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ABSTRr'\CT 

The di ffi cult i es i nherent in the direct determination of loads on 
of f -shore structures which a-re exposed simultaneous ly to \\'ind and waves 
mak e it desirable to model each situation in the laboratory . It is 
shown here that sca ling of the loads and t he waves is possible by us ~ng 
waves ~hich are generated by blowing air over t he surface of a l aboratory 
channe l, and by choosing a sode l materia l with an appropriate modulus 
of elasticity . Wind - generated waves such as those measured in the w~nd 
water t unne l of Colorado State University have a dimension less spectrum 
(Hidy and Plate (1965)) t hat is i dentical in shape to t hat found off the 
coast of Florida under hurricane conditions (Collins (1 966)). Further­
more, it has been shown t hat hydro - elastic mode ling i s quite fea s ib le 
(LeMehaute (1 966)) . These two r esults are comb ined t o give mode ling 
criter~a for off-shore structures i f direct wind f orces are dis regarded . 

Some consideration is also given to dynarr.ic wind load modeling and 
to t he questioh whether sirr~l t aneous modeling of both t he wave and the 
wind f orces is noss i ble i n a l aboratory . In princ iple , th is appears 
f easible , but tor sufficiently l arge scale mode ls, fe tch lengths may be 
r equired which are l arger t han typical l aboratory channels . 
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MODELING OF STRUCTURES SUBJECTED TO 

WI ND Ge 'ERATED WAVES 

INTRODUCTIO~ 

_,/ 

The increased us e of off-shore structures for t he exploration and 
ex?loitation of the oceans has created a demand f or accurate design 
information on the load conditions to which t he structures are subj ect ed. 
In contrast to most l and based s tructures , the critical load conditions 
for an off-shore structure may be dynamic in nature and induced by the 
water surface waves , so that analytical design procedures may become 
very coopl icated except for simply shaped s tructural elements . 

Present analytical procedures for determining the re sponse even of 
s h1ple structures to periodic waves are not exact . For example , it is 
custom3.ry to use th e Morrison equation t o determine the wave forces acting 
on a ver tical cylinder . In th e ~orrison equation , the inertia and drag 
coefficients must be determined experimentally . In some cases these 
coefficients can only be described statistical ly. Furthermore , t hey 
may vary with depth , as has r ece~t ly been demons trated by Pi erson and 
Holmes (1 965) . 

Under t hese ci rcw~stances it becomes desirable t o study the dynrunic 
behavior of a structure on a laboratory scale , which is quit e f easib l e 
a s will be shown in this paper . LeMehaute (19 66 ) has shm-m that hydro­
elastic modeling can be accomplished convenient l y by using modern plastics 
for model construc tion . If it can be ascertained that the response of 
the structure is linear , t hen t he modeling problem consists of requiring 
identica l shapes of transfer functions in mode l and prototype obtained 
by the ~odeling transforma tion . The transfer function is th en the 
quantity which needs to be deterained from the experiment , and it can 
be found conveniently by exciting the model stn1cture wi th a sequence 
of sine ~aves , and finding the response to each of them . 

Most structura l responses are nonlinear (although many are near ly 
linear), so that their transfer funct ions cannot be constructed by 
superposition. In such cases laboratory experiments are the only 
alt ernatives to potentially extremely comp l ex calculat ions , f or which 
tJ-.e model struct;_;re must be exci ~ed with a forcinz f unction which is 
d1n ami cally simi l ar to the prototype forcing function. In particular , 
f or structures excited by wind generat ed waves , the model wave spectrum 
must be dynamically simil ar to that of the prototype . Dynamic simi larity 
of the spectrum docs imply sirr.ilari ty of t he shape of t he spectra , as 
well as similarity of t he energy contai ed in the spect ra . 

The need for similarity in spectral shap e has been realized for 
some t ime . Thus , Kath and Har le~1:an (1967) produced a spectrum whose 
shape was simi l ar to tha t of spe~tra found in parts of the Atl antic 
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Ocean by Pierson and Mos~owitz (1964) . They us ed a wave generator for 
exciting model structures 1.-.'h ich was prograrrcned to generate a quasi-
random wave train with a spectru.11 of the desired shape . .,,, 

Wave trains produced by a wave generator have several features 
which differ from that of a wind generat ed wave pattern. A wave generator 
can only produce wave components which agree with the free modes of the 
water surface. That is , each of the wave components is sir.usoidal in 
s hape and travels independen tly of all other wave components . Thus , 
when a large wave is formed by the superposition of component sinusoidal 
waves that are moment arily in phase , although of different wave len~ths , 
one f inds that the life of the wave is fairly short. The large wave 
f orms when the components are in phase , and then disappears as the com­
ponents beco w.e out of phase due to the different component celerities. 
I~ contrast to this, one finds that large wind generat ed waves at high 
wind speed are quite long-lived and are , therefor e , not composed of 

. i ndependently traveling sinusoi dal waves . Nor is their t otal shape 
s in0soida l. In Fig. l an examp le is shown o~ a significant wave which 
is found at a wind speed of a?proxima tely 10 m/ sec. This wave has been 
obtained by av er aging th e hig:1est 20 waves fr om a r ecord of about 300 
waves measured in a l aboratory channel . The wav es were superimpos ed 
in such a way that their high est points coincided on the time axi s and 
t he or~inate value s were aver aged . A confidence band given by the local 
s :andard devi ations of th e c::> ordina te va l ues about the :-aean is also shown . 
I t is apparent tha t even tho~gh the wave travels as a whole, its shape 
i s definitely not sinusoidal . Cons equently , even thou gh the spectnm1 
of generator produc ed r andorn waves might mat ch that of wind genera t ed 
waves, the shapes of the r esulting individua l waves are not exactly 
t he same . Resul ts obtained ~y this procedure are therefore subject 
to question , particul arly if the dynamic response of the structure is 
nonlinear . 

