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ABSTRACT 

 

DEVELOP A MULTISTAGE STOCHASTIC PROGRAM WITH RECOURSE 

FOR SCHEDULING PRESCRIBED BURNING BASED FUEL TREATMENTS 

WITH CONSIDERATION OF FUTURE WILDLAND FIRES AND FIRE SUPPRESSIONS 

 

In this study, I present a multistage stochastic linear program with recourse for 

scheduling prescribed burning based fuel treatments under the influences of random future 

windland fires and fire suppressions across multiple planning periods. Prescribed burning 

decreases future wildfire’s spread rate and intensity. Future wildfire uncertainties are 

characterized by sequences of independent and identical (i.i.d.) fire samples across the entire 

planning horizon. Each simulated sample fire ignites at a random location and spreads for a 

random duration under the influence of a randomly selected wind direction and speed. This 

stochastic program explicitly addresses the spatial and temporal relationships between fire 

behavior, prescribed burning, and suppression in multiple fire-planning periods. It uses sample 

average approximation and minimizes the sum of average discounted management cost plus 

average discounted fire loss across a planning horizon. Test cases are designed to examine fire-

and-management situations on an artificial forested landscape, and are focused on selecting good 

quality first period prescribed burning locations. Results provide a wide range of optimal 

solutions for allocating the first period prescribed burning to handle risks from future wildfires. 
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1 Introduction 

Wildfire is a natural component of many terrestrial ecosystems. It has beneficial effects 

on many ecosystem processes and also posts threat to human life, property and natural resources 

(King et al. 2008). During the past two decades, there has been escalation of extreme wildfire 

behaviors and associated fire management costs. For example, the annual wildfire program 

spending for USDA Forest Service (USFS) and the Department of the Interior (DOI) increased 

from $2.3 billion in 2001 to $2.5 billion in 2005 (Alkire 2004). Mitigating the impact of large 

detrimental fires efficiently is an important component of wildland fire management program.  

 

 The National Cohesive Wildland Fire Management Strategy (NCWFM) developed in 

2009 is an example fire management program that comprehensively addresses wildland fire 

management issues across the USA. In the NCWFM 2014 report (http://www.forests-

andrangelands.gov/strategy), four imminent challenges are identified: managing vegetation and 

fuels; protecting homes, communities, and other values at risk; managing human-caused 

ignitions; and effectively and efficiently responding to wildfire. It suggests various management 

actions being employed and leveraged to address these challenges to improve the effectiveness 

and efficiency in managing wildland fire. 

 

An unintended consequence of aggressive fire suppression since the 20
th

 century is the 

accumulation of forest-fuels that increases wildfire risk in both extent and intensity (Conard et al. 

2001, Agee and Skinner 2005, Cohen 2010). Fuel treatment represents a process of altering the 

quantity and structure of fuels to reduce wildfire risk (Pyne et al. 1996, Finney 2001). Fuel 
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treatment becomes increasingly important in wildfire management across many forested 

landscapes (Collins et al. 2010).    

 

Fuel treatment in forest stands can change fire behaviors and reduce negative fire impacts 

(Fulé et al. 2001, Martinson et al. 2002, Fiedler et al. 2004, Skinner 2005, Ritchie et al. 2007, 

Strom and Fulé 2007, Schmidt et al. 2008, Stephens et al. 2009). It alters fuel structures and 

reduces fire potential (Laverty and Williams 2000, Radeloff et al. 2005, Ager et al. 2007b, 

Contreras et al. 2012), slows fire spread rate in some cases (Gonzalez et al. 2008), reduces fire 

intensity and severity (Reinhardt et al. 2008, Mell et al. 2010), and potentially reduces fire sizes 

(Bevers et al. 2004, Hirsch et al. 2004, Loehle 2004). Commonly used fuel treatment methods 

include prescribed burning, mechanical thinning, and harvesting (Loehle 2004). Fuel breaks 

created by treatments can facilitate the establishment of fire control lines (Agee et al. 2000, 

Finney 2001, Finney and Cohen 2003) and also improve safety for firefighters (Moghaddas and 

Craggs 2008). The effect of fuel treatment however, is transient instead of permanent. Therefore, 

it is important to coordinate treatments in a landscape with respect to their size, location, and 

timing (Collins et al. 2010). Without spatial coordination of treatment units, large fires can more 

easily circumvent treated areas and travel through a forest (Salazar and González-Cabán 1987, 

Dunn 1989, Finney et al. 2005).  

 

Total area treated, or the percentage of area treated on a landscape is important in altering 

wildfire behaviors. Treatment effects may not be significant if the area treated is too small 

because the chance a future fire spreading into any treated area may be low. Some studies 

suggest treating 20% of the total landscape areas to have a more consistent effect in reducing fire 
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size and behavior (Ager et al. 2007a, Finney et al. 2008, Schmidt et al. 2008). If more areas in a 

landscape are treated, fire size and behavior can be further decreased (González et al. 2005, 

Parisien et al. 2007, Kim and Bettinger 2008, Schmidt et al. 2008). However, the marginal rate of 

reduction may diminish when the proportions of the landscape treated are beyond a threshold 

(Ager et al. 2007a, Schmidt et al. 2008). Treating an entire forest is often impractical (Lynch et 

al. 2002, Finney and Cohen 2003) due to funding limitation and potential conflicts with other 

management objectives such as habitat protection or aesthetic concerns. 

 

Locating fuel treatments in a landscape is also important because it can change the spatial 

arrangement of landscape fuels and consequently influences patterns of fire spread (Green 1983, 

Davis and Burrows 1994, Turner and Romme 1994). Research shows even randomly located 

treatments can reduce fire spread rate given that a reasonable proportion of a landscape is treated 

(Finney 2003). However, regular treatment patterns often outperform random patterns in 

reducing fire spread and area burned (Schmidt et al. 2008), especially if treatments can only be 

scheduled in a small fraction of a landscape (Finney 2003, Loehle 2004), or if fire intensity is 

high (Kim et al. 2009). Finney (2001) suggests implementing treatments that overlap in the 

heading fire spread direction to reduce fire spread rate. Loehle (2004) suggests fragmenting fuel 

complex by allocating treatments analogous to ship bulkhead. Palma et al. (2007) laterly suggest 

allocating treatments to disrupt critical fire spread paths. Other studies indicate that forming 

treatments as linear barriers (Price 2012) or parallel strips perpendicular to major fire spread 

directions (Fujioka 1985, Finney 2007) can effectively retard fire growth.  
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Fuel treatments also need to be temporally coordinated. The effectiveness of fuel 

treatments deployed on a landscape would reduce over time because fuel load increases as tree 

grows (Agee and Skinner 2005, Collins et al. 2009). Therefore, periodically rescheduling fuel 

treatments on a landscape is needed to maintain their effectiveness. 

 

Fuel treatment planning represents a pressing need for many land management agencies 

to improve their fuel treatment program efficiencies (Black 2004, Collins et al. 2010). 

Scheduling fuel treatments efficiently and effectively in a landscape represents a type of 

challenging forest management decision that requires careful consideration of many influencing 

factors, and also requires empirical knowledge and site specific evidences as suggested by 

researchers (Carey and Schumann 2003, Fernandes and Botelho 2003, Graham et al. 2004). Fuel 

treatment strategy can vary depending on management goals (Weatherspoon and Skinner 1996).  

 

The strategic placement of fuel treatments across landscapes can be supported by using 

decision tools such as optimization models. Some optimization models have been developed to 

configure spatial treatment layouts for one or many fire events. Hof et al. (2000), and latterly Hof 

and Omi (2003) developed mixed integer programming (MIP) models for scheduling treatments 

to delay the spread of a targeted fire from its ignition location to one or more preselected 

protecting locations. Konoshima et al. (2010) developed a dynamic programming model that can 

recognize numerous spread patterns and associated probabilities of a single fire, and based on 

these spread patterns and probabilities to optimize fuel treatment and harvest across a 

hypothetical landscape. Wei et al. (2008) developed a MIP model that uses a fire probability 

distribution map pre-calculated through simulating a large number of random fires to optimize 
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fuel treatment allocation to break fire probability accumulation pathways. This method uses 

linear approximation to track the accumulation of fire probabilities across a landscape. Wei 

(2012) built another MIP model to schedule fuel treatment to provide control opportunities for a 

set of systematically selected future fires. Fire ignitions are modeled simultaneously from many 

possible locations of a landscape. This model schedules treatments in one planning period and 

assumes no interactions between multiple fires.  

 

Other optimization models locate fuel treatment based on modification of landscape fuel 

connectivity. Percolation theory (Stauffer and Aharony 1991, With 2002) indicates that 

randomly treating a fraction of the landscape up to a “percolation threshold” could form 

connected fuel breaks to obstruct the spread of fires. Bevers et al. (2004) designed a shortest path 

network optimization model to measure the continuity of fuel breaks. They discovered if 

treatments were randomly allocated, more than half of a forest would need to be treated to form 

continuous fuel breaks on most tested landscapes. Instead of randomly allocating treatments in a 

landscape, Minas et al. (2014) developed a MIP model to generate spatial fuel patterns so as to 

reduce the connectivity of “old fuel cells” in a landscape. The total number of connected pairs of 

“old fuel cells” is minimized across all time periods to inhibit fire spread. Wei and Long (2014) 

developed a spatial optimization model to fragment high fire hazard fuel patches to minimize the 

expected future fire losses weighted by the ignition probability of each fire. Post-optimization 

simulations (Wei and Long 2014) suggest that scheduling fuel treatments to fragment fuel 

patches have similar effect as scheduling fuel treatments to slow the spread of a large number of 

long duration sample fires. 
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Optimization models have been used to search through a large set of treatment 

alternatives and support many tradeoff analyses. Selecting good fuel-treatment mosaics through 

these models however, still remains challenging (Martell 2007) because comparing a large 

number of candidate treatment plans requires a lot of computing power, especially when multiple 

objectives and constraints are added into the models. For this reason, heuristics are often 

combined with optimization model to find near-optimal solutions (Borges et al. 2002), and they 

become more popular in wildfire management in forested landscape (Thompson et al. 2000, 

Calkin et al. 2005, González et al. 2005) 

 

Optimization-via-simulation is a type of models using heuristics to optimize fuel 

treatment scheduling. This type of models searches for good solutions of a given system 

iteratively (Gosavi 2003). For example, Finney et al. (2008) integrated three models into a 

simulation-optimization system: a forest and fuel dynamics model (Crookston and Stage 1991, 

Reinhardt and Crookston 2003) for simulating forest vegetation changes over time and 

comparing different treatment strategies; a spatial model (Finney 2002, 2004, Finney 2007) for 

choosing the location of treatment units using topologically optimal or random selection logic; 

and a fire growth simulation model (Finney 2002) for evaluating how treatments would modify 

fire growth rate, fire sizes, and conditional burn probability. This system runs iteratively to 

identify intersections between the fire spread paths and the stands where treatments would slow 

fire spread the most, and accordingly suggests treatments on those stands. In another research, 

Rytwinski and Crowe (2010) ran a stochastic fire simulation model repeatedly to compare fire 

risks of different fuel-break solutions identified from a meta-heuristic search algorithm. This 

algorithm starts from a randomly selected or a user-defined solution; iteratively creates new 
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solutions through weighted linear combinations of previous solutions found based on scatter 

search (Glover 1998), and stops when a pre-determined number of optimization iterations have 

been performed. González-Olabarria and Pukkala (2011) used simulated annealing to iteratively 

search for better forest management schedules to maximize timber incomes and improve 

landscape fire resistance. In each iteration, a fire spread model is used to calculate the probability 

of fire occurring in each management-stand in a forest following a selected harvest schedule. The 

schedule is then revised based on the updated fire probability map in the following iteration. This 

process is repeated until the fire probability distribution in a forest stop to change significantly. 

Optimization-via-simulation can be used to effectively handle complex problem by breaking it 

into smaller and solvable components. However, this approach may stop at a sub-optimal 

solution and it can be difficult to quantify the quality of a discovered solution. 

 

Fire suppression and fuel treatment are often related (Martell 2007). Although fuel 

treatment alone may not be able to stop fires from burning or spreading (Finney 2003), it can 

improve the effectiveness of suppression effort (Minas et al. 2013). Schaaf et al. (2004) 

evaluated five combinations of fire suppression and fuel treatment programs on the Angeles 

National Forest in western US, and suggested that using a low intensity fire suppression program 

together with a moderate intensity fuel treatment program would provide the most cost-beneficial 

fire protection strategy for their study area. Some decision models were also built to address the 

complementary effects between fuel treatment and suppression. For example, Mercer et al. 

(2008) developed an integer programming model to evaluate tradeoffs between expenditures for 

fuels management and suppression resources on representative fires. The effect of fuel treatment 

is incorporated into a suppression dispatch model to minimize the expected cost of fire escapes. 
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The probability of fire escape is predicted as a function of fuel treatment amount and the number 

of initial attack resources dispatched to the fire. Minas et al. (2013) incorporated fuel treatment 

and suppression decisions into a single MIP model to maximize their joint effects on wildfire 

control. Their model does not directly model fire spread. Instead, it uses a pre-calculated 

“location-specific fire escape time” as the time taken for a fire to reach a pre-defined threshold 

size (e.g. five hectares) and deemed as escaped. 

 

It is challenging to study fuel treatment impact on fire suppression, especially when both 

of those management actions are simultaneously considered along with wildfires. In an overview 

of methods for incorporating wildfires into forest planning models, Bettinger (2010) pointed out 

this challenge, as many studies only incorporated wildfires into a planning process either before 

or after the schedule of management activities. Modelling wildfires in a spatially explicit way is 

also a challenging task. Studies that explicitly incorporate fire behaviors into the selection of 

optimal plans are rare, and they can only deal with small landscapes (Konoshima et al. 2008) or a 

limited number of fire samples (Kim et al. 2009). 

 

In this dissertation, I introduce a multistage stochastic linear program with recourse for 

planning fuel treatments to mitigate the risk from wildland fires in a multiple planning period 

horizon. This program focuses on the use of only prescribe burning, with consideration of 

random future wildfire and also simplified fire suppression. Fuel treatments can also be 

implemented through mechanical methods. However, prescribed burning and wildland fire use 

(http://www.fs.fed.us/fire/fireuse/index.html) are suggested as the primary fuel treatment 

methods in the wildland; while mechanical fuel reduction treatments are more appropriate in 
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WUI areas (Reinhardt et al. 2008). The stochastic program presented here explicitly captures the 

spatial and temporal interactions between fire behavior, prescribed burning, and suppression. 

Random sample fires are employed in this program using a sample average approximation 

formulation (Kleywegt et al. 2002) to minimize the sum of average discounted management cost 

plus average discounted fire loss for all planning periods. A set of hypothetical testing problems 

is designed to examine fire-and-management situations in an artificial forested landscape across 

three fire-planning periods, and is focused on selecting good quality first period prescribed 

burning layouts. Test cases are solved using IBM’s ILOG-CPLEX v.12.6 on a 64-bit workstation 

equipped with a quad-core 2.53GHZ processor and 8GB of memory, with optimality gap set to 

1%. 
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2 Methods 

2.1 Model structure 

This stochastic program follows the general structure of multistage stochastic linear 

program with recourse proposed by Birge and Louveaux (2011). It models prescribed burning 

based fuel treatment and suppression decisions in multiple planning periods (or multiple stages) 

to mitigate risks from wildfires. Wildfires are modeled as uncertain events represented by 

random sample fires across the entire planning horizon. The design of this program is illustrated 

by the branching tree in Figure 1. This design ensures that prescribed burning decisions made in 

the first period (or stage) would be identical for all DFS samples, where each sample is 

represented by a sequence of prescribed burning decisions, random fire events, and fire 

suppression decisions across all planning periods. Decisions after the first stage are recourse 

decisions. My interest lies in the quality of the first period prescribed burning decisions, which 

have to be made before future fire uncertainties can be revealed. I do not increase the number of 

DFS samples after the first period to limit the model size, which also helps reduce computing 

difficulty when solving this stochastic program. It will be an interesting future study to explore 

how adding more DFS samples in the later planning periods may help better represent the 

stochastic fire situation after period two and improve the quality of the first period prescribed 

burning decision. DFS samples are incorporated into an sample average approximation 

formulation (Kleywegt et al. 2002) with the objective to minimize the sum of average discounted 

management cost plus average discounted fire loss across all planning periods.  
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Figure 1: Illustration of a multistage stochastic program with three planning periods and three 

DFSs (e. g. 𝑁 = 3). Each DFS represents a sequence of fire management decisions (prescribe 

burning and suppression) and fire events across three planning periods. The term “Fires” used in 

this figure may include zero or multiple fire occurrences within a planning period, which are 

exogenously determined by random draws. Prescribed burning is scheduled at the beginning of 

each planning period before any random sample wildfire in that same period is realized. 

