesis of normality was 

not rejected with a chi-square goodness of fit test). The 

constituents for which most normal data sets (at least one- 

third of well records were normally distributed) were found 

to include: Chloride, total dissolved solids, pH, specific 

conductivity (microohms/cm), nitrate-nitrogen, sulfate, 

hardness (calcium carbonate) and temperature (degrees 

Fahrenheit). Iron, total organic carbon, total ammonia, 

boron, total Kjeldahl nitrogen, fluoride and sodium were the 

constituents for which less than one-third of the well 

records exhibited normality. Most well records were from 

shallow unconfined aquifers.

Hirsch and Slack (1984) have cited that temperature, pH 

and dissolved oxygen are the only commonly measured 

constituents that are typically normal or near normal. 

Although not stated, Hirsch and Slack's statement is most 

likely related to surface water-quality data records.

Gilliom and Helsel (1986) examined 482 trace element data
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sets at U.S. Geological Survey river quality monitoring 

stations. They found skewness coefficients from -0.8 to 5.2 

(six percent were negative) and coefficients of variation 

from 0.15 to 3.2.

Parametric statistical tests assume a particular dis-

tribution, usually normality. The degree to which this 

assumption is true will play a significant role in the power 

of the test used. Nonparametric statistical tests are less 

restrictive in that normality is not assumed. Nonparametric 

tests, however, do require that the samples come from dis-

tributions with the same shape (e.g., identically distrib-

uted) for the null hypothesis case. Assumption violation 

can cause significance levels to be incorrect.

Population variance may be different over time or 

between sampling locations. Constant variance is an often 

made assumption of commonly used two-sample and monotonie 

trend tests. Some nonparametric and modifications of para-

metric tests (Snedecor and Cochran, 1980) do not make this 

assumption. A new dam on a river is a classic example of 

changing variances caused by an intervention. The new dam 

acts as a buffer for suspended solids downstream. Not only 

does the mean concentration decrease, but the variance of 

the process will decrease as well. Incorrectly assuming 

constant variance (in this example) would result in an 

actual significance level higher than the nominal 

significance level for a monotonie trend test. That is, the 

probability of deciding that a trend occurs is higher than
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the stated significance under the assumption of no trend in 

the mean.

Seasonality has been defined as "the deterministic 

variation in ... concentration with time of year"

(Montgomery et al., 1987). Seasonal variation in water 

quality is often associated with processes such as precipi-

tation and stream flow (Harris et al., 1987). It is not 

uncommon to have seasonal cycles in both the data record 

mean and variance. Statistical tests are usually less 

powerful when seasonality is present (Hirsch et al., 1982). 

Data may be collapsed; however, information is lost when 

seasonal records are summarized over seasons. For example, 

yearly central tendency estimates may not be representative 

of constituent concentrations from seasonally variable 

streams.

When observations are spaced closely together, there 

may be information redundancy between observations. This 

redundancy is termed serial correlation. Most (parametric 

and non-parametric) statistical tests assume independence 

between observations. Serial correlation, in effect, 

reduces the sample size. Trend detection is more difficult 

when serial correlation is present in data (Hirsch et al., 

1982 and Hirsch and Slack, 1984). For this study, serial 

correlation and autocorrelation are synonymous, referring to 

the stochastic dependence of successive observations after 

the removal of deterministic components (trend and season-

ality) .
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Extreme events are observations which are "real" obser-

vations of the monitored random variable. Parametric tests 

tend to weigh these observations too heavily and may lead to 

biased results. Extreme events, in many cases, are the most 

important observations, as in the case of extreme condition 

evaluation, and should be included in data analyses. Unfor-

tunately, it is sometimes difficult distinguish the dif-

ference between extreme events and erroneous observations (a 

data limitation which is discussed in the next section).

Much research has been devoted to detecting statistical 

characteristics as well as developing techniques for dealing 

with them. Procedures range from ignoring the problem, 

transforming the data to alleviate the problem (e.g., 

Brockwell and Davis, 1987; Salas et al., 1980 and Helsel, 

1987), developing methods which explicitly handle or are 

robust against the statistical characteristic (e.g., Hirsch 

et al., 1982; Hirsch and Slack, 1984 and Gilliom and Helsel, 

1986), subtracting deterministic components (e.g., Harris et 

al., 1987 and Harris, 1988), or reducing the effective 

sample size (e.g., Lettenmaier, 1976). The reader is 

referred to Harris et al. (1987), Harris (1988), Loftis et 

al. (1986) and Gilbert (1987) for a more complete discussion 

of detecting statistical characteristics described above.

B.2 Data Limitations

A missing value is a data record for which no measure-

ment was recorded (e.g., no information is available for 

some time period). Missing values occur in a number of ways
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such as lost samples and equipment breakage. In addition to 

random missing values, systematic missing values can occur 

from lakes freezing over, wells or streams drying up, sea-

sonal snow falls or budget cut-backs. Several problems 

result from missing values. Statistical tests which require 

regularly observed sequences are not readily applicable 

(e.g., standard time series analysis). Techniques which 

compare up-gradient and down-gradient observations have less 

comparisons available. Parameter reliability is decreased 

as a result of a smaller sample size. In general, summaries 

over time will be less accurate, since all time periods are 

not equally represented. The comparison of systematic 

versus random missing values has not been thoroughly 

evaluated in a water-quality context.

It is not uncommon to find data records with changing 

sampling frequencies. For example, an original monitoring 

design may call for monthly sampling. After a period of 

time, budget constraints force the monitoring scheme to 

quarterly sampling. Statistical techniques which require 

equally spaced data are not directly applicable. Summaries 

over time will be weighted more heavily to the period with 

higher sampling frequencies.

Similar problems exist when multiple observations are 

recorded for one time period. This occurs when quality 

assurance/quality control data are stored in the same record 

as the original observation. Summaries over time will be 

weighted more heavily for time periods with more
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observations. In addition, it is not straightforward how to 

use the "extra” observations in some statistical tests (van 

Belle and Hughes, 1984).

Water-quality data sets are actually observations of 

random variables and as such have observation error. Meas-

urement uncertainty is the result of random analytical error 

and can vary with the magnitude of the signal and calibra-

tion of the analytical device. Trace organic measurements 

are one instance where the measurement error is relatively 

large. It is important to view these numbers as probability 

statements about the actual process, not as absolute num-

bers. The required information for this type of analyses is 

not often available and as a result, it is not uncommon to 

ignore measurement uncertainty altogether (Porter, 1986). 

Other types of error can exist as a result of poor quality 

assurance/quality control (Montgomery, 1987).

Some constituent concentrations exist close to the 

analytical detection limit. Trace metals and pesticides are 

common examples. When the signal from an analytical device 

is less than a predetermined detection limit, the data value 

is typically censored and reported as less-than the detec-

tion limit. There are two types of censoring (David, 1981). 

Type I censoring replaces all values below (above) a certain 

numerical level as less-than (greater-than). Type II cen-

soring replaces a known percentage of observations with 

less-than (greater-than). Type I censoring is most common
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to water-quality variables and Type II censoring can be 

found in survival analysis.

Censoring may be complicated even further by multiple 

detection limits. Multiple censoring occurs in primarily 

three ways. First, different analytical techniques (and 

hence different detection limits) may be used as technologi-

cal advances are achieved. Second, different laboratory 

protocols may suggest or require the use of different ana-

lytical techniques (e.g., different tests based on an 

initial specific conductance level). Finally, data sets 

from different sources may be combined for analysis.

Reliability decreases with sample size. Small sample 

size is not a data limitation per se; however, it does 

preclude the use of more sophisticated statistical techni-

ques and reduces the power of statistical tests. Time 

series analysis, for example, is suggested when there are at 

least 50 observations available (Box and Jenkins, 1970 and 

van Latesteijn and Lambeck, 1986).

Erroneous observations should not be included in ana-

lyses. Although quality control/quality assurance programs 

are fashioned to reduce the frequency of erroneous observa-

tions, erroneous observations still occur in data sets.

This largely results from the difficulty in detecting the 

difference between erroneous observations and extreme 

events. The protocols reviewed at the beginning of the next 

chapter support the use of techniques which are robust 

against erroneous observations and extreme events.



WATER-QUALITY DATA ANALYSIS PROTOCOLS

CHAPTER III

Water-quality data analysis has been the subject of 

much research in recent years. Much of the literature 

concerning data analysis is necessarily limited in scope.

As one would anticipate, a complete protocol which incor-

porates all three information goals and accounts for all 

possible data record attributes is not available. There 

are, however, several protocols with a limited scope. The 

first section of this chapter is a water-quality data anal-

ysis protocol literature review. After reviewing these 

protocols, the assumptions and associated logic which have 

been incorporated into the protocols are presented. Final-

ly, protocol framework and development for this study are 

presented.

A. Protocol Review

The first part of this review is centered around the 

work done by the U. S. Geological Survey. They have pub-

lished a series of papers, when grouped together, can form a 

data analysis protocol base. The second part of this review 

focuses on two papers which actually package a data analysis 

protocol. The former is a review and synthesis of
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nonparametric trend tests coupled with a procedure for test 

selection and the later is a protocol directed at all three 

information goals.

A.l U. S. Geological Survey

The U. S. Geological Survey's data analysis work has 

historically centered around surface water hydrology. Their 

emphasis has been towards describing the average and chang-

ing conditions of water quality. The U. S. Geological 

Survey has not been directly involved with evaluating ex-

treme conditions since they are not a regulatory agency. 

Their work has lead to several key references and an in- 

house training program for their employees. The approaches 

identified here have been the result (at least in part) of 

the Systems Analysis Group located at the National Center in 

Reston, Virginia.

A.1.1 Average conditions

To describe the average conditions of water-quality 

variables, Helsel (1987) recommends estimating the central 

tendency and variability of the collected data. The median 

and interquartile range are used for estimates of the cen-

tral tendency and variability, respectively. The interquar-

tile range is defined as the difference between the observa-

tions corresponding to the upper and lower quartiles. These 

results may be displayed graphically with box plots. Box 

plots also contain information regarding symmetry and ex-

treme values (Chambers et al., 1983). Box plots of
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constituent concentration may be made as a function of any 

explanatory variable such as season, year, or location.

A log-maximum likelihood technique is recommended 

(Gilliom and Helsel, 1986) for estimating the median and 

interquartile range when the data are singly censored. The 

mean and standard deviation can be estimated with a log- 

regression technique. This has been recently updated to 

account for multiple censoring. A log-regression technique 

for multiple censoring limits is recommended when the pos-

sibility of "severe non-lognormality" cannot be discounted 

(Helsel and Cohn, 1988). Improved estimation of the median 

and interquartile range can be made by using an adjusted 

maximum likelihood technique (Cohn, 1988) when "severe non- 

lognormality" is not anticipated. A technique for 

estimating confidence limits for single censoring is given 

as well (Gilliom and Helsel, 1986).

A.1.2 Changing conditions

Trend tests are primarily used to evaluate changing 

conditions. Tests are generally oriented towards detecting 

step or monotonie trends. In some cases, the information 

goal may infer which test type is appropriate; however, this 

choice is not always clear. The U. S. Geological Survey 

lists four rules in their lecture notes to follow:

1. Use a step trend test, if there is a distinct event in 

which the data may be viewed as "before" and "after".

2. Do not use a step trend test if there is no a priori 

explanation for a sudden step. The process of visually
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selecting the data sets will bias the results.

3. Use a step trend test if there is a large gap in the 

record. This is probably most appropriate, if we view 

the earlier and later part of the record as snapshots 

and there is likely to be small differences within 

either part of the record. There is nothing wrong; 

however, with applying a monotonic test. A monotonic 

test would be more appropriate, if the trend is thought 

to be a gradual change.

4. For large multi-station studies it is "probably best" to 

use the same monotonic test for all data records. They 

note that this procedure is not optimal for all records, 

but will ease analysis and reporting. This rule is 

demonstrated by a national water-quality trend study of 

the Nation's rivers (Smith et al., 1987).

A.1.2.1 Flow adjustment

Variation due to stream flow should be removed in order 

to detect trends resulting from other causes (Harned et al., 

1981 and Hirsch et al., 1982). For example, constituent 

concentration may be diluted by an increased stream flow 

during a wet year. If this variation due to stream flow 

were not removed, a trend test may indicate a declining 

trend, when in fact, constituent loading to the stream may 

be the same or even increasing. Flow adjustment has been 

demonstrated in surface water quality; however, a successful 

extension to ground water quality has not been found in 

literature. Other constituents may have other controlling
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variables such as solar radiation and temperature for 

biological measurements. It may be reasonable to adjust 

concentrations for other controlling variables.

Harned et al. (1981) demonstrates two discharge compen-

sation techniques. These techniques have not gained wide 

acceptance in the U. S. Geological Survey. Hirsch et al. 

(1982) and Crawford et al. (1983) demonstrate a flow adjust-

ment which has appeared in more recent literature (e.g., 

Smith et al., 1987). Alley (1988) demonstrates an improved 

procedure. To summarize, several general linear models 

(e.g., linear, quadratic, log-linear and log-log) are fitted 

to concentration-flow data. The most appropriate model is 

selected based on residual plots and r̂  values.

A flow adjusted concentration (FAC) is computed as the 

measured concentration minus the predicted concentration 

from the selected linear model. A trend test is then ap-

plied to the FAC data. These procedures are not valid for 

data which contain censored observations, although a sen-

sitivity study could be made to handle a small number of 

censored observations.

A.1.2.2 Trend tests

The Seasonal Kendall tau (Hirsch et al., 1982) and the 

Seasonal Mann-Whitney Rank-Sum tests (e.g., Hirsch and 

Gilroy, 1985) are recommended for monotonic and step trend 

testing, respectively. Both tests are seasonal extensions 

of tests for grouped data. The magnitude of monotonic 

change may be estimated with the Sen slope estimator (Sen,
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1968; Theil, 1950 and Hirsch et al., 1982). The seasonal 

Hodges-Lehmann estimator (Crawford et al., 1983 and Hirsch, 

1988b) can be used for estimating step trend magnitudes.

An extension of the Seasonal Kendall tau test which is 

robust against moderate levels of correlation has been 

proposed (Hirsch and Slack, 1984). Serial correlation, in 

general, is ignored for monthly surface water-quality data 

(Hirsch, personal communication, 1987). As a result, the 

correlated-corrected Seasonal Kendall tau test, is not often 

applied to monthly surface water-quality observations. As 

an alternative, serially correlated data may be collapsed to 

a less frequent sampling scheme (e.g., use the median of 

four weekly observations to create monthly data).

In a recent water-quality trend study. Smith et al.

(1987) demonstrated their analysis procedures using data 

from NASQAN stations. Records subject to laboratory method 

changes were not considered. Average concentrations were 

summarized with estimates of the median, lower quartile and 

upper quartile. All constituents were flow adjusted except 

for trace element data. The Seasonal Kendall tau test was 

then applied to the flow adjusted data. A cause and effect 

analysis compared the statistical association of trends with 

hydrologic and anthropogenic characteristics.

A.2 Nonparametric Trend Test Selection

Berryman et al. (1988) reviewed a number of nonpara-

metric tests for detecting monotonic, step and multi-step 

trends. They have identified many of the trade-offs that



are associated with competing trend tests. Results were 

summarized in table form (Table III.l). Recommendations
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Table III.l Proposed nonparametric tests for trend in 
water quality time series (after Berryman et 
al., 1988).

Data char- Test 
acteristics

Key
Reference

N Minimum*

s 1 N N Mann-Whitney Conover (1980) 5* **
s 1 M N Mann-Whitney Lettenmaier (1976) 20
s 1 N Y Intrablock test Berryman (1984) 12
s 1 Y Y Intrablock test Berryman (1984) ■p
M 1 N N Spearman Conover (1980) 11
M 1 N N Kendall tau Conover (1980) 9
M 1 M N Spearman Lettenmaier (1976) 20
M 1 N Y Intrablock Hirsch et al. (1982) 24 (2/12)
M 1 N Y Aligned tests Farrell (1980) 20 (5/4)
M 1 Y Y Intrablock for Hirsch and Slack 120 (10/12)

persistent data (1984)
M + N Y Analysis of van Belle and Hughes 240 (10/12

variance and 
chi-square test

(1984) /2)

Data characteristics key;

trend type 
(column 1)

number of stations 
(column 2)

correlation 
(column 3)

seasonality 
(column 4)

S - step trend 
M - monotonie trend

1 - one station 
+ - one or more stations

Y - correlated with unknown structure 
M - correlated with Markovian order 1 
N - independent data

Y - seasonal data
N - not seasonal data

* Minimum number of observations to apply method and the 
bracketed terms indicate the number of years of data, the 
number of observations per year and the number of 
stations that has been cited in literature.

**Ten observations are needed to conduct a test with a five 
percent significance level and five observations are 
needed for a ten percent significance level.
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were based on the presence of seasonality, the presence and 

type of correlation structure and sample size. A flow chart 

was presented for selecting the most appropriate monotonic 

trend test.

In order to select the most appropriate monotonic trend 

test, the data are "pre-treated”. First the data are 

detrended and then deseasonalized. They detrended an ex-

ample data set by estimating and subtracting a linear 

regression line fitted to the original data. The detrended 

data are deseasonalized by differencing the data a year 

apart. Correlograms are calculated for data after detrend-

ing and after detrending and deseasonalizing the data. At 

this point, the data are checked for seasonality. It is 

suggested to plot the detrended data set as well as to 

compare the two computed correlograms. The data are sea-

sonal if the detrended and deseasonalized correlogram shows 

less dependence than the correlogram after only detrending. 

It is necessary to check for seasonal trend homogeneity, if 

the data are deemed seasonal. According to Berryman et al.

(1988), it is not necessary to use a formal test (such as 

van Belle and Hughes, 1984); however, a visual inspection is 

necessary.

Data are then checked for serial correlation. If the 

data are seasonal, the correlogram resulting from the 

detrended and deseasonalized data is used. If the data are 

not seasonal, the correlogram resulting from the detrended 

data is used. It is necessary to decide if the data are
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correlated, and if the correlation structure coincides with 

a first order Markov model. A first order Markov model is 

characterized by a significant lag-one correlation coeffi-

cient which decays exponentially to zero with increasing 

lag. The analyst may now use the information regarding 

seasonality, correlation and sample size to select the most 

appropriate monotonic trend detection test according to 

Table II.1. If the sample size is too small, it is not 

possible to do a trend test with that data set.

A.3 Ground Water Quality Data Analysis Protocol

Ward et al. (1988) have presented a ground water- 

quality data analysis protocol which incorporates the three 

water quality conditions important to many routine water 

quality monitoring networks. This protocol has been set up 

so that data analysis may be done with as little as two 

years of quarterly data. They assume from the beginning 

that the data record is derived from a monitoring program 

with an effective quality assurance/quality control program 

in place. The procedures in the following sections have 

been coded for use on an IBM-PC and are available from the 

authors.

A.3.1 Data preparation step

First, the raw data set is adjusted by averaging all 

laboratory duplicates and field replicates so that there is 

one observation per time interval. Collapsing data sets 

with different number of samples will result in different 

variances. Censored observations are replaced by one-half
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the detection limit and blanks are inserted at locations 

where no observations were taken. This procedure can result 

in trends due to changes in detection limits (e.g., multiple 

detection limits). No procedure is recommended for removing 

outliers from the raw data file. This file is referred to 

as the adjusted raw data file.

The adjusted raw data file is transformed into a data 

analysis input file which is of the proper form for subse-

quent statistical analysis. This transformation involves 

three steps. Values are first averaged until there is just 

one observation per quarter. Quarterly observations are 

then assigned sequence numbers for the year and season of 

the observation. A deseasonalized data record is created by 

subtracting seasonal means from the quarterly observations. 

A.3.2 Preliminary graphical evaluation

After preparing a data analysis input file, a graphical 

evaluation is recommended to insure gross violations of 

basic assumptions are not made. Ward et al. (1988) recom-

mend plotting time series plots and annual box plots using 

the adjusted raw data file. The analyst must then select 

(portions of) records for further analysis. Ward et al. 

(1988) point out that record segments should be selected 

based on information goals and the segments should also have 

homogeneous variance and trend.

Ward et al. (1988) recommend visual inspection of the 

time series plot and seasonal box plots and a Kruskal-Wallis 

test at the 90% confidence level to determine seasonality.
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If any one of the three procedures indicate seasonality, the 

deseasonalized data are used for trend analysis.

A.3.3 Changing conditions 

A.3.3.1 Monotonie trend tests

Ward et al. (1988) now consider each information goal 

separately. If the data are seasonal, apply a Kendall tau 

test at the 90% confidence level to the deseasonalized data. 

If the data are not seasonal, the Kendall tau test is ap-

plied to the original quarterly data. In addition, the Sen 

slope estimator is computed and plotted with the original 

quarterly observations.

A.3.3.2 Step trend tests

Ward et al. (1988) describe a medians comparison which 

is similar to step trend detection (described in this docu-

ment) . There are two primary decisions made in selecting 

the appropriate statistical test. Can the data be paired?

If not, are the data seasonal? If the data can be paired, a 

Wilcoxon Signed Rank test is applied at the 90% confidence 

level (80% confidence level if there are only four data 

pairs).

If the data cannot be paired, a Mann-Whitney Rank Sum 

test (90% confidence level) is recommended. The test is 

applied to the deseasonalized data, if seasonality is pres-

ent. Quarterly values are then plotted on the same graph 

with their respective median estimates.



A. 3.3.3 Extreme conditions

The proportion of samples above the standard are com-

puted and plotted with confidence limits. If the data are 

seasonal, the proportion is computed for each season. A 

proportion is calculated for the entire data set, if the 

data are not seasonal.

A. 3.3.4 Reporting

Finally, Ward et al. (1988) propose a clear format to 

summarize the statistical results. The table they presented 

included well identification, data segment descriptions, 

quarterly medians, trend results, compliance results and 

medians comparison results.
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B. Data Record Attribute Handling

The protocols reviewed above have incorporated techni-

ques that address certain data record attributes. Other 

data record attributes have been essentially ignored. The 

purpose here is to review these areas as they pertain to the 

assumptions and logic incorporated into the above protocols.

B.l Statistical Characteristics

B.1.1 Applicable distribution

In general, nonparametric approaches are more robust 

than their parametric counterparts for water-quality data. 

While there are special cases in which parametric approaches 

are statistically better, it is difficult in practice to 

determine when these special cases arise. Most parametric 

procedures make a normality assumption and many
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water-quality data variables are not normally distributed. 

From a practical standpoint, it is not straightforward to 

check for normality. Standard tests (e.g., chi-square 

goodness of fit test) are not robust against non-normality 

for small data sets. Stated in other words, large 

departures from normality are necessary to reject the 

normality hypothesis for small data sets. In addition, 

nonparametric tests perform well (high relative efficiency) 

even under normality conditions.

It should be remembered that there are assumptions 

associated with nonparametric approaches and violation of 

these assumptions can cause misleading results as well 

(Harris, 1988). All three protocols reviewed above have 

abandoned parametric tests.

B.1.2 Variance homogeneity

This issue is only addressed by the ground water proto-

col (Ward et al., 1988). While nonparametric tests do not 

assume normality, an assumption of identical distribution is 

often made. The identical distribution assumption implies 

that the sampled population is not changing over time or 

space. Variance heterogeneity is common in water quality. 

For example, increased stream flow from snow melt will 

typically increase the concentration of sediment carried 

constituents. The increased concentration will likely be 

accompanied by an increase in the variability of 

concentration as well. Ward et al. (1988) recommend visual-

ly examining time series and box and whisker plots and a



Kruskal-Wallis test to check for gross assumption violation 

and selecting homogeneous record parts for further analysis. 

B.1.3 Seasonality

The U. S. Geological Survey and Ward et al. (1988) 

recommend different procedures for handling seasonality.

The ground water protocol recommends deseasonalizing the 

data and applying an aligned test since typical statistical 

packages do not have seasonal (intra block) tests available. 

The U. S. Geological Survey recommends using seasonal (intra 

block) tests regardless of seasonality presence. Van Belle 

and Hughes (1984) demonstrate with asymptotic relative 

efficiencies that aligned monotonic tests are more powerful 

than intra block monotonic tests. This difference is more 

dramatic with shorter data sets (van Belle and Hughes,

1984)

Recent work (Taylor and Loftis, 1989) indicates that a 

Mann-Kendall tau test (aligned) applied to short seasonal 

data records (after the data are deseasonalized) suffer from 

inflated significance levels. Stated in other words, if the 

Mann-Kendall tau test is carried out at the five percent 

nominal significance level, more than five in 100 data sets 

with no trend will be detected as having trend (e.g., false 

positives). If the nominal significance level is adjusted 

so that the Mann-Kendall tau test produces five percent
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 ̂ Asymptotic relative efficiencies are only valid for large 
size. As a result, comparison of shorter data sets is not 
valid.
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false positives, the power of the test is similar to that of 

a Seasonal Kendall tau test for trend (Taylor and Loftis, 

1989) . The process of deseasonalizing the data causes 

uncorrelated time series to have a negative serial 

correlation at lags of integer multiples of the number of 

seasons (Hirsch et al., 1982). As the sample size in-

creases, the level of correlation is reduced (Hirsch et al., 

1984) . This work tends to support the use of intra block 

tests for short data records.

B.1.4 Serial correlation

Serial correlation clearly effects the evaluation of 

all three information goals. Most concern has been directed 

at the effects of serial correlation on trend detection. To 

properly analyze data for trends, it is necessary to discern 

the difference between trend and serial correlation. Two 

methods for dealing with serial correlation have been recom-

mended in the protocols reviewed.

First, a test (Hirsch and Slack, 1984 and Lettenmaier, 

1976) which explicitly handles serial correlation may be 

used. Second, observations may be collapsed by taking the 

mean (Ward et al., 1988) or median (Gilbert, 1987) of data 

groups until the serial correlation has been effectively 

eliminated. Quarterly or less frequent ground water quality 

observations and monthly or less frequent stream water 

quality observations are typically assumed to be indepen-

dent. This finding should be used as a rule of thumb not as 

a fact. There are examples in which this rule of thumb is
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not true. Montgomery et al. (1987), in a survey of the 

quarterly ground water observations, found 20% of the data 

records were serially correlated. Close (1987) found 

monthly correlation as high as 0.87 for some ground water- 

quality variables in New Zealand. Serial correlation in 

lakes would depend on size and retention time.

While there is an appeal that the test recommended by 

Hirsch and Slack (1984) uses all the data available, serial 

correlation estimation is crucial to test performance. 

Applying a test which is corrected for serial correlation to 

independent data results in a less powerful test than an 

equivalent test which is not corrected for correlation. 

Additionally, Hirsch and Slack (1984) and Taylor and Loftis

(1989) indicate that the significance level of the corrected 

Seasonal Kendall tau test is not preserved for short data 

records.

There have clearly been trade-offs made in the proto-

cols reviewed above. Ward et al. (1988) have assumed that 

serial correlation is effectively removed by collapsing 

ground water quality observations to quarterly values by 

taking the mean of more frequently sampled variables. While 

not a fast rule, Hirsch (personal communication, 1987) has 

stated that most analysis by the U. S. Geological Survey of 

monthly stream water quality data is based on the indepen-

dence assumption.

There are two controversial areas. First, the indepen-

dence assumption is not always justified and it is not clear
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which of the two techniques described above most effectively 

handle this problem. Second, is it better to collapse the 

data by taking the mean or the median or should we subsample 

from the original data? These issues are addressed more 

completely in Chapter V.

B.2 Data Limitations 

B.2.1 Irregular sampling

Missing values, multiple observations, and different 

sampling frequencies are not specifically addressed in the 

protocols put forth by the U. S. Geological Survey or 

Berryman et al. (1988). Ward et al. (1988) recommend 

collapsing all ground water observations taken more 

frequently than quarterly by taking the mean. Multiple 

observations (field and laboratory duplicates) are first 

averaged, then values within a given quarter are averaged to 

give one value per quarter. Their procedure eliminates 

associated problems with multiple observations and different 

sampling frequencies. The number of missing values has been 

reduced but not necessarily eliminated.

Statistically, averaging observations will reduce the 

process variance which is a good idea. The number of obser-

vations included in an average value will not, in general, 

be the same, resulting in different variances for different 

values. Many statistical techniques now employed do not 

account for changing variance. The reasons supporting this 

procedure are more practical in nature. Record segments, 

that have been sampled more frequently, will receive more
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weight and vice versa (e.g., sampling bias). Ward et al. 

(1988) elected to ignore the variance homogeneity problem 

and placed more emphasis on equal representation from all 

record segments.

B.2.2 Measurement uncertainty

Measurement error is ignored by all the protocols that 

have been reviewed. Clearly, this is not completely cor-

rect. The degree to which measurement error can be ignored 

is not well defined in the literature. Water-quality meas-

urements are probability statements about a random variable 

and should ideally be reported as an estimate with some 

statement of error or confidence limits (Porter, 1986). 

However, the methodology for effectively handling water- 

quality measurement error is not well established, and 

information to properly handle measurement error is rarely 

available from typical monitoring data sets.

B.2.3 Censoring

With increased attention given to trace organics such 

as pesticides, more and more data records contain censored 

observations. Single censoring does not provide computa-

tional problems for many nonparametric trend tests. Com-

parisons between observations reported as less-than some 

detection limit are simply treated as ties. Replacement of 

censored observations with one-half the detection limit will 

result in the same conclusions from nonparametric trend 

tests which explicitly account for one censoring limit.
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The extension to multiple detection limits has not been 

thoroughly researched for multiple censoring. Hirsch et al. 

(1982) recommended treating all values less than the highest 

detection limit as tied observations. The multiple detec-

tion limit scenario was not explicitly explored by Ward et 

al. (1988). By default, Ward et al. (1988) would recode all 

values as one-half of the corresponding detection limit.

Both alternatives are clearly less than optimal. The latter 

technique (Ward et al., 1988) would result in artificial 

trends for multiple detection limits. Hughes and Millard 

(1988) and Millard and Deverel (1988) have made the most 

recent advances concerning trend detection with multiple 

censoring for monotonic and step trend detection, respec-

tively. They indicated, however, practical limitations to 

their work.

Average condition estimation in the presence of censor-

ing has received recent attention by the U. S. Geological 

Survey (Gilliom and Helsel, 1986; Helsel and Gilliom, 1986 

and Helsel and Cohn, 1988) and concurrent research contained 

herein (see Chapter IV).

B.2.4 Sample size

Berryman et al. (1988) recognize the frequent existence 

or the importance of data sets that are too short for analy-

sis in their flow chart procedure. Economically, the col-

lection of ten years of monthly data may not be feasible.

On the other hand, the application of trend tests to as 

little as two years of quarterly data (Ward et al., 1988)
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may be misleading. These viewpoints lead to a classic 

manager's decision: How much data is enough? The answer, 

unfortunately, cannot really be decided a priori of data 

collection. Water-quality variables which are not seasonal, 

not correlated, etc., will require less data to detect 

changes of a given magnitude than a water-quality variable 

which possess these statistical characteristics.

B.2.5 Outliers

Water-quality variables are highly variable. As a 

result, outliers that are erroneous values are difficult, if 

not impossible, to detect. Nonparametric tests are usually 

based on the ranks of data. As such, anomalous values 

should not dramatically effect the results of nonparametric 

tests. Conversely, nonparametric tests may be less sensi-

tive to large changes in a short period of time.

Procedures for explicitly removing outliers are not 

recommended by Ward et al. (1988) but an active quality 

assurance/quality control program is recommended. A data 

screening program has been used by the U. S. Geological 

Survey (Peters, 1984). The U. S. Geological Survey's 

screening program is based on chemical balances such as 

cation/anion balances and electroconductivity/pH 

comparisons. Nonparametric procedures are preferred by all 

protocols reviewed.
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C. Data Analysis Approaches

In addition to the techniques discussed above for 

handling statistical characteristics and data limitations, 

general data analysis approaches (or more appropriately 

philosophies) have evolved for water-quality variables. 