A ~econd , and poss ib ly more i mportant difference between a 
generator produced spectrum and a fully deve loped wind wave spectrum 
l i es in ,the inability of the former to properly model the magnitud es 
of the spectral densities . Comp lete dynamic modeling r equi res that 
both wave lengths and amplitudes are modeled by the s ame scale factor. 
As sha ll be shown later, t his co;idition r equ ires that the dominant wave, 
which corresponds to the frequency at the peak in the spectrum for fully 
developed condit ions, r eaches i ts maximum possible ampl itude . It is 
doubtful that this co::-idition can be met whil e maintaining the required 
spectral shape , because the variance of a wave spectrum d-riven by 
s trong winds i ncreases with fetch , while that of t he padd le generated 
We.Ve spectrura decrease s, partly due to viscosity , and pa-rtly due to 
breaking when su?erposition of component waves increas es ~ave amp litud es 
beyond thei r stabil ity l imi t. 

More suitab l e test condi tions are obta i ned wh en wave :rains are 
used , whos e spectra, as well as shape and arnp litudes of individual 
weves, re semble t hose of wind genera ted waves , but on a s~a ller sc ale . 
Such wave trains are found in the labora tory if air is bl ov.-n over the 
s r fa c~ of water s tand i ng in a channe l . In this paper, the applica t ion 
of wind gener at ed waves to mo~e ling of wave forces i s discussed . Sinc e 
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I 
the wind generate laboratory waves have fewer drawback ~ than paddle 

-generated waves, it would be advisable to us e them to obtain the load 
· conditions on model structures. By this method one als0 obtains a 

mea<ls to evaluate the wind loads on the part of the structure above 
the water surface. 

As shall be discussed in the first part of this paper , the spectr um 
of fully developed wind generated waves in a laboratory is similar in 
shape to that found for ocean waves, and it al so yields a r elationship 
between peak frequency and variance of the spectrum which is scaled by 
the Froude number in such a way that no change in scal e between vert::.cal 
and hori zontal dimensions become s necessary . In the second part , 
considerations will be given t o the modeling r equirements of the structure . 
This will be discussed on the basis of simple linear struct res, and it 
is shown that Cauchy number similarity is feas ible together with Froude 
nurnber similarity . Modeling of the air flow above the water for simul­
taneous scaling of wave forces and wind forces is discussed in the 
third part of this paper . It is realized that the wind forces might 
be affected by the amount of spray carried in the air and it is felt 
that it may be possible to model this phenome~on , although very littl e 
is kno½n about this topic. Ot herwise it appears that dynamic modeling, 
by Strauhal number, c an be accomp lished in conjunction with Froude and 
Cauchy number modeling, but the fetch lengths required might be prohi­
bit ive . This is illustrated i n an exampl e which forms the last part of 
the paper. 

The Similarity Spec trum of Wind Generated Wave s 

The driving forces acting on the submerged portion of a dynamically 
loaded off -shore structure r esult f rom the wave field generated by the 
wiLd. Th ey act in addition to the wind force on the superstructure . 
Even though this wave field usually appears random both in space and 
time , it is nevertheless possible to distingu::.sh, especially in the 
neighborhood of coasts, crests of waves which give the wave field an 
appearance of local two-dimensionality, with a predominant direction 
of progression perpendicular, or almost perpendicular, to the crest. 
For such a wave pattern, a laboratory analogue exists in the wind 
generated waves which are obtained when air is blown over the surface 
of the channel in which water is standing. It seems possible that the 
ma jority of all wind driven ocear. waves outside of a storm center 
consists basically of a dominant pattern of this kind; Th is would 
offer a logical explanation f or the observation that one-dimensional 
wave spectra both in the laboratory and in oceans have an approximately 
equal shape. An illustration of this phenome:10n is gi ve:1 in Fig . 2a 
where a typical laboratory spec trus, obtained by Hidy an<l Plate (1965), 
is compared with a set of ocean wave spectra generated by strong off ­
shore winds off the coast of Florida shortly after the passage of 
HuTricane Dora, in Septe~ber 1964. The spectra were calculated by 
Coll ins (1966 ) . The peak density of the l arger ocean wave spectn.u11 
is 10,000 times larger than the peak density of the laboratory spectrum. 
Yet , the shapes do not differ significantly . 
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he identical shape of t he dimensionl ess spec tra shi !l be exp lored 
here. A non-d it1ensiona l for:n of the spectral shape that is suitab l e 
f or the purpose of this paper has been sugge s ted by Hidy and Plat e (1 965 ) . 
Hidy and Plate (1965 ) reco~~ended to non-dimensionali ze the spectr a by 
dividing the frequ ency axi s by w , which is the angular fr equency at 
which the spectral peak ¢ (w ) mf~ observed. The spect ra l densi ty 
$(w) was r educed so t ha t th~a~rea under the non- di~ens i onal spec trum 
S(w/ w ) is equa l to 1. This lead s immedia t e ly to the requ irement max 

S( w ) 
w max 

= 
w max 

2 
(J 

¢(w) (1 ) 

where o 2 is the variance of the water surface elevation . This non­
dimensionalizing procedure is equa lly valid for ocean wave data, as was 
s hown by Co lone l! (1966 ). In Fig . 2b, the average curve of Hidy and 
Plate (1965) is given, which is r epresent at ive for many different labora­
t ory spectr a . The similarit y of this shape with that of Fig . 2a is 
noted . Also, it is seen that the high fr equency end of the spectrum 
f ollo~s approximate ly a w- 5 law, as predicted by Phillips (1958) . 
However , the - 5 law s eems to be only an approximation to t he spectr a at 
high frequencies . There is evidence that the exponent in the power law 
varies f rom about -7 near t he s pec t ra l peak to - 4 at higher fr equencies . 

