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Detection and Classification of Buried Dielectric
Anomalies Using Neural Networks—Further Results

Mahmood R. Azimi-Sadjadi, Senior Member, IEEE, and Scott A. Stricker, Member, IEEE

Abstract— The development of a neural network-based de-
tection and classification system for use with buried dielectric
anomalies is the main focus of this paper. Several methods
of data representation are developed to study their effects on
the trainability and generalization capabilities of the neural
networks. The method of Karhonen-Loeve (KL) transform is
used to extract energy dependent features and to reduce the
dimensionality of the weight space of the original data set. To
extract the shape-dependent features of the data, another data
preprocessing method known as Zernike moments is also studied
for its use in the detector/classifier system. The effects of different
neural network paradigms, architectural variations, and selection
of proper training data on detection and classification rates are
studied. Simulation results for nylon and wood targets indicate
superior performance when compared to conventional schemes.

I. INTRODUCTION

HE development of a target detector system capable of
detecting various types of dielectric anomalies, such as
landmines, under different environmental conditions presents
many problems [1], [2]. Targets have diverse sizes and compo-
sitions. The dimensions can range from a few inches to over a
foot in diameter, and they may be composed of metal, plastic,
wood, or a combination of these. The target emplacement
environment can also be variable. Soil properties vary with
location and moisture conditions. Rocks, roots, soil roughness,
and soil inhomogeneities appear as targets to many sensors.
The occurrence of anomalies with responses which closely
resemble those of the targets may lead to high false positive
rates. All these problems contribute to an overall system
with unacceptable detection rates and high false alarm rates
which may lead to serious injury or death to personnel and
costly damage to equipment. Thus, an improvement over the
capabilities of existing methods can lead to a corresponding
increase in the survival of vital resources. In an optimal
detector system, the detection rates should be high, and the
occurrence of false positives should remain low in order to
avoid delays in a military environment where speed is crucial.
Conventional target detection schemes such as thresholding
and correlation matching [2], [3] have only been partially
successful and have been shown to produce high false alarm
rates. The performance of thresholding is directly related to
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the threshold value used and the response of the sensor over
a target. In [3] thresholding was performed on three sets of
data, namely raw magnitude, ASUM, and TAD. The average
of sums, ASUM, is an algorithm that calculates the weighted
average of signal-background difference, weighted by the stan-
dard deviation of the background clutter. The target amplitude
detector, TAD, computes the signal-to-background ratio at
each spatial location, and then the magnitudes of the signal
at a particular location are averaged over all the available
frequencies of data. The method of correlation matching is
based on calculating the cross-correlations between the data
sets and a template in order to determine the amount of
similarity between them. This method was also shown [3]
to produce good detection rates but unacceptable false-alarm
rates. These results and others presented in [3] indicate that
neither of thcse methods can provide robust detection nor
can they be used for classification. This severely limits the
effectiveness of these methods for real-world applications. In
[3] the application of neural networks was first studied for this
problem. The results indicated substantial improvements over
the conventional schemes.

In this paper the goal is to further study the use of neural net-
works and develop a system which offers better detection and
classification rates and lower false-alarm rates than the previ-
ous systems. Specific emphasis is placed on the development
of various data representation and pre-processing schemes and
network structures and paradigms for automatic detection and
classification of mine analogs [4]. The organization of this
paper is as follows. Section II gives a discussion on various
feature extraction schemes which are used in this paper. These
include KL transform [3], [5] and Zernike moments [6], [7]. In
Section IIL, the preprocessed data obtained using these methods
are used to train and test several back-propagation networks
(BPN) for detection and classification of targets based upon the
extracted features. Section IV deals with the application of the
Kohonen self-organized network {[9] to target classification.
The final Section gives the conclusions and discussions on
this work.

