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ABSTRACT 

A series of 18 balloon soundings m.ade at approximately 45-minute 

intervals on 3 January 1963 from Cape Canaveral, using FPS-16 radar 

for tracking, revealed certain structural details in the vertical wind 

profiles which - - - due to their persistence in time and space - - have 

to be considered as atmospheric perturbations and not as instrument 

noise. 

This report contains a brief and exploratory study on the possible 

nature of these perturbations. Some of the mesostructure in the vertical 

wind profiles shows a certain correlation with changes in the temperature 

lapse rate. There is also a possiblity that secondary wind speed maxima 

and minima may be induce d by phase differences of internal waves within 

adjacent atmospheric layers. 

Recommendations for future measurements and research efforts 

are made. 



1. Purpose and Scope of Study: 

Fron1 a close scrutiny of upper-wind data obtained with standard 

rawinsonde equipment, as for instance the Gl\/ID-lA, it becomes obvious 

that these syster..1.s are subject to relatively large errors in measure­

ments, especially in the vicinity of, and above, jet streams. In order 

to reduce these errors to a limit tolerable for routine weather analysis 

a drastic smoothing over at least two-minute intervals is applied to the 

wind data (Reiter, 1957, 1958; for extensive literature references see 

Reiter, 19Gla, 1933a). 

For missile design and operation it became imperative to know 

more about small-scale details of vertical wind shear. Serial ascents 

of rawinsondes revealed that certain features in vertical wind profiles 

may remain in existence for several hours (Barbe: 1957). Due to in­

strumental errors and the necessary smoothing operations these meas­

urements did not permit valid conclusions as to the size and persistence 

of meso- and microscale perturbations in th e atmospheric field of flow. 

Aircraft measurements, especially those of Project Jet Stream 

Endlich, 19G3; Reiter, 1961b, c, d, 1962a; Reiter, Lang, et al., 1961) 

substantiated the existence of mesoscale disturbances along horizontal 

flight legs. Positive and negative "anomalies" in wind s;;.>eeds - - as 

compared with a smoothed basic field of flow - - seem to be oriented 

along isentropic channels parallel to the direction of flow. Some of 

these mesoscale features could be identified over several hundreds of 

miles downstream, and over several hours of flight time. 

Although flight measurem ents usually give a poor indication of 

vertical distributions of meteorological parameters, the existence of 
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a non-random but well-organized mesostructure of wind and tempera­

ture fields along quasi-horizontal coordinates necessarily leads to the 

conclusion that some of the "irregularities II encountered in vertical 

wind profiles obtained with classical equipment actually reflected at­

mospheric disturbances rather than instrument errors. 

More advanced wind sounding systems like the FPS-16 radar and 

the smoke trail photographic technique have to a large extent overcome 

the barrier in instrumental accuracy, which limited the use of the GIVID 

series (Scoggins , 19G3 a; Scoggins and Vaughan, 1963). A new barrier 

is set by the not yet fully explored aerodynaruic behavior of rising b al­

loons in the FPS-16 measurer.1ents and by small-scale diffusion processes 

affecting the smoke trails froE1 rockets us ed in the above-mentioned 

photographic technique. 

Neve rtheless , a large number of wind measurements carried out 

so far indicates the existence of meso- and microscale stratifications 

in vertical wind profiles, which are well above noise level of instrumental 

errors and erratic balloon behavior. Some of these detailed features 

seem to be highly transient in nature; others, however, may persist for 

several hours. 
I 

From the point of vievv of missile design the mere existence of a 

mesostructure along vertical wind profiles is of sufficient interest to 

warrant its study. A logical approach has been taken by Scoggins (1963b) 

who performed power-spectrum analyses of such detailed profiles. 

While the results of such studies give valuable information on atmos­

pheric input into raissile response along trajectories under various 

adverse wind conditions, the question of response during any one specific 

mission is still l eft open - - even with given pre-launch wind information 

- - as long as the representativeness in time and space of the wind profiles 
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measured is not known. Optimum information on winds aloft for a 

launching operation should contain not only the spectral distribution 

of gusts derived from detailed vertical wind profiles at the time of 

measurement, but at the time of launching. This necessitates the 

following: 

1. Distinction between the transient and the quasi-stable meso­

structural features in vertical wind profiles. 