Suppression can also be implemented to each fire as recourse action.  

 

2.2 Model assumptions  

In this model, raster “cell” is the smallest modeling unit for fire suppression, forest age-

class transition, and fire spread. Forest “stand” includes one or multiple cells covering a forested 

area with homogeneous vegetation characteristics. Stand is the smallest modeling unit to 

schedule prescribed burning. Prescribed burning decision is made for an entire stand by treating 

all cells in the stand at the beginning of a planning period. Treated areas have beneficial effects 

of reducing future fire spread rate and intensity that last for certain period of time (Figure 4). Fire 

suppression is simplified as building fire control lines in cells where crown fire could not occur, 

and is assumed to be able to stop fire spread in cells where fire control lines are constructed. This 

model captures the possible impact of wildfire and prescribed burning to create suppression 

opportunities and how suppression may take places to stop the spread of surface fire in recently 

burned or treated areas. However, fire suppression scheduling itself is not the focus of this 

model.  

 



12 

 

Fire uncertainties are modeled by using sample fires in each DFS. Random draws are 

used to determine the ignition location (i.e. in a cell), the active fire spread duration, and the 

combination of wind direction and speed during the duration of a fire. Similar to prescribed fire, 

wildfire also consumes fuels (Figure 2) that can help reduce future fire spread rate and intensity. 

The beneficial effects from wildfire, however, may last for a different period of time. A sample 

fire is allowed to spread between cells (Figure 3) within its maximum spread range (MSR) pre-

calculated by the processing algorithm (Figure 4). When spreading under certain wind condition, 

it may become crown fire or stay as surface fire in different cells (Figure 5). Fire spread rate and 

fire line intensity modeled in this stochastic program would be based on surface fire behaviors. 

In cells where surface fires spread into crown, I assume the forest will be destroyed.  

 

Figure 2: Prescribed fire and wildfire both have beneficial effects of reducing fuel loads, but 

their effects may last for different periods of time.  

 

Areas treated by prescribed 

fire or burned by wildire 

Future fires in these areas would have decreased rates of 

spread within certain periods.  

Future fires in these areas would have decreased fire line 

intensities within certain periods. 
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Figure 3: Illustration of the 16 possible spread-paths (in eight possible spread directions) from or 

toward a cell (𝑐). For each spread direction, fire would spread in a cell (𝑐) with a specific spread 

rate. Details of the spread-rate calculations will be described later in sections 2.4 and 3.1. 

 

 

               

A     B 

Figure 4: An example to illustrate the spread pattern of a fire in a rasterized landscape under 

different assumptions: A: The fire’s MSR (blue cells) pre-calculated by the processing algorithm 

with assumptions that fire spreads freely without influences from previous fires, prescribed 

burnings, and suppressions (For more details of this algorithm, see Appendix). In the stochastic 

program, the spread and suppression of a fire will be modeled inside its MSR. B: I assume fire 

spreads more slowly in areas recently burned by wildfire (e.g. yellow cells) or treated by 

prescribed fire (e.g. green cells), and can be stopped by cells with fire control lines constructed 

(e.g. black cells). Therefore, a fire may not be able to burn the orange cells within its MSR during 

the same duration under the influence from previous fires, fuel treatments, and suppressions. 

 

c' c' c' c' c' c'

c' c c' c' c c'

c' c' c' c' c' c'

same spread direction

a spread path
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Figure 5: Fire line intensity is used as a criterion to predict crown fire activities. I model fire line 

intensity as a function of fire spread rate along each spread direction. Crown fire is assumed to 

occur when fire line intensity is beyond a critical threshold. Areas recently treated by prescribed 

fire or burned by wildfire would have decreased fire line intensity. Consequently, the likelihood 

of crown fire in these areas will be reduced. More details on the calculations of fire line intensity 

and the critical threshold of fire line intensity will be described later in sections 2.4 and 3.1. 

 

 

In this model, the value of forest in a cell to be protected from wildfire (referred to as 

“cell value”) is assumed to be related with forest age-classes (referred to as “cell age-classes”). 

Fire loss is measured each time a cell is burned by wildfire with the amount of loss depending on 

both the fire line intensity in that cell and the cell age-class. Cell age-class transition is tracked 

during the planning horizon and is only influenced by crown fires (Figure 6). A crown fire would 

destroy the value of forest in a cell and also reset age-class of the burned cell to zero. A surface 

fire may cause partial loss of cell value but not change the age-class of the burned cell. Upon 

entering the next period, cell age-class will increase by one. Within a planning horizon, a cell 

may be burned by multiple fires with various losses.  

 

Fire-line-intensity ≥ critical fire-line-intensity Crown Fire 

Fire-line-intensity < critical fire-line-intensity Surface Fire 
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Crown fire, which immediately resets a cell's age-class to zero 

 Surface fire, which would not change a cell's age-class 

 

Figure 6: An example of the age-class transition of a cell in two planning periods if it gets 

burned by multiple fires.  

 

2.3 Notations 

I use capital letters to denote most of the parameters and sets. Some parameters are 

denoted by Greek letters. Lower-case letters are used to represent indices or decision variables. 

Abbreviations are defined to standardize some of the descriptions in the method, and are 

represented by both capital and lower-case letters. Notations are presented in alphabetical order. 

 

Abbreviations  

BEs Denotes the beneficial effects from prescribed burning based fuel 

treatment or from wildfire. For example, areas recently treated by 

prescribe fire or burned by wildfire can decrease future fire line intensity 

 

Period w+1 

 

  

 

Period w 

 

 1st Fire               2nd Fire               ...  

Age j 

Age 0 
Age 0 ... Age 0 Age 1 ... 

Age 0 ... Age 0 Age 1 ... 

Age j 

Age 0 ... Age 0 Age 1 ... 

Age j ... 
Age 0 Age 1 ... 

Age j Age j+1 ... 
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and fire spread rate. I assume the beneficial effects from prescribed 

burning will last for 𝑊⃛ planning periods including the period when it is 

implemented (i.e. areas treated by prescribed fire in period 𝑤 will have 

BEs lasted in period 𝑤 and period 𝑤 + 1 if 𝑊⃛ is set to two). I assume the 

beneficial effects from wildfire will last for 𝑊⃛⃛ planning periods also 

including the period when fire occurs. 

DFS Denotes a sequence of management decisions and fire events across all 

planning periods (as described in section 2.1). In this study, management 

decisions include fuel treatment modeled as prescribed burning, and fire 

suppression modeled as fire-control-line construction. Wildfires are 

uncertain events represented by random sample fires. 

FT1 Denotes the first period fuel treatment solution that includes a set of stands 

selected for prescribed burning at the beginning of the first period. 

Although this multi-stage stochastic program models prescribed burning 

decisions in multiple planning periods, the focus is to improve quality of 

the first period decision because this is the immediate decision a manager 

has to make without waiting for the reveal of any future fire situation. 

MFAT Denotes “minimum fire arrival time” to each location (i.e. a cell) of a 

landscape. I use a set of equations to calculate the minimum travel time 

when each sample fire spreads. Details will be presented in section 2.4. 

MSR Denotes “maximum spread range” of a fire pre-calculated by the 

preprocessing algorithm. Details on this algorithm are presented in the 

Appendix. 
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TFS Denotes a sequence of testing fires across all planning periods. In this 

study, a set of 300 i.i.d. TFSs are randomly simulated based on historical 

data of fire ignition and wind (described later in section 3.2). This set 

would then be fixed to test the performance of different FT1s. TFS and 

DFS are different. Sample fires in each DFS are not fixed. Each time 

running the stochastic program, sample fires in each DFS will be 

randomly redrawn; therefore, each stochastic run may result in a different 

optimal FT1.  

 

Indices: 

𝑎  Index of a stand. 

𝑎𝑐  Index of the stand that contains a raster cell 𝑐. 

𝑐, 𝑐′ Indices of raster cells. Cell’s index starts from the top-left to the bottom-

right of a rasterized testing landscape. 

𝑖, 𝑖′, 𝑖′′ The occurrence order of sample fires in a planning period. In a specific 

planning period, a fire indexed by 𝑖 (𝑜𝑟 𝑖′, 𝑖′′) = 1 occurs immediately 

before the fire indexed by 𝑖 (𝑜𝑟 𝑖′, 𝑖′′) = 2. 

𝑗 Index of age-class of the forest in a raster cell; age class is used to estimate 

the forest value to be protected and also the critical threshold of fire line 

intensity in each cell. 

𝑛, 𝑛′ Indices of DFS samples. 

𝑤  Index of a planning period. 
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(𝑤, 𝑖, 𝑛) An ordered set denotes the three attributes of a sample fire: 𝑤 is the 

planning period when this fire occurs; 𝑖 is the occurrence order of this fire 

in period 𝑤; and 𝑛 is the DFS in which this fire belongs. 

 

Parameters: 

𝛽𝑐′,𝑐 Half of the distance for a fire to spread from the center of cell 𝑐′ to the 

center of its adjacent cell 𝑐. 

  𝛽𝑐′,𝑐 =
𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒

2
 if cell 𝑐 and cell 𝑐′ share an edge   

  𝛽𝑐′,𝑐 =
√2×𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒

2
 if cell 𝑐 and cell 𝑐′ share a vertex  

  where cell-size is the size length of a rater cell. 

𝜑 A small positive number which is arbitrarily set. When a fire control line 

is built in a cell, the MFAT of this cell is calculated by the sum of 𝜑 and 

the fire’s active spread duration indicating that this fire would not burn the 

corresponding cell. 

𝐶𝑎  The total number of cells within stand 𝑎. 

𝐶𝑐 The total number of adjacent cells of the cell 𝑐. 

𝐸𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝑤,𝑖,𝑛),𝑐,𝑗
The pre-calculated critical threshold of fire line intensity in cell 𝑐 when 

this cell is in age-class 𝑗 at occurrence time of fire (𝑤, 𝑖, 𝑛). I assume if 

fire (𝑤, 𝑖, 𝑛) burns cell 𝑐 with the estimated fire line intensity meeting or 

c'

c' c c'

c'

c' c'

c

c' c'
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exceeding this threshold (e.g. 𝑒(𝑤,𝑖,𝑛),𝑐 ≥ 𝐸𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝑤,𝑖,𝑛),𝑐,𝑗
), it would 

become crown fire in cell 𝑐. 

𝐸(𝑤,𝑖,𝑛),𝑐 The pre-calculated fire line intensity of fire (𝑤, 𝑖, 𝑛) when it first ignites 

and spreads in cell 𝑐 and this cell has not been treated by prescribed fire 

within 𝑊⃛ planning periods and burned within 𝑊⃛⃛ planning periods. This 

parameter is set to zero if cell 𝑐 is not the ignition cell of fire (𝑤, 𝑖, 𝑛). 

𝐸′
(𝑤,𝑖,𝑛),𝑐 The pre-calculated fire line intensity of fire (𝑤, 𝑖, 𝑛) when it first ignites 

and spreads in cell 𝑐 and this cell has been treated by prescribed fire 

within 𝑊⃛ planning periods or burned within 𝑊⃛⃛ planning periods. This 

parameter is set to zero if cell 𝑐 is not the ignition cell of fire (𝑤, 𝑖, 𝑛). 

𝐸(𝑤,𝑖,𝑛),𝑐←𝑐′ and 𝐸′
(𝑤,𝑖,𝑛),𝑐←𝑐′   

𝐸(𝑤,𝑖,𝑛),𝑐←𝑐′ is the pre-calculated fire line intensity in cell 𝑐 if fire (𝑤, 𝑖, 𝑛) 

spreads from 𝑐′ into 𝑐 at spread rate 𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐←𝑐′; while 𝐸′
(𝑤,𝑖,𝑛),𝑐←𝑐′ is 

the pre-calculated fire line intensity in cell 𝑐 if fire (𝑤, 𝑖, 𝑛) spreads from 

𝑐′ into 𝑐 at spread rate 𝑅𝑂𝑆′
(𝑤,𝑖,𝑛),𝑐←𝑐′ (𝐸′

(𝑤,𝑖,𝑛),𝑐←𝑐′ < 𝐸(𝑤,𝑖,𝑛),𝑐←𝑐′). 

𝐺(𝑤,𝑖,𝑛),𝑐 A binary parameter, which is set to one if fire (𝑤, 𝑖, 𝑛) ignites in cell 𝑐. 

This parameter will be set to zero if 𝑐 is not the ignition cell of fire 

(𝑤, 𝑖, 𝑛). 

𝐻(𝑤,𝑖,𝑛)  The active spread duration of fire (𝑤, 𝑖, 𝑛) determined exogenously 

through random draw.  

𝐽𝑐1
 Age-class of the forest in cell 𝑐 at the beginning of the first period. 

𝐿(𝑤,𝑖,𝑛)  The time of occurrence (i.e. year) of sample fire (𝑤, 𝑖, 𝑛). 
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𝐿𝑤
′  The time (i.e. year) at the beginning of the planning period 𝑤 (e.g. in case 

using 10-year planning period: 𝐿𝑤=1
′ = 0, 𝐿𝑤=2

′ = 10, and 𝐿𝑤=3
′ = 20). 

This parameter helps calculate the discounted cost of fuel treatment which 

is assumed to be scheduled at the beginning of each planning period. 

𝑀 A large positive number (Big M). 

𝑁 The total number of DFS samples. Throughout this dissertation, I use the 

term “sample size” to represent 𝑁. 

𝑃𝐹𝑇 A predefined per-cell based treatment cost if that cell has not been treated 

by prescribed fire within 𝑊⃛ planning periods and burned within 𝑊⃛⃛ 

planning periods. 

𝑃𝐹𝑇
′  A predefined per-cell based treatment cost if that cell has been treated by 

prescribed fire within 𝑊⃛ planning periods or burned within 𝑊⃛⃛ planning 

periods. I assume 𝑃𝐹𝑇
′ < 𝑃𝐹𝑇. 

𝑃𝑆𝑈𝑃𝑐
 A predefined cost for building fire control line in cell 𝑐 during suppression 

of a fire. 

𝑅  An adopted annual discount rate. 

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐←𝑐′ and 𝑅𝑂𝑆′
(𝑤,𝑖,𝑛),𝑐←𝑐′ 

 𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐←𝑐′ is the estimated spread rate of fire (𝑤, 𝑖, 𝑛) in cell 𝑐 when 

this fire spreads into c from its adjacent cell 𝑐′ and when 𝑐 has not been 

treated by prescribed fire within 𝑊⃛ planning periods and burned within 𝑊⃛⃛ 

planning periods. Eight values of 𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐←𝑐′ are pre-calculated to 

account for the eight possible spread paths into cell 𝑐. If cell 𝑐 has been 
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treated by prescribed fire within 𝑊⃛ planning periods or burned within 𝑊⃛⃛ 

planning periods, the spread rate in this cell is assumed to be reduced to 

𝑅𝑂𝑆′
(𝑤,𝑖,𝑛),𝑐←𝑐′ with 𝑅𝑂𝑆′

(𝑤,𝑖,𝑛),𝑐←𝑐′ < 𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐←𝑐′. 

 

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐′→𝑐 and 𝑅𝑂𝑆′
(𝑤,𝑖,𝑛),𝑐′→𝑐 

 𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐′→𝑐 is the estimated spread rate of fire (𝑤, 𝑖, 𝑛) in cell 𝑐′ when 

this fire spreads from 𝑐′ to its adjacent cell 𝑐 and when 𝑐′ has not been 

treated by prescribed fire within 𝑊⃛ planning periods and burned within 𝑊⃛⃛ 

planning periods. Eight values of 𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐′→𝑐 are pre-calculated to 

account for the eight possible spread paths from cell 𝑐′. If cell 𝑐′ has been 

treated by prescribed fire within 𝑊⃛ planning periods or burned within 𝑊⃛⃛ 

planning periods, the spread rate in this cell is assumed to be reduced to 

𝑅𝑂𝑆′
(𝑤,𝑖,𝑛),𝑐′→𝑐 with 𝑅𝑂𝑆′

(𝑤,𝑖,𝑛),𝑐′→𝑐 < 𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐′→𝑐. 

𝑉𝑐,𝑗 A pre-calculated value to be protected in cell 𝑐 when the forest in this cell 

is in age-class 𝑗. The value to be protected in a cell is assumed to be lost if 

it is burned by a crown fire.  

