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ABSTRACT

STATISTICAL MODELS FOR ANIMAL MOVEMENT AND LANDSCAPE

CONNECTIVITY

This dissertation considers statistical approaches to the study of animal movement be-

havior and landscape connectivity, with particular attention paid to modeling how movement

and connectivity are influenced by landscape characteristics. For animal movement data, a

novel continuous-time, discrete-space model of animal movement is proposed. This model

yields increased computational efficiency relative to existing discrete-space models for animal

movement, and a more flexible modeling framework than existing continuous-space models.

In landscape genetic approaches to landscape connectivity, spatially-referenced genetic allele

data are used to study landscape effects on gene flow. An explicit link is described between a

common circuit-theoretic approach to landscape genetics and variogram fitting for Gaussian

Markov random fields. A hierarchical model for landscape genetic data is also proposed, with

a multinomial data model and latent spatial random effects to model spatial correlation.
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CHAPTER 1

STUDYING LANDSCAPE CONNECTIVITY THROUGH ANIMAL

MOVEMENT AND GENETIC VARIATION

Landscape connectivity is “the degree to which the landscape facilitates or impedes move-

ment among resource patches” (Taylor et al., 1993). Connectivity among subpopulations or

habitat patches is an important factor in maintaining biodiversity, understanding the spread

of infectious diseases, and allocating resources for conservation. Many management efforts

devote considerable resources to maintaining or restoring landscape connectivity (e.g., Crooks

and Sanjayan, 2006).

Understanding how the environment influences animal behavior and landscape connec-

tivity is one of the most important questions in ecology and conservation (Dalziel et al., 2008;

Gurarie et al., 2009; Cagnacci et al., 2010). Human disturbance and ongoing climate change

alter the landscape, affecting connectivity and increasing uncertainty about the future of

current ecosystems. In this environment, making data driven decisions is critical to effective

management of species and ecosystems.

In this dissertation, my goal is to propose novel statistical approaches to studying connec-

tivity by considering two common data types used in this field: animal movement data and

spatially referenced genetic data. I begin by outlining current approaches in the modeling

of animal movement data and spatially referenced genetic data.

1.1 Modeling Animal Movement

Recent advances in technology have made animal telemetry data easier to collect at finer

temporal resolutions than previously possible (Tomkiewicz et al., 2010), but there are still

significant challenges in linking telemetry data to animal movement and resource selection.
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Some challenges arise in the use of telemetry data, which are typically irregular in time,

have measurement error that is varying in severity, and may exhibit temporal autocorre-

lation (Kuhn et al., 2009; Tomkiewicz et al., 2010). Other challenges arise from modeling

something as complex as animal movement, which typically exhibits changing behavior over

time (Morales et al., 2004; Nathan et al., 2008; Getz and Saltz, 2008; Gurarie et al., 2009;

Forester et al., 2009; Merrill et al., 2010; Polansky et al., 2010) and may be driven by a mix of

external (environmental) and internal (biotic) factors. Still other challenges involve making

population level inference based on telemetry data from multiple animals (Aarts et al., 2008;

Morales et al., 2010; Hanks et al., 2011).

Movement models are primarily concerned with modeling the change in an animal’s

position, often in response to environmental factors. This sets them apart from occupancy

or resource selection models, which are primarily concerned with modeling the animal’s

position itself. Thus, the “response” variable in a resource selection model is typically an

animal’s location, such as a telemetry location, while the “response” variable in a movement

model is typically an animal’s movement step between two observed animal locations. In

a continuous space model for animal movement, the animal’s movement step is a velocity

vector pointing from the animal’s location at a given time to the animal’s next (in time)

observed location. In a discrete space model for animal movement, the movement step is the

change from one location to another (e.g., Turchin, 1998).

For continuous space models of animal movement, there are two decompositions of the

movement step that are widely used in modeling. The first is a vector decomposition into

orthogonal components (e.g., Easting and Northing components), while the second is a

“polar” decomposition into step lengths and turning angles. Each of these decompositions

are discussed in turn, highlighting strengths and weaknesses of each. In each case, existing

approaches to modeling changing movement behavior over time are described. Without

accounting for heterogeneity in animal behavior over time, important drivers of movement

could appear to be insignificant, due to the temporally changing nature of the animal’s
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response. Thus, particular attention is payed to existing approaches to modeling changing

behavior over time.

1.1.1 Orthogonal Decomposition of the Movement Step

Let an animal’s position in space at time t ∈ {t0, t1, . . . , tT} be given by s(t) = [s1(t), s2(t)].

For simplicity, consider only the case where the observations are regular in time (e.g.,

tk = t0 + ∆t · k) with temporal interval ∆t, though this generalizes to irregular observations

in a straightforward manner. A movement step v(t) = [v1(t), v2(t)] between two consecutive

time steps is the first difference of consecutive (in time) locations:

v(t) =

 v1(t)

v2(t)

 = s(t+ ∆t)− s(t) =

 s1(t+ ∆t)− s1(t)

s2(t+ δt)− s2(t)

 .
The movement step v(t) is typically modeled as being a random vector with mean velocity

vector ∇H(s(t)) equal to the gradient of a potential function H(s(t)):

v(t) = ∇H(s(t)) + ε(t). (1.1)

The potential function H(s) can be modeled nonparametrically using two dimensional basis

splines (e.g., Brillinger et al., 2001; Preisler et al., 2004, 2013), or the gradient of the potential

function can be modeled as a parametric function of gradients of continuous covariates

(Hanks et al., 2011):

∇H(s) =
K∑
k=1

βk · ∇Xk(s). (1.2)

Under either formulation, ∇H(s) is the expected (mean) velocity vector of movement for

an animal at location s, and the vector ε(t) is typically taken to be a bivariate Gaussian

random variable with diagonal covariance matrix. This error specification corresponds to a

stochastic differential equation (SDE) approach to modeling animal movement, where the
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movement can be modeled by two dimensional Brownian motion about the mean drift vector

∇H(s). The relationship between SDEs and their discrete approximations will be discussed

in more depth in Chapter 5.

To allow for changing movement behavior over time, the potential function can be allowed

to vary temporally. Preisler et al. (2013) partition each 24 hour period into 4 segments during

which movement behavior is assumed to be homogeneous, and estimate a separate potential

function for each time segment. Hanks et al. (2011) allow for changing response {βk} to

covariate gradients {∇Xk} over time through a change-point model on {βk} in (2):

∇H(s) =
K∑
k=1

βtk · ∇Xk(s) , βtk =



β1k , t ∈ [1, τ2 − 1]

β2k , t ∈ [τ2, τ3 − 1]

...
...

βPk , t ∈ [τP , T − 1]

,

where the number P and temporal locations {τp} of change-points are allowed to be random.

The resulting model has a variable parameter space, as the addition of new change-points

adds new parameters to the model. Hanks et al. (2011) use a birth-death Monte-Carlo

algorithm to allow for inference on parameters in this approach. This approach is computa-

tionally more expensive than partitioning the time a priori as is done by Preisler et al. (2013),

but allows the data to flexibly partition the observation window into regions of homogeneous

movement behavior, rather than relying on expert opinion.

The gradient-based nature of the orthogonal decomposition of a movement step makes it

a natural approach for modeling animal movement toward (away) from attractive (repulsive)

locations. In the parametric approach of Hanks et al. (2011), response to covariate gradients

can be used to model migratory movement, movement around a central location, or attraction

to conspecifics. These and other uses for gradient-based directional drivers of movement are

discussed in Chapter 2.
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1.1.2 Polar Decomposition of the Movement Step

The orthogonal decomposition of a movement step discussed above provides a natural

framework for modeling an animal’s response to environmental factors that can be expressed

as gradients. However, it can be cumbersome to model responses that are not easily repre-

sented in gradient form. For example, it would be difficult to model an animal’s absolute

velocity (directionless speed) as a function of landcover type using the orthogonal decom-

position of the movement step. A natural decomposition of a movement step to model an

animal’s speed is the polar decomposition of v(t) into a step length r(t)

r(t) = ||v(t)|| =
√

(s1(t+ ∆t)− s1(t))2 + (s2(t+ ∆t)− s2(t))2

and a relative turning angle θ(t)

θ(t) = arctan

(
s2(t)/||s(t)|| − s2(t−∆t)/||s(t+ ∆t)||
s1(t)/||s(t)|| − s1(t−∆t)/||s(t+ ∆t)||

)

where θ(t) is the turning angle relative to the previous movement step v(t−∆t).

This decomposition provides a natural framework for modeling how an animal’s behavior,

as measured by speed (absolute velocity) and path tortuosity, differ over time. For exam-

ple, one common approach to allow for changing behavior over time is to assume that the

animal’s movement can be classified into a number of distinct movement modes, and use

state switching models to allow the animal to transition between movement regimes over

time (Morales et al., 2004; Nathan et al., 2008; Getz and Saltz, 2008; Gurarie et al., 2009;

Forester et al., 2009; Merrill et al., 2010; Polansky et al., 2010; McClintock et al., 2012).

The state transition process can be parameterized by the landscape, allowing for varying

propensity to transition to or from certain movement states in different environments (e.g.,

Morales et al., 2004). Gurarie et al. (2009) utilize a behavioral change-point model to iden-

tify structural changes in an animal’s movement, and allow for the number and location of
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change-points to be inferred from the telemetry data, but their model does not incorporate

environmental effects; the inference on behavioral changes is based solely on the telemetry

data. Polansky et al. (2010) utilize Fourier and wavelet analysis to examine periodicity in

movement behavior. Morales et al. (2004) propose a model based on a mixture of random

walks, though their analysis requires specification of the number of movement states an an-

imal can exhibit, which may not be known beforehand. McClintock et al. (2012) propose a

method for incorporating a mixture of an unknown number of random walks.

The choice between an orthogonal decomposition or a polar decomposition of the move-

ment step should be driven primarily by examining what effects one wants to model. If

directional behavior is important, then the orthogonal decomposition and resulting gradient

based modeling should be attractive. If, on the other hand, the modeler wishes to model

changes in an animal’s speed (absolute velocity) and path tortuosity, the polar decompo-

sition is a natural choice. In many respects, the questions that can be addressed by one

decomposition are difficult to address with the other. However, a discrete space approach

to modeling movement offers some advantages in this respect. Both directional (gradient

based) behavior and location based behavior such as changes in absolute velocity in different

cover types (Hooten et al., 2010) can be modeled naturally in a discrete space framework.

This allows for a flexible framework for modeling the relationship between movement behav-

ior and multiple environmental and biotic factors of interest. Discrete space approaches are

discussed in detail in Chapter 2.

1.2 Current Genetic Approaches to Landscape Connectivity

Animal movement data can be used to directly examine the effect that the landscape

has on connectivity by estimating how movement behavior changes across a heterogeneous

landscape. Genetic data, on the other hand, do not contain explicit information about

how the landscape influences movement and connectivity; instead genetic data can tell us

implicitly about connectivity. Genetic variation over space is the result of a spatio-temporal
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process over many generations of the species, in which genetic mutations occur, animals mate

and pass on genetic information to their offspring, and animals disperse across the landscape.

Genetic data consist of a snapshot in time of this spatio-temporal process occuring at a

genetic time scale.

The study of how landscape features influence the flow of genetic information is known as

landscape genetics (Manel et al., 2003). This relatively young field has developed quickly, and

multiple approaches exist for making inference on the interface between landscape features

and gene flow. The most common approaches can be grouped into two categories: spatial

clustering and effective distance analysis.

1.2.1 Spatial Clustering Approaches in Landscape Genetics

One common approach to landscape genetics is to consider clustering the genetic obser-

vations spatially into sub-regions that are genetically similar. The result is a partitioning

of the study region into sub-regions that represent the spatial domain of sub-populations

that are genetically distinct from one another. These approaches typically employ Bayesian

hierarchical models (BHMs) for inference, and often are known colloquially by the name of

the software package used to implement the approach. Examples include Geneland (Guillot

et al., 2005) and TESS (Chen et al., 2007; Durand et al., 2009).

These methods allow for inference about the location of genetic populations and bound-

aries based on observed genetic samples. However, boundaries resulting from such an analysis

are typically linked to landscape features through comparing the locations of potential bar-

riers (e.g., roads or rivers) to the mode of the posterior distribution through a geographic

information system (GIS) overlay (Sahlsten et al., 2008; Wheeler et al., 2010), without formal

statistical inference. Thus, while landscape genetics is the study of how landscape features

influence gene flow (Manel et al., 2003), these spatial partitioning models do not allow the

effects of landscape features to be modeled explicitly. Rather, a post-hoc analysis is required
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to link the posterior distribution of genetic subpopulation boundaries to landscape features

which may influence gene flow.

1.2.2 Effective Distance Approaches in Landscape Genetics

An alternative approach to estimating the effects of landscape on gene flow involves

computing a pairwise genetic distance measure between observed spatially referenced genetic

samples, and comparing this pairwise distance with an effective distance that is a function of

the spatial locations where the genetic samples were collected and the landscape features of

the study region (e.g., McRae, 2006; Cushman et al., 2006; McRae and Beier, 2007; Cushman

and Landguth, 2010; Cushman and Lewis, 2010). The three most common effective measures

of spatial distance are Euclidean distance (e.g., Broquet et al., 2006), the resistance distance

or effective resistance from electric circuit theory (e.g., McRae et al., 2008), and the least

cost path (LCP) distance (e.g., Cushman and Lewis, 2010). If Euclidean distance is used,

this effective distance approach is termed “isolation by distance” (IBD). Likewise, if the

effective spatial distance is the resistance distance from circuit theory, the approach is termed

“isolation by resistance”(IBR).

The IBR approach was first described by McRae (2006), who showed that there are

theoretical links between the resistance distance of the circuit representing the heterogeneous

landscape and the genetic distance between animal populations. The fixation index Fst is a

measure of genetic dissimilarity between sub-populations based on comparing the diversity of

randomly chosen alleles within each sub-population to the diversity found within the entire

population (Holsinger and Weir, 2009). If it is assumed that each node in the graph (e.g.,

each raster cell Gi on a landscape) contains a sub-population, then pairwise Fst values can

be computed for each pair of nodes. The major finding of McRae (2006) is that under a

random walk model of animal movement and gene flow on an undirected graph, the resistance

distance of an analogous circuit is proportional to linearized Fst. That is, if F ij
st is the pairwise

fixation index between the ith and jth node in the graph, then the resistance distance Γij
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between those two nodes is

Γij ∝
F ij
st

1− F ij
st

(1.3)

(see McRae (2006) for details). Thus, resistance distance is proportional to a common

formulation of genetic distance between sub-populations. This relationship between gene

flow, random walks on a graph, and circuit theory forms the basis for IBR analysis (McRae,

2006; McRae and Beier, 2007; McRae et al., 2008; Cushman et al., 2006; Cushman and

Landguth, 2010; Spear et al., 2010).

In a LCP analysis, the effective distance between two nodes is the smallest possible

resistance of a single path through the graph that connects the two nodes. Thus, using LCP

distance to model animal movement and gene flow is based on the assumption that animals

know the landscape fully and are able to pick the “best” path between any two locations of

their choosing. An analysis based on resistance distance, instead of LCP distance, assumes

that the effective distance between two locations is based on a weighted average of all possible

paths through the graph that connect the two locations. Using resistance distance to model

animal movement and gene flow is based on the assumption that animals move through the

landscape at random, with movement choices being based only on the local environment, as

reflected in the connectivity of the graph. At small temporal scales, movement is affected

by memory, interactions with other animals, and many other factors not directly related to

the local environment. At large temporal scales (i.e., genetic time), the assumption that the

environment drives population level movement and gene flow may be more plausible, lending

credence to the use of resistance distance. Studies of observed genetic data have found that

the correlation between circuit based resistance distance and observed genetic distance is

generally higher than the correlation between LCP distance and genetic distance (e.g., McRae

and Beier, 2007). However, the LCP distance can be computed much more efficiently than

the resistance distance, allowing analysis of larger landscapes at finer resolutions.
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Both IBR and LCP approaches rely on a discretized spatial support, where the landscape

is viewed as a graph (typically a regular grid) with edge weights between connected nodes

being a function of the landscape characteristics (X) at and between the neighboring nodes,

and parameters (θ) which determine how the edge weights are affected by the landscape

characteristics in X. In conventional approaches, the parameters θ are often set a priori

using expert opinion. When θ is estimated, the estimation is typically achieved using a

correlation analysis in which an observed genetic distance matrix is compared to a number of

possible resistance distance matrices that result from various hypothesized resistance values

θ for landscape characteristics. The hypothesized resistance values that result in the highest

correlation with the observed genetic distance are selected.

1.3 Overview

In this thesis, the study of landscape connectivity is advanced through the introduction

of novel statistical approaches to analyzing animal movement and landscape genetic data.

In Chapter 2, a continuous-time, discrete-space (CTDS) model for animal movement data is

proposed. This CTDS model can be seen as a model based on the sufficient statistics of the

discrete-time discrete-space movement model of Hooten et al. (2010), and a latent variable

representation of the likelihood is presented that allows for inference to be made on move-

ment parameters using standard generalized linear modeling software. A computationally

efficient multiple imputation approach for estimating the posterior predictive distribution of

movement parameters is also developed and compared to a full Bayesian analysis. The gains

in computational efficiency due to this approximation allow for inference on changing move-

ment behavior over time at finer temporal resolutions than have been possible using existing

approaches, and for variable selection using a lasso penalty. The result is a framework for

modeling animal movement that allows for flexible modeling of environmental and biotic co-

variates, changing behavior over time, and variable selection using computationally efficient

software. This approach is illustrated by a study of telemetry data obtained from a pair
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of mountain lions in Colorado, USA, in which movement behavior in response to landscape

features, conspecifics, and potential kill sites over time is examined.

In Chapter 3, the circuit theoretic IBR approach to modeling the landscape using effec-

tive distance analyses is considered from a statistical perspective. The generalized Wishart

distribution for squared distance matrices (McCullagh, 2009) is proposed as a data model

for observed pairwise genetic distance matrices, and the relationship between the resistance

distance of an undirected landscape graph and the variogram of a zero mean intrinsic condi-

tional auto-regressive Gaussian Markov random field is explored. This provides a spatially

explicit model based framework for the analysis of squared genetic distance matrices un-

der the IBR hypothesis that allows for estimation of uncertainty about point estimates for

landscape resistances, something not typically available in current distance based genetic

approaches. This approach is applied to a study of the effect of elevation on landscape

connectivity for alpine chamois in the Bauges mountains of France.

In Chapter 4, the spatially explicit modeling approach for landscape genetics from Chap-

ter 3 is expanded, and existing methodology in spatial statistics is be applied to landscape

genetic approaches to studying connectivity. Spatial covariance functions that match the

assumptions of the IBD, IBR, and LCP approaches to spatial genetic analysis are proposed,

and a comparison is made between variogram fitting approaches in the analysis of geosta-

tistical data and effective distance approaches in landscape genetics. Instead of modeling

an observed pairwise genetic matrix, as in Chapter 3, a multinomial model for genetic mi-

crosatellite allele data is used in Chapter 4. By including a latent Gaussian random effect

in this multinomial model, landscape connectivity can be modelled in a spatial generalized

linear mixed modeling framework. This modeling approach is illustrated through a study

of sage-grouse in the western U.S. in which recommendations for the optimal allocation of

sampling effort in 2013 are provided, based on a retrospective analysis of sage grouse genetic

data collected from 2009-2012.
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Chapter 5 concludes with a summary and discussion of potential directions for future

research, focusing on issues of scale in studying connectivity.
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CHAPTER 2

A CONTINUOUS-TIME DISCRETE-SPACE MODEL FOR ANIMAL

MOVEMENT

2.1 Introduction

1 In Chapter 1, the use of animal movement data to study landscape connectivity and

animal response to landscape features was introduced, with particular attention paid to the

analysis of continuous-space movement steps. In this chapter, discrete-space representa-

tions of movement are considered, and a continuous-time discrete-space model for animal

movement data is proposed.