2. Short-range forecasts of mesostructural details in the wind 

field within the layers affecting the first stage of the missile. 

In order to arrive at a solution to these two problems, the physical 

properties of the atmospheric mesostructure will have to be known. The 

present study -- only preliminary in scope and nature -- has been set up 

in order to establish possible causes of structural details in vertical 

wind profiles. Larger samples of data and modified collection techni­

ques will be needed in order to specify more clearly the physical pro­

cesses leading to the formation of these structural details and hence to 

methods of forecasting them. 

2. Data Sample: 

The sample of data used in this study consists of 18 balloon runs, 

measured over Cape Canaveral on 3 January 1963 with an FPS-16 radar. 

The balloons were release d at approximately 45-minute intervals (Scoggins, 

and Vaughan, 1963). Wind readings were obtained every 0.1 seconds and 

averaged over 25 m or 3 second periods. The values thus obtained are 

plotted as series of dots in Figure 1. 

Four rawinsonde runs were m ade during the time interval covered 

by this experiment: one each at 11 GCT, 1 7 GCT, 20 GCT, and 23 GCT. 
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The wind profiles obtained from these ascents by standard rawinsonde 

tracking equipment are entered as solid lines in Figure 1 and are super­

imposed upon the appropriate FPS-16 soundings. 

As a whole, the agreement between FPS and rawinsonde data is 

reasonably good, especially as far as the representation of a smoothed 

vertical profile of the basic flow from which mesostructural details have 

been eliminated is concerned (see Figure 3). There are, however, sev­

eral regions in which small-scale mesostructural details detected by the 

two sounding systems do not agree. This is particularly evident from 

wind data obtained above 1 O km at 1 7 GCT. Apparently in this case the 

rawinsonde data of Cape Canaveral do not describe adequately the detailed 

wind structure in the lower stratosphere. The sounding made at Tampa 

on 3 January, 12 GCT, on the other hand indicates three wind maxima: 

one each at 10, 12, and 14 km (Figure 2) corresponding closely to what 

the FPS-16 measures one to two hours later over Cape Canaveral. Be­

cause of the slight discrepancies between radar and rawinsonde measure­

ments over the Cape, we may not attach too much significance to the 

Tampa measurements; however, they tend to support the conclusion that 

some' of the mesostructure is rather persistent in space as well as in 

time. 1 

Superficial inspection of Figure 1 reveals several rather conspic­

uous mesostructural wind maxima and minima above the 9 km level, 

which seem to persist over several hours, The persistence of such _ 

fe atures should only be viewed in connection with the thermal structure 

of the atmosphere, however. One should estimate the behavior of these 

mesostructural details along isentropic surfaces and in connection with 

the larger-scale weather situation. 
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3. The Macroscale Weather Situation: 

From the 300 mb maps as obtained through the U.S. Weather 

Bureau facsimile transmission, it becomes evident that a marked 

trough was passing the Cape C anc=veral area shortly before 12 GCT 

on 3 January . This is the time in which pronounced mesostructural 

details start to appear in the wind profiles above 9 km in Figure 1. 

It is noteworthy that larger amplitudes of mesostructural anomalies 

from smoothed wind profiles first appear at higher levels (ca. 12 GCT 

at 13 km) and subsequently work their way down t"o lower h eights (c a . 13 

GCT at 10 km, ca. 14 GCT at 8 km). In previous investigations (Fleagle , 

1947; Palmen, 1958; Reiter, 1963b ) it has been found that the region to 

the rear of troughs associated with j et streams usually is characterized 

by sinking motion in the lower stratosphere. The temperature distribu­

tion along stream lines at the 200-mb surface corroborates this for the 

present case: Cape C anaveral, Fla., r eports -54 ° C at 200 mb on 3 

January 1963 , 12 GCT; J acksonville, Fla., -56 ° C; Charleston, S. C., 

-56° C; Tampa, Fla., -59° C; Montgomery, Ala. (almost straight up­

stream from Cape Canaveral), -61 ° C; Atlanta, Ga., -60° C. (These 

values , again, are taken from the U.S . Weather Bureau facsimile charts ). 