𝑉(𝑤,𝑖,𝑛),𝑐,𝑗 Fire loss in cell 𝑐 if the forest in this cell is in age-class 𝑗 at occurrence 

time of fire (𝑤, 𝑖, 𝑛) and this fire burns as surface fire in c; I assume 

𝑉(𝑤,𝑖,𝑛),𝑐,𝑗 < 𝑉𝑐,𝑗. 𝑉(𝑤,𝑖,𝑛),𝑐,𝑗 could also be set to zero to indicate fire would 

be not harmful and would cause zero loss. 

𝑊  The total number of planning periods in the entire planning horizon. 
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𝑊⃛ The number of continuous planning periods in which the BEs from fuel 

treatment would last. 

𝑊⃛⃛ The number of continuous planning periods in which the BEs from 

wildfire would last. 

 

Sets: 

 𝐴̂  The set of all stands in a landscape. 

𝐶̂ The set of all cells in a landscape. 

𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
 The set of flammable cells inside the MSR of fire (𝑤, 𝑖, 𝑛). The MSR of 

each sample fire is pre-calculated by the preprocessing algorithm. 

𝐶̂𝑎  The set of all cells in stand 𝑎. 

𝐶̂𝑐 The set of adjacent cells to cell 𝑐 (sharing an edge or a vertex with 𝑐). This 

set does not include non-flammable cells. 

𝐶̂𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑤,𝑖,𝑛)
 The ignition cell of fire (𝑤, 𝑖, 𝑛) exogenously selected by random draws 

based on the historical ignition frequency in each flammable cell in the 

entire landscape. 

𝐶̂𝐼𝑛𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
 The set of cells that are either non-flammable or outside the MSR of fire 

(𝑤, 𝑖, 𝑛); 𝐶̂𝐼𝑛𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
= 𝐶̂ − 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

. 

𝐽(𝑤,𝑖,𝑛),𝑐 The set of age-classes which: forest in cell 𝑐 can only be in one of these 

age-classes at occurrence time of fire (𝑤, 𝑖, 𝑛). For example,  

𝐽(1,𝑖,𝑛),𝑐 = {0, 𝐽𝑐1
}; 𝐽(2,𝑖,𝑛),𝑐 = {0,1, 𝐽𝑐1

+ 1}; 𝐽(3,𝑖,𝑛),𝑐 = {0,1,2, 𝐽𝑐1
+ 2} 

(illustrative example will be given in section 2.4). 
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𝑊̂𝑗,𝑤 A set of planning periods which includes the total of 𝑗 number of periods 

counting back from period 𝑤. For example, 𝑊̂1,3would include only 

period 3, while 𝑊̂2,3would include both period 2 and period 3. 

𝑊̂𝑤 A set of planning periods that, if fuel treatment is implemented in these 

periods then its BEs will last into period 𝑤. This set includes periods 

from (𝑤 − 𝑊⃛ + 1) 𝑡𝑜 (𝑤 − 1). 

𝑊̂′
𝑤 A set of planning periods that, if a fire occurs in these periods then its BEs 

will last into period 𝑤. This set includes periods from (𝑤 − 𝑊⃛⃛ +

1) 𝑡𝑜 (𝑤 − 1). 

 

Variables: 

In this study, “a spread path” is defined as the path connecting the center of a cell to the 

center of an adjacent cell. “A spread route to a destined cell” may include multiple connected 

spread paths for a fire to spread from the ignition cell to that destined cell. A fire can reach the 

center of a cell by following different spread routes as illustrated in Figure 7. This model tracks 

all the possible fire spread routes to a cell, and finds the fastest route indicated by the MFAT of 

that cell. If the MFAT of a cell is less than the active fire spread duration then that cell is defined 

as “burned”. Throughout this dissertation, the term “burned” is only referred to wildfire to avoid 

the confusion when prescribed fire is used.  
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Figure 7: An illustrative example of fire spreading in a rasterized landscape. The fire is assumed 

to ignite in cell number 1. It can spread to cell number 2 by following different spread routes. In 

this example, I only draw three of the many possible routes for the fire to spread from the 

ignition cell 1 to cell 2. 

 

𝑏(𝑤,𝑖,𝑛),𝑐,𝑐′ A binary variable receiving a value of one if fire (𝑤, 𝑖, 𝑛) successfully 

spreads from cell 𝑐 into its adjacent cell 𝑐′, and the spread path from 𝑐 to 

𝑐′ must belong to the fastest spread route of this fire to 𝑐′; otherwise, 

𝑏(𝑤,𝑖,𝑛),𝑐,𝑐′ = 0. 

𝑑(𝑤,𝑖,𝑛),𝑐 A binary variable receiving a value of one if fire (𝑤, 𝑖, 𝑛) burns cell 𝑐; 

otherwise, 𝑑(𝑤,𝑖,𝑛),𝑐 = 0. 

𝑒(𝑤,𝑖,𝑛),𝑐 A continuous variable to calculate the fire line intensity in cell 𝑐 if it is 

burned by fire (𝑤, 𝑖, 𝑛) when this fire spreads following its fastest spread 

route into cell 𝑐. If fire (𝑤, 𝑖, 𝑛) does not burn cell 𝑐 then 𝑒(𝑤,𝑖,𝑛),𝑐 = 0. 

𝑓𝐹𝐿𝑛
 A continuous variable to calculate the total discounted fire loss for the n

th 

DFS. 

1

2
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𝑓𝐹𝑇𝑛
 A continuous variable to calculate the total discounted cost from 

prescribed burning for the n
th 

DFS. 

𝑓𝐹𝑇𝑤,𝑛
 A continuous variable to calculate the total discounted cost from 

prescribed burning scheduled in period 𝑤 for the n
th 

DFS. 

𝑓𝑆𝑈𝑃𝑛
 A continuous variable to calculate the total discounted cost from fire-

control-line construction for the n
th 

DFS. 

𝑘(𝑤,𝑖,𝑛),𝑐,𝑤′≤𝑤 When fire (𝑤, 𝑖, 𝑛) occurs we need to track the age-class of cell 𝑐 to 

identify the fire loss. The age class of 𝑐 is determined by crown fire 

occurrences in this cell before fire (𝑤, 𝑖, 𝑛) starts. This binary variable 

tracks if any crown fire has occurred in cell c in period 𝑤′ before 

occurrence time of fire (𝑤, 𝑖, 𝑛). It would be set to one if at least one 

crown fire has burned cell 𝑐. 

𝑜(𝑤,𝑖,𝑛),𝑐 A binary variable receiving a value of one if either fire (𝑤, 𝑖, 𝑛) does not 

burn cell 𝑐 or it burns as surface fire in cell 𝑐. If fire (𝑤, 𝑖, 𝑛) burns as 

crown fire in cell 𝑐 then 𝑜(𝑤,𝑖,𝑛),𝑐 = 0. 

𝑝(𝑤,𝑖,𝑛),𝑐 A binary variable receiving a value of one if at occurrence time of fire 

(𝑤, 𝑖, 𝑛), cell 𝑐 has been treated by prescribed fire within 𝑊⃛ planning 

periods or burned within 𝑊⃛⃛ planning periods; otherwise, 𝑝(𝑤,𝑖,𝑛),𝑐 = 0. 

𝑞(𝑤,𝑖,𝑛),𝑐,𝑗 A binary variable receiving a value of one if the forest in cell 𝑐 is in age-

class 𝑗 at occurrence time of fire (𝑤, 𝑖, 𝑛); otherwise, 𝑞(𝑤,𝑖,𝑛),𝑐,𝑗 = 0. 
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𝑟(𝑤,𝑖,𝑛),𝑐 A binary variable receiving a value of one if fire control line is built in cell 

𝑐 to protect that cell from being burned by fire (𝑤, 𝑖, 𝑛); otherwise, 

𝑟(𝑤,𝑖,𝑛),𝑐 = 0. 

𝑠𝑤,𝑎,𝑛 For the n
th 

DFS, this integer variable calculates the total number of cells in 

stand 𝑎 in period 𝑤 that have not been treated by prescribed fire within 𝑊⃛ 

planning periods and burned within 𝑊⃛⃛ planning periods. 

𝑡(𝑤,𝑖,𝑛),𝑐 A continuous variable to track the MFAT of cell 𝑐, which is calculated 

based on the fastest route for fire (𝑤, 𝑖, 𝑛) to spread into the center of 𝑐. 

𝑢(𝑤,𝑖,𝑛),𝑐,𝑗 A binary variable receiving a value of one if cell 𝑐 in age-class 𝑗 is burned 

by fire (𝑤, 𝑖, 𝑛). If either cell 𝑐 is not in age-class 𝑗 or fire (𝑤, 𝑖, 𝑛) does 

not burn this cell then 𝑢(𝑤,𝑖,𝑛),𝑐,𝑗 = 0. 

𝑣𝐶𝑟𝑜𝑤𝑛(𝑤,𝑖,𝑛),𝑐,𝑗
  

A binary variable receiving a value of one if fire (𝑤, 𝑖, 𝑛) burns as crown 

fire in cell 𝑐 and this cell is in age-class 𝑗 at occurrence time of fire 

(𝑤, 𝑖, 𝑛); otherwise, 𝑣𝐶𝑟𝑜𝑤𝑛(𝑤,𝑖,𝑛),𝑐,𝑗
= 0. 

𝑣𝑆𝑢𝑟𝑓𝑎𝑐𝑒(𝑤,𝑖,𝑛),𝑐,𝑗
  

A binary variable receiving a value of one if fire (𝑤, 𝑖, 𝑛) burns as surface 

fire in cell 𝑐 and this cell is in age-class 𝑗 at occurrence time of fire 

(𝑤, 𝑖, 𝑛); otherwise, 𝑣𝑆𝑢𝑟𝑓𝑎𝑐𝑒(𝑤,𝑖,𝑛),𝑐,𝑗
= 0. 

𝑥𝑤,𝑎,𝑛 A binary variable receiving a value of one if prescribed burning is 

implemented at the beginning of period 𝑤 in stand 𝑎 in the n
th 

DFS; 

otherwise, 𝑥𝑤,𝑎,𝑛 = 0. 
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𝑦(𝑤,𝑖,𝑛),𝑐 A binary variable receiving a value of one if either fire control line has 

been built in cell 𝑐 or the MFAT for fire (𝑤, 𝑖, 𝑛) arriving the center of cell 

𝑐 is greater than that fire’s active spread-duration; otherwise, 𝑦(𝑤,𝑖,𝑛),𝑐 = 0. 

𝑧𝑤,𝑐,𝑛 A binary variable receiving a value of one if at the beginning of period 𝑤 

in the n
th

 DFS, cell 𝑐 is identified as not being treated by prescribed fire 

within 𝑊⃛ planning periods and burned within 𝑊⃛⃛ planning periods; 

otherwise, 𝑧𝑤,𝑐,𝑛 = 0. 

 

2.4 Model formulation 

Minimize: 

1

𝑁
∑ (𝑓𝐹𝑇𝑛

+ 𝑓𝑆𝑈𝑃𝑛
+ 𝑓𝐹𝐿𝑛

)𝑛         (1) 

 

Subject to: 

 𝑥𝑤=1,𝑎,𝑛 = 𝑥𝑤=1,𝑎,𝑛′      ∀𝑛, 𝑛′     (2) 

𝑟(𝑤,𝑖,𝑛),𝑐 ≤ 𝑜(𝑤,𝑖,𝑛),𝑐     ∀𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑛, 𝑤  (3) 

𝑑(𝑤,𝑖,𝑛),𝑐 + 𝑟(𝑤,𝑖,𝑛),𝑐 ≤ 1   ∀𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑛, 𝑤  (4)  

𝑡(𝑤,𝑖,𝑛),𝑐 ≥ (𝐻(𝑤,𝑖,𝑛) + 𝜑) × 𝑟(𝑤,𝑖,𝑛),𝑐 

    ∀ 𝑐 ∈ (𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
\𝐶̂𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑤,𝑖,𝑛)

) , 𝑖, 𝑛, 𝑤  (5) 

𝑡(𝑤,𝑖,𝑛),𝑐 = 0     ∀ 𝑐 = 𝐶̂𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑤,𝑖,𝑛)
, 𝑖, 𝑛, 𝑤  (6)   

𝑑(𝑤,𝑖,𝑛),𝑐 = 0      ∀𝑐 ∈ 𝐶̂𝐼𝑛𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑛, 𝑤  (7)  

𝑑(𝑤,𝑖,𝑛),𝑐 ≥
𝐻(𝑤,𝑖,𝑛)−𝑡(𝑤,𝑖,𝑛),𝑐

𝑀
    ∀𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

, 𝑖, 𝑛, 𝑤  (8)  
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𝑦(𝑤,𝑖,𝑛),𝑐 ≥
𝑡(𝑤,𝑖,𝑛),𝑐−𝐻(𝑤,𝑖,𝑛)

𝑀
    ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

, 𝑖, 𝑛, 𝑤  (9) 

𝑑(𝑤,𝑖,𝑛),𝑐 + 𝑦(𝑤,𝑖,𝑛),𝑐 ≤ 1   ∀𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑛, 𝑤  (10) 

𝑑(𝑤,𝑖,𝑛),𝑐 + 𝑟(𝑤,𝑖,𝑛),𝑐 + 𝑦(𝑤,𝑖,𝑛),𝑐 ≥ 𝑑(𝑤,𝑖,𝑛),𝑐′  

     ∀𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑐′ ∈ 𝐶̂𝑐 ∩ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

, 𝑖, 𝑛, 𝑤 (11) 

𝑏(𝑤,𝑖,𝑛),𝑐,𝑐′ ≤ 𝑑(𝑤,𝑖,𝑛),𝑐 

    ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑐′ ∈ 𝐶̂𝑐 ∩ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

, 𝑖, 𝑛, 𝑤 (12)  

𝑏(𝑤,𝑖,𝑛),𝑐,𝑐′ + 𝑏(𝑤,𝑖,𝑛),𝑐′,𝑐 ≤ 1 

    ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑐′ ∈ 𝐶̂𝑐 ∩ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

, 𝑖, 𝑛, 𝑤 (13) 

∑ 𝑏(𝑤,𝑖,,𝑛),𝑐′,𝑐𝑐′∈𝐶̂𝑐∩𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
= 𝑑(𝑤,𝑖,𝑛),𝑐 − 𝐺(𝑤,𝑖,𝑛),𝑐   

       ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑛, 𝑤 (14) 

𝑝(𝑤,𝑖,𝑛),𝑐 ≤ 𝑥𝑤,𝑎𝑐,𝑛 + ∑ 𝑑(𝑤,𝑖′,𝑛),𝑐𝑖′<𝑖 + ∑ 𝑥𝑤′,𝑎𝑐,𝑛𝑤′∈𝑊̂𝑤
+ ∑ ∑ 𝑑(𝑤′′,𝑖′′,𝑛),𝑐𝑖′′𝑤′′∈𝑊̂′

𝑤
  

      ∀𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑛, 𝑤 (15) 

𝑝(𝑤,𝑖,𝑛),𝑐 ≥
𝑥𝑤,𝑎𝑐,𝑛 + ∑ 𝑑(𝑤,𝑖′,𝑛),𝑐𝑖′<𝑖 + ∑ 𝑥𝑤′,𝑎𝑐,𝑛𝑤′∈𝑊̂𝑤

+ ∑ ∑ 𝑑(𝑤′′,𝑖′′,𝑛),𝑐𝑖′′𝑤′′∈𝑊̂′
𝑤

𝑀
 

      ∀𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑛, 𝑤 (16) 

𝑡(𝑤,𝑖,𝑛),𝑐 ≤ 𝑡(𝑤,𝑖,𝑛),𝑐′ +
𝛽

𝑐′,𝑐

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐←𝑐′
+ 𝑝(𝑤,𝑖,𝑛),𝑐 × (

𝛽
𝑐′,𝑐

𝑅𝑂𝑆′
(𝑤,𝑖,𝑛),𝑐←𝑐′

−
𝛽

𝑐′,𝑐

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐←𝑐′
) 

+
𝛽

𝑐′,𝑐

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐′→𝑐

+ 𝑝(𝑤,𝑖,𝑛),𝑐′ × (
𝛽

𝑐′,𝑐

𝑅𝑂𝑆′
(𝑤,𝑖,𝑛),𝑐′→𝑐

−
𝛽

𝑐′,𝑐

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐′→𝑐

)  

+𝑀 × (1 − 𝑑(𝑤,𝑖,𝑛),𝑐′ + 𝑟(𝑤,𝑖,𝑛),𝑐)  

  ∀ 𝑐 ∈ (𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
\𝐶̂𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑤,𝑖,𝑛)

) , 𝑐′ ∈ 𝐶̂𝑐 ∩ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑛, 𝑤 (17)  

