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Multiwindow Estimators of Correlation
L. Todd McWhorter and Louis L. Scharf,Fellow, IEEE

Abstract—This paper is concerned with the structure of estima-
tors of correlation matrices and correlation sequences. We argue
that reasonable estimators of the correlation matrix are quadratic
in the data and nonnegative definite. We also specify the structure
of the estimator when the data are modulated: a property we call
modulation covariance. We state a representation theorem for
estimators that have these attributes. We also derive a represen-
tation for estimators that have the additional requirement that
the estimated matrix be Toeplitz. These representation theorems
admit estimators that use multiwindowed copies of the data. In
many circumstances, this multiwindow structure is superior to the
conventional sum of lagged-products or outer-product estimators.

I. INTRODUCTION

I T IS commonplace for adaptive detectors, estimators, and
filters to have embedded within them estimators of cor-

relation. In time series and array processing problems, the
estimators are usually sums of outer products of measurement
vectors or sums of lagged inner products. In linear prediction,
they are Gramians associated with the various methods of
linear prediction.

In this paper, we pose the question: “What is the most
general estimator of correlation one can consider, under the
constraints that it be quadratic in the data, modulation co-
variant, Hermitian symmetric, and perhaps Toeplitz?” We
make the case for each of these constraints and then state
a representation theorem that says every such estimator of
correlation admits a multiwindow representation. We show that
commonly used estimators are special cases of multiwindow
estimators and suggest that each of them may be improved
with multiwindowing. We derive a general mean-squared
error bound for multiwindow estimators that shows how a
multiplicity of windows may be used to improve the bound.
We conclude with a numerical example.

The multiwindow idea first arose in spectrum analysis in a
paper by Thomson [17], where data were windowed in order
to reduce variance in exchange for poorer resolution (larger
bias). Multiwindow estimators of correlation produce similar
effects [9], [13]. In fact, when coupled with Blackman-Tukey
spectral estimators [2], they reproduce Thomson’s multiwin-
dow spectrum estimators. We assert that the bias-variance trade
is fundamental in signal processing and speculate that the
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applications for the multiple window idea abound in parameter
identification, moment estimation, and other areas that rely on
estimates of correlation.

II. PROPERTIES OF THECORRELATION MATRIX

A reasonable strategy for designing any estimator is to
require that the estimator possess certain desirable attributes,
find the largest class of estimators that have the required
attributes, and then optimize within this class. The objective of
this section is to apply this strategy to the design of estimators
of the correlation matrix. A few crucial properties of the true
correlation matrix will provide the guidelines for the design
of our estimators.

Let denote a vector of complex-
valued wide-sense stationary (WSS) data with power spectrum

The correlation matrix associated with the data
is

...
...

...
...

...
(1)

where is a DTFT vector of
length The power in the time series is

This power may be “resolved” withquadraticforms like

complex frequency response of filter

Since the power spectrum is nonnegative, the corre-
sponding correlation matrix is nonnegative definite.

Let denote an mod-
ulation matrix with modulation frequency The correlation
matrix has the following properties:

P1) quadratic scaling: ;
P2) nonnegativity: ;
P3) modulation covariance:
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We submit that any practicalestimatorof the correlation
matrix must also possess properties P1)–P3). It seems rea-
sonable to require an estimator of the correlation matrix to
be nonnegative definite and to have the quadratic scaling
property. However, it may not be immediately obvious why the
modulation covariance property is important. In the following,
we demonstrate that ESPRIT implicitly relies on estimators
of the correlation matrix that have the modulation covari-
ance property. We also show that modulation covariance is
equivalent to requiring the estimator to use only “proper”
lag-products of the data.