II. FEATURE EXTRACTION METHODS

One of the most critical aspects involved with target detec-
tion and classification is the proper choice of a data representa-
tion scheme which impacts not only the size but also the speed
and accuracy of the system. A scheme is usually chosen such
that it extracts the salient features and reduces the dimensions
of the data. In addition, it is desirable to orthogonalize the input
data in order to provide a good set of independent features for
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training and testing of the neural network. In this section the
data reduction and feature extraction are performed using two
feature extraction methods, namely the 2-D KL transform or
principal components [3], [5] and Zernike moments [61-17].
Simulation results on detection and classification of two types
of targets when the feature sets are used as inputs to the neural
network detector/classifier are presented in the subsequent
sections.

A. 2-D KL Transform

The method of KL transform or principal components [3],
[5] is a data reduction and feature extraction scheme which
is based upon the statistical properties of the data. This is
accomplished by projecting the data set along the directions
of the individual orthonormal eigenvectors of the covariance
matrix of the stationary vector stochastic process from which
the samples are generated. If the first few eigenvalues of
the covariance matrix contain most of the signal energy, the
dimensionality of the data can be greatly reduced without
losing much information by only retaining those components
along with the principal eigenvectors. In addition to its opti-
mality in data reduction, which is not shared by other feature
extraction schemes, it provides salient features of the data that
are decorrelated. This property is ideally suited for detection
and classification purposes, as these decorrelated features
or components can be used to train the detector/classifier
effectively .

The target or anomaly returns within a window can be
considered as a stationary 2-D complex random image. Let
{z(m, n)} be a 2-D random image of an ensemble set of M
images each of size (N x N) with zero mean and covariance
function 7,(k, 1) which can be computed by finding the
average over all available M images using

M N—-kN-1

ro(k, 1) M5V2 5 Y wi(m, )l (m - ko - 1),

i=1 m=1 n=1
(D

where {x;(m, n)} represents the i‘" image array in the
ensemble set.

Having determined the covariances, the eigenvectors and
eigenvalues of the covariance matrix can be computed and
used to form the transformation matrix [3], [5]. To accomplish
data reduction, the magnitudes of the eigenvalues will be
observed in order to determine how many would be sufficient
to represent the image data accurately. Since the eigenvalues
represent the energy of the signal, the process of finding the
significant number of eigenvalues will be based on the number
needed to represent 90% (or more) of the total energy of the
signal [3]. This percentage was chosen so that the original
signal could be accurately represented; while at the same time,
a significant reduction in data could be obtained. The reduced
transformation matrix, ¥,., can then be obtained by using the
first L eigenvectors corresponding to the L most significant
eigenvalues [3], [5]. This matrix will be used to produce the
reduced transformed image Y, using the relationship

Y, =Ur'X, (2)

where X is the row-ordered vector of the original image with
size K x 1. This transformation produces the reduced image
Y, of size L x 1. This decorrelated image [5] can now be
used to train a neural network, the architecture of which will
only require L inputs. This gives an immense reduction in
size compared to a network that uses the entire image which
corresponds to K inputs.

B. Zernike Moments

In [7], Zernike introduced a set of complex polynomials
which form a complete orthogonal set over the interior of the
unit circle, i.e. 22 + y2 < 1, where = and y are the spatial
coordinates. Let the set of these polynomials be denoted by
{Vaum(z, y)}. The form of these polynomials as described in
[6] is

Vam(z,9) = Vam(p,0) = Rom(p) exp(jmb), 3

where n is a positive integer or zero, m is a positive or a
negative integer satisfying the constraints n — |m/| even and
|m| < n, p is the length of the vector from origin to (z, ¥)
pixel, 8 is the angle between vector p and z-axis in counter-
clockwise direction, and R,n,(p) is the radial polynomial
defined as

n—|\m|/2

an(p) = Z

s=0
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Note that R, _m(P) = Ry, m(P). This development assumes
that the region of support of the original M x M discrete
image, fa(z, y), is first mapped onto a square defined by the
region -1 < z < 1, -1 < y < 1. This implies that the
coordinate locations will no longer be integers but will have
real values in the [—1, +1] range. The Zernike moment of
order n with repetition m for a function fq(x, y) can then be
expressed as ’

A = S 4@ )V (p.0), B+ <L (S)
where g(x, y) is the mapped version of fy(, y). To compute
the Zernike moments of a given image, the center of the image
is taken as the origin, and pixel coordinates are mapped to the
range of the unit circle. Those pixels falling outside the unit
circle are not used in the computation. It can be shown [6] that
the magnitudes of the Zernike moments are rotation, scaling,
and translation invariant; thus one can concentrate on |Anm|
with m > 0 as far as the Zernike features are concerned. It is
also shown [6] that Agg and A;; are constant for all normalized
images; therefore they will not be used to classify images.