𝑡(𝑤,𝑖,𝑛),𝑐 ≥ 𝑡(𝑤,𝑖,𝑛),𝑐′ +
𝛽

𝑐′,𝑐

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐←𝑐′
+ 𝑝(𝑤,𝑖,𝑛),𝑐 × (

𝛽
𝑐′,𝑐

𝑅𝑂𝑆′
(𝑤,𝑖,𝑛),𝑐←𝑐′

−
𝛽

𝑐′,𝑐

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐←𝑐′
) 
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+
𝛽

𝑐′,𝑐

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐′→𝑐

+ 𝑝(𝑤,𝑖,𝑛),𝑐′ × (
𝛽

𝑐′,𝑐

𝑅𝑂𝑆′
(𝑤,𝑖,𝑛),𝑐′→𝑐

−
𝛽

𝑐′,𝑐

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐′→𝑐

)  

−𝑀 × (1 − 𝑏(𝑤,𝑖,,𝑛),𝑐′,𝑐)  

∀ 𝑐 ∈ (𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
\𝐶̂𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑤,𝑖,𝑛)

) , 𝑐′ ∈ 𝐶̂𝑐 ∩ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑛, 𝑤 (18) 

𝑒(𝑤,𝑖,𝑛),𝑐 ≥ ∑ 𝑏(𝑤,𝑖,,𝑛),𝑐′,𝑐𝑐′∈𝐶̂𝑐∩𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
× 𝐸′

(𝑤,𝑖,𝑛),𝑐←𝑐′ + 𝐸′
(𝑤,𝑖,𝑛),𝑐,𝑗   

    ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑐′ ∈ 𝐶̂𝑐 ∩ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

, 𝑖, 𝑛, 𝑤 (19)  

𝑒(𝑤,𝑖,𝑛),𝑐 ≤ ∑ 𝑏(𝑤,𝑖,,𝑛),𝑐′,𝑐𝑐′∈𝐶̂𝑐∩𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
× 𝐸(𝑤,𝑖,𝑛),𝑐←𝑐′ + 𝐸(𝑤,𝑖,𝑛),𝑐   

    ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑐′ ∈ 𝐶̂𝑐 ∩ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

, 𝑖, 𝑛, 𝑤 (20)  

𝑒(𝑤,𝑖,𝑛),𝑐 ≥ ∑ 𝑏(𝑤,𝑖,,𝑛),𝑐′,𝑐𝑐′∈𝐶̂𝑐∩𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
× 𝐸(𝑤,𝑖,𝑛),𝑐←𝑐′ + 𝐸(𝑤,𝑖,𝑛),𝑐  

−𝑀 × 𝑝(𝑤,𝑖,𝑛),𝑐  

    ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑐′ ∈ 𝐶̂𝑐 ∩ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

, 𝑖, 𝑛, 𝑤 (21)  

𝑒(𝑤,𝑖,𝑛),𝑐 ≤ ∑ 𝑏(𝑤,𝑖,,𝑛),𝑐′,𝑐𝑐′∈𝐶̂𝑐∩𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
× 𝐸′

(𝑤,𝑖,𝑛),𝑐←𝑐′ + 𝐸′
(𝑤,𝑖,𝑛),𝑐  

+𝑀 × (1 − 𝑝(𝑤,𝑖,𝑛),𝑐)  

∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑐′ ∈ 𝐶̂𝑐 ∩ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

, 𝑖, 𝑛, 𝑤 (22) 

𝑜(𝑤,𝑖,𝑛),𝑐 ≥
∑ 𝐸𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝑤,𝑖,𝑛),𝑐,𝑗×𝑞(𝑤,𝑖,𝑛),𝑐,𝑗𝑗 −𝑒(𝑤,𝑖,𝑛),𝑐

𝑀
  ∀𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

, 𝑖, 𝑛, 𝑤 (23)  

1 − 𝑜(𝑤,𝑖,𝑛),𝑐 ≥
𝑒(𝑤,𝑖,𝑛),𝑐−∑ 𝐸𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝑤,𝑖,𝑛),𝑐,𝑗×𝑞(𝑤,𝑖,𝑛),𝑐,𝑗𝑗

𝑀
  ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

, 𝑖, 𝑛, 𝑤 (24) 

𝑧𝑤,𝑐,𝑛 ≥ 𝑥𝑤′,𝑎𝑐,𝑛     ∀𝑐 ∈ 𝐶̂, 𝑛, 𝑤, 𝑤′ ∈ 𝑊̂𝑤 (25) 

𝑧𝑤,𝑐,𝑛 ≥ 𝑑(𝑤′′,𝑖′′,𝑛),𝑐     ∀𝑐 ∈ 𝐶̂, 𝑖′′, 𝑛, 𝑤, 𝑤′′ ∈ 𝑊̂′
𝑤 (26) 

𝑧𝑤,𝑐,𝑛 ≤ 𝑀 × (𝑥𝑤′,𝑎𝑐,𝑛 + ∑ ∑ 𝑑(𝑤′′,𝑖′′,𝑛),𝑐𝑖′′𝑤′′∈𝑊̂𝑤
)  

       ∀𝑐 ∈ 𝐶̂, 𝑛, 𝑤, 𝑤′ ∈ 𝑊̂𝑤 (27) 
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𝑠𝑤,𝑎,𝑛 ≤ ∑ 𝑧𝑤,𝑐,𝑛𝑐∈𝐶̂𝑎
     ∀𝑎 ∈ 𝐴̂, 𝑛, 𝑤   (28)  

𝑠𝑤,𝑎,𝑛 ≤ 𝑀 × 𝑥𝑤,𝑎,𝑛     ∀𝑎 ∈ 𝐴̂, 𝑛, 𝑤   (29) 

∑
1

(1+𝑅)𝐿𝑤
′ × (𝑃𝐹𝑇 × 𝐶𝑎 × 𝑥𝑤,𝑎,𝑛 − (𝑃𝐹𝑇 − 𝑃𝐹𝑇

′ ) × 𝑠𝑤,𝑎,𝑛)𝑎∈𝐴̂ = 𝑓𝐹𝑇𝑤,𝑛
  ∀𝑛 (30) 

𝑓𝐹𝑇𝑤,𝑛
− 𝑓𝐹𝑇𝑤−1,𝑛

≤ 0       ∀𝑛, 𝑤 ≥ 2 (31) 

∑ 𝑓𝐹𝑇𝑤,𝑛
 𝑤 = 𝑓𝐹𝑇𝑛

        ∀𝑛 (32) 

∑ ∑ ∑
1

(1+𝑅)
𝐿(𝑤,𝑖,𝑛)

× 𝑃𝑆𝑈𝑃𝑐
× 𝑟(𝑤,𝑖,𝑛),𝑐 𝑐∈𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

𝑖𝑤 = 𝑓𝑆𝑈𝑃𝑛
  ∀𝑛 (33) 

𝑘(𝑤,𝑖,𝑛),𝑐,𝑤′ ≥ 1 − 𝑜(𝑤′,𝑖′,𝑛),𝑐   

   ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑖′ < 𝑖 𝑖𝑓 𝑤′ = 𝑤, 𝑛, 𝑤, 𝑤′ ≤ 𝑤  (34) 

𝑘(𝑤,𝑖,𝑛),𝑐,𝑤′ ≤ ∑ (1 − 𝑜(𝑤′,𝑖′,𝑛),𝑐)𝑖′: 𝑖′<𝑖 𝑖𝑓 𝑤′=𝑤    

     ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑛, 𝑤, 𝑤′ ≤ 𝑤  (35) 

𝑞(𝑤,𝑖,𝑛),𝑐,𝑗 = 0    ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑗 ∉ 𝐽(𝑤,𝑖,𝑛),𝑐 , 𝑛, 𝑤  (36) 

𝑞(𝑤,𝑖,𝑛),𝑐,𝑗=0 = 𝑘(𝑤,𝑖,𝑛),𝑐,𝑤′=𝑤    ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑛, 𝑤 (37) 

𝑞(𝑤,𝑖,𝑛),𝑐,𝑗 ≥ 𝑘(𝑤,𝑖,𝑛),𝑐,𝑤′=𝑤−𝑗 − ∑ 𝑘(𝑤,𝑖,𝑛),𝑐,𝑤′′𝑤′′∈𝑊̂𝑗,𝑤
    

   ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑗 ∈ 𝐽(𝑤,𝑖,𝑛),𝑐\{0, 𝐽𝑐1

+ 𝑤 − 1}, 𝑛, 𝑤 (38) 

∑ 𝑞(𝑤,𝑖,𝑛),𝑐,𝑗 = 1𝑗∈𝐽(𝑤,𝑖,𝑛),𝑐
    ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

, 𝑖, 𝑛, 𝑤 (39) 

𝑢(𝑤,𝑖,𝑛),𝑐,𝑗 ≥ 𝑑(𝑤,𝑖,𝑛),𝑐 + 𝑞(𝑤,𝑖,𝑛),𝑐,𝑗 − 1  ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑗, 𝑛, 𝑤 (40) 

𝑢(𝑤,𝑖,𝑛),𝑐,𝑗 ≤
𝑞(𝑤,𝑖,𝑛),𝑐,𝑗+𝑑(𝑤,𝑖,𝑛),𝑐

2
      ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

, 𝑖, 𝑗, 𝑛, 𝑤  (41) 

𝑣𝑆𝑢𝑟𝑓𝑎𝑐𝑒(𝑤,𝑖,𝑛),𝑐,𝑗
+ 𝑣𝐶𝑟𝑜𝑤𝑛(𝑤,𝑖,𝑛),𝑐,𝑗

= 𝑢(𝑤,𝑖,𝑛),𝑐,𝑗 ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑗, 𝑛, 𝑤 (42) 

𝑣𝐶𝑟𝑜𝑤𝑛(𝑤,𝑖,𝑛),𝑐,𝑗
≥ 𝑞(𝑤,𝑖,𝑛),𝑐,𝑗 − 𝑜(𝑤,𝑖,𝑛),𝑐  ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

, 𝑖, 𝑗, 𝑛, 𝑤 (43) 
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𝑣𝐶𝑟𝑜𝑤𝑛(𝑤,𝑖,𝑛),𝑐,𝑗
≤

1+𝑞(𝑤,𝑖,𝑛),𝑐,𝑗−𝑜(𝑤,𝑖,𝑛),𝑐

2
   ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

, 𝑖, 𝑗, 𝑛, 𝑤 (44) 

∑ ∑ ∑ ∑
1

(1+𝑅)
𝐿(𝑤,𝑖,𝑛)𝑗 × 𝑐∈𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

𝑖𝑤    

(𝑉(𝑤,𝑖,𝑛),𝑐,𝑗 × 𝑣𝑆𝑢𝑟𝑓𝑎𝑐𝑒(𝑤,𝑖,𝑛),𝑐,𝑗
+ 𝑉𝑐,𝑗 × 𝑣𝐶𝑟𝑜𝑤𝑛(𝑤,𝑖,𝑛),𝑐,𝑗

) = 𝑓𝐹𝐿𝑛
 ∀𝑛 (45) 

 

Objective function  

Equation 1 minimizes the sum of average discounted prescribed burning cost, average 

discounted fire suppression cost, and average discounted fire loss across all modeled DFS 

samples. 

 

Model fire management decisions 

Equation 2 guarantees the same first stage prescribed burning decision (FT1) to be 

applied for all DFS samples. It reflects the “non-anticipativity” property of this stochastic 

program, which requires a consistent FT1 to be made before realizing the random outcome from 

future fire-and-management situations. Fire control lines can only be built in cells where fire line 

intensities are low that a fire could not transit into a crown fire under the influence of wind speed 

and direction associated with that fire (Equation 3). I assume fire control line in a cell will 

always hold and save that cell from being burned under the modeled fire line intensity (Equation 

4). The MFAT of a cell will be set to an arbitrarily selected value greater than the predefined fire 

spread duration to indicate a successful establishment and holding of fire control line in that cell 

(Equation 5).  
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Model wildfires   

Each fire starts at time zero from its ignition cell (Equation 6) and will not burn non-

flammable cells or cells lying outside its MSR (Equation 7). A cell is considered as burned by a 

fire (𝑑(𝑤,𝑖,𝑛),𝑐 = 1) if that fire arrives the center of the cell within its predefined active fire spread 

duration (Equation 8); otherwise that cell is considered unburned (𝑦(𝑤,𝑖,𝑛),𝑐 = 1 𝑎𝑛𝑑 𝑑(𝑤,𝑖,𝑛),𝑐 =

0) (Equations 9 and 10). A cell must be burned (𝑑(𝑤,𝑖,𝑛),𝑐 = 1) if any of its adjacent cells lying 

inside the fire’s MSR was burned (𝑑(𝑤,𝑖,𝑛),𝑐′ = 1), unless fire control line is built in it (𝑟(𝑤,𝑖,𝑛),𝑐 =

1), or fire cannot spread into it within the predefined active fire spread duration (Equation 11). 

After a cell is burned (𝑑(𝑤,𝑖,n),c = 1), fire can spread from it into any of its adjacent cells 

(𝑏(𝑤,𝑖,𝑛),𝑐,𝑐′ variable is free to be 0 or 1) (Equation 12). The potential of a fire burning back after 

spreading from one cell to another cell is not modeled (Equation 13). Equation 14 ensures that a 

non-ignition cell can only be burned (𝑑(𝑤,𝑖,𝑛),𝑐 = 1) by the fire spreading from exactly one of its 

adjacent cells (∑ 𝑏(𝑤,𝑖,,𝑛),𝑐′,𝑐𝑐′∈𝐶𝑐𝑤,𝑎,𝑛
= 1). Equation 14 also assumes that a fire will not spread 

back to its ignition cell.   

 

In this model, only the fastest route for a fire to spread from its ignition cell to a 

flammable cell lying inside its MSR is recorded by tracking the MFAT of that cell. Equations 15 

and 16 work together to track whether a cell has been “treated by prescribed fire within 𝑊⃛ 

planning periods or burned within 𝑊⃛⃛ planning periods” at the time a sample fire (𝑤, 𝑖, 𝑛) starts. 

The MFAT of each cell (𝑐) is calculated in Equations 17 and 18 by tracking all the possible 

spread paths from its adjacent cells toward it. In the spread path from cell 𝑐′ to 𝑐, fire would 

spread with spread rate 𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐←𝑐′ in cell 𝑐 and spread rate 𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐′→𝑐 in its adjacent cell 
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𝑐′ under the assumption that both cells 𝑐 and 𝑐′ have not been treated within 𝑊⃛ planning periods 

and burned within 𝑊⃛⃛ planning periods. If a cell has been treated within 𝑊⃛ planning periods or 

burned within 𝑊⃛⃛ planning periods, spread rate in that cell would decrease (to be 𝑅𝑂𝑆′
(𝑤,𝑖,𝑛),𝑐←𝑐′ 

and 𝑅𝑂𝑆′
(𝑤,𝑖,𝑛),𝑐′→𝑐). The two Equations 17 and 18 work together as follows: 

 Equation 17 identifies the “upper bound” for the MFAT of cell 𝑐. Fire cannot arrive the 

center of cell 𝑐 later than the MFAT of any of its adjacent cells (𝑐′) plus the spread time 

from the center of 𝑐′ to the center of 𝑐. If the fire does not burn cell 𝑐′ (𝑑(𝑤,𝑖,𝑛),𝑐′ = 0) or 

if fire control line is constructed in cell 𝑐 (𝑟(𝑤,𝑖,𝑛),𝑐 = 1), the “Big M” will guarantee that 

the “upper bound” will not be set.  

 Equation 18 identifies the “lower bound” for the MFAT of cell 𝑐. Fire cannot arrive the 

center of cell 𝑐 earlier than the MFAT of any of its adjacent cells (𝑐′) plus the spread time 

from the center of 𝑐′ to the center of 𝑐. If the fire cannot spread from 𝑐′ to 𝑐 (𝑏𝑤,𝑎,𝑐′,𝑐,𝑛 =

0), the “Big M” will guarantee that the “lower bound” will not be set.  

 The exact MFAT of cell 𝑐 can be identified when the “upper bound” and the “lower 

bound” are set and converged (equal values). Otherwise, the MFAT of cell 𝑐 will be 

assigned an arbitrary value greater than the sample active fire spread duration to indicate 

fire would not burn that cell. 

