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ABSTRACT OF DISSERTATION

DESIGN OF A NONHYDROSTATIC ATMOSPHERIC MODEL BASED ON A
GENERALIZED VERTICAL COORDINATE

The isentropic system of equations has particular advantages in the numerical
modeling of weather and climate. These include the elimination of the vertical velocity
in adiabatic flow, which simplifies the motion to a two-dimensional problem and greatly
reduces the numerical errors associated with vertical advection. Vertical resolution is
enhanced in regions of high static stability which leads to better resolving of features
such as the tropopause boundary. Also, sharp horizontal gradients of atmospheric
properties found along frontal boundaries in traditional Eulerian coordinate systems are
nonexistent in the isentropic coordinate framework.

The extreme isentropic overturning that can occur in fine-scale atmospheric
motion presents a challenge to nonhydrostatic modeling with the isentropic vertical
coordinate. This dissertation presents a new nonhydrostatic atmospheric model based on
a generalized vertical coordinate. The coordinate is specified in a similar manner as
Konor and Arakawa, but elements of arbitrary Eulerian-Lagrangian methods are added to
provide the flexibility to maintain coordinate monotonicity in regions of negative static

stability and return the coordinate levels to their isentropic targets in statically stable

il



regions. The model is mass-conserving and implements a vertical differencing scheme
that satisfies two additional integral constraints for the limiting case of z-coordinates.

The hybrid vertical coordinate model is tested with mountain wave experiments
which include a downslope windstorm with breaking gravity waves. The results show
that the advantages of the isentropic coordinate are realized in the model with regards to
vertical tracer and momentum transport. Also, the isentropic overturning associated with

the wave breaking is successfully handled by the coordinate formulation.

Michael D. Toy

Department of Atmospheric Science
Colorado State University

Fort Collins, CO 80523

Summer 2008
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ABSTRACT OF DISSERTATION

DESIGN OF A NONHYDROSTATIC ATMOSPHERIC MODEL BASED ON A
GENERALIZED VERTICAL COORDINATE

The isentropic system of equations has particular advantages in the numerical
modeling of weather and climate. These include the elimination of the vertical velocity
in adiabatic flow, which simplifies the motion to a two-dimensional problem and greatly
reduces the numerical errors associated with vertical advection. Vertical resolution is
enhanced in regions of high static stability which leads to better resolving of features
such as the tropopause boundary. Also, sharp horizontal gradients of atmospheric
properties found along frontal boundaries in traditional Eulerian coordinate systems are
nonexistent in the isentropic coordinate framework.

The extreme isentropic overturning that can occur in fine-scale atmospheric
motion presents a challenge to nonhydrostatic modeling with the isentropic vertical
coordinate. This dissertation presents a new nonhydrostatic atmospheric model based on
a generalized vertical coordinate. The coordinate is specified in a similar manner as
Konor and Arakawa, but elements of arbitrary Eulerian-Lagrangian methods are added to
provide the flexibility to maintain coordinate monotonicity in regions of negative static

stability and return the coordinate levels to their isentropic targets in statically stable
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Chapter 1 INTRODUCTION

The theoretical framework for atmospheric modeling with the isentropic vertical
coordinate was first worked out over 60 years ago (e.g., Starr 1945). This coordinate has
particular advantages in improving the accuracy of numerical weather forecasting and
climate models. Despite this, its use has been slow to develop, due in part to the
technical challenges of handling the quasi-Lagrangian isentropic surfaces. These
challenges are more difficult in nonhydrostatic models designed to simulate fine scale
motion where isentropic overturning often occurs. It has only been in the last decade that
the isentropic coordinate has been implemented in nonhydrostatic models.

The isentropic vertical coordinate is classified as quasi-Lagrangian because, under
adiabatic processes, surfaces of constant potential temperature are material surfaces.
Therefore, numerical errors associated with vertical transport across coordinate surfaces
are virtually eliminated. One of the drawbacks to modeling with the isentropic
coordinate is the intersection of potential temperature surfaces with the ground. Hybrid
vertical coordinate models provide a means to overcome this issue by incorporating a
terrain-following Eulerian coordinate near the surface. They combine the optimum
features of the quasi-Lagrangian and Eulerian coordinate systems.

This dissertation presents a new approach to nonhydrostatic finite-difference
modeling with a hybrid vertical coordinate. It combines the generalized vertical

coordinate technique of Konor and Arakawa (1997) with the arbitrary Lagrangian-



Eulerian methods used in previous hybrid models. With the former method, a smooth
transition between the coordinate types is specified, while the latter method provides the
flexibility to allow the coordinate to adapt “on the fly” to changing atmospheric
conditions. The result is that the benefits of the isentropic coordinate are achieved as
much as possible while allowing nonmonotonic vertical profiles of potential temperature

to exist in the free atmosphere.

1.1  The quasi-Lagrangian 6 coordinate
The benefits of transforming the equations of atmospheric motion into the
isentropic (6) coordinate were recognized as early as the 1930’s (e.g., Montgomery 1937,

Rossby 1938). Potential temperature increases monotonically with height in the standard,
stably stratified atmosphere, making it useable as a vertical coordinate. Furthermore, the

fact that air parcels conserve their value of @ under adiabatic processes means that there

is no vertical velocity in isentropic coordinates. Here, the potential temperature is

defined as

QET[&J : (1.1)
p

where T is temperature, p is pressure, p, is a reference pressure (usually 1000 mb), and

KER/cp , where R is the gas constant and c, is the specific heat at constant pressure.

Isentropic weather charts, which are plotted on surfaces of constant 6, provided a new

way of visualizing atmospheric motion since the flow on isentropic surfaces is

two-dimensional for adiabatic processes.



The physical insight gained from the isentropic coordinate framework led to the

advancement of PV theory (see Rossby 1940). In 6 coordinates, the effect of stretching

on the absolute vorticity of vertical cylindrical fluid elements bounded by material
surfaces can be clearly expressed. Ertel (1942) derived a form of the PV that is

materially conserved for adiabatic, frictionless motion. It is written as

P:Ca'—pve, (1.2)

where P is Ertel’s potential vorticity,  is the absolute vorticity vector, V is the three-

dimensional gradient operator, and p is density. In isentropic coordinates, Ertel’s PV

takes on a simple form when the hydrostatic assumption is applied. It becomes

P=—g(f+§9)(§—lé} : (1.3)

where g is gravity, f is the Coriolis parameter, and Ce is the isentropic relative vorticity
given by

¢, =k-V, xv, (1.4)
where K is the unit vertical vector, Ve is the horizontal gradient operator on constant-6

surfaces, and v =(u,v,0) is the horizontal wind velocity. When P is plotted on isentropic
charts, the visualization of the flow field evolution is aided since both 8 and P are nearly

conserved. Through the invertibility principle, the complete three-dimensional motion
field can be diagnosed from the PV field. A history of the development of PV theory and

isentropic potential vorticity maps can be found in Hoskins et al. (1985).