1II. NEURAL NETWORK DETECTOR

The data used for this research was collected using the
separated aperture sensor [2] which operates in the microwave
band of frequencies starting from 600 MHz to 1 GHz. The data
sets for frequencies 728, 760, 792, 824, and 856 MHz were
used. The sensor scans each mine lane taking measurements
at 27 positions horizontally (1.5” apart) for a total scan width
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of 39”. At each horizontal position, the complex scattering
parameter was measured and stored. Once a row was scanned,
the cart was moved forward 1.5”, and the process was repeated
until the entire 61’ lane was covered. The buried targets were
of identical shape and size and were made of nylon or wood.
The data set for nylon consisted of 15 target and 12 nontarget
windows, while those of the wood contained 12 target and 12
nontarget windows for each specified operating frequency.

The detection and classification are performed using a three-
layer BPN [8]. In these networks, the choice of training data
set can have a drastic effect on the performance. Empirical
studies indicate that the best performance may be achieved by
including targets with strong, medium, and weak returns in the
training data set. The following sections present the results of
neural networks which were trained with selected data from
different feature extraction schemes.

A. KL Results

The *“generalized KL transformation” matrix which was
used to reduce the target or non-target images was formed
from only nylon and wood target images (i.e. no nontargets).
To preserve more than 90% of the total signal energy, the
50 (out of 225) eigenvectors corresponding to the 50 most
significant eigenvalues were used to generate the transfor-
mation matrix. All the images were then reduced by this
transformation matrix. The transformed images were used to
train and test a two-layer network. The network had 50 inputs,
24 hidden layer nodes and three output nodes which were
used to indicate nylon targets, nontargets, and wood targets
with desired values of {1, 0, 0}, {0, 1, 0} and {0, 0, 1},
respectively. The training data consisted of 4 selected target
and 4 nontarget images for both nylon and wood mine lanes
at each frequency. The training took 30,000 training iterations
to converge. The performance of the BPN is characterized
by three parameters: 1) detection rate: the percentage of time
that the network correctly recognizes a target; 2) classification
rate: the percentage of time that the network both detects and
correctly identifies the target type as either nylon or wood;
3) false alarm rate: the percentage of time that the network
incorrectly detects a background (or nontarget anomaly) as
a target. The detection, classification and false-alarm rates
obtained using the KL data set for the resonant frequency (792
MHz) are, respectively, 93.3%, 71.4% and 0% for nylon data
and 91.7%, 90.9% and 0% for the wood data. These results
indicate that it is possible to obtain detection and false-alarm
rates that surpass those of [3].

To extend this experiment, a generalized KL transformation
matrix was formed with five randomly selected targets from
each of the five-frequencies. This matrix consisted of the 50
most significant eigenvectors (90% of the total energy) and
was used to reduce all the images in the five-frequency data set.
Again, the training data consisted of the four selected images in
each data set. The results of testing this five-frequency neural
network with architecture 50-24-3 are shown in Table L.

These results show good detection and false-alarm rates
for both nylon and wood targets and perfect classification
for wood, but very poor classification for nylon. This poor

TABLE 1
PeRFORMANCE RESULTS FOR FIVE-FREQUENCY
GENERALIZED TARGET KL TRANSFORMATION MATRIX

Nylon ‘Wood

s |3 (8. ]s [2 |5

Feauency | 58 | 58 | 3% |9€ |ge | 5F
5 | & |& |8 £
728MHz | 867 0 0 88.3 | 100 0
760 MHz | 86.7 0 0 88.3 | 100 0
792MHz [ 933 | 143 | 0 91.7 | 100 0
824 MHz 933 7.1 0 91.7 | 100 0
856 MHz | 100 6.7 0 100 100 0
Overall Total | 920 | 58 | 0 90 100 0

classification rate for nylon targets could be blamed on several
factors. It could be caused by the data set that was used to train
the network, or it could be caused by a loss of generalization
capability that may have occurred as a result of combining
targets from five-frequencies to form the KL transformation
matrix.