Trade-offs regarding flow adjustment, data characterization, 

and multivariate analysis are discussed below.

C.l Plow Adjusted Concentration

Water-quality hydrology is often driven by exogenous 

factors such as precipitation, stream flow, temperature, or 

solar radiation. Since the goal of many monitoring networks 

is to assess man's influence on the environment, it may be 

desirable to remove the effects of these factors. This is 

primarily true when estimating water quality changes.

One of the key components of stream water quality is 

stream flow. Increased stream flow may act as either a 

diluting or a flushing agent. If there is a constant mass 

loading to the stream, an increased flow will cause a de-

crease in constituent concentration. On the other hand, the 

concentration of a sediment transported constituent (e.g., 

phosphorous) may increase from an increase flow due to a 

large runoff event which resulted from a high precipitation 

event. In either case, the variation in stream flow has 

hidden man's impact on the environment. The purpose of 

using flow adjusted concentrations is to remove variance 

from a signal, resulting in an increased ability to detect 

trend.
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If the relationship between stream flow and concentra-

tion has not changed, it is appropriate to adjust for stream 

flow since long term changes in stream flow can mask impor-

tant changes in random variable concentrations. The exten-

sion of flow adjustment to ground water or lakes has not 

appeared in literature; however, it may be reasonable to 

relate concentration to water level or change in water level 

with time in either lakes or wells.

C.2 Data Characterization

Appropriate statistical procedures should be selected 

before any data are collected. In addition to this "Catch 

22" situation. Bell and DeLong (1988) note that a protocol 

(or test selection procedure) based on data characteristics 

can result in different procedures for different data seg-

ments or different data records in space. If different 

characteristics require different procedures, results over 

time or space would be difficult to assess. As a result, 

many researchers have abandoned procedures which require 

distribution assumptions or in some cases seasonality as-

sessment .

Hirsch (1988a) does recommend using a priori informa-

tion to anticipate statistical characteristics and data 

limitations. In particular, Hirsch (1988a) suggests that 

the investigator acquires knowledge concerning: Sampling 

frequency, distributional ranges, relationships with other 

variables, seasonality and censoring possibility.



C.3 Multi-Stations Versus Single Station

The public and/or their elected representatives typi-

cally want to know if the water quality is getting worse in 

their area. The answer to this question is unfortunately 

not a straightforward yes or no. Combining information from 

multiple sites is not a trivial problem. Collapsing infor-

mation from multiple sites may result in lost information. 

Collapsing two trends, one increasing and one decreasing, 

may result in an overall no trend. On the other hand, 

evaluation of many trend tests can be rather burdensome.

The protocols reviewed above tend to support analyzing 

one station and one variable at a time (except for spatial 

step trend tests). There are exceptions to this philosophy 

such as van Belle and Hughes (1984). Since it is necessary 

to manage our natural resources on a regional basis, some 

procedure is necessary to delineate area wide information. 

The U. S. Geological Survey, for example, plots triangles 

indicating direction of trend and small circles indicating 

no trend on a map of the study area. Different maps are 

used for different water-quality variable. Trend maps are 

then related to explanatory variables in an attempt to 

relate trends with regional anthropogenic patterns (Smith et 

al., 1987).
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D. Protocol Freunework and Development

The previous sections of this chapter have identified 

and discussed techniques for evaluating average and changing
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water-quality conditions. Many procedures have become 

standard such as the Mann-Kendall tau test, or variations, 

for detecting monotonie trends. Unfortunately, data sets 

that are typically encountered do not always conform to 

"standard" techniques. As a result, it is necessary to 

adjust data sets or techniques for data record attributes.

It is clear that a standard data analysis protocol is needed 

to deal with commonly found attributes. Similarly, it is 

necessary to use a framework in which a defensible protocol 

can be assembled. Key points of a data analysis protocol 

are discussed in terms of information flow for a total 

monitoring program.

D.l Information Flow

The information flow of a monitoring program (Sanders 

et al., 1983 and Ward and McBride, 1986) is adopted as a 

basis for this study (Figure III.l). The flow chart gener-

ality is convenient since the same operational activities 

are used for any information goal. Many of the operational 

activities will only be discussed briefly as they are beyond 

the scope of this study. Yet, it is valuable to understand 

where a data analysis protocol fits into the total monitor-

ing program.

Information goals provide the reasons for monitoring. 

Although network design is not a routine operation (Sanders 

et al. 1983), many of the decisions made at the network 

design stage have ramifications later. It is at the design 

phase where information goals are related to statistical
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NETWORK
DESIGN

INFORMATION |
GOALS I

SAMPLE COLLECTION

LABORATORY ANALYSIS

DATA HANDLING

WATER-QUALITY EVALUATION

Figure III.l Total monitoring program (adopted from Sanders
et al., 1983).

tests and data collection strategies are developed. Data 

collection decisions include where to sample, what water- 

quality variables to sample, how often to sample, what 

analytical techniques should be used, etc. Some of these 

decisions have direct impacts on data analysis. For ex-

ample, if the sampling frequency is high, serial correlation 

will be present which violates the independence assumption
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often made by trend tests. It also at the network design 

phase where data analysis procedures should be selected.

The next activities are sample collection and labora-

tory analysis. For this study, standard sample collection 

and laboratory analysis protocols are assumed. Proper 

quality assurance and quality control programs are assumed 

to be in place as well.

After results are received from the laboratory (data 

handling step), it is necessary to screen the results for 

erroneous values. Gilbert (1987, pl86) recommends screening 

data for identification code errors and checking the data 

for consistency. He has suggested the use of control charts 

in some instances when checking the data for historical 

consistency. Peters (1984) describes a charge balance for 

major ions (Na"̂ , K”̂, Mĝ "̂ , Câ "̂ , NH^, H"̂, Cl’, SO^’, and NO3') 

and a comparison of electroconductivity and pH values as a 

check for consistency. If erroneous values are detected, 

duplicate samples should be analyzed or the station 

resampled. Well coordinated data storage and retrieval are 

vital to an effective monitoring system.

Water-quality evaluation is strongly linked to the 

previous activities. Poor performance at any of the previ-

ous activities may lead to poor results here. Information 

goal evaluation is performed by summary statistic estimation 

and hypothesis testing at this stage. Information reporting 

essentially transforms statistical results from the water- 

quality evaluation step into usable information which is
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acted upon at the management decision step. Reporting 

format has received little attention in the past; however, 

the issue of information transfer is gaining momentum.

D.2 Components of Data Analysis

The data analysis protocols reviewed earlier in this 

chapter suggest that there are five components to water- 

quality data analysis. These components are: Identifica-

tion of information goals and transformation into water- 

quality conditions, data handling, identification of data 

record attributes, water-quality evaluation and information 

reporting. These components are not independent sequential 

steps. Rather each component is highly dependent on each 

other as well as the balance of the total monitoring pro-

gram.

Data record attribute identification is not listed as a 

specific step in the total monitoring program (Figure 

III.l); however, data record attributes have an impact on 

which statistical test is appropriate for analysis. While 

some attributes may be anticipated before data collection as 

suggested by Kirsch (1988a), this is not always the case and 

preliminary data examination may be required.

D.3 Development

To develop a reasonable and defensible protocol, it is 

necessary to use accepted practices and consistent logic. 

Many procedures that have been developed have associated 

trade-offs. In general, the trade-offs are associated with 

robustness and practicality. Ideally, the data analyst
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should use the most robust technique available. This may 

result in the use of multiple procedures or tests. In-

creased analysis complexity is added if a single procedure 

must be selected among a suite of procedures. As an alter-

native, the analyst may use only one procedure which is less 

than optimal in certain instances but never performs poorly 

in all anticipated scenarios.

Water-quality data analysis protocols can be developed 

in several ways. Procedures that have gained wide accep-

tance in literature can be synthesized. There are key 

points agreed on by the protocols reviewed earlier and are 

adopted for this study.

1. Average conditions are often described with median and 

interquartile ranges (graphically displayed as box 

plots).

2. The Mann-Kendall tau test (or variations) are used for 

monotonie trend detection. The Sen slope estimator is 

used for monotonie trend magnitude estimation.

3. The Wilcoxon Signed Rank is used for step trend detec-

tion for paired data and the Wilcoxon Rank Sum (or 

variations) test is used for data which cannot be 

paired.

4. Nonparametric statistics are recommended to avoid prob-

lems of non-normality, potential outliers and the 

associated problems involved with data characterization.

5. Measurement error is ignored.

6. Analyze one water-quality variable at a time.
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Protocols may also be developed via further simulation 

studies. The simulation studies that follow in the next 

three chapters are an attempt to unravel some of the con-

troversy surrounding preliminary data handling. First, 

average condition estimation with censored data is 

addressed. This is a particular problem since more and more 

monitoring efforts will include constituents such as pes-

ticides, trace metals and organics which are commonly found 

near or below the analytical detection limit. This issue is 

complicated with multiple detection limits. Several pro-

cedures have been recommended in previous protocols for 

handling serial correlation and subsequent trend detection. 

The second group of simulation experiments is a comparison 

of these recommended procedures. The third group of experi-

ments addresses the issues of trend detection in the pres-

ence of missing values.

It is clear that not all possible data record attri-

butes and subsequent water-quality conditions scenarios can 

be evaluated herein. The final technique for developing 

protocols is the extrapolation of logic and recommendations 

to those scenarios not specifically covered elsewhere.

While not completely heuristic, this method is less than 

desirable. This method is not used in this study. It 

should be realized that the protocols developed here are the 

beginning and should evolve along with our knowledge of 

water quality, hydrology and statistics.



AVERAGE CONDITIONS— ESTIMATION WITH CENSORING

CHAPTER IV

It is often necessary to describe the average water- 

quality conditions at a particular monitoring station.

Basic statistical summaries of the central tendency and 

variability (of a particular water-quality variable) form a 

basis for average water-quality condition description. 

Central tendency and variability estimates may be compared 

with regulatory standards or summary statistics from other 

nearby stations to evaluate, for example, the effect of 

remedial actions at hazardous waste facilities or best 

management practices used to control nonpoint source pollu-

tion from agriculture. Summary statistics may also be used 

for general reporting as required by law.

Central tendency and variability are most often 

described with estimates of the mean or median and the stan-

dard deviation or interquartile range, respectively. When 

the underlying distribution from which the observations are 

drawn is symmetric, the mean and median produce similar 

results. Water-quality variables are typically skewed to 

the right, and as a result, the mean is not a good estimate 

of the central tendency (Sanders et al., 1983 and Helsel, 

1987). The previously reviewed protocols tend to support



the use of the median and interquartile range. There are 

instances for which estimates of the mean and standard 

deviation are used. Common applications include deseason- 

alizing data, old reporting formats or control chart con-

struction.

Basic summary statistic estimation is complicated with 

both single and multiple censoring. The following simula-

tion is a comparison of different techniques which have been 

used to alleviate the censoring dilemma. Simulations for 

single and multiple censoring were performed separately. 

However, the simulations are presented together since the 

procedures and analyses are similar.
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A. Simulation Methodology

Data sets with known population summary statistics 

(mean, standard deviation, median and interquartile range) 

are generated from a variety of parent distributions using 

procedures similar to those of Gilliom and Helsel (1986). 

Several modifications to their procedures are noted in 

Appendix A, along with a more detailed discussion of the 

data generation procedure. Artificial levels of censoring 

are then incorporated into the data sets. At this point, a 

variety of estimation techniques are applied to each data 

set. Performance is judged by evaluating the root-mean- 

squared-error (rmse) and bias of each estimation technique. 

The rmse and bias for the mean are calculated as
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rmse = N-1
N
S
i=l

Xi - M

M

0.5
IV. 1

and

bias = N
N
S

i=l

Xi - M
IV. 2

where x̂ , ¡ i and N are the estimate of the mean for the ith 

data set, the true mean of the underlying distribution and 

the number of data sets simulated, respectively. Rmse and 

bias terms may be calculated for other summary statistics by 

substituting the estimated and true statistic for Xi and jU, 

respectively.

Next simulation results are summarized for the purpose 

of eliminating techniques which are not robust. The objec-

tive here is to determine which estimation techniques should 

not be used for estimating summary statistics from water- 

quality data records. Since the selection of the simulation 

parameters may be biased, it is necessary to evaluate tech-

nique performance over a wide range of scenarios— not just 

the scenarios selected for simulation.

To help determine which techniques are not robust, a 

general linear model is fitted to the rmse for each summary 

statistic. The independent variables used in the model are 

coefficient of variation, censoring, sample size, technique 

and distribution (e.g., all simulation parameters). Rmse



will be summed for each technique and summary statistic 

using the raw simulation data and the general linear model. 

The rmse for the general linear model will be summed over 

all valid regions of the model (but not outside simulated 

regions), in essence a numerical integration of rmse and 

perfect estimation (e.g., rmse equal to zero). Techniques 

with large total rmse will not be considered further.

Techniques are then eliminated to reduce redundancy of 

suitable techniques. (e.g., If technique A is suitable for 

a portion of conditions and technique B is suitable for a 

larger range of conditions, including those for which tech-

nique A is suitable, it is reasonable to eliminate technique 

A.) A technique performing within an allowable rmse toler-

ance of the best technique for a given set of conditions 

will be considered a suitable technique for that set of 

conditions as well. If multiple techniques still exist, 

criteria (possibly heuristic in nature) for selecting one 

technique over the other will be established.
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B. Analyses and Results

Five hundred data sets were generated for each set of 

simulation conditions. The parameters considered in this 

simulation were applicable distribution, coefficient of 

variation, sample size and censoring (Table IV.1 and IV.2). 

Each combination of parameters in Table IV.1 and IV.2 were 

considered in this simulation.
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Table IV.1 Levels of distribution, coefficient of varia-
tion, and sample size considered in average 
condition estimation with censoring simula-
tion.

Distribution Coefficient 
of variation

Sample
size

Normal 0.25 8*
Lognormal 0.50 12
Gamma 1.00 24
Mixed Lognormal 2.00 36
Delta 48

* A sample size of eight was not used for multiple 
censoring.

Table IV.2 Levels of censoring considered in average 
condition estimation with censoring 
simulation.

Single censoring 
scheme

Multiple censoring scheme

all data cen- one-third of data set is censored at
sored at each of the following levels

0.2 0.15 0.20 0.25 0.40 0.50 0.60
0.4 0.35 0.40 0.45 0.20 0.50 0.80
0.6 0.55 0.60 0.65 0.20 0.85 0.80
0.8 0.75 0.80 0.85 0.80 0.60 0.70

0.80 0.15 0.20 0.30 0.40 0.20

Numerous techniques for estimating the summary statis-

tics were found in the literature. The techniques used in 

this simulation are summarized in Tables IV.3 and IV.4. In 

general the same technique was used to estimate all summary 

statistics with the exception of Techniques B and D. Based 

on analyses described later, it was found that Techniques B 

and D did not work well for estimating the mean of singly or 

multiply censored data. It was opted to estimate the
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Table IV.3 Techniques chosen for estimating average 
conditions for single censoring.

Code Ref Description of technique

A 2 Do not censor observations
B* 1 Replace censored observations with zero
C 2,4 Replace censored observations with one-half of

the detection limit
D* 1 Replace censored observations with the detection

limit
E 1 Replace censored observations with numbers

uniformly distributed from zero to the detection 
limit with Xi = dl (i-l)/(NC-l) where Xi, dl, 
and NC are the ith censored observation, the 
detection limit, and the number of censored 
observations; if NC is 1, let Xi equal one-half 
of the detection limit

F 2 Replace censored observations with uniform
random numbers from the interval [0.0, dl]

G 1 Fit a normal regression curve to the uncensored
observations, extrapolate to the censored 
observations, and adjust all negative values to 
zero (for plotting position, see Gilliom and 
Helsel, 1986)

H 1 Fit a normal regression curve to the natural
logs of the uncensored observations, extrapolate 
to the censored observations, and then back 
transform (for plotting position, see Gilliom 
and Helsel, 1986)

I 1,5 Normal maximum likelihood
J 1,3,5 Lognormal maximum likelihood
K 1,3 Delta distribution assumption
L 2,6 Linear estimator for normal distribution
M 2,6 Linear estimator for lognormal distribution 
N Replace censored observations with numbers

uniformly distributed from zero to the detection 
limit with Xi = dl (i)/(NC+l)

0 7 Trimmed mean (the percentage of values trimmed
on both sides of the ordered observations was 
equal to the percentage censored)

P 7 Winsorized mean and standard deviation
Q Fit a normal regression curve to the natural

logs of all observations using a maximum- 
likelihood technique (Wolynetz, 1979b) which 
incorporates censored observations, 
extrapolate to the censored observations, and 
then back transform

The standard deviation for Techniques B and D were 
estimated using a mean estimate from Technique C.
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Table IV.4 Techniques chosen for estimating average 
conditions for multiple censoring.

Code Ref Description of technique

A 2 Do not censor observations
B* 8 Replace all censored observations with zero
C 8 Replace censored observations with one-half 

their respective detection limit
D* 8 Replace censored observations with their 

respective detection limit
E Replace censored observations with numbers 

uniformly distributed from zero to the detection 
limit with Xi = dl (i-l)/(NC-l) where x̂ , dl, 
and NC are the ith censored observation, the 
detection limit, and the number of censored 
observations for each detection limit

F 8 Replace censored observations with numbers 
uniformly distributed from zero to the detection 
limit with Xi = dl (i)/(NC+l) for each detection 
limit

G 8 Fit a normal regression curve to the natural 
logs of the uncensored observations, extrapolate 
to the censored observations, and then back 
transform (for plotting position, see Helsel and 
Cohn, 1988)

H Fit a normal regression curve to the natural 
logs of all observations using a maximum- 
likelihood technique (Wolynetz, 1979b) which 
incorporates censored observations, 
extrapolate to the censored observations, and 
then back transform

I 8,5 Normal maximum likelihood
J 8,5,3 Lognormal maximum likelihood

The standard deviation for Techniques B and D were 
estimated using a mean estimate from Technique C.

Reference Key (applicable for Tables IV.3 and IV.4)

1 Gilliom and Helsel (1986)
2 Porter (1986)
3 Aitchison and Brown (1957)
4 Ward et al. (1988)
5 Wolynetz (1979b)
6 Persson and Rootzen (1977)
7 Gilbert (1987)
8 Helsel and Cohn (1988)
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standard deviation (for Techniques B and D) using the 

estimated mean from Technique C (one-half censoring limit 

substitution).

Rmse and bias were computed for each simulation. A 

typical output is shown in Table IV.5. (The output file was 

edited for presentation purposes.)

B.l Nonrobust Technique Elimination

Before fitting a linear model to the rmse simulation 

data, the simulation data were scanned to eliminate 

techniques which have extremely high rmses. By eliminating 

techniques which performed poorly, the linear model should 

have a better fit. Rmse was averaged for a given simulation 

parameter such as different censoring levels. The 

techniques were then ordered from lowest to highest average 

rmse. This process was repeated for different levels of 

sample size and coefficient of variation. These tables were 

visually reviewed to detect techniques which did not perform 

well.

As noted by Gilliom and Helsel (1986), technique 

performance did not change drastically relative to other 

techniques. In other words, a technique which performed 

well for a certain set of simulation conditions would 

perform well for many simulation conditions as compared to 

the performance of other techniques. The same pattern (as 

reported by Gilliom and Helsel (1986)) is noted in this 

study with a few exceptions. These exceptions are 

summarized below.
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Table IV.5 Selected simulation results that are typical 
of the generated output.

INITIAL SIMULATION PARAMETERS
DISTRIBUTION ID....
GAMMA DISTRIBUTION 
DISTRIBUTION MEAN... 
PERCENTILE CENSORED.
CV..................
LIMIT OF DETECTION.. 
SAMPLE SIZE........

1.00000
0. 2 0 0 0 0
1.00000
0.22314

8

COMPUTATION OF BIAS AND RMSE
MEAN
TECH BIAS RMSE

STDV
TECH BIAS RMSE

A -0.00563 0.34693 A -0.09587 0.41639
B -0.02697 0.35484 B -0.07318 0.40858
C -0.00426 0.34691 C -0.09772 0.41639
D 0.01844 0.34101 D -0.12066 0.42506
E -0.00426 0.34691 E -0.09639 0.41546
F -0.00448 0.34674 F -0.09694 0.41641
G -0.01732 0.35109 G -0.08514 0.41948
H 0.02175 0.34967 H -0.12718 0.43233
I -0.12777 0.39886 I 0.06952 0.51498
J 0.23229 0.58673 J 1.55648 4.06718
K 0.01823 0.38811 K 0.12670 0.65181
L -0.21554 0.39937 L 0.13283 0.56508
M 0.12813 0.47197 M 1.08786 2.22979
N -0.00426 0.34691 N -0.09748 0.41621
0 -0.12986 0.38384 0 -99.99000 -99.99000
P -0.11630 0.38292 P -0.11879 0.58152

MEDIAN
TECH BIAS RMSE

IQR
TECH BIAS RMSE

A 0.10020 0.51939 A 0.83271 1.19815
B 0.09302 0.52915 B 0.91461 1.25818
C 0.09784 0.52241 C 0.84250 1.20401
D 0.10267 0.51653 D 0.77038 1.15601
E 0.10235 0.51696 E 0.79925 1.17217
F 0.09806 0.52203 F 0.84315 1.20408
G 0.09913 0.52387 G 0.87166 1.23353
H 0.10690 0.51565 H 0.73813 1.12605
I 0.25836 0.60323 I 1.08054 1.46727
J -0.06488 0.38955 J 0.43064 0.70556
K -0.04453 0.45437 K 0.25217 0.51492
L 0.07732 0.43536 L 1.20375 1.60489
M -0.14123 0.40036 M 0.40150 0.68763
N 0.10061 0.51896 N 0.82751 1.19236
0 -99.99000 -99.99000 0 -99.99000 -99.99000
P -99.99000 -99.99000 P -99.99000 -99.99000
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Techniques which typically performed poorly for a given 

summary statistic would perform well (relative to other 

techniques) for a coefficient of variation equal to 0.25. 

Techniques J and M, L and I and L performed well (relative 

to other techniques) for estimating the mean, median and 

interquartile range, respectively, for low to moderate 

levels of single censoring. Technique J performed well 

(relative to other techniques) for estimating the mean and 

standard deviation with low to moderate levels of multiple 

censoring. Technique D (relative to other techniques) 

performed well for estimating the median with moderate 

levels of multiple censoring. In all cases, there was an 

alternative technique which performed as well as these 

techniques.

For presentation purposes, all simulation conditions 

were averaged together for a specific summary statistic 

(Table IV.6). The order of technique performance in Table

IV.6 was similar to those of individual simulation parame-

ters with the exceptions noted above.

Technique i+1 (and those with higher rmse) were elimi-

nated from further consideration if the percentage increase 

in rmse from technique i to technique i+1 (in Table IV.6) 

was greater than a given critical percentage. The critical 

percentage was selected by plotting rmse as a function of 

technique. These plots were characterized by three distinct 

parts. Rmse was found to rise quickly for the first couple 

of techniques. This results from a comparison with the best
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Table IV.6 Analysis of all raw data— average rmse for 
all simulations.

Single censoring

MEAN STDV MED IQR

A . 2 2 2 A .367 A .272 M .821
P .239 Q .444 J .298 J .829
0 .242 H .448 M .319 D .860
N .268 D .453 N .351 H 1.044
C .268 C .456 E .357 A 1.169
E .268 N .471 C .378 C 1.511
F .274 G .486 F .449 G 1.599
Q .283 F .487 H .451 N 1.602
H .295 E .490 D .507 E 1.644
G . 309 P .583 G .535 F 1.710
D .368 B .742 B .677 K 2.242
B .420 L .899 K .698 B 2.467
K .443 K 1.017 L! 1.624 L! 3.621
L! .847 I 1.310 I! 2.928 I! 3.820
M! 1.429 M! 2.999
Ji 1.903 J! 3.219
I! 2.343

Multiple censoring

MEAN STDV MED IQR

A . 195 A .342 A .232 D .618
H .229 H .410 J .246 J .875
G .234 G .422 H .308 A 1.053
C .237 C .431 G .314 G 1.178
F .237 F .451 F .320 H 1.224
E .238 D .464 E .330 C 1.371
D! . 353 E .505 C .374 F 1.514
B! . 396 B .662 DI .649 E 1.740
J! 1.454 I! 1.074 B! .675 B! 2.628
I! 1.513 J! 2.333 I! 1.838 I! 3.340

These techniques were eliminated from further 
consideration due to high rmse.

overall technique (usually "no censoring"). The second part 

of these plots consisted of a gradual increase in rmse, 

followed by a sharp increase in rmse. A critical percen-

tage, 40 percent, was chosen to eliminate techniques with
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sharply increasing rmse which occurred in the latter portion 

of these plots. Two to four techniques were eliminated for 

each simulation. In addition to eliminating poor performing 

techniques, one also notices from Table IV . 6  that "no cen-

soring" (technique A) is the best overall technique for 

estimating the mean, standard deviation and median.

The simulation data were fitted with a general linear 

model using SPSS. Typical input files are shown in Appendix 

B (see Figures B.l and B.2). The linear model included all 

second order terms for coefficient of variation, sample size 

and censoring level and interaction terms for technique and 

distribution. In general, the model can be written as 

follows:

rmse = A X IV.3

where

A = [ ao. ai. 32 / 3 3 , a^, aj, as/ a;.

X = [ 1 . 0 , ĉ , ss, p, c^ss. c^p, ssp

ao = ao + 3j + 3̂  + aJ-\

» 1 = ai + ai + ai/

^ 2  = 32 + a2 + â  and

as = 33 + 3̂  + ai.

.2 , T

X is the covariate vector where c^ is the coefficient of 

variation, ss is the sample size and p is the censoring 

level. The censoring level for multiple censoring is
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defined as the weighted average of censoring levels. The 

first four terms of the coefficient vector, A, incorporate 

distribution and technique factors. In general, ^  is 

composed of an overall constant, ag; a distribution factor, 

aj; a technique factor, ag and a distribution-technique 

interaction factor, ao’-̂. Similar definitions can be devel-

oped for a_2 and ag. The indices i and j refer to the 

distribution and technique used in the model, respectively. 

The choice of a second order model was partially based on 

the rmse levels reported by Gilliom and Helsel (1986). In 

their study, all rmse plots could be described with a second 

order model. It would be desirable in this study to use a 

third order model and to statistically demonstrate that none 

of the third order terms are significant. However, it was 

not possible to include higher order terms due to storage 

limitations of the mainframe computer. The storage limita-

tion problem resulted from the large number of interaction 

terms.

A backwards step-wise process was used to eliminate 

insignificant terms (90% confidence level) until a parsim-

onious model was developed. The resulting coefficients are 

reported in Tables B.la through B.lh. Coefficients reported 

as 0 . 0  correspond to covariates or factors that were not 

significant at the 90% confidence level.

The general linear model described above is not neces-

sarily the most appropriate model to describe rmse for all 

summary statistics. For example, one would expect that the



61

nnse for mean estimation would be inversely proportional to 

the square root of sample size. To check the adequacy of 

the selected general linear model, residuals were computed 

as the raw simulation rmse minus the general linear model 

rmse. Residuals were plotted as a function of coefficient 

of variation, sample size, censoring and distribution for 

each estimation technique. It was found that the residuals 

were zero mean (as expected by definition) and constant 

variance for various levels of simulation parameters. The 

residuals were also examined to consider the adequacy of the 

selected model. A curved residual plot would have indicated 

that the selected model was not satisfactory to describe the 

rmse surface, and a different model would be necessary.

Based on visual inspection of scatter plots, there was no 

visable (to very little) curvature in the residual plots.

There were two exceptions to the generalization for 

variance homogeneity. First, there was occasional hetero- 

cedasity with respect to coefficient of variation. Some of 

the residual plots tended to have a larger variance for 

larger levels of coefficient of variation. Second, there 

were a few cases in which the residuals were heterocedastic 

with respect to technique. These techniques were charac-

terized as techniques which had high rmse from Table IV.6 , 

but had not been eliminated with the criterion developed for 

evaluating the raw simulation data. Both features were 

attributed to techniques that did not perform consistently 

over a wide range of conditions and contributed a great deal
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to the overall model variance. However, there was no con-

sistent pattern that could be discerned. It was opted to 

continue with the model developed thus far recognizing some 

model fitting violations as opposed to creating a unique 

model for each summary statistic.

Response surfaces were made in the following way since 

it is difficult to display or visualize a model with more 

than two independent variables. For a given plot, distribu-

tion and sample size were held constant and censoring level 

and variability were allowed to vary over the simulated 

range. Rmse was computed at discrete points for each tech-

nique across the surface. The censoring level varied from 

zero to one and the coefficient of variation varied from 

zero to two, both in steps of 0.05. Multiple plots were 

made varying distribution and sample size. Sample size 

varied from eight to 48 in steps of four, and distribution 

varied across all five parent distributions listed in Table 

IV.1. Rather than contouring rmse, the technique code with 

minimum rmse was plotted. Figure IV.1 is a selected example 

displaying this technique. The "no censoring" technique is 

not included in these figures since retroactive uncensoring 

is not a feasible scenario.

The rmse can be evaluated with the general linear 

model. Since the linear model represents a more complete 

range of possibilities, it is reasonable to use the model to 

evaluate rmse in the same manner that the raw simulation 

results were analyzed in the preliminary scan.
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Figure IV.1 Selected rmse response surface displaying 
output from the analysis of a general linear 
model.

Rmse values in Table IV.7 are averaged over the range 

for which the technique was valid. Rmse values were com-

puted for Table IV.7 in the following manner. A systematic 

grid which encompasses all simulation conditions was 

selected. The rmse was computed for each grid point was 

computed. All rmses were summed for all feasible grid 

points. (Techniques O and P are applicable only when less 

than one-half of the data are censored.) It was opted to 

divide the sum by the number of grid locations, producing an 

average rmse which would be more comparable to the results 

in Table IV.6 . In Figure IV.1, each character in the
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Analysis of general linear model— average 
rmse for all valid regions.

Single censoring

MEAN STDV MED IQR

A .228 A .440 A .301 M .595
P .240 H .514 J .322 J .596
0 .250 D .520 M . 347 D .652
N .277 C .523 N .383 H .773
C . 277 Q .526 E .385 A .903
E .277 N .537 C .402 C! 1.224
F .282 F .547 F! .475 N! 1.300
Q .292 E .551 H! .479 Gi 1.308
H .304 G .558 G1 .564 E! 1.355
G .316 P! .718 D! .571 F! 1.409
D! .383 B! .783 B! .697 K! 1.946
B! .420 L! .993 K! .717 B! 2.127
K! .441 K! 1.073

I! 1.609

Multiple (censoring

MEAN STDV MED IQR

A .224 A .323 A .281 D .590
H .266 H .385 J .299 J .801
G . 271 G .398 H .355 A 1 . 0 0 0

C .271 C .401 F .367 G 1.077
F .271 F .413 G .369 H 1.128
E .272 D .443 E .383 C 1.268

E .465 C .411 F 1.390
B! . 604 E! 1.656

! These techniques were eliminated from consideration due 
to a high rmse from the general linear model analysis.

response surface represents a grid location. In all, 47,355 

grid locations were selected for computing the average rmse 

for each summary statistic.

For actual application, it is necessary to know what 

the most appropriate technique is for a given set of condi-

tions. Table IV.7 does not provide this information. As 

with any summary of this data. Table IV.7 may be biased to
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the particular choice of simulation conditions. However, 

presentation of all simulation data would result in an 

unmanageable table.

Techniques were now eliminated based on a critical 

percentage of 15 percent using the same reasoning that was 

developed for technique elimination earlier. One should 

notice that the order of technique performance in Table IV . 6  

and IV.7 is similar. In some cases, the absolute values of 

the rmse are different between the two tables. This is not 

surprizing since the average rmse computed in Table IV . 6 is 

based on selected simulation conditions, perhaps introducing 

some bias. The purpose of the preliminary scan used in 

Table IV . 6 was to eliminate techniques with the highest rmse 

(e.g., techniques that should always be avoided) so that the 

general linear model would fit better. If a more strict 

rule were used for technique elimination in Table IV.6 , the 

same techniques would be eliminated as were eliminated in 

Table IV.7. This corraboration tends to support the use of 

either analysis procedure.