The merits of performing dynamical analysis with the isentropic vertical
coordinate led to the development of a quasi-Lagrangian system of hydrodynamical
equations (Starr 1945). In his paper, Starr combined the Eulerian Cartesian coordinate in
the horizontal, and a Lagrangian coordinate in the vertical. Isosurfaces of the vertical
coordinate (referred to as c) are fixed to a particular set of fluid particles. The vertical
velocity ¢ in the system is identically zero, so all motion is horizontal in the coordinate
framework. Over the years the term “quasi-Lagrangian vertical coordinate” has been
used to describe quasi-conservative vertical coordinates for which the vertical velocity is
usually small. These include isopycnal coordinates used in ocean dynamics, and

isentropic coordinates used in dry atmospheric dynamics.

1.2 Numerical modeling with the @ coordinate

The advent of digital computing in the 1940’s and 1950’s made numerical
methods for solving the hydrodynamical equations practicable. The first weather
forecasting and general circulation models (GCMs) used Eulerian vertical coordinate
systems based on geometric height and pressure. (See Randall (2000) for a historical
overview of GCM development.) The use of material layers in a model was proposed by
Eliassen (1962), in part to reduce the numerical error associated with vertical advection.

Eliassen and Raustein (1968) built a two-layer finite-difference 6-coordinate
model based on the primitive equations. In their model, the lower boundary was a model
surface, and the lower isentropic model surface would intersect the ground. The
intersection of model layers with the lower boundary required special attention and it

became one of the most challenging design features of subsequent 8-coordinate models.



In Eliassen and Raustein (1968, 1970) and Shapiro (1975), the Exner function,

Hch(p/po)“, and also the velocity components were linearly extrapolated below the

surface. These subterranean values were used in the horizontal difference terms.
Bleck (1984) implemented an alternative to the “linear extrapolation” technique

of handling intersecting 6-coordinate surfaces at the ground. In this “massless-layer”

approach, which originated from Lorenz (1955), isentropic surfaces intersecting the lower
boundary are extended along the ground, as shown in Figure 1.1. These may be
collocated with adjacent isentropic layers and they are filled identically by zero mass.
With this technique, the surface value of potential temperature, which is needed to
determine the horizontal position of ground intersection in the “linear extrapolation”
method, need not be calculated from the thermodynamic energy equation. Instead, the

location of layer intersection is determined from the mass continuity equation with the
lower boundary conditionés =0, where 6 is an arbitrarily assigned lower bound of
potential temperature.

The massless-layer approach was also used by Hsu and Arakawa (1990), hereafter

HA90, in the development of their 0-coordinate model. They formulated a vertical

&

Figure 1.1:  TIllustration of massless isentropic layers along the lower boundary [Fig. 2
from Hsu and Arakawa (1990)].



discretization scheme which conserved total energy and angular momentum, and they

achieved long-term simulations of baroclinic wave growth on a -plane with a 25-layer

model. Randall et al. (2000) developed a 8-coordinate global model using the scheme of

HA90.

1.3 Advantages and disadvantages of isentropic-coordinate modeling

HA90 discussed advantages and disadvantages of the isentropic coordinate.
Some of the advantages are summarized below.

1) The vertical velocity is zero for adiabatic flow, which simplifies the motion to
a two-dimensional problem and greatly reduces the numerical errors associated with
vertical advection.

2) Sharp horizontal gradients of atmospheric properties, which are found along
frontal boundaries in traditional Eulerian coordinate systems, are nonexistent in the
isentropic coordinate framework.

3) Ertel’s potential vorticity, given by equation (1.3), is more easily expressed
since it does not involve vertical derivatives of v. This makes the conservation of PV
more straightforward in the discrete, quasi-static framework.

4) A quasi-Lagrangian view of the general circulation of the atmosphere is
readily obtained with the isentropic coordinate. This follows from the fact that mean
vertical transport is due only to diabatic heating with no contribution from eddy transport.
For example, under adiabatic conditions, the pressure form drag acting on isentropic

surfaces is the only mechanism for the vertical transfer of momentum.



Some of the disadvantages pointed out by HA90 are listed below. The solutions
to these will be addressed later.

1) As pointed out earlier, isentropic coordinate surfaces can intersect the lower
boundary, even without topography. These intersections are difficult to handle in a
discrete model.

2) The mass between adjacent isentropic layers can become infinitesimally small
which can cause computational difficulties.

3) In the planetary boundary layer (PBL), isentropic surfaces can become vertical
due to mixing, resulting in a lack of vertical resolution.

4) Unstable layers with 06/dz<0 cannot be represented in the model because of

the requirement that the vertical coordinate be a monotonic function of height.

1.4 Hybrid vertical coordinate models

The disadvantages listed above can be solved with the hybrid vertical coordinate
approach. In this method, the 6 coordinate is used in the free atmosphere, where the
static stability is generally positive, and an Eulerian p- or z-based coordinate is used near
the surface. The latter is typically a terrain-following (o) coordinate, which eliminates
the issue with intersecting coordinate surfaces with the lower boundary. Also, the PBL
can be well resolved with an arbitrary number of model levels. The hybrid method was
developed in the 1970’s (e.g., Deaven 1976, Friend et al. 1977, Uccellini et al. 1979). In
these early hybrid models there was an interface between the isentropic and ¢ coordinate
domains (see Figure 1.2). In general, isentropic model surfaces would intersect the

interface, and, therefore, the finite-difference schemes would have to handle this in a



similar manner to isentropic ground intersections with the “pure” 6 coordinate models.
In Deaven (1976), this was done using a linear extrapolation method where 6-surfaces
are extrapolated into the o-domain. Uccellini et al. (1979) designed their model to
conserve mass, momentum and energy in association with transport across the interface
between the isentropic and sigma domains. This reduced the pressure and wind
perturbations caused by truncation errors with the discrete handling of the interface.
Bleck (1978a) introduced a method of joining the isentropic and sigma domains
that avoids the intersection of isentropic surfaces with the interface (see Figure 1.2). This
was to have the interface coincide with an arbitrary isentropic surface which is high

enough to avoid intersection with the lower boundary (310K was chosen). While this

method has the advantage of avoiding coordinate surface intersections, it has the

Figure 1.2:  Four ways of joining the o and 6 domains: (A) Friend et al. (1977),
(B) Uccellini et al. (1979), (C) Deaven (1976), and (D) Bleck (1978a)
[Fig.1 from Bleck (1978a)].



disadvantage that the interface height would vary considerably with latitude. For the

choice of 6 pppace =310K, the height would typically be about 3 km in the tropics,

while near the poles, it is located at almost 10 km. Therefore, the benefit of the 6

coordinate would not be realized throughout most of the troposphere in the higher
latitudes.