A. Modulation Covariance and ESPRIT

In a number of estimation problems, including deterministic
modal analysis and DOA estimation, a snapshot of observed
data can be modeled as a sum of sinusoidal signals
and noise [16]

The signal component is assumed to be a vector in a low-
dimensional subspace defined by

That is, the signal subspace is defined by the deterministic
Vandermonde matrix

There exist a number of algorithms for estimating either
or given the snapshots . As a representative

algorithm, we choose ESPRIT. We consider an estimator or
algorithm to be modulation covariant if when we modulate
the data, the estimators then produce shifted or modulated
versions of the estimates generated using the original, unmod-
ulated, data. In the following, we demonstrate that if
is modulation covariant, then ESPRIT produces appropriately
modulated estimates.

Begin by partitioning the estimated correlation matrix as

At its simplest, the ESPRIT algorithm [12] estimates the modes
from the generalized eigenvalues of and That

is

for some generalized eigenvector Consider now the case
of modulated data. Let denote the estimate of

obtained using the modulated data. The ESPRIT estimates
of the modulated modes satisfy

for some generalized eigenvector If is modulation
covariant, then

which implies

Now, if is modulation covariant, the estimates
satisfy

or, equivalently

This is just the eigenvalue problem used to obtain the orig-
inal estimates Clearly, , and this version
of the ESPRIT algorithm generates appropriately modulated
estimates, provided is modulation covariant. In [10], it is
demonstrated that MUSIC and linear prediction also implicitly
rely on modulation covariant estimators of the correlation
matrix.

B. Modulation Covariance and Lag Products

In the previous section, we demonstrated that modulation
covariance is a desirable property for estimators to possess if
the estimated correlation matrix is to be used in a subspace es-
timation algorithm. In this section, we expand the argument for
modulation covariance by showing that modulation covariance
is equivalent to requiring that the estimator use only “proper”
lagged products of the data.

A sufficient condition for ensuring that an estimator has the
quadratic scaling property is to require that the estimator be
quadratic in the data. In the remainder of this paper, we will
require that all estimators be quadratic in the data. For the
single snapshot (or scalar) case, this leads to the following
proposition.

Proposition 1: Let be a vector
of complex-valued WSS data. An estimator of the
correlation coefficient is

1) quadratic in the data;
2) modulation covariant:

if and only if , where

...

nonzero only on
th super-diagonal

...

nonzero only on
th sub-diagonal
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The proof of this proposition is simple and can be found in
[10]. An equivalent form for this condition is

For example, if we are estimating , the estimator can only
use products with a lag of one: Hence, the
modulation covariance constraint is equivalent to requiring that
the estimator use only “proper” lag-products of the data. In the
absence of any prior model (structural or parametric) for the
correlation sequence, this is a reasonable constraint.

III. PROTOTYPE ESTIMATORS OF CORRELATION

In some instances, it is not necessary to estimate the entire
correlation matrix but only the northwest block.

Then, given the data , the objective is
to design estimators of the correlation matrix

...
...

...
...

...

Again, we will require that the estimator be quadratic in
the data and nonnegative definite. The modulation covariance
constraint reduces to

diag

It will be advantageous to first examine existing estimators
of the correlation matrix and determine if they possess the
characteristics just enumerated. In addition, we can gain in-
sight into the design of estimators of the correlation matrix by
describing the common structure of these estimators.

A. LP Prototypes

Perhaps the most rudimentary, but widely used, estimator
of the correlation matrix is the outer product

This estimator serves as our first prototype, and it clearly
possesses the three required properties P1–P3. Suppose that
the objective is to estimate the matrix instead of
Every block on the diagonal of could serve as an
estimator of We could then weight each block and
sum the results to construct the estimator

The matrices select each block on the
diagonal of Some representative examples of are

given here (blanks denote zeros:)

...

...

... (2)

Because the prototype estimator satisfies our
properties, the induced estimator will inherit the
quadratic scaling and modulation covariance properties. The
nonnegativity constraint will place restrictions on the weight
coefficients. Observe that can be written as

...
...

(3)

where , and is the Hankel
data matrix

...
...

...