A number of techniques have been eliminated at this 

point. Many of the decisions have been based on corrabora- 

tive evidence from analyzing the raw simulation data as well 

as the linear model. The objective thus far has been to 

remove techniques which should be avoided (techniques that 

are not robust). This philosophy follows the same premise 

behind the preference of nonparametric statistics. While 

there are certain instances where one of the eliminated
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techniques performs well, it would be difficult, in prac-

tice, to determine when these cases arise. On the other 

hand, incorrectly selecting techniques that are not robust 

may result in large errors. The remaining techniques do 

perform well over a wide range of conditions.

B.2 Robust Technique Elimination

I opted to refit the linear model to the raw simulation 

data. The raw simulation data developed for the eliminated 

techniques as well as the raw simulation data for the "no 

censoring" technique were not used since it was desired to 

develop a more sensitive model. In addition to the techni-

ques eliminated above, techniques that are computationally 

equivalent were eliminated. Techniques E and N for mean 

estimation with single censoring and technique F for mean 

estimation with multiple censoring will not be considered 

further since these techniques provide the same mean es-

timate as technique C; however, either technique E or F 

would be a suitable replacement for technique C. The linear 

model (Equation IV.3) was fitted to the remaining simulation 

data using the backwards step-wise regression described 

previously. The resulting coefficients are reported in 

Tables B.2a through B.2h.

Average rmse values were recomputed using the refitted 

general linear model coefficients (Table IV.8 ). Results are 

similar to the values reported in Table IV.7 except for 

standard deviation and interquartile range estimation with 

single censoring. This is due to the techniques included in
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Analysis of refitted general linear model- 
average rmse for all valid regions.

Single censoring

MEAN STDV MED IQR

p .241 Q .410 J .333 M .796
0 .251 H .415 M .351 J .797
c .275 D .419 N .381 D .833
F .281 C .422 E .390 H .998
Q .291 N .433 C .401
H .302 F .447
G .315 G .448

E .449

Multiple (censoring

MEAN STDV MED IQR

H . 265 H .392 J .311 D .586
G . 270 G .405 H . 371 J .812
C .271 C .408 G .376 G 1.082
E .272 F .421 F .385 H 1.133

D .449 E .400 C 1.271
E .472 C .431 F 1.395

the previous model with excessively high rmse that were not 

eliminated in the preliminary scan. The residuals were 

rechecked for model adequacy. As expected, the overall 

residual variance for each summary statistic either 

decreased or remained approximately the same, which indi-

cated a better fit to the raw simulation data for the 

remaining techniques. Variance heterocedasity was decreased 

in most instances although not completely removed.

B.2.1 Technique by technique comparison

Techniques are now compared, one to another, for each 

summary statistic. It was desired to remove techniques that 

were consistently worse than another technique. This does 

not imply that the techniques eliminated in this section
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performed poorly. Rather this was to reduce the number of 

competing techniques when performance was nearly the same. 

Response surfaces were developed to compare two techniques 

at a time. The technique with lower rmse was recorded at 

each grid point and the total number of grid points were 

summed. Rmse values from two different techniques within 5% 

were considered equal. The same comparison was made with 

the raw simulation data where the number of grid points 

summed is replaced by the number of simulations.

It was hoped that similar corraborative evidence bet-

ween the evaluation of the raw simulation data and the 

general linear model would occur. While complete super-

iority between techniques did not occur often, superiority 

was detected usually with the raw simulation data. In some 

cases the general linear model evaluation did not support 

the evaluation of the raw data. I opted to use the results 

from the raw simulation data as the primary decision tool. 

Only results that lead to technique elimination are reported 

(Table IV.9).

There were two interesting features that were noticed 

when visually examining the response surfaces generated by 

the general linear model. First, maximum likelihood estima-

tion techniques did not perform well when there was an 

extremely high level of censoring. This was clearly demon-

strated when simple substitution techniques (such as techni-

que C) worked better for high censoring levels. This was 

attributed to the algorithms used for maximum likelihood
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Table IV.9 Rmse comparison for techniques which result 
in technique elimination.

Comparison description Raw data comparison

Linear model comparison

< > = n/c

mean, single censoring, comparison 
of techniques C and F (F elimin-
ated)

22.9 0 . 0 75.8 1.3

56.1 40.0 0 . 0

standard deviation, single censor- 
ing, comparison of techniques N 
and F (F eliminated)

28.2 0 . 8 69.7 1.3

43.8 0 . 0 56.2

interquartile range, single cen- 
soring, comparison of techniques 
J and H (H eliminated)

92.4 1 . 8 4.5 1.3

77.9 8 . 1 14.0

mean, multiple censoring, compar- 
ison of techniques C and E (E 
eliminated)

7.8 0.9 87.6 3.7

8 . 2 0 . 0 91.8

standard deviation, multiple cen- 
soring, comparison of techniques 
H and G (G eliminated)

15.5 0.7 80.1 3.7

39.6 35.5 24.9

interquartile range, multiple 
censoring, comparison of tech-
niques D and G (G eliminated)

87.0 2 . 1 7.2 3.7

64.8 18.1 17.1

interquartile range, multiple 
censoring, comparison of tech-
niques J and G (G eliminated)

90.3 4.3 1.7 3.7

58.4 27.6 14.0

interquartile range, multiple 
censoring, comparison of tech-
niques D and H (H eliminated)

88.4 1 . 6 6.3 3.7

6 8 . 1 15.3 16.6

Technique comparison is based on the percentage of time 
the rmse of the first technique listed is less than 
(column 1 ), greater than (column 2 ), or equal to (column 
3) the rmse of the second technique listed in the 
description. Rmse was considered equal when the rmse 
from the two techniques is within five percent of each 
other. The last column is the percentage of times it 
was not possible to make a comparison of techniques.
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which would not converge to realistic solutions. This 

suggests that one should not completely rely on maximum 

likelihood techniques.

Second, lognormal probability techniques (Q for single 

censoring and H for multiple censoring), which use a maximum 

likelihood technique for fitting a linear regression line to 

all data appear to work better than the techniques (H for 

single censoring and G for multiple censoring) which only 

use the uncensored observations to fit the linear regression 

line for higher censoring levels. Poor standard technique 

performance was attributed to extrapolating linear regres-

sion lines to censored observations based on only a few 

uncensored observations. The number of uncensored observa-

tions below each detection limit also appeared to give 

additional advantage to technique H for multiply censored 

data. The non-convergence problem associated with maximum 

likelihood techniques was a problem for technique H (single 

censoring) and technique G (multiple censoring) at high 

censoring levels as well.

B.2.2 Technique selection

So far the analysis has proceeded on the premise of 

eliminating techniques which are not robust or do not appear 

to perform any better than another available technique. Now 

an alternative approach is taken. How many and which tech-

niques are necessary to adequately estimate the summary 

statistics? There are two extremes. First, only use the 

best technique that is listed in Table IV . 6 and IV.7. Or



second, use all of the techniques that have not been elimi-

nated. The former is more easily implemented, but may 

result in poor performance for a specific set of conditions. 

The converse is true for the latter extreme.

There were several ways to approach this problem.

After some trial and error, this analysis proceeded as 

follows. An average rmse was computed from the general 

linear model assuming that one has chosen to use the best 

technique available from those remaining (e.g., use the best 

technique available). This resulted in an optimal rmse. A 

ten percent rmse range was computed using the optimal rmse 

as the lower limit (Table IV.10). All technique combina-
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Table IV.10 Optimal rmse computations assuming the use of 
all techniques that have not been eliminated 
and the computed rmse range.

Rmse range
Censoring Summary statistic Optimal Upper
type rmse limit

Single Mean .242 .266
censoring Standard Deviation .371 .408

Median .281 .309
Interquartile Range .604 .664

Multiple Mean .255 .281
censoring Standard Deviation .342 .376

Median .253 .278
Interquartile Range .462 .508

tions (up to three) which fall within the rmse range were 

considered as acceptable alternatives. After reviewing the 

list of acceptable combinations, it was noted that two 

techniques could meet the criterion established in Table



IV.10 for the mean, standard deviation and median estima-

tion. More than two techniques were needed to meet the 

interquartile range estimation. To maintain simplicity, 

only two techniques were selected for interquartile range 

estimation as they were less than 15% above the optimal rmse 

value.

B.2.3 Recommended techniques

In many instances, the criteria established above 

reduced the number of acceptable choices to two or three 

combinations. Final recommendations are summarized in Table 

IV.11. The best overall technique (Tables IV.6 and IV.7)
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Table IV.11 Technique recommendations for summary
statistic estimation.

Censoring
type

Summary statistic Technique
recommendations

Single Mean CH or NH
Standard Deviation QN
Median JM
Interquartile Range MJ

Multiple Mean HC or HF
censoring Standard Deviation HF

Median JF
Interquartile Range DJ

was selected as one of the two techniques selected except 

for mean estimation with single censoring. In this case. 

Techniques C and H performed as well as Technique P and any 

other technique. Additionally, Technique P is only valid 

for censoring levels less than 50%. The second technique 

was selected based on which technique compliments the first
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technique (reduces rmse) the most. In instances were the 

second techniques were equivalent, the second technique was 

selected so as to reduce the overall number of different 

techniques used throughout the protocol.

There are several reasonable alternatives to those 

listed in Table IV.11. Technique N (F) may be substituted 

for technique C for mean estimation and single (multiple) 

censoring. Techniques which use a log-regression extrapola-

tion procedure are similar to each other. In this study, 

the procedure which was modified after Wolynetz (1979b) 

appears to perform better than the original procedure 

described by Gilliom and Helsel (1986) for multiple 

censoring although the difference is small. A clear choice 

is not apparent for single censoring. The Wolynetz modified 

procedure requires more time to compute than the original 

procedure. This study did not develop a benchmark to com-

pare computational time. However, it is reasonable to 

suspect that data sets with a high level of censored obser-

vations would reqire more time for the algorithms to con-

verge than data sets with few censored observations. In 

some instances this difference in computation time may 

justify the use of the original procedure instead of the 

modified procedure.

Finally, the detection limit substitution technique is 

recommended for interquartile range and multiple censoring. 

As noted by Gilliom and Helsel (1986) and Helsel and Cohn 

(1988), this procedure produces a biased estimate of the



interquartile range and was confirmed in this study (results 

not reported). However, based on the criteria developed in 

this chapter, this procedure does perform well (low rmse).

In some instances, estimates of sample statistics do not 

provide good (unbiased) estimates of population statistics. 

The biased estimates reported by Gilliom and Helsel (1986) 

and in this study indicate that the sample interquartile 

range is a biased estimate of the population interquartile 

range. I am somewhat cautious about the use of the detec-

tion limit substitution recommendation and suggest careful 

review before applying the detection limit substitution 

technique to data sets since results may be biased.
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C. Criteria for Selecting Appropriate Technique

Two techniques have been recommended for each type of 

summary statistic estimation problem identified in this 

study. A criteria is now developed to resolve which techni-

que should be used for a given data set.

Gilliom and Helsel (1986) recommended using the rela-

tive quartile range for classification of singly censored 

data sets. The extrapolation of this technique to the 

multiply censored data sets may be reasonable; however, this 

procedure was not tested. In lieu, estimation of the coef-

ficient of variation is recommended for deciding which 

technique is most appropriate.

For a given data set, the censoring level and sample 

size can be determined directly from the data set. It is



recommended to make an initial estimate of the coefficient 

of variation (of the population) using the first technique 

listed in Table IV.11. Based on the initial coefficient of 

variation estiamte, Figure IV.2 and IV.3 may be consulted to 

determine which technique should be used for final summary 

statistic estimation. No attempt is made to incorporate 

distribution estimation into the technique selection proce-

dure. Figures IV.2 and IV.3 are a summary of the response 

surfaces from the linear model, comparing the two recom-

mended techniques. The results (in Figures IV.2 and IV.3) 

were compared to the raw simulation data and were found to 

be comparable. Several of the response surfaces in Figures 

IV.2 and IV.3 have two lines separating technique choices 

that are marked with a corresponding sample size (SS). In 

these instances, the choice between techniques is dependent 

on sample size in addition to censoring and variability.

The techniques listed in Table IV.11 have been found to 

perform relatively well in comparison to other techniques 

for a wide range of conditions typically found in water 

quality data. It is not recommended; however, to 

extrapolate beyond the simulation study scope.
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D. Summary

Network managers are often faced with describing the 

average water-quality conditions of a particular location. 

Standard practices include estimating the central tendency 

and variability of a single water-quality random variable.
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Figure IV.2 Response surface summary for single censoring.



Figure IV.3 Response surface summary for multiple censoring.
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The mean and median are most often used as an estimate of 

the central tendency and the standard deviation and inter-

quartile range are used as estimates of the variability. 

Summary statistic estimation is complicated with both single 

and multiple censoring. Numerous techniques have been 

proposed to estimate summary statistics, when part of the 

data have been censored. The problem facing the network 

manager is choosing the most appropriate technique.

A simulation study was used to compare the performance 

of different techniques. A methodology was developed to 

reduce the number of techniques a network manager would have 

to consider for estimating summary statistics. It should be 

noted that there were a number of techniques which perform 

well for many possible water-quality data records.

This chapter confirms the results of previous resear-

chers (Helsel and Gilliom, 1986; Gilliom and Helsel, 1986; 

and Helsel and Cohn, 1988). The techniques which performed 

well for their study performed well in this study.

Additional support is also given to the "no censoring" rule 

recommended by Porter (1986) and Porter et al. (1988).



CHANGING CONDITIONS— DETECTION WITH SERIAL CORRELATION

CHAPTER V

There are several motivations for detecting trends in 

water-quality variables. Primarily, the network manager is 

interested in deciding whether the water quality, over time, 

has: (1) not changed; (2) changed for the better or (3)

changed for the worse. Trend tests are a statistical way to 

evaluate the significance of apparent changes in a water- 

quality variable and to estimate the magnitude of change.

Gradual and abrupt changes are two trend types that are 

of most concern the network managers. Monotonic and step 

trend tests are typically used to detect gradual and abrupt 

changes, respectively. Step trend tests are also used to 

detect changes over space (e.g., from one monitoring station 

to another). In many instances, water-quality data do not 

meet the normality assumption underlying parametric tests. 

Typical data records may also contain outliers or censored 

observations. As a result, most water-quality trend detec-

tion investigations use nonparametric methods (Smith et al., 

1987 and Ward et al., 1988).

There are still assumptions affiliated with nonpara-

metric methods. Usual assumptions relating to water quality 

include identically distributed errors and no serial
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correlation. Assumption violations can cause misleading 

results. The former assumption suggests variance 

homogeneity and no seasonality. Some nonparametric tests 

have been modified to implicitly deal with seasonality in 

the mean (Hirsch et al., 1982; Hirsch and Slack, 1984 and 

Gilbert, 1987). Most literature recommends, at least, 

visually looking at the data (or box plots) to check for 

variance homogeneity (e.g.. Ward et al., 1988 and Berryman 

et al., 1988).

The independence assumption implies no stochastic 

relationship between successive observations in time 

(Harris, 1988). Some trend tests have also been modified to 

accommodate serial correlation. Tests which have been 

corrected for serial correlation are less powerful than 

uncorrected tests when no serial correlation is present. 

Corrected tests also require more data, and correlation 

coefficients are difficult to estimate with small data sets. 

(Tasker (1983a) gives approximate probability density func-

tions for estimated correlation coefficients and small 

sample sizes which could be used for hypothesis testing.)

On the other hand, uncorrected test significance levels 

maybe greatly inflated when serial correlation is present. 

Unfortunately, standard water-quality sampling frequencies 

are usually in the range where serial correlation may or may 

not be important. This places the network manager at an 

impasse— what technique should be used? This chapter inves-

tigates several techniques found in the literature for



monotonic trend detection when serial correlation exists. 

Techniques studied are: (1) ignoring serial correlation;

(2) using tests which explicitly account for serial correla-

tion or (3) creating new times series by collapsing the 

former time series to less frequent values and then applying 

a standard test.
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A. Simulation Methodology 

A.l Data Generation

Data sets with known trends are generated from a vari-

ety of parent distributions similar to the procedures 

described by Taylor and Loftis (1989). Data were generated 

using an International Mathematical and Statistical 

Libraries generating routine for the normal distribution.

Monthly data were created by first generating 500 

normal warm-up values with zero mean and unit variance 

(e.g., N(0,1)). These values were transformed to account 

for serial correlation by:

Wi = (l-p^)°-^ Zi + p Zi-i V. 1

where

Wi = ith generated serially correlated value,

Zi = ith generated N(0,1) random number and 

p = selected monthly serial correlation.

The last value, Zjqo, is used as Zq during the next genera-

tion of random numbers.



For each simulation, a new set of N(0,1) data is gener-

ated. (e.g., Sixty new N(0,1) random numbers would be 

created for five years of monthly data, that is ẑ , . . . ,

ZgoO If the simulation conditions specify a lognormally 

distributed error term, generated N(0,1) data are trans-

formed by:
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Vi = exp ( 0.833 Zi - 0.347) - 1.0 V.2

creating lognormal (0,1) data, otherwise Vi is equal to Zi.

A serially correlated series is then obtained from Equation

V.l where Vi is substituted for Zi.

Seasonality in the variance is added by:

X i  =  Wi a . V.3

where CTj. is equal to the ratio of standard deviations in 

high variability months to low variability months. The 

seasonality was formulated so that the high variance months 

were the second and fourth quarters of the year. This 

results in a low— high— low— high quarterly variance pat-

tern. Taylor and Loftis (1989) demonstrate that the trend 

tests considered in their study handle mean seasonality 

equally well. As a result, this study (which uses a subset 

of the tests used by Taylor and Loftis, 1989) does not 

explicitly consider mean seasonality.

Finally, trend is added to the simulated data by:

ŷ  = Xi + b i + c V.4
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where b is the incremental slope and c is a small constant 

so that all simulated data are positive.

A.2 Evaluation

Monotonic trend detection techniques are then applied 

to each data set, recording the number of simulations for 

which trend was detected. All tests are run at a nominal 

five percent significance level. Two criteria (empirical 

significance level and power) are used for evaluating test 

performance. First, the nominal significance level is 

compared with the simulated significance level. A test 

which preserves the nominal significance level is a test 

that results in an actual significance level in the range 

0.032 < a < 0.068. The range was selected as the 95% con-

fidence interval for a when 500 simulations are used 

(Snedecor and Cochran, 1980). A larger number of 

simulations would result in a smaller confidence interval. 

Tests are termed conservative and liberal when the actual 

significance level is below and above the range, 

respectively.

According to Taylor and Loftis (1989), second order 

linear models were too crude for technique comparison. 

Therefore, a technique comparison similar to that presented 

in Chapter IV is not attempted. Consequently, the second 

criterion is based on direct comparison of power curves.

Power curves can be graphically interpreted, or the 

actual power levels can be compared statistically. The null 

hypothesis is that the proportion of detects for test A is



the same as the proportion of detects for test B, or 

equivalently, the difference in detect proportions for test 

A and B is zero. Snedecor and Cochran (1980) show that the 

normal deviate, z, for comparing two proportions with equal 

sample sizes is given by:
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z = (Pa - PB)/(Pq (2/N) )0.5 V.5

where

Pa = proportion of detects for test A,

Pb = proportion of detects for test B,

P = (Pa+Pb)/2,

q = 1-p and

N = the number of samples for either test.

The null hypothesis is rejected when the absolute value of z 

is greater than 1.96 (for a two-sided test at the 95% con-

fidence level). Test A is said to be more powerful than 

test B when p̂  is significantly greater than pg for simula-

tions in which there is a real trend in the data.

It is unfair to apply the test described above when the 

comparison is made with one trend test which has an inflated 

nominal significance level. A trend test which starts with 

an inflated actual significance level will likely have more 

power than a test which is accurate. To protect against 

this bias, comparisons will be limited to those test pairs 

for which most nominal significance levels were insignifi-

cantly different.



B. Analyses

B.l Simulation Conditions

Five hundred sets of monthly data were generated for 

each set of simulation conditions. The parameters consid-

ered in this simulation were applicable distribution, vari-

ance seasonality, serial correlation and sample size (Table

V.l). A total of 60 combinations were selected for simula-
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Table V.l Levels of distribution, variance seasonality,
serial correlation and sample size considered in 
changing condition detection with serial correla-
tion simulation.

Distribution Normal
Lognormal

Ratio of 
standard

seasonal
deviations

1.0
5.0

Monthly lag-1 0.0 0.6 Years of data 5
correlation 0.2 0.8 10
coefficient 0.4 15

tion purposes. Mean seasonality was not considered since 

Taylor and Loftis (1989) demonstrated that the ratio of the 

seasonal means, a measure of seasonality, was not 

significant in the second order linear model they fitted to 

their simulation results. In other words, all the tests 

they considered effectively deal with mean seasonality. 

Incremental slopes (b of Equation V.4) were selected as 

0.000, 0.002, 0.005, 0.020, 0.050, 0.200 and 0.500. Prelim-

inary simulations indicated that these seven incremental 

slopes adequately cover the range of slopes that are inter-

esting.
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B.2 Trend Detection Procedures

Trend detection techniques studied were the Mann-Ken- 

dall tau test on deseasonalized data (MKD), the Seasonal 

Kendall tau test (SK) and the Seasonal Kendall tau test with 

correction for serial correlation (SKC). Data were desea-

sonalized by the seasonal mean and variance. Taylor and 

Loftis (1989) deseasonalized for the seasonal mean, whereas, 

Hirsch et al. (1982) deseasonalized for the mean and vari-

ance before applying a seasonal regression technique. Each 

test was applied to each data set of simulated monthly 

observations. The data sets were then collapsed to quarter-

ly values in an attempt to reduce serial correlation. 

Seasonal quarters were defined to coincide with the seasonal 

variance pattern. (The first quarter contains the first 

three months of the year, etc.) Quarterly values were 

determined by computing the mean, median and middle observa-

tion for each quarter. The three trend tests were then 

reapplied to each of the three collapsed data sets. These 

three data sets are referred to as quarterly collapsed data. 

Quarterly averaged data refer to the first two procedures of 

collapsing data. Two yearly time series were constructed by 

computing the yearly mean and median from the corresponding 

quarterly averaged data (e.g., the mean of the quarterly 

means). The Mann-Kendall tau test (MK) was applied to both 

yearly averaged series. The fourteen procedures are sum-

marized in Table V.2.
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T a b le  V .2  Summary o f  s t a t i s t i c a l  p ro ce d u re s  used f o r  tre n d
d e te c t io n  s tu d y .

Code Technique

Tests applied to monthly data:

A Mann-Kendall tau test is applied to data which have 
been deseasonalized for mean and variance

B Seasonal Kendall tau test
C Seasonal Kendall tau test with serial correlation 

correction

Tests applied to quarterly averaged data (monthly data were 
collapsed by computing quarterly means):

D Mann-Kendall tau test is applied to data which have 
been deseasonalized for mean and variance

E Seasonal Kendall tau test
F Seasonal Kendall tau test with serial correlation 

correction

Tests applied to quarterly averaged data (monthly data were 
collapsed by computing quarterly medians):

G Mann-Kendall tau test is applied to data which have 
been deseasonalized for mean and variance

H Seasonal Kendall tau test
I Seasonal Kendall tau test with serial correlation 

correction

Tests applied to quarterly collapsed data (monthly data were 
collapsed by selecting the middle observation of each 
quarter):

J Mann-Kendall tau test is applied to data which have 
been deseasonalized for mean and variance

K Seasonal Kendall tau test
L Seasonal Kendall tau test with serial correlation 

correction

Tests applied to yearly averaged data:

M

N

Mann-Kendall tau test is applied to yearly values. 
The yearly values were computed as the mean of the 
quarterly means.
Mann-Kendall tau test is applied to yearly values. 
The yearly values were computed as the median of the 
quarterly medians.



B.3 Correlation Levels in Collapsed Data

Data set collapsing is an attempt to reduce the serial 

correlation in a time series. It is interesting to consider 

a typical situation for which monthly data have been col-

lected and it is suspected that the data may contain some 

serial correlation. If a new time series is constructed by 

calculating quarterly means, what serial correlation level 

is in the new time series?

Suppose a monthly time series, X̂ , is defined as a 

normal autoregressive process with order one. The variance 

(al) and lag-one serial correlation coefficient (p) of Xt 

are constant. A new quarterly time series, Yt, is defined 

such that the first value of is the mean of the first 

three values of X̂, and so on. Specifically, Yt is:
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Yt = (X3 + X̂ ti + X3t2) / 3 V.6

where s is equal to 3(t-l)+l. The variance of Yt is 

computed as:

Var(Yt) = —  
9

S Var(Xt) + 2  S Cov[Xj,Xk] 
i=l j<k

V.7

or Var(Yt) = —  { 3 + 2  + 2 Cov[X,^^,X,^2 l +
9

2 Cov[X3,X3t2]} V.8

or Var(Yt) =
(3 + 4p +2p )

V.9
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The covariance is:

Cov[Yt,Ytn] = Cov[ (X3+X3 î+X3+2 ) / 3 , (X3+3+

Xs+4+X3+5)/3] . V.IO

After expanding the right hand side of Equation V.IO and 

combining like terms, the covariance may be expressed as:

Cov[Yt,Yt+J =
(p + 2p + 3p + 2 p ‘* + p̂ )

V.ll

The lag-one serial correlation of Yt is the ratio of 

Equation V.ll to V.9 or

Corr[Yt,Yt^J
(p + 2p^ + 3p̂  + 2p* + p̂ )

(3 + 4p +2p^)
V.12

The lag-one serial correlation for any new time series 

may be computed by generalizing the above relationship such 

that:

N-1
\T  ̂ ^ A f I i \Np + S l(p “̂ p )

i=l
p = V. 13

N-1
N + S 2(N-i)p^ 

i=l

where p and p are the new and old time series lag-one 

serial correlation coefficients, respectively, and N is the 

number of values used to compute the mean of the new time 

series. For example, the serial correlation for the quar-

terly averaged time series given by Equation V.12 may be



computed from Equation V.13 with N equal to three. The 

above development does not account for variance seasonality. 

While this restricts practical use, it does provide the 

basis for a qualitative discussion later. Table V.3 pro-
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Table V.3 Lag-one serial correlation levels for generated 
and collapsed data sets assuming no variance 
seasonality.

Generated
monthly
serial
correla-
tion

Serial correlation 
for mean collapsed 
data

Serial correlation 
for middle collapsed 
data

Quarterly Yearly Quarterly Yearly

0.0 0.000 0.000 0.000 0.000
0.2 0.079 0.018 0.008 0.000039
0.4 0.198 0.043 0.064 0.002
0.6 0.377 0.092 0.216 0.020
0.8 0.637 0.245 0.512 0.165

vides the lag-one serial correlation values of mean col-

lapsed time series.

Recall that the yearly mean is computed from the 

quarterly means. To compute the serial correlation level in 

the yearly mean averaged time series, Equation V.13 may be 

applied with N equal to 12 and p equal to the monthly lag-

one serial correlation coefficient. It is not appropriate 

to apply Equation V.13 successively since the quarterly 

averaged time series is an ARMA(1,1) process (Obeysekera and 

Salas, 1986). (Equation V.13 was derived assuming that the 

original time series was an AR(1) process.) For comparison 

the serial correlation of the middle collapsed time series 

(p”) is provided as well. The process variance of the time



series created by selecting the middle value is the same as 

that of the original time series. The process variance of 

the time series created by computing quarterly means has an 

upper bound of the original time series process variance and 

a lower bound of one-third of the original process variance 

(for 0 < p < 1).
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C. Results

Power tables resulting from the above simulation are 

presented in Appendix C. Techniques are now compared based 

on their actual significance level and power.

C.l Actual Significance Level Comparison

The number of detected trends should equal five percent 

when there is no trend in the data. Actual significance 

levels can be read from the tables in Appendix C. 

Significance levels were indexed and summarized in Tables 

V.4 through V.6. A negative index indicates a 

"conservative" test (actual significance levels were 

significantly less than nominal significance levels) and 

increasing positive indices indicate increasingly "liberal" 

tests (actual significance levels were significantly greater 

than nominal significance levels). A zero index indicates 

that the nominal significance level was preserved at the 95% 

confidence level.

Significance levels performed as expected. The SKC was 

consistently conservative for short data records ("short" 

being defined as five years of record) regardless of serial



T a b le  V .4  Nom inal s ig n i f ic a n c e  in d e x  f o r  t re n d  d e te c t io n  (y e a rs  o f  d a ta = 0 5 ).

SIMULATION
DESCRIPTION

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

Dist. P MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

Normal 1 0.0 1 0 -1 1 0 -1 1 0 -1 0 -1 -1 -1 -1
5 0.0 1 0 -1 1 0 -1 1 0 -1 0 0 -1 -1 -1

Lognormal 1 0.0 1 0 -1 0 0 -1 0 -1 -1 0 0 -1 -1 -1
5 0.0 1 0 -1 0 0 -1 1 0 -1 0 0 -1 -1 -1

Normal 1 0.2 2 1 -1 1 0 -1 1 0 -1 0 0 -1 -1 -1
5 0.2 2 1 -1 1 0 -1 1 0 -1 1 0 -1 -1 -1

Lognormal 1 0.2 2 1 -1 0 -1 -1 1 0 -1 0 -1 -1 -1 -1
5 0.2 2 2 -1 0 0 -1 1 0 -1 0 0 -1 -1 -1

Normal 1 0.4 3 2 -1 2 1 -1 1 0 -1 1 0 -1 -1 -1
5 0.4 3 2 -1 2 0 -1 1 0 -1 1 0 -1 -1 -1

Lognormal 1 0.4 3 2 -1 2 1 -1 1 0 -1 1 0 -1 -1 -1
5 0.4 3 2 -1 2 1 -1 2 0 -1 1 0 -1 -1 -1

Normal 1 0.6 4 3 -1 2 2 -1 2 2 -1 2 1 -1 -1 -1
5 0.6 4 3 -1 2 2 -1 2 1 -1 2 1 -1 -1 -1

Lognormal 1 0.6 5 4 -1 3 2 -1 2 2 -1 2 1 -1 -1 -1
5 0.6 4 3 -1 2 1 -1 2 1 -1 2 0 -1 -1 -1

Normal 1 0.8 6 5 -1 3 3 -1 3 3 -1 3 2 -1 0 -1
5 0.8 6 5 -1 3 3 -1 3 2 -1 3 2 -1 -1 -1

Lognormal 1 0.8 6 5 0 4 3 0 3 3 -1 3 3 -1 -1 0
5 0.8 5 5 -1 3 2 -1 3 2 -1 3 2 -1 -1 -1

Index -1 0.000 < a < 0. 032 2 0. 100 < a  < 0.200 5 0.400 < a < 0.500
code 0 0.032 < a < 0. 068 3 0.200 < a < 0.300 6 0.500 < a

1 0.068 < a < 0. 100 4 0.300 < a < 0.400

tvj



T a b le  V .5  Nom inal s ig n i f ic a n c e  in d e x  f o r  t re n d  d e te c t io n  (y e a rs  o f  d a ta = 1 0 ).