The method of transition from the o coordinate to the @ coordinate in Bleck’s

model logically led to the use of a generalized vertical coordinate. In two subsequent
papers, Bleck (1978b, 1979) formulated a system of finite-difference equations based on
the generalized vertical coordinate for use in hybrid coordinate models. Under this
framework, the vertical coordinate may be specified as a function of two or more

variables. For example, Zhu et al. (1992) defined their coordinate in terms of o, 6 and p.

The generalized vertical coordinate is also used in the NOAA Rapid Update Cycle (RUC)
operational weather prediction model for regional forecasts (Bleck and Benjamin 1993;
Benjamin et al. 2004). In this model, the coordinate is specified as purely isentropic in
the free atmosphere, while near the surface, a minimum pressure spacing between
coordinate surfaces is maintained through a process of regridding. Therefore, the

coordinate behaves as a pressure-based terrain-following ¢ coordinate near the surface.

The coordinate-relative vertical velocity associated with the regridding process is
calculated and used in the vertical advection terms of the prognostic equations. Another
quasi-static atmosphere model based on this coordinate is the Flow-following finite-
volume Icosahedral Model (FIM) global model developed at NOAA/ESRL

(documentation at http://fim.noaa.gov/fimdocu_rb.pdf).



Konor and Arakawa (1997), hereafter KA97, used a coordinate defined as a linear

function of o and 6, with a smooth transition from the o coordinate near the surface to the
6 coordinate. The functional relationship was specified to maintain vertical coordinate
monotonicity for a given degree of static instability, i.e., d0/dz<0, without the need for

regridding. Models based on the vertical coordinate of KA97 include Heikes et al. (2006)

and Dowling et al. (2006).

1.5 Nonhydrostatic modeling with hybrid vertical coordinates

In the quasi-static models discussed so far, the folding of isentropic surfaces in the
free atmosphere was generally not considered a major difficulty. Eliassen and Raustein
(1968) stated that there was no reason to believe that these surfaces would fold during
integration of their isentropic coordinate model. HA90 pointed out that in 8-coordinate
models, mass is automatically redistributed in such a way as to prevent unstable layers
from developing, which is equivalent to a built-in dry convective adjustment process.
These are valid arguments for large-scale quasi-static motion. However, on the small
scales resolved by nonhydrostatic models, the existence of statically unstable layers and
isentropic overturning are common physical features which must be accommodated.

In the last decade, nonhydrostatic models using the quasi-Lagrangian 6
coordinate have been developed. Skamarock (1998) and He (2002) extended the hybrid
coordinate method of Bleck and Benjamin (1993). In their regridding algorithms they

imposed both minimum and maximum Az requirements on adjacent layers to prevent

layers from crossing and to provide vertical resolution in statically unstable regions,
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respectively. Therefore, the generalized vertical coordinate used in these nonhydrostatic
models are hybrids of potential temperature and a height-based terrain-following
coordinate. In addition to the layer thickness requirements, coordinate surfaces were
horizontally and vertically filtered to maintain grid smoothness and to prevent layers
from having infinite slope. Successful two-dimensional mountain wave breaking

experiments were achieved by both Skamarock (1998) and He (2002). With the latter

model, a three-dimensional simulation of baroclinic wave growth on a -plane was also

performed.

Zangl (2007) developed an adaptive vertical coordinate formulation with flux-
form equations and implemented it in the nonhydrostatic Weather Research and
Forecasting Model (WRF) (Skamarock et al. 2005). The value of the vertical coordinate,
which is based on WREF’s terrain-following hydrostatic-pressure vertical coordinate (see
Laprise 1992), is calculated at each grid point using a prognostic equation. This equation
is a relaxation-diffusion equation that applies a Newtonian relaxation toward a “target”
field. The specification of the target field determines the nature of the coordinate. Zangl
specified it to be terrain-following near the surface and isentropic in the free atmosphere.
The diffusive aspect of the prognostic equation maintains a smooth layer spacing and
smoothness in the horizontal, in addition to maintaining coordinate monotonicity in
regions of isentropic overturning.

The handling of the vertical coordinate in these nonhydrostatic models, as well as
the quasi-static models that use a regridding method, are characteristic of arbitrary
Lagrangian-Eulerian (ALE) methods (Hirt et al. 1974) and adaptive grid techniques

(Dietachmayer and Droegemeier 1992). With the ALE method, the three dimensional
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model grid is attached to grid points whose positions in space are predicted in a
Lagrangian manner. To prevent the grid from becoming too irregular, mass is allowed to
cross grid cell walls in an Eulerian manner. The hybrid coordinate models apply these
techniques only in the vertical dimension. In contrast, the hybrid coordinate method of
KA97 is not derivative of ALE or adaptive grid techniques as the combination of the

quasi-Lagrangian (i.e., ) and Eulerian (i.e., 0) components are strictly prescribed at each

model level.

1.6 A new approach to nonhydrostatic modeling with a hybrid
vertical coordinate

For the nonhydrostatic model developed in this dissertation we started with the
hybrid vertical coordinate of KA97. We did so because of the straightforwardness of its
formulation and the smoothly prescribed transition from terrain-following (sigma) to
isentropic coordinates. In the final design, however, we ended up incorporating elements
of ALE. Therefore, our formulation can be viewed as an “adaptive” version of the
statically-defined coordinate of KA97. Next, we briefly explain the development process
of the vertical coordinate used in the model.

Recall that in KA97, a specified degree of static instability can be accommodated
while maintaining the monotonicity of the vertical coordinate. This is achieved by
retaining some “sigma-ness” in the vertical coordinate and not allowing it to become
exactly isentropic, which results in sacrificing some of the quasi-Lagrangian nature of the

0 coordinate. In testing their model, KA97 allowed for a small enough amount of static

instability that the deviation from isentropic coordinates was small. In their model, dry-
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convective adjustment helped to maintain statically stable vertical profiles as is observed
on the large scale.

When we implemented the KA97 hybrid vertical coordinate in our nonhydrostatic
model, it functioned well for small-scale cases in which static stability is maintained,
such as gravity wave formation in flow over a small obstacle. For more severe cases,
such as nonlinear wave breaking over a taller obstacle, we ran into problems. Our hope
had been that it would be possible to achieve a numerical solution to the pure

6-coordinate representation of wave breaking. We had theorized that the waves would
amplify to the point mathematically allowed with a monotonic 8 coordinate, that is just

before isentropes overturn and the static stability becomes zero, and then they would die

out. Instead, the model would not run unless enough of a o-component remained in the

vertical coordinate to allow the waves to develop and break as they do in the physical

realm. In fact the coordinate had to deviate from O to the point that the generalized

vertical velocity, and therefore the dispersion error associated with vertical advection,

was indistinguishable from a pure o coordinate. This, of course, defeats the purpose of

the hybrid-coordinate.