There is no shortage of existing statistical models of animal movement; however, most of

these models are computationally demanding. For example, consider the agent based model

of animal movement of Hooten et al. (2010). The agent based framework is highly flexible,

allowing for location-based and directional drivers of movement, but is computationally

expensive. Analyzing the movement path of one animal with hourly locations over the

course of a week using the approach of Hooten et al. (2010) can require computational time

on the order of days using standard computing resources. The velocity-based framework for

modeling animal movement of Hanks et al. (2011) allows for time-varying behavior through a

changepoint model of response to drivers of movement and is more computationally efficient

than the approach of Hooten et al. (2010), requiring computational time on the order of hours

for a similar problem. Similarly, the mechanistic approach of McClintock et al. (2012) allows

for time-varying behavior through a state-switching approach but is also computationally

demanding. These three approaches use Bayesian statistical models, and both Hanks et al.

1The material in Chapter 2 is based on the following publication: Hanks, E.M., M.B. Hooten, and M.W.

Alldredge. 2013. Continuous-Time, Discrete-Space Models of Animal Movement. arXiv :1211.1992.
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(2011) and McClintock et al. (2012) allow for time-varying behavior by letting the model

parameter space vary, either through a reversible-jump Markov chain Monte Carlo approach

(Green, 1995) or the related birth-death Markov chain Monte Carlo approach (Stephens,

2000). These methods can be quite computationally demanding, require the user to tune

the algorithm to ensure convergence, and can be inaccessible to many practitioners.

The agent based model of Hooten et al. (2010) assumes a representation of the animal’s

movement path that is discrete in both space (grid cells) and time (fixed time intervals).

The velocity-based movement model of Hanks et al. (2011) assumes a representation of the

movement path that is continuous in space and discrete in time. The state-switching model

of McClintock et al. (2012) assumes a representation of the movement path that is discrete

in time and continuous in space.

In this chapter, we present a continuous-time, discrete-space (CTDS) model for animal

movement which allows for flexible modeling of an animal’s response to drivers of movement

in a computationally efficient framework. We consider a Bayesian approach to inference,

as well as a multiple imputation approximation to the posterior distribution of parameters

in the movement model. Instead of a state-switching or change-point model for changing

behavior over time, we adopt a time-varying coefficient model. We also allow for variable

selection using a lasso penalty. This CTDS approach is highly computationally efficient,

requiring only minutes or seconds to analyze movement paths that would require hours

using the approach of Hanks et al. (2011) or days using the approach of Hooten et al. (2010),

allowing the analysis of longer movement paths and more complex behavior than has been

previously possible.

In Section 2.2, Modeling Animal Movement, we describe the CTDS model for animal

movement and present a latent variable representation of the model that allows for inference

within a standard generalized linear model (GLM) framework. In Section 2.3, Posterior

Predictive Inference, we present a Bayesian approach for inference and describe the use

of multiple imputation (Rubin, 1987) to approximate the posterior predictive distribution
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of parameters in the CTDS model. In Section 2.4, Time-Varying Behavior and Shrinkage

Estimation, we use a varying coefficient approach to model changing behavior over time,

and use a lasso penalty for variable selection. In Section 2.5, Drivers of Animal Movement,

we discuss modeling potential covariates in the CTDS framework. In Section 2.6, Example:

Mountain Lions in Colorado, we illustrate our approach through an analysis of mountain

lion (Puma concolor) movement in Colorado, USA. Finally, in Section 2.7, Discussion, we

discuss possible extensions to the CTDS approach.

2.2 Modeling Animal Movement

Our goal is to specify a model of animal response to drivers of movement that is flexible

and computationally efficient. In doing so, we will first consider an existing model for

animal movement that is continuous in both time and space. We then consider a discrete

(e.g., gridded) model for space (e.g., Hooten et al., 2010), and model animal movement as a

continuous-time random walk through the discrete, gridded space.

2.2.1 Continuous-Time Continuous-Space Movement Model

Johnson et al. (2008) propose a continuous time correlated random walk (CTCRW) model

of an animal’s continuous path conditioned on observed telemetry data. Let S = {s(t), t =

t0, t1, . . . , tT} be a collection of time-referenced telemetry locations for an animal. If the

animal’s location and velocity at an arbitrary time t are s(t) and v(t), respectively, then the

CTCRW model can be specified as follows, ignoring the multivariate notation for simplicity

s(t) = s(0) +

∫ t

0

v(u)du ,

v(t) = ψ1 +
ψ2e

−ψ3t

√
2ψ3

ω
(
e2ψ3t

)
, (2.1)
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where ψ = [ψ1, ψ2, ψ3] control the movement and ω(t) is standard Brownian motion. This

model can be discretized and formulated as a state space model, which allows for efficient

computation of discretized paths S̃ at arbitrarily fine time intervals via the Kalman filter

(Johnson et al., 2008). If a Bayesian framework is used for inference on ψ, then Johnson

et al. (2008) show how the posterior distribution [ψ|S] can be obtained and how the pos-

terior predictive distribution of the animal’s continuous path S̃ can be approximated using

importance sampling. We will refer to the posterior predictive path distribution as [S̃|S],

where the bracket notation ‘[·]’ denotes a probability distribution.

2.2.2 Continuous-Time Discrete-Space Movement Model

We now consider a transformation of the animal’s path S̃ to a discrete (gridded) space.

Let the study area be defined as a graph (G,A) of M locations G = (G1, G2, . . . , GM)

connected by “edges” Λ = {λij : i ∼ j, i = 1, . . . ,M} where i ∼ j means that the nodes Gi

and Gj are directly connected. For example, in a gridded space each grid cell is a node and

the edges connect each grid cell to its first-order neighbors (e.g., cells that share an edge).

In many studies, the spatial resolution of the grid cells in G will be determined by the

resolution at which environmental covariates that may drive animal movement and selection

are available.

A path realization S̃ from the CTCRW model is continuous in time and space (Figure 1).

If we consider a discrete, gridded space G, then the continuous-time, continuous-space path

S̃ is represented by a continuous-time, discrete-space path (g, τ ) consisting of a sequence of

grid cells g = (Gi1 , Gi2 , . . . , GiT ) transversed by the animal’s continuous-space path and the

residence times τ = (τ1, τ2, . . . , τT ) in each grid cell.

2.2.3 Random Walk Model

The discrete-space representation (g, τ ) of the movement path allows us to use standard

discrete-space random walk models to make inference about possible drivers of movement.
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Figure 2.1: Continuous-time continuous-space and continuous-time discrete-space represen-
tations of an animal’s movement path.

While we will relax this assumption later to account for temporal autocorrelation in move-

ment behavior, we initially assume that the the tth observation (Git , τt) in the sequence is

independent of all other observations in the sequence. Under this assumption, the likeli-

hood of the sequence of transitions {(Git → Git+1 , τt), t = 1, 2, . . . , T} is the product of

the likelihoods of each individual observation. We will focus on modeling each transition

(Git → Git+1 , τt).

If an animal is in cell Git at time t, then define the Poisson rate of transition from cell

Git to a neighboring cell Gjt at time t as
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λitjt(β) = exp{x′itjtβ} (2.2)

where xitjt is a vector containing covariates related to drivers of movement specific to cells

Git and Gjt , and β is a vector of parameters that define how each of the covariates in xitjt

are correlated with animal movement. The total transition rate λit from cell Git is the sum

of the transition rates to all neighboring cells: λit(β) =
∑

jt∼it λitjt(β) and the time τt that

the animal resides in cell Git is exponentially distributed with rate parameter equal to the

total transition rate λit(β):

[τt|β] = λit(β) exp {−τtλit(β)} . (2.3)

When the animal transitions from cell Git to one of its neighbors, the probability of

transitioning to cell Gkt , an event we denote as Git → Gkt , follows a multinomial distribution

with probability proportional to the transition rate λitkt to cell Gkt :

[Git → Gkt|β] =
λitkt(β)∑
jt∼it λitjt(β)

=
λitkt(β)

λit(β)
. (2.4)

Under this formulation, the residence time and eventual destination are independent

events, and the likelihood of the observation (Git → Gkt , τt) is the product of the likelihoods

of its parts:

[Git → Gkt , τt|β] =
λitkt(β)

λit(β)
· λit(β) exp {−τλit(β)}

= λitkt(β) exp {−τtλit(β)} . (2.5)
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The transformation of the movement path from quasi-continuous space to discrete space

results in a compression of the data to a temporal scale that is relevant to the resolution of

the environmental covariates that may be driving movement and selection. For example, if

an animal is moving slowly relative to the time it takes to traverse a grid cell in G, then

the quasi-continuous path S̃ may contain a long sequence of locations within one grid cell.

Under the discrete-space, discrete-time dynamic occupancy approach of Hooten et al. (2010),

each discrete-time location is modeled as arising from a multinomial distribution reflecting

transition probabilities from the animal’s location at the previous time. If the animal is

in cell Git−1 at time t − 1, then define the probability of transitioning to the jth cell at

the tth time step as Pijt and the probability of remaining in cell i as Piit . Hooten et al.

(2010) recommend choosing a temporal discretization ∆t of the quasi-continuous movement

path fine enough to ensure that the animal remains in each cell for a number of time steps

before transitioning to a neighboring cell. For sufficiently small ∆t, discrete-time transition

probabilities are approximated by Pijt ≈ λitjt ·∆t and Piit ≈ 1− λit ·∆t. Under this model,

the probability of the animal remaining in cell Gi for time equal to τt is

τt/(∆t)∏
t=1

Piit = P
τt/∆t
ii = (1− λit ·∆t)

τt/∆t .

Letting ∆t→ 0 results in

lim
∆t→0

(1− λit ·∆t)
τt/∆t = exp {−τtλit} . (2.6)

Likewise, taking the limit as ∆t → 0 and using L’Hopital’s rule, the probability of transi-

tioning from cell Gi to Gk, given that the animal is transitioning to some neighboring cell,

is

lim
∆t→0

Pikt∑
j Pijt

= lim
∆t→0

λitkt ·∆t
λit ·∆t

=
λitkt
λit

(2.7)
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and (2.5) is obtained by multiplying the right hand sides of (2.6) and (2.7). Thus the CTDS

specification could be obtained by using the sufficient statistics (τt, {λitjt}) of the discrete-

time, discrete-space approach of Hooten et al. (2010) in the limiting case as ∆t → 0. This

data compression is especially relevant for telemetry data, in which observation windows can

span years or even decades for some animals.

We note that the transition probabilities in (2.4) are similar in form to step selection

functions (e.g., Boyce et al., 2002) in multinomial logit discrete choice models for movement

data. The key distinction between the step selection function approach and the approach of

Hooten et al. (2010) (and by extension the approach we present) is the imputation of the

quasi-continuous path between telemetry locations. This requires modeling the continuous

path and accepting the assumptions of the CTCRW movement model of Johnson et al.

(2008). If these assumptions are justified, the continuous path distribution allows us to

examine movement and resource selection between telemetry locations, providing a more

complete picture of an animal’s response to landscape features and other potential drivers

of movement.

2.2.4 Latent Variable Representation

We now introduce a latent variable representation of the transition process that is equiv-

alent to (2.5), but allows for inference within a standard generalized linear modeling frame-

work. For each jt such that it ∼ jt, define zitjt as

zitjt =


1 , Git → Gjt

0 , o.w.

and let

[zitjt , τt|β] ∝ λ
zitjt
itjt

exp {−τtλitjt(β)} . (2.8)
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Then the product of [zitjt , τt|β] over all jt such that it ∼ jt is proportional to the likelihood

(2.5) of the observed transition:

∏
jt:it∼jt

[zitjt , τt|β] ∝
∏

jt:it∼jt

λ
zitjt
itjt

exp {−τtλitjt(β)}

= λitkt(β) exp {−τtλit(β)} , where Git → Gkt

= [Git → Gkt , τt|β]

The benefit of this latent variable representation is that the likelihood of zitjt , τt|β in (2.8)

is equivalent to the kernel of the likelihood in a Poisson regression with the canonical log

link, where zitjt are the observations and log(τt) is an offset or exposure term. The likelihood

of the entire continuous-time, discrete-space path (g, τ ) can be written as:

[g, τ |β] = [Z, τ |β] ∝
T∏
t=1

∏
it∼jt

[
λ
zitjt
itjt

(β) exp{−τtλitjt(β)}
]

(2.9)

where Z = (z1, . . . , zT )′ is a vector containing the latent variables zi = (zi1 , zi2 , . . . , ziK )′ for

each grid cell in the discrete-space path.

2.3 Posterior Predictive Inference

Inference can be made on β in (2.9) using standard Poisson GLM approaches (e.g.,

maximum likelihood), if the continuous path S̃ is known. In practice, only the posterior

predictive distribution [S̃|S] is known. In this chapter, we consider posterior predictive

inference on β.

Under a Bayesian framework, we could specify a Gaussian prior on β such that

β ∼ N(0,Σβ) (2.10)
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and then the posterior predictive distribution of β conditioned only on the telemetry data

S is given by

[β|S] =

∫
S̃
[β|S̃][S̃|S]dS̃. (2.11)

We note that (2.11) implies a two-step procedure for inference in which the path dis-

tribution [S̃|S] is first found and then used to make inference on β through (2.2). Hooten

et al. (2010) and Hanks et al. (2011) use composition sampling to obtain samples from the

posterior predictive distribution [β|S] in (2.2) by sampling iteratively from [β|S̃] and [S̃|S].

Sampling from [S̃|S] can be accomplished using the “crawl” package (Johnson, 2011) in R (R

Core Team, 2013), while sampling from [β|S̃] can be accomplished using Metropolis-Hastings

steps in the MCMC algorithm using the likelihood (2.4) and prior (2.5).

2.3.1 Multiple Imputation

As an alternative to fully Bayesian posterior predictive inference, we also consider ap-

proximating [β|S] by treating the unobserved continuous path S̃ as missing data. Inference

on β can then be accomplished using multiple imputation (Rubin, 1987). We motivate mul-

tiple imputation as posterior predictive inference on the imputation distribution within a

Bayesian framework. Our treatment is similar to that of Rubin (1987) and Rubin (1996).

In the multiple imputation literature, the posterior predictive path distribution [S̃|S] is

called the imputation distribution. The imputation distribution is typically specified by the

modeler as a statistical model for the missing data S̃ conditioned on the observed data S.

We will use the CTCRW model for animal movement to define an imputation distribution,

the posterior predictive path distribution [S̃|S]. The CTCRW model has been successfully

applied to studies of aquatic (Johnson et al., 2008) and terrestrial (Hooten et al., 2010)

animals, and can represent a wide range of behavior.

Under the multiple imputation framework, the distribution [β|S] is assumed to be asymp-

totically Gaussian. This assumption holds under the conditions that the joint posterior is
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unimodal (see e.g., Chapter 4 of Gelman et al., 2004, for details). This distribution can

then be approximated using only the posterior predictive mean and variance, which can be

obtained using conditional mean and variance formulae

E(β|S) ≈
∫
β

β

∫
S̃
[β|S̃][S̃|S]dS̃dβ

=

∫
S̃

(∫
β

β[β|S̃]dβ

)
[S̃|S]dS̃

= ES̃|S

(
E(β|S̃)

)
(2.12)

and

Var(β|S) ≈ ES̃|S

(
Var(β|S̃)

)
+ VarS̃|S

(
E(β|S̃)

)
. (2.13)

If we condition on S̃, then the posterior distribution [β|S̃] converges asymptotically to the

sampling distribution of the maximum likelihood estimate (MLE) of β under the likelihood

[S̃|β], and we can approximate [β|S̃] by obtaining the asymptotic sampling distribution of

the MLE. This allows us to use standard maximum likelihood approaches for inference, which

can be much more computationally efficient than their Bayesian counterparts for this class

of models.

The multiple imputation estimate β̂MI , and its sampling variance, are typically obtained

by approximating the integrals in (2.12) and (2.13) using a finite sample from the imputation

distribution. The procedure can be summarized as follows:

1. Draw K different realizations (imputations) S̃(k) ∼ [S̃|S] from the quasi-continuous

path distribution (imputation distribution). This can be accomplished using the ‘crawl’

R-package (Johnson, 2011).

2. Transform each continuous path S̃(k) into a CTDS path (g(k), τ (k)).

3. For each realization, find the MLE β̂
(k)

and asymptotic variance Var(β̂
(k)

) of the

estimate under the likelihood [(g(k), τ (k))|β] in (2.9).
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4. Combine results from different imputations using finite sample versions of the condi-

tional expectation (2.12) and variance (2.13) results:

β̂MI =
1

K

K∑
k=1

β̂
(k)

(2.14)

Var(β̂MI) =
1

K

K∑
k=1

Var(β̂
(k)

) +
1

K

K∑
k=1

(
β̂

(k)
− β̂MI

)2

. (2.15)

Equations (2.14) and (2.15) are the commonly used combining rules (Rubin, 1987) for

multiple imputation estimators. This provides a computationally efficient framework for

the statistical analysis of potential drivers of movement within the multiple imputation

framework.

2.4 Time-Varying Behavior and Shrinkage Estimation

In this section we describe how covariate effects can be allowed to vary over time us-

ing a varying coefficient model, and how variable selection can be accomplished through

regularization.

2.4.1 Changing Behavior Over Time

Animal behavior and response to drivers of movement can change significantly over time.

These changes can be driven by external factors such as changing seasons (e.g., Grovenburg

et al., 2009) or predator/prey interactions (e.g., Lima, 2002), or by internal factors such as

internal energy levels (e.g., Nathan et al., 2008). The most common approach to modeling

time-varying behavior in animal movement is through state-switching, typically within a

Bayesian framework (e.g., Morales et al., 2004; Jonsen et al., 2005; Getz and Saltz, 2008;

Nathan et al., 2008; Forester et al., 2009; Gurarie et al., 2009; Merrill et al., 2010). Often,

the animal is assumed to exhibit a number of behavioral states, each characterized by a

distinct pattern of movement or response to drivers of movement. The number of states can
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be either known and specified in advance (e.g., Morales et al., 2004; Jonsen et al., 2005) or

allowed to be random (e.g., Hanks et al., 2011; McClintock et al., 2012).

State-switching models are an intuitive approach to modeling changing behavior over

time, but there are limits to the complexity that can be modeled using this approach. Al-

lowing the number of states to be unknown and random requires a Bayesian approach with

a changing parameter space. This is typically implemented using reversible-jump MCMC

methods (e.g., Green, 1995; McClintock et al., 2012; Hanks et al., 2011), which are compu-

tationally expensive and can be difficult to tune. Our approach is to use a computationally

efficient GLM (2.9) to analyze parameters related to drivers of animal movement. Instead of

using the common state-space approach, we employ varying coefficient models (e.g., Hastie

and Tibshirani, 1993) to model time-varying behavior in animal movement.

For simplicity in notation, consider the case where there is only one covariate x in the

model (2.2) and no intercept term. The model for the Poisson transition rate (2.2) will

typically contain an intercept term and multiple covariates {x}, and the varying coefficient

approach we present generalizes easily to this case. In a time-varying coefficient model,

we allow the parameter β(t) to vary over time in a functional (continuous) fashion. The

transition rate (2.2) then becomes

λitjt(β(t)) = exp {xitjtβ(t)} ,

where t is the time of the observation and xij is the value of the covariate related to the

Poisson rate of moving from cell i to cell j. The functional regressor β(t) is typically modeled

as a linear combination of nspl spline basis functions {φk(t), k = 1, . . . , nspl}

β(t) =

nspl∑
k=1

αkφk(t).
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B-spline basis functions are among the most widely used choices for {φk(t)}, and are appro-

priate in most cases.

Under this varying coefficient specification, (2.2) can be rewritten as

λitjt = exp {xitjtβ(t)}

= exp

{
xitjt

nspl∑
k=1

αkφk(t)

}

= exp
{
ψ′itjtα

}
, (2.16)

where α = (α1, . . . , αnspl
)′ and ψitjt = xitjt · (φ1(t), . . . , φnspl

(t))′. The result is that the

varying coefficient model can be represented by a GLM with a modified design matrix. This

specification provides a flexible framework for allowing the effect of a driver of movement (x)

to vary over time that is computationally efficient and simple to implement using standard

GLM software.

2.4.2 Regularization

The model we have specified in (2.9) is likely to be overparameterized, especially if we

utilize a varying coefficient model (2.16). Animal movement behavior is complex, and a

typical study could entail a large number of potential drivers of movement, but an animal’s

response to each of those drivers of movement is likely to change over time, with only a few

drivers being relevant at any one time. Under these assumptions, many of the parameters

αk in (2.16) are likely to be very small or zero. Multicollinearity is also a potential problem,

as many potential drivers of movement could be correlated with each other.