In order to further analyze the results of Table I, the
locations of the targets that were not detected by the five-
frequency network were tabulated to see if the same targets
were being missed in all the frequencies of data. It was
noted that a couple of targets that were not detected from
the images produced at the lower frequencies were indeed
detected from those formed at the higher frequencies. This
prompted the development of a composite parallel neural
network structure consisting of five single-frequency networks.
The idea behind this network is that some single-frequency
networks may be able to detect targets that others could not;
thus by combining the outputs of all the single frequency
networks, superior performance rates could result. Note that
the input images, X;, are reduced using their associated
generalized KL transformation matrix formed with four nylon
and four wood targets for each of the five frequencies. The
outputs of the individual networks are then combined to form
average output values. The results of this composite network
are shown in Table II. From these results, it is seen that the
individual networks performed well, especially the 792 and
824 MHz networks with the 824 MHz network giving the best
results when considering both the classification and detection
rates. The performances of these networks, when compared to
the individual networks shown in Table I, show several cases
of improved results for both nylon and wood. The combined
results of the composite network are given in the last row of
this table.

It should be noted that there were several KL networks that
provided 100% detection for both nylon and wood targets with
0% false-alarm rates but showed poor classification results.
This fact led to the idea of using the KL networks for
detection only and developing some other method to facilitate
the classification of the targets once they are detected. This
can be conceptualized in a system block diagram as shown
in Fig. 1. With this in mind, the next section will explore
how Zernike moments and possibly the KL transform could be
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TABLE II
PERFORMANCE RESULTS FOR INDIVIDUAL-NETWORKS
USING GENERALIZED KL MATRIX

Nylon ‘Wood
- § |3 £ §
£~ 3 ~ | . =~
Fequency | §€ | 58 | 38 |88 |G | 38
g | 2% |2 1 E5 |3
3] = 8 o ¢
728MHz | 733 | 63.6 | 167 | 91.7 | 100 83
760MHz | 66.7 | 70.0 917 | 909 | 83
792MHz | 867 | 692 | © 917 1 909 | O
824MHz | 100 66.7 917 | %09 | ©
856 MHz | 100 66.7 | 25.0 | 100 91.7 | 83
Composite | 80 667 | 0 91.7 | 100 0

-
Pre-Processor Detector :

i
KL Transform Bock-Prop.
Network :

Kohonen
Network

Fig. 1.  Block diagram of overall detector/classifier neural network system.
The system blocks inside the dashed line only operate when a target is
detected.

used as the feature extractor for the classifier subsystem of the
block diagram in Fig. 1. The classifier is a self-organizing map
developed by Kohonen [9] which has the ability to effectively
create spatially organized representations of various features of
input signals. This type of network has been shown in [10] to
produce better results than BPN especially for high-dimension
data with overlapping class boundaries. Since the landmine
classification task involves the heavily overlapping classes of
nylon and wood targets, it is expected that some improvements
in the classification rates can be achieved when self-organized
networks are used.

IV. SELF-ORGANIZED NEURAL NETWORK CLASSIFIER

The self-organizing map is a paradigm developed by Ko-
honen [9], [10] that creates a vector quantizer by adjusting
weights from common inputs to cells of the network through
an unsupervised learning process. The cells then become tuned
to various input patterns or classes, and their locations tend
to become ordered in a meaningful coordinate system. The
spatial location of a cell in the network will then correspond
to a particular group of input signal patterns or a cluster. The
clusters or classes formed will approximate the probability
density function of the input vectors. Kohonen [9] observed
that if the maps are to be used for pattern classification, their
accuracy can be greatly increased if the cells are fine tuned
using supervised learning principles known as Learning Vector
Quantization (LVQ) methods. There are two different types of
LVQ schemes [9], [10] that can be applied to the landmine
pattern classification task.