The problem that occurred in the pure 8-coordinate runs was that large-amplitude

noise would develop in the motion field which caused coordinate surfaces to cross each
other, resulting in negative mass. We implemented an upstream mass-advection scheme
to try to prevent negative values of mass, but this merely delayed the problem. We then
imposed a minimum layer thickness by using a “regridding” method, but this only further
delayed the model crash. We speculate that the root problem was that the spatial

gradients of the prognostic variable fields in the coordinate space became too sharp for
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the numerical schemes to handle, particularly the advection schemes. The way to get past
the barrier was to prevent these sharp gradients from developing by spatially smoothing
the coordinate surfaces, that is by incorporating an adaptive grid technique. We will
show evidence of the reduction of these gradients in the next chapter, where the details of

the smoothing method will be described.

1.7 Design of the vertical discretization

This section outlines the design criteria for the vertical discretization used in the
model. A description of the vertical staggering of the prognostic variables will be given.
This will be followed by a discussion of the integral constraints, such as mass
conservation, that will be used as a guide in developing the discrete form of the

governing equations.

1.7.1 Vertical staggering

Determining the spatial grid distribution of the predicted variables is an important
early step in the design of a numerical model. The way these variables are staggered with
respect to each other directly affects the forms of the discrete difference terms in the
model equations. These, in turn, affect the accuracy of the model solutions, as well as the
satisfaction of conservation properties. They also can determine whether or not
nonphysical computational modes exist. Various grid staggerings on horizontal,
quadrilateral grids, and their effects on gravity wave motion, are analyzed in Arakawa
and Lamb (1977) and Randall (1994). Their results provide a framework for determining

the optimal grid staggering for representing geostrophic adjustment.
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Proper prognostic variable staggering in the vertical is also important for the
accurate representation of wave propagation and the avoidance of computational modes.
The various arrangements for quasi-static models have been analyzed (e.g., Tokioka
1978, Arakawa and Moorthi 1988, Arakawa and Konor 1996). Two general classes of
vertical grids exist for the primitive equation models using a pressure-based vertical
coordinate — the Charney-Phillips (CP) grid and the Lorenz grid. These are illustrated in
Figure 1.3. The CP grid was used in Charney and Phillips (1953) for a discrete three-

dimensional quasigeostrophic model. In this grid, the thermodynamic variable 6 is

vertically staggered with respect to the horizontal velocity (v). Lorenz (1960) placed 6 at

(a) L-grid (b) CP-grid

K+lp & o=0 4 0 =0
K = v - v
K- o 0 ¢
k+35 o 0o
k+1  ======m----- Ov ------------ v
k+Y5 o 0 o

k ~ mmmmmmmmmees v —==mmmmmme- \
k-4 o 0 o
e Ov -—--——-—--—- v
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1 —mmmmmme- v - v
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Figure 1.3:  Variable staggerings of (a) the Lorenz grid and (b) the Charney-Phillips
grid for a o coordinate.
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the same level as the horizontal velocity in order to facilitate conservation of total energy,
mean potential temperature and potential temperature variance. The Lorenz grid became
the typical standard in GCMs because of these conservation properties. However, this
grid supports a computational mode in the potential temperature field which is described
in Arakawa and Moorthi (1988). This mode was found to cause spurious baroclinic wave
growth in discrete models. The computational mode does not exist in the CP grid, as
demonstrated by Arakawa and Konor (1996). In that paper, it was also shown that total
energy conservation can be achieved with the CP grid.

In nonhydrostatic modeling, the replacement of the hydrostatic relation with a
prognostic equation for the vertical velocity w, changes the analysis of the vertical
staggering. In this system of equations, there is an additional vertical wave mode — the
acoustic mode — which, although not of meteorological significance, has an important
role in the hydrostatic adjustment process (e.g., Bannon 1995). The choice of vertical
coordinate also has a role in determining the optimal grid staggering. Woollings (2004)
and Thuburn and Woollings (2005) analyzed the discrete linear normal modes for various
staggerings with the compressible, nonhydrostatic system of equations expressed in three
different coordinate systems — the height coordinate, the isentropic coordinate and a
terrain-following mass-based coordinate. The staggerings which provided the most
accurate representation of wave motion as well as being free of computational modes
were those in which potential temperature is staggered with respect to horizontal velocity,
i.e., the CP-like grids.

Partly based on the results of Thuburn and Woollings, we chose to implement the

CP grid in the height-based coordinate domain of the hybrid vertical coordinate model.
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There is also precedent for using the CP grid in nonhydrostatic atmospheric models based
on a terrain-following height-based vertical coordinate in the “unified model” developed

at the United Kingdom’s Met Office (Davies et al. 2005).

1.7.2 Integral constraints

The discrete forms of the governing equations used in numerical models are often
designed to satisfy various integral properties found in the continuous system of
equations. These properties include the conservation of mass, momentum, total energy,
potential temperature, and concentrations of water and chemical species. As there is a
limited number of degrees of freedom in the algebraic model equations, it is not possible
to satisfy all of the integral properties found with the continuous system. Therefore,
trade-offs must be made in designing the wvertical discretization. The vertical
discretization we developed for the model conserves the total mass through the direct
prediction of the mass variable with a flux-form of the continuity equation. Total energy
and the vertically integrated momentum circulation about a closed contour of topography
is also conserved under the special case of pure height coordinates and centered-
differencing schemes. The satisfaction of these constraints for the generalized vertical
coordinate is traded-off in order to avoid the existence of a computational mode in the
thermal field. Another constraint that is compromised is the conservation of potential

temperature, which appears to be due to the use of the CP grid.
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1.8  Outline of the dissertation

The purpose of this dissertation is to present the design and tests of a new
nonhydrostatic atmosphere model which takes advantage of a quasi-Lagrangian vertical
coordinate. The tests demonstrate its capability to represent fine-scale nonhydrostatic
motions including those involving isentropic overturning. Results with the hybrid

coordinate are compared to those with the conventional o coordinate, revealing both

advantages and disadvantages of the hybrid coordinate.
In Chapter 2 the continuous system of equations is presented. The governing

equations in z coordinates are transformed into the generalized vertical coordinate (7).

We then derive some of the integral properties of the continuous system in this
coordinate. The details of the vertical coordinate specification and the method of

diagnosing the generalized vertical velocity 17 are presented. Finally, the vertical flux of

horizontal momentum is analyzed and the Eliassen-Palm flux in a generalized vertical
coordinate is derived. This expression is used for the analysis of the momentum transport
in the model.