SIMULATION
DESCRIPTION

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

Dist. P MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

Normal 1 0.0 0 0 -1 0 0 -1 0 0 0 0 0 -1 0 0
5 0.0 0 0 0 0 0 -1 0 0 0 0 -1 0 0 0

Lognormal 1 0.0 1 1 0 1 0 0 1 0 0 0 0 0 0 0
5 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Normal 1 0.2 1 1 0 0 0 0 0 0 -1 0 0 0 0 0
5 0.2 1 0 -1 0 0 -1 0 0 0 0 0 0 0 0

Lognormal 1 0.2 2 2 0 0 0 0 0 0 0 0 0 -1 0 0
5 0.2 2 2 0 0 0 0 1 0 0 0 -1 -1 0 0

Normal 1 0.4 3 2 0 2 1 0 2 1 0 0 0 0 0 0
5 0.4 3 2 -1 2 1 -1 1 1 -1 1 0 0 0 0

Lognormal 1 0.4 3 3 0 2 1 0 2 1 0 0 0 0 0 0
5 0.4 3 2 0 1 1 0 1 0 0 1 1 0 0 0

Normal 1 0.6 4 4 0 2 2 0 2 2 0 2 1 0 0 0
5 0.6 4 3 0 2 2 0 2 2 0 2 1 0 0 0

Lognormal 1 0.6 4 3 0 2 2 0 2 2 0 2 1 0 0 0
5 0.6 4 4 1 2 2 0 2 2 1 2 1 0 0 0

Normal 1 0.8 5 5 1 3 2 1 3 3 0 3 2 0 1 0
5 0.8 6 5 2 3 3 2 3 3 1 3 3 1 1 1

Lognormal 1 0.8 6 5 2 4 3 1 4 3 1 3 3 1 2 1
5 0.8 6 5 1 3 3 1 3 3 1 3 3 1 1 1

Index -1 0.000 < a < 0. 032 2 0.100 < a < 0.200 5 0.400 < a < 0.500
code 0 0.032 < a < 0. 068 3 0.200 < a < 0.300 6 0.500 < a

1 0.068 < a < 0. 100 4 0.300 < a  < 0.400

VD
LO



T a b le  V .6  Nom inal s ig n i f ic a n c e  in d e x  f o r  t re n d  d e te c t io n  (y e a rs  o f  d a ta = 1 5 ).

SIMULATION
DESCRIPTION

MONTHLY QUARTERLY

MEAN

Dist. P MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

Normal 1 0.0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
5 0.0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

Lognormal 1 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Normal 1 0.2 2 2 0 0 0 0 1 0 0 0 0 0 0 0
5 0.2 2 1 -1 1 1 0 0 0 0 0 0 0 0 0

Lognormal 1 0.2 2 2 0 1 0 0 0 0 0 0 0 0 0 0
5 0.2 2 2 0 1 0 0 0 0 0 0 0 0 0 0

Normal 1 0.4 2 2 0 1 1 0 1 0 0 0 0 0 0 0
5 0.4 3 2 0 1 1 0 2 1 0 1 0 0 0 0

Lognormal 1 0.4 3 3 0 2 1 0 1 1 0 1 1 0 0 0
5 0.4 2 2 0 1 0 0 1 1 0 0 0 0 0 0

Normal 1 0.6 4 4 0 2 2 0 2 2 0 2 1 0 0 0
5 0.6 4 3 0 2 2 0 2 2 0 1 1 0 0 0

Lognormal 1 0.6 4 4 0 2 2 0 2 2 0 2 1 0 1 0
5 0.6 4 4 0 2 2 0 2 2 0 2 2 0 0 0

Normal 1 0.8 5 5 1 4 3 1 3 3 1 3 2 1 1 1
5 0.8 6 5 1 4 3 1 4 3 1 3 3 1 1 1

Lognormal 1 0.8 6 5 2 3 3 1 3 3 2 3 3 2 2 1
5 0.8 5 5 1 3 3 1 3 3 1 3 3 1 0 1

Index -1 0.000 < a < 0. 032 2 0.100 < a < 0.200 5 0.400 < a < 0.500
code 0 0.032 < a < 0. 068 3 0.200 < a  < 0.300 6 0.500 < a

1 0.068 < a < 0. 100 4 0.300 < a < 0.400

MEDIAN MIDDLE

YEARLY

MEAN MED
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correlation level. As more data became available (ten and 

fifteen years of record), the nominal significance level was 

preserved in most cases. The exception is for high serial 

correlation levels (p = 0.8). These results are similar to 

those of Hirsch and Slack (1984) and Taylor and Loftis 

(1989) .

Different standard deviation ratios (Uj.) were not 

expected to effect the significance levels. If changes were 

apparent, they would have been attributed to the violation 

of the identically distributed test assumption. Based on 

inspection of Tables V.4, V.5 and V.6, no significant effect 

was detected. Standard deviation ratio does have a dramatic 

effect on power and will be discussed in the next section of 

this chapter.

It is interesting to note that collapsing data did not 

improve the nominal significance level for the SKC when the 

serial correlation was equal to 0.8. This result is at-

tributed to the serial correlation in the data spaced one 

year apart. The SKC formulation does not account for serial 

correlation in data across years, only serial correlation 

between seasons of the same year. From Table V.3, the lag- 

twelve (data one year apart) serial correlation can be 

approximated as 0.165 when the monthly lag-one serial cor-

relation is 0.8. The liberal performance of the SKC for ten 

and fifteen years of record is attributed to the serial 

correlation between years.
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In Table V.4, the SK was occasionally conservative 

(four times) for quarterly collapsed data sets. The actual 

significance levels for these cases were just outside the 

range considered acceptable for significance level. These 

four cases were not significant at the 99% confidence level. 

A portion of the simulation was rerun with a new random 

number seed and the significance levels were preserved at 

the 95% confidence level for these cases. Based on these 

results, the slightly conservative results for the SK did 

not warrant further investigation.

The conservative results for the yearly collapsed data 

were based on the MK with just five observations (Table 

V.4). Due to the truncation associated with the MK test 

statistic and a sample size of five, it was necessary for 

all observations to be in rank order (e.g., all increasing 

or all decreasing) to detect a significant trend. In this 

case, the critical values for a equal to 0.05 and 0.02 were 

identical for the MK to detect trend. In essence, the test 

could have been performed at a smaller significance level 

than was actually specified and still yield identical 

results. Therefore it is expected that the actual 

significance levels for the MK to be conservative for a 

sample size of five and a 95% confidence level. The MK 

nominal significance level was preseirved for ten and fifteen 

years of record, similar to the SKC.

The MKD was liberal for five years of monthly record 

and independent data, corresponding to previous work (Taylor
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and Loftis, 1989). This is attributed to the negative 

correlation added into the time series by deseasonalizing 

the data (Hirsch et al., 1982). The level of added correla-

tion decreases with increasing sample size. The SK test 

preserved the nominal significance level when the data were 

independent regardless of sample size. When serial correla-

tion was introduced into the data at levels as low as 0.2, 

both the MKD and SK were liberal for monthly data, with the 

MKD more liberal than the SK. The serial correlation added 

to the data is inversely proportional to the sample size, 

resulting in the observed pattern.

Collapsing the data was moderately successful. For low 

levels of serial correlation, actual significance was nearly 

returned to nominal values. A decrease in actual signifi-

cance was also present for high levels of correlation, but 

collapsing alleviated only some of the problems. For the 

extreme case of collapsing from monthly to yearly, the MK 

was slightly liberal for the highest serial correlation 

levels and ten or more years of data.

Collapsing data by the middle value was more effective 

than the median or mean data collapse at returning the 

actual significance level back to the nominal significance 

level. This was an anticipated result since the serial 

correlation level in the middle collapsed data is smaller 

than the quarterly averaged data. The median collapse was 

more effective than the mean collapse as well. None of the
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techniques which collapse data from monthly observations to 

quarterly values work well for high correlation levels.

Although this study did not attempt to estimate the 

serial correlation level which significantly effects the 

performance of uncorrected tests, some inference is pos-

sible. Similar observations can be made with shorter 

records (Tables V.4 and V.5); however, only the longest 

record (Table V.6) is considered for simplicity.

1. The SK applied to monthly data is liberal for serial 

correlation equal to 0.2.

2. If the monthly serial correlation is 0.2 and 0.4, the 

serial correlation level of quarterly mean collapsed 

data is 0.079 and 0.198 (Table V.3), respectively. From 

Table V.6, the SK applied to quarterly mean data was 

liberal for the latter case and not the former.

3. If the monthly serial correlation is 0.4 and 0.6, the 

serial correlation of quarterly middle collapsed data is 

0.064 and 0.216 (Table V.3), respectively. From Table 

V.6, the SK applied to quarterly middle collapsed data 

was liberal for the latter case and not the former.

4. The MK actual significance level for yearly mean col-

lapsed data was significantly effected for yearly a 

serial correlation equal to 0.245 and not significantly 

effected for yearly a serial correlation equal to 0.092.

It appears reasonable to conclude that serial correla-

tion levels greater than 0.2 significantly effect the actual 

significance levels of uncorrected trend tests and serial
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correlation levels below 0.1 do not significantly effect the 

actual significance levels. No inference is made about 

serial correlation in the range from 0.1 to 0.2.

C.2 Power Curve Comparison

All trend procedures are compared (two at a time) using 

the test described in section A.2 for power curve compari-

son. A comparison is made for all incremental slopes except 

for 0.5 since all tests were able to detect this slope with 

a power of one. Power curves were not compared when the 

detect proportions for both tests were unity.

The results for all incremental slope comparisons and 

common simulation conditions are placed in a single column 

from no slope to highest slope. In the following tables, a 

period indicates no statistical difference in power between 

the two tests. An underscore indicates that the power was 

unity for both techniques. A letter indicates that the 

power or significance level was significantly higher for the 

technique which corresponds to that letter.

Power comparisons (in the following tables) are useful 

only if the comparisons are made between tests that have 

actual significance levels which are insignificantly dif-

ferent from each other (e.g., a "period" is reported in the 

first column). The actual significance level comparisons 

made earlier in this chapter indexed tests based on ranges 

of actual significance levels. Only the index "0", was 

statistically based for the nominal significance level equal 

to 0.05. Therefore two actual significance levels, say
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0.100 and 0.101, would be indexed differently; yet, there is 

no practical difference between the two values.

In the following tables, it will be common to compare 

two tests which were indexed differently earlier in this 

chapter. The comparison will be valid if p̂  is 

insignificantly different from pg when there was no trend in 

the data (e.g., no significant difference in actual 

significance levels). Comparisons for tests which have 

statistically different significance levels will not be 

reported. Results for the SKC and MK applied to five years 

of record will not be presented either since it was 

concluded in the previous section (Section C.l) that neither 

test should be used for short data records.

The first comparison is a contrast between the dif-

ferent methods of collapsing data. If it were necessary to 

collapse the data from monthly to quarterly, which of the 

three methods is better? The power curve results from the 

median and middle collapsing of monthly observations to 

quarterly observations are summarized in Table V.7. A 

comparison of the mean and middle quarterly values are 

similar to those shown in Table V.7 for the median and 

middle comparison.

In general, collapsing data by computing the quarterly 

median is more powerful than selecting the quarterly middle 

value. The same result is true when comparing quarterly 

mean and middle collapsed data. This result can be attri-

buted to a reduced variance level in the median or mean



T a b le  V .7  Power com parison f o r  median and m id d le  c o l la p s in g  o f  m o n th ly  o b se rva ­
t io n s  to  q u a r t e r ly  o b s e rv a t io n s .

SIMULATION
DESCRIPTION

MKD (median) - G 
MKD (middle) - J

years of record

SK (median) - H 
SK (middle) - K

years of record

Dist. P 5 10 15 5 10 15 10 15

Normal 1 0.0 . .GGG « • GG .GG . .HHH . .HH .HH . .11 . II
5 0.0 ...GGG • • GG • . .GG ...HHH . . .H . .HH n/c ... I. . .11

Lognormal 1 0.0 • • • GG .GG .GG . . .HH .HH .HH .11. .11
5 0.0 •••GG• • • GG .GG ...HH. . .HH__ .HH . .11__ . II

Normal 1 0.2 • • • GG . .GG .GG . . .HH . .HH . . II .11
5 0.2 •••GG• • « GG a . .GG ___HH . . .H. . .HH n/c .1 .1 . . .11

Lognormal 1 0.2 ..GGG 1.GG. .GG . .HHH .HH. .HH . .1 . . II
5 0.2 •••GG• • GG * ...HH. .HH.__ . .II._ . .1

Normal 1 0.4 • G • GG .GG . . .HH .HH . .11 .11
5 0.4 *••GG• • • • G • .GG. ...HH. ...H._ . .HH n/c . . .I._ . . .1

Lognormal 1 0.4 • • • GG .GG . .HHH . .H . • • • . .1
5 0.4 •••GG• .GGG._ .GG.__ ...HH_ .HHH._ .HH.__ .I.I._ • • • • --

Normal 1 0.6 • G • G • . .G ___H . .1
5 0.6 • • • • G • • • GG • • • • • ..H .HH . .HH. . .H. n/c • • • • • • • • •

Lognormal 1 0.6 • • * . . .G ____H • • • • • • • • • • •
5 0.6 . . .G • • • •-- ..HH._ • • " •-- ....— • • • •--

Normal 1 0.8 ..... ____
5 0.8 ...... . . . .__ n/c ...... • • • •

Lognormal 1 0.8 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
5 0.8 ___

SKC (median) - I 
SKC (middle) - L

years of record

o
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collapsed data sets. Trends are more easily detected in 

data sets with smaller variances. This comparison is 

somewhat weighted in favor of the median/mean collapsed data 

sets. Typically, the tests applied to median/mean collapsed 

data will have a higher actual significance level than tests 

applied to middle collapsed data although most differences 

are insignificant at the 95% confidence level. This bias is 

attributed to the higher correlation levels in the 

median/mean collapsed data than in the middle collapsed data 

sets for data that were originally serially correlated at 

the monthly level.

Table V.8 is a comparison of the mean and median 

collapsed data. The difference between the mean and median 

collapsed data is very small. There is one interesting 

point. While granted the number of differences is small, 

the technique which used the median collapsed data performed 

better than the mean collapsed data when the error terms 

were lognormally distributed. The opposite was true when 

the error terms were normally distributed. This implies 

that if one were to believe that water-quality data were 

normally distributed and data were to be collapsed, it is 

probably best to use the mean. Whereas, if one were to 

believe that water-quality data were lognormally distributed 

and data were to be collapsed, it is then best to use the 

median. It does not appear as though the error associated 

with incorrectly assuming (log)normality is large based on 

the simulations in this study.



T a b le  V .8  Power com parison f o r  mean
o b s e rv a t io n s  to  q u a r t e r ly

and median collapsing of monthly 
observations.

SIMULATION
DESCRIPTION

MKD (mean) 
MKD (median)

- D
- G

SK (mean)
SK (median)

- E
- H

SKC (mean) 
SKC (median)

- F
- I

years of record years of record years of record

Dist. Uj. p 5 10 15 5 10 15 5 10 15

Normal 1 0.0 . . .D . .D . . D . . .E. . .E .EE . .F . .F
5 0.0 . . . .D . . .D . .D ___E . . .E . .E. n/c . . .F . .F.

Lognormal 1 0.0 . . .G . .G .GG . . .H .HH .HH . .1 .11
5 0.0 ....G_ . .G.__ . .G ___H_ . .H.__ . .H • • • •-- . .1

Normal 1 0.2 • • • • • . .D . . .E. . .E
5 0.2 • ••••• . . .D • • • . . .EE . . .E • • • n/c . . .F • • •

Lognormal 1 0.2 ...G._ . .G .G. . . .H. . .H .H. .1.
5 0.2 ....— . . .G__ . .G ___H_ . . .H__ . .H . . .1__ . .1

Normal 1 0.4 ..... ___E . .E
5 0.4 ..... • • • • • • • • . . . . E. • • • • • • • • n/c • • • • • • • • •

Lognormal 1 0.4 .... . .G • • • • •
5 0.4 ....— . . . .— . . . ..... • • • •-- • • • •-- • • • •

Normal 1 0.6 • • • • • ____ . .EE.
5 0.6 ..... • • • • • • • • • • ••••• • • • • • • • • • n/c • • • • • • • • •

Lognormal 1 0.6 .... • • • • • • • • • • • • • • • •
5 0.6 .D___ ....— . . . .— ..... • • • • • • • • •-- ....— • • • •

Normal 1 0.8 • • • • • ____ • • • •
5 0.8 • ••••• • • • • • • • • • • ••••• • • • • • • • • • n/c • • • • • • • • •

Lognormal 1 0.8 • • • • • • • • • • • • • • • • ■ • • • • • « • •
5 0.8 _ '

O
W
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This result is interesting in light of the nominal 

significance level discussion and the level of correlation 

in collapsed data sets. Tables V.4 through V.6 show that 

the tests which use middle collapsed data tend to preserve 

the nominal significance levels better than tests which use 

the median/mean collapsed data. This is anticipated since 

the serial correlation level is lower for middle collapsed 

data than it is for mean collapsed data (Table V.3). 

Statistically testing (with Equation V.5) the difference 

between significance levels demonstrates that there is 

little gain (within the simulation constraints) in using the 

middle collapsed data.

The next comparison contrasts the performance of the 

SKC under conditions of collapsing data (Table V.9). Middle 

quarterly collapsed values were not included, since it was 

determined from the first comparison that this technique did 

not perform well in comparison to the other two methods for 

collapsing data. From inspection of Table V.9, it is clear 

that data should not be collapsed when using the SKC for 

trend detection.

Yearly averaged time series trend detection is compared 

in Table V.IO. Should one ever attempt to detect trends by 

collapsing data from either monthly to yearly or quarterly 

to yearly? In the previous comparison, it was shown that 

data should not be collapsed when using the SKC.

This comparison (Table V.IO) demonstrates that the SKC 

for quarterly collapsed data is more powerful than the MK
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Table V.9 Power comparison for mean and median collapsing 
of monthly observations to quarterly 
observations.

SIMULATION
DESCRIPTION

SKC (monthly] 
SKC (mean)

-  c
- F

SKC (monthly) 
SKC (median)

-  c
- I

years of record years of record

Dist. Ur P 5 10 15 5 10 15

Normal 1 0.0 • • • . .C . . c
5 0.0 n/c • • • • • • • n/c . . .C . . c .

Lognormal 1 0.0 . c c .CC .CC . c .
5 0.0 . c c c __ . c c . .CC__ . c c

Normal 1 0.2 • • • • • • • . . c
5 0.2 n/c • • • • • • • n/c . .  . c . . c

Lognormal 1 0.2 . . c . c c . . c . c c
5 0.2 . . c c __ . c c . .  . c __ . c c

Normal 1 0.4 * • • . .  . c — . . c
5 0.4 n/c ........... • • • • n/c . . . c . - . .  . c

Lognormal 1 0.4 . . c . . . c • • • • . . c
5 0.4 . .  . c __ . . c . .  . c __ • • • •-----

Normal 1 0.6 ___ • • • . .  . c
5 0.6 n/c ____c • • « • n/c ____ c _ • • • •__

Lognormal 1 0.6 . .  . c . . c • • • • • • •
5 0.6 . . . c . _ . . c c __ . . . c . _ . .  . c __

Normal 1 0.8
5 0.8 n/c • • • • • • • • • n/c • • • • • • • • •__

Lognormal 1 0.8 • • • • • • • • • • • • • • • • • •
5 0.8 • • • • • • • • • • • • • • • • • •

for yearly collapsed data. By induction, this comparison 

also demonstrates that the SKC for monthly data would be 

more powerful than the MK for yearly collapsed data as well. 

Similarly, the SKC is the least powerful option when com-

pared to the MKD or SK. Since the SKC applied to quarterly 

collapsed data is more powerful than the MK applied to 

yearly collapsed data, the MKD or SK (for monthly or



106

T a b le  V . IO  Power com parison f o r  mean and median c o l la p s in g
o f  q u a r t e r ly  o b s e rv a t io n s  (SKC) to  y e a r ly
o b s e rv a t io n s  (M K).

SIMULATION
DESCRIPTION

SKC (mean) - F
MK (mean) - M

years of record

Dist. P 5 10 15 5 10 15

Normal 1 0.0 . . .1 • • •
5 0.0 n/c . .FFF .FFF n/c . . .1. . .11

Lognormal 1 0.0 . .F .FF . .1 .11
5 0.0 ..FFF_ .FFF__ . .11__ .11

Normal 1 0.2 . .M. .N. . • • •
5 0.2 n/c . . .FF .FFF n/c . . .11 . .11

Lognormal 1 0.2 . .FF . .F • • • • .11
5 0.2 ..FFF_ .FFF__ ..II._ .11.__

Normal 1 0.4 • • •
5 0.4 n/c . . .FF . .FF n/c ...II_ . .11

Lognormal 1 0.4 . . .F .FF • • • • . .1
5 0.4 ..FFF_ .FFF__ ...II_ .III__

Normal 1 0.6 . .1
5 0.6 n/c . . .FF .FFF n/c . ..II_ . . .1

Lognormal 1 0.6 . . .F . .F • • • • . .1
5 0.6 ...FF_ ..FF._ . ..II_ . .11__

Normal 1 0.8 ___ • • • • . . .1.
5 0.8 n/c . . .FF . .FFF n/c . . .11 . . .1.

Lognormal 1 0.8 . . .F .... . . .1 . • • •
5 0.8 . . .FF ..FFF_ . . .11 . .11__

SKC (median) - I 
MK (median) - N

years of record

quarterly collapsed data) are more powerful than the MK 

applied to yearly data as well.

It is clear that for data records with at least ten 

years of record, yearly values should not be used when 

either quarterly or monthly observations are available.

Data that are suspected to be serially correlated can be 

analyzed more powerfully with the SKC than by collapsing 

data to yearly values. It is not powerful to collapse data
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that are not serially correlated to yearly values either. 

Both of the tests (SKC applied to quarterly collapsed data 

and MK applied to yearly averaged data) compared in Table 

V.IO are conservative (low actual significance levels) for 

five years of record and should be avoided. The significan-

ce level of the MK applied to five observations can be 

determined exactly. It is not possible to perform a 95% 

two-sided trend test that will preserve the nominal sig-

nificance level with only five observations. This is due 

the truncation of the MK test statistic discussed earlier.

The final comparison requires some level of judgement. 

The key trade-off is between power and preserving the sig-

nificance level. When there is no serial correlation in the 

data record, tests which do not correct for serial correla-

tion are more powerful as expected. Uncorrected tests do 

not preserve the nominal significance level in the presence 

of serial correlation. Figures V.l through V.6 are a com-

parison of the MKD, SK and SKC applied to monthly data and 

the MKD and SK applied to quarterly median collapsed data. 

Although it has been demonstrated that the SKC should not be 

applied to data sets with five years of record, it was opted 

to maintain the power curves in Figures V.l, V.3 and V.5 for 

comparison purposes. Distribution and variance seasonality 

were held constant throughout all of the figures. In gen-

eral, the same relative test performance existed for other 

distributions and variance patterns. Fifteen years of
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Figure V.l Power curve comparison for monthly and quarterly 
(median) averaged data for five years of data 
and lag-one serial correlation equal to 0.0.

oc
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0.000 0.002 0.005 0.020 0.050

INCREMENTAL SLOPE

0.200 0.500

F ig u re  V .2 Power c u rve  com parison f o r  m o n th ly  and q u a r t e r ly
(m edian) averaged da ta  f o r  te n  y e a rs  o f  d a ta  and
la g -o n e  s e r ia l  c o r r e la t io n  equa l to  0.0.
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Figure V.3

INCREMENTAL SLOPE

Power curve comparison for monthly and quarterly 
(median) averaged data for five years of data 
and lag-one serial correlation equal to 0.4.
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INCREMENTAL SLOPE

F ig u re  V .4 Power c u rve  com parison f o r  m o n th ly  and q u a r te r ly
(m edian) averaged  d a ta  f o r  te n  y e a rs  o f  d a ta  and
la g -o n e  s e r ia l  c o r r e la t io n  equa l to  0.4.
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Figure V.5

INCREMENTAL SLOPE

Power curve comparison for monthly and quarterly 
(median) averaged data for five years of data 
and lag-one serial correlation equal to 0.8.
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F ig u re  V .6 Power c u rve  com parison f o r  m o n th ly  and q u a r te r ly
(m edian) averaged da ta  f o r  te n  y e a rs  o f  d a ta  and
la g -o n e  s e r ia l  c o r r e la t io n  equa l to  0 .8 .



When no serial correlation is present, the SK and MKD 

are the most appropriate tests for short (Figure V.l) and 

long (Figure V.2) data records, respectively. The SK is 

more appropriate than the MKD for five years of record since 

the MKD is liberal for short records. The liberal behavior 

of the MKD is reduced for ten years of record and the MKD is 

more powerful than the SK. As the record length increases, 

the performance difference between the least powerful test 

and the most powerful test decreases.

For non-zero serial correlation values (Figures V.3- 

V.6), the MKD and SK do not preserve the significance level. 

Procedures which collapse data sets from monthly to quarter-

ly values are marginally successful at returning the nominal 

significance level (Figures V.3 and V.4). The SKC is too 

conservative and does not have a reasonable power level for 

use with short data records (Figure V.3). This problem is 

eliminated for longer records. Figures V.5 and V.6 are the 

extreme example of the highest serial correlation simulated 

in this study. In this case, none of the tests perform 

well.

I l l

re c o rd  a re  n o t shown s in c e  th e  c o n c lu s io n s  f o r  te n  y e a rs  o f

re c o rd  a p p ly  e q u a l ly  to  f i f t e e n  y e a rs  o f  re c o rd .

D. Summary and Conclusions

One of the primary objectives of a monitoring network 

is to detect changing conditions. The two types of trends 

that a network manager is most concerned with are:
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Monotonic and step trends. Trend tests are a statistical 

means for detecting trend. Most water-quality literature 

has recommended the use of nonparametric tests over 

parametric tests due to the non-normality and potential for 

outliers encountered. Nonparametric tests, however, also 

have associated assumptions. The key assumptions include 

independence and homogeneous variance. Violation of both 

assumptions have been noted in the literature.

A simulation study was used to compare different non-

parametric procedures for detecting monotonic trends in 

simulated data records. Procedures were evaluated based on 

their robustness and power. All conclusions summarized 

below are based on the simulations in this chapter and 

extrapolation to conditions not covered herein is not sug-

gested.

D.l Significance Levels

1. The SKC requires more than five years of data in order 

to preserve the nominal significance level, otherwise, 

the actual significance level is lower than the nominal 

significance level (e.g., conservative). For longer 

records (10 and 15 years), the nominal significance 

level is preserved for all but the highest serial cor-

relation lev?'3 (p = 0.8).

2. The actual significance level is higher than the nominal 

significance level (e.g., liberal) for the MKD with five 

years of record and no serial correlation. For longer 

records (10 and 15 years) and no serial correlation, the
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nominal significance level was preserved. This high 

significance level is the result of the negative cor-

relation added to the data by the deseasonalizing 

process. For similar simulation conditions, the SK will 

generally have more exact significance levels than the 

MKD.

3. Serial correlation levels larger than 0.2 can signifi-

cantly effect the actual significance level of uncor-

rected tests while serial correlation levels below 0.10 

do not significantly effect actual significance levels. 

No conclusions regarding levels of correlation between

0.1 and 0.2 were possible with the simulations in this 

chapter.

D.2 Power

1. If it is necessary to collapse data, collapsing the data 

by computing the median or mean is better than using the 

middle value.

2. If it is necessary to collapse data, collapsing the data 

by computing the mean or median are appropriate for 

normal and lognormally distributed errors, respectively. 

Based on the simulations in this study the error as-

sociated with incorrectly assuming (log)normally dis-

tributed errors is small.

3. Do not collapse the data if using the SKC.

4. Do not collapse the data to yearly values if it is 

possible to analyze more frequently sampled observa-

tions .



The MKD is slightly more powerful than the SK for 10 and 

15 years of record; however, the MKD has significantly 

higher actual significance levels than the SK for five 

years of record and a power comparison is not appropri-

ate.

The SKC applied to monthly data is more appropriate than 

the MKD or SK applied to quarterly collapsed data if 

serial correlation is a concern and there are enough 

years of record (e.g., at least ten years). When the 

data are truly independent, the MKD or SK are more 

powerful than the SKC. However, the difference in power 

appears to decrease as the record length increases.
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E. Application

The conclusions in the previous section give some 

guidance to which statistical procedure is more appropriate 

in certain instances. There remains, however, a fuzzy 

boundary between significance and power. The simulations 

performed in this chapter are somewhat crude in the sense 

that only three lengths of record were used. As a result, 

it is difficult to pin down the exact point where one should 

select another test procedure based on record length. In 

addition, serial correlation levels are difficult to es-

timate accurately with small data sets. For example, if the 

serial correlation were estimated as 0.2 from a data set 

with 87 observations, the null hypothesis of no serial
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correlation would be accepted at the 95% confidence level 

(Harris, 1988).

From a data analysis standpoint, most analysts set the 

nominal significance level (Type I error) and hope the test 

they use produces a small Type II error. However, due to 

the nature of water-quality data, one cannot assume that the 

Type I error (or a) is preserved. The manager must, as a 

result, decide in these instances which is more important.

If early trend detection is a must, the network manager may 

consider using a test which may be liberal in terms of 

significance but more powerful than a slightly conservative 

test. On the other hand, declaration that clean-up opera-

tions are effective when, in fact, the detected trends are 

actually the result of serial correlation can be misleading. 

Since serial correlation can result in "trends” (periods of 

increasing or decreasing consistently), it may be important 

to detect significant trends regardless of the culprit.

In light of the this discussion, the following recom-

mendations are made based on the findings of this chapter 

assuming one wishes to preserve the nominal significance 

level and still use a powerful test. (No recommendations 

can be made about records between six and nine years of 

record since the simulations in this chapter considered only 

five, ten and fifteen years of record. It is suggested that 

further simulations be done to further refine the following 

recommendations.)
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Use the SK test on the original data (e.g., do not 

collapse the data) when there are five years of record 

and no serial correlation.

Use the SK test on mean or median collapsed data when 

there are five (or less) years of record and serial 

correlation. This is not an ideal solution. In fact, 

when monotonic trend is detected in data sets with only 

five years of record, it should be noted that the 

detected trend can be due to serial correlation. The 

mean and median collapsed data sets are more appropriate 

for normally and lognormally distributed data, respec-

tively. Based on the simulations in this study, the 

reduction in power for incorrectly choosing 

(log)normality is small.

Use the MKD test on the original data when there are ten

or more years of record and no serial correlation.

Based on the simulation studies in this chapter, the MKD 

is more powerful than the SK. This result is confirmed 

by van Belle and Hughes (1984) in a comparison of 

aligned and intrablock tests using asymptotic relative 

efficiencies. However, the MKD is liberal and should 

not be used for shorter data records.

Use the SKC test on the original data when there are ten

or more years of record and serial correlation. The MKD

and the SK are liberal for modest serial correlation 

levels. Techniques designed to reduce serial correla-

tion (quarterly averaging) were not entirely successful



117

and as a result are not recommended when there are 

enough data to use the SKC.

This chapter does not address the issue of serial 

correlation detection. A study is currently planned to 

consider the sequential testing for serial correlation and 

trend detection using the above rules as a decision base.



CHANGING CONDITIONS— DETECTION WITH MISSING DATA

CHAPTER VI

Data may be collapsed from frequent to less frequent 

observations (e.g., monthly observations to quarterly 

values) to avoid problems associated with serial correlation 

and computational problems with missing values. The former 

problem is addressed in Chapter V. The latter issue is 

addressed here. How many missing values are needed in a 

data set before it is necessary to collapse the data?

A. Simulation Methodology 

A.l Data Generation

Data are generated for the missing value simulation 

using the same procedure described in Section V.A.l. After 

the water-quality time series is generated, a set of uniform 

(0,1) random numbers are generated corresponding to each 

"observation" of the water-quality time series. If the 

uniform random number is below the selected missing level 

percentile, the corresponding value in the water-quality 

time series is recoded as a missing value.

A.2 Evaluation

The same evaluation procedure described in Section 

V.A.2 is used here.



B.l Simulation Conditions

Five hundred sets of monthly data were generated for 

each set of simulation conditions. The parameters 

considered in these simulations are summarized in Table

VI. 1.
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B. Analyses

Table VI.1 Levels of distribution, variance seasonality, 
serial correlation, sample size, and levels of 
missing values or replicated data.

