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ABSTRACT

The difficulties inherent in the direct determination of loads on
off-shore structures which are exposed simultaneously to wind and waves
make it desirable to model each situation in the laboratory. It is
shown here that scaling of the loads and the waves is possible by using
waves which are generated by blowing air over the surface of a laboratory
channel, and by choosing a model material with an appropriate modulus
of elasticity. Wind-generated waves such as those measured in the wind
water tunnel of Colorado State University have a dimensionless spectrum
(Hidy and Plate (1965)) that is identical in shape to that found off the
coast of Florida under hurricane conditions (Collins (1966)). Further-
more, it has been shown that hydro-elastic modeling is quite feasible
(LeMehaute (1966}). These two results are combined to give modeling
criteria for off-shore structures if direct wind forces are disregarded.

Some consideration is also given to dynamic wind load modeling and
to the question whether simultaneous modeling of both the wave and the
wind forces is possible in a laboratory. In principle, this appears
feasible, but for sufficiently large scale models, fetch lengths may be
required which are larger than typical laboratory channels.
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MODELING OF STRUCTURES SUBJECTED TO

WIND GENERATED WAVES
INTRODUCTION

The increased use of off-shore structures for the exploration and
exploitation of the oceans has created a demand for accurate design
information on the load conditions to which the structures are subjected.
In contrast to most land based structures, the critical load conditions
for an off-shore structure may be dynamic in nature and induced by the
water surface waves, so that analytical design procedures may become
very complicated except for simply shaped structural elements.

Present analytical procedures for determining the response even of
simple structures to periodic waves are not exact. For example, it is
customary to use the Morrison equation to determine the wave forces acting
on a vertical cylinder. In the Morrison equation, the inertia and drag
coefficients must be determined experimentally. In some cases these
coefficients can only be described statistically. Furthermore, they
may vary with depth, as has recently been demonstrated by Pierson and
Holmes (1965).

Under these circumstances it becomes desirable to study the dynamic
behavior of a structure on a laboratory scale, which is quite feasible
as will be shown in this paper. LeMehaute (1966) has shown that hydro-
elastic modeling can be accomplished conveniently by using modern plastics
for model construction. If it can be ascertained that the response of
the structure is linear, then the modeling problem consists of requiring
identical shapes of transfer functions in model and prototype obtained
by the modeling transformation. The transfer function is then the
quantity which needs to be determined from the experiment, and it can
be found conveniently by exciting the model structure with a sequence
of sine waves, and finding the response to each of them.

Most structural responses are nonlinear (although many are nearly
linear), so that their transfer functions cannot be constructed by
superposition. In such cases laboratory experiments are the only
alternatives to potentially extremely complex calculations, for which
the model structure must be excited with a forcing function which is
dynamically similar to the prototype forcing function. In particular,
for structures excited by wind generated waves, the model wave spectrum
must be dynamically similar to that of the prototype. Dymamic similarity
of the spectrum does imply similarity of the shape of the spectra, as
well as similarity of the energy contained in the spectra.

The need for similarity in spectral shape has been realized for
some time. Thus, Nath and Harleman (1967) produced a spectrum whose
shape was similar to that of spectra found in parts of the Atlantic



Ccean by Pierson and Moskowitz (1964). They used a wave generator for
exciting model structures which was programmed to generate a quasi-
random wave train with a spectrum of the desired shape. ‘
Wave trains produced by a wave generator have several features
which differ from that of a wind generated wave pattern. A wave generator
can only produce wave components which agree with the free modes of the
water surface. That is, each of the wave components is sinusoidal in
shape and travels independently of all other wave components. Thus,
when a large wave is formed by the superposition of component sinusoidal
waves that are momentarily in phase, although of different wave lengths,
one finds that the life of the wave is fairly short. The large wave
forms when the components are in phase, and then disappears as the com-
ponents become out of phase due to the different component celerities.
In contrast to this, one finds that large wind generated waves at high
wind speed are quite long-lived and are, therefore, not composed of
.independently traveling sinusoidal waves. Nor is their total shape
sinusoidal. 1In Fig. 1 an example is shown oI a significant wave which
is found at a wind speed of approximately 10 m/sec. This wave has been
obtained by averaging the highest 20 waves from a record of about 300
waves measured in a laboratory channel. The waves were superimposed
in such a way that their highest points coincided on the time axis and
the ordinate values were averaged. A confidence band given by the local
standard deviations of the coordinate values about the mean is also shown.
It is zpparent that even though the wave travels as a whole, its shape
is definitely not sinusoidal. Consequently, even though the spectrum
of generator produced random waves might match that of wind generated
waves, the shapes of the resulting individual waves are not exactly
the same. Results obtained bDy this procedure are therefore subject
to question, particularly if the dynamic response of the structure is
nonlinear. _ v :

A second, and possibly more important difference between a
generator produced spectrum and a fully developed wind wave spectrum
lies in the inability of the former to properly model the magnitudes
of the spectral densities. Complete dynamic modeling requires that
both wave lengths and amplitudes are modeled by the same scale factor.
As shall be shown later, this condition requires that the dominant wave,
which corresponds to the frequency at the peak in the spectrum for fully
developed conditions, reaches its maximum possible amplitude. It is
doubtful that this condition can be met while maintaining the required
spectral shape, because the variance of a wave spectrum driven by
strong winds increases with fetch, while that of the paddle generated
wave spectrum decreases, partly due to viscosity, and partly due to
breaking when superposition of component waves increases wave amplitudes
beyond their stability limit.