More significant than the high frequ er.cy behavior of the i ndividual 
spectrum is the fact that all spectra obtained from ocean or laboratory 
are bound ed at the high frequency end by a universal curve given by the 
equation of Phillips 

,. 
I 

I ¢(w > w ) = 1. 0 5 
max 

- 2 +2 - 5 
10 g w (2 ) 

where g is the constant of gravity. This is shown in Fig . 3 , which 
has been r eproduced from Hess (1968) . Phillips (1958 ) derived Eq . 2 · 
by using dimensional an alys:s . Rec ent ly Pla t e , Chang and Hidy (1~6S) 
have provided arguments which deduc e the - 5 power l aw as an upper l ir.iit 
of spectral growth, i ndependent of the shape of t he individual spect ru~, 
provided only that all spectra are similar. The -S power law then 
become s a law which rel ates peak spec tra l density ¢ (w - ) to wm::ix • 
Since thi s l aw pl ays a key role i n the modeling criterT~xto be d~~blcp ed , 
t he derivation shall be outlir.ed here . 

The basic assumptions are: 

a . The spectrum has a sha r p peak near 
described Ly the siQilarity shape of Fig. 2b. 
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I 
Higgins (1952) th i s i mpl i0s that the witer surface undu : ations consis t 
mainly of a t rain of wav ~s of f requency w whose amplitudes are 
subject t o a r andom modul ation. This modeTa~gr ees we ll i•:i th observat::.ons 
both of wat er surface elevation recordings and of wave spectra . The · . .-ave 
of frequency w shall be called the dominant wave , whose height is 
denot ed by H _max 

b. The maximum growth of t he dominant wave component is limited 
by the acceleration of grav ity such that 

a 
max 

= ag ( 3) 

where a is the maximum acceleration of the surface of the dorn in ~~t 
I!lax · b ' . h . 11 h 1 I . b h wave, ano a 1.s a num er wn1.c 1.s sma er t an . t will e s oh,. 

that a::: 0.3 leads to an es timat e which is consistent with the nume:-:.cal 
factor of 0.0105 in Eq . 2. 

Longuet-Higgins (1952) has shovm tha t a Gaus s ian wav e record wh ich 
satisfies condi tion (a) abov e has wave heig~ts ( ~ which are Rayl eig~ 
distr :buted . Consequent ly, the mean value , HP of the pN hi gr.est 

f N waves is a constant multip le of the mean wave height H, or 

= m ( 4) 

H 

a constant . Typica l values of m are m = 1.42 for where m is 
p = 1/3 and 
sinusoidal , 
at the peak 

m = 1.26 for p = 1/2. Thus, if each wave is basically 
then the average vertical accelera tion of the water particles 
of the highest pN dominant waves is found to be equa l to: 

1 
a = m 2 

(5) 

Somewhat arbitrarily , it is assumed 112at the si gn ific ant accelerati c~ 
is that of the si gn ificant wave H l J For a wave r ecord whose 
water surface elevation is Gaussian (which is approximatel y true bo:'.1 
for he laboratory and t he field), there exists the following r e l ation 
between mean wave hei ght and variance of the water surface elevati~: 
(Collins, 1966): 

= { 6) 

10 



with m = 1.42, the (y71~tti onship between the acce lerat:. o:·. of t he 
significant wave H ~J and t he variance o2 of t he ~av e r ecord 
is found as : 

2 
a 

m 
= 4 w

4 
max 

2 
CJ 

/ 

(7) 

But according to as sumption Eq. 3, this is also equal to a 2g2 , so that 

2 
CJ 

2 2 
Ct g 

4 
4 . w 
m ax 

(8) 

and let w = w It is then seen We can eliminate o2 in Eq . 1 
fr om Fig. 2 t hat S(wmax/wmax) 
and consequently: 

max = S(l) : 0.5 tor a fully developed sea , 

</,(w ) = 
m ax 

2 
CJ 

w 
m ax 

0.5 
2 2 

= Ct g - 5--
8 w 

(9 ) 

max 

whi ch i s . independent of t he spectra l shape except for the r equiremen t 
of simi larity . Thi s r esult is now compared with Eq. 2 .vhere w is 
r eplaced ' with w One obt ains : max 

¢ (w ) = 1. 0 5 10 - 2 g 2 w - 5 
max max (lo) 

Consequent ly, one finds 

a = 0.29 (11) 

which is somewhat lower than the limi ti_ng vertical acc elerat ion of the 
Stokes wave , where a = 0.5. 

, · 

The r easoning l eading to Eo. . 10 i s of consequence for the purpose 
of modeling . \\'hen conducting a mode l study, it is natur a lly des irabl e 
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to mocel the max:.:::um forc 0s that can occur . Waves with anpl itude s 
exc eeding that of the significant wave would presumably break , because 
their accelerations exceed the critical value ag . There fore , waves 
at fr equencies w > w of l arger ampl itudes than that a t w , 
cannot occur in an eqrlftibrium spectrum described by the simiT!}ity 
shape and by the relation between peak spectra l density and the corres~ 
ponding frequency expressed through Eq. 10 . If larger waves are to 
occur they must therefore be of lower frequencies . 

Equation io also i mp lies that th e waves that r each the limit of 
growth are subjected to continuous addition of energy ~hrough work 
done by the wind, so that the dominant wave remains at iti maximum 
height . . A spectrum of waves with a domi nant wave consisting of swell 
from a far away , and perhc.ps long subsided stor.n, might still have the 
similarity shape of wind generated waves, but its maximum spectral 
density will be belO\\. that of Eq . 10. Con seqt.:.ently , the maximu;n 
possible spectra l density for waves of frequ ency w is given by 
Eq. 10, which therefore describes the envelope for ~ff fully developed 
wav e spectra . 

Fully developed wave spectra are found in particular when wind of 
long duration is blowing, such as during hurricanes . An example is 
given by results of Collins (1 966) which were obtained at t wo different 
t imes at t wo different off- sho~e fetches during an off-shore blowing 
wind . In tab)e 1 the peaks of the spec tra calculated from Eq . 10 arc 
compared with the peaks obtained by Collins. It is remarkable that the 
long fetch spectra are in exact agreement with Eq. 10 , while the lower 
f etch data are below the saturation value given by Eq . 10 . Many other 
data show the sa'11e behavior , as is evident from the data of Fig. 3. 