Distribution Normal, Lognormal

Ratio of seasonal 
standard deviations

1.0, 5.0

Monthly lag-1 
serial correlation

0.0, 0.4

Years of data 5, 10, 15

Percentage of 
missing data

0.0, 0.1, 0.3, 0.5
0.6, 0.7

Percentage of 
replicated data

0.0, 0.1, 0.2

B.2 Trend Detection Procedures

For the simulations in this chapter, monthly data were 

tested for trend with the MKD, SK and SKC. The same three 

tests were applied to time series which were constructed 

from quarterly medians. Quarterly means were not analyzed 

since the results from Chapter V indicate that there are 

only slight differences between the two procedures.

Quarterly middle collapsed data or yearly summaries were not 

applied either since the results from Chapter V indicate



that there is always a better approach. In this chapter, 

quarterly averaged data refers exclusively to data that were 

created by computing the quarterly median. The procedures 

used here are summarized in Table VI.2. With increasing

Table VI.2 Summary of statistical procedures used for trend 
detection study.

Code Technique

Tests applied to monthly data:

A Mann-Kendall tau test is applied to data which have 
been deseasonalized for the mean and variance 

B Seasonal Kendall tau test
C Seasonal Kendall tau test with serial correlation 

correction

Tests applied to quarterly values (monthly data were col-
lapsed by computing quarterly medians):

G Mann-Kendall tau test is applied to data which have 
been deseasonalized for the mean and variance 

H Seasonal Kendall tau test
I Seasonal Kendall tau test with serial correlation 

correction
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levels of missing values, it was possible to estimate a 

negative or very small test statistic variance for the SKC 

(Equation 5 in Hirsch and Slack, 1984). When the test 

statistic variance estimation is negative, no trend was 

assumed. For the simulations in this chapter this condition 

was rarely achieved and did not warrant further investiga-

tion.
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c. Results— Missing Data

Power tables resulting from the above simulation are 

presented in Appendix D. Techniques are now compared based 

on their actual significance level and power.

C.l Actual Significance Level Comparison

Actual significance levels were indexed and tabulated 

similar to results in Chapter V (Tables VI.3 through VI.5). 

The significance levels for five years of data were not 

presented since the significance levels were conservative 

for all SKC simulations (Table VI.3). The performance of 

the MKD and SK and no missing values was the same as the 

performance in Chapter V. Recall that both the MKD and SK 

were liberal in the presence of serial correlation and the 

MKD was liberal for five years of record with uncorrelated 

data.

As the percentage of missing values increased from zero 

to 70%, the actual significance level decreased for the MKD 

and SK by 0.10 to 0.15 for monthly correlated data. Monthly 

uncorrelated data yielded decreases of the significance 

level up to 0.026. Decreases in actual significance levels 

for the MKD and SK with quarterly collapsed data were less 

than 0.02. This result was expected since the quarterly 

collapsed data sets have relatively few missing values. For 

short data records (five years), the SK was conservative 

when 60% and 70% of the data were missing for uncorrelated 

and correlated data, respectively. The nominal significance 

level of the MKD for monthly data was preserved for 70%
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Table VI.3 Nom inal s ig n if ic a n c e  in d e x  f o r  t re n d  d e te c t io n
(y e a rs  o f  d a ta = 0 5 ).

SIMULATION DESC. MONTHLY QUART • MONTHLY QUART •

M S S M s S M S s M s s
Dist. P P K K K K K K P K K K K K K

D C D C D C D c

Nor. 1 0.0 0.0 1 0 1 0 0.4 2 2 1 0
5 1 0 1 0 3 2 1 0

Log. 1 1 0 0 -1 3 2 1 0
5 1 0 1 0 3 2 1 0

Nor. 1 0.1 0.0 1 0 1 0 0.4 2 2 1 0
5 1 0 0 0 3 2 1 0

Log. 1 1 0 0 0 3 2 1 0
5 0 0 0 -1 3 2 1 0

Nor. 1 0.3 0.0 0 0 0 0 0.4 2 1 1 0
5 1 0 0 0 2 2 1 0

Log. 1 1 0 0 0 2 1 1 -1
5 0 -1 0 -1 2 2 2 0

Nor. 1 0.5 0.0 1 0 0 0 0.4 2 0 1 0
5 1 0 1 -1 2 1 1 0

Log. 1 1 -1 1 -1 2 0 1 0
5 0 0 0 0 2 0 1 0

Nor. 1 0.6 0.0 1 -1 0 0 0.4 2 0 1 0
5 1 0 0 -1 2 0 1 0

Log. 1 1 -1 1 0 2 0 1 0
5 0 -1 0 -1 2 0 1 0

Nor. 1 0.7 0.0 0 -1 1 -1 0.4 1 -1 1 -1
5 1 -1 0 -1 2 0 1 0

Log. 1 0 -1 0 -1 1 -1 0 -1
5 0 -1 0 -1 1 -1 1 -1

Index •1 0. 000 < 0! < 0. 032 3 C).200 < 0! < 0.300
code 0 0. 032 < a < 0 .068 4 0.300 < a < 0.400

1 0. 068 < a < 0 .100 5 0.400 < a < 0.500
2 0. 100 < a < 0 .200 6 0.500 < a

missing values. The MKD was not conservative for any 

simulation conditions. Since the SK test went from 

preserved to conservative, it is suspected that it is 

coincidental with the simulation parameters that some of
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T a b le  V I . 4 Nom inal s ig n if ic a n c e  in d e x  f o r  t re n d  d e te c t io n
(y e a rs  o f  d a ta = 1 0 ).

SIMULATION DESC. MONTHLY QUART • MONTHLY QUART

M s s M s s M S s M s s
Dist. P P K K K K K K p K K K K K K

D c D c D C D c

Nor. 1 0.0 0.0 0 0 -1 0 0 0 0.4 2 2 0 0 0 -1
5 0 0 0 0 0 0 2 2 0 1 0 0

Log. 1 1 1 0 1 0 0 3 2 0 1 0 0
5 0 0 0 0 0 0 3 2 0 1 0 0

Nor. 1 0.1 0.0 0 0 -1 0 -1 -1 0.4 2 2 0 0 0 -1
5 0 0 0 0 0 0 2 2 0 0 0 0

Log. 1 0 0 0 1 0 0 3 2 0 1 1 0
5 0 0 0 0 0 0 3 2 0 1 1 0

Nor. 1 0.3 0.0 0 0 0 0 0 -1 0.4 2 1 0 0 0 -1
5 0 0 0 0 0 0 2 1 0 1 0 -1

Log. 1 1 0 0 1 0 0 2 2 0 1 0 0
5 1 0 0 0 0 0 2 2 0 2 1 0

Nor. 1 0.5 0.0 0 0 0 0 -1 -1 0.4 2 0 0 0 0 -1
5 0 0 -1 0 0 -1 2 1 -1 1 0 -1

Log. 1 1 0 0 0 0 -1 2 2 0 1 1 0
5 1 0 0 0 0 0 2 2 0 2 1 0

Nor. 1 0.6 0.0 0 0 -1 1 0 0 0.4 1 0 -1 0 0 -1
5 0 0 0 0 0 -1 2 0 0 1 0 0

Log. 1 1 0 -1 0 0 -1 2 1 0 1 0 -1
5 0 0 0 0 0 0 2 1 0 1 0 -1

Nor. 1 0.7 0.0 0 0 -1 0 0 0 0.4 0 0 -1 0 -1 -1
5 0 -1 -1 0 0 0 2 0 0 1 0 0

Log. 1 0 0 -1 0 0 -1 2 0 0 1 0 0
5 0 0 -1 0 0 -1 1 0 -1 1 0 0

Index
code

-1 0.000 < a < 0.032 3 0.200 < a < 0.300
0 0.032 < a < 0.068 4 0.300 < a < 0.400
1 0.068 < a < 0.100 5 0.400 < 0! < 0.500
2 0.100 < a < 0.200 6 0.500 < a

these tests preserved the nominal significance level for 

certain missing value levels, and the test did not neces-

sarily reach an asymptotic significance level equal to the 

nominal significance level.
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T a b le  V I . 5 Nom inal s ig n if ic a n c e  in d e x  f o r  t re n d  d e te c t io n
(y e a rs  o f  d a ta = 1 5 ).

SIMULATION DESC. MONTHLY QUART • MONTHLY QUART •

M s s M s s M S s M s s
Dist. P P K K K K K K p K K K K K K

D c D c D C D C

Nor. 1 0.0 0.0 0 0 0 0 0 0 0.4 3 2 0 1 1 0
5 0 0 0 1 0 0 2 2 0 1 1 0

Log. 1 0 0 0 0 0 0 3 3 0 1 1 0
5 0 0 0 0 0 0 3 3 0 1 1 0

Nor. 1 0.1 0.0 0 0 0 0 0 -1 0.4 3 2 0 2 1 0
5 0 0 0 0 0 0 2 2 0 1 1 0

Log. 1 0 0 0 0 0 0 3 2 0 2 1 0
5 0 0 -1 0 0 -1 3 2 0 1 0 0

Nor. 1 0.3 0.0 0 0 0 0 0 0 0.4 2 2 0 1 1 0
5 0 0 0 0 0 0 2 2 0 1 1 0

Log. 1 0 0 0 0 0 0 2 2 0 1 1 0
5 0 0 0 0 0 0 2 2 0 1 1 0

Nor. 1 0.5 0.0 0 0 0 0 0 -1 0.4 2 2 0 1 0 0
5 0 0 0 0 0 0 2 1 0 1 1 0

Log. 1 0 0 0 0 0 0 2 1 0 1 1 0
5 1 -1 -1 0 0 0 2 1 0 1 0 0

Nor. 1 0.6 0.0 1 0 0 0 0 0 0.4 2 1 0 1 1 0
5 0 0 0 0 0 -1 2 1 0 1 1 0

Log. 1 0 0 0 0 0 0 2 1 0 1 1 0
5 0 0 0 0 -1 -1 1 1 0 0 0 0

Nor. 1 0.7 0.0 0 0 0 0 0 0 0.4 2 1 0 1 1 0
5 0 0 0 0 0 0 1 0 0 0 0 0

Log. 1 0 0 0 0 0 0 1 0 0 1 0 0
5 0 0 0 0 0 0 1 1 0 0 0 -1

Index -1 0.000 < a < 0.032 3
code 0 0.032 < a < 0.068 4

1 0.068 < a < 0.100 5
2 0.100 < a < 0.200 6

0.200 < a < 0.300 
0.300 < a < 0.400 
0.400 < a < 0.500 
0.500 < a

At ten years of record, the SKC was conservative for 

larger levels of missing values although the pattern was 

somewhat erratic. The SKC preserved the nominal signifi-

cance level at 15 years of record and all levels of missing
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values. There were no appreciable decreases in actual 

significance levels for the SKC with increasing missing 

values levels. The actual significance levels were similar 

to those reported by Hirsch and Slack (1984).

C.2 Power Curve Comparison

The power curves developed for this simulation are 

similar to those developed in Chapter V. As expected, power 

decreased with increasing missing value levels.

In Table VI.6, the MKD and SK for monthly data are more 

powerful than the MKD and SK for quarterly collapsed data up 

to 50% missing values and uncorrelated data. The converse 

is true for greater than 50% missing values. A comparison 

of the serially correlated data is not meaningful since the 

actual significance levels of the monthly tests are sig-

nificantly higher than the actual significance levels of the 

quarterly tests.

The SKC is more affected by the level of missing values 

than the MKD and SK. In Table VI.7, the SKC for quarterly 

collapsed data is more powerful than the SKC for monthly 

data once 50% percent of the data are missing. The two 

tests compared in Table VI.7, are equivalent for serially 

correlated data at the 30% missing data level; although the 

monthly test is more powerful for uncorrelated data. It 

would be reasonable to average monthly data to quarterly 

observations if 40% of the data are missing.

The MKD is more powerful than the SK for all levels of 

missing values and monthly data (Table VI.8) or quarterly
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Table VI.6 Power comparison for the MKD and SK test for 
monthly and quarterly collapsed data.

SIMULATION
DESCRIPTION

A MKD (monthly)
G MKD (quarterly)

{P = 0.0)

years of record

Dist. <̂r P 05 10 15 05 10 15

Nor. 1 0.0 . . .A . .A .AA . . .B. . .B .BB
5 . . .AA . .AA . .A ___ B . .BB . .B.

Log. 1 . .AA .AA .A . . .B .B
5 ...AA_ .AAA_ .AA ...BB_ .BBB__ .BB

Nor. 1 0.1 . . .A . .A . .A . . .B. . .B . .B
5 . . .AA . . .A . .A. ___ B_^ . . .B . .B

Log. 1 .AAA .AA .A. . . .B . .B .B.
5 ..AAA_ .AAA_ .AA ...BB_ .BBB__ .BB

Nor. 1 0.3 • • • • • • • • • . .A • • •
5 . . .A . .A . . .B • • • •

Log. 1 . .AA. .AA .AA . . .B. . .B .BB
5 ...AA_ . .AA__ .AA ...BB_ . .BB__ .BB

Nor. 1 0.5 ..... . .A. ___ H
5 • ••••• . . .A. . . .A .... H • • • • • • • • •

Log. 1 • • • • • . .A .AA .... . .B . .B
5 • ••••• ..AA._ .AA ..... .... — . .B.__

Nor. 1 0.6 ...GG. . .A. ...HHH . . .H . .H
5 • • • • • G • • • • G • • • • ___ HH . . . .H • • • •

Log. 1 ..A.GG • • • • .AA ___ HH • • • • • • •
5 ....GG .... — . .A.__ ___ HH • • • • • . .B.__

Nor. 1 0.7 ...GGG • • • G • .H.HHH .H.H. . .H.
5 ....GG • • * • G * • • • • ___ HH . . .HH . . .HH

Log. 1 ..AGGG . . .G . • . . . .H. • • •
5 ...GGG . . .GG . . .G ...HHH ...HH. . . .H.

B SK (monthly)
H SK (quarterly)

{ p = 0.0)

years of record

data (Table VI.9). Five years of data are not compared 

since the actual significance levels of the MKD is 

significantly greater than the actual significance level of 

the SK. The MKD should be used when there is no serial
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Table VI.7 Power comparison for the SKC test for monthly 
and quarterly collapsed data.

SIMULATION
DESCRIPTION

C - SKC (monthly data)
I - SKC (quarterly median data)

( P  = 0 . 0 )

years of record

(p = 0.4)

years of record

Dist. Ur 05 10 15 05 10 15

Nor.

Log.

1
5
1
5

0.0

.CC

. c c "

-C_
, . .C
,CC^
, . c c

.c_

. c .
c . _
c c

. . .  c

. c c c

. .  .c_ 

. . .  c . 

. . c . _  

. .  . c

Nor.

Log.

1
5
1
5

0.1 . . I _  
. .CC 
.C._ 
.CC.

. .  c
ccj
. c c

.c_

cc"
cc"

. . c

.c_
c . c

c .
.c"

Nor.

Log.

1
5
1
5

0.3 . . 1 . 
. . .1

C.C.
CC
C C

Nor.

Log.

1
5
1
5

0.5

.II

.II C.

.II 

. .1 

.II 

. .1

.II_

.iT

Nor.

Log.

1
5
1
5

0.6 . . .II 
. . . II 
. . .II 
. . .II

I_
II
ij
II

I._
.1.

.II

. .1
III
.II

II_
.II
. i j
.II

I.

Nor.

Log.

1
5
1
5

0.7 I. .II

. . .II 

. . .II

II_
III
I._

III.

I._
.II
I__]
.1.

.II

. .1
III
.II

.II

. . l "
II.
.Il'

I_
II

I.
Il'

correlation and at least ten years of record since it is the 

most powerful and preserves the nominal significance level. 

For five years of record, the MKD is liberal in comparison
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Table VI.8 Power comparison for MKD and SK with monthly 
observations.

SIMULATION
DESCRIPTION

A - MKD (monthly data) 
B - SK (monthly data)

(P = 0 . 0 )

years of record

(P = 0.4)

years of record

Dist. CTr 05 10 15 05 10 15

Nor.

Log.

1 0.0 
5 0.0 
1 0.0 
5 0.0

n/c n/c

Nor.

Log.

1 0.1 
5 0.1 
1 0.1 
5 0.1

n/c
A_
A.

AA
n/c ,AA.

Nor.

Log.

1 0.3 
5 0.3 
1 0.3 
5 0.3

n/c
A._
.A_
A _
A.

n/c A.

Nor.

Log.

1 0.5 
5 0.5 
1 0.5 
5 0.5

n/c
A A_

A.AA
A__[
AA.

.A_
AAA
k ._2
.A

n/c
AA

Nor.

Log.

1 0.6 
5 0.6 
1 0.6 
5 0.6

n/c
,AAA

,AA.

AA_ 
. .A 
AA_^ 
A. .

n/c
• AA

A_
A.

Nor.

Log.

1 0.7 
5 0.7 
1 0.7 
5 0.7

n/c
.AAA._ 
, . .AA_

.AAA..

AA._ 
. .A.
AA

n/c
,AA. A.

a a"
AA_
AAA.

to the SK (Table VI.3) and should be avoided. The SK would 

be more appropriate for shorter records.

As in Chapter V, the decision between tests is not 

clear cut when the possibility of serially correlated data
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Table VI.9 Power comparison for MKD and SK median
collapsing of monthly observations to quarterly 
values.

SIMULATION
DESCRIPTION

G - MKD (quarterly median data) 
H - SK (quarterly median data)

(P = 0.0)

years of record

(P = 0.4)

years of record

Dist. a_ 05 10 15 05 10 15

Nor.

Log.

1 0.0 
5 0.0 
1 0.0 
5 0.0

n/c GG
G

G. n/c

Nor.

Log.

1 0.1 
5 0.1 
1 0.1 
5 0.1

n/c G. n/c

Nor.

Log.

1 0.3 
5 0.3 
1 0.3 
5 0.3

n/c n/c
G
GG 
• • 
.G

Nor.

Log.

1 0.5 
5 0.5 
1 0.5 
5 0.5

n/c n/c

Nor.

Log.

1 0.6 
5 0.6 
1 0.6 
5 0.6

n/c
GG_
.GG
G.

n/c . .G
G _
.G

Nor.

Log.

1 0.7 
5 0.7 
1 0.7 
5 0.7

n/c
GG_
.GG
g g Ĵ
GG.

n/c
GG

G.GG_ 
GG.G. 
. .G._ 
. . . G .

G.
.g"

is present. The SKC is not appropriate for five years of 

record (conservative significance levels), and quarterly 

averaging does not remove all correlation in records so that 

the MKD and SK can be readily applied. Figures VI.1 through



VI.6 demonstrate some of the trade-offs involved with per-

centage of missing values, years of record and serial cor-

relation.

The SKC is appropriate for longer records (ten or more 

years) when data are serially correlated. The SKC does have 

a tendency to be slightly conservative at ten years of 

record but does preserve the nominal significance level for 

15 years of record (Tables VI.4 and VI.5). The SKC is 

considered too conservative for five years of record. As an 

alternative, the SK is recommended with quarterly averaged 

data, five years of record and serial correlation. For 

large missing value levels (70%), the SK is conservative 

(Table VI.3).
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D. Summary and Conclusions

This chapter investigated the effect of missing values 

on trend detection. Procedures for handling this data 

record attribute were suggested and evaluated. Key con-

clusions are summarized below.

1. The SK actual significance level is usually closer to 

the nominal significance than the MKD actual signifi-

cance level for short data records (five years of 

record). When the SK and MKD have comparable actual 

significance levels (10 and 15 years of record), the MKD 

is more powerful than the SK regardless of missing value 

level.

2. The actual significance level of the MKD and SK with
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Figure VI.l Comparison of power curves for monthly and 
quarterly (median) averaged data for five years 
of data, lag-one autocorrelation equal to 0.4, 
and missing values percentage equal to 0.1.

Figure VI.2 Comparison of power curves for monthly and 
quarterly (median) averaged data for ten years 
of data, lag-one autocorrelation equal to 0.4, 
and missing values percentage equal to 0.1.
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Figure VI.3 Comparison of power curves for monthly and 
quarterly (median) averaged data for five years 
of data, lag-one autocorrelation equal to 0.4, 
and missing values percentage equal to 0.5.

Figure VI.4 Comparison of power curves for monthly and
quarterly (median) averaged data for ten years 
of data, lag-one autocorrelation equal to 0.4, 
and missing values percentage equal to 0.5.
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Figure VI.5 Comparison of power curves for monthly and
quarterly (median) averaged data for five years 
of data, lag-one autocorrelation equal to 0.4, 
and missing values percentage equal to 0.7.

Figure VI.6 Comparison of power curves for monthly and
quarterly (median) averaged data for ten years 
of data, lag-one autocorrelation equal to 0.4, 
and missing values percentage equal to 0.7.



correlated monthly data decreased as the percentage of 

missing values increased. The actual significance level 

of the SKC was not strongly affected by missing values. 

All tests are affected by missing values in terms of 

power. Monthly data should be collapsed to quarterly 

values when more than 50% of the monthly data are miss-

ing and the SK or MKD are to be used. Monthly data 

should be collapsed to quarterly values when more than 

40% of the monthly data are missing and the SKC is to be 

used.

There is not a good alternative when there are five 

years of record and more than 50% missing values regard-

less of correlation level. The SKC is too conservative 

for five years of record. The SK is too conservative 

for five years of record and large levels of missing 

values and short records.
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E. Application

In general, the same discussion regarding the trade-

offs between significance and power that were made in Sec-

tion V.E is applicable here. The recommendations made in 

Chapter V are now amended to account for missing values.

1. Collapse monthly data to quarterly values if more than 

50% of the monthly data are missing when applying the 

MKD or SK.

2. Collapse monthly data to quarterly values if more than 

40% of the monthly data are missing when applying the
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SKC.

3. When there are only five years of record and more than 

50% missing values, there is not a good alternative.



SUMMARY AND CONCLUSIONS

CHAPTER VII

A. Review and Synthesis

Four data analysis tasks were identified that must be 

accomplished before a water-quality data analysis protocol 

can be identified. These issues were: Identify common 

water-quality conditions and data record attributes, review 

and discuss assumptions and logic incorporated in past 

protocols, recommend a framework appropriate to data 

analysis and recommend and evaluate procedures for 

alleviating some shortcomings of past protocols.

Many management decisions can be made by evaluating 

three types of water-quality conditions: average, changing 

and extreme conditions. This study was limited to the first 

two conditions. Data record attributes which inhibit 

statistical analysis were classified into two groups. 

Statistical characteristics are attributes resulting from 

the natural variability of water-quality variables. These 

attributes do not cause computational problems per se; 

however, they may violate typical statistical assumptions 

which may lead to incorrect conclusions. Data limitations 

are, for the most part, man-induced attributes which result 

in less reliable observations, less information for a given



data set and increase analysis complexity. Common data 

record attributes in this study are summarized in Table

VII.1.
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Table VII.l Data record attributes common to water-quality
data sets.

Statistical characteristics Data limitations

distribution applicability censoring
variance homogeneity erroneous observations
seasonality small sample size
serial correlation missing values
extreme events different sampling

frequencies
multiple observations 
measurement uncertainty

Based on the review of past protocols, several 

"standard” procedures have gained wide acceptance for water- 

quality data analysis.

1. Average conditions are described with median and 

interquartile range estimates, often displayed as box 

plots.

2. The Mann-Kendall tau and the Wilcoxon Rank Sum tests 

(and variations) are used for monotonie and step trend 

analysis, respectively. The Wilcoxon Signed Rank test 

is used for step trends when the data can be paired.

The Sen slope estimator is used for monotonie trend 

estimation.

3. Nonparametric procedures are recommended to avoid 

problems of non-normally distributed data and are 

outliers.



4. Measurement error is included in overall process 

variance and is not explicitly included in statistical 

analyses.

5. One water-quality random variable is analyzed at a time. 

In terms of information flow, five components were

identified that are integral to data analysis. These five 

components are: Identification of information goals and 

transformation of goals into water-quality conditions, data 

handling, identification of data limitations and statistical 

characteristics, water-quality evaluation and information 

reporting. In a well-conceived network design, many of the 

specific details are determined at the initial network 

design phase.

Several protocol shortcomings were identified for 

simulation. First, the average condition estimation work 

initiated by Gilliom and Helsel (1986) and Helsel and 

Gilliom (1986) was extended. Second, several monotonie 

trend detection procedures were evaluated to compare their 

effectiveness against serial correlation. The performance 

of these techniques was then evaluated under increasing 

levels of missing values.
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B. Concluding Remarks

Specific conclusions for each task are identified at 

the end of the respective chapters and are not repeated 

here. There are some remarks which relate to water-quality 

data analysis protocols in general.



Much research effort has been spent developing 

techniques for water-quality data analysis. The 

greatest task facing network managers is not one of 

simply finding a methodology for evaluating information 

goals. There are several choices available. Rather the 

most difficult task is selecting the most appropriate 

method and coupling the method with appropriate data 

preparation procedures that account for specific data 

record attributes.

Protocols have been defined for data collection and 

laboratory analysis with the purpose of reducing 

associated errors and biases. A protocol for data 

analysis should provide a means for consistent and 

defensible water-quality evaluation as well.

This study is a further attempt to address water-quality 

data analysis issues. This study and similar studies 

should evolve along with our knowledge of water quality, 

hydrology and statistics.
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C. Recommendations for Future Work

The following is a brief discussion of topics which are 

water-quality data analysis weaknesses. These issues should 

be addressed with additional resources.

1. Numerous techniques have been recommended to detect 

erroneous observations (e.g., Gilbert, 1987). Little 

justification is available for the use of one procedure 

over other procedures for detecting erroneous
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observations. Although the recommended procedures are 

robust against outliers, this does not mean that the 

procedures are immune to the effects of poor data.

Effort should be placed on determining which random 

variables (and their respective sampling and laboratory- 

analysis procedures) are most susceptible to error. 

Better physical understanding of the monitored region 

will assist in subsequent data analysis. Limited 

physical knowledge is incorporated into data analysis. 

Additional research should be directed towards 

determining what physical information is most useful for 

subsequent water-quality evaluation.

This study did not address extreme condition evaluation. 

Key challenges in this area would include determining 

both appropriate statistics and simulation procedures. 

The trade-offs between absolute standards and percentile 

standards are known; however, the appropriateness of 

either is not well defined. McBride and Pridmore (1987) 

suggest a two-tier program combining the two approaches. 

A second concern involves simulation experiments. The 

data generation procedures used in Chapter IV were less 

than ideal (Appendix A). It was difficult to transform 

data from normal to lognormal or mixed lognormal 

probability distributions. For some cases, the sample 

variance was drastically different from the simulated 

variance. This was primarily due to a few very large 

numbers. While this issue is probably not critical for
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average and changing condition evaluation, the tails of 

distributions would be critical for extreme condition 

evaluation.

This study did not address information reporting. In 

terms of information flow, this component of data 

analysis is probably the most critical. Report 

frequency and format and included information may vary 

depending on the management structure and efforts.

How much data is enough? This study did not attempt to 

answer this question. Although it is possible to run 

some statistical tests with a minimum of data, the 

amount of misinfoirmation with short data records is not 

known. Some standards should be set for minimum data 

requirements before meaningful analysis is possible. 

These standards should be tempered with timely data 

analysis. The amount of data necessary to check 

distributional assumptions is not known. Although this 

study emphasizes nonparametric procedures, improved 

analysis is possible with knowledge of the distribution. 

One of the key recommendations of past work (e.g..

Porter et al., 1988) is to not censor data at the 

laboratory. As a result, negative values of 

concentration are likely. Some of the recommended 

procedures rely on log-transformations. This "new" data 

limitation has not been dealt with in this study or in 

the 1iterature.

Multiple censoring has been dealt with quite extensively
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in recent literature. The issue of systematic versus 

progressive censoring has been dealt with to some extent 

for trend detection. The same issues have not been 

dealt with for average condition estimation.

8. Some of the implications made in this study are 

sequential processes. These sequential recommendations 

are based on individual simulations. For example, 

serial correlation detection is a significant part of 

the decision making process for selecting a trend test. 

However, the issues regarding the significance level and 

power of sequential tests should be examined with a 

simulation procedure which incorporates the entire 

process.

9. Several key issues regarding average condition 

estimation are discussed in the protocol. However, one 

issue relating to the simulation in Chapter IV is left 

unresolved. The "no censoring rule" was the overall 

best estimation procedure for the mean, standard 

deviation, and median. "No censoring" was not the best 

procedure for the interquartile range. The latter 

result is similar to the results by Helsel and Cohn 

(1988). This result is counter-intuitive and should be 

investigated further. It has been suggested that the 

sample interquartile range may not be the best estimate 

of the population interquartile range available.

10. There are several ancillary issues arising from the 

trend detection simulations. First does the Mann-
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Whitney test behave similarly to the Mann-Kendall tau 

test for correlation, collapsed data sets, and missing 

values? Second, the recommendations for monotonic trend 

tests were based on five, ten and fifteen years of 

simulated data. The results tend to indicate that the 

trade-off between the Seasonal Kendall and Mann-Kendall 

tau tests occurs between five and ten years. This 

result should be confirmed with more refined 

simulations. Finally, it appeared that the difference 

in power of the Seasonal Kendall tau test with 

correlation correction (SKC) and the Mann-Kendall tau 

test on deseasonalized data (MKD) was decreasing for 

longer periods of records and no correlation. At what 

point (years of data) do the SKC and MKD perform equally 

well on data with no correlation? At this point, it 

would make sense to use the SKC test exclusively.

11. Lettenmaier (1976) adapted the Mann-Whitney test to 

account for Markovian correlation structure (AR(1)).

The Mann-Whitney test should be modified to account for 

arbitrary correlation structure.

12. Little research has focused on trend magnitude 

estimation in the presence of single or multiple 

censoring limits. Gilbert (1987) and Ward et al. (1988) 

recommended one-half of the detection limit; however, 

little justification is provided.

In summary, there is considerable additional research

needed if a scientifically defensible water-quality data
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analysis protocol is to be developed. Hopefully, this study 

has helped organize and extend some of the current thinking 

on the subject.
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APPENDIX A 

DATA GENERATION

A. Average Conditions

Data (for average condition estimation. Chapter IV) 

were generated using International Mathematical and 

Statistical Libraries generating routines for the normal, 

gamma, and uniform distributions. Lognormal, mixed 

lognormal, and delta distributions were produced with 

transformations of normal and uniform distributions 

described by Gilliom and Helsel (1986) and Aitchison (1957) 

with one exception. The proportion of zeroes for the delta 

distribution was increased from 5 to 15 percent. Five 

hundred data points were generated and discarded as a 

"warm-up" of the random number generator.

Large data sets (10000 numbers) were generated for each 

distribution and different coefficient of variation level to 

check for the adequacy of the generator. Probability 

density functions were computed from the this simulation 

(Figure A.l). Data sets were checked for cycling, goodness 

of fit, autocorrelation, and parameter reproducibility. 

During the simulation, the generator did not cycle 

(reproduce the same number) within 75000 numbers. A typical 

chi-square goodness of fit test is shown in Figure A.2 for a



160

Figure A.l Simulated probability density function for 
parent distributions used in simulation (a) 
normal distribution.

Figure A.l Simulated probability density function for 
parent distributions used in simulation (b) 
lognormal distribution.
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Figure A.l Simulated probability density function for 
parent distributions used in simulation (c) 
gamma distribution.

Figure A.l Simulated probability density function for 
parent distributions used in simulation (d) 
mixed lognormal distribution.
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Figure A.l Simulated probability density function for 
parent distributions used in simulation (e) 
delta distribution.
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Figure A.2 Chi-square goodness of fit test for normal
(mean=1.0, variance=l.0) distribution used in 
simulation.



normal (mean = 1.00, coefficient of variation = 1.00) 

distribution. Although the probability density functions 

were more jagged than expected, distributions did pass 

chi-square goodness of fit tests.