 

Only one of the eight possible spread paths from adjacent cells (c′) to 𝑐 is part of the 

fastest fire spread route to cell 𝑐. The fire line intensity in cell 𝑐 would be calculated based on the 

spread path that belongs to the fastest fire spread route (Equations 19, 20, 21, and 22). If cell 𝑐 

has not been treated within 𝑊⃛ planning periods and burned within 𝑊⃛⃛ planning period 
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(𝑝(𝑤,𝑖,𝑛),𝑐 = 0), the fire line intensity in cell 𝑐 would be 𝐸(𝑤,𝑖,𝑛),𝑐←𝑐′. If that cell has been treated 

within 𝑊⃛ planning periods or burned within 𝑊⃛⃛ planning periods (𝑝(𝑤,𝑖,𝑛),𝑐 = 1), the fire line 

intensity would be decreased to 𝐸′
(𝑤,𝑖,𝑛),𝑐←𝑐′. The fire line intensity in cell 𝑐 is then compared to 

the critical threshold of fire line intensity in that same cell at its current age-class (age-class of 

cell 𝑐 at occurrence time of fire (𝑤, 𝑖, 𝑛)) to decide whether a fire (𝑤, 𝑖, 𝑛) would burn cell 𝑐 as 

crown fire (𝑜(𝑤,𝑖,𝑛),𝑐 = 0 and 𝑒(𝑤,𝑖,𝑛),𝑐 ≥ ∑ 𝐸𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝑤,𝑖,𝑛),𝑐,𝑗
× 𝑞(𝑤,𝑖,𝑛),𝑐,𝑗𝑗 ), or as surface fire 

(𝑜(𝑤,𝑖,𝑛),𝑐 = 1 and 0 < 𝑒(𝑤,𝑖,𝑛),𝑐 < ∑ 𝐸𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝑤,𝑖,𝑛),𝑐,𝑗
× 𝑞(𝑤,𝑖,𝑛),𝑐,𝑗𝑗 ), or it would not burn cell 𝑐 

(𝑜(𝑤,𝑖,𝑛),𝑐 = 1 and 𝑒(𝑤,𝑖,𝑛),𝑐 = 0) (Equations 23 and 24).  

  

Estimate fire damages and consequences of prescribed burning and fire suppression 

In this model, the smallest treatment unit for prescribed burning based fuel treatment is a 

forest stand and the cost of treating a stand is calculated by the total costs of treating all cells 

within it, assuming cells “treated within 𝑊⃛ planning periods or burned within 𝑊⃛⃛ planning 

periods” would have lower treatment cost (𝑃𝐹𝑇
′ < 𝑃𝐹𝑇). At the beginning of each planning 

period, cells that have been “treated within 𝑊⃛ planning periods or burned within 𝑊⃛⃛ periods” are 

tracked by Equations 25, 26, and 27, and the total number of such cells (𝑠𝑤,𝑎,𝑛 > 0) is identified 

for each stand (Equation 28) only when prescribed burning is implemented in the stand (𝑥𝑤,𝑎,𝑛 =

1) (Equation 29); otherwise, 𝑠𝑤,𝑎,𝑛 is set to zero. For each DFS, the total discounted cost of 

prescribed burning in each planning period is calculated (Equation 30), and is constrained to be 

non-increasing while moving from one period to the next (Equation 31). This management rule 

helps more evenly distribute treatment workload across time. The total discounted cost of 

prescribed burning for each DFS is calculated in Equation 32 by summing up prescribed burning 
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costs in all planning periods. The total discounted cost for building fire control lines is calculated 

for each DFS as in Equation 33. 

 

In this model, forest age-class of a cell is identified at the time immediately before the 

occurrence of each fire (by 𝑞(𝑤,𝑖,𝑛),𝑐,𝑗 variable). Each time when a fire (𝑤, 𝑖, 𝑛) occurs, past fire 

situations in each cell will be tracked (Equations 34 and 35) and used to identify the forest age 

class of that cell at the occurrence time of fire (𝑤, 𝑖, 𝑛) (Equations 36, 37, 38, and 39). The logic 

of the four Equations 36, 37, 38, and 39 can be described by the following example. In this 

example, I assume the age-class of forest in the cell 𝑐 is 𝐽𝑐1
 at the beginning of the first period. I 

use an example set of three fires in three continuous planning periods denoted by fire (1, 𝑖, 𝑛), 

fire (2, 𝑖, 𝑛), and fire (3, 𝑖, 𝑛); this model identifies the age-class of cell 𝑐 at the time immediately 

before the occurrence of each fire. Each of those three fires can occur before or after the 

occurrences of the other fires (see also Figure 6 for the illustration of cell age-class transition 

under the influences of fires). The set of equations used to identify the age class of cell 𝑐 at the 

occurrence time of each of those three fires are listed below (see also Figure 8 for illustration of 

possible age-classes of a cell at different times during a planning horizon). 

 

For fire (1, 𝑖, 𝑛) in the 1
st
 period: Age-class of cell 𝑐 at the time immediately before the 

occurrence of fire (1, 𝑖, 𝑛) can be either 0 or 𝐽𝑐1
 (𝐽(1,𝑖,𝑛),𝑐 = {0, 𝐽𝑐1

})  

𝑞(1,𝑖,𝑛),𝑐,𝑗 = 0     ∀𝑗 ∉ 𝐽(1,𝑖,𝑛),𝑐 

𝑞(1,𝑖,𝑛),𝑐,𝑗=0 = 𝑘(1,𝑖,𝑛),𝑐,1   

𝑞(1,𝑖,𝑛),𝑐,𝑗=0 + 𝑞(1,𝑖,𝑛),𝑐,𝑗=𝐽𝑐1
= 1   
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For fire (2, 𝑖, 𝑛) in the 2
st
 period: Age-class of cell 𝑐 at the time immediately before the 

occurrence of fire (2, 𝑖, 𝑛) can only be 0, 1, or 𝐽𝑐1
+ 1 (𝐽(2,𝑖,𝑛),𝑐 = {0,1, 𝐽𝑐1

+ 1})  

𝑞(2,𝑖,𝑛),𝑐,𝑗 = 0     ∀𝑗 ∉ 𝐽(2,𝑖,𝑛),𝑐 

𝑞(2,𝑖,𝑛),𝑐,𝑗=0 = 𝑘(2,𝑖,𝑛),𝑐,2   

𝑞(2,𝑖,𝑛),𝑐,𝑗=1 ≥ 𝑘(2,𝑖,𝑛),𝑐,1 − 𝑘(2,𝑖,𝑛),𝑐,2  

𝑞(2,𝑖,𝑛),𝑐,𝑗=0 + 𝑞(2,𝑖,𝑛),𝑐,𝑗=1 + 𝑞(2,𝑖,𝑛),𝑐,𝑗=𝐽𝑐1+1 = 1  

 

For fire (3, 𝑖, 𝑛) in the 3
rd

 period: Age-class of cell 𝑐 at the time immediately before the 

occurrence of fire (3, 𝑖, 𝑛) can only be 0, 1, 2, or 𝐽𝑐1
+ 2 (𝐽(3,𝑖,𝑛),𝑐 = {0,1,2, 𝐽𝑐1

+ 2} (see also 

illustration in Figure 8)  

𝑞(3,𝑖,𝑛),𝑐,𝑗 = 0     ∀𝑗 ∉ 𝐽(3,𝑖,𝑛),𝑐 

𝑞(3,𝑖,𝑛),𝑐,𝑗=0 = 𝑘(3,𝑖,𝑛),𝑐,3   

𝑞(2,𝑖,𝑛),𝑐,𝑗=1 ≥ 𝑘(3,𝑖,𝑛),𝑐,2 − 𝑘(3,𝑖,𝑛),𝑐,3  

𝑞(3,𝑖,𝑛),𝑐,𝑗=2 ≥ 𝑘(3,𝑖,𝑛),𝑐,1 − 𝑘(3,𝑖,𝑛),𝑐,2 − 𝑘(3,𝑖,𝑛),𝑐,3  

𝑞(3,𝑖,𝑛),𝑐,𝑗=0 + 𝑞(3,𝑖,𝑛),𝑐,𝑗=1 + 𝑞(3,𝑖,𝑛),𝑐,𝑗=2 + 𝑞(3,𝑖,𝑛),𝑐,𝑗=𝐽𝑐1+2 = 1  

 



37 

 

 

Figure 8: Possible age-classes of forest in a cell at different times during a three-period planning 

horizon, assuming the age-class of forest in this cell is 𝐽𝑐1
 at the beginning of the first period. 

 

Equations 40 and 41 works together to guarantee that if a fire burns a cell (𝑐) then it only 

burns that cell at its exact (or current) age-class (the age-class immediately before the occurrence 

of this fire). A fire occurrence can lead to only one of the three situations of a cell (𝑐) at its 

current age-class: not being burned by the fire (𝑑(𝑤,𝑖,𝑛),𝑐 = 0); being burned by the fire as surface 

fire in this cell (𝑣𝑆𝑢𝑟𝑓𝑎𝑐𝑒(𝑤,𝑖,𝑛),𝑐,𝑗
= 1); or being burned by the fire as crown fire in this cell 

(𝑣𝐶𝑟𝑜𝑤𝑛(𝑤,𝑖,𝑛),𝑐,𝑗
= 1) (Equation 42). Equations 43 and 44 are used to track one of those 

situations, when a fire burns as crown fire in a cell (𝑐) at its current age-class (𝑗) (𝑣𝐶𝑟𝑜𝑤𝑛(𝑤,𝑖,𝑛),𝑐,𝑗
 

receives the value of one only for the case when 𝑜(𝑤,𝑖,𝑛),𝑐 = 0 and 𝑞(𝑤,𝑖,𝑛),𝑐,𝑗 = 1). Those two 

equations 43 and 44 work together with equation 42 to identify the exact fire situation in each 
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at the beginning  

of period 3 
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A sequence of fires occurred in the cell including only surface fires or no fire 
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cell at its current age-class when a fire occurs. This can help calculate the exact fire loss for each 

fire. For each DFS, the total discounted fire loss is calculated by Equation 45. 
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3 Test cases 

3.1 Test-case assumptions 

An artificial landscape is designed for the purpose of testing this stochastic program 

(Figure 9). The landscape includes 64 raster cells with side length of 150m. It is delineated into 

12 stands, with each stand covering a forested area of homogeneous vegetation characteristics at 

the start of the planning periods. The landscape also includes non-flammable areas (i.e. Open 

water with “Stand-ID” = 0).  

 

 

Figure 9: An artificial landscape used to build test cases, which is delineated into 12 stands. The 

number in each stand represents its “Stand-ID”.  
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Sample fires and management decisions are modeled for three planning periods (𝑊 = 3); 

each period lasts for 10 years. All flammable cells in the landscape are assumed to be at age-

class three at the beginning of the first period (𝐽𝑐1
= 3). The BEs from prescribed fire or wildfire 

would be assumed to both last for two continuous periods, in which following wildfires would 

have spread rate and intensity reduced by 50%. The annual discount rate is set to 4% (𝑅 = 0.04).  

  

Each planning period may have zero to multiple sample fires from random draws. 

Random numbers are also drawn to determine ignition locations, fires’ occurrence order, active 

fire-spread duration of each fire, and a combination of wind direction and speed influencing the 

spread of each fire. The random-draw process includes following steps:  

 Step 1: Ignition in the artificial landscape is assumed to follow the average ignition 

frequencies of Larimer County based on historical fire data from Short (2014), which is 

calculated to be 0.0078125 for each flammable raster cell (150m side length) during each 

10-year-planning period. To decide whether a sample fire would ignite in a flammable 

cell in each planning period, a random number from 1 to 10,000 will be drawn. A number 

≤ 78 indicates an ignition in the cell; a number > 78 indicates “no ignition”. 

 Step 2: After identified the ignition locations of sample fires in a planning period (in step 

1), the occurrence orders of all fires in this period will be randomly decided and evenly 

distributed across time in that same period. For example, if there are three fires in a 

planning period, each fire will be randomly assigned an order of one, two, or three 

occurred in year 2.5, 5 or 7.5. 

 Step 3: For each sample fire, a random number in the range from 360 to 1440 minutes (6 

to 24 hours) is drawn and used as the fire’s active spread duration. 
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 Step 4: For each sample fire, a random number between 1 and 1000 is drawn to assign a 

combination of wind direction and speed during that fire (Table 1). Wind direction and 

speed are assumed to follow the historical pattern of a 10-year RAWS data (collected 

during April-October of 2003-2013 from Red Feather Lake station in Colorado - Western 

US). 

 

Table 1: Random numbers are used to decide wind direction and speed influencing the 

sample fires. Wind direction and speed in the testing landscape are assumed to follow the 

historical pattern of a 10-year RAWS data collected from Red Feature Lake station. 

 

Random 

Number 

Wind 

Direction 

Wind Speed 

(mph) 

Azimuth 

(degree) 

Cumulative 

Percentage (%) 

 

1-20 N 4.5 0 2.0 

21-36 NNE 4 22.5 3.6 

37-67 NNW 5 337.5 6.7 

68-114 NE 4.9 45 11.4 

115-147 ENE 4.6 67.5 14.7 

148-194 E 5 90 19.4 

195-270 ESE 5.3 112.5 27.0 

271-320 SE 5.2 135 32.0 

321-341 SSE 4.4 157.5 34.1 

342-358 S 4.7 180 35.8 

359-390 SSW 5.5 202.5 39.0 

391-522 SW 5.2 225 52.2 

523-653 WSW 6.6 247.5 65.3 

654-808 W 7.8 270 80.8 

809-934 WNW 8 292.5 93.4 

935-1000 NW 6.1 315 100.0 
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For each sample fire, the fire spread-rate and associated fire line intensity in each cell are 

pre-estimated: 

 Step 1: FLAMMAP (v1.5) calculates the spread rate and associated fire line intensity in 

each cell for the max spread direction of the fire in that cell (the spread direction in which 

fire would travel the fastest). It also reports the dimension of the assumed elliptical shape 

of fire-spread in each cell.  

 Step 2: Base on the elliptical dimension of fire spreading, the spread rate and associated 

fire line intensity in each cell for the max spread direction (in step 1), the spread rate and 

associated fire line intensity in each cell for the direction of interest can be calculated 

(describe later). 

 

The following inputs are used for running FLAMMAP:  

 1
st
 input: a landscape file (LCP file) is created to represent the topography and 

fuel condition of the testing landscape (details described in Table 2). This LCP 

file includes five GIS raster themes (Elevation, Slope, Aspect, Fuel Model, and 

Canopy Cover). Elevation, Slope, Aspect, and Fuel Model are created by using 

LANDFIRE data (http://www.landfire.gov) of a real landscape located in Larimer 

County – Colorado with the coordinate extents from upper left: 40.869494, -

105.5856 to lower right: 40.859013, -105.5719. Canopy Cover is artificially 

created for each raster cell with a random range between 80% and 100% to mimic 

a potential forest condition with substantial risk of detrimental crown fires. 
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Table 2: An LCP file is used to represent topography and fuel condition of the 

testing landscape.  

 

Raster Themes 
 

Cell Value 
 

Elevation 2,455–2,587m 

Slope 5-90% 

Aspect 0, 45, 90, 135, 180, 225, 270, 315, 360 

Fuel Model 

98 (Open Water) 

122 (Mixed Conifer Forest and Woodland) 

165 (Ponderosa Pine Woodland) 

183 (Lodge pole Pine Forest) 

Canopy Cover 80-100% 

 

 2
nd

 input: Foliar moisture content (FMC) is set to 100% as default. Although FMC 

can vary with tree-species and time of year, the range of FMC for most species 

straddles 100% (Agee et al., 2002). Scott and Reinhardt (2001) show relative 

insensitivity of crown fire initiation to this parameter. 

 3
rd

 input: Wind direction and speed during the active spread-duration of the 

sample fire are decided by the random-draw process described earlier. 

 

FLAMMAP can identify the max spread direction of a fire spreading in each cell. It 

models fire spread in each cell by an elliptical shape with the ellipse’s major axis following the 

max spread direction. The following outputs from FLAMMAP are exported: 

 

𝜆(𝑤,𝑖,𝑛),𝑐   𝜓(𝑤,𝑖,𝑛),𝑐 Parameters describing the elliptical shape of fire (𝑤, 𝑖, 𝑛) spreading 

in cell 𝑐; where 𝜆(𝑤,𝑖,𝑛),𝑐 denotes half the distance between two 

foci, and 𝜓(𝑤,𝑖,𝑛),𝑐 denotes half the length of the ellipse’s major 

axis. 
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𝐸(𝑤,𝑖,𝑛),𝑐 Fire line intensity in cell 𝑐 when fire (𝑤, 𝑖, 𝑛) spreads following the 

max spread direction in that same cell. 

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐 Spread rate in cell 𝑐 when fire (𝑤, 𝑖, 𝑛) spreads following the max 

spread direction in that same cell. 

 

To calculate the spread rate and associated fire line intensity in each cell for the direction 

of interest, the following parameters are also needed (see also illustration in Figure 10): 

 

𝜃(𝑤,𝑖,𝑛),𝑐  The angle between the max spread direction in cell 𝑐 and the 

spread direction when fire (𝑤, 𝑖, 𝑛) spreads from the center of 𝑐′ to 

the center of 𝑐. 