TABLE 1. PEAK A.\1PLITUDES OF HURRICANE DORA DATA 
(from Co llins , 1966) 

cp{f .) 
max 

cp(f ) 
max 

=21r¢(w ) 
max 

(observed) (from Eq . 10) 
f · (Hz) 2 2 

Case max m - sec m - sec Remark;; 

AI 0.3 5 o. 130 o. 12 4 Sept . 9, 64 Fetch 11 mile s 
All 0. 45 o. 018 . 0.03 4 Sept. 9, 64 Fetch 1. 7 It 

BI 0.2 3 1. 05 1.00 Sept .10, 64 Fetch 11 
,, 

BII 0.2 7 0. 2 0. 45 Se pt.10, 64 Fetch 1. 7 ti 
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i We notice t hat th e results of Eqs . 9 and 11 yield t he important 

rel ationship between varianc e, o 2 , and w max 

2 
o = 2. 1 2 

g 
-4 

w 
max (12) 

Equation 12 shows that the scale of the amplitudes of the wave which 
must also scale t he square root of the variance of the spectrum fixes 
the scale of the frequ encies, so that it is not possible to adjust the 
two scales independently. If it is desired to model wave heights so that 

= (13) 

t hen it follows that the frequencies must be related like: 

L 
2 

er w m m max p = = er r- 2 (1 4) 
p p w 

maxm 

Here, L is any characteristic length; the subscript m r efers ·o the 
model, a~d the subscript p to the prototype . This condition is in 
accord with the requirements i mposed on the wave l ength A . If it is 
desired to have identical non-dimensional wave l engths , A/L , for 
model and prototype , then it would be necess ary to set 

L . k 
m p 

L = 
~ 

p m 
= 

A 
m 

x-­
p 

(15) 

However , for gravi ty water waves , the freqi.; ency is rel ated to the wave 
number, k = 2n/ A , by: 

2 
w = g k tanh kh (16) 

13 



• where h is the depth , as defined 1n Fig . 4 , and thus: 

2 
w 

p = 
2 
w m 

k 
p = 

k 
m 

L 
m 

L 
p 

= 
h 

m 
h 

p 

/ 
(1 7) 

i n agreement with Eq . 14 . Consequently, t he use of a fully developed 
wave spectrwn in the laboratory for simu lating a fully devE:loped wave 
spectrum for prototype cond itions results in identica l sca le ratios of 
both wave he i ghts and wave lengths, if the spectra are related by Eq . 14 . 
The use of Eq. 14 thus leads to an undistortej geometrical sca ling of 
t he whole wave field. This resdt estab lishes the advantage of using 
wind generated waves in th e l aboratory for moje ling wind generated waves 
i n the field. 

It i s interesting to not e t~at mode l ing according to Eq. 14 implies 
Froude nllr.lber scaling, i . e. , 

Fr = 
u 
wave 

rn 

= 
u 
wave 

p 

where u is a wave relat ed ve l ocity such as c , or the wave 

( 18a) 

w~e o i nduc ed at some r eference depth . For the l atter , u is proport ional . wave to crw f or · any frequency component and one obtains: 

w O" 
mm 

= 
w Ci 

p p 

"{gL 
p 

{1 9) 

If cr is elimina ted through :Sq . 14, then Eq . 17 follows . Consequentl y , 
Froude number modeling according to Eq . 19 , in con junction with Eqs . 
9 and 10 , results in fully developed wind ge~erated wave spec tra in 
model and prototype which are geometrically similar with equal vertical 
a nd ho~izontal scales . Therefore, the model structures can be bui lt to 
scale , and the comp l ications which arise f ro~ di stort ed scales can be 
avoided . It should be mentioned that th e definition of a modeling 
Froude number according to Eq. 19 is somewhat more strin6ent than is 
r equired fo:r linear response of structur es under th e effect of a wc.ve 
force . For such a system, the amplitude appears only in the load function 
and therefore ne ed not be scaled properly because its effect can be 
i ncluded into the conversion factor which is used for calcu lat ing 
prototype response dat 2. froin r.1odel data. Th en the Froude number is 
more su itably defined by 
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Since c is i ndependent of the vert i ca l sca · e of t he wave motion , 
t h i s mod~l i ng criterion only suffi ces t o sat i s fy Eq . 15 , but not 
Eq. 13 . 

In app l ying Eq . 10 to l aboratory mode ling , i t i s required t hat 
some va lue of t he height of t he significant wave is known which can 

(2 0) 

be expected under prototype conditions at the position wher e t he s truc­
t ure is to be constructed . How t hi s \':ave height can be found shal 1 not 
be dis cuss ed here . If it i s known , then the variance of t he water 
surface fo l lo,,.,s from Eqs . 4 and 6 , t he peak frequency , w , f rom 
Eqs . 8 and 11 , and t he spectral peak from Eqs . 9 and 11. m'tfie spectrum 
c an t hen be construct ed with variance o2 , w , and t he similarity 
spec t rum of Fig . 2 . After choosing a suitable ~~~gth sca l e , the mode l 
spectrum can be obtained by reducing the variances of the water surface 
and the f requencies according t o Eq . 14 . It r emains t o show under what 
co~dit ions it will be possible to obtain a sca l ed dynam ic response of 
t he s tructure . 

Mote l ing of Structures Subjected to Wave Forces 

When a l inear s tructure i s exc i ted by a r andom dynamic l oad whose 
s t c.t ionary spectrum is ~L ( w) , it i s we ll known t hat t he deflection 
s pect rum ~ (w) of a characteristic po i nt on t he s tructure can be 

d byx expresse 

= l H (,.,) 12 ( ) .,., c/>L w (2 1) 

where K is the spring constant of t he support l egs and H i s a t r ans-
fer function . Multiplication of t he deflection spectrum by the square 
of t he spriDg con s tant K of the support l egs s ignifies that we assume 
t he structure to be so stiff that deflections are within the range of 
validity of Hooke ' s law . Then t he spring constant is a mu lt iplier whos e 
magnitude mus~ be known . It is t o be chosen according to dyn am ic similarity 
of t he structural response . 