More suitable test conditions are obtained when wave trains are
used, whose spectra, as well as shape and amplitudes of individual
weves, resemble those of wind generated waves, but on a smaller scale.
Such wave trains are found in the laboratory if air is blown over the
surface of water standing in e channel. In this paper, the application
of wind generated waves to modeling of wave forces is discussed. Since



(cm)

E'levation

4.00

P o PO

3.00

.00

\
‘ <:] Direction of Wind

Confidence Band

= Standard Deviation
of Estimates

P=2w/wmax =042 sec

Wave Height, H

U =40 fps .
x =26 ft

-
age wave for

Po-Chang).

iron

1 wind velocity ¢{

1
i

n of wave at hig

Aver

1

F;g.



the wind generated laboratory waves have fewer drawback: than paddle
-generated waves, it would be advisable to use them to obtain the load
conditions on model structures, By this method one alsc obtains a
means to evaluate the wind loads on the part of the structure above
the water surface.

As shall be discussed in the first part of this paper, the spectrum
of fully developed wind generated waves in a laboratory is similar in
shape to that found for ocean waves, and it also yields a relationship
between peak frequency and variance of the spectrum which is scaled by
the Froude number in such a way that no change in scale between vertical
and horizontal dimensions becomes necessary. In the second part,
considerations will be given to the modeling requirements of the structure.
This will be discussed on the basis of simple linear structures, and it
is shown that Cauchy number similarity is feasible together with Froude
number similarity. Modeling of the air flow above the water for simul-
taneous scaling of wave forces and wind forces is discussed in the
third part of this paper. It is realized that the wind forces might
be affected by the amount of spray carried in the air and it is felt
that it may be possible to model this phenomenon, although very little
is known about this topic. Otherwise it appears that dynamic modeling,
by Strouhal number, can be accomplished in conjunction with Froude and
Cauchy number modeling, but the fetch lengths required might be prohi-
bitive. This is illustrated in an example which forms the last part of
the paper. '

The Similarity Spectrum of Wind Generated Waves

The driving forces acting on the submerged portion of a dynamically
loaded off-shore structure result from the wave field generated by the
wird. They act in addition to the wind force on the superstructure.
Even though this wave field usually appears randem both in space and
time, it is nevertheless possible to distinguish, especially in the
neighborhood of coasts, crests of waves which give the wave field an
appearance of local two-dimensionality, with a predominant direction
of progression perpendicular, or almost perpendicular, to the crest.
For such a wave pattern, a laboratory analogue exists in the wind

generated waves which are obtained when air is blown over the surface
- of the channel in which water is standing. t seems possible that the
majority of all wind driven ocean waves outside of a storm center
consists basically of a dominant pattern of this kind. This would
offer a logical explanation for the observation that one-dimensional
wave spectra both in the laboratory and in oceans have an approximately
equal shape. An illustration of this phenomenon is given in Fig. 2a
where a typical laboratory spectrum, obtained by Hidy and Plate (1965),
is compered with a set of ocean wave spectra generated by strong off-
shore winds off the coast of Florida shortly after the passage of
Hurricane Dora, in September 1964. The spectra were calculated by
Collins (1966). The peak density of the larger ocean wave spectrum

is 10,000 times larger than the peak density of the laboratory spectrum.
Yet, the shapes do not differ significantly.
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The identicai shape of the dimensionless spectra si:il be explored
here. A non-dimensional form of the spectral shape that is suitable
for the purpose of this paper has been suggested by Hidy and Plate (1965).
Hidy and Plate (1965) recommended to non-dimensionalize the spectra by
dividing the frequency axis by w , which is the angular frequency at
which the spectral peak ¢(w ) M2% observed. The spectral density
$ (w) was reduced so that the area under the non-dimensional spectrum
S(w/wmax) is equal to 1. This leads immediately to the requirement

W
max

] = ey é(w) | ' (1)

where 02 1is the variance of the water surface elevation. This non-
dimensionalizing procedure is equally valid for ocean wave data, as was
shown by Colonell (1566). In Fig. 2b, the average curve of Hidy and
Plate (1965) is given, which is representative for many different labora-
tory spectra. The similarity of this shape with that of Fig. 2a is
noted. Also, it is seen that the high frequency end of the spectrum
follows approximately a 6o law, as predicted by Phillips (1958).
However, the -5 law seems tc be only an approximation to the spectra at
high frequencies. There is evidence that the exponent in the power law
varies from about -7 near the spectral peak to -4 at higher frequencies.