𝜃(𝑤,𝑖,𝑛),𝑐′  The angle between the max spread direction in cell 𝑐′ and the 

spread direction when fire (𝑤, 𝑖, 𝑛) spreads from the center of 𝑐′ to 

the center of 𝑐. 
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Figure 10: Illustration of the angle between the max spread direction and the spread direction of 

interest from 𝑐′ to 𝑐 (See also Figure 5 for illustration of all eight possible spread directions from 

or toward a cell).  
 

 

Fire spread rate and intensity for the direction of interest would then be calculated based 

on Wei et al. (2011) as follows: 

 

Spread rate in cell 𝑐 when fire (𝑤, 𝑖, 𝑛) spreads from 𝑐′ to 𝑐 is calculated by: 

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐←𝑐′ =
(𝜓(𝑤,𝑖,𝑛),𝑐)2 − (𝜆(𝑤,𝑖,𝑛),𝑐)2

𝜓(𝑤,𝑖,𝑛),𝑐 − 𝜆(𝑤,𝑖,𝑛),𝑐 × 𝑐𝑜𝑠(𝜃(𝑤,𝑖,𝑛),𝑐)
 

      𝑖𝑓 0 ≤ 𝜃(𝑤,𝑖,𝑛),𝑐 ≤ 𝜋/2 (46) 

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐←𝑐′ =
(𝜓(𝑤,𝑖,𝑛),𝑐)2 − (𝜆(𝑤,𝑖,𝑛),𝑐)2

𝜓(𝑤,𝑖,𝑛),𝑐 − 𝜆(𝑤,𝑖,𝑛),𝑐 × 𝑐𝑜𝑠(𝜋 − 𝜃(𝑤,𝑖,𝑛),𝑐)
 

      𝑖𝑓 𝜋/2 ≤ 𝜃(𝑤,𝑖,𝑛),𝑐 ≤ 𝜋 (47) 

 

Max spread direction in cell c  

𝜃(𝑤,𝑖,𝑛),𝑐′,𝑗′ 

𝜃(𝑤,𝑖,𝑛),𝑐,𝑗 
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Spread rate in cell 𝑐′ when fire (𝑤, 𝑖, 𝑛) spreads from 𝑐′ to 𝑐 is calculated by: 

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐′→𝑐 =
(𝜓(𝑤,𝑖,𝑛),𝑐′)2 − (𝜆(𝑤,𝑖,𝑛),𝑐′)2

𝜓(𝑤,𝑖,𝑛),𝑐′ − 𝜆(𝑤,𝑖,𝑛),𝑐′ × 𝑐𝑜𝑠(𝜃(𝑤,𝑖,𝑛),𝑐′)
 

      𝑖𝑓 0 ≤ 𝜃(𝑤,𝑖,𝑛),𝑐′ ≤ 𝜋/2 (48) 

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐′→𝑐 =
(𝜓(𝑤,𝑖,𝑛),𝑐′)2 − (𝜆(𝑤,𝑖,𝑛),𝑐′)2

𝜓(𝑤,𝑖,𝑛),𝑐′ − 𝜆(𝑤,𝑖,𝑛),𝑐′ × 𝑐𝑜𝑠(𝜋 − 𝜃(𝑤,𝑖,𝑛),𝑐′)
 

      𝑖𝑓 𝜋/2 ≤ 𝜃(𝑤,𝑖,𝑛),𝑐′ ≤ 𝜋 (49) 

 

 Base on the spread rate and associated fire line intensity for the max spread direction 

derived from FLAMMAP, I calculate fire line intensity in each cell for the spread direction of 

interest as follows: 

 

Fire line intensity in cell 𝑐 when fire (𝑤, 𝑖, 𝑛) spreads from 𝑐′ to 𝑐 is calculated by: 

𝐸(𝑤,𝑖,𝑛),𝑐←𝑐′ = 𝐸(𝑤,𝑖,𝑛),𝑐 ×
𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐←𝑐′

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐
    (50) 

 

Fire line intensity in cell 𝑐′ when fire (𝑤, 𝑖, 𝑛) spreads from 𝑐′ to 𝑐 is calculated by: 

𝐸(𝑤,𝑖,𝑛),𝑐′→𝑐 = 𝐸(𝑤,𝑖,𝑛),𝑐′ ×
𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐′→𝑐

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐′
    (51) 

 

Equations from 46 to 51 are used to estimate the spread rate and associated fire line 

intensity from or toward each cell when it has not been treated by prescribed fire within 𝑊⃛ 

planning periods and burned within 𝑊⃛⃛ planning periods. If that cell has been treated by 
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prescribed fire within 𝑊⃛ planning periods or burned within 𝑊⃛⃛ planning periods, the spread rate 

and associated intensity in that cell are assumed to be decreased by 50% in the test cases. 

 

𝑅𝑂𝑆′
(𝑤,𝑖,𝑛),𝑐←𝑐′ =

1

2
𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐←𝑐′     (52) 

𝑅𝑂𝑆′
(𝑤,𝑖,𝑛),𝑐′→𝑐 =

1

2
𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐′→𝑐     (53) 

𝐸′
(𝑤,𝑖,𝑛),𝑐←𝑐′ =

1

2
𝐸(𝑤,𝑖,𝑛),𝑐←𝑐′      (54) 

𝐸′
(𝑤,𝑖,𝑛),𝑐′→𝑐 =

1

2
𝐸(𝑤,𝑖,𝑛),𝑐′→𝑐      (55) 

 

 For each sample fire, the critical threshold of fire line intensity for transition from surface 

fire to crown fire in each cell is calculated based on Van Wagner (1977) as a function of canopy 

base height (CBH) and foliar moisture content (FMC). 

 

𝐸𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝑤,𝑖,𝑛),𝑐,𝑗
= (0.01 × 𝐶𝐵𝐻(𝑤,𝑖,𝑛),𝑐,𝑗 × (460 + 25.9 × 𝐹𝑀𝐶(𝑤,𝑖,𝑛),𝑐))

1.5
  

∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑛, 𝑤 (56) 

 where: 

𝐶𝐵𝐻(𝑤,𝑖,𝑛),𝑐,𝑗 Denotes the “canopy base high” of forest in cell 𝑐 at age-class 𝑗 at 

the occurrence time of fire (𝑤, 𝑖, 𝑛). 

𝐹𝑀𝐶(𝑤,𝑖,𝑛),𝑐 Denotes the “foliar moisture content” of cell 𝑐 at the time fire 

(𝑤, 𝑖, 𝑛) starts. 

 

As Scott (2012) suggested, CBH is among “the least reliable fire modeling inputs to 

estimate, so adjustment of this parameter may be necessary to obtain reasonable fire modeling 
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results”. Estimating CBH is more than measuring the lowest crown base height or the average 

crown base height in a stand (Scott and Reinhardt 2001). Rather, the vertical distribution of fuel 

load needs to be considered. Various definitions of CBH have been introduced and listed in 

Table 3; many of them follow Van Wagner’s suggestion (1993) that CBH is the lowest height 

above the ground at which there is sufficient canopy fuel to propagate crown fire. Measured 

CBH can vary by different measurement methods, and can greatly impact fire modeling results. 

For the purpose of testing this stochastic program, I assigned CBH randomly in a cell according 

to forest age classes in the cell: 

 Age-class 𝑗 = 1 (1-10 years): 𝐶𝐵𝐻(𝑤,𝑖,𝑛),𝑐,1 = 1 − 2𝑚. 

 Age-class 𝑗 = 2 (11-20 years): 𝐶𝐵𝐻(𝑤,𝑖,𝑛),𝑐,2 = 2 − 3𝑚. 

 Age-class 𝑗 ≥ 3 (≥ 21  years): 𝐶𝐵𝐻(𝑤,𝑖,𝑛),𝑐,3 = 3 − 4𝑚. 

 

Table 3: Definitions of CBH from different sources. 

Source Definition 

 The average crown base height in the stand 

 The lowest crown base height in the stand 

Fulé et al. (2002), 

Hoffman et al. (2007) 

The lowest 20
th

 percentile of all crown base heights in the stand  

Sando and Wick (1972) The height at which a minimum bulk density of fine fuel (100 

lb/acre/ft, 0.037 kg/m
3
) is found  

Beukema et al. (1997) The height at which a minimum bulk density of fine fuel (30 

lb/acre/ft, 0.011 kg/m
3
) is found 

Cruz et al. (2003) CBH is calculated by an allometric equation as a linear function of 

stand height and basal area 
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In the test cases, I only model the effect of prescribed fire on modifying surface fuels, and 

assume that surface fire and prescribed fire would not change canopy characteristic. Within a 10-

year planning period, after a cell is burned by a crown fire, forest age-class will be reset to zero. I 

assume any following fire in that same period would be surface fires by assigning a very large 

positive value (Big M) to the CBH of forest at age class zero (𝐶𝐵𝐻(𝑤,𝑖,𝑛),𝑐,0 = 𝑀).  

 

Various sources of information are also collected to estimate relative prescribed burning 

cost, suppression cost, and value to be protected from fire in each cell in the testing landscape 

(Table 4). Prescribed burning cost is set to be one (𝑃𝐹𝑇 = 1) for every cell that has not been 

treated within 𝑊⃛ planning periods and burned within 𝑊⃛⃛ planning periods. Treatment cost in a 

cell would be assumed to be reduced by 50% if that cell has been treated within 𝑊⃛ planning 

periods or burned within 𝑊⃛⃛ planning periods (𝑃𝐹𝑇
′ = 0.5). Suppression cost (the cost for building 

fire control line in each cell) is set to two (𝑃𝑆𝑈𝑃𝑐
= 2), and is assumed to be the same for every 

cell. In the test cases, I assume surface fires would cause zero fire loss (all 𝑉(𝑤,𝑖,𝑛),𝑐,𝑗 parameters 

are set to zero). For crown fires, two assumed per cell value losses are used:  

 Low: 𝑉𝑐,𝑗≥3 = 4, and 𝑉𝑐,𝑗<3 = 0. 

 High: 𝑉𝑐,𝑗≥3 = 8, and 𝑉𝑐,𝑗<3 = 0. 
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Table 4: Fuel treatment cost, suppression cost, and potential forest value to be protected have 

been estimated in different ways by various sources.  

 

 Cost or Value Source 

Fuel treatment in general forest  $130-$1,100/acre Buckley and Podolak (2014) 

Prescribed fire treatment 

Mechanical treatment 

$125-$490/acre 

$700-$2,084/acre 

Hartsough et al. (2008) 

Slash reduction burning 

Prescribed natural fire 

Management ignited fire 

$167/acre 

$104/acre 

$78/acre 

(Cleaves et al. 1999) 

Suppression for large fires $101-$781/acre-burned 

 

Buckley and Podolak (2014), 

Dale (2009) 

Suppression for similar-sized fires 

and conditions in untreated areas 

Suppression for similar-sized fires 

and conditions in treated areas 

$706-$825/acre-burned 

 

$287-$327/acre-burned 

 

Fitch (2013) 

Suppression for large fires  $370-$826/chain (*) Smith (1987) 

Forest timber value $3,700-$4,300/acre Calculated based on the 

estimated net volume of saw 

timber (Smith et al. 2009), and 

saw-timber price (RISI, 2014 - 

http://www.risiinfo.com)   

Forest ecosystem value $392/acre Costanza et al. (1998),  

Krieger (2001) 

Wilderness preservation value $1,246/acre Loomis et al. (1996) 

(*): length in chains = 16.82 × (area in acres burned)0.5 
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3.2 Test-case designs 

Fuel treatment decisions at period one (FT1s) can be generated by the stochastic program 

using different sample sizes and assumptions. Two test cases are designed to answer the 

following questions: 

 1) Test case one focuses on answering the question: “Does changing sample size have 

significant impact on the overall quality of the FT1s suggested by the stochastic 

program?” 

 2) Test case two focuses on answering the question: “Among the FT1s suggested by the 

stochastic program, are some of the solutions significantly more efficient than the 

others?”  

 

For both test cases, I use a set of 300 i.i.d. testing fire sequence samples (TFSs) to 

measure and compare the performance of different period one fuel treatment schedules. These 

TFSs are generated by repeatedly and randomly drawing fires based on historical data of wind 

and fire (as described in section 3.1). They represent a set of many possible fire situations across 

a three-period planning horizon in the testing landscape.  

  

Figure 11: A set of 300 i.i.d. TFSs is generated to represent a set of possible fire situations 

across a three-period planning horizon in the testing landscape. These samples are used to 

measure and compare the quality of FT1s in both test cases one and two. 

 

Create a set of 300 i.i.d. TFSs 

1st TFS  

2nd TFS  

... 

300th TFS  



52 

 

Test case one: evaluate the impact of changing sample size on the performance of FT1s from the 

stochastic program 

I first use the stochastic program to find many FT1s based on random sets of fire 

sequence samples of fixed size N. The performance of these FT1s is evaluated by testing against 

300 i.i.d. TFSs through multiple model runs as illustrated in Figure 12. In each run, a known FT1 

is used to hardcode the first stage fuel treatment solution, and the stochastic model is allowed to 

make recourse decisions in all later stages to adapt to a TFS. The optimal objective function 

value is reported for each run. The mean of the optimal objective values from the 300 runs are 

calculated. Different sample size N may create solutions with various mean of optimal objective 

function value when testing against the 300 i.i.d TFSs. Paired-t-tests are used to compare these 

means at the 0.05 level of significance.  

 

 

Figure 12: The process to calculate the mean that represents the overall quality of FT1s 

generated by the stochastic program using a specific sample size N. Here, each run uses an i.i.d. 

TFS belonging to the fixed set of 300 i.i.d. TFSs, and an i.i.d. FT1 randomly generated by the 

stochastic program using sample size N. 

 

 

 

Test case two: Identify the best FT1 and the alternative FT1s generated by the stochastic 

program using a specific sample size 

Perform 300 model runs 

1st TFS and a random FT1 1st obj. value 

2nd TFS and a random FT1 2nd obj. value 

... ... 

300th TFS and a random FT1 300th obj. value 

Mean 
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For this test case, I select a fixed sample size N to populate all stochastic program runs.  

Three hundred runs are conducted with the selected sample size to find 300 FT1s. Duplicated 

FT1s may come out from these runs, so the number (denoted by U) of unique set of stands 

selected for fuel treatment in the first period is less than 300. The performance of each of the U 

unique FT1 is then evaluated according to the process illustrated in Figure 13, where that FT1 is 

hardcoded and tested against all 300 i.i.d. TFS samples. I use the mean of objective function 

values to represent the quality of each U unique FT1. Paired-t-tests are used to compare the 

means between the U unique FT1s at the 0.05 level of significance. I consider: 

 The unique FT1 that results in the lowest mean is “the best FT1”. 

 The unique FT1s that result in the means not significantly different with the lowest mean 

at 95% confidence level and the difference is less than 5% are “the alternative FT1s”. For 

comparison among alternatives, a lower mean represents a better quality FT1. 

 The best and the alternative FT1s are considered as high quality solutions. All the other 

unique FT1s are considered as low quality. 

 

 

Figure 13: Illustration of the process to calculate the mean that represents the quality of a unique 

FT1 (i.e. the 1
st
 unique FT1 in this Figure). 

Perform 300 model runs 

1st TFS, and 1st unique FT1 1st obj. value 

2nd TFS, and 1st unique FT1 2nd obj. value 

... ... 

300th TFS, and 1st unique FT1 300th obj. value 

 

Mean  
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4 Results 

Testing results are reported for the two test cases based on two sets of hypothetical ratios 

between prescribed burning cost, suppression cost, and forest value to be protected (FVP). The 

detail of these ratios was described in section 3.1. Per cell based FVP in the high FVP value 

assumption is assumed to be twice of the FVP in the low FVP value assumption.  

  

4.1 No fuel treatment and suppression 

I used an average historical ignition frequency of 0.0078125 per flammable cell on the 

testing landscape. One hundred and one out of the 300 randomly drawn TFSs have no fire; the 

other 199 TFSs include between one and five fires across all three modeled planning periods. 

Under the influence of the randomly drawn wind conditions, free-burning fires have an average 

size of 10 cells with random active spread durations from 6 to 24 hours without the impact from 

fuel treatments, suppressions, and previous fires. 

