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Realistic motion simulation for articulated figures has
generated a great deal of interest in recent years.
Whether the simulation is based on the kinematics or the
dynamics of the figure, most formulations rely on the so­
lution of linear systems of equations. Sometimes solution
of these equations presents a great deal of numerical
difficulty, resulting in unrealistic or spurious motion for the
figure or in excessive computation because of small inte­
gration intervals.

The importance of the computer graphic simula­
tion of articulated figures has been demonstrated by
CG&A's two special issues on the topic l

-
6 and

SIGGRAPH's regular courses and technical sessions
on this or related areas. 7

-
14 Much literature has been

devoted to this topic in other disciplines-perhaps
most notably robotics, where there are similarities in
the problem formulation. Throughout much of this
work, the issue of numerical stability and condition­
ing arises, primarily because providing an efficient
and robust implementation of a digital simulation is
difficult. 5 -10 ,13-18 Such problems are for the most part
universal, regardless of whether the figures are biolog-

This article shows the cause of the difficulty to be re­
lated to the physical structure of the figure, not the math­
ematical formulation. It also shows how to determine the
severity of ill conditioning and how to obtain physically
meaningful solutions without excessive computations,
even when dealing with extremely ill-conditioned configu­
rations.

ical or mechanical, or whether the simulation is kine­
matic or dynamic. This article identifies the source of
the ill conditioning in the equations of motion for
articulated figures and provides robust numerical
techniques for alleviating the difficulties that they
create.

It is important first to distinguish between numeri­
cal instability and ill conditioning. Numerical insta­
bility refers to the errors introduced into
computations by the numerical techniques used. In
contrast, ill conditioning refers to the unavoidable
uncertainty arising from the nature of the problem
being solved. The ill conditioning that arises in the
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Figure 1. The equations of motion relating the posi­
tion of the hand to the positions of the shoulder,
elbow, and wrist joints, perpendicular to the sagittal
plane, are ill conditioned. A small change in the po­
sition of the hand from (a) to (b) requires a large
change in the position of the shoulder joint.

equations of motion for most articulated figures is
inherent in the figures' physical structure and not due
to a choice in mathematical formulation.

As a simple example, consider the motion of the
human arm in the sagittal plane illustrated in Figure
1. If the hand is to be placed slightly under the shoul­
der as in Figure la, the elbow must be located behind
the back of the figure. If the hand is slightly over the
shoulder as in Figure tb, the elbow must be in front of
the figure. Thus, for an extremely small change in the
position of the hand, the joint in the shoulder must
traverse through its entire range of motion. Determin­
ing the required position of the shoulder joint when
given the position of the hand is not a well-posed
problem; that is, it is ill conditioned. If there is any
small variation in the calculation of the hand's posi­
tion, as is inevitable with digital arithmetic, the error
is magnified. The resulting shoulder motion will ex­
hibit oscillations and physically unrealistic accelera­
tions.

This example illustrates the inherent ill condition­
ing in the kinematic transformation between hand
coordinates and joint coordinates. An analogous diffi­
culty arises in the dynamic equations of motion relat­
ing the torques at the joints to their accelerations. This
article considers in detail how to analyze sources of ill
conditioning, how to determine the severity of the
problem, and what numerical techniques to apply to

Figure 2. A physical interpretation of the columns of
the Jacobian matrix that describes the kinematic
transformation between the joint velocities and the
velocity ofthe hand.

ill-conditioned formulations. The presentation relies
primarily on kinematic examples for two reasons:
They tend to be easier to visualize, and they must deal
with the added difficulty of singularities. The equa­
tions of motion for a dynamic simulation cannot be
singular unless physically unrealistic bodies of zero
or negative mass are allowed. The article concludes
with an example of how the techniques discussed can
be applied to dynamics simulatibns, and how they
relate to previous methods.