More significant than the high frequency behavior of the individual
spectrum is the fact that all spectra obtained from ocean or laboratory

are bounded at the high frequency end by a universal curve given by the
equation of Phillips

| ~ -2 +2 -9
W >_wmax) = 1,05 10 g “w (2)

where g 1is the constant of gravity. This is shown in Fig. 3, which
has been reproduced from Hess (1968). Phillips (1958) derived Eq. 2

by using dimensional analysis. Recently Plate, Chang and Hidy (1968)
have provided arguments which deduce the -5 power law as an upper limit
of spectral growth, independent of the shape of the individual spectruzd,
provided only that all spectra are similar. The -5 power law then
becomes a law which relates peak spectral density ¢(wm”x) to w ..
Since this law plays a key role in the modeling criterid to be déveloped,
the derivation shall be outlined here.

The basic assumptions are:

a. The spectrum has a sharp peak near w ax ? and can be
described by the similarity shape of Fig. 2b. R&ording to Longuet-
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Higgins (1952) this implies that the water surface unduiations consist
mainly of a train of waves of frequency whose amplitudes are
subject to a random modulation. This modeTaggrees well with observations
both of water surface elevation recordings and of wave spectra. The wave
of frequency shall be called the dominant wave, whose height is
denoted by H .

b. The maximum growth of the dominant wave component is limited
by the acceleration of gravity such that

2 ax - %8 =

where a is the maximum acceleration of the surface of the dominznt
wave, and o 1s a number which is smaller than 1. It will be shown

that o ¥ 0.3 leads to an estimate which is consistent with the numerical
factor of 0.0105 in Eq. 2.

Longuet-Higgins (1952) has shown that a Gaussian wave record which
satisfies condition (a) above has wave heights( ? wvhich are Rayleigh
distributed. Consequently, the mean value, H P , of the pN highest
of N waves is a constant multiple of the mean wave height H , or

H(p)

H

where m 1is a constant. Typical values of m are m = 1.42 for
p=1/3and m=1.26 for p = 1/2. Thus, if each wave is basically
sinusoidal, then the average vertical acceleration of the water particles
at the peak of the highest pN dominant waves is found to be equal to:

2 (p) : (5)

Somewhat arbitrarily, it is assume }hdt the significant acceleraticn
. . L " 1735)
is that of the significant wave H For a wave record whose
water surface elevation is Gaussian (which is approximately true both
for the laboratory and the field), there exists the following relation
between mean wave height and variance of the water surface elevaticn
(Collins, 1966):

9
8 o0 = H” (6)

10



with m = 1.42, the(Y?%ationship between the accelerat:ion of the
significant wave H ) and the variance o2 of the wave record

is found as:
,/

a = 4w o] _ (7)

2. 28 (8)

W . It is then seen

We can eliminate o2 in Eq. 1 and let w = i
) = S(1) = 0.5 BoF a fully developed sea,

from Fig. 2 that S(u___/w
max’ max
and consequently:

_ o_2 azgz
ernax) ) e = - 5 (9)
max 8w
max

which is independent of the spectral shape except for the requirement
of similarity. This result is now compared with Eq. 2 shere w 1is
replaced with C— One obtains:

|

o -2 2 .5
¢(wmax) = 1,05 10 g wmax . (10)

Consequently, one finds

a = 0.29 _ (11)
which is somewhat lower than the limiting vertical acceleration of the
Stokes wave, where ¢ = 0.5.

The reasoning leading to Eg. 10 is of consequence for the purpose

of modeling. When conducting a model study, it is naturally desirable

11



to model the maxinmum forces that can occur. Waves with anplitudes
exceeding that of the significant wave would presumably break, because
their accelerations exceed the critical value ag . Therefore, waves
at frequencies w > L. of larger amplitudes than that at w a3
cannot occur in an equlﬁibrium spectrum described by the simiTarity
shape and by the relation between peak spectral density and the corres-
ponding frequency expressed through Eq. 10. If larger waves are to

occur they must therefore be of lower frequencies.

Equation 10 also implies that the waves that reach the limit of
growth are subjected to continuous addition of energy through work
done by the wind, so that the dominant wave remains at its maximum
height. . A spectrum of waves with a dominant wave consisting of swell
from a far away, and perhaps long subsided storm, might still have the
similarity shape of wind generated waves, but its maximum spectral
density will be below that of Eq. 10. Consequently, the maximum
possible spectral density for waves of frequency w is given by
Eq. 10, which therefore describes the envelope for 231 fully developed
wave spectra.

