Introduction

- Surrogate fuels are mixtures of simple fuel that can emulate either physical or chemical properties of real fuel.
- Important for future engine development. They are selected to reproduce the chemical kinetics, transport, and physical properties of the real fuel.
- Chemical properties include ignition delay times, flame speeds, extinction limits and soot properties.
- Counterflow flame burners are often used to measure flame extinction.
- Flame extinction occurs when: Rate of heat lost > Rate of heat produced.

Counterflow flame burner

Counterflow flame

Background

- Study based on radical index methodology¹.
- Radical index approach normalizes extinction strain rate of different fuels accounting for differences in
- Energy
- Transport

Objective

Predict flame extinction limit of surrogate fuels that would benefit surrogate fuel formulation practices.

Global diffusion flame extinction strain rate experiments of single large hydrocarbon fuels. Anish Jadhav, Bret C. Windom

Colorado State University

Experiment

- heptane, n-decane, and toluene.
- above three fuels.
- was at 298K.
- The strain rate is calculated by

$$a = \frac{2Uo}{L} \left(1 + \frac{U}{U}\right)$$

for toluene is 0.644. • The experimental setup consists of a counterflow flame burner • The correlation obtained from previous study is with a liquid fuel vaporization system and flow controllers. • The fuels that are used to study the extinction strain limit are n $a_E = 230 * Ri * [Fuel] * \Delta Hc * \sqrt{\frac{MW_{N2}}{MWf}} - 54$ • The blended fuel is comprised of equal parts (by volume) of the nHeptane Experiment = 144.18x + 5.5184 -nHeptane Model $R^2 = 0.9469$ nDecane Experimental -nDecane Model • The experiments were conducted at 0.84 atm pressure, the fuel • Toluene Experimenta - Toluene Model exit temperature was maintained at $500K(\pm 10)$, and the oxidizer nHeptane ▲ nDecane Series1 $\frac{f}{\sqrt{o}}\left(\sqrt{\frac{\rho f}{\rho o}}\right)$ Ri*[Fuel]*Hc*(MW_f/MW_n)^{-1/2} Fuel Mole Fraction Xf Extinction strain rate vs fuel mole fraction for Linear trend shown by fuels n-heptane, n-decane and toluene. where, Uo is the velocity of oxidizer, U_f is the velocity of fuel, •nHeptanePredication nHeptaneExperime nDecanePredicati L is the axial distance, ρ_f is the density of fuel, and ρ_0 is the nDecaneExperime ToluenePrediction Predictions made TolueneExperimenta density of oxidizer. previou study's correlation **Fuel Mole Fraction** Demonstration of predictability with universal correlation for surrogate mixture by accounting for radical index, heat of combustion and average molecular weight using equation from this study. • The correlation obtained from our study is, $a_{E} = 144.18 * Ri *$ Accounting for the Ri, all three fuels collapse to a single linear Experimental setup Numerical computations trend. • An OPPDIF module of ANSYS CHEMKIN was used to

- calculate the extinction strain limits. For n-heptane, the reduced kinetic mechanism was obtained from Princeton².
- For n-decane and toluene, the detailed kinetic mechanisms were obtained from LLNL^{3,4} and Metcalfe et al^{3,5} respectively, these mechanism were then reduced using CHEMKIN Reaction Workbench

Results

- N-decane showed the maximum extinction strain rate followed by n-heptane and finally toluene. The modeled extinction strain rate for alkanes over predicted the experimental measurements.
- Toluene extinction limit prediction reproduced experiments well.
- The radical index is given by

 $Ri = \zeta_{OH, fuel} / \zeta_{OH, n-alkane}$

Conclusion

- least.
- radical index approach.
- out.

References

- Sun, Wenting, et al. 157.7 (2010): 1298-1307.

Fuel] *
$$\Delta Hc * \sqrt{\frac{MW_{N2}}{MWf}} + 5.5184$$

The radical index of the blended fuel is evaluated to be 0.868 by linear summation of the component fuel radical indexes.

• N-alkanes had the highest extinction strain rate, toluene had the

The extinction limits of any blend can be calculated by using the

• By using the correlation obtained from previous study the extinction strain rates for a blended fuel were over predicted.

This may be because of differences between experiments including the different pressure at which experiments were carried