The formula in (3) clearly shows that
if and only if Then, each weight coefficient must be
nonnegative and can therefore be factored as We
now have the two equivalent representations

(4)

In these representations, and
If we set the weight coefficients to

in (3), then the resulting estimator

is the estimated correlation matrix that arises in theco-
variance method of linear prediction. The other methods
of linear prediction also generate estimated correlation
matrices that can be represented as in (4). If we aug-
ment the set of matrices with the set

, then we can cast the
estimated correlation matrices of thepre, post, and correlation
methods of linear predictioninto the form of (4) [13]. Some
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representative examples of the additional matrices are provided
here.

...

...

It appears that the structures in (4) may be fundamental. We
first provide additional evidence for this supposition before
proving that the estimator in (4) is a special case of a repre-
sentation for all quadratic, modulation covariant, nonnegative
estimators of the correlation matrix.

B. Spectral Prototypes

Mullis and Scharf [11] extended the multiwindow spectrum
estimators of Thomson [17] to the class of all quadratic,
nonnegative, and modulation covariant power spectrum esti-
mators. These estimators have the structure

(5)

where are the data,
is a modulation matrix, and

is an matrix whose rows are composed of
the windowing coefficients. This class of estimators includes
the Schuster periodogram [15], the Daniell smoothed peri-
odogram [5], the spectrograms of Grenander and Rosenblatt
[6], and the estimators of Clergeot [4] as special cases.

We can organize the terms of the power spectrum estimator
in (5) into the illustrative form

tr

This shows the multiwindow spectrum estimator to be a Black-
man–Tukey estimator based on a multiwindow correlation

estimator. The matrix diag is an diagonal
matrix derived from theth window vector and

(6)

is an estimator of the correlation matrix
We can justify the claim that is a reasonable structure
for estimating by noting that it has the three properties
we required of our estimator. It is not surprising that the
estimator of (6) satisfies our required properties because the
power spectrum estimator of (5), from which inherited
its structure, also satisfies these properties. As before, if the
objective is to derive estimators of the correlation
matrix , one could average blocks on the diagonal
of the estimator in (6) to obtain a more general version of the
estimator in (4).

C. Separable Estimators of Correlation

The examples we have presented suggest that the estimator
structure

(7)

is, in some sense, fundamental. Before providing theorems to
substantiate this claim, we introduce the idea of aseparable
representation. By a separable representation, we mean that
each term in the summation satisfies, in and of
itself, the three required properties. Clearly, an outer product
of the form is quadratic in the data and nonnegative
definite. The following proposition establishes the conditions
under which this term is modulation covariant.

Proposition 2: The outer product , where
is modulation covariant

if and only if is nonzero on only one super- or sub-diagonal.
The proof of this proposition is simple and is omitted here.

To summarize, a separable estimator

must have that are nonzero only on one super- or sub-
diagonal. This question arises: “Are there nonseparable esti-
mator structures that are quadratic in the data, nonnegative
definite, and modulation covariant?” The answer is yes. How-
ever, as we show in the following representation theorem,
there must exist an equivalent separable representation for
such estimators.

D. Representation Theorem

Theorem 1: Let be a vector
of complex-valued WSS data. Denote the correlation
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matrix for the data by

...
...

...
...

...

where is the northwest block of Let
diag denote a modulation matrix.
The estimator is

1) quadratic in the data;
2) nonnegative definite: ;
3) modulation covariant:

and

if and only if it has a separable representation

where each is nonzero on only one super- or
sub-diagonal.

The theorem we have presented in this section indicates
that the most general estimator of the correlation matrix
is a multiwindow estimator. Equation (6) indicates that the
problem of designing correlation estimators is essentially the
dual of spectrum estimator design. In the following, we present
an informal argument for using the more general multiwindow
estimator structure.