The f unct1on H(w) of Eq. 20 i s the transfer funct ion of the 
s tructure which establishes the dyn amic r esponse of the structure under 
t he effect of the load spectrun . In our notation , it is a d i mension l ess 
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f unction whose value at : ~ro frequency must be one , to c0~rcspond to 
the case of static l oadir:g . The sirr,plest structure, suc1-. as shown in 
Fig. 4 , consists of one or more cylindr ical supports whic:1 ~re clamped 
to some degree into the ground and into the working platfor:n . The 
t ransfer function of each of these cylinde rs is then given by that of 
a s imple second order system : 

I H (w) ! 2 
1 

::;: (2 2) 

wh ich is valid for t he dominant first vibra tional mode , whose natural 
f requency is equal to w . The coeffici ent s i s t he re l ative 
damping f actor . It is dgt er mined almost completely by the i nterna l 
structural damping, while the natural frequency i s given to : 

w 
n ::;: ~ 

where m is the mass of the loai on the single cylinder , and K i s 
the spring constant: 

K ::;: 
3EI 

'Y -=--r 
L 

( 1- /3) 

(2 3) 

{2 4) 

I n t his equation, E is the modul us of elasticity , I t he momen t of 
inertia , and L t he length of t he cylinders , as i ndicated in Fig . 4 . 
The cl amping coeffi c ient y cor~ects for the possibility of rotation 
of cylinder top and bottoi11. When the cylind er is cl amped into the 
ground, and into the platform (i.e., the cylinder is one leg of a 
multileggcd structur e) so that the joints cannot rot at e then y = 1. 
A more fl exib l e struc ture , re sul~ing from only partial cl~~ping in the 
ground or at the platform y~eld s a smaller y , while increa sed stiff­
ness , as obtained for examp l e by braces across th e l egs results in a 
l arger value of y Evidently, for more complex str~ctures a 
s i mp le correction of the single cylinder spri ng con stant does not suffice, 
and a suitable e:astic mode l ma y be the only fe as ible alt ernative . The 
coeffici ent 6 is the reduction f actor du e to vertica l l oads , i . e ., 
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I 

/ 

I 

f3 :: / 

(2 5) 

where \1 is the vertical load applied to t he cylinder top . As long as 
e is significantly snaller than 1 , a vertical load c~n be used to t une 
the structure , so that its natural frequ ency assume.s the desired value. 

For the multilegged struc:ure as a whole, t he transfer function is 
the same as that for the individua l l egs except for a modification fac­
tor which re sults from t he time lag between tr.e forces on different 
·cylindrical legs . The phase shift may either l ead to adding total forc es 
on the structure or subtracting, and might even cancel depending on the 
distance between legs as relat ed to wave length , and on the orientation 
of t he structure . This effect has been discussed by Nath and Harleman 
(1968). 

Wh en t he structure has many degrees of fr eedom and can vibrate at 
many different eigen modes , th e structural response of a particular 
point on the structure is difficult to determine. How ver , a good first 
approxima tion may be made with a modal analysis wherein the follo wing 
a ssumptions are made : 

1. Viscous dampir,g coefficients exist for each mode which are 
proportiona l to either the modal mass or the modal stiffness . 

2. The phase rel ationships between modes are disregarded . 

3. The cross-influences between moda i responses have negligible 
effect on the response spectra . 

Uncer these conditions the response spectrum is constructed from a 
1 in ear surr.ma tion of the response spectrum for each mode (Hurty and 
Rubinstein (1 96 4)). In t he following present ation t he index i stands 
for the direction (either displacement or rot ation) of the vibration 
and the index j for the r.wdal order . Then the spectrum of t he structural 
r esponse , x , considering n modes , is: 

n 
cf, • (w) 

Xl 
== [ 

j:: 1 
¢ .. (w) 

XlJ 
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, 

f 

I , 

l 
I 

and 

<I> . . (w) 
· X l J 

= A . . (w) 
lJ 

,/ (27) 

wher e : 

1 
= 

is t he t _ansfer function of the j-th mode with eigen frequency w .. 
and damping factor z:.. in the i direction , and A . . ( w) is a lJ 
function embodying a tJneralized coordinate system andJthe relative 
part icipation from each mode due to moda l shape and effective mass. 

(2 8) 

In most c ises only the first few modes need to be considered . For 
ocean platforms in deep ~ater , foy example , it i s possibl~ that only the 
first mode is i mnortant and one probably never needs to consider modes 
beyond the fourth because the larger modal frequencies are usua lly much 
higher than any wave frequencies in th e wave spectrum. 

In a model study, the effects of structural complicat ions and 
intramodal coupling on t he transfer function may possibly be determined 
experimentally . We notice that for t he transfer function to be mode l ed 
in t he l aboratory , it shal 1 have to meet the following requirements : 

1. Model and prototype must be geometrically similar , and must 
be scaled such that the length scales of the wave motion are 
identical to the scale of the geometry of the structure . In 
t his manner, interference effects due t o loads on different 
indi vidual legs and other structural e l ements are accounted 
for . 

2. Dimensionless (or relative) damping coefficients of model and 
prototype associated Kith each mode must be identical . This 
r equirer.ient is not met easily. It is probabl y suitable to 
use a damping coefficie~t based on experience and coirect the 
damping of the model structure by an external arrangement of 
dashpots. 

3. The natu-.cal freque,.cies of model and prototype must be chosen 
such t h&t w/w is identical in model and p-.cototype . This 
raust be interD~et ed as re~u1r1n

0
° tha t t he r atio of the w 

• · max 
of t he peak o= the load spectrum to the natura l freque nc y or 
the struc ture , u , is the same , or 

n 
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(2 9a) 

model prototype 

It is. evident , t hat in modeling a multi-degree of f reedom structure , 
one must maintai~ : 

{ wm ax \ 

\ wij } prototype 

fo r all modes of import ance . 