Chapter 3 describes the design of the vertical discretization scheme. The vertical
staggering and the discrete form of the governing equations are presented. Various
integral constraints are satisfied by these equations under certain conditions.
Compromises made between the various design criteria are highlighted. The method of
diagnosing the generalized vertical velocity in the model is detailed in Chapter 4. Also,
we will describe the special handling of the vertical advection of potential temperature

and geopotential.
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In Chapter 5, a series of two-dimensional mountain wave experiments are
performed with the model. Results from runs with the hybrid vertical coordinate and the

o coordinate are compared in regard to the overall fields, as well as momentum and tracer

transport. Finally, Chapter 6 provides a summary of the dissertation along with

concluding remarks.

19



Chapter 2 CONTINUOUS EQUATIONS

2.1 Introduction

This chapter describes the compressible Eulerian equations of fluid motion in a
generalized vertical coordinate on which the model is based. We develop the
nonhydrostatic equations starting in z coordinates, and transform them to the generalized
vertical coordinate following the work of Kasahara (1974) for the quasi-static equations.
The integral constraints that will form the basis of the vertical discretization scheme are
then derived. The vertical coordinate is presented, along with the method for diagnosing
the generalized vertical velocity. Finally, we will analyze the vertical flux of horizontal
momentum in the generalized vertical coordinate, and derive an expression for the

Eliassen-Palm flux in this coordinate.

2.2 Governing equations

We start with the governing equations in z-coordinates. The laws of momentum,
energy and mass conservation make up the prognostic equations. The horizontal
momentum equation is

D 1
“V i fkxv=——V p+F, @.1)
Dt p
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where V is the horizontal gradient operator, F is the horizontal friction force, and D/Dt is

the material time derivative given by

£=(E+V-V) +w3. (2.2)
Dt . 0z

The subscript z on the differential operators denotes derivatives at constant geopotential

height. The vertical momentum equation is

1
Dw_ 19 o \p. 2.3)
Dt p 0z :
where F'_is the vertical component of the friction force.
Mass conservation is given by
a_p +V -(pv)+3(pw):0. (2.4)
ot . : 0z

The first law of thermodynamics for quasiequilibrium, frictionless processes can be

expressed as

Do _9Q
Dt I’ 23)

where Q is the rate of diabatic heating and IT is the Exner function defined below.

The diagnostic equations that close the system are the ideal gas law,
p=pRT, (2.6)

the definition of the Exner function,

M=c, [ﬁj : 2.7)

and the definition of potential temperature,
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0=t (2.8)

To transform these equations to a generalized vertical coordinate i we use the

following chain-rule identities:

) _(2) () 2
&) 33 2

d
V. = Vn +Vzn%, (2.10)
8_71 :_8_17 % (2.11)
ot ). oz \ ot n, '
an
Vzn:—a—ZVnz, (2.12)
and
0 dn ad
—=——. 2.13
dz dz dn -13)

Applying equations (2.9) - (2.13) in equations (2.1) - (2.4) gives the governing equations
in the generalized vertical coordinate 7). First, the horizontal momentum equation
becomes

&+fk><v:—lv p+la—pV z+F. (2.14)
Dt p " mon "

Note that the horizontal pressure gradient force has become a two-term expression, and a

new quantity is introduced — the pseudo-density (m) given by

mEp% (2.15)

on’
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This is the analog of the conventional density, referred to the generalized vertical
coordinate, i.e., the amount of mass per unit volume of the generalized space. Using the

expression

4

. _Dn (on on
_bn_fon Vv a 2.16
=" (azl” S (.16

where 7] is the generalized vertical velocity, the material time derivative becomes

D 0 d
—=|—+Vv-V| +1—. 2.17
Dt ( ot l 1 oan (@17)
The vertical momentum equation is
D 1
Dw_ 1% oip. (2.18)
Dt m on :

Finally, the flux form of the mass continuity equation is written as

om 0 i
(E]n +Vn -(mv)+%(mn)=0, (2.19)
where we used
Dz 0z Jz
=—=| = -V 11— 2.20
w D [at+v zl+nan ( )

At this point, it is illustrative to consider these equations in the framework of
some commonly used vertical coordinate systems, and to briefly discuss the formulation
of the generalized vertical velocity in each. For the z-coordinate (1 =z), the original
governing equations are recovered, as equation (2.15) becomes m = p, and the vertical
velocity, as given by (2.16), becomes?)=w. In this system, the vertical velocity is

simply the prognostic quantity governed by (2.18). This is in contrast to the diagnosis of
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w in the z-coordinate, quasi-static system of equations, which is quite complicated
(Richardson 1922).

In pressure coordinates (717 = p), the vertical velocity 1= p is not straightforward

to calculate in the nonhydrostatic system. In the quasi-static system, it can readily be
diagnosed from the vertically integrated horizontal divergence (Sutcliffe 1947;
Eliassen 1949). The reason for the complication in the nonhydrostatic system is that
pressure is no longer tied to the mass through the hydrostatic equation. Also, the

continuity equation is prognostic instead of diagnostic as in the quasi-static system.

In isentropic coordinates (7= 6), the vertical velocity is 7=, which is

diagnosed from the diabatic heating rate through equation (2.5). In 6-coordinates the
vertical velocity diagnosis is the same in both the nonhydrostatic and quasi-static
systems.

In summary, the vertical velocity calculation in the nonhydrostatic system is
simple with z-coordinates, while in the quasi-static system it is simpler to use the

p-coordinate. For the 6-coordinate, the vertical velocity diagnosis is the same in both the

nonhydrostatic and quasi-static systems.

2.3 Integral constraints

The equations numerical models solve are approximations of the continuous
governing equations. Usually there is sufficient freedom in the finite difference
approximations of the governing equations to not only satisfy the convergence criterion,
i.e., that as the grid size becomes infinitely small the equations converge to the

continuous form, but also to satisfy certain integral properties of the continuous
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equations, such as conservation of the global sum of mass, potential temperature,
vorticity and total energy. An example of this “mimetic” method can be found in
Arakawa and Lamb (1977). This section describes the integral constraints that our
numerical scheme will be designed to mimic.

The upper and lower boundaries are assumed to be impermeable; therefore, the
boundary conditions are that the vertical mass flux is zero at these boundaries. The
generalized vertical coordinate, as well as the generalized vertical velocity, are left
undefined in the derivation of the integral properties. The mathematical expression for
the impermeable upper and lower boundary conditions will be presented in the following
analysis of mass conservation. (Note that in the following derivations, the time and

horizontal derivatives will be on constant 77-coordinate surfaces, so the subscript 77 will

be omitted from the differential operators unless otherwise necessary.)