The data were checked for independence before 

transformation (Table A.l). The 95% confidence interval for 

autocorrelation for sample size equal to 10000 is (-0.0197, 

0.0195). From inspection of Table A.l there is a small 

negative correlation at lag-1 but the other lags were not 

significant.
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Table A.l Summary of autocorrelation coefficients for 
simulated data before transformation.

lag-k lag-k

1 -0.0250* 6 -0.0018
2 -0.0116 7 -0.0126
3 0.0127 8 0.0110
4 -0.0059 9 0.0027
5 0.0039 10 -0.0022

* not independent at the 95% significance level

For each distribution, the mean and coefficient of 

variation was specified. The mean was always set equal to 

one. The coefficient of variation was set equal to 0.25, 

0.50, 1.00, and 2.00 (which corresponds to a variance of 

0.0625, 0.25, 1.00, and 4.00). It is not theoretically 

possible to simulate a delta distribution with 15% zeroes at 

the 0.25 coefficient of variation level. The mean and 

variance were computed for each simulation and were compared 

to the specified conditions (Table A.2 and A.3).



164

Table A.2 Summary of computed means for simulated data.

0.25
Coefficient of Variation 
0.50 1.00 2.00

Variance
Distribution 0.0625 0.25 1.00 4.00

Normal 0.9998 0.9995 0.9990 0.9981
Lognormal 1.0002 1.0014 1.0055 1.0140
Gamma 1.0041 1.0082 1.0043 1.0253
Mixed Lognormal 1.0004 1.0026 1.0077 1.0174
Delta n/a 0.9988 0.9989 1.0009

Table A.3 Summary of computed variances for simulated data.

0.25
Coefficient of Variation 
0.50 1.00 2.00

Variance
Distribution 0.0625 0.25 1.00 4.00

Normal 0.0634 0.2535 1.0139 4.0554
Lognormal 0.0637 0.2564 1.0350 4.0226
Gamma 0.0640 0.2559 1.0058 4.3050*
Mixed Lognormal 0.0641 0.2632* 1.1039* 4.7316*
Delta n/a 0.2507 1.0053 3.7983*

significantly different from the specified 
variance at the 95 confidence level

All means fell within the 95% confidence level of the 

specified mean. Five of the variances did not fall within 

the 95% confidence level of the specified variance. The 

simulations which did not pass the variance test were from 

the mixed lognormal distribution or from the highest 

coefficient of variation level.

Upon closer scrutiny of the data, it was noticed that 

the higher than specified variances appeared to be the
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result of one extremely large number in the data set. For 

example, the largest simulated value for the mixed lognormal 

distribution at a coefficient of variation of 2.00 was 

132.25. The variance due to this observation is 

(132.25-1.0174)VlOOOO or 1.72, 36% of the total variance.

The tests performed in this section indicate that even 

commercially available generators are not ideal. Developing 

a better generator, however, is beyond the scope of this 

study. Therefore, the simulation study will be run with the 

number generator described above.



APPENDIX B

GENERAL LINEAR MODEL DEVELOPMENT

SPSS was used to fit raw simulation data with a general 

linear model described in Chapter IV. Example submit files 

and computed coefficients are contained in this appendix.

The first group of tables (B.la through B.lh) contain the 

computed coefficients from the initial fit for rmse. The 

second group of tables (B.2a through B.2h) contain the 

computed coefficients from the refitted model for rmse.

Table headings correspond to Equations IV.3 and IV.4. 

Technique code order refers to the coefficients indexed with 

j . The index i refers to the parent distributions used in 

simulation. In order, the parent distributions are:

Normal, lognormal, gamma, mixed lognormal, and delta. A 

further discription of simulation procedures is given in 

Chapter IV and Appendix A.
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F ig u re  B . l SPSS submit file used to create general 
linear model for average condition estimation 
with single censoring.

/JOB
JH61,T504.
/USER
/NOSEQ
ROUTE,OUTPUT,DEF,DC=WT,ID=0.
ATTACH,SPSSX/UN=LIBRARY.
SPSSX.
SKIP,DAYF.

EXIT.
DAYFILE,BLOWUP.
REPLACE,BLOWUP.
EXIT.

ENDIF,DAYF.
/EOR
TITLE RMSE —  MEAN —  SINGLE
DATA LIST FREE / ID CV P TECH SS BIAS RMSE
MISSING VALUES BIAS TO RMSE (-99.99)
BEGIN DATA
1 .25 . 2 1 8  -.04782 .12509
1 .25 . 2 2 8  -.05001 .13315

. . . all simulation data ...

5 2.00 .8 6
5 2.00 .8 7
END DATA 
COMPUTE CVSS 
COMPUTE CVP 
COMPUTE SSP 
COMPUTE CVCV 
COMPUTE SSSS 
COMPUTE PP

48 -99.99000 -99.99000
48 -.21332 35472

CV
CV
SS
CV
SS
P

SS
P
P
CV
SS
P

MANOVA RMSE,CV,SS,P,CVSS,CVP,SSP,CVCV,SSSS,PP BY 
TECH(1,7),ID(1,5)/
METHOD = SSTYPE(UNIQUE)/
ANALYSIS = RMSE/
DESIGN = ID, TECH, ID BY TECH,

CV, SS, P,
CVSS, CVP, SSP,
CVCV, SSSS, PP,
ID BY CV, ID BY SS, ID BY P,
TECH BY CV, TECH BY SS, TECH BY P/

F IN IS H
/EOR
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F ig u re  B.2 SPSS submit file used to create general 
linear model for average condition estimation 
with multiple censoring.

/JOB
JH65,T504.
/USER
/NOSEQ
ROUTE,OUTPUT,DEF,DC=WT,ID=0.
ATTACH,SPSSX/UN=LIBRARY.
SPSSX.
SKIP,DAYF.

EXIT.
DAYFILE,BLOWUP.
REPLACE,BLOWUP.
EXIT.

ENDIF,DAYF.
/EOR
TITLE RMSE —  MEAN —  MULTIPLE
DATA LIST FREE / ID CV PI P2 P3 TECH SS BIAS RMSE 
MISSING VALUES BIAS TO RMSE (-99.99)
BEGIN DATA
1 .25 .15 .20 .25 12 1 -.0481 .1006
1 .25 .15 .20 .25 12 2 -.0899 .1321

... all simulation data ...

5 2.00 .30 .40 
5 2.00 .30 .40 
END DATA 
COMPUTE P 
COMPUTE CVSS = 
COMPUTE CVP = CV 
COMPUTE SSP = SS 
COMPUTE CVCV = CV 
COMPUTE SSSS = SS 
COMPUTE PP = P

.20 48 

.20 48

(PI + P2 
CV * SS 

* P 
P
CV 
SS 
P

7 .0215
8 .0191

+ P3) / 3.0

3200
3200

MANOVA RMSE,CV,SS,P,CVSS,CVP,SSP,CVCV,SSSS,PP BY 
TECH(1,4),ID(1,5)/
METHOD = SSTYPE(UNIQUE)/
ANALYSIS = RMSE/
DESIGN = ID, TECH, ID BY TECH,

CV, SS, P,
CVSS, CVP, SSP,
CVCV, SSSS, PP,
ID BY CV, ID BY SS, ID BY P,
TECH BY CV, TECH BY SS, TECH BY P/

F IN IS H
/EOR
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T a b le  B . la G en era l l in e a r  model c o e f f ic ie n t s  used f o r
rmse e s t im a t io n  (mean, s in g le  c e n s o r in g ) .

Technique code order ABCDEFGHKNOPQ
So ai a2 as a4

.1820141 .1747887 -.0069182 -.2287104 -.0035658

5̂ ae a7 as ag

-.0740795 . 0009461 .0685827 .0001153 .5333083

i ao ai ai ai

1 -.1083777 .0853836 -.0000813 .1393306
2 .0240089 -.0335978 .0001369 -.0275813
3 . 0440856 .0173827 -.0009580 -.0574932
4 .0132322 -.0412996 .0009951 -.0252809
5 .0270509 -.0278689 -.0000926 -.0289751

j a'o ai ai as

1 . 0425729 .0197042 -.0005248 -.2582133
2 .1010015 -.1720475 .0001866 .3532876
3 .0221156 .0065147 .0001999 -.1330108
4 -.2737796 .0976228 .0011853 .4239972
5 . 0221156 .0065147 .0001999 -.1330108
6 .0257048 .0028907 .0000162 -.1110686
7 -.0389282 .0247339 -.0009011 .0917661
8 -.0568542 .0750842 -.0017514 .0489875
9 .1818816 -.1129118 -.0014983 .2094371

10 .0221156 .0065147 .0001999 -.1330108
11 -.0050027 .0178330 .0014406 -.1960418
12 -.0074468 .0117881 .0011129 -.1619267
13 -.0354960 .0157579 .0001338 -.0011925

“0 i=l 2 3 4 5

j=l -.0440592 .0845455 -.0281890 -.0000165 -.0122806
2 . 0118519 -.0267414 .0142582 .0057321 -.0051008
3 -.0077459 -.0174273 -.0154556 -.0121859 .0528149
4 . 0124397 -.0525950 .0295033 .0183969 -.0077449
5 -.0651127 -.0000165 .0620558 .0309861 -.0279126
6 .0226174 .0057321 -.0185955 -.0123494 .0025953
7 -.0132688 -.0121859 -.0185786 .0237008 .0203325
8 .0405650 .0183969 -.0223310 -.0470110 .0103801
9 -.0000165 .0015806 -.0746189 .0335222 . 0395326

10 .0057321 .0051968 -.0030003 -.0134068 . 0054781
11 -.0121859 -.0126304 .0941785 .0204385 -.0898005
12 .0183969 .0168396 .0018804 -.0470963 .0099792
13 .0307861 -.0106948 -.0211072 -.0007106 .0017265
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T a b le  B . lb G en era l l in e a r  model c o e f f ic ie n t s  used f o r
rmse e s t im a t io n  (s ta n d a rd  d e v ia t io n ,  s in g le
c e n s o r in g ) .

Technique code order ABCDEFGHIKLNPQ

ao ai aa as a«

.8408905 .0000000 -.0130588 -1.7194731 .0000000

5̂ as a; as ag

-.5853457 .0242020 .2066096 .0000000 2.2075150

i So ai ai ai

1 . 1231546 -.2169104 -.0012703 -.1756169
2 .0009810 -.0281898 -.0002037 .0981583
3 .4294112 .1395655 -.0076060 -.6736098
4 -.0962218 -.0016720 .0029722 .4407964
5 -.4573250 .1072067 .0061079 .3102720
j ai ai ai

1 .0161183 .0366649 -.0019401 -.5213416
2 .5674953 -.5016166 -.0002598 .0578457
3 .0895734 -.0116850 -.0016693 -.4108071
4 .0244924 -.0223013 -.0008561 -.3072366
5 .1866094 -.1043964 -.0012027 -.3886945
6 .1714640 -.0919996 -.0009946 -.3988239
7 .1144323 -.0842524 -.0016407 -.2649115
8 .0605052 -.0038391 -.0021610 -.3570477
9 -2.2710173 .1035642 .0297118 4.3214199

10 1.4774011 .7050090 -.0210289 -2.4813513
11 -.7627444 .2512468 .0046572 1.3471846
12 .1272327 -.0672064 -.0005031 -.4136908
13 .0720530 -.1680416 .0002995 .2280081
14 .1263841 -.0411462 -.0024119 -.4105531
Uq i=l 2 3 4 5

j=l .0108632 .0140594 -.0961778 -.3846935 .4559486
2 .0319162 -.1079353 .0300248 -.3199987 .3659930
3 -.0984903 -.0423209 .0960984 .1181209 -.0734081
4 .0012484 .0927203 .0123034 -.0937113 -.0125609
5 .0912708 .0486280 -.1202926 .2227413 -.2423476
6 .0735733 -.0736557 -.0169084 .0905762 -.0735853
7 -.0302411 -.0143158 -.4457697 .0434055 .4469211
8 -.0330475 .0935191 -.1360013 -.0804923 .1560221
9 .0953467 .0435523 -.3550061 -.0135512 .2296582

10 .0231778 -.0778114 .4277996 .1229234 -.4960894
11 -.1000057 -.0167060 -.1329215 -.0459094 .2955427
12 -.0231015 .0218879 -.2858487 -.0563340 .3433964
13 .1154655 .0413219 1.4059025 -.1174235 -1.4452665
14 -.1579760 -.0229439 -.3832023 .5143465 .0497757
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G en era l l in e a r  model c o e f f ic ie n t s  used f o r
rmse e s t im a t io n  (m edian, s in g le  c e n s o r in g ) .

Technique code order ABCDEFGHJKMN

ao ai a2 as a*

. 3887300 .0000000 -.0086313 -1.0173485 -.0082976

as ae a7 as ag

.6153879 .0000000 .1123042 .0001992 1.1895217

i ao ai ai ai

1 .1237978 -.1546858 .0015482 -.1848549
2 .0993362 -.1390957 .0008475 -.0951695
3 -.4227927 .5993154 -.0064439 .6007221
4 .1039448 -.1968648 .0020257 -.1274433
5 .0957136 -.1086690 .0020223 -.1932543

j â ai a2 as

1 .2874493 -.0467393 -.0006526 -.7815379
2 .1115138 -.2230251 .0022774 .5615463
3 .2313774 -.1089751 .0013451 -.4443735
4 -.5772417 .2959216 .0017093 .6205721
5 -.0278390 .0637680 .0003075 -.2503930
6 .0902630 -.0728401 .0015878 -.1044448
7 -.1764944 .1940338 -.0041742 .3752879
8 -.1196379 .2049376 -.0061009 .1708430
9 .0459968 -.0532727 .0003076 -.2878211

10 .1710447 -.2742422 .0021007 .5940044
11 -.0535192 -.0152181 .0006846 -.1396165
12 .0170872 .0356517 .0006076 -.3140668

Uq i=l 2 3 4 5

j=l . 0673341 .0085585 .0130747 .0088256 -.0977930
2 .0020890 -.0245511 -.0014144 -.0785766 .1024532
3 -.0816218 -.0325250 -.1068990 . 0233407 .1977052
4 -.0031239 .1999305 .0288745 .0376612 -.2633424
5 .0290517 -.0823599 .0516164 . 0399263 -.0382346
6 .0257689 -.0111532 .0295747 -.2094032 .1652127
7 -.1480952 -.0187959 -.0401034 .0661704 .1408241
8 .0464361 .0799014 -.0170316 .0308197 -.1401256
9 -.0020883 -.0294962 .1347548 -.0041485 -.0990216

10 -.0090800 -.0040960 -.0358249 -.0367287 .0857298
11 .0059023 -.0062524 .0346847 .0020085 -.0363433
12 .0674269 -.0791604 -.0913065 .1201044 -.0170644
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T a b le  B . ld G en era l l in e a r  model c o e f f ic ie n t s  used f o r
rmse e s t im a t io n  ( in t e r q u a r t i le  ra n g e , s in g le
c e n s o r in g ) .

Technique code order ABCDEFGHJKMN

ao ai a2 as a4

2.7056133 -3.0309439 -.0283407 3.0847608 -.0065492

as as a7 as ag

-.3662960 .0043540 1.1412402 .0003904 -2.5254763

i ao ai ai ai

1 -.2496417 .0217303 .0054589 -.2803075
2 -.3204974 .2646025 -.0014890 .0121535
3 -.3999839 .2044177 .0004503 -.0496013
4 . 6035518 -.3707734 -.0027867 .3853388
5 .3665713 -.1199771 -.0016335 -.0675834

j ao ai «2 aJas

1 -.5161096 .5855609 -.0063571 -.3176489
2 1.9676815 -.9995144 -.0029791 .1555308
3 .4313566 -.0127422 -.0017947 -.6337528
4 -1.0704680 .7617439 .0003161 -.5373368
5 .0401712 -.2919238 -.0059330 1.1494709
6 .4048313 -.2035033 -.0004608 .1093043
7 -.3942261 .1746421 -.0013368 .7852722
8 -.6481353 .5079943 -.0029218 -.3613596
9 -.9322408 .4086909 .0044451 -.4093707

10 1.4857113 -1.0792482 .0161174 -.1548606
11 -.9541997 .4045420 .0051310 -.4094727
12 .1856275 -.2562421 -.0042261 .6242239

j i=l 2 3 4 5

j=l .2499017 -.0777720 .0100247 .0534516 -.2356061
2 -.0553098 .1259666 -.0327982 .0146986 -.0525571
3 .0280090 .0731462 -.2572043 .0492116 .1068374
4 -.4521670 .1681427 .0573342 .0288771 .1978129
5 .0011755 -.3393704 -.0336385 -.1093171 .4811506
6 -.0970172 .0159129 .2931744 -.1613882 -.0506818
7 -.1311184 -.0178954 -.1343065 .2589958 .0243245
8 .2179145 -.0005219 .0794410 -.0931392 -.2036944
9 .0587707 -.0143890 .0589837 .0585046 -.1618699

10 -.0056876 .0475650 .0334341 .0074936 -.0828052
11 .0348738 -.0201030 -.0631069 .0836667 -.0353306
12 .1506547 .0393183 -.0113377 -.1910552 .0124199
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T a b le  B . le G en era l l in e a r  model c o e f f ic ie n t s  used f o r
rmse e s t im a t io n  (mean, m u lt ip le  c e n s o r in g ) .

Technique code order ACEFGH

ao ai aa as a*

.1496996 .0986265 -.0029488 -.1559616 -.0020938

as ae ay as ag

-.0239551 .0017617 .0689191 .0000286 .3933840

i aj ai ai ai

1 -.1055179 .0934519 .0000618 .1118698
2 . 0290678 -.0265451 -.0000686 -.0313235
3 .0316919 -.0239412 -.0005605 -.0061672
4 -.0039922 -.0240044 .0012088 -.0266285
5 .0487504 -.0189611 -.0006414 -.0477505

j â ai ai as

1 . 0601225 .0167172 -.0005314 -.2694637
2 .0350089 .0055463 .0000420 -.1335416
3 . 0453085 .0021548 -.0000449 -.1404135
4 .0350089 .0055463 .0000420 -.1335416
5 -.0065007 .0228872 -.0003608 -.0641881
6 -.0020574 .0173214 -.0001835 -.0821608

“0 i=l 2 3 4 5

j=l -.0466609 .0319563 -.0029004 .0025520 .0150529
2 . 0078217 .0025520 .0009106 .0088691 -.0201536
3 -.0588465 .0088691 .0024332 -.0034283 .0509724
4 .0192104 .0931474 .0102507 -.0074725 -.1151362
5 . 0005381 -.0317756 .0021340 .0003713 .0287322
6 .0636355 -.1092481 .0498279 -.0111522 .0069368
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T a b le  B . l f G e n e ra l l in e a r  model c o e f f ic ie n t s  used f o r
rmse e s t im a t io n  (s ta n d a rd  d e v ia t io n ,  m u lt ip le
c e n s o r in g ) .

Technique code order ABCDEFGH

ao ai aa aa a*

.4602068 -.5061884 .0022649 .3205383 .0026516

as ae a; aa ag

-.1581597 .0000000 .2651278 -.0001078 .0000000

i aj ai ai ai

1 -.0048242 -.1697686 -.0003058 .0910221
2 .0037278 .0517460 .0001281 -.0134125
3 .0909749 -.1107311 -.0022578 .0064249
4 .0033111 .1139036 .0026615 -.0192362
5 -.0931896 . 1148500 -.0002259 -.0647983

j âo ai aJ«2 aa

1 -.1334891 .1213068 -.0003316 -.1699511
2 .4195373 -.3113714 .0009658 .0793532
3 -.0687922 .0640501 .0003273 -.0643385
4 -.1694753 .0514459 .0003417 .2456230
5 .1487335 -.0825526 -.0010543 -.0012044
6 -.0421648 .0134524 .0011588 -.0385717
7 -.0877841 .0757835 -.0006540 -.0020816
8 -.0665650 .0678852 -.0007538 -.0488288

-i, j 
“0 i=l 2 3 4 5

j=l -.0632146 .0020634 -.0337870 .0160444 .0788937
2 .0037798 .0048140 -.0559827 .0143878 .0330008
3 -.0023717 -.0022255 .0090876 .0123978 -.0168882
4 .0210150 -.0035320 .0284187 -.0061444 -.0397573
5 .0064764 .0046040 .0313890 -.0228472 -.0196223
6 .0420920 .0570344 .0102883 -.0360532 -.0733615
7 .0562535 -.0447041 .0016736 .0032960 -.0165190
8 -.0640306 -.0180542 .0089123 .0189186 . 0542538
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T a b le  B . lg G en era l l in e a r  model c o e f f ic ie n t s  used f o r
rmse e s t im a t io n  (m edian, m u lt ip le  c e n s o rin g )

Technique code order ACEFGHJ

So ai a2 as a*

.3683246 -.1045873 -.0084920 -.6464120 -.0049956

as ae ay as ag

.5586421 .0043282 .1316690 .0001229 .6643843

i ao ai ai ai

1 .1037759 -.1494354 .0005444 -.1125652
2 .0827532 -.1328215 .0007798 -.0797634
3 -.4198583 .5727731 -.0038015 .5150790
4 .0802093 -.1818777 .0013885 -.0923200
5 .1531197 -.1086384 .0010887 -.2304302

j a jao ai «2 aJas

1 .3134511 -.0761073 -.0011573 -.7038873
2 .0807529 -.0277775 .0010942 -.1952838
3 -.0627254 .0840159 -.0008730 -.0894037
4 .0174888 .0330346 -.0001172 -.2175472
5 .1150849 -.0762182 -.0012644 -.1431201
6 .1350022 -.0919481 -.0007708 -.1931697
7 .1823581 -.1210657 -.0003087 -.3746352

“0 i=l 2 3 4 5

j=l .0742275 -.0231395 -.0114901 -.0062640 -.0333338
2 -.1049757 .1057976 .0920951 -.1060837 .0131667
3 .0296072 -.0706035 -.0133553 -.0027258 .0570775
4 .0353947 -.0551402 -.0173650 .0314273 .0056832
5 -.1761218 .3757531 .0804852 -.1176955 -.1624209
6 .0593199 -.1318575 -.0215204 .0539606 .0400974
7 .0654978 -.1588095 -.0604791 .0613939 .0923968
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T a b le  B . lh G en era l l in e a r  model c o e f f ic ie n t s  used f o r
rmse e s t im a t io n  ( in t e r q u a r t i le  ra n ge ,
m u lt ip le  c e n s o r in g ) .

Technique code order ACDEFGHJ

ao ai aa as a4

2.7007163 -2.2255022 -.0366739 .8305174 -.0028236

as as a; as ag

-.6197755 .0000000 .8785374 .0004697 .0000000

i ao ai ai ai

1 -.2856246 .0599664 .0041937 -.1517067
2 -.3509710 .2231128 -.0007244 .0898660
3 -.3884065 .1857330 .0010709 -.0208598
4 .2650430 -.2505140 -.0034769 .6455665
5 .7599591 -.2182983 -.0010633 -.5628660

j â ai aa as

1 -.3323192 .3909936 -.0012457 -.2566763
2 .8268709 -.2762565 .0015775 -.8721538
3 -.6217549 .5797965 .0020234 -1.1356002
4 .6989393 -.6324707 -.0159471 1.8197873
5 .4409875 -.4526168 .0013218 .5212956
6 -.4764656 .1378299 .0024723 .4845317
7 -.3243981 .1015420 .0021915 .3716455
8 -.2118598 .1511819 .0076061 -.9328299

i=l 2 3 4 5

j=l .2539450 .0576492 -.0443421 .0616189 -.3288711
2 -.0473738 .1100042 .1386311 .0151576 -.2164191
3 .0162691 .0797333 .0159696 .1370234 -.2489956
4 -.3449075 .1518214 -.0227345 -.1244777 .3402984
5 .0549698 -.2307446 -.0176665 .0234615 .1699797
6 -.0193851 -.0107204 .0899711 -.0171316 -.0427338
7 .0034009 -.0362614 -.1139036 .1061253 .0406387
8 .0830815 -.1214817 -.0459249 -.2017776 .2861028



177

T a b le  B.2a R e f i t t e d  g e n e ra l l in e a r  model c o e f f ic ie n t s
used f o r  rmse e s t im a t io n  (mean, s in g le
c e n s o r in g ) .

Technique code order CFGHOPQ

ao ai a2 as a,

.1510890 .1993221 -.0061090 -.2362415 -.0033320

5̂ ae a7 as ag

.0000000 -.0014914 .0499911 .0001181 .4593365

i ai ai ai

1 -.1149966 .1131777 -.0007180 .1628219
2 .0297823 -.0354748 .0002048 -.0439621
3 .0227618 .0064076 -.0007158 -.0122807
4 .0188874 -.0533993 .0012989 -.0408245
5 .0435650 -.0307112 -.0000698 -.0657544

j â ai aa «3

1 .0347268 -.0177722 .0002341 -.0626204
2 .0383159 -.0213962 .0000504 -.0406781
3 -.0263170 .0004469 -.0008669 .1621565
4 -.0442431 .0507973 -.0017172 .1193780
5 .0114231 .0012490 .0012296 -.1407744
6 .0089790 -.0047958 .0009019 -.1066594
7 -.0228848 -.0085290 .0001680 .0691978

ao i=l 2 3 4 5

j=l -.0149662 -.0094529 .0471061 .0314392 -.0541262
2 .0085425 .0228964 -.0157851 -.0426110 .0269571
3 -.0090084 -.0431386 -.0154010 .0212570 .0462912
4 .0244537 .0170686 -.0162742 -.0123369 -.0129113
5 -.0133689 -.0122781 .0187209 .0281768 -.0212507
6 .0080072 .0355601 -.0112795 -.0426963 .0104084
7 -.0036599 -.0106555 -.0070871 .0167711 .0046314
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T a b le  B.2b R e f i t t e d  g e n e ra l l in e a r  model c o e f f ic ie n t s
used f o r  rmse e s t im a t io n  (s ta n d a rd  d e v ia t io n ,
s in g le  c e n s o r in g ) .

Technique code order CDEFGHNQ

ao ai »2 as a,

.4692932 -.3761024 -.0045601 .3902981 .0020552

as ae a7 aa ag

-.2396035 .0000000 .2459454 .0000000 .0000000

i ao ai ai ai

1 -.0309221 -.1240746 .0001347 .0375383
2 -.0035898 .0320067 .0001552 .0403320
3 .0607574 -.0964824 -.0024797 .0540348
4 .0590004 .0661385 .0019855 .0278147
5 -.0852459 .1224118 .0002042 -.1597200

j â ai =2 aJaa

1 -.0291411 .0416682 .0000000 -.0418364
2 -.0734039 .0310520 .0000000 .0617340
3 .0798401 -.0510431 .0000000 -.0197238
4 .0700203 -.0386463 .0000000 -.0298532
5 -.0035494 -.0308990 .0000000 .1040591
6 -.0707963 .0495141 .0000000 .0119229
7 .0383724 -.0138530 .0000000 -.0447201
8 -.0113420 .0122071 .0000000 -.0415824

Uq i=l 2 3 4 5

j=l .0111427 -.0277428 .0187035 -.0182151 .0161117
2 -.0073407 .0085163 -.0021279 -.0237777 .0247301
3 -.0034907 .0181094 -.0623161 -.0023303 .0500278
4 -.0085234 .0228591 .0108033 .0063722 -.0315113
5 .0312615 .0002622 .0003370 .0128869 -.0447478
6 -.0164591 .0093151 .0446029 .0160226 -.0534815
7 -.0114204 .0130336 .0118944 .0010268 -.0145345
8 .0048303 -.0443531 -.0218971 .0080146 .0534054
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T a b le  B.2c R e f i t t e d  g e n e ra l l in e a r  model c o e f f ic ie n t s
used f o r  rmse e s t im a t io n  (m edian, s in g le
c e n s o r in g ) .

Technique code order CEJMN

ao ai aa as a*

.5579097 -.1984227 -.0083117 -1.4876181 -.0065485

as as a7 as ag

.6453387 0.0000000 .1635204 .0001742 1.3394007

i aj ai ai ai

1 .1277168 -.1484401 .0012792 -.1774216
2 .1237581 -.1441697 .0005586 -.1406127
3 -.5430540 .6209200 -.0047485 .7252665
4 .1301842 -.2011099 .0013950 -.1520154
5 .1613947 -.1272002 .0015155 -.2552167

j ao ai aa as

1 .2065398 -.0933659 0.0000000 -.1571192
2 -.0792407 .0793772 0.0000000 .0368611
3 -.0054023 -.0376634 0.0000000 -.0005669
4 -.0952663 .0003911 0.0000000 .1476377
5 -.0266304 .0512609 0.0000000 -.0268126

Uq i=l 2 3 4 5

j=l -.0104089 -.0194737 .0263642 .0224991 -.0189808
2 -.0009100 -.0106260 .0169955 .0040214 -.0094809
3 -.0020463 .0719527 -.0865254 -.0446774 .0612965
4 .0124501 -.0256046 .0272323 .0059001 -.0199781
5 .0009151 -.0162483 .0159332 .0122566 -.0128567
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T a b le  B.2d R e f i t t e d  g e n e ra l l in e a r  model c o e f f ic ie n t s
used f o r  rmse e s t im a t io n  ( i n t e r q u a r t i le
ra n g e , s in g le  c e n s o r in g ) .

Technique code order DHJM

ao ai az as a4

2.0261195 -.7953677 -.0268056 -1.6143531 -.0063598

as ae a; as ag

-.0805426 .0075895 .3542731 .0003620 1.3860652

i ao ai ai ai

1 -.1221213 -.0091721 .0042980 -.4491667
2 -.1696638 .1655537 -.0013948 .0786303
3 -.2325272 .1166352 .0002037 -.0276558
4 .5025133 -.3305325 -.0023446 .4577816
5 .0217990 .0575157 -.0007623 -.0595893

j ao ai az as

1 -.1690473 .2419896 -.0014076 -.1104064
2 .2530724 -.0130780 -.0046707 .0688435
3 -.0310330 -.1123813 .0026961 .0208324
4 -.0529919 -.1165302 .0033821 .0207304

Uq i=l 2 3 4 5

j=l . 1687129 -.2964493 -.0032315 -.0125698 .1435377
2 .0066670 -.0936932 .0768131 -.0475166 .0577297
3 .1054697 .0134196 -.0224937 .0925905 -.1889861
4 -.2808497 .3767230 -.0510878 -.0325040 -.0122813
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T a b le  B.2e R e f i t t e d  g e n e ra l l in e a r  model c o e f f ic ie n t s
used f o r  rmse e s t im a t io n  (mean, m u lt ip le
c e n s o r in g ) .

Technique code order CEGH

So ai a2 as a*

.1659255 .0949296 -.0031306 -.2271387 -.0021865

as as a? as ag

-.0563492 .0017671 .0851162 . 0000306 . 3821035

i ao ai aa as

1 -.0883374 .1243963 -.0001041 .0468303
2 .0225140 -.0334848 -.0000342 -.0112569
3 .0307538 -.0287313 -.0005866 -.0017399
4 -.0153636 -.0392066 .0013753 .0208536
5 .0504332 -.0229736 -.0006503 -.0546871

j â ai a ja2 “3

1 .0224347 -.0064311 0.0000000 -.0284655
2 .0301261 -.0098226 0.0000000 -.0353375
3 -.0311617 .0109097 0.0000000 .0408879
4 -.0213991 .0053439 0.0000000 .0229151

“0 i=l 2 3 4 5

j=l -.0004224 .0037160 .0043892 -.0034763 -.0042064
2 .0025040 -.0016458 .0050976 -.0055164 -.0004393
3 .0043207 .0032143 .0053392 -.0047818 -.0080926
4 -.0064023 -.0052846 -.0148261 .0137746 .0127384
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T a b le  B . 2 f R e f i t t e d  g e n e ra l l in e a r  model c o e f f ic ie n t s
used f o r  rmse e s t im a t io n  (s ta n d a rd  d e v ia t io n ,
m u lt ip le  c e n s o r in g ) .