Evidently, the preceding recu ireiilents i m:;:>ly t hat the output 
spectrw. , as well as t he input spectrum, is similar in model and 
prototype . The mode ling requirement expressed by Eq . 29 i mplies 
sir.m l t ar.eous equa l ity of both Froude noober and Cau~hy number in 
mode l and prototype. Generally speak ing , t he Cauchy number is 
defined as 

C = 
a 

ow , while t he 
sp~~a of sound E/p. 

(2 9b) 

(30) 

where a wave r e ference velocity might be l\v = 
r ef erence e l astic velocity uE usually i s fhe 
However, i n the case of bending deformation of 
to be more rational to use an elastic velocity 

t he structure , it appears 
uE = Lwn , so th at 

w 
C = 

a 
max o· 

(3 1) w L 
n 

fo r similar geometrics, 
requi r es t h~t Eq . 29 be 
number equality can be 
are suit ab ly adjusted . 
Eq. 23, in conju~ctior, 

Ca~chy nUi~ber sirnil~ri ty f or model and prototype 
s atisfied. This equality together wit h Froude 

met , however, only if the elastic properties 
.By using t he definit i on of the natural frequ ency , 

~ith Eqs . 2~ , 14 and 30, it is s een that 
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= 
L 

m 
L 

p 

(3 2) 

when p and ~ are t he bulk densities of the load s on the cylinder 
for profotype an~ model , respectively . The factor a , given by 

a, = 
'Ym0- {3 ) r · L 4 

m m p 

'Y (1- f3 ) I L 4 
p P p m 

(33) 

r educes to one if exact geometric simi l arity of the mode l and prototype 
support structures exisi , anrl if the damping condi t ions are i dent ical . 
A factor a= 1 is, of cours e, not necessary . For examp le, instead 
of the thin-walled cylinders us ed for the legs of prototype structures , 
we might prefer to use solid legs in the model . 

The result given by Eq . 31 can be derived more foT1ilally by the 
method s of inspectional ana lysis, as was evidently done by LeMehaute 
(1 966). It gives a means of obLaining; by suit ab ly adjusting a , E . m 
and p , t he dynami cally correct r esponse of th e struc ture to wave 

m forces , provided that the lo ad spectrum is a l so modeled properly . 

·The l oad spectrum is not direct ly proportional to t he wave 
spectrum, but it is relat ed to it . Under scme conditions , a linear 
rel ation exists between load spectrum and wave spectrum 

2 
= G (w) ¢ (w) 

71 

wh ere G(w) is a conversion factor, wh ich depends on w as well as 
many other factors. 

Generally speaking , the functioa G(w) is nonlinear and bec0i:1cs 
dependen~ on . t he RcY71olds nUiilber . It i s found by integ.- 2. ting the co:1 -
tributions to th e total deflection of t he l oca l load contributions 
p( z) over the length of t he submer ged part of the structure . Below 
t he wat er surface , the loca l load is described approximate ly by the 
Morrison equation: 
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p {z } = CI p A a (z } + CD p ~ lu{ z ) [ u( z ) 

where A is t he cross-sectional area and D t he diamet er of the 
cyl inder , 9 the fluid density , u(z) and a(z) are the velocity 
and the acceleration, respectively , of the fluid at the depth z . 

(3 5) 

c1 is the coefficient of inertia which embodies both the contribution 
of virtual mass and of resultant unsteady pressur e forces on the cylin­
der . For a:-. inf::.r!itely long cylinder , its value is equ3. l to 2 . For a 
fi nite l ength cylincier subjected to wave forces which v~ry \\'ith depth 
h, CI may vary with depth (Pierson and Holmes (1965 )) and with the 
ratio of 211 h/D (Paape and Breusers (1966)) . I t is possible that the 
r equirement of geometric similarity of model c.nd prototype suffices for 
i dentity of CI in both cas es . Certainly , geometric similarity does 
permit to keep the ratio 211h/D constant . 

The dr ag coeffici en t CD is more difficult t o model properly . In 
principle , it depends ori the local Reyno lds number , and it is well known 
that Reynolds number scaling is incompatible with Froude number scaling. 
Unfortunatel y , very little is kno11n about CD in a wave situation, and 
fo r modeling purposes one has to make an assumption . One possibility is 
to artifically roughen the cylinders so that their effective Re~:olds 
number is increased . It is well known tha t for large effective Reynolds 
numbers , the drag coefficient of an infinitely long cylinder becomes 
constant . Similar results mig~t be expected for the wave case . 

Fortunate ly , foi deep water waves the eff ect of the drag appears 
to be sma ll compared to that of the inertia , as was sho1m by Nath and 
Harleman (1967) . Under this condition , t he relation for t he conversion 
factor G(w) become s : 

G{w) 
1 

tanh kh 

when t he assumption is made .~hat _c1 is constant over the height·of 
t he cylinder . B is a non-a1mens1onal function : 

B (kh) 
kh 

= i cosh kz ( _ -
1TZ 

cos 
2

L ) d(kz ) 

cosh kh 
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By using 
, 

~- = gk tanh kh , it i s seen that 

/ 

G(w) = p CI A J B(kh ) ( 38) 

Since B is t he same in r.1ode l and prototype , georaet ric similarity is 
su:ficient to sca le G(w) properl y . 

For shal low Kater , the inertia coefficient might be sma ll as 
compared t o t he effective dr ag coefficient . Under these circumstanc es, 
i t has been shm•m by BorgEJan (1967) that t he lead ing t enn of a s er i es 
expansion of the nonlinear d~ag t erm in the Morri son equation is s t ill 
approxiwately linear . That is, the drag component is proportional to 
t he drag coefficient ti~es a s lightl y to moderat ely nonlinear mu ltipli­
cation f actor . Even though Borgman 's results have not been sub j ected to 
extensive experimental verification , it appears that, wi th exception of 
t he drag coefficient its~lf , s caling of th e geometry wou ld scale t he 
multiplication factor of the nonlinear drag in t he ~!orrison equation . 