The strong cold adv ection at this level (approximately 12 km) would in­

dicate sinking motion. 

The 300 mb charts indicate that there are t wo jet fingers merging 

into the j et maximum downstream from the trough. The p assage of 

these two fingers is also evident from th e time section of wind speeds 

in Figure 3. This diagram shows the isotachs of the basic flow, from 

which mesostructural anomalies have been removed.* The first "jet 

* The smoothing has be en done graphically by equalizing the areas of 
positive and ne gative anomalies as which the mesostructural details of 
the profiles in Figure 1 may be cons idered . A numerical approach for 
this smoothing could easily be devised, using original measurements as 
input, and filt ering oscillations with wave lengths up to 2 vert ical km by 
an overlapping averaging process . 
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finger" passes shortly before 1 7 GCT on 3 January; the second one 

after 00 GCT, on 4 January. The second jet finger has its core 

about 1½ km higher than the first finger, which also agrees with pre­

vious findings (Reiter and Nania, 1963). 

4. The Mesostructure in Its Relation to the Large -Scale Weather Pattern: 

From Figure 4a it may be seen, that in the layer between 8, 500 and 

12, 500 m the wind veers to a northwesterly direction. This layer appar­

ently outlines the influence :cegion of the northernmost of the two jet fingers. 

It also contains the most prominent mesostructural features shown in 

Figure 1. 

By 3 January, 17 GCT the winds in the upper troposphere are from 

NW (Figure 4b) . They back to a more westerly direction above 12, 000 m, 

indicating the influe;nce of the southern j2t finger overlying the northern 

one. Similal' conditions hold for the 20 GCT sounding. 

With the passage of the first jet finger before 17 GCT on 3 January, 

the upper troposphere undergoes a marked warming t rend . The lower 

stratosphere cools considerably up to about 15½ km as the coid region 

upstream from the trough, which was mentioned earlier, moves over 

Cape Canaveral. At the same time the tropopause h eight rises by about 

1,300 m. 

Unfortunately no radiosonde ascents were made over the Cape be­

tween 11 GCT and 17 GCT of 3 Jant1.ary when the mesostructure in the 

wind profiles reached its ma::imum amplitudes. The question, whether 

these structural details are quasi-geo3:rophic phenomena which are re­

flected in the temperature field, can the;:efore not be resolved with 

certainty. 
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The sharp positive vertical shear which appears in sounding No. 31 

between 7 and 8 km may coincide with the passage of a baroclinic zone 

as indicated in the potential-temperature analysis of Figure 5. For the 

correctness of interpolation detai 1.s between successive soundings in 

this diagram there is, of course, no conclusive proof. 

We may. however, draw some indirect conclusions as to possible 

geostrophic relationships between detailed temperature and wind struc­

ture by comparing the FPS-16 sounding with the rawinsonde of 3 January, 

17 GCT (figures 1 and 4b). Figure 6 shows a simplified outline of the 

vertical wind profile measured at this time together with the pos ition of 

relatively stable layers as evident from Figure 4b. As may be seen 

from this diagram, the absolute wind maximum along the vertical pro­

file corresponds very closely to tropopause height (T) . The secondary 

wind maximum at approximately 11.8 km coincides with a "secondary 

tropopause" ( T') in which the ve:::-tical l apse rate again experiences a 

marked change. The third wind maximum at 13 km falls into the level 

of a less conspicuous but neverthel ess existing discontinuity in lapse 

rate. 
: 