Problem formulation
A fundamental problem in motion simulation for

articulated figures is how to determine the values for
the parameters that can be controlled, so a desired
motion results. In kinematic simulations the desired
motion is typically defined as a trajectory for some
part of a limb (e.g., a hand), and the controllable vari­
ables are the joints in the limb. The relationship be­
tween these trajectories can be specified as positions,
velocities, accelerations, or even higher order deriva-
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where J is known as the Jacobian matrix and is conve­
niently represented by its columns as

Singular value analysis
Considering the Jacobian as composed of columns

provides an intuitive interpretation for how the hand
moves when individual joints are moved. The joints
of articulated figures, however, are very seldom
moved one at a time. Most frequently some combina­
tion of all joints must be moved to achieve a desired
trajectory. To characterize the Jacobian transforma-

tives. Using velocities is particularly convenient, be­
cause we can avoid the typically nonlinear relation­
ship between positions.

Consider once again the motion of the human arm in
the sagittal plane, where desired trajectories are given
for the hand (see Figure 2). The relationship between
the velocity of the hand, denoted by the 2D vecto.r x,
and the joint velocities, denoted by the 3D vector e, is
given by

J

xl

u 1

v3

Figure 3. A geometric interpretation of the singular
value decomposition as applied to the Jacobian
transformation illustrated in Figure 2.

tion under these conditions, consider the set of all
possible different combinations of joint velocities of
unit magnitude. This can be represented as a sphere
in joint space, as illustrated in Figure 3. Because of the
directionally dependent scaling of the Jacobian trans­
formation, the velocity at the hand resulting from all
these possible inputs will generally be described by
an ellipse. This ellipse graphically depicts the direc­
tions in which the hand can move more easily.

Note at this point that the choice of coordinate sys­
tems for the hand is rather arbitrary and can be
changed to any convenient set. Since the axes of the
ellipse describing the hand velocities for all possible
joint inputs have a physical significance, they repre­
sent an ideal choice. These new axes will be denoted
A A
ul and U z for the major axis and minor axis, respec-

tively. This new coordinate system can be viewed as a
simple rotation of the old coordinate system by an

(2)

(1)x = Je

J=[jdz h]

The columns of J have a simple physical interpreta­
tion, because they are the resulting hand velocities for
a unit rotational velocity at each of the respective
joints. They can be easily calculated by noting that
they are closely related to the vector defined from a
joint's axis to the hand, denoted by Pi (PI' Pa.and P3in
Figure 2). In particular, the magnitudes of the j/s and
p/s are equal, and their directions are perpendicular.
This relation is easily extended to three dimensions
using the cross product of a unit vector along the axis
of rotation with the vector Pi to obtain ji.l ?

The above description shows that the velocity
produced at the hand by a given joint velocity will
vary, depending on the configuration of the arm.
This fact is sometimes emphasized by explicitly de­
noting the Jacobian's dependence on the joint an­
gles by writing J(e). For most configurations some
hand velocities are easier to achieve than others;
that is, they require lower joint velocities. This infor­
mation is closely related to the conditioning ofJ and
to the amount of error that can be expected when
solving Equation 1. Singular value analysis provides
a powerful tool for determining strict bounds on this
error and for characterizing the Jacobian transforma­
tion.
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along ~2' This rotation can be mathematically repre­

sented in matrix form as

A joint velocity along ~3 results in a change in the

arm's configuration, without producing any hand mo­
tion. This is known as a homogeneous solution, and is
a characteristic of articulated figures that possess
more joints than the desired output requires. 18

If the original problem described in Equation 1 is
1+ formulated for these new coordinate systems, we get

(5)

(4)

where UTi represents the desired hand velocity in the
~1' ~2 coordinate system; vTe represents the joint ve-

locity in the ~1' ~2' ~3 coordinate system; and D is a

diagonal matrix of the form

D=[0"1 0 0] (6)
o 0"2 0

The values 0"1 and 0"2 are known as the singular values

and are identically equal to one half the length of the
major and minor axes, respectively, of the ellipse in
Figure 3. These three matrices U, V, and D provide the
singular value decomposition of the Jacobian trans­
formation. so that

u 1

v3

1102

v2

(3)

j = 1

(9)

(8)

(7)J=UDVT

where m and n are the number ofrows and columns of
J, and the singular values are typically ordered from
largest to smallest.