We propose a shrinkage estimator of α using a lasso penalty (Tibshirani, 1996). The

typical maximum likelihood estimate of α is obtained by maximizing the likelihood [Z, τ |α]

from (2.9), or equivalently by maximizing the log-likelihood log[Z, τ |α]. The lasso estimate

is obtained by maximizing the penalized log-likelihood, where the penalty is proportional to
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the sum of the absolute values of the regression parameters {αk}:

α̂lasso = max
α

{
log[Z, τ |α]− γ

K∑
k=1

|αk|

}
. (2.17)

As the tuning parameter γ increases, the absolute values of the regression parameters {αk}

are “shrunk” to zero, with the parameters that best describe the variation in the data being

shrunk more slowly than parameters that do not. Cross-validation is typically used to set

the tuning parameter γ at a level that optimizes the model’s predictive power.

Shrinkage approaches such as the lasso are well developed for GLMs, and computationally-

efficient methods are available for fitting GLMs to data (e.g., Friedman et al., 2010). Recent

work has also applied the lasso to multiple imputation estimators (e.g., Chen and Wang,

2011). The main challenge in applying the lasso to multiple imputation is that a param-

eter may be shrunk to zero in the analysis of one imputation but not in the analysis of

another. The solution is to use a group lasso (Yuan and Lin, 2006), in which a group of

parameters is constrained to either all equal zero or all be non-zero together. In the case

of multiple imputation, we consider the joint analysis of all imputations, and constrain the

set of {α(k)
p , k = 1, . . . , K}, where p indexes the parameters in the model and k indexes the

imputations, to either all equal zero or all be non-zero together. This group lasso sets the

requirement that a parameter must be zero for all imputations, or non-zero for all imputa-

tions.

One approach to this group lasso is the likelihood-based stacked lasso estimate of Chen

and Wang (2011). In this estimate, instead of computing the lasso estimate αlasso for each

imputation individually, and then combining the results using (2.14) and (2.15), the im-

puted data from all estimates are “stacked” together and a lasso estimate is obtained for

the combined data. This stacking together of imputations is very similar to the data cloning

approach of Lele et al. (2011) in which the data are replicated (cloned) many times and ana-

lyzed as if each replicate were collected independently. The resulting estimates of parameter
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uncertainty are then adjusted to account for the replication. We note that this likelihood-

based stacked lasso approach does not allow for a straightforward estimation of the variance

of αlasso, though we can accomplish this by conducting a full Bayesian analysis using the

Bayesian lasso (Park and Casella, 2008).

Thus, we consider specifying a shrinkage prior distribution on α such that the posterior

mode of α|S is identical to the lasso estimate (2.17). Instead of the Gaussian prior in (2.10),

we follow Park and Casella (2008) and consider a hierarchical prior specification:

αk|σ2
k ∼ N(0, σ2

k) , k = 1, . . . , K (2.18)

where the prior on σ2
k is a function of the shrinkage parameter γ:

[σ2
k|γ2] ∝ γ2 exp{−γ2σ2

k/2} , k = 1, . . . , K. (2.19)

Then, marginalizing over the σ2
k gives a Laplace prior distribution (Park and Casella, 2008)

on α conditioned only on γ:

[αk|γ] =

∫ ∞
0

[αk|σ2
k][σ

2
k|γ]dσ2

k

∝
∫ ∞

0

1√
2πσ2

k

exp{−α2
k/(2σ

2
k)}γ2 exp{−γ2σ2

k/2}dσ2
k

=
γ

2
exp{−γ|αk|}

where the last step uses the representation of the Laplace distribution as a scale mixture of

Gaussian random variables with exponential mixing density (e.g., Park and Casella, 2008).

Maximizing the resulting log-posterior predictive distribution for α gives us the lasso esti-

mate (2.17).

The hyperparameter γ controls the amount of shrinkage in the Bayesian lasso. While

a prior distribution could be assigned to γ, we take an empirical approach and estimate γ
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using cross-validation in the penalized likelihood approach (2.17) to the lasso. This estimate

can then be used to set the value of the hyperparameter γ in the Bayesian lasso analysis.

2.5 Drivers of Animal Movement

We now provide some examples showing how a range of hypothesized drivers of movement

could be modeled within the CTDS framework. Following Hooten et al. (2010), we consider

two distinct categories for drivers of movement from cell Gi to cell Gj: location-based drivers

({pki, k = 1, 2, . . . , K}) which are determined only by the characteristics of cell Gi, and

directional drivers ({qlij, l = 1, 2, . . . , L}) which vary with direction of movement. Under a

time-varying coefficient model for each driver, the transition rate (2.2) from cell Gi to cell

Gj is

λij (β(t)) = exp

{
β0(t) +

K∑
k=1

pkiβk(t) +
L∑
l=1

qlijβl(t)

}
(2.20)

where β0(t) is a time-varying intercept term, {βk(t)} are time-varying effects related to

location-based drivers of movement, and {βl(t)} are time-varying effects related to directional

drivers of movement. We consider both location-based and directional drivers in what follows.

2.5.1 Location-Based Drivers of Movement

Hooten et al. (2010) denote static, non-directional drivers of movement as location-based

drivers of movement. Location-based drivers of movement can be used to examine differences

in animal movement rates that can be explained by the environment an animal resides in. For

example, if the animal is in a patch of highly desirable terrain, surrounded by less desirable

terrain, a location-based driver of movement could be used to model the animal’s propensity

to stay in the desirable patch and move quickly through undesirable terrain. In the CTDS

context, location-based drivers would be covariates dependent only on the characteristics

of the cell where the animal is currently located. Large positive (negative) values of the
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corresponding βk(t) would indicate that the animal tends to transition quickly (slowly) from

a cell containing the cover type in question.

2.5.2 Directional Drivers of Movement

In contrast to location-based drivers, which describe the effect that the local environ-

ment in which the animal resides has on movement rates, directional drivers of movement

(Brillinger et al., 2001; Hooten et al., 2010; Hanks et al., 2011) capture directional selection

by the individual.

A directional driver of movement is defined by a vector which points toward (or away)

from something that is hypothesized to attract (or repel) the animal in question. Let vl

be the vector corresponding to the lth directional driver of movement. In the CTDS model

for animal movement, the animal can only transition from cell Gi to one of its neighbors

Gj : j ∼ i. Let wij be a unit vector pointing from the center of cell Gi in the direction of

the center of cell Gj. Then the covariate qlij relating the lth directional driver of movement

to the transition rate from cell Gi to cell Gj is the dot (or inner) product of vl and wij:

qlij = v′lwij.

Then plij will be positive when vl points nearly in the direction of cell Gj, negative when vl

points directly away from cell Gj, and zero if vl is perpendicular to the direction from cell

Gi to cell Gj.

2.5.3 Examples

We now provide several examples of drivers of movement to illustrate the range of effects

that can be modeled using this framework.
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Overall Movement Rate

The intercept term β0(t) in (2.20) can be seen as a driver of movement in which p0i = 1

for every cell Gi ∈ G. This intercept term controls the animal’s overall rate of transition

from any cell, and thus models the animal’s overall movement rate. Allowing the intercept

parameter β0(t) to vary over time could reveal changes in activity levels over time. For

example, we might expect β0(t) to be larger at night for nocturnal species and smaller

during the day.

Movement Response to Land Cover Types

Indicator variables could be used to examine how animal movement differs between dif-

ferent landscape cover types (e.g., forest vs. plains) by setting pki = 1 for each cell Gi

that is classified as containing the kth cover type. As in the case of the intercept, allowing

the parameter βk(t) related to the kth cover type to vary over time can reveal variation in

an animal’s movement pattern through the cover type. For example, an animal may move

quickly through open terrain during the day, but may move more slowly through the same

terrain at night.

Environmental Gradients

Animals may use environmental gradients for navigation. For example, a mule deer might

move predominantly in the direction of increasing elevation during a spring migration (e.g.,

Hooten et al., 2010), or a seal might follow gradients in sea surface temperature to navigate

toward land (e.g., Hanks et al., 2011). Such effects can be modeled by including a directional

driver of movement in (2.20) defined by a gradient vector vl which points from the center of

cell Gi in the direction of steepest increase in the covariate xl. Positive values of βl indicate

that the animal moves generally towards cells with higher values of xl, while negative values

of βl indicate that the animal moves generally towards cells with lower values of xl.

Activity Centers

Many animals exhibit movement patterns that are centered on a location in space. This

central location may be temporary, such as a kill site for a predator (e.g., Knopff et al.,
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2009), or more permanent, such as a den for a central place forager (e.g., Hanks et al., 2011;

McClintock et al., 2012). The relatively new class of spatial capture-recapture models (e.g.,

Royle and Young, 2008) model detection probability as a decreasing function of distance

from a central location (e.g., the “center” of an animal’s home range). In the context of the

CTDS model, movement around an activity center can be modeled by including a directional

driver of movement in (2.20) defined by a vector vl which points from the center of cell Gi

to the location of the activity center. Then a positive value for βl would indicate that the

animal is generally drawn toward this activity center. If the activity center is considered

to be temporary (such as a kill site for a predator), then a time-varying coefficient model

should be used. The variable selection obtained through the lasso estimate can indicate the

range of time in which the animal’s movement is centered around the activity center. If the

activity center is considered to be permanent through the duration of the study, a varying

coefficient model may not be needed.

Under the likelihood-based specification of the CTDS model for animal movement, it is

necessary to specify the locations of all hypothesized activity centers before proceeding with

the analysis. In Section 2.6, we show an example of the specification of hypothesized activity

centers (potential kill sites for mountain lions) using the original telemetry data. Under

a Bayesian formulation of the CTDS model, the location of hypothesized activity centers

could be random, and inference could be made on their locations jointly with inference on

the movement parameters, similar to what is done in spatial capture-recapture models (e.g.,

Royle and Young, 2008).

Conspecific Interaction

An animal’s movement patterns can be greatly affected by interaction with conspecifics.

For example, one animal could follow the trail left by another animal, two animals could avoid

one another by changing course when they become close enough to sense the other animal,

or a pair of animals could maintain proximity as they move together across the landscape.

While there are many possible approaches to modeling such dependence in behavior, we
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choose to model each of these interactions through the inclusion of directional effects in

the CTDS modeling framework. For example, a directional driver could be included in the

movement model for one animal that is defined by a vector pointing to the current location

of another animal to examine whether the animal being modeled is attracted to (βl > 0) or

avoids (βl < 0) the conspecific.

Directional Persistence

The CTCRW model of Johnson et al. (2008) is based on a correlated random walk

model for velocity that allows for directional persistence in animal movement. So far, we

have assumed that each discrete movement step in our CTDS model is independent, but

this assumption is not met if the animal exhibits any directional persistence. To account

for directional persistence in the CTDS approach, we use an autoregressive approach by

including a directional driver of movement at each discrete movement step that is defined by

a vector pointing in the direction of the previous move. For example, if the animal moved

west in the previous discrete movement step, then the autoregressive vector for the next step

points west as well. Positive values of the β related to this directional driver of movement

indicate that the animal is likely to maintain its direction of movement over time.

2.5.4 Spatial and Temporal Scale

The choice of scale for a study can greatly influence results (e.g., Boyce, 2006). When

speaking of the scale of a study, one could look at the grain, or resolution, at which the

process is modeled, or the extent (coverage) over which the process is modeled. The spatial

and temporal extent of a study of animal movement are determined by the telemetry data

and the posterior predictive path distribution [S̃|S]. However, when implementing the CTDS

approach, the researcher must make three choices pertaining to the grain or resolution: (1)

the temporal scale at which the CTCRW movement path of the animal is sampled, (2) the

spatial scale of the grid over which the discrete-space movement will be modeled, and (3)
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the temporal scale of the varying coefficient model, which is determined by the number and

resolution of spline knots in the spline basis expansion.

As the CTCRW model of Johnson et al. (2008) is a continuous-time model, we recommend

sampling from the movement path at as fine an interval as is feasible. In practice, this will be

limited by computational resources and the size of the study. The temporal resolution needs

to be fine enough that realizations from the posterior predictive path distribution [S̃|S] are

quasi-continuous and adequately capture the residence time τ in each grid cell in the CTDS

representation of the movement path.

The choice of spatial resolution of the raster grid on which the CTDS process occurs

implicitly specifies a time scale at which the movement process is modeled. Coarser spatial

resolution (larger grid cells) will correspond to longer residence times τ in the CTDS model.

The spatial resolution should be chosen so that the time scale at which an animal transitions

from one grid cell to another is a time scale at which the animal in question can make

choices about movement and resource selection. The time scale implicit in the choice of

spatial resolution can be examined by plotting a histogram of the residence times in the

CTDS representation of the movement path.

If the lasso penalty is used, then it is common to choose a saturated spline basis expansion

in the varying coefficient model, where one spline knot is specified at each data point in time.

If, for example, movement behavior is hypothesized to vary diurnally, and telemetry locations

are obtained at 3 hour intervals throughout the day, then a set of spline knots corresponding

to the eight times throughout the day at which location fixes are obtained would represent

a saturated basis expansion. The lasso penalization will shrink this expansion to a more

parsimonious model if such a model better fits the data. While a finer temporal resolution

could be used, the posterior predictive path distribution is unlikely to show changes in

behavior at time scales smaller than the time scale of the original data. Using a coarser

temporal resolution will force β(t) to be smooth. This would imply that changes in animal

behavior are gradual and occur at time scales larger than the time scale of the data.
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Figure 2.2: Telemetry data for a female mountain lion (AF79) and her male cub (AM80). A
location-based covariate was defined by landcover that was not predominanty forested (a).
Potential kill sites were identified, and a directional covariate defined by a vector pointing
toward the closest kill site (b) was also used in the CTDS model.

2.6 Example: Mountain Lions in Colorado

We illustrate our CTDS random walk approach to modeling animal movement through

a study of mountain lions (Puma concolor) in Colorado, USA. As part of a larger study, a

female mountain lion, designated AF79, and her subadult cub, designated AM80, were fitted

with global positioning system (GPS) collars set to transmit location data every 3 hours.

We analyze the location data S from two weeks (14 days) of location information for these

two animals (Figure 2.2).
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We fit the CTCRW model of Johnson et al. (2008) to both animals’ location data using

the ‘crawl’ package (Johnson, 2011) in the R statistical computing environment (R Core

Team, 2013). Ten imputations from the posterior distribution of the quasi-continuous path

distribution [S̃|S] were obtained at one minute intervals. The result is a quasi-continuous

path at extremely fine temporal resolution for each imputation.

For covariate data, we used a landcover map of the state of Colorado created by the

Colorado Vegetation Classification Project (http://ndis.nrel.colostate.edu/coveg/), which is

a joint project of the Bureau of Land Management and the Colorado Division of Wildlife. The

landcover map contained gridded landcover information at 100m square resolution. Figure

2.3 shows a histogram of the residence times τ in each grid cell in the CTDS representation of

the movement path of AM80. This gives some indication of the temporal scale of inference

implied by our choice of spatial resolution. Increasing the grid cell size would result in

inference at larger time scales (e.g., daily or monthly movements). The area traveled by the

two animals in our study was predominantly forested. To assess how the animals’ movement

differed when in terrain other than forest, we created an indicator covariate where all forested

grid cells were assigned a value of zero, and all cells containing other cover types, including

developed land, bare ground, grassland, and shrubby terrain, were assigned a value of one

(Figure 2.2a). This covariate was used as location-based covariate in the CTDS model.

For the subadult male AM80, we created a set of potential kill sites (PKS) by examining

the original GPS location data (Figure 2.2). Knopff et al. (2009) classified a location as

a PKS if two or more GPS locations were found within 200m of the site within a six day

period. We added an additional constraint that at least one of the GPS locations be during

nighttime hours (9 pm to 6 am) for the point to be classified a PKS. We then created a

covariate raster layer containing the distance to the nearest PKS for each grid cell (Figure

2.2b). A directional covariate defined by a vector pointing towards the nearest PKS was

included in the CTDS model.
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Figure 2.3: Histogram of residence times in each 100m square grid cell in the continuous-time
discrete-space representation of the movement path of a male mountain lion (AM80).
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To examine how the movement path of the mother AF79 affected the movement path of

the cub AM80, we included a directional covariate in the CTDS model for AM80 defined by

a vector pointing from the cub’s location to the mother’s location at each time point.

We also included a directional covariate pointing in the direction of the most recent

movement at each time point. This covariate measures the strength of correlation between

moves and thus the strength of the directional persistence shown by the animal’s discrete-

space movement path. As we are assuming an underlying correlated movement model (the

CTCRW model of Johnson et al. (2008)), we expect the CTDS movement to be correlated

in time as well.

We first compare a full Bayesian analysis of the path of AM80 using the CTDS model

with the multiple imputation approximation to the posterior mean (2.12) and variance (2.13).

For this analysis, we do not assume any time-varying behavior, but rather model the cub’s

mean response over time to the landscape, identified PKSs, and the movement path of AF79.

We used a Markov chain Monte Carlo algorithm to draw 10,000 samples from the posterior

predictive distribution of β|S for AM80. We discarded the first 5,000 as burn-in and used the

remaining samples to approximate the posterior predictive distribution. Histograms of the

marginal distributions are shown in Figure 2.4. We then applied the multiple imputation

approach to approximate the posterior distribution using the 10 quasi-continuous paths

drawn from the path imputation distribution: [S̃|S]. The resulting mean and equal-tailed

95% credible interval bounds are shown in Figure 2.4. The multiple imputation results

approximate the mean and variance of the posterior predictive distribution in this example

with reasonable precision.

We next examine varying behavior over time, using a varying coefficient model for each

covariate in the model, where behavior was allowed to vary with time of day. For all covariates

we specified a B-spline basis expansion with regularly-spaced spline knots at 6 hour intervals

over the course of a 24 hour period. Observations over multiple days (14 days in this study)
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Figure 2.4: Histograms of posterior predictive distribution of β|S for the male mountain lion
(AM80), together with approximate means (solid lines) and 95% equal-tailed credible limits
(dashed lines) obtained using the multiple imputation approximation.

are replications in this model and allow for inference about diurnal changes in movement

behavior.

For this analysis, we fit the CTDS model for AM80 using the ‘glmnet’ R package (Fried-

man et al., 2010), using a lasso penalty, with tuning parameter chosen to minimize the average

squared error of the fit in a 10-fold cross-validation. We used the resulting estimate of the

lasso tuning parameter γ as a hyperparameter in the Bayesian model with lasso shrinkage

prior. The resulting posterior predictive mean and equal-tailed 95% credible interval bounds

for β(t) are shown in Figure 2.5.

2.6.1 Results

The results in Figure 2.4 show that the multiple imputation approximation adequately

captures the location and spread of the posterior predictive distributions of movement pa-

rameters for AM80. The results show that much of the subadult male’s movement can be
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Figure 2.5: Time-varying results for the location-based and directional covariates in the
continuous-time discrete-space model for a male mountain lion (AM80) obtained using a
lasso shrinkage prior.
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explained by a correlated random walk (Figure 2.4f) with attractive points at PKSs (Figure

2.4c). The results also show that the animal’s movement behavior is fairly homogeneous

when in forested and in non-forested terrain (Figure 2.4a).

The time-varying results for the location-based and directional drivers of movement for

AM80 are shown in Figure 2.5. In Figure 2.5b, the nearly constant positive value or the β(t)

associated with movement towards the nearest PKS indicates the animal’s behavior around

PKS’s is fairly consistent throughout the day, with some preference for returning to a PKS

during the crepuscular periods. In Figure 2.5d, the positive value for the β(t) associated with

the autoregressive parameter indicates that the lion often engages in correlated movement,

especially during the middle of the day. The confidence bands of the other parameters

include zero throughout the day, indicating that the animal’s behavior is is not consistent

with the diurnal cycle.

2.7 Discussion

While we have couched our CTDS approach in terms of modeling animal movement,

we can also view this approach in terms of resource selection (e.g., Manly et al., 2002).

Johnson et al. (2008) describe a general framework for the analysis of resource selection

from telemetry data using a weighted distribution approach where an observed distribution

of resource use is seen as a re-weighted version of a distribution of available resources, and

the resource selection function (RSF) defines the preferential use of resources by the animal.