Let us now consider vertical shear and stability in a qualitative 

mann~r. * Below the level of m aximum wind underneath jet streams 

with well-defined vertical wind shears , positive baroclinicity (as indi­

cated by an increase of wind with height) is concentrated in r e l atively 

stable layers. Above the level of maximum wind r elatively s table layers 

contain a concentration of negative baroclinicity. Figure 6 is in e;~cellent 

agreement with this statement: Stable layers below the tropcpause are 

* A quantitative study would necessitate the availability of soundings 2.t 

neighboring stations for the same map time. 
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marked by a sharp increase of wind with height, above the tropopause 

by a sharp decrease of wind with height. Figure 7 containing a time 

section of stability (r + aT / az) shows a similar correspondence be­

tween stable layers and mesostn' :::tural wind shears (Figure 8). 

In order to arrive at a somewhat more quantitative conclusion we 

may apply the following consideration: Let us assume that the average 

vertical wind shear over a relatively deep laper follows geostrophic 

conditions given by 

au 
-= 
az 

oT u aT 
+-

ay T cz 

where oT / 8y stands for the horizontal temperature gradient normal 

to the direction of flow. We may apply the transformation 

( 
aT ) J aT ) f ay ] + 
oz e \ ay z \ az e 

8T 
az 

Using the standard meteorological notation, this becomes 

_ ( a~ ) = ( r + aT) ( az ) 
ay z oz . ay e 

Assuming now that the slope of isentropic surfaces, ( az) is aye , 
controlled by macrometeo::-ological conditions , and is not influenced 

by the mesostructure we may write 

au = + A ( r + a8Tz l + UT ~Tz 
az "I' o 

(1) 

(2) 

(3) 

(4) 
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where A = (g/f) ( &z/ By) e is taken to be constant over a relatively 

deep atmospheric layer that does not intersect the jet stream level. 

Even under extreme conditions the second term on the right-hand 

side of this equation will be at le2st one order of magnitude smaller 

than the first term. It may therefore be neglected. 

For the case under consideration some of the values are summar­

ized for the 1 7 GCT sounding in the following table: ·r ~ 1°C/100 m ', 

au/ 8z indicates the mean shear over a deep layer and A/T has 

been evaluated from 8u/ az and tr + 8T / az). 

Layer (m) 
Observed 

T 
Observed 

au/ oz au/8z A/T 6.T/6z from to 
(mps/l00m) 

(OK) 
°C/100m 

7, 000 8, 000 0.42 +1. 5 1. 45 241 -0.70 
8,000 9,000 0.42 -1. 0 1. 45 234 -0 . 76 
9, 000 10,300 0.42 +1. 23 1. 45 226 -0 . 66 

10,300 11, 200 -0 . 53 -1. 67 -8.83 219 -0.39 
11, 200 11, 800 -0.53 +1. 17 -8.8 3 216 -0.52 
11, 800 12,600 -0.53 -2.0 -8.83 216 +0.17 
12,600 13,000 -0.53 +2.5 -8 . 83 217 +0.12 
13,000 14,000 -0.53 -1. 2 -8. 83 216 -0.28 

Layer (m) 
Computed 

6.u/ 6z obs . r + 6.T/6.z 6.u/ 6.z 
from to 

(mps/l00m) -6.u/ 6.z comp. 

7, 000 8,000 0.30 0 . 46 1.04 
8,000 9,000 0.24 0.38 -1 . 38 
9,000 10,300 0.34 0.57 0.66 

10, 300 11, 200 0.61 -5.30 3 . 63 
11,200 11, 800 0.48 -4.23 5.40 
11, 800 12,600 1.17 -10 . 32 8.32 
12,600 13,000 1. 12 -9.83 12.33 
13, 000 14, 000 0.72 -6.35 5.15 
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As may be seen from the last column in this table, the quantitative 

agreement between observed and computed shears is not nearly as good 

as suggested by the qualitative deductions made from Figure 6. This 

may largely be due to the assumption (oz/ 8y) if con st. throughout a 

deep layer. On the other hand, we should expect that there exists a 

real discrepancy between the two shear values due to ageostrophic motions 

present. The systematic increase in the last column of the above table 

between 8 and 13 km might be taken as an indication of this. A definite 

decision cannot b e reache d with only this small a sample of data avail­

able. 