The singular values, specifying how a transforma­
tion scales different vectors between the input space
and the output space, are crucial in determining how
round-off error has been magnified. In particular. the
condition number of a transformation. denoted by x,
is defined as

It is also common to write the singular value decom­
position as the summation of vector outer products,
which for an arbitrary Jacobian would result in

min(m,n)

~ ""TJ = 4.J O"jUjV j

Having thus described a new coordinate system for
the hand, we now find a combination of joint inputs
to move the hand along the vectors ~1 and ~2' Rotating

the coordinate system for joint space, we can define a
new coordinate system given by the unit vectors ~1'

~2' and ~3' so an input along ~1 results in motion of the

hand along ~1' and an input along ~2 results in motion

angle <1>, so vectors defined in one system can be trans­
formed to the other using the rotation matrix U given
by

U = [~ ~ ] =[ c?S <p sin <p]
1 2 -sm <p cos <p

Figure 4. The transmission ofrelative uncertainty in
the velocity of the hand to uncertainty in the calcu­
lated velocity of the joints. The range of this uncer­
tainty is given by the ratio of the largest to the
smallest singular values and is the definition of the
condition number.
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It is easy to verify that the worst case denoted by the
equality will occur if xis entirely along ~1' and bX is

entirely along ~2' A similar bound can be determined

for the relative error magnification in the calculation
of the Jacobian itself. Thus, by monitoring the maxi­
mum and minimum singular values, we can assess
how confident we can be in a computed result.

The condition number is important because it pro­
vides a bound on the worst case magnification of rel­
ative errors. To see why this is true, consider the case
where the solution of Equation 1 is desired for a given
X. If the uncertainty in x is denoted by bX, then the
range of possible values of x + Sx defines a circle in
hand space, as illustrated in Figure 4. Transforming
this circle into joint space results in an ellipse in joint
space with minor and major axes aligned with ~1 and

~2 and of magnitude equal to the reciprocals of their

respective singular values. The relative uncertainty in
the solution is therefore bounded by

u I

j 2
j 3

Figure 5. The physical effects ofapproaching a singu­
larity. The achievable velocity of the hand becomes
restricted to the nonsingular direction. However, be­
cause of the duality of the static force and velocity
relationships defined by the Jacobian, the singularity
also results in the ability to balance large forces in the
singular direction.

(10)I Ib8I I < I I bX I I
Ilell - K l lx l l

where ris the rank of ] that is by definition the number
of nonzero singular values.

The ability of the pseudoinverse to provide mean­
ingful solutions to any linear system of equations-re­
gardless of whether it is underspecified,
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squares solution. This is defined as minimizing the
residual given by I Ix- J8 I I, which physically means
that the hand velocity will be as close to the desired
velocity as possible. Minimization of the residual
does not of itself guarantee a unique solution.

The pseudoinverse solution is unique in that it also
minimizes the norm of the solution; that is, it mini­
mizes the amount of joint motion under the constraint
of minimizing the residual. In effect, this means that
there is no unnecessary motion in achieving the de­
sired hand trajectory.

It is also possible to use formulations based on the
pseudoinverse that sacrifice the minimum-norm cri­
terion to achieve other desirable characteristics. 17 The
pseudoinverse solution is very easily obtained from
the singular value decomposition by taking the recip­
rocal of all nonzero singular values. In particular, the
pseudoinverse of ], denoted by r, is given by

Singularities and pseudoinverse
solutions

The above discussion shows that the minimum sin­
gular value is important in determining the condition­
ing of the Jacobian and therefore in obtaining usable
solutions to Equation 1. Since the conditioning of
Equation 1 becomes worse as crmin decreases, we
should consider the worst case-what happens when
crmin is equal to zero. Then Jis referred to as singular,
and an exact solution to Equation 1 will not exist for
an arbitrary desired hand velocity.