Fully developed wave spectra are found in particular when wind of
long duration is blowing, such as during hurricanes. An example is
given by results of Collins (1966) which were obtained at two different
times at two difrerent off-shore fetches during an off-shore blowing
wind. In Table 1 the peaks of the spectra calculated from Eq. 10 are
compared with the peaks cbtained by Collins. It is remarkable that the
long fetch spectra are in exact agreement with Eq. 10, while the lower
fetch data are below the saturation value given by Eq. 10. Many other
data show the same behavior, as is evident from the data of Fig. 3.

TABLE 1. PEAK AMPLITUDES CF HURRICANE DORA DATA
(from Collins, 1966)

¢(fmax")
¢(frnax) =2”¢(wmax)
(observed) (from Eq. 10)
‘{Hz

Case max( ) mz-.sec mz-sec Remarks

Al 0.35 0.130 0.124  gept. 9, 64 Fetch 11 miles
Al 0.45 0.018 $0.034  sept. 9, 64 Fetch 1,7 "
BI 0.23  1.05 1.00 Sept.10, 64 Fetch 11 "
BII  0.27 0.2 0.45 Sept.10, 64 Fetch 1.7 "

12



We notice that the results of Eqs. 9 and 11 yield the important

relationship between variance, o2 , and ©oax’

% 2 2 .4
O OE a0 B oM, s | (2

Equation 12 shows that the scale of the amplitudes of the wave which
must also scale the square root of the variance of the spectrum fixes
the scale of the frequencies, so that it is not possible to adjust the
two scales independently. If it is desired to model wave heights so that

(o)
'I:) (13)

then it follows that the frequencies must be related like:

c L w2
m m _ max p

o i T2 * (14)
P P “® max m '

Here, L 1is any characteristic length, the subscript m refers to the
model, and the subscript p to the prototype. This condition is in
accord with the requirements imposed on the wave length X . If it is

desired to have identical non-dimensional wave lengths, A/L , for
model and prototype, then it would be necessary to set
L k A .
m P _ m :
L k X (19)
P m p

However, for gravity water waves, the frequency is related to the wave
number, k = 27/A , by:

2

13



where h 1is the depth, as defined in Fig. 4, and thus:

w2 k Lm m i

2" "L " | )
()

m

in agreement with Eq. 14. Consequently, the use of a fully developed
wave spectrum in the laboratory for simulating a fully developed wave
spectrum for prototype conditions results in identical scale ratios of

- both wave heights and wave lengths, if the spectra are related by Eq. 14.
The use of Eq. 14 thus leads to an undistorted geometrical scaling of
the whole wave field. This result establishes the advantage of using
wind generated waves in the laboratory for modeling wind generated waves
in the field.

It is interesting to note that modeling according to Eq. 14 implies
Froude number scaling, i.e.,

——— S (18a)
Vel Vel
where u is a wave related velocity such as c¢_ , or the wave

. vave
induced 4f'Some reference depth. For the latter, 8

is proportional
to ow for any frequency component and one obtains:

wave

WO W o
7;:-—._. . 1
'\/ng N’ng

If o is eliminated through Eq. 14, then Eq. 17 follows. Consequently,
Froude number modeling according to Eq. 19, in conjunction with Egs.

9 and 10, results in fully developed wind generated wave spectra in
model and prototype which are geometrically similar with equal vertical
and horizontal scales. Therefore, the model structures can be built to
scale, and the complications which arise from distorted scales can be
avoided. It should be mentioned that the definition of a modeling
Froude number according to Eq. 19 is somewhat more stringent than is
required for linear response of structures under the effect of a wave
force. For such a system, the amplitude appears only in the load function
and therefore need not be scaled properly because its effect can be
included into the conversion factor which is used for calculating
prototype response data from model data. Then the Froude number is
more suitably defined by

14
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Since c¢_ is independent of the vertical scale of the wave motion,
this modeling criterion only suffices to satisfy Eq. 1S, but not
Eq. 13. :

In applying Eq. 10 to laboratory modeling, it is required that
some value of the height of the significant wave is known which can
be expected under prototype condlglons at the position where the struc-
ture is to be constructed. How this wave height can be found shall not
be discussed here. 1If it is known, then the variance of the water

surface follows from Eqs. 4 and 6, the peak frequency, w , from
Eqs. 8 and 11, and the spectral peak from Eqs. 9 and 11. The spectrum
can then be constructed with variance o2 W , and the similarity

spectrum of Fig. 2. After choosing a 5u1tab1e Tenoth scale, the model
spectrum can be obtained by reducing the variances o¢ the water surface
and the frequencies according to Eq. 14. It remains to show under what
corditions it will be possible to obtain a scaled dynamic response of
the structure.