As has been pointed out earlier, the large-scale upper flow pattern 

showed significant changes during the period of observation. This, again, 

prevents us from making arly valid statement about the "life expectancy" 

of mesostructural details in the vertical wind profiles . From the foregoing 

it appears that details in wind p ;.~ofiles , which are reflecte d in the vertical 

temperature profiles as well, are quite stable in space and time . As may 

be seen from Figure 2, some of the ·same mesostructure in the winds of 

the lower strat osphere also shows up over Tampa, which is approximately 

100 miles fro m Cape Canaveral . Therefore, under weather situations 

whicll do not call for a rapid change of the macroscale flow pattern, short­

range forecasts of these detailed shears seem feasible. A study of more 

measurement sequences will be necessary, though, before generally valid 

recommendations can be made. 
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5. Possible Ageostrophic Effects in the Generation of Mesostructure: 

As may be inferred from a comparison of Figure 8, which c'ontains 

a time-section of the mesostructure of the wind field*, with the potential 

temperature analysis of Figure 5_. some of the detailed features in the 

vertical wind profiles do not follow is entropic surfaces. This may be 

due to large-scale changes in the flow pattern. On the other hand it 

might indicate the passing of individual mesostructural systems oriented 

side by side on an isentropic surface. Evidence for the latter possibility 

could be gathered from the analyses of flight data (Reiter, 1961d, 1962a). 

Due to the limited data available at this time , no definite explanation of 

this apparent shift of mesostructural anomalies to different isentropic 

surfaces can be given as yet. 

Because of the drastic macrometeorological changes inherent in 

the present data sample and the relative brevity of the period of measure­

ment, it cannot b e decided whet::er or not pure inertia oscillations might 

have a b earing on the b ehavio:r of the structural details in the vertical 

wind profiles. (Inertia period for 25°latitude is 28.3 hours). This pos­

sibility should be explored by measurements taken during more stable 

weather situations. Blackadar (1957) and others have found inertia os­

cillations to be the cause of wind maxima near low-tropospheric inver ­

sions (for literature see Reiter, 1961a, 1963a). 

Another possible source of transient mesostructural features in 

vertical wind profiles might be phase differences in gravity-type wave 

disturbances contained within adjacent layers (Figure 9). The group 

velocity with which such phase differences travel over the station may 

determine the sequence of wind speed-anomaly maxima and minima in 

a layer contained between two specific is entropic surfaces. 

* The mesostructure in this diagram is analyzed in terms of anomalies from 
the s moothed wind f ield presented in Figure 3. The values at any given point 
in these t wo diagrams , added with the proper sign, should give the original 

. wind speeds as reported in Figure 1. 
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At the present our knowledge on possible wave spectra and their 

behavior in the free atmosphere is rather limited. As a first estimate 

of possible effects Lyra's wave number 

12 = ~ ae / · v2 e az ' 

has been computed for 250 m intervals for the four radiosonde ascents 

(5) 

in sequence on 3 January 196 3 over Cape Canaveral (Figure 10) (Lyra, 

1940, 1943; Scorer, 1949; fo r further literatu re see Reiter, 1960, 1961a, 

1962b, 1963a). It should be realized, of course, that this wave number 

gives only a very limited account of possible atmosph e ric perturbations, 

specifically derived for standing wave formation. It takes into considera­

tion, however, both the vertical changes in lapse rate and in wind speed. 

For the computations presented here the wind speeds reported from the 

rawinsondes have b een used rather than th e ones obtained with the FPS-

16 radar. 

Only th e 1 7 GCT and the 20 GCT soundings show a more or less 

continuous decress of 1
2 

in the lower and middle troposphere, which 

is necessary for an upward transport of perturbation energy and for the 

formation of waves near tropopaus e l evel. Especially the 11 9cT, but 

also the 23 GCT soundings show a much more irregular distribution of 

1
2 

in the lower troposphere. In agreement with this, the mesostructural 

details in the vertical wind profiles are more pronounced at 1 7 and 20 

GCT than at 11 a nd 23 GCT. This leaves the question to be answered by 

future research whether or not some of the obs erved mesostructure may 

be caused by internal waves within more or les s deep atmospheric layers. 