Warton and Shepherd (2010) and Aarts et al. (2012) describe a point process approach to

resource selection that can be fit using a Poisson GLM, similar to the CTDS model we

describe here. In the context of Warton and Shepherd (2010), the CTDS approach can be

viewed as a resource selection analysis with the available resources at any time defined as the

neighboring grid cells. The transition rate (2.7) of the CTDS process to each neighboring

cell contains information about the availability of each cell, as well as the RSF that defines

preferential use of the resources in each cell.
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It is notable that the computationally-efficient multiple imputation approximation pro-

vided accurate estimates of the mean and variance of the posterior predictive distribution

of β|S. The entire multiple imputation analysis required less than ten minutes using a com-

puter with 4 GB of memory and a 1.67 GHz quad-core processor. In contrast, the fully

Bayesian approach required nearly ten hours using the same computer. This increase in

computational efficiency relative to the approaches of Johnson et al. (2008), Hooten et al.

(2010), Hanks et al. (2011), and McClintock et al. (2012) allows for inference on complex

behavior at finer temporal resolution than has been possible previously.

We have focused on building an individual model for animal movement that is intuitive

and computationally-efficient. If population level inference on data from multiple animals

is desired, there are multiple potential approaches. The first is to analyze movement paths

from multiple animals jointly, with population level parameters in the GLM being shared

by all animals and individual variation modeled using standard random effects approaches.

However, this approach may not be straightforward to implement or interpret in the context

of a varying coefficient model. Each individual animal is likely to encounter and be influenced

by different drivers of movement (e.g., local environmental factors or nearby conspecifics) at

differing times throughout the observation window. In this situation, it may make little sense

to examine a population level response to a particular driver of movement at a particular

time, as in a typical random effects analysis.

Instead, one approach to a population level analysis could be a post-hoc analysis of the

time-varying response to covariates β(t). For example, Hanks et al. (2011) used a cluster

analysis to examine different movement regimes shared across individuals in the population.

Differences in the movement patterns exhibited by subgroups (e.g., male vs. female) were

then examined by a comparison of the proportion of time spent by each subgroup in each of

the movement regimes.

The use of directional drivers of movement has a long history. Brillinger et al. (2001)

model animal movement as a continuous-time, continuous-space random walk where the drift
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term is the gradient of a “potential function” that defines an animal’s external drivers of

movement. Tracey et al. (2005) use circular distributions to model how an animal moves

in response to a vector pointing towards an object that may attract or repel the animal.

Hanks et al. (2011) and McClintock et al. (2012) make extensive use of gradients to model

directed movements, and movements about a central location. In our study of mountain lion

movement data, we used directional drivers of movement to model conspecific interaction

between a mother (AF79) and her cub (AM80). Interactions between predators and prey

could also be modeled using directional covariates defined by vectors pointing between ani-

mals. Some movements based on memory could also be modeled using directional covariates.

For example, a directional covariate defined by a vector pointing to the animal’s location one

year prior could be used to model seasonal migratory behavior. The ability to model both

location-based and directional drivers of movement make the CTDS framework a flexible

and extensible framework for modeling complex behavior in animal movement.
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CHAPTER 3

CIRCUIT THEORY AND MODEL-BASED INFERENCE FOR LANDSCAPE

CONNECTIVITY

3.1 Introduction

2 Having examined a class of models for animal movement data in Chapter 2, the anal-

ysis of genetic data for landscape connectivity will be the focus of Chapters 3 and 4. In

this chapter, we focus on circuit theoretic approaches to studying landscape genetics and

connectivity.

Circuit theory has been successfully used to study connectivity in a wide range of fields,

including molecular chemistry (Zhu and Klein, 1996; Klein et al., 2004), collaborative rec-

ommendation (Fouss et al., 2007), communications network analysis (Tizghadam and Leon-

Garcia, 2010, 2011), social network analysis (Kunegis et al., 2009), and random walks on

a graph (Chandra et al., 1996; Volchenkov, 2011). Circuit theory has also seen extensive

recent use in landscape ecology, where it has been theoretically linked to animal movement

and gene flow in heterogeneous landscapes (McRae, 2006; Cushman et al., 2006; McRae

and Beier, 2007; McRae et al., 2008; Urban et al., 2009; Cushman and Landguth, 2010;

Dyer et al., 2010; Lookingbill et al., 2010; Owen-Smith et al., 2010; Rayfield et al., 2010;

Saura and Rubio, 2010). In these latter cases, the landscape is specified as a raster grid

with connectivity between grid cells determined by landscape characteristics and modeled

based on circuit theory (Figure 3.1). Circuit theory provides a flexible framework for mod-

2The material in Chapter 3 is based on the following publication: Hanks, E.M., M.B. Hooten. 2013.

Circuit Theory and Model-Based Inference for Landscape Connectivity. Journal of the American Statistical

Association 108(501), pp.22-33.
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eling nonstationary connectivity, and shows promise for predicting effects of landscape and

environmental change on connectivity (e.g., Storfer et al., 2007; Spear et al., 2010).

A key challenge in modeling landscape connectivity using circuit theory is to estimate

the relative resistance values of various landscape characteristics (e.g., Spear et al., 2010).

In applications of circuit theory other than landscape ecology, resistance values are typically

known, or all resistors in the circuit are assumed to have equal resistance. In these cases, the

focus is typically on exploratory analysis of the connectivity implied by viewing the system as

a circuit, rather than on estimating resistance values based on observations. In contrast, the

goal in landscape ecological applications of circuit theory is to understand the impact that

different landscape characteristics have on connectivity. Observations are typically second-

order, and come in the form of an observed pairwise distance matrix representing the process

under study (e.g., spatial gene flow in landscape genetics). The most common approach used

to estimate resistance values for different landscape characteristics is to choose between a

set of pre-specified candidate resistance values for each landscape covariate hypothesized to

have an effect on connectivity (e.g., Cushman et al., 2006, 2009). Each set of candidate

resistance values is used to create a hypothesized resistance distance matrix between the

observed spatial locations in the study, where the resistance distance is computed based on

circuit theory. The correlations between each of the hypothesized distance matrices and the

observed distance matrix is computed, and the set of candidate resistance values that result

in the highest correlation to the observed distance matrix is chosen (e.g., Cushman et al.,

2006, 2009; Wang et al., 2009; Shirk et al., 2010), with significance assessed through Mantel

permutation tests (e.g., Legendre and Fortin, 2010).

One major drawback of this approach is that there is no obvious way to assess the

uncertainty in the parameter estimates for the resistance values of the landscape covariates.

This is a critical point, as the results of spatial connectivity studies are being used to influence

policy decisions (e.g., Theobald et al., 2011) and predict the results of landscape change over

time (e.g., Spear et al., 2010).
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Our goal is to put the estimation of resistance values from observed genetic distance

matrices within a model-based framework. Recent work by McCullagh (2009) shows that

observed squared-Euclidean distance matrices can be modeled using the generalized (or in-

trinsic) Wishart distribution with a spatial covariance matrix as a parameter. However, it

is not immediately obvious how to parameterize a covariance matrix in a way that models

connectivity based on circuit theory. As circuits are based on a graph or network of nodes,

it seems natural to consider spatial statistical models with discrete spatial support, such as

Gaussian Markov random field (GMRF) models (e.g., Rue and Held, 2005). In what follows,

we make use of intrinsic conditional autoregressive (ICAR) models (Besag, 1974; Besag and

Kooperberg, 1995) for modeling spatial connectivity based on circuit theory. We show that

the GMRF with ICAR covariance structure can be seen as a spatial model for a Gaussian

process with connectivity defined by circuit theory, and that the expected squared differ-

ence between observations from an ICAR model is exactly the resistance distance defined by

circuit theory. The ICAR covariance matrix is also identifiable in the generalized Wishart

model for observed distance matrices, making it an appealing choice for modeling spatial

structure when the observations come as pairwise distances. This link between circuit the-

ory and ICAR spatial models provides a computationally-efficient framework for modeling

circuits with Gaussian error and making inference on resistance values in the circuit based

on observed data. Circuits and GMRFs both have a natural graph structure, but to the best

of our knowledge this link between GMRFs with ICAR structure and circuits has not been

described in the literature.

Our paper is organized as follows. In Section 3.2: Graphs, Circuits and Resistance

we review graph and circuit theory. We then review how circuit theory is used to model

gene flow in Section 3.3: Landscape Genetics. In Section 3.4: Distance and Covariance

we review the relationship between a covariance matrix and the mean squared distance

between observations. We also review how a symmetric positive semi-definite (SPSD) matrix

can be used to calculate the resistance distance of a graph, and discuss the generalized
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Wishart model for observed squared distance matrices. In Section 3.5: Gaussian Markov

Random Fields for Circuits we show that an ICAR covariance induces the circuit theory

resistance distance on a graph. This provides a framework for modeling observations with

connectivity defined by circuit theory. We also discuss modeling in the case of partial or

repeated observation of the nodes in the circuit. In Section 3.6: Application, we illustrate

our approach through a simulation example and then use our approach to examine gene

flow in alpine chamois (Rupicapra rupicapra) in the Borges Mountains of France. Finally, in

Section 3.7: Discussion, we discuss possible extensions to our approach.

Figure 3.1: Illustration of the use of circuits to model spatial connectivity. The landscape
is seen as a raster grid where connectivity between adjacent grid cells is a function of local
landscape characteristics, and is computed using circuit theory. In the hypothetical land-
scape in (a), both the forest and the river impede connectivity. In the corresponding circuit
(b), the raster cells are seen as being nodes connected by resistors, with thicker resistors
graphically representing higher resistance and reduced conductance between nodes.

3.2 Graphs, Circuits, and Resistance

An undirected graph (G,A) is a collection of m “nodes” G = {G1, G2, . . . , Gm} and

the “edges” or “edge weights” A = {αij} which are the connections between the nodes. If

nodes i and j are first-order neighbors, denoted i ∼ j, then αij > 0 is a measure of their
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connectivity, with larger values leading to stronger connectivity between nodes. If nodes i

and j are not first-order neighbors (i 6∼ j) then αij = 0. The graph is said to be undirected

if the edge weights are symmetric: αij = αji.

An electrical circuit can be represented by an undirected graph where the nodes G

are connected by a set of resistors A. Ohm’s Law expresses the relationship between the

resistance (R) of a resistor and the current (I) that flows through the resistor when a voltage

(V ) is applied as V = I ·R. The conductance αij of the resistor connecting neighboring nodes

i and j is the current I that would flow through the resistor if it were removed from the

circuit and a one-volt charge (V = 1) was applied across the resistor. The resistance R of

the resistor is the inverse of the conductance: 1/αij.

A voltage applied across any two nodes i and j, which may or may not be directly

connected (first-order neighbors) in the circuit, results in a current flow through the circuit.

The effective resistance Γij between nodes i and j is then defined as the resistance of a single

resistor that would admit the same current flow if the voltage were applied across it (e.g.,

Dorf and Svoboda, 2004).

The effective resistance Γij is a distance metric on (G,A) (Klein and Randić, 1993) that

incorporates all possible pathways through the graph, where distance decreases with the

addition of new pathways throughout the graph.

3.3 Landscape Genetics

Landscape genetics is the study of the effects of landscape on genetic diversity (Manel

et al., 2003). Understanding how the landscape affects the genetic connectivity of a popu-

lation of organisms can provide insight into the proper management of the population, the

potential spread of disease through the population (e.g., Wheeler et al., 2010; Wheeler and

Waller, 2010), and the effects of climate or landscape change on population connectivity (e.g.

Spear et al., 2010). Linking genetic information (e.g., microsatellite data) to the landscape

using a formal statistical model has been a continual challenge in the field of landscape ge-
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netics (e.g., Storfer et al., 2007; Spear et al., 2010). Spatial clustering methods (e.g., Guillot

et al., 2005; Chen et al., 2007; Durand et al., 2009) are commonly used to identify genetic

boundaries, but are typically based on the assumption of a homogeneous underlying land-

scape, with any link to the underlying landscape made post hoc (e.g., Wheeler et al., 2010).

Approaches based on isolation by distance (Wright, 1943; Spear et al., 2005; Broquet et al.,

2006) hypothesize that gene flow is based on a random walk in a homogeneous landscape, and

thus that a genetic distance metric computed from observed genetic information is correlated

with the straight-line distance between observed locations.

While the circuit theory model of gene flow (McRae, 2006) is formulated at a population

level, with the assumption that each grid cell on a landscape contains a sub-population, it

is often applied to individual-level genetic data (e.g., Cushman et al., 2006; Cushman and

Landguth, 2010). In effect, the observed genetic information of an individual is viewed as a

realization of genetic information in the theoretical sub-population in the grid cell. Pairwise

genetic distances between individuals can be thought of as observations of the resistance

distance between the grid cells where the individuals were observed, with noise.

Inference on resistance values of landscape characteristics is typically achieved using

a correlation analysis. An observed genetic distance matrix is compared to a number of

possible resistance distance matrices that result from various hypothesized resistance values

for landscape characteristics. The hypothesized resistance values that result in the highest

correlation with the observed genetic distance are selected.

We seek to improve the main features of this approach in two ways. First, little or nothing

is learned through this approach about the uncertainty pertaining to the estimated resistance

values. Second, the process of estimating the resistance values requires a grid search of the

parameter space, and consequently a large number of candidate resistance values may need

to be examined. For example, if the goal is to estimate the resistance to spatial gene flow

due to p distinct landscape characteristics, a grid of hypothetical resistance values for each

characteristic would need to be specified. If we consider a modest 10 hypothetical values
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for each resistance value, we would need to calculate the resistance distance and resulting

correlation with observed data for each of the 10p combinations of hypothesized values. The

number of hypothetical values could grow much higher, depending on the degree of precision

required.

Our goal is to put the estimation of resistance values from observed genetic distance

matrices within a model-based framework. After developing a suitable model, Bayesian

statistical methods will allow for estimation of the posterior distribution of the resistance

values of landscape characteristics, providing point estimates through posterior means and

estimates of uncertainty through posterior credible intervals.

3.4 Distance and Covariance

Covariance matrices and distance matrices both contain information about the connec-

tivity between locations indexed by the matrix rows and columns. In this section, we review

a link between covariance matrices and distance metrics, show how an improper (rank-

deficient) covariance matrix can be used to induce the resistance distance Γ on the graph

(G,A), and review recent developments in the modeling of observed distance matrices.

3.4.1 Induced Distance Matrices

We will refer to the space of symmetric positive semi-definite (SPSD) matrices of dimen-

sion m ×m as SPSD(m). Let G = {G1, . . . , Gm} be a set of m locations (e.g., nodes in a

graph) and let Σ ∈ SPSD(m) be a SPSD matrix with components (Σij), i, j ∈ {1, 2, . . . ,m}.

It is helpful to think of Σij as the covariance between the ith and jth locations in G. Also,

let ej be the m × 1 column vector with the jth element equal to 1 and all other elements

equal to zero. The metric defined by
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Dij = ∆ij(Σ) = (ei − ej)
′Σ (ei − ej) (3.1)

= Σii + Σjj − 2Σij

is a critical transformation in both circuit theory and in the modeling of observed distance

matrices. In Section 3.4.2 we will show how a particular matrix Σ results in Dij being the

resistance distance of the graph. In Section 3.4.3 we will follow McCullagh (2009) and use

the transformation (3.1) to formalize the modeling of observed distance matrices. We first

list some properties of (3.1) that will be important in our effort to model observed genetic

distance matrices using covariance matrices based on circuit theory.

If we collect the {Dij} in an m ×m matrix D, the transformation (3.2) can be written

in matrix form. Let dΣ = diag(Σ) be a column vector with elements equal to the diagonal

elements of Σ, and 1 be a column vector with all elements equal to 1. Then

D = ∆(Σ) = −2Σ + dΣ1′ + 1d′Σ (3.2)

is a linear transformation from SPSD(m) to the space of m×m matrices that are negative

definite on contrasts. We will say that the covariance matrix Σ induces the distance matrix

D = ∆(Σ) on the set of locations G.

This transformation ∆ has an intuitive interpretation in the case where Σ is a covariance

matrix. Let y be an m-dimensional random variable with common mean µ (i.e., µi =

µ for i = 1, 2, . . . ,m) and covariance matrix Σ. Then the induced distance ∆ij(Σ) is a

variogram: the expected squared distance between the observations at locations i and j:
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E
[
(yi − yj)2

]
= Var(yi) + Var(yj)− 2Cov(yi, yj)

= Σii + Σjj − 2Σij

= ∆ij(Σ).

While this interpretation only holds when Σ is a covariance matrix, the induced matrix

∆(Σ) is a distance for a class of rank deficient SPSD matrices. To see this, we first examine

the null space or kernel of the operator ∆, which is the set of Σ ∈ SPSD(m) such that ∆(Σ)

is the zero matrix. McCullagh (2009) notes that the null space of ∆ is the space of additive

symmetric matrices S = {Sm×m : Si,j = vi + vj, v ∈ Rm}. We clarify this statement in the

case where Σ ∈ SPSD(m).

Proposition 1. For Σ ∈ SPSD(m), the transformation ∆(Σ) is a linear transformation

with null space equal to {Σ : Σ = c11′ , c ∈ R}.

This result is obtained by noting that Σ ∈ SPSD(m) implies that there is a singular

value decomposition Σ =
∑m

i=1 λiuiu
′
i, where {λi ≥ 0} are the eigenvalues and {ui} are

orthonormal eigenvectors. Then we can rewrite (3.1) as

Dij = ∆ij(Σ) = (ei − ej)
′Σ (ei − ej)

= (ei − ej)
′

(
m∑
k=1

λkuku
′
k

)
(ei − ej)

=
m∑
k=1

λk
[
(ei − ej)

′ uk
]2

As λk ≥ 0, each term in the sum above is non-negative. From this, Σ is in the null space of

the transformation ∆ if and only if ∆ij(Σ) = 0 for all i = 1, . . . ,m and j = 1, . . . ,m, which

in turn is true if and only if either λk = 0 or uk = c1 , c ∈ R for each k = 1, . . . ,m. Since

the uk are orthogonal, we conclude that ∆ij(Σ) = 0 for all i and j if and only if Σ = λ11′.
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We will denote the null (column) space of a matrix Σ as N (Σ). If Σ is of full rank, or if

N (Σ) is the space spanned by the 1 vector, then ∆(Σ) is a distance metric on G×G. That

is, D = ∆(Σ) is symmetric (Dij = Dji), satisfies the triangle inequality (Dij + Djk ≥ Dik),

and is zero only for the distance from a location to itself (Dij = 0 iff i = j).

If N (Σ) is the space spanned by the 1 vector, then Σ is orthogonal to the null space of

∆ and the transformation ∆ is invertible. Note that this invertibility does not hold for any

Σ of full rank. This will be important in Section 3.4.3 where we discuss the identifiability of

covariance matrices in the generalized Wishart model for distance matrices induced by the

transformation ∆ in (3.2).

3.4.2 Inducing the Resistance Distance of a Graph

The effective resistance matrix Γ = (Γij) of a circuit represented by the undirected graph

(G,A) can be computed by constructing a SPSD matrix that induces Γ. Kirchoff’s current

law (e.g., Dorf and Svoboda, 2004) states that the electrical current flowing into a node

must equal the current flowing out of the node. Applying Kirchoff’s current law to the

graph (G,A) leads to the formation of the Laplacian matrix (e.g., Babić et al., 2002) of the

graph:

Q =



∑
j 6=1 α1j −α12 −α13 · · ·

−α21

∑
j 6=2 α2j −α23 · · ·

−α31 −α32

∑
j 6=3 α3j · · ·

...
...

...
. . .


. (3.3)

The Laplacian matrix Q is of dimension m × m, and each row sums to zero. The null

space N (Q) is the space spanned by the 1 vector, and Q is singular with rank m− 1. The

generalized inverse of the Laplacian Q is Q−, which is also of rank m − 1. As shown by

Klein and Randić (1993), the effective resistance between the nodes of (G,A) is the distance
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induced by the SPSD matrix Q−:

Γij = (ei − ej)
′Q− (ei − ej) . (3.4)

Generalized inverses are not unique, but the correspondence between the null space of

the Laplacian matrix Q and the null space of the transformation (3.2) results in a useful

invariance.

Proposition 2. The resistance distance Γij = (ei − ej)
′Q− (ei − ej) is invariant to the

choice of generalized inverse Q− of the Laplacian matrix Q.

Proposition 2 is a direct consequence of the lemma that a′Q−a is invariant to the choice

of generalized inverse Q− if and only if a is orthogonal to N (Q) (see pp. 134-135 of Graybill

(1983) and pp. 130-131 of Seber (2008)). The null space of the Laplacian Q is the space

spanned by 1, and each contrast ei − ej is orthogonal to 1.