Moceling of Structures Subjected to Wave Forces

When a linear structure is excited by a random dynamic load whose
stationary spectrum is (u) , it is well known that the deflection
spectrum ¢_(w) of a characterlstlg point on the structure can be
expressed by

2 2 | ‘
K“$ () = [H(w] s . | (21)

where K is the spring constant of the support legs and H 1is a trans-

fer function. Multiplication of the deflection spectrum by the square

of the spring constant K of the support legs signifies that we assume

the structure to be so stiff that deflections are within the range of
validity of Hooke's law. Then the spring constant is a multiplier whose
magnitude must be known. It is to be chosen according to dynamic similarity
of the structural response. '

The function H(w) of Eq. 20 is the transfer function of the

structure which establishes the dynamic response of the structure under
the effect of the load spectrun. In our notation, it is a dimensionless

16



function whose value at :zcro frequency must be one, to currespond to
the case of static loading. The simplest structure, such as shown in
Fig. 4, consists of one or more cylindrical supports which are clamped
to some degree into the ground and into the working platform. The
transfer function of each of these cylinders is then given by that of
a simple second order system:

lH(w)lz 5 s (22)

which is valid for the dominant first vibrational mode, whose natural
frequency is equal to w, The coefficient ¢ 1is the relative
damping factor. It is determined almost completely by the internal
structural damping, while the natural frequency is given to:

o, = A o (23)

where m 1is the mass of the load on the single cylinder, and K is
the spring constant:

3EI

K :"‘ 'Y'L'g——' (1-5) . (24)

B Fod

In this equation, E is the modulus of elasticity, I the moment of
inertia, and L the length of the cylinders, as indicated in Fig. 4.
The clamping coefficient y corrects for the possibility of rotation
of cylinder top and bottom. When the cylinder is clamped into the
ground, and into the platform (i.e., the cylinder is one leg of a
multilegged structure) so that the joints cannot rotate then vy = 1.

A more flexible structure, resulzing from only partial clamping in the
ground or at the platform yields a smaller y , while increased stiff-
ness, as obtained for example by braces across the legs results in a
larger value of y . Evidently, for more compiex structures a

simple correction of the single cylinder spring constant does not suffice,
and a suitable elastic model may be the only feasible alternative. The
cocfficient B 1is the reduction factor due to vertical loads, i.e.,

17



m EI (25)

where W 1is the vertical load applied to the cylinder top. As long as
B 1is significantly smaller than 1 , a vertical load can be used to tune
the structure, so that its natural frequency assumes the desired value.

For the multilegged structure as a whole, the transfer function is
the same as that for the individual legs except for a modification fac-
. tor which results from the time lag between the forces on different
‘cylindrical legs. The phase shift may either lead to adding total forces
on the structure or subtracting, and might even cancel depending on the
distance between legs as related to wave length, and on the orientation
of the structure. This effect has been discussed by Nath and Harleman
(1968).

When the structure has many degrees of freedom and can vibrate at
many different eigen modes, the structural response of a particular
point on the structure is difficult to determine. However, a good first
approximation may be made with a modal analysis wherein the following
assumptions are made:

1. Viscous damping coefficients exist for each mode which are
proportional to either the modal mass or the modal stiffness.

2. The phase relationships between modes are disregarded.

3. The cross-influences between modal responses have negligible
effect on the response spectra.

Under these conditions the response spectrum is constructed from a
linear summation of the response spectrum for each mode (Hurty and
Rubinstein (1964)). In the following presentation the index i1 stands
for the direction (either displacement or rotation) of the vibration
and the index j for the modal order. Then the spectrum of the structural
response, X , considering n modes, is:

n
¢Xi(w) = ‘gl éxij(u) (26)

18



and

2 ‘e
~¢xij(w) = Aij(w) Hj(w)j ¢L(w) i (27)
w};ere:
2 ' | N
IHJ(“’)! il 2\21/ 9 (28)
' (1-3.,- + 2§..—_“’—\
2 ij w..
\ “’ij'} k 1

is the transfer function of the j-th mode with eigen frequency w,.
and damping factor P in the 1 direction, and. A..(w) 1is a *
function embodying a géneralized coordinate system and-the relative
participation from each mode due to modal shape and effective mass.

In most cases only the first few modes need to be considered. For
ocean platforms in deep water, for example, it is possible that only the
first mode is important and one probably never needs to consider modes
beyond the fourth because the larger modal frequencies are usually much
higher than any wave frequencies in the wave spectrum.

In a model study, the effects of structural complications and
intramodal coupling on the transfer function may possibly be determined
experimentally. We notice that for the transfer function to be modeled
in the laboratory, it shall have to meet the following requirements:

1. Model and prototype must be geometrically similar, and must
be scaled such that the length scales of the wave motion are
identical to the scale of the geometry of the structure. In
this manner, interference effects due to loads on different
individual legs and other structural elements are accounted
for.

2. Dimensionless (or relative) damping coefficients of model and
prototype associated with each mode must be identical. This
requirement 1is not met easily. It is probably suitzble to
use & damping coefficient based on experience and correct the
damping of the model structure by an external arrangement of
dashpots.

3. The natural frequerncies of model and prototype must be chosen
such that w/w_ is identical in model and prototype. This
must be interpreted as requiring that the ratio of the -
of the peak of the load spectrum to the natural frequency ot

the structure, R is$ the same, or
1

19



= — ‘ .. (292)

W
model \ n prototype’

It is evident, that in modeling a multi-degree of freedom structure,
one must maintain: .