Richardson's number, commonly used for turbulence research, has 

not be en evaluated in this study for the following two reasons: 
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(1) Fr&. the persistence of some of the mesostructural details 

in the wind soundings, it is evident that these disturbances do not repre­

sent "turbulence" in the classical sense. 

(2) Actual turbulence may influence the aerodynamic behavior of 

ascending balloons, and with this the quality of the wind measurements. 

More detailed data should b e awaited, however, before the application 

of any turbulence criterion could provide a useful input. 

6. Conclusions and Recommendations for Future Research: 

The foregoing investigation is based on a very small sample of data. 

This, naturally, will limit the conclusions that may be drawn from this 

study. 

The fact that some of the obs erved mesostructure in the wind field 

~may last for several hours, and thus is rather stable in space and time, 

seems to be fairly well established . The first impression of "turbulence", 

_which one might get in inspecting the v arious secondary maxima and min­

ima in an accurately measured vertical wind profile, therefore doe s not 

conform to the classical concept of turbulence . Physical causes other 

than random mixing processes must be sought to explain this phenomenon. 
• . I 

A certain correl ation b etween vertical wind shears and temperature 

lapse rates, which seems to exist with the long lived mesostructure, might 

eventually b e used in separating the stable from the unstable, short lived 

features in vertical wind profiles. The limitations of the data sample 

available do not permit any further conclusions at this point. The possible 

interaction of wave phenomena in adjacent atmospheric layers also de­

serves clos er study. 
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- For this purpose a number of serial measurements of vertical 

wind profiles should be made, similar to the ones investigated in this 

report. These ascents should cover a variety of weather situations with 

preference to such periods where no drastic changes in the upper flow 

patterns are to be expected. 

If at all feasible, simultaneous measurements from two or more 

sites should be carried out on a synoptic basis. This would enable the 

study of the orientation in space of mesostructural features and their 

advective and dynamic properties. A knowledge of these will be essen­

tial for the development of effective forecasting techniques. 

Last, but not least, attempst should be made to space simultaneous 

radiosonde observations even more clos ely than has been the case in the 

present measurement series. This would help to establish closer corre­

lations · between changes in the wind and temperature fields. From such 

correlations, again, inferences on the dynamics of mesostructural fea­

tures may be made . 
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Vertical wind profiles measured at approximately 45-minute 
intervals by FPS-16 radar over Cape Canaveral on 3 January 
196 3. The solid curves indicate wind measurements by stand­
ard rawinsonde equipment at 11, 17, 20, and 23 GCT, 3 
January 1963 . A shifting scale has been used for the indication 
of wind speeds {mps) along the abscissa. {Scoggins and Vaughan, 
1963). 
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Fig. 2 Vertical wind profiles from 
rawinsonde observations 
over Tampa, Florida, 2 
January 1963 . 00 and 3 
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Fig. 3 T ime section of wind speed (mps ) of "bas ic fl ow" over Cape 
Canaveral, for the same time p e riod a s in Figure 1. 
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Fig. 4a Soundings of wind direction ( dotted ), wind 
speed (dashed) and temperature (solid 
curve) over Cape Canaveral for observa­
tion times as indic ated. 
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Fig. 7 T ime section of stability (r + !;>, Cape Canaveral, 

3 January 1963 , same time pe r iod as in F igure 1. 
L aye r s with s tability >O. 4 °C/100 mare shaded . 
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Tim e s ection of m esostructure of wind s peeds , Cape 
Canaveral, 3 January 1963, expr essed in terms of 
anomalies ( m ps ) from the analysis present ed in Figure 
4. T ime scale in this diagram is th e same as in Figure 
1. Negative anomalies are shaded . 
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