To examine the physical significance of this situa­
tion, consider the configuration of the arm shown in
Figure 5. The arm is approaching the singular config­
uration of being completely stretched out. Joint rota­
tions about each of the three joints result in
approximately the same motion at the hand; in math­
ematical terms the joints are becoming linearly de­
pendent. Note that it becomes increasingly easier to
move in the direction of ~1' while velocities along ~2

become increasingly more difficult. At the actual sin­
gularity there is no combination of joint velocities that
can result in a hand velocity along ~2'

Pseudoinverses are commonly used to obtain mean­
ingful solutions to singular (or nonsquare) systems of
equations. The pseudoinverse solution is the best
possible approximation, since it results in the least-
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overspecified, or even singular-accounts for its pop­
ularity in the literature. 2-4 ,7,11 -14,1 7,18 However, using
true pseudoinverse solutions for any equations de­
scribing the motion of articulated figures still has fun­
damental drawbacks. Such equations are not isolated
mathematical formulas, but represent how the physi­
cal system evolves over time. As such, we are repeat­
edly solving sets of equations slightly perturbed from
the previous set of equations. Physically, their solu­
tions must have continuity, and here the
pseudoinverse solutions fail.

As an example, consider the singular value decom­
position of the Jacobian for the arm in Figure 5, where
the diagonal matrix of singular values is given by
Equation 6. While 0"2 remains nonzero, the
pseudoinverse ofD will be given by

1
0

0"1

D+= 0
1

(12)
0"2

0 0

However, when the arm moves into the singular con­
figuration and 0"2 becomes zero, the pseudoinverse
becomes

o

(13)

mum norm is chosen only from those solutions al­
ready satisfying the least-squares criterion. This ex­
plains the discontinuity in pseudoinverse solutions at
singularities, since it represents a switch in the opti­
mization criterion. The decrease in rank encountered
at a singularity means that a component of joint angle
motion can no longer be used to improve the least­
squares criterion. Instead it is applied to the mini­
mum-norm criterion. Thus one method of removing
this discontinuity and also limiting the maximum so­
lution norm is to consider both criteria simulta­
neously.

A well-conditioned formulation
Considering a solution's norm along with the accu­

racy to which it solves a set of linear equations was
first proposed by Kenneth Levenberg in 1944, in a
technique he called "damped least squares." He
pointed out that the iterative solutions of linear equa­
tions resulting from nonlinear systems, such as the
equations of motion for articulated figures, are valid
only near the current operating point. Physically,
then, it makes sense to consider only solutions that lie
in this vicinity. Damped least squares, also called reg­
ularization, has become one of a number of common
techniques for solving ill-conditioned equations in
various disciplines.

In terms of solving Equation 1, the damped least­
squares criterion is based on finding the solution that
minimizes the sum

o 0

where the solution can be obtained by solving the
consistent set of equations

where A, sometimes referred to as the damping factor,
weights the importance of minimizing the joint veloc­
ity with respect to minimizing the residual. This cri­
terion results in the augmented system of equations

which results in the damped least-squares solution,
denoted here by 80"). The physical significance of this
8(1..) is that it is the unique solution most closely
achieving the desired hand trajectory from all possi­
ble combinations of joint velocities that do not exceed
118(1..)11.

(15)

(14)

The difficulty therefore is not atthe singularity, where
the pseudoinverse provides a perfectly reasonable so­
lution, it is the discontinuous transition between sin­
gular and nonsingular configurations. Unfortunately,
at this transition the equations are also most ill condi­
tioned. Furthermore, even if the equations could be
solved exactly, using Equation 12 for 0"2 ~ 0 results in
solution norms that approach infinity. Such spikes
and oscillations in the derivatives of the joint posi­
tions tend to wreak havoc with numerical integration
routines.