Modeling of Structures Subjected to Wind Forces 

The wind b lowing over t he water surface apart fron generating the 
wav es wil 1 affect t he off - shore structure i n three \•:ays . A constant 
wi nd of long duration will set up a st at ic load on the submerged support 
s t r uctur e as a result of the drag of t he wind induced water current . 
Si nce the drag is concentrated near the surface , the resulting stat ic 
defl ect ion might be of appreciable magni tude , even though the velociti es 
ar e generally smal l (of t he order of 3% of t he r eference wind speed) . 
The s econd effect is the static load due to the mean wind velocity . This 
force is gi ven by the drag exerted on the structure , and is equal to 

- 2 
PA (uA ) avg 

DL 
2 (3 9) 

where c0 is the drag coefficient , the avg . subscript indicates an 

average \lth r espec t to hei ght, uA is the local t er.i.por a ] :nean velocity 
and L is some length para~eter or t he structure . The subscript A 
r efers t o the air ~otion . Recent laboratory evidence in~icates tha t 
t he wind load on the exposed portions of the support l ess should be 
t reated separately frori1 the re:::ainder of t he structure. This and other 
effects due to wind loa~i~g will be published in a paper by Ais ton and 
~ath, which is now being prepared . Th e third effect is caused by the 
dynamic l oading due t o turbulence in the air . 
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t-;o -c eno:.1gh is knO\m ;1t th .is t i1:1 e .ibout t ,,c currc;-1t Lr. lluccd loocJ . 
Laboratory t ests J.r1ll s ome: theoretica l consiJ. crat.:.ons (P~:i. t c , to be 
published) show t hat t he surfac e veloci ty i s proportiona l to the shear 
velocity 

(40) 

where , i s the water surface shear stre ss exerted by the wind . It 
i s also ,wgn infinitely deep watc , proportiona l t o t he fetch , and thus 
must be r egarded as unkno~~ for ·he pro-otype . 

The mean velocity drag expres s ed by Eq . 39 i s mostl y the drag 
which is exerted on t he superstructure . As long a s the superstructure 
consists mainly of a i ect angu lar pl atform , its drag coefficient is 
determined by the sharp edges on top and bottom of t he platform and 
depend s only on the platform geo~c try . At high winds , similarity of 
platform geometry thus insures identity of drag coefficients . 

The ve loc ity uA(z) depends on the elevation above the water 
surface. Again t he shape of tr,e platfom s irt.p lifies mode ling as com­
par ed with mode ling over l and (s ee Davenport (1 967) , Pl ate and 
Quarishi (1965) for t wo slightly different methods of mode ling the 
wind profile over l and) . The velocity can be assu;ned constant and equal 
t o that found at the sc al ed height of the pl 2. tform above the water und er 
prototype conditions . If the wind ve locity is given as part of t he site 
specifications , simi l arity of wi nd f orces can be obtained by geometric 
s imilarity and equality of wind velocity at th e elevation of the plat­
fo rm ' s center of gravity above t he water surface . 

An uncertainty exists in th e spec ificat i on o~ pA for model and 
protot)~e . It should be a density based on the mixtur e of air and water 
spray which is blown against th e structur e . No r easonab le estiffiate can 
at present be given for the added f orces resulting fr om th e presence of 
spray . We on ly know that th e labora t ory wind wi l l , at the hi gh speeds 
r equired , also contain a l arge amount of spray. An investigation of t he 
spray 102.d s eems to be i n order , but has to our knowl edge not yet been 
per forr:ied. 

The dy:1ar.1 ic l oad due t o t he wind on t he structure is of much 
grea t er cons eque:i.ce , since in some cases it might add to th e dynamic 
loads already prc:ser.t fr or.1 t :1e v:aves . Di rect ly coupled t o the Haves 
there is a <lynami c. load v1hich r esul ts from wave induced velocity 
fl uctuations . The decrease of t hese velocity fluctuatic;,.s with height 
is also sca l ed by geo,,1etric sc 2.ling so that in i nt ensity and fr equency 
these air waves wi ll be moie led approximat e ly by the modeling r equire­
ment s given ::i.bove: . Actua lly , t he l aboratory waves rnay. induce a fluctua­
t ion in the air f low which is s~aller t han that f ound ave~ ocean waves , 
because ir1 t he : 2.bor3.to:t'r se-;'.)J.ra tion occur s at t he 1,;avc crests , wh i ch 
may not be , b~t probab ly. is , -the case in the ocean . However , t hese a ir 
loads ar~ usual ly very s~a ll and we ll hidden in t he much stronger 
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turbulence which exists over the \,·avy wo.t er surface . They 1·:ill 
therefore be of :.:iny cor,s equence en 1 y if the natura l fr equer.cy of 
t he structure's f i rst mode is in the neighborhood of the spectral 
peak in t he wave spectrum- -a conch t ion which obviously has to be 
avoided . 

Forces due to air turbulence are genera lly smal l . Ho wever , since 
air turbul ence spectra have t heir peaks at l arger frequencies t han 
waves ectra , and thus clos er to the eigen-frequencies of the structure, 
t heir effect migh t be appreciable . 

The s caling of dyna~ic loading due to turbulence has been investi­
gated by Davenport (1966) . He gi ves some r esult s which i ndicate that 
the fr equer,cies w of the laTgc:! eddies of the turbulent flow are 
roughly scaled by ~he geome tric scale facto r , 

(41) 

Consequently , the t urbulent fre quencies in FLodel and prototype mus t be 
r elated by: 

w 
o:n 

w 
op 

= 
L 

p 
r:-

rn 

which is compatible \\·ith the mode l i ng criteria of Eq . 17 only if 

u 
m 

u 
p 

(42) 

( 43) 

The same result is obtained i f the forc es due to eddy shedding from 
the bluff edges of t he p l atforiJ are considered . It is well knmm that 
for large erwugh Reyno l ds nuil.bers t he Strouhal number of the eddies 
shed, by the structur e will be th e same i:1 mod e l and prototype . Some 
values of interest for off-shore structures are t he square , long 
cylinder tests of Vickery (1966) , who found typically for a square 
cylinder 

s = 
wD 

2ru 
= 0. l 2 ( 44) 
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where S is the Strounal nwn'oe-..· of the shed edciies and iJ is the 
thickness of the square ~ylinder . It is s een that identical Strouhal 
numbers for model and prototype lead _again to the s cali:1g requirements 
of Eqs . 42 and 43 . 