This invariance was not noted by Klein and Randić (1993), though various generalized

inverses have been used to compute the resistance distance (e.g., Babić et al., 2002; McRae,

2006).

3.4.3 Modeling Induced Distance Matrices

The observations in our landscape genetics example are genetic distance matrices, which

we are viewing as distance matrices induced from an underlying spatial covariance moti-

vated by circuit theory. The distributional properties of distance matrices induced by the

transformation (3.2) have been studied by McCullagh (2009). We briefly review the results

of McCullagh (2009) here, and then discuss identifiability in models for observed distance

matrices.

Let yi ∼ N(µ1,Σ), i = 1, 2, . . . , ν be ν independent realizations from a Gaussian process

with common mean µ and covariance matrix Σ. If we concatenate the observations as

Y = [y1,y2, . . . ,yν ], then S = YY′ is Wishart distributed with ν degrees of freedom and
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covariance matrix Σ:

S = YY′ ∼ Wν(Σ).

McCullagh (2009) defines the generalized Wishart distribution as follows. V is said to

come from a generalized Wishart distribution with ν degrees of freedom, covariance matrix

Σ, and kernel K

V ∼ GWν(K,Σ)

if for any linear transformation L such that the null space of L is K (N (L) = K), L′VL is

Wishart distributed:

L′VL ∼ Wν(L
′ΣL).

McCullagh (2009) then shows that induced distance matrices (3.2) can be modeled using

the generalized Wishart distribution. Let S ∼ Wν(Σ) and consider the induced distance

matrix D = ∆(S). Consider an m × (m − 1) matrix L with full column rank and N (L)

spanned by 1. For example, L could be a full rank matrix of contrast vectors:

L = [e2 − e1, e3 − e1, . . . , em − e1].

Then L′1 = 0 and it is easy to see from (3.2) that

L′(−D)L = L′ (2S− dΣ1′ − 1d′Σ) L

= L′(2S)L.

which is Wishart distributed with covariance matrix L′(2Σ)L. Then, by definition,

−D = −∆(S) ∼ GWν(1, 2Σ). (3.5)

The likelihood of an observed distance matrix D under this model can be obtained by

evaluating the likelihood [L′(−D)L | ν,L′(2Σ)L] in the Wishart distribution L′(−D)L ∼
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Wν(L
′(2Σ)L), where the bracket ‘[·]′ notation indicates a probability distribution. Alter-

nately, McCullagh shows that this likelihood can be obtained equivalently by using a pro-

jection A = I− 11′Σ−1

1′Σ−11
onto the space of m×m matrices orthogonal to the null space of the

transformation ∆. The resulting expression for the likelihood does not rely on the choice of

L:

[−D|2Σ, ν] ∝ |Σ−1A|ν/2 · exp

{
1

4
tr(Σ−1AD)

}
, (3.6)

where the determinant | · | is the product of all non-zero eigenvalues.

As the transformation ∆(S) in (3.2) is invariant to the addition of a constant matrix c11′

to S, the likelihood (3.6) is invariant to the addition of a constant matrix c11′ to Σ, and Σ

is not identifiable in general. While McCullagh (2009) is not concerned with identifiability

(See pg. 635 of McCullagh, 2009), our goal is to parameterize and estimate a spatial

covariance matrix Σ that describes gene flow under a circuit theory model for connectivity.

Identifiability of Σ is important in this endeavor.

The fact that the generalized Wishart distribution is defined on distance matrices induced

by applying the transformation (3.2) to observations from a Wishart distribution implies that

the covariance matrix Σ in the generalized Wishart model (3.65) will be identifiable if the

transformation (3.2) is invertible. The following proposition follows directly from Proposition

1, where we describe the null space of the transformation (3.2).

Proposition 3. In the generalized Wishart model (3.5), Σ is identifiable if and only if the

space spanned by 1 is contained in N (Σ).

This implies that only a rank-deficient covariance matrix Σ will be identifiable. We also

note that the deficiency implied here is identical to the null-space of the Laplacian matrix

(3.3) of the graph under circuit theory. We now specify a GMRF with a covariance matrix

that will be identifiable in the generalized Wishart model for distance matrices and that will

induce the resistance distance on the graph, matching the second-order structure defined by

circuit theory.
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3.5 Gaussian Markov Random Fields for Circuits

Gaussian Markov random fields (GMRFs) are used extensively in statistical modeling,

especially for spatial and temporal processes (Rue and Held, 2005; Lindström and Lindgren,

2008; Bolin et al., 2009). GMRFs on a graph G are characterized by the conditional inde-

pendence of any two nodes that are not first-order neighbors when conditioned on all other

nodes in G. This conditional independence results in a sparse precision matrix, and sparse

matrix methods can typically be applied to any statistical analysis utilizing GMRFs (Rue,

2001; Rue and Held, 2005; Rue et al., 2009). This allows for highly efficient computation, and

can make inference possible at a finer spatial or temporal resolution than might be possible

using a non-Markovian random field.

Our goal is to specify a GMRF on the graph (G,A) with a covariance matrix that induces

the resistance distance matrix Γ. The result is a statistical model for observations from a

graph with Gaussian error and expected squared distance between observations equal to the

resistance distance of the graph.

Consider a random variable y = [y1, y2, . . . , ym]′ on the m nodes G = {G1, G2, . . . , Gm}

and define the conditional distribution of yi given all other values in y as

yi|y−i ∼ N
(∑

j∼i

wijyj, κi

)
(3.7)

wij =
αij∑
l∼i αil

, κi =
1∑
l∼i αil

.

Conditionally, each observation is normally distributed with mean equal to a weighted aver-

age of all nodes that are first order neighbors j ∼ i, where the weights are proportional to

the conductance αij of the edge connecting the nodes.

The conditional specification in (3.7) satisfies the Markov property and is a GMRF. In

particular, y follows an intrinsic Gaussian conditional autoregressive (ICAR) model on the

graph (G,A) (Besag and Kooperberg, 1995; Rue and Held, 2005). Using Brooks Lemma
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(Besag, 1974; Besag and Kooperberg, 1995), the joint distribution of y is

y ∼ N(0,Q−) (3.8)

where the precision matrix Q is exactly the Laplacian matrix (3.3) of the graph (G,A).

Then the generalized inverse Q− is a SPSD matrix that induces the resistance distance Γ

on the graph (G,A), and the mean squared distance between observations from the ICAR

process (3.8) is the resistance distance of the graph.

The ICAR model (3.8) is proper under the constraint that y′1 = c for some constant

c ∈ R. If we observe ν independent realizations yi ∼ N(0,Q−), i = 1, 2, . . . , ν, with

y′i1 = 0, and concatenate the observations as in Section 3.4.3: Y = [yi,y2, . . . ,yν ], then

S = YY′ ∼ Wν(Q
−) is proper under the constraint that S1 = 0. Under this constraint,

S is orthogonal to the null space of the transformation ∆ (3.2), and the transformation

to D = ∆(S) is invertible. The elements of D are the sum of the squared difference in

observations Djk =
∑ν

i=1(yji − yki)
2 subject to the constraints that y′i1 = 0. Under this

model, each element Djk of the distance matrix D has mean νΓjk, the resistance distance

Γjk between the jth and kth nodes in the graph G multiplied by the number of pairwise

observations ν.

This provides a natural model for observed distance matrices with connectivity modeled

by circuit theory:

−D ∼ GWν(1, 2Q−) (3.9)

where Q is the Laplacian of the graph (G,A), or, equivalently the ICAR precision matrix

of the graph (G,A). From Proposition 3, Q is identifiable, and the observations in D can

be thought of as observations of the resistance distance, with Gaussian noise.
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3.5.1 Partial and Repeated Observation

We have assumed so far that the circuit in question is fully observed. That is, an observed

effective distance Dij is obtained for each pair of nodes in G. In practice, however, it

will be common to have observations from only a small subset of the nodes, and multiple

observations may come from a single node. In a spatial analysis, for example, the study

domain may include thousands of raster cells, each of which is considered a node in the

resistance surface (G,A). If we obtain a set of spatially-referenced observations, multiple

observations may lie within one raster cell, and, depending on the number of observations in

the study, only a small fraction of the raster cells (perhaps dozens or hundreds) will contain

observations. In the case where only a subset of the nodes are observed, we want to preserve

the sparse nature of the precision matrix Q and the associated computational efficiency of

the GMRF.

The precision matrix Q is sparse, but the generalized inverse Q− will typically be dense.

For large m, it is impossible to even store a dense m×m matrix in many standard computing

environments, so we wish to avoid the express calculation of Q− for the whole graph.

Consider the case where we have only n observations yi, i = 1, . . . , n from the m nodes

in G, where m >> n and let the observed nodes be indexed by the first n rows and columns

of Q. Let Q∗ be the (m− 1)× (m− 1) upper-left submatrix of Q. Then, since Q is of rank

m− 1, Q∗ is of full rank and invertible. The inverse of Q∗ then forms the (m− 1)× (m− 1)

upper-left submatrix of the generalized inverse Q−1, with entries in the mth row and mth

column of Q−1 being set to zero. In this formulation, the covariance matrix of the n observed

nodes in G is just the n × n upper-left submatrix of (Q∗)−1. This submatrix can be found
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by partitioning Q∗ in block form:

Q∗ =

 Q∗11 Q∗12

Q∗21 Q∗22

 (3.10)

where Q∗11 is the n × n block of Q corresponding to the n observed nodes of G, Q∗22 is

the (m − n − 1) × (m − n − 1) block of Q corresponding to the m − 1 unobserved nodes,

after the removal of the mth row and column, and Q∗12 = (Q∗21)T is the n × (m − n − 1)

block of Q∗ relating the observed nodes to the unobserved nodes. The precision matrix Φ

of the n observed locations is the Schur complement (Harville, 2008) of Q∗22: Φ = Q∗11 −

Q∗12(Q∗22)−1Q∗21. As Q∗22 is of dimension (m−n− 1)× (m−n− 1), we also wish to avoid the

explicit calculation of the inverse (Q∗22)−1 when computing Φ. This can be accomplished by

first computing the Cholesky decomposition: Q∗22 = UTU, which can be found efficiently

using sparse matrix methods (Bates and Maechler, 2011). We then compute V = (UT )−1Q∗21

by solving the n linear equations UTV = Q∗21. As UT is lower-triangular, this can be solved

efficiently using forward substitution. The precision matrix of the observed nodes is then

obtained by

Φ = Q∗11 −VTV. (3.11)

The advantage of this method is that we can use sparse matrix methods that are computa-

tionally efficient and do not require the explicit computation of large dense matrices (Rue,

2001).

In the case where multiple observations are obtained from a single node of G, a nugget

effect can be introduced to the covariance structure (Besag et al., 1991; Lindström and Lind-

gren, 2008; Cross et al., 2010). Let y = [y1, y2, . . . ynobs
]T be the vector of nobs observations

from the graph (G,A), and let si ∈ G be the node of the ith observation, i = 1, 2, . . . , nobs.

Since there may be repeated observations in some nodes, the total number of nodes of G

for which we have observations is nnodes ≤ nobs. Let Σnodes = Φ−1 be the nnodes × nnodes
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covariance matrix of the observed nodes, and let K be an nobs×nnodes matrix with Kij = 1 if

si = j, that is if the ith observation yi comes from the jth node of G, and Kij = 0 otherwise.

Then the covariance Ψ of the nobs observations is

Ψ = KΣnodesK
T + τI

where connectivity between the nodes of G is modeled based on circuit theory (Σnodes) and

τ is a spatial nugget parameter representing the variability in observations obtained from

the same node in G.

We can then model an observed distance matrix D as arising from a generalized Wishart

distribution with covariance matrix of the observed locations Ψ,

−D ∼ GW(1, 2Ψ). (3.12)

The covariance matrix Ψ is dependent on the edge weights {αij}, and may contain a nugget

effect τ to account for repeated observations.

3.5.2 Modeling Resistance

We now turn to the parameterization of the edge weights {αij} of the graph (G,A)

in terms of landscape covariates. In doing so, it will be helpful to consider a few links

between circuit theory and random walks on the graph. In a circuit, the edge weights are

the conductances between neighboring nodes in the graph. If we consider the CTDS random

walk model from Chapter 2, the edge weights {αij} of the graph are proportional to the rate

at which a random walker transitions from node i to node j. As landscape covariates are

typically available in gridded form, each node in G is a grid cell in the study area. The rate

of transition from cell i to cell j could be driven by many factors, as discussed in Chapter

2, including the environment at the starting cell i, the environment at the neighboring cell

j, and local environmental gradients. To maintain the links to circuit theory, however, the
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transition rates must be symmetric (αij = αji) and non-negative. This ensures that (G,A)

is an undirected graph, and also ensures that the conditional specification (3.8) of the ICAR

model results in a GMRF. As the edge weights must be symmetric, we cannot model drift

due to directional (gradient-based) drivers of movement using circuit theory. Forcing the

edge weights to be symmetric implies that we are modeling connectivity of a system that

is stationary. While this assumption may be unreasonable for individual organisms at short

time scales (e.g., Hanks et al., 2011), there is more support for it at a population-level and

at long time scales (e.g., genetic time).

To specify symmetric edge weights, we consider an average of the landscape covariates at

adjacent cells. This is motivated by considering the straight-line path between the centers

of the two adjacent grid cells. Half of this path lies in each cell, and we can hypothesize

a transition rate (or edge weight) that would be related to an average of the landscape

covariates in the two cells. If xi is a vector of p landscape characteristics of the ith cell, and

β is a p-vector of parameters related to the effect that each landscape characteristic has on

gene flow, then the edge weights {αij} could be modeled as

αij =


exp

[
1
dij

(
x′i+x′j

2

)
β
]

, j ∼ i

0 , j � i

(3.13)

where dij is the straight-line distance between the centroids of cells i and j. In this model,

connectivity is a function of the landscape characteristics of both cells (xi,xj), the distance

between the cells (allowing for differing distances between neighbors in, for example, a queen’s

neighborhood), and the conductance parameters β. Using an exponential link function

ensures that the {αij} are non-negative, and allows for convenient interpretation of the

conductance parameters β. If βh < 0, then an increase in the hth landscape characteristic

results in a greater resistance to gene flow, while if βh > 0, then an increase in the hth

landscape characteristic results in less resistance to gene flow.
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Finally, assigning prior distributions to the coefficients β and nugget parameter τ

β ∼ N(µβ,Σβ) (3.14)

τ ∼ IG(a, b) (3.15)

results in a statistical model (3.12)-(3.15) that can be fit using Bayesian techniques (e.g.,

Markov chain Monte Carlo, MCMC). In both the simulation example and data analysis that

follow, we have specified a diffuse, mean-zero prior for β: β ∼ N(0, 106I) and a relatively

diffuse inverse-gamma prior for τ : τ ∼ IG(10, 100). Samples from the posterior distribution

of β and τ can be obtained using random walk Metropolis-Hastings updates in an MCMC

sampler. After proposing a value for β or τ , the proposed value is used to compute the

resulting precision matrix Ψ of the observations. The candidate β or τ value can then be

accepted or rejected with the typical Metropolis-Hastings probability (e.g., Gelman et al.,

2004).

One potentially useful extension to (3.13) is a varying coefficient model (Hastie and

Tibshirani, 1993). For simplicity, consider one covariate x. The edge weights for neighboring

cells could be modeled as

αij = exp

[
1

dij

(
β(xi) + β(xj)

2

)]

where the functional regressor β(x) is typically modeled as a linear combination of nspl

spline basis functions {φk, k = 1, . . . , nspl} : β(x) =
∑nspl

k=1 γkφk(x). This specification gives

a flexible framework for examining nonlinear relationships between conductance and the

covariate x.
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3.6 Application: Landscape Genetic Analysis of Alpine Chamois

We now apply our approach, first in a study of simulated data, and then to observed

genetic data.

3.6.1 Simulation Example

Figure 3.2: We simulated a resistance surface using two discrete cover types (a)-(b) and one
continuous covariate (c). In the simulation study, Covariate 1 was set to impede connectivity
(a), Covariate 2 was set to have no effect on connectivity (b), and Covariate 3 was set to fa-
cilitate connectivity (c). The resulting landscape conductance is shown in (d). Observations
from the landscape were simulated (e), and inference on the contribution of each landscape
covariate to connectivity was made (f).

Our approach for inference on gene flow across a heterogeneous landscape can be illus-

trated through a simulation example. A 100× 100 landscape grid was created with a mix of

continuous and discrete landscape characteristics (Figure 3.2). True values were assigned to

the parameters β pertaining to the effect that each landscape characteristic has on gene flow,
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as well as for the nugget parameter τ . To simulate locations of organisms on the landscape,

300 completely spatial random locations were chosen and linked to grid cells. The covari-

ance matrix Ψsim of these 300 locations was based on a rook’s-neighborhood connectivity

between grid cells (i.e., first order spatial neighbors) and the conductances {αij} specified

by the landscape characteristics and true β values. We simulated ten realizations from a

mean-zero Gaussian random field with covariance Ψsim, and calculated the squared Euclidean

distance between these realizations. The resulting pairwise distances between locations are

proportional to the linearized pairwise Fst values that would be observed from the analysis

of microsatellite alleles from ten loci of each organism.

The simulated pairwise distance matrix was used to fit the model (3.12)-(3.15). We

used an MCMC algorithm to obtain 10,000 posterior samples of β and τ from four separate

chains with distinct starting values. The posterior distributions for β and τ both indicate

agreement with the true specified values (Table 3.1), providing evidence that the proposed

model is able to recover resistance parameters in similar situations to that of our application

data discussed in the following section.

Table 3.1: Simulation example results for connectivity parameters in the resistance surface.

Parameter Truth Posterior Mean Lower 95% CI Bound Upper 95% CI Bound
Intercept 2 1.364 0.744 2.015

Covariate 1 -5 -4.127 -6.340 -1.939
Covariate 2 0 0.040 -0.971 1.067
Covariate 3 1 1.386 0.815 1.901

Nugget 0.5 0.519 0.474 0.621

For comparison, we also employed a correlation analysis, the most common existing

method in landscape genetics studies (e.g., Cushman et al., 2006, 2009; Wang and Xia, 2009;

Shirk et al., 2010). This method requires specifying hypothesized resistance values, then

computing the correlation between the observed genetic distance matrix and the resistance

distance matrix that is the result of the hypothesized resistance values. We note that since
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this method relies on correlation, the intercept term in our model can be seen as a constant

multiple of the distance matrices, and will have no effect on correlation. For the remaining

three covariates, we employed a grid search of possible parameter values. Models with

integer-valued parameters ranging from -6 to 3 were tried, resulting in 1000 candidate models

for gene flow. The resulting 1000 hypothesized distance matrices were tested for correlation

with the observed (simulated) genetic distance matrix, with the correlation being expressed

as Mantel’s z statistic as computed in the ‘vegan’ package (Oksanen et al., 2012) in the R

statistical computing environment (R Core Team, 2013). The 5 models with the highest

correlation are shown in Table 3.2. The model with the true parameter values used in the

simulation was ranked 13 out of the 1000 hypothesized models, and is shown in bold in Table

3.2.

The correlation approach was able to identify the large negative effect of covariate 1,

and correctly identifies that covariate 2 has no effect, but had some trouble with covariate

3. This highlights the need for a measure of uncertainty about the estimates of parameter

values, as is obtained from the posterior credible intervals of resistance parameters β from

the generalized Wishart model (Table 3.1).

Table 3.2: Simulation study results for the correlation method.

Model Rank Mantel’s z Covariate 1 Covariate 2 Covariate 3
1 0.1450 -4 0 -1
2 0.1423 -4 0 -2
3 0.1421 -4 0 0
4 0.1416 -5 0 -1
5 0.1416 -5 0 0
...

...
...

...
...