The large norm of pseudoinverse solutions charac­
teristic of proximity to singularities may at first seem
paradoxical for a technique guaranteed to yield the
minimum-norm solution. This apparent paradox is
resolved by noting that the least-squares criterion of
achieving the hand trajectory takes priority over min­
imizing the joint velocity. Thus the solution of mini-
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(16)

We again use singular value analysis to see how the
damped least-squares formulation resolves the dis­
continuity present with pseudoinverse solutions. The
singular value decomposition of the damped least­
squares transformation obtained from Equation 15 is
given by

UTJ + A,zlr1J T =i ~~.G!
j=l a;+'A2

I I

Comparing the singular value decomposition of this
solution to the one given by the pseudoinverse in
Equation 11 shows they are very closely related. In
fact, the damped least-squares formulation can be
seen as a generalization of the pseudoinverse, since
the pseudoinverse can be obtained by simply setting
'A=O.

For cases where the damping factor is not equal to
zero, consider the form of the damped least-squares
solution as a function of the singular values. If a sin­
gular value is much larger than the damping factor,
then the damped least-squares formulation has little
effect, because

J l/fT rOI (J i- 0
~ Least Squares (Pscodoinvcrscj l 0 for (1 = a

Damped Least Squares {02~-,\2

Singular value (0)

Figure 6. A comparison of the damped least-squares
solution to that of the pseudoinverse as a function of
the singular value. The maximum possible value of
the joint velocity is determined by the damping factor
'A. The damped least-square solution also resolves the
discontinuity of the pseudoinverse solution at a sin­
gularity (a = 0).

which is identical to the solution obtained using the
pseudoinverse. For singular values on the order of 'A,
the 'A term in the denominator "damps" the poten­
tially high norm of that component of the solution, so
the maximum scaling for this component is limited by

a j _ 1

a;+'A2 - aj

(17) In addition to resolving the problem of dis­
continuities, the damped least-squares formulation
can be made arbitrarily well conditioned by choosing
an appropriate damping factor. Consider the condi­
tioning of the implicit inversion of the matrix JTJ + 'A21
in Equation 15. It is easy to show that the condition
number ofthis n x n matrix, denoted by ~ls' is given
by

(18) (20)

where the subscript i denotes the components associ­
ated with the ith singular value. The maximum joint
velocity represented by the equality in Equation 18

will occur when aj = 'A. If the singular value continues
to decrease and becomes much smaller than the
damping factor, then

(19)

which approaches zero as the singular value ap­
proaches zero. This demonstrates the required conti­
nuity in the solution, despite the change in rank at the
singularity. Figure 6 plots the form of the damped
least-squares solution, illustrating this continuity as
compared with the pseudoinverse solution.

May 1990

Thus, regardless of the conditioning of the original
problem, recasting the formulation to include physi­
cally realistic constraints on the solution guarantees
reasonable results.

To obtain an efficient algorithm and to avoid intro­
ducing numerical instability, many issues must be
considered when actually calculating the damped
least-squares solution. These issues, beyond the
scope of this introductory presentation, have been
discussed in detail in the literature. An appropriate
damping factor can be automatically selected and the
damped least-squares solution calculated without re­
sorting to the singular value decomposition.l? Also,
the iterative nature of the motion equations for articu­
lated figures can reduce the computational complex­
ity of calculating the singular value decomposition.i?
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Dynamics simulations
This section gives an example of how to use the

damped least-squares formulation to simulate the dy­
namics of articulated figures. Regardless of the formu­
lation used, the equations describing the dynamics of
an articulated figure can be cast in the form

where 1 is an n-dimensional vector of the torques at
the joints, and H(8) is an n x n-dimensional symmet­
ric matrix of inertias, which is a configuration-depen­
dent combination of the individual link masses and
inertia tensors. Here c(8, 8) is an n-dimensional vector
of centrifugal and Coriolis torques, g(8) is an n-dimen­
sional vector that represents the joint torques due to
gravity, and f is an m-dimensional vector of the exter­
nal generalized forces acting on the figure, which is
transformed into joint torques by the transpose of the
m x n-dimensional Jacobian. The torques due to c, g,
and f are known, so the simulation equation becomes

The typical simulation problem is to solve Equation
22 for a given set of torques at the joints to obtain the
joint accelerations. They are then integrated to obtain
the joint velocities and positions. The numerical inte­
gration of these calculated joint accelerations can cre­
ate difficulties. While the matrix of inertias H cannot
be singular for the physical reasons cited above, it can
become very ill conditioned. The larger the dimen­
sion of II and the greater the disparity between the
masses and inertia tensors of the individual links, the
more likely it becomes that H will be ill conditioned.
When this occurs, the calculated acceleration may
vary, because the uncertainties involved are magni­
fied. At its worst, this situation will prevent the inte­
gration routine from working at all; at best the routine
will require a very small integration interval, leading
to the excessive computational cost cited in the liter­
ature.