The LVQI1 algorithm [9] is used to adjust the weight
vector, m;, of an image, X;, such that they are pulled

away from classification boundaries. This is accomplished
with an iterative supervised learning which results in an
arrangement of m; that closely resembles that of a Bayes
classifier. The LVQ?2 algorithm {9] can also be used to fine tune
the results of a self-organized map by positioning the weight
vectors of an image according to its two nearest neighbors. A
windowing operation is performed to move the midplane of the
neighboring weight vectors toward the crossing surface of the
class distributions, thus causing the midplane to asymptotically
coincide with the Bayes decision boundary.

A. Results of KL Data

The data which was obtained by using the KL transform,
as described in Section III, was used to train and test several
LVQ networks. Both the LVQ1 and LVQ2 algorithms were
used to fine tune the networks. The LVQ simulations were
implemented using the recommended number of training it-
erations which was equal to 40 times the number of training
vectors. The default initial value of & = 0.3 was used for
the adaptive gain. This value was monotonically decreased to
zero during the training process. There are two factors that
should be checked to monitor the training process [11]. First,
the medians of the shortest distances between initial codebook
vectors for different classes should not differ by more than
a factor of two. Second, to ensure a good approximation,
these medians should be somewhat smaller than the standard
deviations of the input samples in all the respective classes.
For example, the medians of the shortest distances for the
nylon and wood KL data were 0.054 and 0.049 respectively.
The standard deviations of the KL input vectors were 0.078
for nylon and 0.059 for wood. A check was also performed
to see if the number of training iterations was adequate for
network convergence. This was done by setting the number of
training iterations equal to 500 times the number of training
vectors. The simulation results for this network turned out to
be identical to those trained with the default value of 40 times
the number of training vectors. This shows that the networks
were being fully trained, as indicated by the two factors above,
when the default values were used.

Table III shows the simulation results for the classification
of nylon and wood targets by single-frequency networks that
were trained with the selected data from the five different
frequencies, as described in Section III. Note that the “*’ in
Table III indicates that the network would not converge for this
data set. This means that during the initialization process, the
training samples were found to be unacceptable representations
of their specific class identifiers. This table also shows results
for a five-frequency KL network that was trained with four
nylon and four wood targets from each of the five frequencies
of data. The single-frequency LVQ networks showed generally
fair classification rates for wood targets but poor rates for
nylon. The five-frequency network, however, performed better
overall for both nylon and wood. It can be deduced from these
results that more training data can lead to better classification
rates. The single-frequency networks only had four nylon and
four wood targets for a total of eight input vectors to use for
training data; whereas, the five-frequency network had four
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TABLE III
LVQ SimMuLaTiON RESULTS FOR KL NETWORKS
Performance (Classification %)

Single Frequency | Five Frequency
Frequency |Nylon | Wood |Nylon | Wood
728 MHz 80.0 58.3 66.7 | 100
760 MHz 533 75.0 80.0 | 100
792 MHz 66.7 58.3 80.0 | 91.7
824 MHz 533 83.3 80.0 | 917
856 MHz * * 80.0 | 91.7

nylon and four wood targets from each of the five frequencies
giving a total of 40 input training vectors.

The classification results of Table IIl can be compared
with those of Tables I and II in Section III. This comparison
of classification rates for the KL data using BPN and LVQ
networks shows that the classification rates for nylon targets
were greatly increased by using the LVQ networks, while the
trade-off of a slight loss in accuracy for wood classification
was observed in a few cases.

B. Zernike Moments Results

A set of 47 Zernike moments starting with A o and ending
with A;5 12 was calculated from (5) and used to train and test
LVQ networks. It was believed that this set of data would
produce good classification rates since Zernike moments are
orthogonal and thus are well suited for training an LVQ
network. Table IV shows results for single-frequency LVQ
networks and a five frequency LVQ network. The single-
frequency networks performed exceptionally well for wood
but poorly for nylon. The five-frequency LVQ network out-
performed the single-frequency networks and produced several
cases of acceptable classification rates for both nylon and wood
targets. This result again points to the belief that more training
data may lead to better results as previously discussed with
the KL LVQ networks. The results of five-frequency LVQ
networks which have classification rates of greater than 80%
for both nylon and wood targets at a specific frequency would
be considered as acceptable for use as the classifier block of
the overall detector/classifier system.