2.3.1 Conservation of mass (“Constraint 0”)

The global conservation of mass is easy to demonstrate when the flux form of the

continuity equation given by (2.19) is used. The goal is to show that%J‘de: 0,
14

where )V is the total volume of the domain, and d}=dA dn is a differential volume

element in n-space. Using the Leibniz integral rule we can write

d 't om an on
— |mdV = —dn+ L—m —|dA, 2.21
dt-)[m -[ Iat T T 2

A\ ng
where the subscripts S and 7 represent the bottom and top boundaries respectively.

Applying equation (2.19), this becomes
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%de)/ =-[v -sz(mv)dndA (2.22)

v A N
on,

+
[

The first term on the right-hand side of (2.22) vanishes when integrated over any closed

: an .
+v.-Vn. —nTJdA—JmS[a—tervS -V, —ns]dA.
A

surface or any horizontal domain in which there is no horizontal mass flux at the
boundaries. The integrands of the second and third terms on the right-hand side are the
vertical mass fluxes at the top and bottom boundaries respectively. We consider that
there is no mass flux across the top and bottom boundaries, so these terms are zero, and

therefore we have proven that mass is conserved.

2.3.2 Vertically integrated momentum circulation constraint on the HPGF
(“Constraint 1)

The horizontal pressure gradient force term of the horizontal momentum equation
is the largest contributor to the momentum tendency on many scales of atmospheric
motion. Therefore its accurate representation in numerical models is important. As will
be shown in Section 2.3.3, the HPGF plays an important role in total energy conservation
through the conversion term between thermodynamic and kinetic energy. In the design
of the discrete system of equations, while we have limited control over the accuracy of
the HPGF at a given location, we can express the HPGF in a form which mimics the
continuous form in its satisfaction of integral constraints. This is especially important for
two-term expressions of the HPGF in the generalized vertical coordinate, as in equation

(2.14), in which the error between the opposition of the two large terms with opposite
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sign can be large. We now discuss the effect of surface topography, through the HPGF,
on the vertically integrated circulation of momentum about a closed contour.

Following Arakawa and Lamb (1977), we wish to derive a useful expression for
the HPGF that will facilitate the calculation of the vertically integrated momentum
tendency. The horizontal pressure gradient force is represented by the first two terms on
the right-hand side of the horizontal momentum equation (2.14). Using (2.15) we can

express it in the form

1 ) 3 (2.23)
e L5 o]

where ¢g=gz is the geopotential. Now multiply (2.23) by m and integrate across the

vertical domain to get
Nr U a¢
| maPGF)dn=-V | [ﬂa—) dn-p\Vz,, (2.24)
2\ 8 9T

Ns

where we neglected the upper boundary and used the identity

0z

Vz,, = (VZ)S’T + {%j v, (2.25)
ST

When the line integral of the tangential component of (2.24) is taken along any closed
curve, the first term on the right-hand side has a zero contribution because it is a gradient
vector. The only contribution to the vertically integrated circulation of momentum comes
from the last term, which is called the “mountain torque” term. When the closed curve is

a contour of surface topography, it is zero. Also, for p;=ps(z;), the contribution to the

line integral is zero.
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2.3.3 Conservation of total energy (“Constraint 11”)

In the absence of diabatic heating and friction the total energy of a fluid system is
constant. Total energy is defined as the sum of mechanical and internal energy.
Mechanical energy is the sum of the kinetic energy associated with the macroscopic
motion of the fluid (i.e., the wind) and the gravitational potential energy. Internal energy
is the energy associated with the molecular motion of the fluid. Various conversions can
take place between the forms of energy. The rate at which these conversions take place
appear in the derivation of the total energy equation as “conversion” terms which cancel
out to keep the total energy constant. A method to conserve total energy in a numerical
model is to ensure that the discrete analogs of these conversion terms cancel. In the
formulation of the discrete equations, which will be shown in the following chapter, the
energy conversion terms will be analyzed. For now we derive the continuous form of the

energy equations.

2331 Kinetic energy equation

The kinetic energy associated with the three-dimensional bulk motion of the air is

K:%(V-V+w2). (2.26)

In the nonhydrostatic system, the vertical velocity w contributes to the kinetic energy, so
we must include the work done by the vertical pressure gradient force (VPGF) in our

analysis. From the vertical momentum equation (2.18) we can write

VPGF=—L % (2.27)

mon
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Note that in the hydrostatic approximation VPGF = +g.

In the development of the vertical discretization, we will consider alternate forms
of the HPGF and VPGF expressed in terms of the Exner function instead of pressure.

Using the definition of the Exner function given by equation (2.7), we can write

art="2 4, (2.28)

p

Using (2.6) and (2.8), the vertical pressure gradient force then becomes

vpGF = - (2.29)
m on

Similarly, the horizontal pressure gradient force may be written

HPGF = —oviT+ L LMy (2.30)
gm adn

The flux form of the kinetic energy equation is derived from the momentum
equations by taking the dot product of mv and (2.14), and adding mw times (2.18) which,

using the notation above, gives
0 %) ]
g(mK) + V. -(mvK)+ a—(mnK) = mv - (HPGF)+mw(VPGF)—mwg, (2.31)
n

where we have neglected friction. The first two terms on the right-hand side represent
the kinetic energy generated by the pressure gradient forces. These terms deserve special
focus as they have an important role in the consistency of the energy conversion terms in
the discretization scheme. The last term on the right-hand side is the rate of energy
conversion between kinetic and geopotential energy.

Now we analyze the work done by the pressure-gradient force. From equations

(2.15), (2.20) and (2.23) we get
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p 99 p 0o
-(HPGF)=- —_—, 2.32
mv - (HPGE) = —mow == [g azJ ar(ganj””an (2.32)

where

Dp

0=—:.
Dt

(2.33)

From equation (2.27), the work done by the vertical pressure gradient force is simply

mw(VPGF)=— wa—p . (2.34)
an

Adding equations (2.32) and (2.34) we get the work done by the pressure gradient force

as

_ p o9 p 99
mv - (HPGF)+mw(VPGF) = —mow — an(g Y j+ at[ e j (2.35)

Plugging (2.35) into (2.31), the kinetic energy equation becomes

9 9 o~ 2| P99 p 99
(mK)+V (mVK)+ (mnK)— Mo an(g 8t]+8t(ga j mwg .(2.36)

As will be seen shortly, the first term on the right-hand side is the conversion term
between thermodynamic and kinetic energy, and the last term on the right-hand side is

the conversion term between kinetic and geopotential energy.