Technique code order CDEFGH

ao ai aa as â

.3947077 -.3513421 0.0000000 .3417239 .0029143

as ae ay as ag

-.1686456 0.0000000 .2114886 -.0000768 0.0000000

i ao at aa as

1 -.0334226 -.1399439 -.0001197 .1069051
2 .0005883 .0504820 .0000577 -.0171466
3 .0830574 -.1111812 -.0022830 .0053400
4 .0066625 .1093768 .0025911 -.0222381
5 -.0568857 .0912664 -.0002460 -.0728604

j a j ao ai aa as

1 -.0209381 .0326688 .0004351 -.0801781
2 -.1226978 .0182877 .0004369 .2342230
3 . 1965876 -.1139339 -.0009465 -.0170440
4 .0056892 -.0179288 .0012666 -.0544112
5 -.0399300 .0444022 -.0005462 -.0179211
6 -.0187108 .0365039 -.0006460 -.0646684

i=l 2 3 4 5

j=l -.0039747 -.0363092 .0402194 .0160943 -.0160297
2 .0052698 -.0240570 .0139848 -.0149331 .0197355
3 .0052982 -.0513866 -.0071151 -.0153518 .0685553
4 .0083005 .0002988 .0235398 -.0272228 -.0049164
5 .0442401 .0359141 .0232182 .0069925 -.1103650
6 -.0591341 .0755398 -.0938471 .0344210 .0430204
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T a b le  B.2g R e f i t t e d  g e n e ra l l in e a r  model c o e f f ic ie n t s
used f o r  rmse e s t im a t io n  (m edian, m u lt ip le
c e n s o r in g ) .

Technique code order CEFGHJ

ao ai a2 as a«

.4774785 -.1267160 -.0086340 -1.0658681 -.0054042

as ae ay ae ag

.4903879 .0030558 .1472811 .0001362 .9793554

i ao ai ai ai

1 .1042502 -.1433410 .0004522 -.1257768
2 .0722293 -.1223046 .0007951 -.0773754
3 -.4095634 .5494336 -.0039348 .5128087
4 . 0622480 -.1754284 .0014956 -.0555838
5 .1708358 -.1083594 .0011918 -.2540726

j â ai az as

1 . 0467878 .0055489 0.0000000 .0069094
2 -.1557111 .1173425 0.0000000 .1127895
3 -.0528207 .0663611 0.0000000 -.0153539
4 .0103591 -.0428917 0.0000000 .0590731
5 . 0450825 -.0586215 0.0000000 .0090236
6 .1063024 -.0877392 0.0000000 -.1724418

“0 i=l 2 3 4 5

j=l -.0176009 -.0196049 .0962611 .0427902 -.1018455
2 -.0275655 .1078710 -.0321277 .0028127 -.0509905
3 .1215735 -.0413040 -.0007255 .0294956 -.1090396
4 -.0269734 -.0078168 .0306581 -.1019196 .1060517
5 -.0059516 -.0192966 -.0903077 .0433534 .0722026
6 -.0434819 -.0198485 -.0037583 -.0165324 .0836212
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T a b le  B.2h R e f i t t e d  g e n e ra l l in e a r  model c o e f f ic ie n t s
used f o r  rmse e s t im a t io n  ( in t e r q u a r t i le
ra n g e , m u lt ip le  c e n s o r in g ) .

Technique code order CDFGHJ

ao ai az as â

2.8500521 -2.2716073 -.0328404 0.0000000 0.0000000

as ae a7 as ag

-.3528500 .0096900 .8226335 .0003275 0.0000000

i aS at az as

1 -.3107297 .0429988 .0045033 -.1704193
2 -.3547985 .2212690 -.0010523 .1572934
3 -.3988363 .1893070 .0004752 .0471616
4 .2827026 -.2804752 -.0027879 .7026065
5 .7816620 -.1730996 -.0011383 -.7366422

j ao ai az aJaz

1 .8875421 -.3171066 -.0012807 -.6104085
2 -.5584906 .5425703 -.0008780 -.8812158
3 .5016587 -.4934670 -.0015364 .7830409
4 -.4157945 . 0969797 -.0003859 .7462770
5 -.2637270 .0606918 -.0006667 .6333909
6 -.1511886 .1103317 .0047479 -.6710846

,1, j i=l 2 3 4 5

j=l .0946916 .0649475 -.0221760 .1028133 -.2402765
2 -.0331551 . 1462960 .0557610 -.0847559 -.0841460
3 -.0011085 -.2659706 -.0741818 .0096916 .3315693
4 .0234391 .0556914 .0478490 -.0216411 -.1053385
5 .1546199 -.0365044 .0106481 .0719153 -.2006788
6 -.2384871 .0355400 -.0179002 -.0780232 .2988706



APPENDIX C

TREND DETECTION IN THE PRESENCE OF SERIAL CORRELATION

This appendix contains the actual significance levels 

(slope = 0.0) and power (slope > 0.0) from the Monte Carlo 

simulation used to investigate the effect of autocorrelation 

on trend tests (Chapter V). The Mann-Kendall tau test on 

deaseasonalized data (MKD), the Seasonal Kendall tau tests 

(SK), and the Seasonal Kendall tau test with correction for 

autocorrelation (SKC) were applied to monthly data. Monthly 

data were collapsed to quarterly values by computing the 

mean and median and selecting the middle value of each 

quarter. The three tests were then reapplied to the three 

sets of quarterly collapsed data. Finally, quarterly means 

and medians were collapsed to yearly means and medians, 

respectively. The standard Mann-Kendall tau test (MK) was 

then applied to this data. The values in the following 

tables were scaled by 1000 for convenience.
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Table C.l Comparison of significance level (slope = 0) and power (slope > 0)
for trend tests. The errors are from a normal distribution with
P =0.0 and = 1.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 yisars of record
0.000 88 42 10 70 34 8 74 36 6 60 30 8 16 10
0.002 74 40 6 62 40 10 58 34 8 56 46 12 34 14
0.005 122 68 10 114 64 6 94 64 4 50 36 4 26 20
0.020 756 600 100 684 540 108 584 442 70 284 186 38 176 138
0.050 1000 1000 578 1000 1000 734 1000 994 608 906 838 238 742 606
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 yeiars of record
0.000 64 44 18 58 40 30 56 40 32 44 34 30 48 34
0.002 110 90 60 104 88 62 86 76 54 74 58 36 76 76
0.005 490 422 294 460 390 296 356 292 226 184 140 110 324 244
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 970 952 894 1000 992
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 yesars of record
0.000 54 42 32 70 48 46 54 38 34 44 38 44 44 32
0.002 306 260 222 292 274 224 242 180 176 132 122 96 250 192
0.005 922 896 826 898 850 830 812 766 706 488 426 378 832 668
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table C.2 Comparison of significance level (slope = 0) and power (slope > 0) 
for trend tests. The errors are from a normal distribution with 
p = 0.0 and a  = 5.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 ye:ars of record
0.000 80 46 14 82 44 6 74 40 2 66 44 6 24 16
0.002 68 32 16 78 42 6 60 30 14 52 18 6 14 18
0.005 80 52 20 70 48 6 86 40 6 64 42 6 16 30
0.020 332 200 14 272 172 24 230 158 32 124 88 14 18 30
0.050 930 850 256 790 678 244 726 602 164 508 354 76 134 188
0.200 1000 1000 1000 1000 1000 974 1000 1000 960 990 986 800 854 870
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 994 1000 996

10 yesars of record
0.000 68 56 38 48 36 26 50 36 48 42 30 38 40 52
0.002 74 56 58 72 50 54 82 66 56 66 56 54 44 40
0.005 224 184 106 186 140 104 166 114 76 110 82 68 58 66
0.020 984 980 930 962 936 906 922 874 762 650 586 506 396 558
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 1000 994 990 994
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 yejars of record
0.000 62 56 42 72 64 40 70 48 46 56 40 40 58 62
0.002 136 108 80 122 104 108 102 88 88 72 60 66 52 76
0.005 530 456 378 476 410 386 388 324 284 228 190 164 116 182
0.020 1000 1000 1000 1000 1000 1000 1000 998 998 984 978 970 926 970
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table C.3 Comparison of significance level (slope = 0) and power (slope > 0)
for trend tests. The errors are from a lognormal distribution with
P = 0.0 and a = 1.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 ye:ars of record
0.000 78 50 6 64 36 10 48 26 8 46 32 6 8 8
0.002 96 58 12 68 34 4 74 36 16 66 34 10 26 20
0.005 218 134 24 122 72 8 146 92 20 114 70 14 36 32
0.020 978 962 414 808 696 214 896 814 290 634 530 134 200 304
0.050 1000 1000 976 1000 1000 874 1000 1000 950 972 960 668 750 858
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 998 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 y eiars of record
0.000 76 70 60 80 56 44 76 56 36 68 66 50 48 50
0.002 292 270 200 166 140 106 206 186 146 124 112 80 96 162
0.005 928 918 786 686 624 476 804 730 616 494 454 340 398 542
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 yijars of record
0.000 62 56 48 64 46 52 54 36 48 66 48 48 54 38
0.002 730 730 644 446 386 342 574 524 462 328 278 272 260 360
0.005 1000 1000 1000 986 982 966 1000 1000 994 902 904 862 884 968
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table C.4 Comparison of significance level (slope = 0) and power (slope > 0) 
for trend tests. The errors are from a lognormal distribution with 
fi =  0 . 0  and = 5.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 y«i a r s of record
0.000 84 40 6 50 32 6 74 38 8 46 40 8 30 20
0.002 74 40 22 70 52 16 68 46 8 54 32 10 16 22
0.005 124 88 10 74 44 12 102 58 14 76 42 14 10 22
0.020 696 598 136 416 288 52 462 330 66 262 184 38 32 70
0.050 990 990 626 834 782 376 888 856 452 698 634 250 112 246
0.200 1000 1000 998 1000 1000 996 1000 1000 998 996 998 926 816 966
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 988 998

10 y e:ars of record
0.000 54 46 42 52 42 34 58 48 44 38 40 34 50 40
0.002 178 136 104 102 60 48 118 92 76 96 60 64 54 68
0.005 502 462 366 268 236 216 370 318 230 182 146 114 76 114
0.020 1000 1000 1000 986 990 968 986 982 980 916 904 846 482 806
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 984 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 ye:ars of record
0.000 48 34 32 42 36 38 52 46 46 58 44 48 38 52
0.002 388 362 326 240 198 182 256 222 214 180 168 144 68 98
0.005 920 916 874 686 654 596 780 764 712 496 484 448 162 314
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 958 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table C.5 Comparison of significance level (slope = 0) and power (slope > 0)
for trend tests. The errors are from a normal distribution with
p =0.2 and a = 1.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 ye>ars of record
0.000 116 84 10 80 42 10 82 38 6 64 46 12 14 20
0.002 128 70 2 92 44 6 78 32 12 64 26 2 20 10
0.005 150 110 10 98 54 10 88 66 10 82 66 12 16 20
0.020 708 598 82 566 452 58 508 386 60 306 194 30 140 98
0.050 998 996 536 996 990 588 990 986 486 938 842 242 600 446
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 ye:ars of record
0.000 92 70 34 44 36 32 50 42 28 48 34 34 38 44
0.002 206 186 68 130 120 68 112 92 50 108 100 50 96 82
0.005 466 402 222 362 280 210 296 228 184 192 164 132 272 192
0.020 1000 1000 1000 1000 1000 1000 1000 1000 996 984 976 922 998 984
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 ye:ars of record
0.000 116 102 52 68 46 44 74 58 50 52 32 50 50 44
0.002 290 272 152 250 204 164 206 180 138 114 94 70 164 130
0.005 878 854 684 824 780 660 776 722 614 546 488 424 694 566
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table C.6 Comparison of significance level (slope = 0) and power (slope > 0) 
for trend tests. The errors are from a normal distribution with 
P = 0.2 and = 5.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 yei a r s of record
0.000 116 72 6 80 42 6 74 42 4 78 38 8 16 16
0.002 144 82 22 70 42 10 60 40 6 72 48 8 20 20
0.005 176 118 20 106 58 4 124 66 18 88 48 14 10 18
0.020 404 292 22 262 152 24 210 102 16 136 78 10 22 34
0.050 910 840 172 702 594 198 674 532 144 454 338 76 70 124
0.200 1000 1000 996 1000 1000 954 998 1000 928 988 990 788 674 812
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 1000 1000

10 ye:ars of record
0.000 82 66 26 58 54 30 62 42 34 46 38 32 36 46
0.002 154 122 66 100 82 60 88 76 66 76 62 30 60 44
0.005 244 200 88 164 128 82 156 114 84 98 84 80 54 84
0.020 958 942 814 894 870 804 832 818 740 670 606 482 306 552
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 996 996 996 950 988
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 ye:ars of record
0.000 104 90 30 80 70 32 68 58 32 48 46 40 36 38
0.002 172 140 80 112 108 90 102 90 74 86 70 64 30 58
0.005 540 486 312 422 370 304 382 330 250 226 194 160 106 170
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 982 978 972 814 940
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table C.7 Comparison of significance level (slope = 0) and power (slope > 0)
for trend tests. The errors are from a lognormal distribution with
!> =0.2 and = 1.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 ytJars of record
0.000 130 74 12 64 30 0 70 42 4 50 22 4 18 14
0.002 160 116 18 78 48 14 66 58 8 72 50 12 16 12
0.005 272 216 20 146 94 8 160 106 6 106 68 10 24 22
0.020 954 926 260 720 576 146 802 694 210 578 426 86 152 222
0.050 1000 1000 926 998 998 820 1000 996 866 958 942 620 650 758
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 y€sars of record
0.000 122 114 58 66 48 38 66 58 40 60 34 30 46 58
0.002 306 288 106 156 124 76 166 130 88 120 90 72 92 66
0.005 758 758 518 508 460 336 604 550 388 412 384 280 270 370
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 998 998 986 998
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 yciars of record
0.000 124 114 40 74 62 50 68 50 42 48 42 36 46 42
0.002 625 622 428 382 324 256 446 398 336 326 284 242 218 254
0.005 996 992 978 956 952 916 968 962 944 910 876 836 784 852
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table C.8 Comparison of significance level (slope = 0) and power (slope > 0) 
for trend tests. The errors are from a lognormal distribution with 
P = 0.2 and = 5.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 y€iars of record
0.000 132 106 18 68 32 6 88 34 10 58 34 8 10 28
0.002 172 124 10 96 54 8 78 52 6 104 58 12 12 16
0.005 212 142 8 110 62 2 128 72 16 92 46 18 26 40
0.020 640 552 78 328 252 46 354 262 66 262 200 40 32 52
0.050 986 974 506 788 734 298 830 796 374 682 612 202 100 234
0.200 1000 1000 998 1000 1000 966 1000 1000 986 996 998 910 760 928
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 988 998

10 y€iars of record
0.000 146 104 42 60 54 36 78 54 38 46 28 26 44 52
0.002 192 172 84 108 72 66 104 84 66 82 74 58 48 62
0.005 460 438 236 240 216 170 270 254 186 174 164 128 80 114
0.020 996 998 986 944 934 894 974 966 932 872 858 790 382 708
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 946 998
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 y€iars of record
0.000 136 110 54 74 56 46 60 52 44 68 56 48 50 48
0.002 336 316 190 184 160 130 222 182 140 150 128 100 56 66
0.005 878 844 672 602 562 474 688 650 566 446 410 398 126 294
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 998 1000 880 996
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table C.9 Comparison of significance level (slope = 0) and power (slope > 0)
for trend tests. The errors are from a normal distribution with
P = 0.4 and a = 1.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 ye!ars of record
0.000 212 140 8 108 74 6 96 56 12 92 56 12 18 22
0.002 192 130 12 110 60 4 102 66 6 64 44 4 16 12
0.005 240 172 8 138 82 10 132 66 8 96 58 10 26 26
0.020 684 582 60 478 358 56 458 326 48 318 204 24 106 78
0.050 998 992 406 988 970 438 982 924 406 906 830 216 462 358
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 ye>ars of record
0.000 244 194 58 130 86 60 106 86 56 68 52 40 56 66
0.002 286 246 72 164 140 62 152 124 60 114 88 58 66 70
0.005 496 462 200 358 290 200 322 264 168 232 186 120 212 166
0.020 1000 1000 988 1000 998 974 998 990 956 984 966 886 970 932
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 ye:ars of record
0.000 188 158 44 98 90 40 86 64 38 56 48 54 56 48
0.002 374 344 176 268 252 166 240 202 150 176 136 106 162 144
0.005 824 804 540 704 664 508 648 592 448 490 436 330 530 422
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table C.IO Comparison of significance level (slope = 0) and power (slope > 0) 
for trend tests. The errors are from a normal distribution with 
p = 0.4 and = 5.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 ye:ars of record
0.000 220 134 16 102 58 8 80 50 6 86 46 6 18 22
0.002 216 142 6 102 52 12 86 44 8 80 48 10 22 14
0.005 224 146 18 120 72 18 120 68 10 92 46 10 20 16
0.020 422 300 36 254 172 28 220 144 28 162 84 12 26 42
0.050 854 784 160 644 540 154 586 456 132 458 344 76 64 112
0.200 1000 1000 988 1000 1000 920 998 998 864 996 996 770 564 714
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 994 1000

10 yeiars of record
0.000 208 184 30 114 76 30 86 76 24 82 68 42 50 44
0.002 222 178 58 100 82 56 104 74 56 80 62 54 64 48
0.005 324 266 102 178 154 92 156 128 74 120 98 76 62 86
0.020 932 906 660 822 776 612 780 732 600 634 560 440 248 408
0.050 1000 1000 998 1000 1000 996 1000 1000 998 998 998 996 868 946
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 yeiars of record
0.000 208 190 60 98 100 50 102 82 48 76 62 48 50 46
0.002 270 244 72 148 126 72 138 108 64 88 74 64 50 62
0.005 508 472 210 346 300 230 330 256 190 208 188 162 86 132
0.020 1000 1000 1000 998 1000 994 994 998 988 984 972 962 690 890
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table C.ll Comparison of significance level (slope = 0) and power (slope > 0)
for trend tests. The errors are from a lognormal distribution with
P = 0.4 and a = 1.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 yiJars of record
0.000 236 184 18 128 76 10 98 60 16 82 64 8 24 26
0.002 268 174 14 122 76 4 134 66 10 100 54 12 10 18
0.005 322 260 18 162 124 14 174 126 16 146 72 6 28 38
0.020 862 836 154 624 510 74 660 558 110 486 382 68 110 132
0.050 1000 1000 826 988 984 680 998 988 708 966 950 560 536 608
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 y eiars of record
0.000 246 214 54 118 92 42 110 82 44 66 44 42 56 56
0.002 350 312 108 184 158 88 180 146 84 126 104 64 98 90
0.005 690 690 352 460 414 286 494 470 308 392 350 254 242 266
0.020 1000 1000 1000 1000 1000 996 1000 1000 994 1000 998 990 972 994
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 y€■ars of record
0.000 224 204 58 102 94 48 90 78 54 94 76 54 66 56
0.002 548 552 210 306 298 194 320 284 194 242 244 170 134 182
0.005 974 976 860 870 838 756 912 880 800 808 774 688 628 704
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table C.12 Comparison of significance level (slope = 0) and power (slope > 0) 
for trend tests. The errors are from a lognormal distribution with 
p = 0.4 and = 5.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 yejars of record
0.000 234 164 8 112 84 6 104 66 8 78 46 6 16 26
0.002 206 156 8 74 52 10 86 50 8 72 36 10 10 12
0.005 268 192 12 136 76 22 124 86 16 116 62 10 28 24
0.020 618 562 60 362 276 44 368 262 46 248 186 28 32 42
0.050 930 920 340 702 622 218 722 632 238 606 506 168 72 202
0.200 1000 1000 998 1000 998 954 1000 1000 968 998 1000 930 682 882
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 978 996

10 y«!ars of record
0.000 224 192 46 86 76 42 94 64 38 88 70 38 38 46
0.002 280 248 78 144 106 76 132 108 82 82 64 44 48 78
0.005 448 412 134 244 214 128 244 216 140 184 148 120 68 110
0.020 986 986 906 916 910 806 926 908 814 860 838 740 312 584
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 998 998 878 990
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 YÉ;ars of record
0.000 192 156 40 80 68 34 82 80 42 68 56 36 48 52
0.002 382 366 166 224 192 126 • 236 208 130 154 150 120 70 78
0.005 734 720 416 486 444 330 542 474 360 410 378 302 124 208
0.020 1000 1000 1000 1000 1000 1000 1000 1000 998 998 996 996 774 966
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table C.13 Comparison of significance level (slope = 0) and power (slope > 0)
for trend tests. The errors are from a normal distribution with
p =0.6 and a = 1.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 y esars of record
0.000 344 266 6 174 124 14 150 112 12 130 82 6 20 16
0.002 302 218 12 132 70 12 128 66 4 84 56 4 22 8
0.005 382 284 24 200 154 22 176 108 16 154 102 24 20 40
0.020 640 558 54 446 344 54 400 278 42 338 254 32 80 62
0.050 988 978 368 942 902 376 934 880 344 900 814 232 352 290
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 988
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 y e■ars of record
0.000 346 306 64 174 154 52 174 134 48 120 94 52 50 60
0.002 348 322 72 200 170 76 166 156 64 158 120 62 80 72
0.005 478 434 122 290 248 106 274 218 104 204 178 96 120 118
0.020 1000 998 922 990 982 906 988 974 880 972 960 838 918 854
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 y£sars of record
0.000 364 324 64 170 144 68 138 130 58 112 84 50 64 54
0.002 452 408 112 266 228 108 232 206 102 182 154 92 128 106
0.005 768 756 390 620 572 380 592 544 370 484 448 308 372 308
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table C.14 Comparison of significance level (slope = 0) and power (slope > 0) 
for trend tests. The errors are from a normal distribution with 
p = 0.6 and = 5.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 years of record
0.000 354 284 20 166 106 24 156 98 18 120 74 10 20 20
0.002 350 254 18 164 104 16 160 108 18 118 74 14 14 16
0.005 340 234 10 158 106 6 146 104 8 118 68 6 12 16
0.020 442 366 34 260 182 28 222 158 14 176 142 16 24 40
0.050 776 718 116 586 482 134 556 434 110 464 366 88 54 80
0.200 1000 1000 946 996 998 872 998 996 824 988 978 786 502 642
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 976 974

10 y£iars of record
0.000 312 278 48 170 122 40 140 126 46 148 96 52 46 56
0.002 330 294 64 190 138 56 172 138 72 136 110 56 50 64
0.005 420 374 90 224 186 86 212 182 78 162 132 70 72 94
0.020 872 850 486 726 690 454 712 638 444 622 562 388 166 326
0.050 1000 1000 998 998 996 986 998 992 976 990 986 962 736 886
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 y£sars of record
0.000 328 296 54 148 126 52 134 114 56 100 82 44 40 42
0.002 358 332 70 194 158 76 158 144 64 138 110 70 46 60
0.005 566 528 196 342 308 180 326 280 156 278 224 170 80 138
0.020 1000 1000 958 990 986 944 984 978 936 968 964 922 522 792
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table C.15 Comparison of significance level (slope = 0) and power (slope > 0)
for trend tests. The errors are from a lognormal distribution with
p = 0.6 and a = 1.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 yc:ars of record
0.000 406 332 10 204 126 10 182 118 12 128 88 8 16 18
0.002 354 256 16 156 80 14 138 88 8 116 84 8 18 18
0.005 354 274 18 160 102 12 158 92 8 146 104 8 26 12
0.020 766 736 104 560 462 76 564 458 80 500 408 56 92 70
0.050 998 998 610 984 968 490 988 966 528 964 932 436 398 420
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 994 986
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 yeiars of record
0.000 344 298 58 150 124 42 134 112 44 128 92 48 54 44
0.002 430 426 106 236 216 104 240 216 102 204 174 96 108 100
0.005 642 630 230 408 392 186 428 362 192 390 348 184 168 200
0.020 1000 1000 992 998 996 964 998 996 978 1000 996 960 928 956
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 yc:ars of record
0.000 358 326 52 164 152 54 162 146 54 124 98 50 70 60
0.002 534 516 170 320 280 140 314 286 158 278 256 142 142 128
0.005 912 904 606 762 736 520 774 748 558 718 670 510 428 454
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table C.16 Comparison of significance level (slope = 0) and power (slope > 0) 
for trend tests. The errors are from a lognormal distribution with 
p = 0.6 and = 5.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 yisars of record
0.000 328 256 8 138 82 6 142 98 0 102 60 4 10 10
0.002 354 264 14 164 108 14 116 78 14 92 60 12 14 18
0.005 384 302 16 182 118 10 190 120 10 150 94 12 18 30
0.020 562 500 52 308 216 46 306 206 32 276 188 30 36 48
0.050 902 848 220 644 588 156 652 578 142 622 548 108 46 118
0.200 1000 1000 966 998 998 884 998 998 876 994 994 848 528 736
0.500 1000 1000 1000 1000 1000 998 1000 1000 1000 1000 1000 994 964 982

10 yeiars of record
0.000 3 62 320 74 156 128 66 142 118 74 114 98 62 44 60
0.002 370 342 70 192 172 66 174 154 78 140 112 54 52 56
0.005 468 438 130 290 248 106 254 232 116 220 176 102 96 92
0.020 950 956 690 830 804 606 826 802 606 776 740 566 232 388
0.050 1000 1000 998 998 998 996 1000 1000 996 1000 996 990 800 950
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 yeiars of record
0.000 336 320 66 174 150 64 148 122 50 134 114 56 62 66
0.002 430 412 104 230 214 102 216 194 102 184 150 88 68 78
0.005 650 650 292 450 416 236 434 424 268 396 368 246 102 158
0.020 1000 1000 998 998 992 980 996 994 986 990 988 970 612 888
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table C.17 Comparison of significance level (slope = 0) and power (slope > 0)
for trend tests. The errors are from a normal distribution with
P = 0.8 and a = 1.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK
I

5 years of record
0.000 512 448 30 282 214 24 260 202 26 230 168 20 36 30
0.002 508 432 24 278 198 26 270 198 20 230 182 18 22 22
0.005 540 442 36 294 206 24 284 202 24 246 182 22 30 38
0.020 702 620 58 458 388 60 454 370 68 422 332 54 54 54
0.050 954 938 308 888 840 286 886 818 268 864 790 236 230 210
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 988 966
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 y€iars of record
0.000 480 440 78 230 200 72 234 202 66 208 158 68 80 64
0.002 496 444 68 290 244 78 286 252 76 260 222 84 88 80
0.005 552 516 144 354 328 134 342 304 132 330 274 126 124 126
0.020 984 982 760 944 934 746 942 924 728 928 908 714 704 660
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 yi“ars of record
0.000 494 464 92 302 262 84 274 246 82 250 196 98 82 82
0.002 556 512 176 368 352 164 364 340 170 336 312 134 148 136
0.005 728 704 276 568 520 258 548 506 268 514 462 240 258 246
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 996
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table C.18 Comparison of significance level (slope = 0) and power (slope > 0) 
for trend tests. The errors are from a normal distribution with 
9 = 0.8 and = 5.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 yiiars of record
0.000 506 416 22 296 210 20 272 198 20 256 148 12 18 28
0.002 514 444 18 268 202 24 262 180 12 230 148 4 22 20
0.005 550 456 14 308 232 24 292 214 14 258 192 24 28 26
0.020 570 500 48 360 286 48 338 280 44 322 242 34 22 26
0.050 766 722 110 518 456 108 520 440 92 492 412 76 46 64
0.200 998 1000 866 980 974 764 978 974 756 976 974 726 370 496
0.500 1000 1000 1000 1000 1000 996 1000 1000 996 1000 1000 996 934 946

i
10 years of record

0.000 522 478 106 292 256 104 268 224 96 246 206 88 86 86
0.002 5X0 476 64 260 220 62 268 218 72 228 202 60 74 76
0.005 506 478 76 286 254 64 240 222 74 226 212 76 74 80
0.020 848 822 374 700 650 346 694 638 340 658 610 334 172 262
0.050 998 998 936 982 970 906 980 972 906 974 978 890 548 734
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 ye!ars of record
0.000 530 494 90 312 278 94 306 270 86 276 232 90 100 94
0.002 522 484 100 330 300 102 320 296 94 278 244 98 82 88
0.005 594 574 162 374 354 164 366 342 156 338 322 134 92 120
0.020 982 972 812 928 924 784 924 918 776 914 894 754 356 586
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 978 994
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table C.19 Comparison of significance level (slope = 0) and power (slope > 0)
for trend tests. The errors are from a lognormal distribution with
p = 0.8 and a = 1.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 yeiars of record
0.000 516 454 44 312 248 36 300 248 28 254 212 30 20 34
0.002 544 446 30 294 216 28 278 208 18 252 184 18 24 26
0.005 546 486 36 312 248 40 304 232 30 278 212 24 34 28
0.020 698 654 92 496 424 80 480 406 82 456 386 70 66 60
0.050 970 966 444 906 878 402 908 872 364 898 850 334 296 268
0.200 1000 1000 998 1000 1000 996 1000 1000 998 1000 1000 998 980 968
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 ye:ars of record
0.000 530 500 106 308 274 96 304 276 82 290 264 94 104 96
0.002 488 472 98 292 264 106 278 250 106 250 230 92 124 94
0.005 618 574 130 360 316 114 336 304 110 336 298 120 118 114
0.020 990 990 830 946 938 794 948 946 806 938 932 782 736 740
0.050 1000 1000 998 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 yejars Df record
0.000 518 494 102 294 270 98 234 256 102 272 246 104 104 90
0.002 568 560 134 328 318 130 328 308 134 288 284 120 132 112
0.005 772 772 388 620 602 352 612 598 362 566 558 342 324 306
0.020 1000 1000 1000 1000 1000 996 1000 1000 998 1000 1000 1000 994 996
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table C.20 Comparison of significance level (slope = 0) and power (slope > 0) 
for trend tests. The errors are from a lognormal distribution with 
p = 0.8 and = 5.0. Values in table are scaled by 1000.

MONTHLY QUARTERLY YEARLY

MEAN MEDIAN MIDDLE MEAN MED

slope MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC MK MK

5 yeiars of record
0.000 490 408 20 256 168 10 230 176 20 216 156 14 30 20
0.002 538 452 22 290 216 16 284 202 26 242 178 22 34 22
0.005 514 442 36 272 214 32 246 196 36 230 164 22 38 30
0.020 552 502 32 332 256 26 314 262 38 294 224 26 22 28
0.050 812 784 196 584 532 154 590 534 156 570 494 146 70 76
0.200 998 998 878 978 988 794 978 984 794 980 980 758 454 588
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 954 954

10 yeiars of record
0.000 504 472 88 286 252 88 278 240 86 260 228 82 98 92
0.002 470 422 84 268 240 82 266 224 82 240 218 72 74 70
0.005 584 552 102 330 290 84 328 288 80 298 264 80 92 98
0.020 848 852 424 716 708 400 694 684 404 694 678 388 206 278
0.050 998 996 930 978 980 910 978 978 910 974 970 908 574 790
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 yeiars of record
0.000 496 482 84 290 254 76 278 244 86 258 238 78 68 84
0.002 566 548 118 344 312 122 336 318 124 316 288 124 126 94
0.005 624 602 202 424 398 190 418 402 186 404 390 172 100 128
0.020 990 992 886 954 956 854 956 960 876 950 944 862 416 664
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 976 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000



APPENDIX D

TREND DETECTION IN THE PRESENCE OF MISSING VALUES

This appendix contains the actual significance levels 

(slope = 0.0) and power (slope > 0.0) from the Monte Carlo 

simulation used to investigate the effect of missing values 

on trend tests (Chapter VI). The Mann-Kendall tau test on 

deaseasonalized data (MKD), the Seasonal Kendall tau tests 

(SK), and the Seasonal Kendall tau test with correction for 

autocorrelation (SKC) were applied to monthly data. Monthly 

data were collapsed to quarterly values by computing the 

quarterly median. The three tests were then reapplied to 

the three sets of quarterly collapsed data. The values in 

the following tables were scaled by 1000 for convenience.
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Table D.l Comparison of significance level and power for trend tests. The
errors are from a normal distribution with = 1.0 and miss-
ing value percentage = 0.0. Values in table are scaled by 1000.