13 0.1378 -5 0 1
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3.6.2 Spatial Gene Flow in Alpine Chamois

The alpine chamois (Rupicapra rupicapra) is native to the mountains of Europe, and is a

conserved species in France. Chamois live at moderately high altitudes and have adapted to

living in steep, rocky terrain. Jombart (2012) have recently studied spatial gene flow among

chamois in the Bauges mountains of France (Figure 3.3a). Their analysis, based on spatial

principal component analysis (Jombart et al., 2008), concludes that gene flow in chamois

may be impeded by lower elevation terrain (e.g., mountain valleys), possibly due to the

increased risk of predation. The analysis of Jombart (2012) does not explicitly incorporate

the landscape; rather, the results of the spatial principal component analysis are overlaid on

the landscape, and post hoc inference is obtained for the effects of landscape characteristics

(elevation in this case) on gene flow. To illustrate our approach to inference for gene flow

based on circuit theory and the isolation by resistance hypothesis, we re-analyze the data of

Jombart (2012) using our Bayesian model (3.12)-(3.15). This approach allows us to explicitly

model and estimate the resistance that landscape characteristics (like elevation) have on gene

flow in alpine chamois, something not possible using the approach of Jombart (2012).

Jombart (2012) studied microsatellite allele data from nine loci for 335 individual chamois.

These data, together with spatial locations for each individual animal and elevation data on

a 104×80 grid, where each grid cell measures 200m square, were obtained from the ‘adegenet’

package (Jombart, 2008) in the R statistical computing environment (R Core Team, 2013).

To examine the effect of elevation on gene flow in alpine chamois, we compared four com-

peting models using DIC. The first model contained only an intercept term, hypothesizing

no effect of elevation on gene flow. The second model contained an intercept term, as well as

a linear effect for elevation in (3.13). The third model contained an intercept term, as well

as linear and quadratic terms for elevation. The fourth model is a varying-coefficient model

in elevation, in which we specified a B-spline basis expansion for the effect of elevation, using

7 equally spaced knots. This results in a flexible model of the effect that elevation has on
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gene flow. The varying-coefficient model could be difficult to implement using the correlation

approach common in landscape genetics studies, as multiple hypothesized values for each of

the parameters related to the spline basis functions would have to be specified.

We found the grid cell each animal was located in using the ‘raster’ package (Hijmans

and van Etten, 2012) in R, and computed pairwise genetic distances between the chamois

in the study using the mismatch genetic distance of Smouse and Peakall (1999). The re-

sulting genetic distance matrix was used to fit each of the four models. For each model, we

obtained 20,000 posterior samples using an MCMC algorithm from two separate chains with

distinct starting values. Convergence was assessed using the potential scale reduction factor

R̂ (Gelman et al., 2004), which compares the within-chain variance to the between-chain

variance. The resulting R̂ values were less than 1.1 for all parameters in each of the four

models, indicating convergence to the stationary posterior distribution.

To compare the four models, we used the deviance information criterion (DIC) of Spiegel-

halter et al. (2002). The DIC of the varying-coefficient model for elevation was -2208, much

lower than the DIC of the intercept-only model (DIC=8939), the linear model for eleva-

tion (DIC=7244), or the quadratic model for elevation (DIC=5963). This indicates strong

support for the varying-coefficient model of the effect of elevation on gene flow. Posterior

inference for the log-conductance of a grid cell as a function of elevation is shown in Figure

3.3(b), with upper and lower 95% credible limits. The posterior mean conductance of the

study area is plotted in Figure 3.3(c). This plot reflects the nonlinear relationship between

elevation and and gene flow. Higher elevation terrain (from about 1000m to 1750m) gener-

ally facilitates gene flow in alpine chamois, while lower elevations (valleys), and very high

elevations (mountain peaks) impede gene flow. Jombart (2012) found that higher elevation

terrain generally facilitates gene flow in alpine chamois using their spatial principal com-

ponent analysis. Our model-based approach expands on their results by providing rigorous

uncertainty estimates about the parameters related to gene flow, something not typically

obtained in landscape genetics studies.
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Figure 3.3: Spatial locations (a) of 335 alpine chamois (Rupicapra rupicapra) in the Bauges
Mountains, France. A landscape genetic analysis of these chamois using a varying-coefficient
model for the effect of elevation reveals that gene flow is impeded by low-elevation valleys and
mountain peaks and facilitated by mid- to high-elevation terrain (b). The posterior mean
conductance of the landscape to gene flow is shown in (c), with lower values corresponding
to increased resistance to gene flow.

3.7 Discussion

Using circuit theory to model connectivity on a landscape requires viewing the continuous

landscape as a graph (G,A). While this is a simplification, recent advances in GMRF

theory have shown that GMRFs can be used to approximate solutions to stochastic partial

differential equations on a continuous surface (Lindgren et al., 2011). The connectivity

implied by circuit theory on a graph is analogous to a diffusion process on a continuous surface

with heterogeneous diffusivity. Statistical models based on diffusion processes have been

used extensively to model spatio-temporal processes on continuous surfaces (e.g., Hooten and

Wikle, 2008; Wikle and Hooten, 2010), and could be used to model many of the systems that

are currently modeled using circuit theory. The main advantage of viewing the landscape as

a discrete graph is the ability to use computationally efficient GMRFs like the ICAR model

(3.8) used in our analysis.
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The link between circuit theory, GMRFs, and genetic distance allows for an efficient ap-

proach to simulate pairwise genetic distances on a heterogeneous landscape (e.g., Landguth

and Cushman, 2010). Using (3.9), simulated resistance distances can be transformed to

simulated linearized pairwise Fst values, which can provide significant information about

population genetic structure across the landscape. This may be particularly useful in pre-

dicting the effects of landscape change on sub-population separation. For example, inference

concerning parameter values β for a resistance surface related to gene flow could be made

using the model (3.12)-(3.15). The effect of changes to the landscape, such as the addition

of a road or the removal of existing open space, on sub-population separation could then be

predicted using inferred values of β and a modified resistance surface reflecting the changes

to the landscape.

While simulation is possible at extremely high resolutions, inference becomes increasingly

computationally intensive as the landscape resolution increases. In practice, we have found

that inference for landscape grids with O(105) grid cells is feasible on a machine with 4GB

RAM and a 1.67 GHz quad-core processor, but inference for larger grids requires increased

computing capabilities. This resolution is adequate for many studies, but larger landscapes

may not be well-approximated by such a coarse discretization. Examining methods for

increasing computational efficiency and thus allowing inference at higher resolutions is the

subject of ongoing research.

The link between circuit theory and GMRFs has many potential applications. For exam-

ple, agent-based models for a binary process on a graph (Hooten and Wikle, 2010) provide a

highly flexible framework for modeling dynamic systems with discrete support. The evolution

of agent-based systems is based on transition probabilities between neighboring nodes, and

could be equivalently modeled as a resistance surface by envisioning a circuit with resistors

connecting nodes. Circuit theory provides a flexible model for evaluating connectivity, and

the link we have presented between circuit theory and GMRFs provides a natural framework

70



that can provide inference for resistance values in systems modeled by circuits, and thus the

methodology we propose here has wide applicability.
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CHAPTER 4

LATENT SPATIAL MODELS AND SAMPLING DESIGN FOR

LANDSCAPE GENETICS

4.1 Introduction

In Chapter 3, current approaches to studying landscape connectivity using spatially-

referenced genetic data and connectivity models based on electric circuit theory were linked

to Gaussian Markov random field spatial models. In this chapter, a general framework for

the spatial modeling of microsatellite genetic data for landscape connectivity is proposed.

As was mentioned in Chapter 1 and Chapter 3, one common approach to estimating the

effects of landscape on gene flow involves computing a pairwise genetic distance measure

between observed spatially-referenced genetic samples, and comparing this pairwise distance

with an effective distance that is a function of the spatial locations where the genetic samples

were collected and the landscape features of the study region (e.g., McRae, 2006; Cushman

et al., 2006; McRae and Beier, 2007; Cushman and Landguth, 2010; Cushman and Lewis,

2010). Under the isolation by distance (IBD) approach, the genetic distance is assumed to

be correlated with Euclidean distance (e.g., Broquet et al., 2006). Under the isolation by

resistance (IBR) and least cost path (LCP) approaches, the landscape is viewed as a graph

with edge weights (resistances in the circuit interpretation) connecting neighboring cells

being a function of the local landscape characteristics (e.g., McRae et al., 2008; Cushman

and Lewis, 2010). The effective distance is either the effective resistance in the IBR approach,

or the shortest single path distance in the LCP approach.

Two key challenges to estimating landscape effects on connectivity from observed genetic

data are (1) the lack of spatially explicit statistical models for landscape genetic data in
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the literature and (2) the computational cost of obtaining the effective distances in the IBR

and LCP approaches. We address each of these challenges by appealing to modern spatial

statistical approaches (e.g., Cressie, 1993). In Section 4.2, we demonstrate how current

techniques for parameter estimation in the IBD, IBR, and LCP approaches parallel the

estimation of covariance parameters is spatial statistical models through variogram fitting.

This expands on our work in Chapter 3, where we considered only the IBR case. In Section

4.3, we propose a spatial generalized linear mixed model (SGLMM) for microsatellite allele

data, the most common form of genetic data used in current landscape genetics studies, and

discuss how the IBD, IBR, and LCP approaches could be incorporated into this SGLMM.

In Section 4.4, we illustrate our approach through a landscape genetic study of greater

sage-grouse (Centrocercus urophasiamus) in the western United States, using genetic data

collected during 2009-2012. In Section 4.5, we utilize optimal spatial sampling methodology

to make recommendations for the allocation of sampling resources during 2013. In both

Section 4.4 and 4.5, we rely on reduced rank approximations to the spatial process to improve

computational efficiency. In Section 4.6, we discuss possible extensions to our approach.

4.2 Genetic Distance and Variogram Fitting

In this section, we briefly review variogram approaches to estimating covariance parame-

ters in geostatistical models, and show how variogram estimation parallels current approaches

for effective distance analysis in landscape genetics.

4.2.1 Variogram Approaches for Estimating Covariance Parameters

Consider the n observations y = (y1, y2, . . . , yn)′ of a continuous (geostatistical) random

field Y observed at the n (not necessarily distinct) spatial locations s1, s2, . . . , sn, where each

si is contained in the study region S. The variogram γij between the spatial locations si and

sj is defined as the expected squared difference between the observations at different spatial
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locations:

γij = E
[
(yi − yj)2

]
. (4.1)

We note that the variogram can be expressed as a function of the covariance. If y ∼ N(0,Σ),

where the covariance matrix Σ = (Σij), then as discussed in Chapter 3,

γij = Σii + Σjj − 2Σij. (4.2)

If the covariance function is second-order stationary and isotropic, then the covariance

Σij between observations at si and sj depends only on the Euclidean distance dij between the

spatial locations (e.g., chapter 4.1 of Cressie and Wikle, 2011). In this case, it follows directly

from (4.2) that the variogram γij also depends only on the Euclidean distance between the

spatial locations.

The empirical variogram γ̂ij is calculated from observations y by approximating the

expectation in (4.1) with a sum over repeated observations at the same locations, or by

binning pairs of observations that are nearly equidistant in the stationary and isotropic case

(e.g., Stein, 1999, page 81).

If the covariance is parameterized with θ (e.g., Σ = Σ(θ)), then estimating the parame-

ters θ in the Gaussian likelihood [y|Σ(θ)] requires inversion of the covariance matrix Σ(θ).

This inversion is numerically expensive and can be prone to numerical instability. A common

alternative to estimating θ is to fit the variogram model γij(θ) to the observed empirical

variogram γ̂ij using ordinary least squares or weighted least squares. The procedure can be

summarized in the following steps.

1. Calculate the empirical variogram γ̂ij for all pairs of spatial locations si and sj.

2. Find θ̂ that minimizes
∑

i,j(γ̂ij − γij(θ))2, or a weighted version of this loss function

(See e.g., Cressie and Wikle, 2012, for details).
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4.2.2 Variogram Approaches for Estimating Resistance Parameters

Estimation of the variogram parallels current approaches for estimating the parameters

governing resistance between cells in the IBR and LCP approaches to landscape genetics,

in which an observed pairwise genetic distance ĝij is related to an effective distance dij(θ).

Contemporary approaches to estimating θ can be summarized in the following steps.

1. Calculate an empirical measure of genetic dissimilarity ĝij for all pairs of spatial loca-

tions si and sj, for example using the fixation index (e.g., Holsinger and Weir, 2009)

or the distance measure of Smouse and Peakall (1999).

2. Find θ̂ that maximizes the correlation between ĝij and the effective distance dij(θ).

In practice this is often accomplished by using a grid search and specifying “high”,

“medium” and “low” values for each element of θ (e.g., Cushman et al., 2006).

For example, in the IBR case, dij(θ) is the resistance distance between the ith and jth

locations, and in the LCP case, dij(θ) is the least-cost path distance between the ith and

jth locations. Estimating the resistance parameters θ parallels variogram approaches for

estimating covariance parameters, where the effective distance dij(θ) is the variogram γij(θ).

4.2.3 Spatial Covariance Models for Landscape Genetics

This relationship between variogram fitting in geostatistics and resistance parameter

estimation in landscape genetics underscores the fact that the field of landscape genetics

has developed in relative isolation from the existing field of spatial statistics, though the

goal of landscape genetics (modeling correlation between genetic observations across space)

lends itself naturally to a spatial statistical approach. We consider each of the IBD, IBR,

and LCP approaches in turn, and describe spatial covariance functions that incorporate the

assumptions about spatial variation in genetic diversity implied by each effective distance

measure.
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Covariance Models for Isolation by Resistance (IBR)

Under the IBR approach, the landscape is envisioned as an electric circuit, where each

grid cell is a node and the resistors connecting neighboring cells have resistance which is

a function of the local landscape characteristics (McRae, 2006). The resistance distance

between two nodes in the circuit is the effective resistance of the entire circuit when a

voltage is applied at those nodes. The resistance distance is a “multiple path” measure of

distance, in that it allows for current to flow through all possible paths between nodes, and

the resistance distance monotonically decreases with the addition of new pathways between

nodes, regardless of how resistive the new pathways are. McRae (2006) note that under a

random walk model for gene flow, the resistance distance is proportional to the linearized

fixation index Fst = σ2
s/σ

2
t , the ratio of the variance σ2

s in the frequency of alleles in different

subpopulations and the variance σ2
t of allele frequencies in the total population. The IBR

approach thus reflects a random walk model for gene flow across a heterogeneous landscape.

In Chapter 3, we described a link between the IBR approach and spatial statistics by

showing that the resistance distance of the landscape circuit is exactly the variogram of an

intrinsic conditional auto-regressive (ICAR) Gaussian Markov random field (GMRF) with

edge weights equal to the inverse of the resistance between nodes in the circuit model. In

that chapter, the genetic distance matrix G with entries ĝij was modeled using a generalized

Wishart distribution (McCullagh, 2009). In Section 4.3 we will suggest modeling the observed

allele data, instead of modeling the pairwise genetic distance matrix as we did in Chapter 3.

Covariance Models for the Isolation by Distance (IBD) Approach

Under the IBD approach, the key assumption is that individuals located close together

in space (as measured by Euclidean distance) are likely to be more genetically similar than

individuals located farther apart. Studies using the IBD approach typically examine the

correlation between Euclidean distance and a genetic distance metric. This correlation anal-

ysis implies a linear relationship between genetic distance and Euclidean distance. However,

simulations show that rather than increasing linearly with distance, simulated genetic dis-
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tances first rise steeply with increasing Euclidean distance, then taper off to an asymptote

(e.g., Graves et al., 2013). This tapering is common in many variogram models in geostatis-

tics, and any stationary and isotropic covariance function has a variogram that is a function

of Euclidean distance between observations. This suggests that the IBD approach could

be modeled using a stationary covariance function. The Matern class of covariance func-

tions (e.g., Stein, 1999, p. 31) contains the exponential, spherical, and squared-exponential

(Gaussian) covariance functions, all of which have been used extensively to model stationary,

isotropic spatial covariance in a wide variety of applications.

Covariance Models for the Least Cost Path (LCP) Approach

Under the LCP approach, the landscape is again envisioned as an electric circuit (or

resistance surface), similar to in the IBR approach. Instead of utilizing the resistance distance

between nodes (spatial locations) in the landscape graph, the LCP approach uses least-cost

path distance, the cumulative resistance of the least resistive path between two nodes. While

the IBR approach models gene flow by a random walk where only local landscape features

are important, the LCP approach models gene flow under the assumption that it can always

occur in the most efficient manner possible. The LCP approach is especially appealing for its

computational efficiency which allows it to accomodate much larger landscape graphs than

are possible in the IBR approach.

It is also worth noting that the IBR approach assumes that the correlation between ge-

netic observations at two different spatial locations can be modelled by all possible pathways

through the graph. The LCP approach, on the other hand, assumes that genetic correlation

is only a function of the shortest path. This parallels the IBD approach and the associ-

ated stationary and isotropic covariance functions, though the resistance surface in the LCP

approach is parameterized by landscape covariates, and is neither stationary nor isotropic.

One class of appropriate nonstationary covariance models for the LCP approach are

spatial deformation approaches (e.g., Schmidt and O’Hagan, 2003), which assume that the

process being modeled is stationary and isotropic in a transformed (deformed) geographic
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space. For the LCP approach, the spatial deformation could be parameterized by the land-

scape characteristics and the resulting resistance values of different grid cells in the landscape

graph. We give additional discussion of spatial deformation approaches in Chapter 5.

4.3 Latent Spatial Models for Landscape Genetics

Having suggested Gaussian spatial covariance models for the IBD, IBR, and LCP ap-

proaches to landscape genetics, we now turn to the question of inference on parameters in

these covariance models. As described in Section 4.2.1 and 4.2.2, common approaches for

estimating resistance values for landscape characteristics in the IBR and LCP approaches

parallel variogram fitting approaches to estimating covariance parameters in geostatistics,

where the observations are Gaussian with appropriate covariance matrices. The pairwise

genetic distance matrix can be thought of as an approximation to the empirical variogram

matrix of a Gaussian random variable. In Chapter 3 we took this approach and modeled

the genetic distance matrix using the generalized Wishart distribution of McCullagh (2009),

which is an appropriate data model for the empirical variogram of a Gaussian random vari-

able. However, it is unclear whether pairwise genetic distance measures (e.g., Fst) are good

approximations to the variogram of a Gaussian random variable. A typical landscape genetic

study involves microsatellite allele data, which come in the form of repeat lengths of short

genome sequences. These data are not continuous, and the repeat lengths (alleles) are more

naturally thought of as unordered categorical data, rather than ordered data. While con-

tinuous distance measures do exist for microsatellite allele data (e.g., Smouse and Peakall,

1999), it us unclear how well these continuous distance measures approximate variograms

from Gaussian observations.

We instead propose a latent spatial model for spatially referenced allele data. In our

specification, the categorical allele data are modeled using a multinomial probit model with

latent Gaussian spatial random effects having a covariance appropriate for one of the IBD,

IBR, or LCP approaches to landscape genetics.
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Table 4.1: Subset of sage-grouse genetic data. Microsatellite allele data at 15 loci were
obtained from 830 feather samples collected at sage-grouse leks across the western U.S.
between 2009 and 2012. Data from five individual sage-grouse at two loci are shown below.

Sage-Grouse Sample Locus 1a Locus 1b Locus 2a Locus 2b
1510110 122 122 206 232
1510210 124 130 232 250
1510310 124 124 208 228
1510410 122 124 218 238
1510510 128 128 208 234

Consider microsatellite allele data observed at L distinct loci for each spatially referenced

individual in the study. As an example, Table 4.1 shows microsatellite allele data at two loci

for five individual sage-grouse.

At the `th locus, ` = 1, 2, . . . , L, denote the list of all distinct observed alleles from all

individuals in the study as {a`1, a`2, . . . , a`K`
}. We consider the two observed alleles for each

(diploid) individual to arise from a multinomial distribution with spatially varying allele

probabilities ps` = (ps`1 ps`2 . . . ps`K`
)′, where s ∈ {1, 2, . . . , S} indexes the spatial location.

Let ysip`k = 1 if the pth (indexing ploidy) observed allele at the `th locus is a`k for the ith

individual at the sth spatial location, and ysip`k = 0 otherwise. Then the multinomial probit

model (e.g., Albert and Chib, 1993) for categorical data is often specified in terms of latent

variables, z, as follows. Let

ysip`k =


1 , zsip`k = max{zsip`a, a = 1, . . . , K`}

0 , o.w.