2332 Internal energy equation

The processes that directly affect the internal energy of a fluid parcel are heating
and work done by the parcel through expansion. The first law of thermodynamics states

that the rate of change of the internal energy is equal to the difference between the heat
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added to the parcel and the work done by the parcel. For quasiequilibrium, frictionless

processes this is expressed as

—=0-p—. (2.37)

where « is the specific volume. Here e is the internal energy which can be expressed as
¢, T, where ¢ _is the specific heat at constant volume. Equation (2.37) can be converted
to a flux form by multiplying by the pseudo-density m, applying equations (2.15), (2.19),

and the product rule of differentiation to get

i(me) +V - (mve)+ i(mf]e) =mQ + mow
ot on

_Q[B%J_v.(gaﬁv]_i(za_fﬁﬁ)
ot\ g on g on an\ g an

Note that the second term on the right-hand side is the conversion term between

(2.38)

thermodynamic and kinetic energy which now appears with the opposite sign as in
equation (2.36). Equation (2.38) can be rewritten in terms of enthalpy, defined as

h = e+ pa, for which dh=c,dT. It becomes

21} ¥- (e, ) e ) -mQ w230

Finally, it can be shown that the internal energy equation can be written as the
potential temperature prediction equation (2.5), which is the form of the thermodynamic

energy equation used in the model. This is done by using the relation de= c¢,dT in

equation (2.37), and using the ideal gas law po=RT and the definition of potential

temperature 0 =T ( Dy / p)K , which gives equation (2.5).
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2.3.33 Geopotential energy equation

The rate of change of a fluid parcel’s geopotential is calculated by multiplying

mg by equation (2.20) and using the continuity equation (2.19) to get
d J ,
—(m)+V-(mvo)+—(mne)=mwg . (2.40)
ot on

Now note the energy conversion term between kinetic energy and geopotential energy

mwg which appears with the opposite sign as in equation (2.36).

2334 Total energy equation

The total energy equation is obtained by adding equations (2.36), (2.38), and

(2.40), and canceling terms to get

o 9 p 99 d a¢ 90
(m8)+V (mV8)+ (mne) mQ—-V- [ganvj 377[ (at anﬂ ,(2.41)

where e=c,T+K+ ¢ is the total energy. The last two terms on the right-hand side are flux

divergence terms that represent the spatial redistribution of energy. When integrated over
the domain, they contribute nothing to the global total energy budget except for
contributions from the boundaries. The time rate of change of the global mass-weighted
integral of total energy for an adiabatic atmosphere is obtained by integrating (2.41) over
the domain and requiring that no mass cross the upper and lower boundaries. A

necessary identity is

az”: 21 L& ans’f. (2.42)
ot ot or on o7 ot

The result is
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(2.43)
oz, oz
- —dA —5 dA.
{p " ot +—/[p S ot

For a closed surface, the first two terms are identically zero. The last two terms are the
work done by the pressure force at the upper and lower boundaries. These terms would
have a contribution over the ocean where waves keep the lower boundary in motion, but
we will assume that the boundaries are fixed, so these terms are zero. Therefore, we have

proven that for an adiabatic, frictionless atmosphere, the global total energy is conserved.

2.4 A summary of the continuous system of equations

Here we summarize the governing equations in the generalized vertical coordinate
as well as the boundary conditions. We discuss system closure and begin to introduce the

specification of the generalized vertical coordinate 1 and diagnosis of the generalized
vertical velocity 1. From this point forward we will assume that the top and bottom
boundaries are generalized vertical coordinate surfaces, i.e., 7,=constant and
ng=constant.  Therefore, from equation (2.22), the impermeable upper and lower

boundary conditions are expressed as

(), = (nm), =0. (2.44)

Continuity equation:

aa—’?+V-(mv)+%(mﬁ) =0. (2.45)
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Horizontal momentum equation:

1 1
&+fk><v:——Vp+—a—sz+F, (2.46)
Dt p mon
where
D_9, v vin 2. (2.47)
Dt ot on
Vertical momentum equation:
Dw_ 1% oip. (2.48)
Dt m on :
Thermodynamic energy equation:
Do = Q : (2.49)
Dt 11
Geopotential equation:
D¢
—=wg. 2.50
o "8 (2.50)
Ideal gas law:
p=pRT. (2.51)
Definition of the Exner function:
M=c, [ﬁ] . (2.52)
10
Definition of potential temperature:
0= il (2.53)
=1 :

Definition of pseudo-density:
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-l

, (2.54)
g on
Relation between geopotential and height:
O=gz. (2.55)
We introduce a normalized height variable:
z—Zz
o= 5 (2.56)
Zr T2

This is a terrain-following variable which has the value 6=0 at the surface and o=1 at
the model top. It is based on the pressure-based o coordinate of Phillips (1957), and is
similar to the z-based terrain-following coordinate of Gal-Chen and Somerville (1975).

Finally, we introduce the definition of the vertical coordinate in terms of a

relationship between 0 and o to be specified in the next subsection:

n= f(6,0). (2.57)
Equations (2.45), (2.46), and (2.48)-(2.57) represent a system of 12 equations in

12 unknowns, i.e., the dependent variables:v,w,m,0,9,z,p,p,T,11,0,1. The
independent variables are the three spatial coordinates x, y and 7, and time 7. In the
present dynamical analysis we do not consider the heating (Q) and friction (F and F)) to

be unknowns as these are obtained from physics parameterizations.

2.5 Specification of the vertical coordinate and diagnosis of the
vertical velocity

Up to this point, we have not specified the form of the vertical coordinate 7, other

than prescribing the upper and lower boundaries as coordinate surfaces. In this section
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we describe how it is defined in the model and explain the method for diagnosing the

vertical velocity 7).

2.5.1 The vertical coordinate

The starting point for designing our vertical coordinate is the work of Konor and
Arakawa (1997), hereafter KA97. As with various hybrid vertical coordinate models,

they take advantage of the quasi-Lagrangian nature of the 6-coordinate as much as
possible in the free atmosphere. Near the surface, the coordinate is terrain-following to
avoid coordinate intersections with the lower boundary. Also, since 8 may have a
vertically constant value due to a mixed layer, the o coordinate provides vertical
resolution for resolving boundary layer processes. Like KA97, the basis for our vertical
coordinate is a prescribed function (equation (2.57)) of 6 and the terrain-following
height-based coordinate o defined in equation (2.56).