Yrmax _ { wnnax\

Ui' \ wi.
J model J

prototype ' (29Db)

for all modes of importance.

Evidently, the preceding requirements imply that the output
spectrur, as well as the input spectrum, is similar in model and
prototype. The modeling requirement expressed by Eg. 29 implies
simultareous equality of both Froude number and Cauchy number in
model and prototype. Generally speaking, the Cauchy number is
defined as

u
W 3
C, = 3 (30)
B
where a wave reference velocity might be U, = 0w , while the

reference elastic velocity u_. wusually is %he speeé of sound E/p.
However, in the case of bending deformation of the structure, it appears

to be more rational to use an elastic velocity ug = Lwn , So that
ma o .
£ . B o :
a W, L : 1)

for similar geometrics, Cauchy number similarity for modcl and prototype
requires that Eq. 29 be satisfied. This equality together with Froude
nunber equality can be met, however, only if the elastic properties

are su1bab;y adjusted. .By using the definition of the natural frequency,
Eq. 23, in conjunction with Eqs. 24, 14 and 30, it is seen that

20



l

when p_ and p_ are the bulk densities of the loads on the cylinder
for progotype and model, respectively. The factor o , given by

: 4
Y (1- Sm) Im Lp

q | (33)

o =

1-
Y, ( Bp) Ip Lm

reduces to one if exact geometric similarity of the model and prototype
support structures exist, and if the damping conditions are identical.
A factor « =1 1is, of course, not necessary. For example, instead

of the thin-walled cylinders used for the legs of prototype structures,
we might prefer to use solid legs in the model.

The result given by Eq. 31 can be derived more formally by the
methods of inspectional analysis, as was evidently done by LeMehaute
(1966). It gives a means of obtaining, by suitably adjusting o , E
and p_ , the dynamically correct response of the structure to wave
forces? provided that the load spectrum is also modeled properly.

"The load spectrum is not directly proportional to the wave
spectrum, but it is related to it. Under scme conditions, a linear
relation exists between load spectrum and wave spectrum

b = GO 6 () (34)

where G(w) 1is a conversion factor, which depends on w as well as
many other factors.

Generally speaking, the function G(w) 1is nonlinear and becomes
dependent on.the Reynolds number. It is found by integrating the con-
tributions to the total deflection of the local load contributions
p(z) over the length of the submerged part of the structurc. Below
the water surface, the local load is described approximately by the
Morrison equation:
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where A 1is the cross-sectional area and D the diameter of the
cylinder, » the fluid density, u(z) and a(z) are the velocity
and the acceleration, respectively, of the fluid at the depth :z

C, 1is the coefficient of inertia which embodies both the contribution
o% virtual mass and of resultant unsteady pressure forces on the cylin-
der. For an inrinitely long cylinder, its value is equal to 2. For a
finite length cylinder subjected to wave forces which vary with depth
h , C. may vary with depth (Pierson and Holmes (1965)) and with the
ratio 6f 27h/D (Paape and Breusers (1966)). It is possible that the
requirement of geometric similarity of model and prototype suffices for
identity of C. 1in both cases. Certainly, geometric similarity does
permit to keep the ratio 2nh/D constant.

The drag coefficient C_. 1is more difficult to model properly. In
principle, it depends on the local Reynolds number, and it is well known
that Reynolds number scaling is incompatible with Froude number scaling.
Unfortunately, very little is known about C in a wave situation, and
for modeling purposes one has to make an assumption. One possibility is
to artifically roughen the cylinders so that their effective Reynolds
number is increased. It is well known that for large effective Reynolds
numbers, the drag coefficient of an infinitely long cylinder becomes
constant. Similar results might be expected for the wave case.

Fortunately, for deep water waves the effect of the drag appears
to be small compared to that of the inertia, as was shown by Nath and
Harleman (1967). Under this condition, the relation for the conversion
factor G(w) becomes:

B w 1
1K 7 TenhEh (36)

when the assumption is made that CI is constant over the height of
the cylinder. B 1is a non-dimensional function:

cosh kz (1 - cos-g%j) d(kz)

(37

' Kh
6 Pl

22



- ‘)’ . .
By using «*° = gk tanh kh , it is scen that

Glw) = pC. A

g i
r 5 B(kh) (38)

Since B 1is the same in model and prototype, geometric similarity is
sufficient to scale G(w) properly.

For shallow water, the inertia coefficient might be small as
compared to the effective drag coefficient. Under these circumstances,
it has been shown by Borgman (1967) that the Teadiﬂg term of a series
expansion of the nonlinear drag term in the Morrison equation is still
approximately linear. That is, the drag component is proportional to
the drag coefficient times a slightly to moderately nonlinear multipli-
cation factor. Even though Borgman's results have not been subjected to
extensive e\perlme ital veflg;caulon, it appears that, with exception of
the drag coefficient itself, scaling of the geometry would scale the
multiplication factor of the nonlinear drag in the Morrison equation.