SLOPE P=0 .0 MONTHLY QUARTERLY P=0.4 MONTHLY QUARTERLY

HKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years of recc3rd
0.000 88 42 10 74 36 6 186 132 20 78 42 6
0.002 74 40 6 58 34 8 220 130 8 98 46 8
0.005 122 68 10 94 64 4 218 150 14 104 64 8
0.020 756 600 100 584 442 70 674 594 58 470 358 60
0.050 1000 1000 578 1000 994 608 996 992 456 976 946 416
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 years of recc)rd
0.000 64 44 18 56 40 32 200 136 34 64 52 28
0.002 110 90 60 86 76 54 270 242 70 134 114 62
0.005 490 422 294 356 292 226 470 416 172 282 210 128
0.020 1000 1000 1000 1000 1000 1000 998 998 986 1000 998 960
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc)rd
0.000 54 42 32 54 38 34 216 190 54 94 84 52
0.002 306 260 222 242 180 176 362 320 120 204 160 100
0.005 922 896 826 812 766 706 840 824 530 660 622 478
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table D.2 Comparison of significance level and power for trend tests. The 
errors are from a normal distribution with = 5.0 and miss-
ing value percentage = 0.0. Values in table are scaled by 1000.

SLOPE P = 0  . 3 MONTHLY QUARTERLY P=0.4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years 3f recc3rd
0.000 80 4 6 14 74 4 0 2 242 154 10 98 60 8
0.002 68 32 16 60 30 14 228 160 12 78 52 4
0.005 80 52 20 86 40 6 262 184 10 122 88 8
0.020 332 200 14 230 158 32 438 328 20 208 118 14
0.050 930 850 256 726 602 164 8 6 8 784 148 602 494 134
0.200 1000 1000 1000 1000 1000 960 1000 1000 984 994 998 896
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 years of recc>rd
0.000 68 56 38 5 0 36 4 8 160 148 36 72 56 3 8
0.002 74 56 58 82 66 56 232 200 54 114 90 54
0.005 224 184 106 166 114 76 302 260 86 164 134 84
0.020 984 980 930 922 874 762 926 916 696 788 736 618
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 996
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc)rd
0.000 62 56 42 70 48 46 192 160 38 92 80 4 4
0.002 136 108 80 102 88 88 258 220 76 118 100 64
0.005 530 456 378 388 324 284 532 486 240 332 288 198
0.020 1000 1000 1000 1000 998 998 1000 1000 996 996 996 988
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table D.3 Comparison of significance level and power for trend tests. The
errors are from a lognormal distribution with = 1.0 and miss-
ing value percentage = 0.0. Values in table are scaled by 1000.

SLOPE (> =0 .0 MONTHLY QUARTERLY P = 0 . 4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years of recc3rd
0.000 78 50 6 48 26 8 224 156 16 92 48 2
0.002 96 58 12 74 36 16 208 164 10 102 68 6
0.005 218 134 24 146 92 18 314 240 24 162 116 6
0.020 978 962 414 896 814 290 866 818 162 652 540 120
0.050 1000 1000 976 1000 1000 950 1000 1000 822 994 982 690
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 years of recc3rd
0.000 76 70 60 76 56 36 210 174 58 94 62 40
0.002 292 270 200 206 186 146 336 330 90 164 142 84
0.005 928 918 786 804 730 616 662 652 322 444 402 258
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 994
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc3rd
0.000 62 56 48 54 36 48 246 210 46 98 72 38
0.002 730 730 644 574 524 462 546 538 264 346 320 230
0.005 1000 1000 1000 1000 1000 994 976 972 864 916 904 804
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table D.4 Comparison of significance level and power for trend tests. The 
errors are from a lognormal distribution with = 5.0 and miss-
ing value percentage = 0.0. Values in table are scaled by 1000.

SLOPE P=0.0 MONTHLY QUARTERLY P = 0 . 4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years of record
0.000 84 40 6 74 38 8 210 150 8 98 46 4
0.002 74 40 22 68 46 8 278 182 10 118 70 4
0.005 124 88 10 102 58 14 270 202 8 146 88 10
0.020 696 598 136 462 330 66 558 500 62 322 226 28
0.050 990 990 626 888 856 452 946 924 354 746 676 272
0.200 1000 1000 998 1000 1000 998 1000 1000 994 1000 1000 964
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 years of recc3rd
0.000 54 46 42 58 48 44 232 190 36 94 66 44
0.002 178 136 104 118 92 76 258 246 82 104 96 58
0.005 502 462 366 370 318 230 428 402 136 236 202 120
0.020 1000 1000 1000 986 982 980 990 988 898 918 894 826
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc>rd
0.000 48 34 32 52 46 46 254 224 60 96 76 50
0.002 388 362 326 256 222 214 342 336 124 190 156 102
0.005 920 916 874 780 764 712 738 750 448 548 508 390
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table D.5 Comparison of significance level and power for trend tests. The
errors are from a normal distribution with = 1.0 and miss-
ing value percentage = 0.1. Values in table are scaled by 1000.

SLOPE P =0. 0 MONTHLY QUARTERLY P=0.4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years af recc3rd
0.000 72 38 8 80 40 8 166 110 20 96 54 12
0.002 62 40 10 60 32 8 182 114 12 90 32 6
0.005 120 58 14 96 60 8 198 134 14 104 76 10
0.020 682 524 88 578 440 74 650 568 42 472 358 66
0.050 1000 998 488 1000 996 576 990 986 396 980 936 396
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 years of recc3rd
0.000 52 32 18 40 28 30 158 108 36 60 48 16
0.002 94 82 54 76 72 70 254 216 62 136 110 64
0.005 436 356 238 334 274 230 468 400 160 300 226 140
0.020 1000 1000 1000 1000 1000 996 998 998 980 998 990 968
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc3rd
0.000 42 36 40 42 40 28 224 186 50 112 92 46
0.002 286 242 214 242 196 172 318 296 130 186 158 116
0.005 886 836 768 792 746 690 816 784 516 662 590 468
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table D.6 Comparison of significance level and power for trend tests. The 
errors are from a normal distribution with = 5.0 and miss-
ing value percentage = 0.1. Values in table are scaled by 1000.

SLOPE P =0. 0 MONTHLY QUARTERLY P=0.4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years Of recc3rd
0.000 78 52 14 62 36 6 210 148 10 94 56 10
0.002 86 42 12 70 44 10 208 144 26 88 48 6
0.005 78 54 10 96 48 10 236 154 14 114 82 12
0.020 284 164 26 216 132 36 390 280 22 222 128 14
0.050 884 804 214 708 590 140 836 724 152 592 498 124
0.200 1000 1000 996 1000 1000 942 1000 1000 948 998 996 884
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 years of recc3rd
0.000 60 48 38 56 46 40 170 136 40 64 54 34
0.002 72 70 60 70 64 48 202 150 42 126 88 62
0.005 188 138 92 152 136 82 290 234 80 162 124 78
0.020 978 964 882 896 862 756 910 898 654 786 738 600
0.050 1000 1000 1000 1000 1000 1000 1000 1000 998 1000 1000 998
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc3rd
0.000 52 42 46 58 38 46 180 152 44 84 80 44
0.002 134 104 84 102 76 72 216 194 80 106 96 74
0.005 472 400 338 378 314 286 490 446 224 328 294 204
0.020 1000 1000 1000 998 1000 1000 1000 1000 994 994 996 984
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table D.7 Comparison of significance level and power for trend tests. The
errors are from a lognormal distribution with = 1.0 and miss-
ing value percentage = 0.1. Values in table are scaled by 1000.

SLOPE P=0.C MONTHLY QUARTERLY P=0.4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years of recc3rd
0.000 84 48 20 68 54 8 204 158 12 96 48 4
0.002 106 58 12 68 58 12 202 164 18 92 64 4
0.005 186 130 26 126 94 24 300 220 14 164 102 8
0.020 960 928 336 838 746 228 838 768 120 638 512 140
0.050 1000 1000 938 1000 1000 920 1000 1000 774 990 980 668
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 years of recc3rd
0.000 68 62 46 70 56 40 206 158 68 92 72 46
0.002 256 200 180 192 154 112 318 286 92 156 130 78
0.005 904 852 712 710 662 548 626 608 296 426 386 236
0.020 1000 1000 1000 1000 1000 1000 1000 1000 998 998 998 992
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc3rd
0.000 62 50 46 50 40 60 220 198 44 104 86 50
0.002 672 664 596 510 460 400 516 504 236 332 304 222
0.005 1000 1000 998 996 994 980 966 960 848 894 874 780
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table D.8 Comparison of significance level and power for trend tests. The 
errors are from a lognormal distribution with = 5.0 and miss-
ing value percentage = 0.1. Values in table are scaled by 1000.

SLOPE P = 0. 0 MONTHLY QUARTERLY p=0.4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years of recc3rd
0.000 66 38 20 60 28 10 208 148 16 100 50 4
0.002 66 44 18 66 30 6 232 156 10 112 70 8
0.005 122 86 10 84 56 10 250 186 2 160 94 10
0.020 614 500 118 414 302 60 526 446 56 306 244 26
0.050 978 962 524 854 832 418 922 888 286 710 636 242
0.200 1000 1000 996 1000 1000 990 1000 1000 986 1000 1000 954
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 years of recc3rd
0.000 60 40 36 58 52 48 212 174 52 98 76 48
0.002 148 128 94 90 76 66 252 234 76 108 88 56
0.005 454 402 322 304 286 218 408 376 122 224 206 114
0.020 1000 1000 996 976 976 964 976 980 868 910 880 796
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc3rd
0.000 46 34 24 48 40 28 224 188 48 98 66 38
0.002 360 348 302 250 220 202 312 312 108 180 156 92
0.005 892 882 822 718 680 666 704 696 430 546 506 398
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table D.9 Comparison of significance level and power for trend tests. The
errors are from a normal distribution with = 1.0 and miss-
ing value percentage = 0.3. Values in table are scaled by 1000.

SU3PE P=0.C MONTHLY QUARTERLY 4=0.4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years of recc3rd
0.000 56 40 14 60 38 6 136 100 10 96 50 8
0.002 82 40 8 66 40 8 158 92 12 80 40 8
0.005 110 66 8 84 40 10 170 110 18 96 54 6
0.020 536 372 58 510 322 46 506 412 44 432 292 36
0.050 996 972 318 992 958 470 980 954 276 960 908 344
0.200 1000 1000 998 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 years of recc)rd
0.000 54 40 38 46 36 20 132 90 34 62 40 18
0.002 88 68 52 80 74 52 194 152 46 120 102 56
0.005 356 286 188 320 264 192 378 306 118 276 194 132
0.020 998 994 990 1000 996 994 998 996 950 992 982 952
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc3rd
0.000 60 60 54 50 58 32 162 146 44 90 78 50
0.002 230 184 146 202 168 140 296 248 126 200 170 122
0.005 784 696 628 724 680 606 740 692 454 608 564 434
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table D.IO Comparison of significance level and power for trend tests. The 
errors are from a normal distribution with = 5.0 and miss-
ing value percentage = 0.3. Values in table are scaled by 1000.

SLOPE 4=0. C MONTHLY QUARTERLY 4=0.4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years
I

3f record
0.000 88 58 20 50 32 6 170 118 6 92 50 12
0.002 72 44 6 80 38 12 164 108 12 94 54 12
0.005 78 54 12 60 32 12 160 108 16 112 56 10
0.020 216 126 14 216 122 24 298 202 22 208 100 18
0.050 756 606 110 638 506 142 690 584 104 570 414 94
0.200 1000 998 870 998 996 912 1000 996 794 996 994 826
0.500 1000 1000 992 1000 1000 996 1000 1000 992 1000 1000 1000

10 years of recc3rd
0.000 58 34 38 66 48 44 158 100 32 70 44 18
0.002 76 52 52 74 70 48 188 120 50 104 86 60
0.005 122 100 72 108 88 86 230 184 68 134 88 74
0.020 934 856 714 822 754 668 834 778 526 740 682 562
0.050 1000 1000 1000 1000 1000 1000 1000 1000 994 998 1000 994
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc3rd
0.000 56 46 46 64 40 44 166 140 42 98 84 58
0.002 124 110 92 102 82 74 208 162 72 124 108 76
0.005 372 326 284 310 288 268 440 364 210 296 270 212
0.020 1000 1000 1000 1000 998 998 1000 998 982 996 994 980
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table D.ll Comparison of significance level and power for trend tests. The
errors are from a lognormal distribution with = 1.0 and miss-
ing value percentage = 0.3. Values in table are scaled by 1000.

SLOPE P - 0 . 3 MONTHLY QUARTERLY P =  0 . A MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years o £ recc3rd
0.000 70 40 18 64 34 4 164 98 14 88 26 8
0.002 100 64 12 80 42 18 170 124 12 82 58 6
0.005 180 110 28 134 86 18 238 148 12 122 78 10
0.020 856 772 214 756 620 180 722 632 100 574 444 122
0.050 1000 998 744 996 988 784 996 988 596 978 950 580
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

10 years of recc3rd
0.000 74 52 34 78 58 40 186 144 64 92 60 40
0.002 218 182 138 166 142 108 264 214 76 156 132 82
0.005 788 708 538 612 548 438 564 494 248 396 346 234
0.020 1000 1000 1000 1000 1000 1000 1000 1000 988 996 998 986
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc3rd
0.000 54 40 40 54 40 44 190 152 48 100 82 48
0.002 546 488 416 390 372 310 436 400 210 294 262 180
0.005 1000 998 982 974 970 948 942 930 774 848 826 712
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table D.12 Comparison of significance level and power for trend tests. The 
errors are from a lognormal distribution with = 5.0 and miss-
ing value percentage = 0.3. Values in table are scaled by 1000.

SLOPE P=0.c MONTHLY QUARTERLY 8=0.4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years of recc3rd
0.000 56 30 8 52 16 10 160 102 16 106 46 6
0.002 66 40 18 66 34 4 194 128 16 110 56 4
0.005 92 52 14 94 60 10 204 116 6 106 48 8
0.020 496 342 88 378 260 54 432 320 62 306 204 44
0.050 918 842 332 780 712 302 822 746 220 684 554 192
0.200 1000 1000 956 1000 1000 956 1000 998 892 998 994 920
0.500 1000 1000 996 1000 1000 994 1000 1000 1000 1000 1000 1000

10 years of recc3rd
0.000 80 62 54 50 56 48 178 124 40 110 98 58
0.002 122 92 70 96 76 60 188 174 68 108 86 54
0.005 362 296 210 234 208 166 326 288 92 206 184 102
0.020 994 984 968 966 964 942 954 940 800 882 838 752
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 lOOO 1000 1000

15 years
!

Df record
0.000 46 42 40 42 36 34 162 146 42 84 74 38
0.002 278 246 202 222 190 146 286 266 122 174 160 104
0.005 810 732 682 636 582 540 646 632 378 494 456 344
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table D.13 Comparison of significance level and power for trend tests. The
errors are from a normal distribution with = 1.0 and miss-
ing value percentage = 0.5. Values in table are scaled by 1000.

SLOPE P = 0  . 0 MONTHLY QUARTERLY P = 0 . A MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years o f  record
0.000 76 34 12 66 32 0 132 58 18 84 52 6
0.002 78 34 10 64 36 10 124 60 14 92 42 8
0.005 90 40 12 78 50 6 152 60 14 116 64 14
0.020 354 186 38 358 222 36 372 234 32 354 218 38
0.050 906 754 182 928 862 282 864 746 148 910 756 210
0.200 1000 1000 888 1000 1000 994 1000 1000 908 1000 1000 992
0.500 1000 1000 956 1000 1000 996 998 1000 944 1000 1000 1000

10 years of recc5rd
0.000 54 48 40 58 28 22 104 68 34 58 40 22
0.002 90 68 34 78 62 34 152 130 58 122 106 70
0.005 270 188 120 206 170 122 242 162 78 210 166 102
0.020 990 962 884 990 982 950 990 978 848 986 972 874
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc3rd
0.000 54 60 46 56 36 30 148 108 48 94 68 50
0.002 174 146 118 150 144 124 250 196 98 184 140 106
0.005 646 518 416 604 526 444 602 540 338 520 468 354
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table D.14 Comparison of significance level and power for trend tests. The 
errors are from a normal distribution with = 5.0 and miss-
ing value percentage = 0.5. Values in table are scaled by 1000.

SLOPE P=0.Q MONTHLY QUARTERLY P=0.4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years of record
0.000 78 48 26 78 28 6 136 82 14 86 42 10
0.002 86 42 6 76 40 6 130 70 8 104 54 8
0.005 86 38 18 70 38 16 124 56 24 90 48 10
0.020 164 84 14 148 82 30 212 100 10 168 82 14
0.050 478 312 82 480 362 112 466 344 48 448 316 70
0.200 966 944 504 982 970 704 960 922 482 972 942 686
0.500 998 1000 782 1000 998 962 998 996 804 1000 998 964

10 years of recc3rd
0.000 66 44 18 60 42 22 124 72 14 84 50 22
0.002 80 46 38 66 58 32 146 98 50 94 68 48
0.005 100 70 52 100 80 72 166 126 52 128 76 48
0.020 746 604 446 688 620 494 664 524 324 600 526 406
0.050 998 982 950 996 988 970 992 986 932 988 978 970
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc3rd
0.000 58 56 48 54 44 40 138 96 40 98 78 52
0.002 108 56 56 86 76 80 168 116 72 100 98 58
0.005 288 230 192 278 220 196 354 236 170 254 232 174
0.020 1000 978 954 992 980 966 994 972 918 992 978 946
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table D.15 Comparison of significance level and power for trend tests. The
errors are from a lognormal distribution with = 1.0 and miss-
ing value percentage = 0.5. Values in table are scaled by 1000.

SLOPE P=0. 3 MONTHLY QUARTERLY 4=0.4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years of recc3rd
0.000 74 28 6 74 28 6 124 48 2 72 38 4
0.002 94 40 6 76 28 10 124 68 16 74 46 4
0.005 144 82 18 104 88 20 184 84 10 136 86 12
0.020 624 486 122 570 462 94 556 400 58 494 358 64
0.050 958 938 422 962 942 620 942 894 344 942 872 470
0.200 1000 1000 928 1000 1000 994 1000 1000 920 1000 1000 990
0.500 1000 1000 954 1000 1000 998 998 1000 944 1000 1000 994

10 years of recc)rd
0.000 74 52 48 54 50 30 146 102 36 88 72 42
0.002 164 142 128 138 120 86 226 170 70 158 104 72
0.005 606 492 336 502 424 308 464 392 194 334 314 200
0.020 1000 1000 998 1000 1000 998 998 992 964 994 992 978
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc3rd
0.000 58 46 36 48 35 42 110 90 40 82 72 52
0.002 386 308 268 288 254 218 342 310 170 268 254 170
0.005 962 938 894 912 898 858 860 816 652 762 750 646
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table D.16 Comparison of significance level and power for trend tests. The 
errors are from a lognormal distribution with = 5.0 and miss-
ing value percentage = 0.5. Values in table are scaled by 1000.

SLOPE 4=0. C MONTHLY QUARTERLY P = 0.4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years of recc3rd
0.000 58 36 14 62 40 6 124 48 10 74 46 2
0.002 74 26 12 46 32 8 154 84 12 100 40 10
0.005 94 46 18 64 38 12 146 68 8 94 54 16
0.020 344 212 46 330 196 40 308 190 30 262 158 36
0.050 664 546 144 668 576 226 618 480 116 562 464 142
0.200 994 986 670 990 992 830 986 968 592 978 976 772
0.500 1000 1000 842 1000 1000 970 996 998 868 1000 1000 972

10 years of recc3rd
0.000 70 54 46 56 50 44 170 110 40 104 74 40
0.002 92 64 52 90 78 62 170 118 38 112 84 44
0.005 240 178 114 176 138 116 236 170 70 166 152 86
0.020 942 890 790 892 872 792 850 800 610 830 794 670
0.050 1000 998 996 998 998 998 1000 1000 986 998 998 994
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc3rd
0.000 30 18 18 38 34 32 122 86 34 84 64 36
0.002 214 170 136 158 144 130 222 188 88 156 144 100
0.005 626 548 472 502 456 402 518 464 270 418 366 262
0.020 1000 1000 998 1000 998 998 1000 1000 984 998 994 992
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table D.17 Comparison of significance level and power for trend tests. The
errors are from a normal distribution with = 1.0 and miss-
ing value percentage = 0.6. Values in table are scaled by 1000.

SLOPE P-0, 0 MONTHLY QUARTERLY P=0.4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years Df recc3rd
0.000 82 30 12 58 32 10 116 54 4 80 34 4
0.002 58 28 10 64 40 12 88 36 8 92 38 20
0.005 64 26 4 66 34 4 128 44 10 96 46 10
0.020 236 120 28 306 182 44 278 168 14 290 166 30
0.050 728 538 114 856 686 194 716 518 84 822 646 150
0.200 996 984 650 1000 1000 922 982 984 680 1000 1000 926
0.500 992 990 798 1000 1000 964 992 994 784 1000 1000 984

10 years of recc3rd
0.000 56 46 28 74 38 40 72 52 22 52 46 30
0.002 90 44 48 68 60 50 132 96 46 112 100 58
0.005 224 140 92 174 124 92 182 112 54 164 142 98
0.020 958 874 740 978 946 878 966 884 702 952 934 830
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc3rd
0.000 70 56 50 58 42 44 134 98 54 96 86 62
0.002 162 100 98 140 130 108 178 140 78 136 98 72
0.005 532 388 310 532 456 394 506 422 292 476 414 326
0.020 1000 1000 998 1000 1000 998 1000 1000 998 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table D.18 Comparison of significance level and power for trend tests. The 
errors are from a normal distribution with = 5.0 and miss-
ing value percentage = 0.6. Values in table are scaled by 1000.

SLOPE P=0.0 MONTHLY QUARTERLY P = 0 . 4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC HKD SK SKC

5 years of record
0.000 74 34 12 56 24 10 110 58 10 90 46 12
0.002 72 30 12 66 28 8 102 46 14 90 42 2
0.005 78 28 10 54 38 12 100 40 8 78 46 14
0.020 128 64 14 104 72 16 166 84 14 132 80 12
0.050 362 210 38 388 264 76 374 216 40 386 280 62
0.200 862 792 316 932 904 568 842 760 306 928 858 524
0.500 974 930 540 994 996 862 978 952 556 996 990 880

10 years of recc)rd
0.000 66 38 32 54 36 30 110 64 36 72 52 36
0.002 64 40 42 60 56 42 104 72 40 92 70 34
0.005 94 80 62 98 88 62 148 100 54 108 84 62
0.020 598 444 314 608 500 394 542 402 270 514 436 344
0.050 956 930 848 982 960 942 972 924 848 978 958 908
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc>rd
0.000 68 58 44 42 40 26 122 76 56 88 72 64
0.002 86 62 54 90 80 72 124 96 60 82 68 56
0.005 252 202 162 226 196 182 300 224 148 258 214 140
0.020 970 910 866 960 936 928 964 920 828 974 936 898
0.050 1000 1000 998 1000 1000 1000 998 1000 996 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table D.19 Comparison of significance level and power for trend tests. The
errors are from a lognormal distribution with = 1.0 and miss-
ing value percentage = 0.6. Values in table are scaled by 1000.

SLOPE />=0.0 MONTHLY QUARTERLY  ̂= 0.4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years of recc3 r d
0.000 78 30 10 74 32 6 106 36 4 72 34 8
0.002 68 30 8 68 30 12 106 48 6 92 44 4
0.005 128 66 16 84 40 14 140 58 14 118 68 6
0.020 462 336 78 494 380 84 430 280 24 416 284 50
0.050 844 746 220 928 856 446 822 692 200 894 800 374
0.200 980 980 696 996 998 952 994 986 680 998 998 944
0.500 990 998 748 1000 1000 980 978 988 760 998 998 966

10 years of recc3 r d
0.000 76 46 30 54 38 26 124 80 38 80 58 28
0.002 128 108 86 120 96 70 170 122 56 130 112 64
0.005 470 352 230 434 358 240 402 292 160 328 272 170
0.020 998 996 966 1000 996 986 986 974 884 988 982 952
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc3 r d
0 . 0 0 0 54 44 38 52 46 46 110 80 50 76 72 34
0.002 304 242 194 238 226 182 280 234 140 232 234 172
0.005 896 824 788 824 814 740 780 708 532 728 688 570
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table D.20 Comparison of significance level and power for trend tests. The 
errors are from a lognormal distribution with = 5.0 and miss-
ing value percentage = 0.6. Values in table are scaled by 1000.

SLOPE P =  0 . Q MONTHLY QUARTERLY P=0.4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years of recc)rd
0.000 38 24 8 44 30 6 112 34 6 72 46 14
0.002 66 28 18 60 22 8 120 52 6 78 40 12
0.005 88 36 10 64 26 8 116 50 14 80 50 14
0.020 220 104 20 256 134 34 270 130 28 224 134 24
0.050 486 356 104 588 470 152 482 354 76 486 378 124
0.200 932 904 408 972 956 676 906 854 424 954 932 658
0.500 980 984 614 996 998 898 978 968 630 1000 992 906

10 years of recc)rd
0.000 54 48 40 54 36 42 128 78 32 82 54 30
0.002 84 64 46 90 80 56 130 86 36 84 72 60
0.005 206 112 92 168 138 110 200 140 62 162 120 84
0.020 832 782 652 828 782 714 746 688 472 750 696 558
0.050 994 990 970 994 994 988 998 986 934 992 992 974
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc)rd
0.000 38 32 36 34 24 22 84 70 32 56 66 42
0.002 176 126 116 142 116 110 178 148 76 144 124 90
0.005 516 456 376 436 394 364 438 368 234 342 324 258
0.020 998 996 980 998 996 996 996 984 958 994 986 960
0.050 1000 1000 998 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table D.21 Comparison of significance level and power for trend tests. The
errors are from a normal distribution with = 1.0 and miss-
ing value percentage = 0.7. Values in table are scaled by 1000.

SLOPE P=0.0 MONTHLY QUARTERLY 4=0.4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years af recc3rd
0.000 68 22 6 72 24 6 78 18 4 74 24 8
0.002 70 16 0 58 36 14 68 24 6 58 20 14
0.005 52 16 0 76 30 6 90 34 12 74 42 14
0.020 160 64 10 234 134 24 194 80 10 226 116 18
0.050 494 260 54 690 442 106 454 250 44 654 432 102
0.200 858 786 270 974 972 716 836 794 360 968 960 726
0.500 832 814 388 982 980 796 846 832 396 980 982 816

10 years of recc3rd
0.000 60 38 30 66 44 50 68 42 28 56 30 24
0.002 78 42 40 80 74 50 106 74 42 88 70 44
0.005 148 88 66 148 102 88 150 78 46 150 108 62
0.020 816 676 516 904 850 718 852 692 506 902 836 652
0.050 998 996 966 1000 1000 998 1000 998 970 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc3rd
0.000 52 36 40 56 60 52 112 86 52 88 86 66
0.002 138 82 80 134 102 96 156 120 66 110 88 66
0.005 372 254 192 424 312 298 376 264 188 396 314 230
0.020 1000 994 988 1000 1000 998 1000 996 976 1000 998 998
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table D.22 Comparison of significance level and power for trend tests. The 
errors are from a normal distribution with = 5.0 and miss-
ing value percentage = 0.7. Values in table are scaled by 1000.

SLOPE P = 0 . 0 MONTHLY QUARTERLY P = 0 . 4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years of recc3rd
0.000 76 18 2 52 26 10 104 32 8 72 36 6
0.002 86 26 4 68 34 8 100 32 8 82 32 8
0.005 60 14 0 74 20 4 82 24 2 92 38 2
0.020 96 38 8 96 50 14 134 42 12 110 46 8
0.050 222 88 22 286 180 34 252 116 26 288 176 32
0.200 622 468 136 810 708 392 584 464 132 804 662 356
0.500 780 670 200 954 936 610 846 720 274 954 930 628

10 years of recc3rd
0.000 38 22 16 50 34 32 108 56 36 90 56 54
0.002 52 34 30 68 48 46 96 56 30 88 54 40
0.005 76 58 30 88 60 44 122 88 36 92 76 46
0.020 398 282 184 446 366 280 376 260 178 406 334 222
0.050 880 782 658 930 874 832 882 790 650 918 886 818
0.200 1000 1000 992 1000 1000 1000 1000 1000 994 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc3rd
0.000 56 44 38 42 36 32 90 64 36 66 56 44
0.002 84 60 52 64 50 40 90 64 54 72 66 58
0.005 150 132 124 186 154 134 206 136 96 190 164 116
0.020 866 756 684 894 838 798 882 764 622 908 842 782
0.050 998 990 988 1000 1000 1000 998 992 980 1000 994 996
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Table D.23 Comparison of significance level and power for trend tests. The
errors are from a lognormal distribution with = 1.0 and miss-
ing value percentage = 0.7. Values in table are scaled by 1000.

SLOPE P = 0 .3 MONTHLY QUARTERLY P=0.4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years 3f recc5rd
0.000 58 12 2 60 30 8 84 26 10 64 30 8
0.002 64 18 8 68 32 10 98 32 6 78 36 8
0.005 108 24 4 72 28 6 86 32 2 104 50 8
0.020 284 158 40 400 244 50 244 132 12 326 174 42
0.050 602 424 86 806 662 240 604 414 68 778 608 214
0.200 830 790 334 976 952 768 840 806 320 978 968 740
0.500 888 830 338 982 984 802 860 836 410 974 970 804

10 years of recc)rd
0.000 66 34 24 56 34 24 104 66 38 72 62 38
0.002 102 72 52 104 78 66 124 92 52 108 78 52
0.005 322 206 136 324 248 168 270 188 88 268 208 146
0.020 962 912 818 988 970 930 936 878 738 956 932 854
0.050 1000 998 998 1000 1000 1000 1000 998 990 1000 1000 998
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of recc)rd
0.000 64 40 40 40 32 42 96 68 44 76 62 34
0.002 228 160 122 226 174 140 230 164 104 200 178 122
0.005 734 652 556 738 680 620 640 526 388 614 568 478
0.020 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998
0.050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table D.24 Comparison of significance level and power for trend tests. The 
errors are from a lognormal distribution with = 5.0 and miss-
ing value percentage = 0.7. Values in table are scaled by 1000.

SLOPE (>=0.0 MONTHLY QUARTERLY (>=0.4 MONTHLY QUARTERLY

MKD SK SKC MKD SK SKC MKD SK SKC MKD SK SKC

5 years of recc)rd
0.000 36 22 4 44 24 6 86 22 4 78 28 8
0.002 80 16 6 70 20 4 94 24 0 80 40 10
0.005 74 16 2 64 26 6 96 30 2 76 34 6
0.020 132 50 12 192 98 28 186 62 12 162 78 14
0.050 326 200 48 452 310 82 312 166 30 384 266 94
0.200 730 576 174 860 792 450 688 558 186 852 776 438
0.500 816 746 288 958 948 686 820 752 276 956 946 682

10 years of recc)rd
0.000 54 32 24 54 36 20 100 58 30 86 58 35
0.002 78 44 30 78 58 52 120 72 48 104 72 64
0.005 112 74 56 140 96 90 146 106 60 138 110 60
0.020 644 532 430 732 646 556 592 478 300 648 570 438
0.050 936 920 840 982 974 936 926 902 782 960 954 926
0.200 1000 998 998 1000 1000 1000 1000 1000 998 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

15 years of reccjrd
0.000 44 38 34 36 34 48 92 74 34 64 50 26
0.002 114 90 96 98 96 90 144 102 62 134 106 78
0.005 374 322 276 350 312 286 332 242 152 314 268 208
0.020 962 946 904 986 976 964 950 906 808 974 944 910
0.050 1000 998 998 1000 1000 1000 1000 996 994 1000 1000 1000
0.200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
0.500 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000