 

I estimated the fire losses in the set of 300 i.i.d. TFSs when all fires are allowed to burn 

without interference from both fuel treatment and suppression. The mean and standard deviation 

of discounted fire losses are estimated based on the objective function values obtained from the 

300 model runs. I use the term “NoFS” to represent these estimations. Under the low FVP 

assumption, the mean discounted fire loss for the 300 TFSs is 42.8 with standard deviation of 

39.8. The mean and standard deviation under the high FVP assumption are about doubled at 85.6 

and 79.7 respectively. Standard deviations of the objective function values are large under both 

assumptions of FPVs. 
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4.2 The impact of sample size on the quality of the first period prescribed burning solutions 

and on model complexity 

Results from test case one are presented in Figure 14 for both assumptions of low and 

high FPVs including the means (15A), the standard deviations (15B), and the 95% confidence 

interval (15C) of each mean calculated from the 300 objective function values as described in 

section 3.2. I use “mean” to compare the quality of the FT1s generated by the stochastic program 

using a specific sample size N. A sample size that leads to a lower objective function mean is 

considered as producing better quality and more robust FT1s to dealing with various fire 

situations represented by the 300 i.i.d. TFSs, as described by Ben-Tal and Nemirovski (1999). 
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Figure 14: Results comparing the overall performance of FT1s generated by the stochastic 

program using different sample sizes N. (A): Objective function value means, (B): Objective 

function standard deviations, and (C): 95% confidence intervals of the objective function means. 

 

Results indicate that when sample size increases, the overall quality and robustness of the 

FT1s generated by the stochastic program improve. In most of the cases, using a larger sample 

size leads to a lower objective function mean (15A), a lower standard deviation (15B), and also a 

narrower 95% confidence interval (15C). Under the assumption of low FVP, although models 

built on sample size one to five lead to lower means and standard deviations comparing to NoFS, 
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statistical tests indicate that the differences among those means are not significant; only models 

with sample size ≥10 can lead to significantly lower objective function means in comparison 

with NoFS. Under the high FVP assumption, the improvement of solution quality due to 

increasing sample size is more obvious. All the models with sample size ≥1 lead to significantly 

lower objective function means compared to NoFS; reductions in the mean are also significant 

when increasing sample size from one to more than 10, and from five to 60.  

 

Although increasing sample size can improve the overall quality and robustness of the 

FT1s generated by the stochastic program, this effect diminishes when sample size grows as 

indicated by less differences between the means, less differences between the standard 

deviations, and more overlaps between the 95% confidence intervals. Under the assumption of 

low FPV, I saw 12.0% reductions of the objective function mean, and 18.1% reduction of 

standard deviation when sample size increases from 1 to 10; the corresponding reductions under 

high FPV assumption are 19.8% and 32.2% respectively. Quality of the FT1s across many 

stochastic program runs based on larger sample sizes is more consistent as indicated by the 

smaller difference of the objective function means. For example, the maximum difference of the 

means is less than 2.5% when comparing between models using sample size ≥10 under low FPV 

assumption, and comparing between models using sample size ≥40 under high FPV assumption. 

Results indicate little improvement of solution quality when sample size increases from 20 to 30 

or from 50 to 60 respectively for the two assumptions of low or high FPV.  

 

Increasing sample size would also increase model complexity, reflected partially by 

longer computing time required to solve the stochastic program (Table 5). Solution quality 
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however, shows little difference between large sample size model runs. For example, under the 

low FPV assumption, increasing sample size from 20 to 30 would increase solution time 3.5 

times (423 to 1491 minutes), but solutions have about the same objective function means (33.1) 

and little difference in objective function standard deviations (24.6 and 24.8). 

 

Table 5: Total solving time estimated for 300 runs of the stochastic program using each different 

sample size. 

 

Sample size  1 5 10 20 30 40 50 

Solving time (minutes) 

under low FPV assumption  
5 38 158 423 1491 N/A N/A 

Solving time (minutes) 

under high FPV assumption 
5 17 46 179 413 827 1344 

 

 

4.3 Comparison of the first period prescribed burning solutions 

 Fuel treatment decisions need to be made across space and time. Treatment decisions at 

the first stage (or first period) needs to be carried out immediately before the reveal of future fire 

conditions, and may have impact on future fire behaviors and management recourse decisions at 

later stages. A good FT1 should consider the future fire situations and support future 

management activities. Different sets of random sample fires used by the stochastic program may 

suggest different FT1s; changing sample size N can also suggest different FT1s. Selecting a good 

FT1 is often challenging. 

Repetitively running the stochastic program using larger sample sizes can increase the 

chance of finding a good quality FT1. However, increasing sample size also makes the stochastic 

program more complex and consequently more difficult to solve. As indicated by results from 
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test case one, solution quality will increase in a diminishing manor when sample size grows. This 

makes it possible to obtain a good set of FT1s with a moderate sample size. The FT1s selected 

by using these sample sets may still have reasonably good quality. 

 

Under the assumption of low FPV, I selected a sample size of 30 DFSs to run the 

stochastic program 300 times and found 90 unique FT1s; each of them represent a unique set of 

stands selected for first period prescribed burning. Under the high FPV assumption, the sample 

size of 60 DFSs was selected to run the stochastic program 300 times which also identified 90 

unique FT1s. The performance of each unique FT1 was then evaluated through paired-t-tests 

with 95% confidence to remove all low quality solutions. I only focus on studying the remaining 

high quality FT1s that include the best solution found and the alternative solutions that have less 

than 5% difference compared with the discovered lowest objective function mean from the best 

solution. These high quality FT1s are listed in the Table 6 and also illustrated in Figure 15 and 

Figure 16.  
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Table 6: The best FT1 and the alternative FT1s under different FPV assumptions. 

Treatment

Amount (%) Lower bound Mean Upper bound

Low FPV 1 3, 4, 8, 9 14.0 15.0 30.2 33.0 35.9

2 3, 4, 7, 8 0.7 15.0 30.5 33.3 36.2

3 4, 7, 8, 9 1.7 15.0 30.3 33.2 36.1

4 3, 4, 8, 12 1.0 15.0 31.0 33.9 36.9

5 3, 4, 7, 8, 9 0.3 16.7 30.5 33.3 36.0

6 3, 4, 8, 10 0.7 18.3 30.7 33.5 36.4

7 3, 4, 7, 8, 9, 12 3.3 18.3 30.3 33.0 35.7

8 4, 8, 9, 10 2.0 18.3 30.7 33.7 36.6

9 3, 4, 8, 9, 10 1.0 20.0 30.9 33.7 36.4

10 4, 8, 9, 11 0.3 20.0 31.3 34.1 36.9

11 3, 4, 8, 9, 11 0.7 21.7 31.5 34.1 36.8

12 1, 3 3.0 21.7 31.0 34.2 37.3

13 6 (best FT1 ) 16.7 23.3 30.1 32.6 35.1

14 1, 3, 9 3.7 23.3 30.9 33.9 36.9

15 1, 3, 7 1.0 23.3 31.1 34.2 37.2

16 6, 9 2.7 25.0 30.6 33.0 35.4

17 3, 6 3.3 25.0 30.7 33.1 35.5

18 3, 6, 9 1.0 26.7 31.2 33.5 35.9

High FPV 1 6 3.0 23.3 41.3 46.3 51.4

2 6, 9 3.3 25.0 41.3 46.1 51.0

3 3, 6 3.0 25.0 41.4 46.2 51.0

4 3, 6, 9 4.0 26.7 41.5 46.2 50.8

5 6, 8 1.0 30.0 41.7 46.2 50.7

6 6, 8, 9 3.0 31.7 41.8 46.2 50.6

7 1, 3, 4, 8, 9 3.7 35.0 42.1 46.3 50.5

8 1, 3, 4, 7, 8, 9 0.3 36.7 42.1 46.0 49.9

9 1, 6 7.7 43.3 41.2 44.3 47.4

10 1, 6, 9 (best FT1 ) 4.7 45.0 41.4 44.2 47.0

11 1, 3, 6 5.3 45.0 41.5 44.3 47.0

12 1, 3, 6, 9 3.3 46.7 41.7 44.2 46.7

13 1, 6, 10 0.3 48.3 42.4 45.1 47.7

14 1, 4, 6 0.7 48.3 43.0 46.0 49.0

15 1, 6, 8 1.7 50.0 42.0 44.3 46.6

16 1, 3, 6, 10 0.3 50.0 42.7 45.0 47.3

17 1, 6, 9, 10 0.3 50.0 42.7 45.1 47.5

18 1, 6, 8, 9 4.3 51.7 42.2 44.3 46.3

19 1, 3, 6, 8 1.7 51.7 42.5 44.5 46.5

20 1, 3, 6, 8, 9 2.0 53.3 42.8 44.6 46.4

21 1, 6, 8, 9, 10 0.3 56.7 44.0 45.8 47.6

22 1, 3, 4, 6, 8, 9 0.3 58.3 44.6 46.3 47.9

No Treated Stands
95% Confidence Interval

Chance (%)

 Chance = (total number of duplication of a unique FT1)/(total number of runs)×100 
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Figure 15: The best and the alternative FT1s under the assumption of Low FPV. Results 

include: (A): Objective means, (B): Objective standard deviations, and (C): 95% confidence 

intervals of the means.  
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Figure 16: The best and the alternative FT1s under the assumption of High FPV. Results 

include: (A): Objective means, (B): Objective standard deviations, and (C): 95% confidence 

intervals of the means. 
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Study the best FT1 

I simply choose the FT1 that leads to the lowest objective function mean to be the best 

solution. Under the assumption of low FPV, the best FT1 decreases the objective function mean 

from 42.8 (NoFS) to 32.6, an approximately 23.8% reduction. In this FT1, prescribed burning is 

only scheduled in stand six covering 23.3% of the tested landscape. This stand is adjacent to the 

open water at the center of the landscape. Scheduling prescribed fire in it separates the landscape 

into two disconnected patches (Figure 17A). Under the assumption of high FPV, implementing 

the best FT1 also decreases the objective function mean significantly in comparison with NoFS. 

Objective function mean decreases from 85.6 to 44.2, an approximately 48.4% reduction rate. 

The total area of the first period prescribed burning as suggested by this solution covers 45% of 

the total landscape area, which is approximately doubled comparing with the low FPV test case. 

Treated area includes stand one, six and nine. These treated stands also connect with the open 

water and separate the whole landscape into four patches (Figure 17B). This treatment 

arrangement is more effective in reducing landscape fire loss. 
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      A: Low FPV           B: High FPV 

Figure 17: Stands selected for the first period fuel treatments as suggested by the best FT1 under 

low and high assumed forest protected value. 

 

 The chance of identifying the best FT1 from just one stochastic program run is 16.7% and 

4.7% respectively (Table 6) associated with the two assumptions of low and high FPVs. This is 

partially due to the low historical fire frequency used for the tests. As mentioned earlier, the 

random draws resulted in 101 over the total of 300 i.i.d. TFSs not having any fire. It indicates 

that no treatment would be identified as the optimal solution in at least 30% of the stochastic 

model runs.  
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Alternative FT1s 

Alternative FT1s are identified for both assumptions of low and high FPVs as presented 

in Table 6 and also illustrated in Figure 15 and Figure 16. The Pair-t-test selection method 

guarantees that the mean from any alternative FT1 and the lowest mean from the best FT1 are 

not significant different at the 95% confidence level, and the difference must be less than 5%. 

This is illustrated by the overlaps of all the 95% confidence intervals (16C and 17C). Under the 

assumptions of low and high FPVs, our selection method respectively identifies 17 and 21 

alternative FT1s. These high quality solutions with various treatment patterns and amounts can 

give fire managers more flexibility in choosing what would fit their plan the best. Figure 18 and 

19 below illustrate some of the high quality treatment plans for the first period. The complete set 

of alternative FT1s for each FPV assumption was listed earlier in Table 6. 

 

 

Figure 18: Some alternatives FT1s under Low FPV assumption 
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Figure 19: Some alternatives FT1s under High FPV assumption 

 

 Results indicate that a good prescribed burning plan should treat between 15.0% and 

26.7% of the total landscape areas during the first period when the FPV is low. When the FPV is 

doubled (the high FPV case), treated areas in the first period should cover 23.3% to 58.3% of the 

total landscape. As illustrated in Figure 15A and 17A, while the objective function means 

remains at less than 5% difference, in most of the cases increasing the total area of the first 

period prescribed burning would decrease the average discounted loss from future fires. Larger 

area of prescribed burning applied in the first period leads to solutions with objective function 

means having lower standard deviations and narrower confidence intervals. This is more obvious 

when testing under the assumption of high FPV (17B and 17C).  

 

 Suppression is allowed in all planning periods by building fire-control-lines. Within the 

alternative FT1s, increasing the total area of prescribed burning does not necessarily reduce the 

total cost of suppression across all periods (16A and 17A). Modeling results under different 

assumptions suggest that some fire suppression activities should be applied in the tested 
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landscape, with the average discounted cost of building fire control lines accounting for a small 

proportion of the total objective function mean: from 0.48% to 1.05% under the low FPV 

assumption (16A), and from 0.72% to 1.14% under the high FPV assumption (17A). There are 

several reasons that may contribute to the low suppression cost. Firstly, our test cases assume the 

per-cell based cost for control line construction is twice of the per-cell based cost for prescribed 

burning, which makes suppression a more expensive and less appealing decision in comparison 

with prescribed treatment. Secondly, suppressions are only allowed in cells where fires cannot 

reach forest canopy (surface fires), and these fires in the test cases are assumed to cause no FPV 

loss; therefore, the effect of suppression is only to prevent fire from spreading into other cells. 

With an average MSR of 10 cells for each sample fire, the number of cell can be saved by 

suppression is small. Furthermore, due to the assumed beneficial effects of prescribed burning 

and previous fires (decrease fire spread rate and intensity by 50%) the spread range of each 

sample fire would be even smaller and dampen the need for suppression to be aggressively 

implemented after encountering areas previously treated or burned. A study from Schaaf et al. 

(2004) in Angeles National Forest in southern California also suggests that a small and less 

costly fire suppression program, matched with a moderate intensity prescribed burning program 

would provide the most cost-beneficial fire management strategy for their study area. 
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5 Conclusion and Discussion 

Wildfire, along with the uncertainties associated with it, creates significant challenges in 

long-term wildland fire management. Decision models have been used to support wildfire 

managers on estimating fire impact and suggesting fire planning strategies. Fire-risks have been 

integrated into planning processes in either deterministic or stochastic formulations. 

Deterministic models often lack the ability to adequately capture the stochastic nature of 

wildfires and may lead to biased management decisions (Hof and Omi 2003). Modelling wildfire 

decisions under a stochastic framework often has the advantage of providing more robust 

decisions to account for the uncertainties in wildfire management. In building stochastic 

programming models to support wildfire decisions, we can either draw random fire samples or 

construct representative fire scenarios to reflect the important future stochastic pattern of wildfire 

occurrence in a landscape. The number of possible scenarios can be enormous when modeling 

the spatial and temporal interactions between wildfire and wildfire decisions, which makes it 

difficult to construct and select adequate representative scenarios. In this study, I use random fire 

samples to build a stochastic program and several test cases in supporting long term prescribed 

burning based fuel treatment decisions.  

 

In this study, I integrate wildfire occurrence and behavior, prescribed burning, and fire 

suppression into a prototype multistage stochastic program that can explicitly model the spatial 

and temporal interactions between these components. Future forest fuel load can be decreased by 

wildfire or prescribed burning. Within certain periods after these events, there may be less 

devastating fire behavior and potentially safer and more effective fire suppression activity in the 

previously burned or treated areas. The expected outcome of fuel and fire management across a 
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multi-period planning horizon is minimized in a sample average approximation based 

formulation, where each sample represents a sequence of management decisions and randomly 

simulated sample fires across all periods. The spatial locations of prescribed burning areas in the 

first period is the primary interest of implementing this model because the first period (first 

stage) prescribed burning decision needs to be implemented immediately, whereas recourse 

decisions can be adjusted accordingly during the later stages of the decision process. The design 

of this multistage stochastic program would improve the robustness of the first period prescribed 

burning decision by accounting for uncertainties of future prescribed burning, fire behavior, and 

simplified suppression activities. 

 

Replicating the stochastic model runs built on different i.i.d. DFSs may suggest different 

layouts for prescribed burning in the first period. I use Monte Carlo simulations and paired-t-

tests to compare quality of the first period prescribed burning solutions at 95% confidence. Tests 

show that a high quality solution (as presented in Table 6) can often be discovered by comparing 

and evaluating the pool of many candidate solutions acquired from multiple stochastic program 

runs. 