Modeling of Structures Subjected to Wind Forces

The wind blowing over the water surface apart from generating the
waves will affect the off-shore structure in three ways. A constant
wind of long duration will set up a static load on the submerged support
structure as a result of the drag of the wind induced water current.
Since the drag is concentrated near the surface, the resulting static
deflection might be of appreciable magnitude, even though the velocities
are generally small (of the order of 3% of the reference wind speed).
The second effect is the static load due to the mean wind velocity. This
force is given by the drag exerted on the structure, and is equal to

' 1 - DL |
F, = e "
A~ Cp, 7 Palyy dove"® 3 (39)
A
where C is the drag coefficient, the avg. subscript indicates an

D ;
average w%th respect to height, u, is the local temporal mean velocity
and L is some length parameter of the structure. The Gubscript A
refers to the air motion. Recent laboratory evidence indicates that
the wind load on the exposed portions of the support leg ;hould be
treated separately from the re 1aind*r of the structure. This and other
effects due to wind loading will be published in a paper by Aiston and
ed. The third effect is caused by the
-

+
1=
g

=3

o}

5
Nath, which is now being prepar
dynamlc loading due to turbulence in the air.
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Not enough is known at this time about the current induced load.
Laboratory tests and somc theorctical considerations (Piatc, to be
published) show that the surface velocity is proportional to the shear
velocity

//_1—"_
WS ,
u = i .
. = N 10
N (40)
where <t _ 1is the water surface shear stress exerted by the wind. It

- WS LAl . ! . '
is also, On infinitely deep water, proportional to the fetch, and thus
must be regarded as unknown for the prototype.

The mean velocity drag expressed by Eq. 39 is mostly the drag
which is exerted on the superstructure. As long as the superstructure
consists mainly of a rec;anvular platform, its drag coefficient is
determined by the sharp edges on top and bottom of “the platfomm and
depends only on the pla;:uAn geometry. At high winds, similarity of
platform geometry thus insures identity of drag coefficients.

The velocity u (z) depends on the elevation above the water
surface. Again the nape of tne platform simplifies modeling as com-
pared with modeling over land (see Davenport (1967), Plate and
Quarishi (1965) for two slightly different methods of modeling the
wind profile over land). The velocity can be assumed constant and equal
to that found at the scaled height of the platform above the water under
prototype conditions. If the wind velocity is given as part of the site
specifications, similarity of wind forces can be obtained by geometric
similarity and equality of wind velocity at the elevation of the plat-
form's center of gravity above the water surface.

An uncertainty exists in the specification of »p for model and
prototype. It should be a density based on the mixture of air and water
spray which is blown against the structure. No reasonable estimate can
at present be given for the added forces resulting from the presence of
spray. We only know that the laboratory wind will, at the high speeds
required, also contain a large amount of spray. An investigation of the
spray load seems to be in order, but has to our knowledge not yet been
performed. :

The dvnamic load due to the wind on the structure is of much
greater conseguence, since in some cases it might add to the dynamic
loads al eady present from the waves. Directly coupled to the waves
there is a dynamic load which results from wave induced veloci ty
fluctuations. The decrease of these velocity fluctuaticns with height
is also scaled by geometric scallﬂg so that in intensity and frequency
these air waves will be modeled approximately by the modeling require-
ments given above. Actually, the laboratory waves may. induce a fluctua-
tion in the air flow which is smaller than that found over ocean waves,
becauss in the lzboratory separation occurs at the wave crests, which
may not be, but probably is, the case in the ocean. However, these air
loads are usually very small and well hidden in the much stronger
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turbulence which exists over the wavy water surface. They will
therefore be of any consequence cnly if the natural frequency of
the structure's first mode is in the neighborhood of the spectral
peak in the wave spectrum--a condition which obviously has to be
avoided.

Forces due to air turbulence are generally small. However, since
air turbulence spectra have their peaks at larger frequencies than

wave spectra, and thus closer to the eigen-frequencies of the structure,
their effect might be appreciable.

The scaling of dynamic loading due to turbulence has been investi-
gated by Davenport (1966). He gives some results which indicate that
the frequencies w_  of the large eddies of the turbulent flow are
roughly scaled by he geometric scale factor,

(41)

Consequently, the turbulent frequencies in model and prototype must be
related by:

W u L

om _ Am o) (42)
W - L :

op u

- which is compatible with the modeling criteria of Eq. 17 only if

L}ﬁ \1/2
T ) (43)
P

u
m
u

— et

p

The same result is obtained if the forces due to eddy shedding from
the bluff edges of the platform are considered. It is well known that
for large enough Reynolds numbers the Strouhal number of the eddies
shed, by the structure will be the same in model and prototype. Some
values of interest for off-shore structures are the square, long
cylinder tests of Vickery (1966), who found typically for a square
cylinder