To see how the damped least-square formulation
can alleviate these difficulties, first note the similarity
between Equations 22 and 1. They both require the
inverse of some linear transformation to obtain a de­
rivative of joint position. This is then integrated to
obtain the configuration of the articulated figure. In

1 =H(8)8 + c(8,8) + g(8) + J(8)Tf

:r = H(8)8

where

:r =1 - c(8, 8) - g(8) - J(8)Tf

(21)

(22)

(23)

many ways, dealing with Equation 22 is numerically
preferable because H is square, symmetric, and non­
singular, as compared with J, which is of arbitrary
dimension and rank. However, the discussion of con­
ditioning and the derivations above apply equally
well when x, J,and 8are replaced by 1, H, and 8. Thus
the damped least-squares solution can be applied to
guarantee that the norm of the accelerations at the
joints will remain within any desired bound. This
bound can be determined by either empirical data that
specifies the maximum physically achievable accel­
eration for the figure or by the desired value of the
integration interval.

For an illustration, assume that the maximum accel­
eration for one component of the solution is given,
based on the some physical constraint. This value,
along with the known value of the torque for this
component, is used in Equation 18 to select an appro­
priate damping factor. Solving Equation 22 with this
value of the damping factor guarantees that the result­
ing joint acceleration component will not exceed the
given physical value. In addition, since this bound is
guaranteed, the integration interval can be chosen ac­
cordingly.

Comparing the damped least-squares solutions with
alternative techniques described in the literature is
instructive. Armstrong, Green, and Lake suggest scal­
ing all moments of inertia on the basis of physical
arguments relating the integration interval to the os­
cillation frequency of a pendulum'-" The damped
least-squares approach is similar in that both tech­
niques artificially increase the effective moments of
inertia; however, the difference lies in how these iner­
tias are increased. The damped least-squares solution
adds to the moment-of-inertia terms that lie along the
diagonal of HTH, instead of scaling (multiplying) all
moments of inertia. Both techniques allow an in­
crease in the integration interval, because they de­
crease the maximum frequency component of the
system. The ratio of the components in the system,
however, is altered only by the damped least-squares
approach. which accounts for its ability to improve
system conditioning. The addition of massto selected
system components allows us to filter out the high­
frequency components, which require the small inte­
gration intervals, while not appreciably altering the
other components in the bulk of the dynamics. Thus
the damped least-squares formulation results in the
optimal solution, because it most closely matches the
system dynamics for a given bound on the allowable
acceleration.
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Conclusions
Realistic motion simulation for articulated figures

requires careful consideration of various numerical
issues for a robust and efficient implementation. Both
the kinematic and dynamic equations of motion for
articulated figures can become very ill conditioned,
with the additional complication of becoming singu­
lar in the kinematic case. This ill conditioning is in­
herent in the physical structure of the figure being
simulated and cannot be avoided with alternate for­
mulations.

The severity of the situation can be assessed with
singular value analysis. While pseudoinverse solu­
tions have been proposed to alleviate some of these
numerical difficulties, they have serious drawbacks.
In particular, both kinematic and dynamic simula­
tions require numerical integration of quantities ob­
tained from the repeated solution of a perturbed linear
system of equations. For this integration to proceed
correctly and efficiently, we must avoid spurious val­
ues in the quantities being integrated. The damped
least-squares formulation avoids such values. By in­
corporating meaningful bounds on the quantities being
integrated, this technique allows a faithful representa­
tion of figure kinematics or dynamics, while preventing
difficulties in the numerical integration. •
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