 

Test cases in this study are built on a 12-stand forested artificial landscape with sample 

fires simulated randomly. I use a three-period fire planning horizon for the tests. Prescribed 

burning is modeled as the only method used for fuel treatment. Fire management activity is 

simplified as the construction of fire-control-line in a cell with a predefined cost. I solved a series 

of test cases under two different hypothetical assumptions of ratios between prescribed burning 

cost, suppression cost, and FPV. Results provide various optimal layouts for allocating 
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prescribed fires in the first planning period. Results suggest that a good plan for the first period 

prescribed burning should cover between 15.0% and 26.7%, or between 23.3% and 58.3% of the 

tested landscape respectively depending on whether the assumed FPV is low or high. Some of 

the discovered first period prescribed-burning solutions are significantly better than the others 

when tested against a fixed set of 300 i.i.d TFSs. These indicate that a single stochastic run may 

not always find a high quality first period prescribed burning solution (Table 6). It is interesting 

to see whether the chance of encountering a good quality first period solution might increase 

when testing in a landscape with a higher fire frequency. I leave it to future work because of our 

current computer limits. 

 

Alternative first-period fuel treatment selections will give fire managers more flexibility 

in choosing their fire management plans. Scheduling prescribed fire in less areas will lower fuel 

treatment cost, but may increase the expected fire loss. Due to these tradeoffs, there may be less 

significant change in the expected objective function value. Scheduling fuel treatment in a large 

portion of a landscape may decrease fire loss significantly. However, intensively scheduling fuel 

treatment across a landscape is costly and may not be practical (Laverty and Williams 2000, 

GAO 2003). In this case, effectively selecting a smaller portion of the landscape for treatment 

can be a better option. 

 

In this study, the stochastic program is tested by varying the number of i.i.d. DFSs. As 

expected, results show the benefit of using larger sample sizes to improve solution robustness 

and efficiency, as indicated by smaller values of objective function means and standard 

deviations across many replicated model runs. Results indicate that sample size of 10 or 30 could 
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be used to find good quality first period prescribed burning solutions under the two assumptions 

of low or high FPV. The benefit of increasing sample size tends to diminish as sample size 

increases, which allows us to use a moderate sample size to obtain a reasonably good set of 

solutions. Using larger sample sizes would significantly increase model complexity and solution 

time.  

 

I acknowledge that running this stochastic programming model on a larger landscape 

with more planning periods may require us to use large sample sizes to obtain solutions with 

good quality. Models built on larger landscapes are also difficult to solve. For example, I tested a 

20-by-20 cell landscape including 70 stands; using the same assumptions as the presented test 

cases, our computer can only solve a problem with sample size up to 15 DFSs. Solving larger 

problems with more complicated forest fuel structures and fire conditions might be possible by 

using computer with more memory, developing more efficient modeling formulations, designing 

proper heuristics, or employing other solution approaches such as decomposition methods. These 

are potential future research. 

 

Another limitation from this stochastic program is the simplification of fire behavior. Fire 

spread rate and fire line intensity are modeled based on surface fires. I assumed crown fire 

occurred only if surface fire could spread into crown. A detailed fire modelling approach may 

model the spread of crown fire across forest canopy directly, and also the effect of spotting fire 

(Rothermel 1991, Scott and Reinhardt 2001). Active crown fires can spread faster than surface 

fires (Scott and Reinhardt 2001). Therefore, only modelling fire spread on surface may 
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underestimate the actual fire spread rate, especially when a severe fire spreads under extreme 

weather conditions. 

 

The stochastic program in this study only addresses prescribed-fire based fuel treatment. 

This program however, could be readily adapted without significantly altering its structure to 

consider other fuel treatment methods. Treatment methods which have different effects on fire 

spread rate and intensity that last for different duration can be modeled by simply modifying the 

parameters (𝑅𝑂𝑆′
(𝑤,𝑖,𝑛),𝑐′→𝑐, 𝑅𝑂𝑆′

(𝑤,𝑖,𝑛),𝑐←𝑐′, 𝐸′
(𝑤,𝑖,𝑛),𝑐′→𝑐, 𝐸′

(𝑤,𝑖,𝑛),𝑐←𝑐′, 𝑊⃛). Other treatment 

methods can increase CBH in a forest, such as mechanical treatments. Base on the correlation 

between CBH and the critical threshold of fire line intensity (as in Equation 56), the effect of fuel 

treatment on increasing CBH can be modeled by increasing the critical threshold of fire line 

intensity. For example, we can add a variable to track fuel treatment activity (i.e. 𝑝′(𝑤,𝑖,𝑛),𝑐 in 

Equations 57 and 58), use that variable to calculate the increase of the critical threshold of fire 

line intensity after fuel treatment, and consider that increase when comparing between fire line 

intensity and the critical intensity threshold (Equations 59 and 60 are used to replaced Equations 

23 and 24). Incorporating various fuel treatment methods into a single model is a challenging and 

interesting task in future research.  

 

𝑝′(𝑤,𝑖,𝑛),𝑐 ≤ 𝑥𝑤,𝑎𝑐,𝑛 + ∑ 𝑥𝑤′,𝑎𝑐,𝑛𝑤′∈𝑊̂𝑤
   ∀𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

, 𝑖, 𝑛, 𝑤 (57) 

𝑝′(𝑤,𝑖,𝑛),𝑐 ≥
𝑥𝑤,𝑎𝑐,𝑛+∑ 𝑥

𝑤′,𝑎𝑐,𝑛𝑤′∈𝑊̂𝑤

𝑀
   ∀𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)

, 𝑖, 𝑛, 𝑤 (58) 

𝑜(𝑤,𝑖,𝑛),𝑐 ≥
∑ 𝐸𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝑤,𝑖,𝑛),𝑐,𝑗×𝑞(𝑤,𝑖,𝑛),𝑐,𝑗𝑗 +∆×𝑝′

(𝑤,𝑖,𝑛),𝑐−𝑒(𝑤,𝑖,𝑛),𝑐

𝑀
  

∀𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑛, 𝑤 (59) 
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1 − 𝑜(𝑤,𝑖,𝑛),𝑐 ≥
𝑒(𝑤,𝑖,𝑛),𝑐−∑ 𝐸𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝑤,𝑖,𝑛),𝑐,𝑗×𝑞(𝑤,𝑖,𝑛),𝑐,𝑗𝑗 −∆×𝑝′

(𝑤,𝑖,𝑛),𝑐

𝑀
   

       ∀ 𝑐 ∈ 𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
, 𝑖, 𝑛, 𝑤 (60) 

where: 

∆ is a parameter denoting certain increase in the critical threshold of fire line 

intensity when fuel treatment effect lasts. 

𝑝′(𝑤,𝑖,𝑛),𝑐 is a binary variable receiving a value of 1 if at the time immediately before 

the occurrence of fire (𝑤, 𝑖, 𝑛) cell 𝑐 has been treated within 𝑊⃛ planning 

periods; otherwise, 𝑝′(𝑤,𝑖,𝑛),𝑐 = 0. 

 

In this study, fire suppression is not modeled with details. A stochastic model from 

Belval et al. (2015) includes many more realistic aspects of fire suppression activities such as 

crew movement, crew safety, line production, and line quality. That model also captures the 

interaction between fire behavior and suppression in a two-stage problem. However, including 

that level of details in suppression of even a single fire would demand long computing time and 

large capacity of computer memory. The preprocessing algorithm used in my study greatly helps 

improve the computation efficiency. However, modelling fire behavior, fuel treatment, and 

suppression in details may significantly reduce the sample size that can be dealt by this 

stochastic program.  

 

 As the final remark, the purpose of this study is to demonstrate that stochastic program 

could be used to provide insight about the magnitude and spatial allocation for the first period 

prescribed burning. The flexibility of this stochastic program would allow fire managers to study 

different management assumptions and to meet different management interests. Results 
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demonstrate that scheduling prescribed fire at the beginning of a planning horizon can effectively 

lower the total fire loss and management cost across all planning periods. However, many 

insights from this study are based on testing a prototype model on an artificial landscape. The 

main purpose of the test cases is to validate the model logic and performance. Depending on 

specific future fuel treatment decisions, more detailed modeling and modifications may be 

required to apply this prototype model to a real world landscape. To improve the accuracy and 

reliability of the presented program, it is also necessary to have more supports such as site-

specific analysis, or experimental evidences. 
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Appendix 

A preprocessing algorithm to calculate the maximum spread range (MSR) of each sample 

fire 

This algorithm is used to calculate the MSR for each sample fire within an assumed 

duration, under a modeled wind condition, and without interference from fuel treatments, 

suppressions, and previous fires. A fire cannot spread beyond its MSR in future modeling when 

the effects of the previous fires, fuel treatments, or suppressions are to reduce fire spread rate and 

contain fires. Therefore in the stochastic program, suppression and fire spread will not be 

modeled outside of the MSRs. This can reduce computer memory requirement and also speed up 

solution time of the stochastic program.   

 

Beside notations described in section 2.3, this preprocessing algorithm also uses the 

following notations: 

𝑖𝑡𝑒𝑟 Index of a simulation iteration. 

𝐶̂𝑖𝑡𝑒𝑟  The set of “candidate cells” that can be burned in the iteration denoted as 

“𝑖𝑡𝑒𝑟”. This set includes all flammable cells that are adjacent to the 

“already burned cells” identified from the previous iteration denoted as 

“𝑖𝑡𝑒𝑟 − 1”. 

𝐶̂′
𝑖𝑡𝑒𝑟  The set of “burned cells” identified at the end of iteration “𝑖𝑡𝑒𝑟”. 

𝐶̂∗
𝑖𝑡𝑒𝑟 The cell which the fire will spread to the first (the earliest) at the end of 

iteration “𝑖𝑡𝑒𝑟”. 
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𝐼𝑇𝐸𝑅𝑚𝑎𝑥 The maximum number of possible iterations required to determine the 

MSR, which is equal to the total number of flammable cells in the 

landscape. 

𝑇𝑐 The MFAT of cell 𝑐. 

 𝑇∗
𝑖𝑡𝑒𝑟 The minimum value among all possible fire arrival times for cells in set 

𝐶̂𝑖𝑡𝑒𝑟. 

 

This algorithm uses an iterative process to model fire spread. Fire can spread between 

adjacent cells sharing an edge or a vertex. At the end of each iteration, only one cell with the 

earliest fire arrival time would be identified as the cell that the fire will spread to in this iteration. 

The MSR of the simulated sample fire includes all the burned cells identified in the last iteration. 

The algorithm is described below (see also a flowchart of this algorithm in Figure 20, and an 

illustrative example in Figure 21). 

 

Select a sample fire (1 step) 

 Step 1: Select a randomly drawn sample fire (𝑤, 𝑖, 𝑛) with its pre-determined active 

spread duration (𝐻(𝑤,𝑖,𝑛)), and its pre-estimated spread rates (𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐←𝑐′, and 

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐′→𝑐); then proceed to step 2. 

 

Initiate the Mode (5 steps) 

 Step 2: Set the current iteration to one: 𝑖𝑡𝑒𝑟 = 1  

 Step 3: The ignition cell is identified as the only cell to be burned at the end of the first 

iteration: 𝐶̂∗
𝑖𝑡𝑒𝑟=1 = 𝐶̂𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑤,𝑖,𝑛)

. 



90 

 

 Step 4: Set MFAT of the ignition cell to zero:  𝑇𝑐=𝐶̂𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑤,𝑖,𝑛)
= 0. 

 Step 5: Set “burned cells” at the end of iteration one to include only the ignition cell:

 𝐶̂′
𝑖𝑡𝑒𝑟 = {𝐶̂𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑤,𝑖,𝑛)

} 

 Step 6: Set “candidate cells to be burned” in the next iteration (iteration two) to include 

all flammable cells that are adjacent to the ignition cell: 𝐶̂𝑖𝑡𝑒𝑟+1 = 𝐶̂𝑐=𝐶̂𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛(𝑤,𝑖,𝑛)
.  

Then proceed to step 7. 

 

Check algorithm stopping conditions (1 step) 

 Step 7: Stop the algorithm if either: 1) MFAT of the cell identified as burned earliest at 

the end of the current iteration is greater than the fire duration (𝑇𝑐=𝐶̂∗
𝑖𝑡𝑒𝑟

> 𝐻(𝑤,𝑖,𝑛)). In 

this case, the sample fire only burns part of the landscape at the end of its duration; or 2) 

the total number of iterations reaches the maximum (𝑖𝑡𝑒𝑟 = 𝐼𝑇𝐸𝑅𝑚𝑎𝑥). In this case, all 

flammable cells in the landscape are burned by the fire before the end of its duration. The 

MSR is identified when the algorithm stops, which includes all the burned cells in the last 

iteration (𝐶̂𝐴𝑐𝑡𝑖𝑣𝑒(𝑤,𝑖,𝑛)
= 𝐶̂′

𝑖𝑡𝑒𝑟). If stopping criteria are not met yet, proceed to step 8. 

 

Iterative Process (6 steps) 

 Step 8: Increase the current iteration by one:  𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1. 

 Step 9: Identify all possible fire spread paths that connect a “burned cell” at the end of the 

previous iteration (𝑐′ ∈ 𝐶̂′
𝑖𝑡𝑒𝑟−1) to a “candidate cell to be burned” in the current iteration 

(𝑐 ∈ 𝐶̂𝑖𝑡𝑒𝑟) when these two cells are adjacent (sharing an edge or a vertex); Calculate all 
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possible fire arrival times of the candidate cells, each corresponding to a unique fire 

spread route to a candidate cell; and compare to find the minimum value:   

𝑚𝑖𝑛 {𝑇𝑐′ +
𝛽

𝑐′,𝑐

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐←𝑐′

+
𝛽

𝑐′,𝑐

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐′→𝑐

: ∀𝑐 ∈ 𝐶̂𝑖𝑡𝑒𝑟 , 𝑐′ ∈ 𝐶̂′
𝑖𝑡𝑒𝑟−1} 

 Step 10: Select the candidate cell with the minimum fire arrival time as the cell that will 

be burned the earliest at the end of the current iteration:    

𝐶̂∗
𝑖𝑡𝑒𝑟 = 𝑐 𝑖𝑓 𝑇∗

𝑖𝑡𝑒𝑟 = 𝑇𝑐′ +
𝛽

𝑐′,𝑐

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐←𝑐′

+
𝛽

𝑐′,𝑐

𝑅𝑂𝑆(𝑤,𝑖,𝑛),𝑐′→𝑐

: ∀𝑐 ∈ 𝐶̂𝑖𝑡𝑒𝑟 , 𝑐′ ∈ 𝐶̂′
𝑖𝑡𝑒𝑟−1 

 Step 11: Update MFAT of the cell identified as being burned the earliest: 

 𝑇𝑐=𝐶̂∗
𝑖𝑡𝑒𝑟

= 𝑇∗
𝑖𝑡𝑒𝑟 

 Step 12: Update “burned cells” at the end of the current iteration to also include the cell 

identified as burned the earliest: 𝐶̂′
𝑖𝑡𝑒𝑟 = 𝐶̂′

𝑖𝑡𝑒𝑟−1 ∪ 𝐶̂∗
𝑖𝑡𝑒𝑟. 

 Step 13: Update “candidate cells to be burned” in the next iteration to include all 

flammable cells that are adjacent to the “burned cells” (identified in step 12):   

𝐶̂𝑖𝑡𝑒𝑟+1 = (𝐶̂𝑖𝑡𝑒𝑟\𝐶̂∗
𝑖𝑡𝑒𝑟) ∪ (𝐶̂𝑐=𝐶̂∗

𝑖𝑡𝑒𝑟
\(𝐶̂𝑐=𝐶̂∗

𝑖𝑡𝑒𝑟
∩ 𝐶̂′

𝑖𝑡𝑒𝑟) ) 

Then go back to step 7. 
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Figure 20: A flowchart of the preprocessing algorithm used to calculate the MSR of a selected 

sample fire.  

Initiate the Mode 
 

- Ignition cell is identified as the cell burned 

the earliest at the end of the first iteration 

with MFAT of this cell set to zero.  

- Burned cells include only the ignition cell. 

- Candidate cells to be burned in the next 

iteration include all adjacent cells of the 

ignition cell. 
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Figure 21: An example to illustrate the preprocessing algorithm. In this example, a rectangular-

landscape including 42 cells is used to examine fire-spread-pattern for the first two iterations, 

assuming stopping criteria are not met yet. This landscape includes two non-flammable cells (i.e. 

open water represented by the two blue cells 17 and 27) and 40 flammable cells (i.e. forest), with 

the number in each cell representing the cell’s ID. The arrows represent all possible fire spread 

paths to the “candidate cells to be burned” (green) in the next iteration. In this example, cell 15 is 

assumed to be the fire’s ignition cell, which is realized as the cell burned the earliest at the end of 

iteration one. At iteration two, fire can spread from cell 15 to its eight “candidate cells to be 

burned” (8, 9, 10, 14, 16, 20, 21, and 22). I assume this fire would spread from cell 15 to cell 22 

faster than to the other seven cells. Therefore, cell 22 would be identified as the cell burned the 

earliest at the end of the second iteration.   
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