The periodogram, introduced by Schuster [15] in 1897,
is a single-window estimator of the power spectrum. In the
representation of (5), the periodogram can be written as

In accordance with the derivation of (6), the periodogram
induces the following estimators of the correlation matrix:

Here, is the Hankel data matrix described earlier. These
estimators of correlation are widely employed. However, it
is known [17] that for many problems, the periodogram is
inferior to the more general multiwindow power spectrum
estimators. This example suggests, qualitatively, that there is
a possibility of improving the performance of algorithms that
use only rudimentary estimators. In the sequel, we provide
both quantitative and empirical evidence for this assertion.

IV. REPRESENTATIONTHEOREM FORTOEPLITZ ESTIMATORS

In this section, we investigate estimators of the correlation
matrix that satisfy the constraints of the previous section
and that are also required to be Toeplitz. We use the power
spectrum estimator

(8)

to induce our estimators and then show that under the stated
constraints, the estimator must have this form. This idea was
mentioned by Thomson in [18].

The power spectrum estimator of (8) can be written as

where the induced estimators of the correlation coefficients are

These estimators have the equivalent forms

tr (9)

where , and
diag Define the shift matrix
Equation (9) reduces to

tr (10)

Let the rows of be denoted by , and let
diag It follows that

tr

tr

(11)

where In the following, we address
the issue as to whether this estimator is fundamental.

Theorem 2: Let be the data
sampled from a complex-valued WSS process. Denote the set
of correlation coefficients for the process by The
estimators are

1) quadratic in the data;
2) modulation covariant:

;
3) they induce nonnegative definite Toeplitz estimators:

if and only if they can be reduced to the representations
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where

... diag

diag

...

Proof: (Sufficiency) Assume tr
By construction, is nonzero only on

its th diagonal. From Proposition 1, this implies that is
modulation covariant, and consequently, is modulation
covariant. The induced Toeplitz estimator can be written as

Since the power spectrum estimator
is nonnegative , the

matrix
(Necessity) Assume that is quadratic in the data,

modulation covariant, and induces nonnegative definite
Toeplitz matrices. The estimated Toeplitz matrix can be
written as

Since is modulation covariant

which results in

where It follows that
Consequently, can be factored as The derivation
in Section III-B can be used to show that has the
structure expressed in the statement of the theorem.

V. MEAN-SQUARED ERROR BOUND

We have demonstrated that “reasonable” estimators of the
correlation sequence must have the structure defined in Theo-
rem 2. This representation allows for the possibility of using
multiwindowed copies of the data to construct the estimates
of the correlation coefficients. In this section, we establish that
the multiwindow estimators of the correlation sequencemay
have smaller mean-squared error than the typical estimator
that uses only one window.

The estimated correlation coefficients induce a power spec-
trum estimator

(12)

This power spectrum estimator is equivalent to the power
spectrum estimator described in (8). The error of the power
spectrum estimator can be expressed as

Assume that the mean-squared error of the power spectrum
estimator is integrable. It follows that

mse

(13)

mse (14)

Mullis and Scharf [11] have established a lower bound on
the mean-squared error of a power spectrum estimator with

windows

mse (15)

Then, if the power spectrum is square-integrable, we have

mse

mse

(16)
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As was pointed out by a reviewer, the bound of (16) is not
guaranteed to be positive. In the following, we argue that
despite this fact, the bound still provides a valid argument
for using multiwindow estimators of correlation.

In the derivation of (16), it was assumed that the power
spectrum was square integrable. Consequently, the infinite
series converges. This implies that there exists an

such that for , the bound in (16) is positive.
If, for a fixed , the bound in (16) is negative, then this is an
indication that too many windows are being used. Similarly,
for fixed can be interpreted as a lower bound on the
size of the data vector for which an window estimator is
appropriate. In the following, we argue that the bound of (16)
will be positive in those situations for which a multiwindow
estimator is applicable.

Mullis and Scharf [11] show that the bound on the mean-
squared error of the power spectrum estimator (15) is tight only
if the power spectrum is “essentially constant” on intervals of
length To quantify this statement, we make
the approximation

(17)

The total squared error in this approximation is

sinc

sinc (18)

We say that a power spectrum is “essentially constant” on
intervals of length if of (18) is small. Let ,
and note that

sinc

sinc

(19)

The result of (19) implies that if the power spectrum is
essentially constant on intervals of length , then the
negative term in the MSE bound of (16) is bounded by a
small number.