(4.3)

where

zsip`k ∼ N(µ`k + ηs`k, 1). (4.4)
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Then the allele a`k makes up a fraction ps`k of the genetic makeup of the subpopulation at

location s, where

ps`k = Prob (zsip`k = max{zsip`a, a = 1, . . . , K`})

The mean of the latent variable in (4.4) consists of the sum of two effects. The first is

µ`k, an allele specific intercept which determines the relative frequency of the kth allele at

the `th locus across the entire population being studied. Large values of µ`k, relative to µ`k′

make it more likely that zsip`k will be larger than zsip`k′ , and so the kth allele will be more

prevalent than the (k′)th allele. We note that the model (4.3)-(4.4) is invariant to a shift

in all µ`k, as the likelihood is a function of the contrasts zsip`k − zsip`k′ , and not the actual

values of zsip`k. Thus, if µ`k were replaced by µ`k + c for k = 1, 2, . . . , K` and some constant

c, the likelihood of the observed allele data would remain unchanged. To maintain model

identifiability, we fix µ`1 = 0 for ` = 1, 2, . . . , L, as only the relative differences (contrasts)

in µ`k are identifiable.

The second term in the mean of (4.4) is ηs`k, which is a spatially varying random effect

that allows the allele frequencies ps` to vary over the spatial range of the species. Consider:

η`k =



η1`k

η2`k

...

ηn`k


∼ N(0,Σ(θ)) (4.5)

where Σ(θ) is the spatial covariance matrix of the spatially referenced locations for which

we have observations, parameterized by θ. Then Σ(θ) can be specified using a covariance

appropriate for the IBD, IBR, LCP or other landscape genetic approaches. For example,

under the IBR approach, Σ(θ) could be an ICAR covariance matrix, with θ being parameters

related to the resistance of different landscape characteristics to gene flow.
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As an illustration of our modeling approach, Figure 4.1 shows an example of categorical

data simulated from the model (4.3-4.5), where the spatial support is discrete and defined

by a graph of twenty nodes (locations) taken randomly from the unit square. Edges were

allowed between any two nodes separated by less than a Euclidean distance of 0.2, and an

ICAR spatial model was used to simulate three latent continuous random variables (z1, z1,

and z1). Each of these latent variables represents a latent allelic process, and the observed

categorical allele at a node is given by the index of the largest realization among the latent

z variables at that node.

We adopt a Bayesian approach to modelling, and specify prior distributions for all pa-

rameters in (4.3)-(4.5):

µ`k ∼ N(0, σ2
µ) , ` = 1, 2, . . . , L , k = 2, 3, . . . , K` (4.6)

θ ∼ [θ] (4.7)

where the bracket notation [·] indicates a probability distribution. The prior on θ will depend

on the covariance model used, and we thus leave the prior specification (4.7) in a general

form.

In treating our observations as arising from a multinomial distribution, we make the

implied assumption that we have observed all possible alleles at each locus. If this is not

the case, then the interpretation of ps`k changes to be the relative probability of observing

the kth allele at the `th locus of an individual at the sth spatial location, given that one of

{a`1, a`2, . . . , a`K`
} are observed. Our interest is in estimating the spatial dependence in the

observed alleles, as encoded in the latent covariance Σ(θ) of the allelic processes {zip`k}.

Under the assumption that zip`k is independent of zip`k′ , k 6= k′, ignoring the potential

existence of unobserved alleles will not bias our results.

We have not included fixed covariate effects in our latent model (4.4), rather we have only

modeled population level allele prevalence (µ`k) and latent spatial random variation ηs`k. If
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Figure 4.1: Simulation example of the Gaussian latent process model for categorical mi-
crosatellite allele data. Three realizations (z1, z2, and z3) were obtained from a specified
ICAR GMRF on the graph shown. Each realization represents a latent process for a distinct
allele, with larger values being shown as darker colors. The categorical allele observed at a
node is given by the index of the latent allelic process which is the greatest at that node.
The categorical observations are represented by the shape (circle=allele 1, diamond=allele
2, and square=allele 3) of the associated zi.

it is believed that the loci used in the analysis are from genes that might select for different

landscape features, then a linear predictor x′sβ`k could be included in the mean of (4.4),

where xs is a vector containing landscape characteristics at the sth spatial location, and β`k

are allele specific regression parameters which provide indications how different alleles might

select for different landscape characteristics. Typical landscape genetic studies, however,

seek to identify loci that are on non-coding and non-selecting areas of the genome. In this
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situation, there is no reason to assume that allele prevalence would be linked to the landscape

features of the spatial locations where the individuals are observed.

We also assume in (4.5) that the latent allelic spatial effects ηla have the same spatial

covariance matrix Σ for each locus and allele. This implies that the processes driving spatial

variation in allele frequencies are the same for each locus. If the loci in question are from

non-coding regions of the genome and have similar mutation rates, then this assumption is

likely to be met, as the remaining processes driving gene flow (e.g., mating, survival, and

movement) should be unaffected by the genotype at a non-coding locus on the genome. If

mutation rates are highly variable between loci, then (4.5) could be generalized to allow for

loci-specific covariance matrices (e.g., η`k ∼ N(0,Σ`)).

The model in (4.3)-(4.7) is a Bayesian hierarchical model (BHM) that takes into account

the categorical nature of microsatellite allele data and allows for spatial variation in genetic

diversity to be modeled using existing landscape genetic approaches. To our knowledge, this

has not been described in the existing literature.

Modeling spatial genetic variation in terms of latent Gaussian random variables with

spatial correlation (4.5) allows us to draw on the existing field of spatial statistics to approach

landscape genetic studies. In Section 4.4, we make use of modern dimension reduction

techniques in spatial statistics to increase the computational efficiency of the algorithms used

to make inference on the model (4.3-4.7). In Section 4.5, we apply existing methodology for

optimal spatial sampling of Gaussian random variables to suggest optimal sampling designs

for landscape genetic studies.

4.4 Landscape Genetic Analysis for Sage-Grouse in the Western

United States

In the previous section we specified a multinomial model for spatially referenced mi-

crosatellite allele data with latent spatial autocorrelation. We now illustrate the utility
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of this approach through a landscape genetic study of greater sage-grouse (Centrocercus

urophasiamus) in the western United States. While their historical range covered 12 western

states in the U.S., the greater sage-grouse now occupies only 56% of its historical range

(Schroeder et al., 2004). This rapid decline in range has also been paralleled by a rapid

decline in population (Connelly and Braun, 1997). The distribution of sage-grouse genetic

variability across the range of the species could provide insight into regions of particular

concern for conservation of the species.

From 2009-2012, feather samples were collected from sage-grouse leks (activity centers)

in 11 western states (Figure 4.2). After the 2012 season, the feather samples were genotyped,

and microsatellite allele data were collected at 15 disctinct loci. We analyze these data using

the modeling framework described in Section 4.3. In Section 4.5 we will use the results of

the analysis in this section to make recommendations for retrospective optimal sampling of

sage-grouse leks during the 2013 data collection season.

4.4.1 Lek Network Connectivity Model

Sage-grouse leks are often found in natural openings in sagebrush communities, and are

typically surrounded by potential nesting habitat (e.g., Connelly et al., 1991; Wakkinen et al.,

1992; Connelly et al., 2004). During breeding seasons, male sage-grouse display at leks during

crepuscular periods, and leks can be remarkably persistant, with some leks remaining active

for over 28 years (Wiley, 1973).

Leks act as persistent activity centers for sage-grouse, and we will use this interpretation

to motivate an IBR approach to landscape connectivity modeling. Consider a spatial network

with nodes at known sage-grouse leks across the western U.S. and edge weights (resistances

in the IBR framework) being a function of the Euclidean distance between leks.

For the sth lek, consider the set of “neighboring” leks indexed by t: {t : t ∈ N (s)}, where

N (s) is the set of leks that are directly connected (neighbors) to the sth lek. We consider

lek s and lek t to be neighbors if it is judged to be scientifically reasonable for a sage-grouse

84



Figure 4.2: Sage-grouse lek locations in the western United States. Feather samples were
collected from over 1,000 sage-grouse leks between 2009 and 2012. Microsatellite allele data
from 237 of these leks were available for analysis in March, 2013.

to migrate from lek s to lek t directly, without an intermediate stop at any other lek. This

is based on the migration model for movement central to the IBR approach as described by

McRae (2006).

Define the edge weight between the sth and tth leks as αst/σ
2, where αst is a decreasing

function of the Euclidean distance between the leks and σ2 is a scaling factor. Under the

random walk model for migration in the IBR framework, αst/σ
2 is proportional to the migra-

tion rate of sage grouse between the two leks. We consider edge weights that are decreasing

functions f(dst) of the Euclidean distance dst between leks, and that are set to 0 for all leks
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that are more distant than a maximum distance dMAX:

αst =


f(dst) , dst ≤ dMAX

0 , dst > dMAX

. (4.8)

In our following analysis, we set dMAX = 25km, where the distance between leks was com-

puted using great circle distance, and consider multiple functional forms for f(d), described

in Section 4.4.4. Setting edge weights equal to zero for leks that are more distant than dMAX

indicates that migration (and the resulting flow of genetic information) is only possible be-

tween distant leks through the use of intermediate leks in the lek network. This is a Markov

assumption, and our resulting random effects {η`k} in (4.5) are Gaussian Markov random

fields.

In Chapter 3, we have shown that the spatial connectivity implied by such a random walk

migration model (or an equivalent electric circuit) can be modeled as an intrinsic conditional

autoregressive (ICAR) Gaussian Markov random field (Besag, 1974; Besag and Kooperberg,

1995). The spatial precision matrix (inverse covariance matrix) for an ICAR on the entire

lek network is given by

Q =
1

σ2



∑
j 6=1 α1j −α12 −α13 · · ·

−α21

∑
j 6=2 α2j −α23 · · ·

−α31 −α32

∑
j 6=3 α3j · · ·

...
...

...
. . .


. (4.9)

We do not have observed genetic data for all known lek locations. If we divide the leks into

observed (o) and unobserved (u) locations, the spatial random effects η (suppressing the
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locus ` and allele a subscripts) and precision matrix Q can be partitioned accordingly:

η =

 ηo
ηu

 , Q =
1

σ2

 Qoo Qou

Quo Quu


and the covariance matrix Σ(σ2) of the observed leks is given by the Schur complement:

Σ(σ2) = σ2[Qoo −Qou(Quu)
−1Quo]

−1. (4.10)

We assign a conjugate inverse-gamma prior distribution to σ2:

σ2 ∼ IG(r, q) (4.11)

with r and q chosen so that the prior has mean of 10 and variance of 100. Inference on the

parameters ({µ`k} and σ2) in the full model, given by Equations (4.3)-(4.6) and (4.9)-(4.11),

can then be made using a Markov chain Monte Carlo (MCMC) algorithm under a Bayesian

statistical paradigm.

4.4.2 Reduced Rank Spatial Model

There are a large number (≈ 6, 000) of known sage-grouse leks across the western U.S.

This results in a large (≈ 6000 × 6000) spatial precision matrix Q representing pairwise

connections between leks. The magnitude of this spatial precision matrix will make model

fitting and determination of optimal sampling effort very computationally intensive. We thus

propose a reduced rank model for the spatial random effect η`k in (4.5). Our reduced rank

approach utilizes a spectral decomposition of the spatial precision matrix Q and is similar

to that of Wikle and Cressie (1999); Berliner et al. (2000) and others.
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For a fully observed lek network, η`k ∼ N(0, σ2Q−), where Q is an ns × ns precision

matrix. Taking the spectral decomposition of Q gives

Q = MD−M′,

where the columns of M are the eigenvectors of Q and D is a diagonal matrix containing

the respective eigenvalues {λ1, λ2, . . . , λns} of Q−. Then

η`k = M(M′η`k)

= Mδ`k

where

δ`k ∼ N(0, σ2D).

Then a reduced rank version of the spatial random effect is given by taking only the first

ne eigenvectors of Q− and setting λm = 0 for all m > ne. This approximates the random

effect η`k with a random effect η̃`k that captures a portion of the spatial structure in Q−.

In practice, ne can often be picked so that η̃`k ≈ η`k but ne is still much smaller than ns,

the number of leks in the network. This leads to a computationally efficient representation

of the spatial random effect, with (4.5) becoming:

η̃s`k = ũ′sδ̃`k (4.12)

δ̃`k ∼ N(0, σ2D̃) (4.13)

where ũ′s is the sth row of M̃, the ns × ne matrix of the first ne eigenvectors of Q−, and D̃

is the ne × ne diagonal matrix of the first ne eigenvalues of Q−.
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4.4.3 Full-Conditional Distributions

The complete hierarchical statistical model we have described for the multinomial allele

model with latent reduced rank spatial random effects is

ysip`k =


1 , zsip`k = max{zsip`a, a = 1, . . . , K`}

0 , o.w.

zsip`k ∼ N(µ`k + η̃s`k, 1)

η̃s`k = ũ′sδ̃`k

δ̃`k ∼ N(0, σ2D̃)

µ`k ∼ N(0, τ 2)

σ2 ∼ IG(r, q)

Full-conditional distributions are available for all parameters in this hierarchical model.

As noted by Albert and Chib (1993), the full conditional for zsip`k is truncated normal:

zsip`k|· ∼ TNDsip`k
(µ`k + η̃s`k, 1)

where TND(·, ·) indicates a truncated normal distribution with support D and

Dsip`k =


(0,∞) ysip`k = 1

(−∞, 0) ysip`k = 0

.

The full-conditional distribution for δ̃`k is normally distributed:

δ̃`k ∼ N(A−1b`k,A
−1)
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where

A = 2M̃′K′KM̃ +
1

σ2
D̃−1

and

b`k = M̃′K′(z1`k + z2`k − 2µ`k).

The matrix K is a design matrix linking the individual sage-grouse to the lek. Then K′K

is a diagonal matrix with the sth diagonal entry equal to the number of animals sampled at

the sth lek.

The full-conditional distribution for µ`k is also normally distributed

µ`k|· ∼ N

(
h`k
c
,
1

c

)

with

1

c
=

1

τ 2
+
∑
s

∑
i

∑
p

1

and

h`k =
∑
s

∑
i

∑
p

(zsip`k − η̃s`k) ,

where the sums are taken over all possible values of s, i, and p.

The full-conditional distribution for σ2 is inverse-gamma:

σ2|· ∼ IG

(1

r
+

1

2

∑
`

∑
k

δ̃
′
`kD̃

−1δ̃`k

)−1

, q +
1

2

∑
`

N`

 .

The existence of full-conditional distributions for all model parameters allows for straight-

forward sampling from the posterior distribution of model parameters using the Gibbs sam-

pler (e.g., Gelman et al., 2004).
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4.4.4 Model Fitting

For our analysis of sage-grouse genetic data, two functional forms for f(d) in (4.8) were

specified, inverse distance (f1(d) = 1/d), and inverse squared distance (f2(d) = 1/d2). The

resulting spatial models were fit to the observed data and compared using the deviance

information criterion (DIC) of Spiegelhalter et al. (2002). As mentioned previously, we set

the maximal distance dMAX equal to 25km.

The resulting models were each fit to the observed allele data from 830 feather samples

collected at leks across the western U.S. Under a Bayesian statistical paradigm, an MCMC

algorithm was used to obtain samples from the posterior distribution of parameters in each

network model, conditioned on the observed sage-grouse genotype data. Multiple chains

were simulated for each model, and convergence was assessed visually, with chains showing

good mixing. The resulting samples were used to make inference on σ2.

The two lek network models were compared using DIC. The best model (DIC=526,648)

was the network model with edge weight between leks inversely proportional to the distance

between leks (f1(d) = 1/d). The network model with edge weight between leks inversely

proportional to the square of the distance between leks (f2(d) = 1/d2) had a higher DIC

(DIC=529,167). For the following analysis, we focus only on the model with the best (lowest)

DIC.

The posterior distribution for σ2 in the best model has mean of 0.169 and variance of

0.015. This quantity is not easily interpreted directly, but the latent representation of zsip`k

lends an interpretation to the latent spatial covariance matrix Σ̃(σ2). From (4.4),

zsip`k = µ`k + η̃s`k + εsip`k , εsip`k ∼ N(0, 1)

where η̃`k ∼ N(0, Σ̃(σ2)) and εsip`k ∼ N(0, 1). The spatial covariance matrix Σ̃(σ2) is

nonstationary, and a summary of the posterior mean diagonal elements of Σ̃(σ2) is given

in Table 4.1. The diagonal elements of this spatial covariance matrix offer a comparison
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with the unit variance of the non-spatial noise (nugget) contained in εsip`k of (4.4). As the

posterior mean diagonal elements of the spatial covariance matrix are greater than 1 by

multiple orders of magnitude, we can conclude that spatial variability in the genetic data

accounts for a much larger proportion of the variability than does non-spatial (within lek)

variability. Summaries of posterior distributions for {µ`k, ` = 1, 2, . . . , 15, k = 1, 2, . . . , K`}

are not shown, but correlate well with empirical allele frequencies taken over all 1,136 genetic

samples.

Table 4.2: Summary of posterior mean diagonal elements of the spatial covariance matrix Σ̃
for the selected network model.

1st Qu. Median Mean 3rd Qu. Max.
980.80 1586.00 3947.00 4993.00 49020.00

4.5 Optimal Retrospective Sampling for Sage-Grouse in the West-

ern United States

Having fit the model to microsatellite allele data from sage-grouse feather samples col-

lected in 2009-2012, we now consider retrospective sampling design for the 2013 season. Our

goal is to recommend optimal regions for sampling sage-grouse leks, given what is known

from the spatially referenced genetic data already collected. This requires the definition of

a criterion φ(dj) by which we can compare J potential sampling designs (dj, j = 1, . . . , J).

4.5.1 Latent Gaussian Design

A common criterion to minimize for optimal sampling of Gaussian random variables

is the mean squared prediction error (MSPE) at unobserved locations (e.g. Zimmerman,

2006). The observations {ysip`k} in our model (4.3)-(4.7) are not Gaussian; rather, they

are categorical alleles which we model as arising from a multinomial distribution. However,
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each zsip`k is a latent representation of the true observation ysip`k, and zsip`k is normally

distributed:

zsip`k = µ`k + ηs`k + εsip`k , εsip`k ∼ N(0, 1).

This leads us to consider the MSPE of the latent z variables as a design criterion. If we

suppress all subscripts on z, except for the spatial index s, we can divide the spatial locations,

and their corresponding z variables, into observed (zo) and unobserved (zu) categories. The

joint distribution of z at all leks is Gaussian:

z =

 zo

zu

 ∼ N

µ1,

 Σoo Σou

Σuo Σuu


 (4.14)

where the covariance matrix Σ = σ2R+I in (4.14) has been partitioned according to observed

and unobserved locations.

If zo are known (observed), then the simple Kriging predictions at the unobserved loca-

tions are given by:

ẑu = ΣuoΣ
−1
oo zo (4.15)

and the simple Kriging covariance matrix is given by:

Ψ = E [(zu − ẑu)(zu − ẑu)
′] = Σuu −ΣuoΣ

−1
oo Σou. (4.16)

Each diagonal entry of Ψ contains the MSPE for z at an unobserved location, and we choose

the sum of these entries (A-optimality in Harville (2008)) for our design criterion:

φ(d) = tr(Ψ) = sum (diag(Ψ)) . (4.17)

.
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It is notable that neither the covariance matrix Ψ or the design criterion φ(d) depend

on zo. Rather, they depend only on the covariance matrix Σ of the latent z variables. This

allows for efficient comparison of the design criterion φ for different designs, as changing a

design (e.g., adding a new lek to the set of previously sampled leks) only involves evaluating

(4.16) and (4.17) for a different partition of locations into “observed” and “unobserved”

in (4.14). This approach to optimal spatial sampling for Gaussian data is well known and

has been used effectively in many systems (e.g., Wikle and Royle, 2005; Zimmerman, 2006;

Hooten et al., 2009).

4.5.2 Design for Categorical Observations

Predicting the categorical allele response y at an unsampled lek is also possible, and

an optimal sampling design could be obtained by minimizing the MSPE of the categorical

response. However, the computational cost would be significantly greater than the com-

putational cost of the latent approach of Section 4.5.1. For example, consider predicting

the multinomial response yu` = (yu`1, . . . , yu`K)′ for the `th locus at one unobserved loca-

tion, conditioned on the actual observed responses Yo = {yo` , o observed } at all observed

locations. The MSPE is given by

E

(
K∑
k=1

(yu`k − ŷu`k)2

)
= P (yu` 6= ŷu`|Yo) = P (ku` = k̂u`) (4.18)

where ku` and k̂u` are the indices of the maximum zu`a and ẑu`a, respectively (e.g., zu`k =

max{zu`a, a = 1, . . . , K`} and ẑu`k̂ = max{ẑu`a, a = 1, . . . , K`}). The calculation of this

design criterion can be accomplished by utilizing the latent Gaussian variables {zu`k}. Each

zu`k is marginally distributed as

94



zu`k ∼ N(ẑu`k, ψ
2
u)

where ẑu`k is given by (4.15) and ψ2
u is the uth diagonal of Ψ in (4.16). While the latent z

random variables are correlated in space, they are uncorrelated between alleles. That is, zu`k

is independent of zu`k′ for k 6= k′, and zu` = (zu`1, zu`2, . . . , zu`K`
)′ is distributed

zu` ∼ N(ẑu`, ψ
2
uI).