In conclusion , we find that aerodynami c modeling of the dynamic 
loads due to turbulence , is possible . However , it will b e difficult 
to obtain model wind generated waves of sufficient a'ilplitude at the 
wind velocities r ·equired by Eq . 43 . This wi ll be illus·crated in the 
next s ection . It will probably be found more feasible to study sepa­
rately the effects of ·.-1ind loads and v;ave loads , for example , by shielding 
the superstructure from direct \,· inds during t he tes ts for respons e to 
waves and by shielding the subrr,erged struc-cure from waves during the 
t ests for wind forces , and by c.SSuTiling superposition of wind and wave 
r espons es . 

. Procedure of :-.!odcl ing 

The design infor;;1at(i J~)which must be available for modeling are 
the significant wave H 

1 of the fully developed design spectrum, 
the maximum wind at the platform heig' tor preferably t he design wind 
velocity profil2 , the shape of the structure and its structura l loads 
and elastic properties . In particu l ar , we r equire the modulus of 
elasticity E of the prototype le gs , their di ameter D , length L 
and moment ofpinertia I , and the weight of the supersfructure (we p 
assume again that S isPso s~a ll as to be negligible) . We also ne ed to 
know th e depth of flow. 

The modeling procedure is best illustra ted by means of an example . 

Let the depth of water be 400 f eet in which a structure with f our 
support legs is constructed . Let the diamet er of the circula~ legs be 
20 feet and let the platform be , say, 200 feet square in plan and about 
40 feet thick. The platform is about 40 feet above the mean water sur­
face l evel . Let us presu:ne that we have a wind-wave tunne l such that 
a 4 coot water depth is obtainab le , so a sca l e ratio of 1: 100 will be 
us ed . Th e r.iodeling of the wave spectrwn, the structure , and the wind 
should proceed about as indicated below . 

a) ~1odel ing the \vave spectrum 

The s tn~cture is supposed to be sub j ected to a w2.vc spec tnun with 
a significant wave height of 8 me t ers , at a speed at platform height of 
30 m/sec. This yie!ds a sta~dard deviation a = 2m according to Eqs . 
4 and 6. From E~ . S , w · = 0 . 84 rad/sec aRd from Ea . 10 ¢ (w ) = 

2 . max R h d . · I? max. 2 . 4 m - sec. With t he se va 1u~s , t e correspon 1ng protot ype spc~trum 1s 
found from the sii;-;i lari ty for,n of Fig . 2. 

The standar d deviation of the model spectrum is now obtained from 
Eq. 14 and is 2 cm. The frecu enc y w is found f ro::i the same 

• Th max :;1 --l • , • h r h . . .c. t equat.io11

1
~o be S. 75 rac,/s'?c. e corrcspon-...n1g ne1g, t O- t: c s1gn1.L1can 

wave H fol lm-1s from Eo_s. 4 and 6 to 8 cr,1. A fully developed wave 
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spectrum ,,,:ith pe 2..k cha:racter ist ics as given car1 b e obtaind i n the 
l aboratory at a fetch and ',\'ind speec:. which c2.n, to a £Ls: approximation , 
be deterr., ined fron the fetch gr&.ph of Wi egel (19 64) . It appears t hat for 
h igh wind speeds l abora tory dat a yie ld the following eq~ati on r epresenting 
a portion of the fetch graph : 

0. 003 
= -yr 

- 1/2 
uF 

With a model wind vel ocity = 1/2 prototype wind ve locity - 15 m/s ec , 
(to avo id excessive blow-off of crest ) it follows t hat F = 15 . S m, 
which can be obtained conveniently in wind-wave tanks of exi sting 
designs . 

( 45) 

If it i s dev ised to obta in equa lity of Strauha l numbers of the a ir 
f low in addi tion to th e wave cond it ions . th en th e wind in t he mode l 
must be reduced , according t o Eq . 43, t o 3 m/s ec . It is doubtfu l that 
Eq . 45 is valid for Si.lch a 10\,' air velocity, bu t if , for t he sake of 
illustrat ion , its va lid i ty is assu,--:ied it fo_lows that a fetch of 775 m 
is r equired for rnode li ng --well outside of any r easonab l e size of a 
laboratory faci li ty . 

b) Modeling t he structure 

The pro6otype structur e is probably cons tructed of stee l , so that 
E = 29 x 10 psi . Let us say t ha t t he period of t he fir s t mode of 
vfbration is 5 s econds so that w = 1 . 25 rad/s ec which is obtain ed 
by analysis using design informa tf8n of mass d i stribution , etc . Here 
we will only conside r the first mode , or fundament al fr equency . 

The s ize of the model at a scale r a tio of 1:100 will be : leg 
diame t er 1of 0 . 2 f eet, a platform of 2 . 0 f eet squar e in plan and 0. 4 
fe et th ick . The platform is about 0.4 feet above t he still water 
surface . Let us assume t ha t a good grade of plas6ic is used for t he 
mod e l structura l ma t er ial, so tha t E = 0 . 5 x 10 psi . The . mode l 
should be cons truc t ed with the propermcross-sections and mass distri­
bution such t hat w = 12.5 r &.d /s ec . from Eq . 29a . As i s seen from 
E 3" ,.. , . nm ..J • • / q . L , ror t ne given conu 1t1ons one nust obtain a p p = 0. 58 . 
Since a is likely t o be larger t han 1, th e easiest wRy ~f obtain ing 
the des ired r:; t ...:ra l fre o_uency is by i ncr easing the wei ght of t he pl at ­
foru . 
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