This observation places a restriction on the number of
windows that should be used in the construction of mul-
tiwindow correlation estimators. If the power spectrum is
essentially constant on intervals of length , then the
number of windows should be approximately Time
series with a white noise plus lines spectra are not amenable
to multiwindow estimators of correlation. Conversely, the
multiwindow approach is appropriate if the process has a

Fig. 1. Sample cumulative MSE versus correlation lag for a MA process.

relatively smooth power spectrum in comparison with the
resolution limit implied by the number of data samples.

Equation (15) indicates that a window that is designed to
produce a good power spectrum estimator will be a “good”
window for estimators of the correlation sequence. In [11], it
is argued that a “good” set of windows is composed
of orthogonal vectors, i.e., for In addition,
those windows that concentrate their energy

around baseband are superior to those that
do not have this lowpass property. In the examples that
follow, Slepian (prolate spheroidal) windows are utilized. A
description of how to construct these windows can be found
in [11].

VI. EXAMPLES

A. MA Process

The data of Fig. 1 were generated as follows. A time series
of length was generated by passing unit variance white
noise through the MA filter

For each time series realization, the estimates
of were generated using the estimators described
in Theorem 2, with and Slepian windows. The
sample cumulative MSE’s mse for
were computed from 1000 independent trials. These curves
indicate that the multiwindow estimators have better mean-
squared error performance than the single window estimator in
this scenario. The bulk of the performance gain is attributable
to the multiwindow estimator’s lower MSE in estimating the
higher order correlation coefficients. The asterisks in Fig. 1
are the bounds of (16) for this MA process.

B. AR Process

The data of Fig. 2 were generated as were those in Fig. 1,
except that the time series was an AR process generated
by passing white noise through the AR filter The
polynomial was the same as above. Again, for this
scenario, the multiwindow estimators exhibited better mean-
squared error performance that the single window estimator.
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Fig. 2. Sample cumulative MSE versus correlation lag for an AR process.

C. Linear Prediction

The data of Fig. 3 were generated as follows. An MA time
series of variable length was constructed as in Example 6.1.
An estimate of the correlation matrix was obtained
using the Toeplitz estimators of Theorem 2. Again,
and Slepian windows were used. For each Monte-Carlo
trial, and for each , an estimate of the unit-norm whitening
polynomial coefficients was generated using

The sample MSE of was computed from 1000 independent
trials for The results are plotted in Fig. 3.
This figure illustrates the bias (resolution) versus variance
tradeoff inherent in multiwindow estimators. For small data
records, the multiwindow estimators perform poorly in com-
parison to the single window estimator. In this case, the
bias introduced by the multiwindow estimators dominates
any reduction in variance. Stated another way, the spectrum
of the process cannot be considered “essentially constant”
on intervals of length for small values of For
larger values of , the multiwindow estimators’ performance
improves and is attributable to the variance reduction inherent
in a multiwindow estimator dominating any increase in bias.

VII. CONCLUSIONS

In this paper, we have presented a representation for estima-
tors of the correlation matrix that are required to be quadratic
in the data, nonnegative definite, and modulation covariant.
We have also derived a representation for estimators that
have the additional constraint that the estimated matrix be
Toeplitz. These estimators admit structures that use multiply
windowed copies of the data. We have demonstrated that many
commonly used estimators are the single window duals of
the periodogram power spectrum estimator. This observation,
in conjunction with the mean-squared error bound and the
example we have presented, indicates that many algorithms
that use estimators of correlation have thepotential to be
improved by using the multiwindow estimators expressed in

Fig. 3. Sample whitening polynomial MSE versus data length.

the theorems. The examples and discussions we have provided
indicate those situations in which a multiwindow estimator
should be used.
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