The MSPE in (4.18) is then the probability that the index ku` of the maximum zu`a in zu`

is not the index of the maximum ẑu`a, which corresponds to our categorical prediction.

The calculation of this probability (and associated design criterion) can be accomplished

using multivariate Gaussian density functions. However, the computational cost can be much

greater than that required to calculate the latent Gaussian design criterion (4.17).

Simulation studies (not shown) indicate that optimal designs based on the categorical

design criterion tend to be closer to space filling designs than optimal designs based on

the latent Gaussian design criterion. The optimal latent Gaussian designs tend to focus on

remote regions of the spatial domain (i.e., the lek network). If a researcher considers spatial

coverage to be highly important to a design, the categorical design criterion is recommended.

This is especially relevant in a prospective design, or in a retrospective design based off of a

small existing sample which does not adequately cover the spatial domain of the study. In

our study of sage-grouse, the data collected from 2009-2012 provide a reasonable coverage of

the spatial range of the species. We thus choose to use the latent Gaussian design criterion,

which tends in simulation to put more weight on regions that are poorly connected to the

rest of the lek network. This reflects a desire to preferentially sample in regions far removed

from leks which have been previously sampled.
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4.5.3 Optimal Sampling for Reduced Rank Spatial Models

Computing the design criterion (4.17) requires calculation of the inverse Σ−1
oo which has

computational cost of O(n3
d), where nd is the number of locations in the proposed design. In

the sage-grouse study, over nd = 1000 leks were sampled during the years of 2009-2012. For

our retrospective design, we consider adding leks to the sampling design, which will increase

this number. Inverting a matrix of this size is computationally demanding, especially if

we wish to compare a large number of potential sampling designs. However, we can take

advantage of the reduced rank spatial model presented in Section 4.4.2 to significantly reduce

the computational cost of computing the design criterion by replacing the Kriging covariance

matrix Ψ = Σuu−ΣuoΣ
−1
oo Σou with a reduced-rank approximation Ψ̃ = Σ̃uu− Σ̃uoΣ̃

−1

oo Σ̃ou.

Note that the reduced rank covariance matrix Σ̃ of all observed and unobserved nodes

can be decomposed and written in block form:

Σ̃ = σ2M̃D̃M̃′ + I

= σ2 ·

 M̃o

M̃u

 D̃ [M̃′
o M̃′

u]
+

 Io 0

0 Iu


which leads to a reduced rank version of the Kriging covariance matrix:

Ψ̃ = Σ̃uu − Σ̃uoΣ̃
−1

oo Σ̃ou (4.19)

= σ2M̃uD̃M̃′
u + Iu −

(
σ2M̃uD̃M̃′

o

)(
σ2M̃oD̃M̃′

o + Io

)−1 (
σ2M̃oD̃M̃′

u

)
. (4.20)

This still requires the inverse of a nd × nd matrix, but the inverse in question can be

expressed using the Sherman-Morrison-Woodbury identity (e.g., Gentle, 2007, p. 221)

(
M̃o(σ

2D̃)M̃′
o + Io

)−1

= Io − M̃o

(
1

σ2
D̃−1 + M̃′

oIoM̃o

)−1

M̃′
o. (4.21)
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The resulting expression only requires the inverse of a matrix of dimensionality ne × ne,

where ne is equal to the number of eigenvectors retained in the reduced rank version of Q

and typically ne << nd. This allows us to take advantage of the reduced rank approximation

to the spatial covariance in the computation of the sampling criterion φ(d) = tr(Ψ̃).

Figure 4.3: Sage-grouse lek sampling recommendations based on latent Gaussian MSPE.
Leks shown as grey circles indicate leks that have been sampled in 2009-2012, or will be
sampled in 2013 Leks shown as black diamonds are the optimal retrospective lek sampling
locations under the constraint that no more than 10 additional leks are sampled in 2013.
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4.5.4 Recommendations for 2013 Sage-Grouse Sampling Effort

To make recommendations for 2013 sampling effort of sage-grouse leks, we focus on iden-

tifying the optimal retrospective design under the latent Gaussian MSPE sampling criterion

(4.17). Genetic data from 830 individuals at 243 distinct leks (Figure 4.2) were used to fit

the statistical model in Section 4.4.4. Each of these leks were considered to be observed.

We also included 934 additional leks where feather samples have been collected during 2009-

2012, but had not been genotyped before the start of the 2013 field season, in the set of

observed leks. The genetic information from these samples could thus not be used to esti-

mate the spatial covariance parameters in our statistical model, but knowing that samples

have been obtained from these additional sampling locations can aid in identifying regions

of high sampling importance for the 2013 sampling effort.

Given this set of observed leks, we consider adding ten additional leks to the existing

design. As a complete search of the space of retrospective designs would be computationally

prohibitive, we constructed an iterative search algorithm to identify a pseudo-optimal retro-

spective design. We first considered 10,000 random retrospective designs of ten additional

leks randomly chosen from all unsampled leks, and computed the latent Gaussian sampling

criterion (4.17) for each. We also considered multiple space filling designs on the lek network.

The best six designs were used as initial designs in an iterative exchange algorithm (Royle,

1998). At each iteration of the exchange algorithm, one lek in the retrospective design was

replaced by a neighboring lek, with the neighbor selected from all unsampled leks within

dMAX = 25km. If the design criterion was improved by the switch in leks, then the change

to the retrospective design is retained; otherwise, the switch is rejected and the design is

unchanged. This algorithm was run until a local minimum was found for each initial design.

The resulting six designs were then compared, and the design with the smallest design cri-

terion is shown in Figure 4.3. This design is based on the estimated spatial covariance for
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a network model of lek connectivity and provides guidance on how states can direct their

sage-grouse lek sampling effort in 2013.

4.6 Discussion

Landscape genetics is the study of how landscape features influence gene flow across

space. While the process being studied is spatio-temporal in nature, the genetic time scale

of the process is far greater than the time scale over which genetic observations are obtained.

Spatially referenced genetic data thus represent a snapshot of the spatio-temporal process

of gene flow, and are essentially spatial data, not spatio-temporal data. Our goal in this

chapter has been to apply existing spatial statistical approaches to landscape genetic data.

We have proposed a multinomial model with latent spatial random effects for microsatellite

allele data and illustrated how optimal retrospective spatial designs can be obtained for

landscape genetic studies.

While the multinomial model we proposed in Section 4.3 is appropriate for allele data

that can be thought of as categorical, next generation genetic data such as single nucleotide

polymorphisms (SNPs) may require modified data models. However, the general hierarchical

framework of an appropriate data model linked to a latent spatial random effect should be

broadly applicable to the field of landscape genetics as the tools and methods for analyzing

genetic sequence data evolve.

We defined spatial covariance between leks based on a graphical lek network, with edge

weights a function of Euclidean distance between leks. This model was developed to account

for the lekking behavior of greater sage-grouse (e.g., Connelly et al., 2004), and will not be

appropriate for most other species. It is far more common in landscape genetics to specify

a landscape graph where the edge weights are defined by the local landscape features (e.g.,

McRae, 2006; McRae and Beier, 2007; McRae et al., 2008; Cushman et al., 2006; Cushman

and Landguth, 2010; Spear et al., 2010), and connectivity is defined under the IBR or the

LCP approach. This is also the approach we took in our study of alpine chamois in Chapter
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3. As described in Section 4.2, covariance functions exist that match the assumptions of

both the IBR and LCP approaches, as well as the stationary and isotropic IBD approach

to landscape genetics. Hierarchical spatial modeling of landscape genetic data provides

new opportunities to obtain inference for resistance parameters in these effective distance

approaches within a formal statistical framework.
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CHAPTER 5

ISSUES OF SCALE IN DISCRETE-SPACE MODELS FOR MOVEMENT

AND CONNECTIVITY

In this dissertation, I have examined discrete-space approaches to modeling animal move-

ment and landscape connectivity. In this concluding chapter, I briefly review and synthesize

the work in the previous chapters, and discuss directions for future work in landscape con-

nectivity.

In Chapter 2, a continuous time discrete-space (CTDS) model for animal movement was

proposed that allows for natural modeling of a variety of potential drivers of animal movement

behavior, including location-based drivers which model an animal’s absolute speed through

different environments, and gradient-based drivers which model an animal’s mean response

to directional covariates such as the direction to a conspecific. Considerable attention was

paid to computational efficiency, first by proposing a latent-variable representation of the

CTDS movement model that allowed for inference using standard Poisson GLM approaches,

and second by suggesting a multiple imputation approach to approximating the posterior

predictive distribution. The computational efficiency of our approach allowed for complex

time-varying behavior to be modeled. These methods were applied to a study of a pair of

mountain lions in Colorado, USA.

In Chapter 3, the circuit-theoretic approach to landscape genetic data was examined. The

random walk model for gene flow that underlies the isolation by resistance (IBR) approach

in this chapter is identical to the CTDS model for animal movement proposed in Chapter 2,

as long as the drivers of movement chosen result in a reversible random walk, or equivalently

an undirected graph with symmetric edge weights. The link between the IBR approach to

landscape genetic analysis and GMRFs provides the first formal link between the effective
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distance approach to analysis of landscape genetic data and the field of spatial statistics.

To compare and contrast spatially explicit models with the effective distance approach,

observed pairwise genetic distance matrices were modeled using the generalized Wishart

model of McCullagh (2009). This approach was illustrated with both a simulation study

and a study of alpine chamois in the Bauges mountains of France.

The generalized Wishart model used in Chapter 3 is an appropriate statistical model for

squared pairwise distances (variograms) of Gaussian-distributed random variables. However,

it is not clear whether genetic distance matrices are distributionally similar to empirical var-

iograms of Gaussian random variables. In Chapter 4, this discrepency was addressed by

proposing a categorical data model for microsatellite allele data with spatial genetic corre-

lation modeled using latent spatial random effects. This hierarchical approach to landscape

genetic data shows great promise, as it allows for both modeling of the observations and

modeling of spatial correlation under existing assumptions about gene flow, such as the

assumptions present in isolation by resistance, isolation by distance, and least cost path

approaches to effective distance analysis.

Two directions for future research are particularly appealing, both related to scale de-

pendent inference for movement and connectivity. The first direction is a reconciliation of

the mismatch of temporal scale between movement data and genetic data used to study con-

nectivity. The second is the choice of spatial scale for discrete-space approaches to landscape

connectivity. Each is considered in what follows.

5.1 Temporal Scale in Movement and Connectivity

The similarities between the CTDS movement model in Chapter 2 and the intrinsic

conditional autoregressive (ICAR) GMRF model for spatial correlation in Chapter 3 are

striking, and suggest that both movement data and genetic data might be used jointly to

make inference about landscape effects of connectivity. Consider the transition rates (2.20)
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to neighboring cells in the CTDS model for animal movement from Chapter 2:

λij (β(t)) = exp

{
β0(t) +

K∑
k=1

pkiβk(t) +
L∑
l=1

qlijβl(t)

}

where β0(t) is a time varying intercept term, {βk(t)} are time varying effects related to

location-based drivers of movement, and {βl(t)} are time varying effects related to directional

drivers of movement. If we do not allow β to vary over time (e.g., β(t) = β), and do not

include any location-based drivers pki in the model, then the transition rate between cells is

only a function of the directional drivers of movement {qlij}. If we define these drivers as

qlij =
1

dij

(
xli + xlj

2

)
,

where dij is the distance between the centers of neighboring grid cells, and xli is the value of

the lth landscape covariate at the ith grid cell, then this transition rate is exactly the edge

weight αij between neighboring grid cells from Chapter 3:

αij =


exp

[
1
dij

(
x′i+x′j

2

)
β
]

, j ∈ N (i)

0 , j 6∈ N (i)

.

And, in fact, the interpretation of the parameters β is the same. This link between CTDS

random walk models for animal movement and ICAR GMRF models for spatial correlation

raises the possibility of making joint inference on both movement and genetic data. For

example, consider observed telemetry data S and observed spatially-referenced microsatellite

allele data Y. One might consider a joint model of the data in which the movement data
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are considered to arise independent of the genetic data:

[S,Y|β] = [S|β][Y|β]

β ∼ N(0,Σβ)

where [S|β] is the CTDS model for animal movement from Chapter 2 and [Y|β] is the

multinomial categorical data model from Chapter 4 with a latent ICAR random effect. The

assumption of independence between telemetry data and genetic data may seem counter-

intuitive, but is likely to hold due to the mismatch in temporal scales between the data

generating processes. The genetic data are the result of a multi-generational process in-

cluding dispersal, survival, and mating, while the telemetry data are collected at a much

finer temporal resolution. This provides a formal approach for using both telemetry and

genetic data to make inference about parameters related to landscape connectivity. Others

have considered both telemetry data and genetic data from the same species (e.g., Cushman

and Lewis, 2010), but each source of data was analyzed independently, and without formal

correspondence between model parameters.

However, the mismatch in temporal scales between movement and genetic processes may

complicate joint modeling of telemetry and microsatellite allele data. While the transition

rate λij in the random walk CTDS movement model models the movement of an animal, the

transition rate (edge weight) αij from the ICAR spatial covariance model actually reflects

rates of gene flow, a process which involves not only animal movement, but also survival

and reproduction. Consider, for example, the effect of a patch of dangerous terrain, like a

multilane highway. It is possible that animals are likely to move at a high rate of speed

through this feature, but survival may be negatively impacted. In this scenario, results from

a movement analysis could show that the highway facilitates movement at the short time

scales present in telemetry data. In contrast, results from a genetic analysis could show that
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the highway impedes gene flow and genetic connectivity, as survival is negatively impacted

by traveling through this feature.

This mismatch of temporal scales between movement and genetic data provides both

challenges and opportunities. While joint modeling of these two sources of data requires

careful consideration, it provides the opportunity to gain more scientific insight than could

be obtained using either source of data individually. Analyzing movement and genetic data

together may provide an approach to jointly model the effect that different terrain has on

movement at short time scales, together with survival and reproduction rates at longer

(genetic) time scales.

5.2 Spatial Scale in Landscape Connectivity

Animals inhabit a continuous, four-dimensional spatio-temporal world, and attempting

to model animal response to the environment using a discretized version of that continuous

space is not without its drawbacks. In particular, utilizing a discrete-space approach requires

choosing a scale on which the discretized process will be modeled. In both the CTDS model

for animal movement from Chapter 2 and the circuit approach to landscape genetics in

Chapter 3, the spatial domain was discretized into a set of regular grid cells which partitioned

the domain. This discretization is common in both IBR and LCP approaches to studying

gene flow in heterogeneous landscapes, as well as in studies of resource selection (e.g., Hooten

et al., 2013). However, the choice of spatial resolution (grid cell size) can greatly influence

results, and there is little guidance on choosing an appropriate resolution (e.g., Borcard and

Legendre, 2002; Cushman and Landguth, 2010). In Chapter 2, it was noted that choosing

the grid cell size for the CTDS movement model specifies an implied time scale at which

inference is made on animal movement decisions in response to environmental and biotic

drivers of movement (Figure 2.3). For genetic analyses, the effects of spatial resolution are

less clear.
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One approach to considering multiple spatial resolutions for genetic analyses is to view a

discrete-space analysis as an approximation to a continuous process. Lindgren et al. (2011)

describe an explicit link between continuous spatial models and discrete-space spatial models

by considering the following stochastic partial differential equation (SPDE):

(
κ2 −∆

)(ν+1)/2
y(s) =W(s), s ∈ R2, κ > 0, ν > 0 (5.1)

where the innovation processW(s) is spatial Gaussian white noise with unit variance, and ∆

is the Laplace operator. Whittle (1954) showed that the solution to this SPDE is a Gaussian

random field with Matern covariance function between the spatial locations

y(s) ∼ GP (0, C(·, ·)) (5.2)

C(si, sj) =
σ2

2ν−1Γ(ν)
(κ||si − sj||)ν Kν (κ||si − sj||) (5.3)

where Kv is the modified Bessel function of the second kind and order ν > 0. κ > 0 is a

scaling parameter and σ2 is the marginal variance

σ2 =
Γ(ν)

4πκ2νΓ(ν + 1)
.

For example, setting ν = 1/2 results in the exponential covariance function

Cexp(si, sj) = σ2 exp{−κ||si − sj||}.

Thus, choosing κ and ν specifies a stationary, isotropic Gaussian random field of the Matern

class that is a solution to the SPDE (5.1)

Lindgren et al. (2011) then show that a GMRF that approximates the Gaussian random

field that is a solution to (5.1) can be obtained by taking a finite-element approach to solving

the SPDE. The finite element method consists of choosing a grid, or mesh, of points across the
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spatial domain S, and a set of basis functions, which are typically piecewise-linear functions

between the mesh points. The solution to (5.1) is then approximated by a weighted sum of

the basis functions.

To illustrate the relevance of this result, consider the multinomial data model with latent

spatial random effects from Chapter 4. Under the LCP approach to connectivity, a discretized

space is specified with local resistance to movement and gene flow being a function of the

landscape characteristics of each grid cell. A spatial random effect with this discrete-space

as its support is used to model connectivity and correlation in observed genetic data. Under

the SPDE approach to specifying the spatially-correlated random effect, the spatial random

effect is considered to have continuous spatial support, and the choice of spatial resolution

(grid cell size) is seen as the choice of mesh points for the finite element method basis of the

approximate solution to the SPDE. Thus, specifying a finer resolution of grid cells (mesh

points) will result in a more accurate approximate solution to the SPDE (5.1), while a coarser

resolution will result in a coarser approximation.

The SPDE (5.1) provides a natural approach for spatial deformation approaches to non-

stationary covariance models (Schmidt and O’Hagan, 2003). The parameter κ in (5.1) con-

trols the range of the spatial structure in the covariance function (5.3). Consider the case

where κ is allowed to vary over space, with the range parameter being a function of the local

landscape characteristics, e.g.,

κ(s) = exp {−x(s)′β} . (5.4)

Then the resulting covariance will be nonstationary, with the nonstationarity defined by the

landscape characteristics x(s) and the weighting parameters β, where positive values of βk

indicate that the kth landscape characteristic xk facilitates gene flow and spatial connectivity,

as positive values of βk would result in greater correlation between locations separated by

landscape high in xk. This would provide a novel approach to modeling nonstationary
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correlation between genetic observations with assumptions similar to those being used in

current LCP approaches.

5.3 Conclusion

Linking animal behavior to the landscape is one of the fundamental questions in ecology

(Dalziel et al., 2008; Gurarie et al., 2009; Cagnacci et al., 2010). In this work, I have

proposed novel statistical approaches to studying the effects of the landscape, as well as other

potential biotic factors, on animal movement behavior and spatial gene flow. Throughout

this treatment, particular attention has been paid to the following recurring themes:

1. Scientific relevance.

2. Statistical appropriateness.

3. Computational efficiency.

Each section in this dissertation was motivated by a scientific study, and the goal in each

case was to advance the field of statistics to allow for the appropriate analysis of the data.

Statistical models were chosen that are scientificially justified, and that allow for interesting

scientific hypotheses to be investigated. It is important to recognize that the ability to collect

data in the ecological sciences is growing rapidly (e.g., Tomkiewicz et al., 2010), and with it

our need for sophisticated models that more accurately reflect the natural world. Together,

these two trends make computational efficiency an essential consideration in the development

of statistical approaches to studying connectivity.

As in any scientific endeavor, there is much work still to be done. I have outlined two

avenues of future research in this concluding chapter, but anticipate many more opportunities

in both the study of animal movement and spatial gene flow. The field of statistics is

advancing at an exciting pace, together with our ability to collect new data of exceptionally

high quality. These advances will spark new opportunities at the interface of statistics and

the study of landscape ecology.
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