S = = 0,12 (44)
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where S 1is the Strounzl number of the shed ecdies and D 1is the
thickness of the aqwaLv cylinder. It is seen that identical Strouhal
numbers for model and prototype lead again to the scaling requirements
of Eqs. 42 and 43. ' ’

In conclusion, we find that aerodynamic modeling of the dynamic
loads due to turbulence, is possible. However, it will be difficult
to obtain model wind generated waves of sufficient amplitude at the
wind velocities required by Eq. 43. This will be illustrated in the
next section. It will probably be found more feasible to study sepa-
rately the effects of wind loads and wave loads, for example, by shielding
the superstructure from direct winds during the tests for response to
waves and by shielding the submerged structure from waves during the
tests for wind forces, and by assuming superposition of wind and wave
responses,

. Procedure of Modeling

The design 1nrorﬂar ?ﬂ which must be available for modeling are
the significant wave l of the fully developed design spectrun,
the maximum wind at the platform height or preferably the design wind
velocity profile, the shape of the structure and its structural loads
and elastic properties. In particular, we require the modulus of
elasticity E_ of the prototype legs, their diameter D_ , length L
and moment of“inertia I_ , and the weight of the superstructure (we
assume again that 2 1is®so small as to be negllglble) We also need to
know the depth of flow.

The modeling procedure is best illustrated by means of an example.

Let the depth of water be 400 feet in which a structure with four
support legs is constructed. Let the diameter of the circular legs be
20 feet and let the platform be, say, 200 feet square in plan and about
40 feet thick. The platform is about 40 feet above the mean water sur-
face level. Let us presume that we have a wind-wave tunnel such that
a 4 foot water depth is obtainable, so a scale ratio of 1:100 will be
used. The modeling of the wave spectrum, the structure, and the wind
should proceed about as indicated below.

a) Modeling the wave spectrum

The structure is su nooscd to be subjected to a wave spectrum with
a significant wave height of 8 meters, at a speed at plat form height of
30 m/sec. This yields a standard deviation o_ = 2m ac¥o*d110 to Egs.
4 and 6. From Ec. 8, w___ _ = 0.84 rad/sec and from Eq. 10 ¢_(w ) =
2.4 m2-sec. With these Vaiub :s, the corresponding prototype spectrﬁﬁlis
found from the similarity form of Fig. 2.

44

2 B {4°]

The standard deviation of the model spectrum is now obtained from

Eq. 14 and is 2 cm. The frequency ©oax = is found from the same
eouatlox/.o be 8.75 rad/sec. The corr;:péuding height of the significant
wave H follows from Egs. 4 and 6 to 8 cn. A fully developed wave
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spectrum with peazk characteristics as given can be obtainsd in the
laboratory at a fetch and wind speec which can, to a first approximation,
be determined from the fetch graph of Wiegel (1964). It appears that for
high wind speeds laboratory data yield the following equation representing
a portion of the fetch graph: :

H(1/3) _ 0.003 —1/2 . (45)

s

With a model wind velocity = 1/2 prototype wind velocity - 15 m/sec,
(to avoid excessive blow-off of crest) it follows that F = 15.5 m,
which can be obtained conveniently in wind-wave tanks of existing
designs.

If it is devised to obtain equality of Strouhal numbers of the air
flow in addition to the wave conditions, then the wind in the model
must be reduced, according to Eq. 43, to 3 m/sec. It is doubtful that
Eq. 45 is valid for such a low air velocity, but if, for the sake of
illustration, its validity is assumed it follows that a fetch of 775 m
is required for modeling--well outside of any reasonable size of a
laboratory facility.

b) Modeling the structure

The prototype structure is probably constructed of steel, so that
E =29 x 10 psL. Let us say that the pericd of the first mode of
v?bratlon is 5 seconds so that w = 1.25 rad/sec which is obtained

n d . -
by analysis using design information of mass distributicn, etc. Here
we will only consider the first mode, or fundamental frequency.

The size of the model at a scale ratio of 1:100 will be: leg
diameter of 0.2 feet, a platform of 2.0 feet square in plan and 0.4
feet thick. The platform is about 0.4 feet above the still water
surface. Let us assume that a good grade of plasLlc is used for the
model structural material, so that E =0.5x 10° psi. The model
should be constructed Nth the proper cross-sections and mass distri-
bution such that w 5 = 12.5 rad/sec. from Eq. 29a. As is seen from
Eq. 32, for the g*vgﬂ conditions one must obtain o p_/p = 0.58.
Since a« 1is likely to be larger than 1, the easiest wgy of obtaining
the desired natural freguency is by increasing the weight of the plat-
forn.
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high wind velocity (from Po-Chang).

Examples of oceen and laboratory spectra.

Examples of ocean and laboratory spectra.

A comparison of observed wave spectra with geophysical wave spectra
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(from He 1968).

Definition sketch for off-shore structure.
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