C. Results of Raw Data

The final set of data that was used to train and test the LVQ
networks is the raw (unprocessed) magnitude data that was
obtained directly from the separated aperture sensor. This data
represents the magnitude (in dB) of the scattering parameter
[3] between the sensor transmitter and receiver. A set of single
frequency networks and a five-frequency network were trained
with the raw data, and the classification results are shown
in Table V. For the single-frequency networks there were
three cases for which the LVQ networks would not train, and
furthermore there were not any cases where the classification
for both nylon and wood was greater than 80% simultaneously.

TABLE IV
LVQ SIMULATION RESULTS FOR ZERNIKE MOMENT NETWORKS
Performance (Classification %)

Single Frequency | Five Frequency
Frequency |Nylon | Wood |Nylon |Wood
728 MHz 46.7 | 100 66.7 83.3
760 MHz 73.3 100 86.7 | 75.0
792 MHz 66.7 91.7 80.0 | 833
824 MHz 60.0 83.3 73.3 83.3
856 MHz 66.7 100 86.7 | 91.7

TABLE V
LVQ SIMULATION RESULTS FOR RAwW DATA NETWORKS
Performance (Classification %)

Single Frequency | Five Frequency
Frequency |Nylon | Wood [Nylon { Wood
728 MHz 86.7 58.3 60.0 | 91.7
760 MHz 80.0 41.7 86.7 | 100
792 MHz 80.0 33.3 86.7 | 100
824 MHz * * 93.3 | 91.7
856 MHz | 73.3 | 583 | 933 | 917

However, the five-frequency LVQ network had four cases
where the classification rates were greater than 80% for both
nylon and wood targets. This leads to the observation that
once again the five-frequency network performed better than
the single-frequency networks. This reinforces the previous
statements about the correlation between the amount of train-
ing data and the performance of the LVQ networks. It may be
surprising to note that the five frequency LVQ network trained
with raw (unprocessed) data performed better, for some cases,
than many of the LVQ networks which were trained with the
preprocessed data sets presented earlier. However, this fact
brings up the trade-offs between the dimensionality of the
network and its performance which must be considered before
a final statement about the best data representation scheme
can be made. The training vectors for raw data contained 225
elements; this is more than four times the number of elements
needed to represent the images with the KL or Zernike data.
This leads to larger architectures and significantly longer
training times for the raw-data LVQ networks.

V. CONCLUSION

The central focus of this paper was the application of
signal-processing methods and neural network technology to
the detection and classification of landmines. It was shown
that the neural network-based approach provided substantial
improvements in detection, classification, and false-alarm rates
when compared to conventional pattern recognition schemes
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[3]. These improvements in performance were directly related
to the use of neural networks in conjunction with several
different signal-processing schemes which were implemented
to extract features from the landmine images.

The KL transform was used to perform data reduction
and to extract the energy dependent features of the images.
It was shown that the KL transform can pack the energy
of the target and nontarget images into the most significant
eigenvalues. Other advantages of the KL transform include
its invariance to translation and rotation of the input data,
and even more importantly, the decorrelation property of
the KL transform values which led to improvements in the
training of neural networks. Results of BPN and LVQ networks
trained with KL data showed outstanding performance for
detection, classification, and false-alarm rates. Another feature
extraction method, namely Zernike moments, was studied to
determine its effectiveness in providing appropriate data for
the classification of nylon and wood targets. This technique
showed some promising classification results when used to
train a given frequency of LVQ network. A set of raw
(unprocessed) data was also used to train and test LVQ
networks. A five-frequency LVQ network trained with raw
data was shown to produce classification results that were
better than many of the networks which had been trained with
preprocessed data. However, there is a big trade-off in network
size which in turn leads to much longer training times for the
raw-data networks.

Finally, special neural network models [12] could be inves-
tigated for future work to perform translational, rotational and
magnitude invariance pattern classification.
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