In the free atmosphere, on the fine scales that we wish to resolve with our
nonhydrostatic model, localized turbulence can develop in which the vertical profile of
is highly nonmonotonic. Although the vertical coordinate of KA97 can remain
monotonic for such cases, it does so at a significant expense to the quasi-Lagrangian
quality of the coordinate throughout the domain. Therefore, we have generalized their
method to accommodate localized static instabilities, i.e., where J6/0z<0, while

elsewhere retaining the coordinate as pure 6. Our method includes techniques similar to

the arbitrary Lagrangian-Eulerian (ALE) scheme of Hirt et al. (1974), and is influenced

by the adaptive vertical coordinate approach of Zangl (2007).
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Before fully describing the method, we briefly review the vertical coordinate
developed by KA97. (Note that we denote the coordinate by 7 in place of their
designation of {). KA97 defines the vertical coordinate as

n=F(,0)= f(o)+g(0)o, (2.58)

where the functions f(0) and g(o) are chosen such that

8(0) =0, °= GS}. (2.59)

f(o)—>0, g(o)—1] c—0,
They also must facilitate the condition that the coordinate increase monotonically with
height, that is

M. (2.60)

00

The monotonicity requirement (2.60) can be achieved if /(o) and g(o) satisty the relation

£+d—g9. +g 8_9 =0, (2.61)
do do ™ Jdo -

where g(0) is chosen as a monotonically increasing function of 0, and 6_. and (d6/do)_._

are suitably chosen constants representing the lower bounds of the potential temperature
and static stability, respectively. Equation (2.61) is solved for the function f(o). The
form of g( o) that we use in the model is

g(o)=1-(1-0)", (2.62)
where 7 is a constant greater than unity. This choice satisfies (2.59), and the thickness of

the o-like domain near the surface can be controlled by the value of » — the larger its

value, the nearer the surface the coordinate becomes fully isentropic. In KA97, the
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function g(0o) is expressed in terms of an exponential function. The power function we

use in (2.62) achieves basically the same result.
In KA97 the derivation of the vertical mass flux diagnosis is based on the

requirement that the value of F given by (2.58) remain constant on level surfaces, that is
d
— | F(6,0)=0. (2.63)
or ),

This maintains the monotonicity of the vertical coordinate 7 in time.
In our generalized method, we allow F(6,0) to deviate from 7, as needed, to allow
the vertical profile of 77 to remain monotonic for non-monotonic /. We do so by

employing an adaptive vertical grid technique similar to He (2002) and Zangl (2007),
which allows the coordinate to be fully isentropic except where isentropes tend to

overturn or become irregularly distributed horizontally. The vertical coordinate 1 is
therefore a “target value” for the function F(6,0), instead of its specification. The

starting point for diagnosing the vertical mass flux, corresponding to equation (2.63), is

(ﬁj F(QQG):L(G’G)_ﬁSa_F’ (2.64)
ot . T an

where 7 is a relaxation time constant, and 7 is the vertical coordinate, which behaves as
the target value for F(6,0). The first term on the right-hand side serves to relax the value

of F toward the target value. The second term on the right-hand side acts to force F away

from 7 in order to maintain coordinate monotonicity. The specification of 7)., which is

the “smoothing” portion of the total vertical velocity 77, will be described below. When
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the target has been met, and 7, =0, then the right-hand side of (2.64) is zero and we

have equation (2.63). The system is then equivalent to KA97.

We now discuss the mechanisms by which F(6,0) is forced away from .

Basically the coordinate system and vertical mass flux diagnosis follows KA97 until
either the geopotential height on coordinate surfaces becomes horizontally irregular, i.e.,

when

\V“z\ >(Viz) (2.65)

max

or when the “relative vertical curvature” of the z-profile becomes large, i.e., when

& 82
on’ | _| o

S| 9 2.66
> 2 (2.66)
% ar’ max

The (), values in the above equations are specified maximum limits. Equation (2.65)

describes the “horizontal smoothness” criterion, and is designed to limit the existence of
sharp horizontal gradients and their associated truncation errors in the discrete model.
Equation (2.66) is the “vertical smoothness” criterion which eliminates the possibility of

z and therefore 1 from becoming non-monotonic (overturning) with height, and in the

discrete model, it prevents the relative difference in thickness of adjacent layers from
becoming too large. It basically serves to keep the distribution of layer thicknesses in a
model column evenly distributed.

The mathematical form of the “vertical smoothness™ criterion of equation (2.66)
is derived from the above statement about the relative difference in thickness of adjacent

layers in a discrete model. Figure 2.1 shows a representative continuous relationship
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between z and 1. Three points are shown along the curve which represent discrete model

locations. The relative difference in thickness of adjacent layers is expressed by the

nondimensional parameter

5_225(23—22)—(22—21)
0z l(

, (2.67)

where the & operator refers to the difference operator 6 recursively applied twice.

Applying a Taylor series expansion to (2.67) we get

5z ;(g;il[(&v); +(5n)j}+(§j7j [(6n), ~(6n), ]+

= 2 ) (2.68)

(2 o), fon) 1+ 5[ 22 [t (o0, -

where the subscript “2” denotes continuous derivatives at the discrete point “2”,

(ém),=n,—n, and (6n),=n,—n,. For (én),=(n), =(6n), and truncating the Taylor

series, we have

Figure 2.1:  Three discrete points along a continuous profile of z as a function of 7.
Used to derive the mathematical form of the “vertical smoothness
parameter”.
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9’z
8z (87]2]
5z (o2

()

which is the mathematical representation of the “vertical smoothness” parameter.

(6n). (2.69)

As mentioned in Chapter 1, one of the reasons for spatially smooth the coordinate
isolines is to limit the magnitude of spatial gradients in the prognostic variable fields.
This is to avoid large truncation errors associated with the representation of sharp
gradients in the model’s numerical schemes. We speculate that this is the root cause of

problems with the model run with pure 6 coordinates in regions where isentropes are

about to overturn. Figure 2.2 shows model results of a two-dimensional mountain wave

experiment to be presented in Chapter 5. The pseudo-density field is plotted in

Without coordinate smoothing With coordinate smoothing
Max 38.27 Min 0.23 Max 19.01 Min 0.72

eta (K)

x (km)

4 12 20 28 36

Figure 2.2:  Pseudo-density (kgm>K™) at time /=78 minutes in a region of wave-
breaking from the 11 January 1972 Boulder, Colorado windstorm
simulation to be presented in Chapter 5. Panel (a) shows results without
coordinate smoothing, and panel (b) is with coordinate smoothing applied.
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n-coordinate space, with and without coordinate smoothing applied, in a region where
gravity waves are about to break in the 8-coordinate domain. The spatial gradients in the

field are reduced as a result of coordinate smoothing. Therefore, we expect that the
numerical accuracy of processes such as mass advection to be improved.

We point out here that the smoothing applied to the geopotential height field does
not affect the governing equations, and therefore, the representation of physical processes
in the model. That is, we are not adding artificial terms to the geopotential equation
(2.50). Instead, we adjust the fields through the appropriate values of vertical velocity
and the associated vertical advection. The method of calculating the vertical velocity is
the topic of the following subsection. Also, we point out that in smoothing the
geopotential we break the relationship given by (2.58), yet the vertical coordinate could

still be expressed as some function (f) of 8 and o, as in (2.57), to mathematically close

the system. However, it is not necessary to formally calculate this relationship since the

equations are self-consistent and they share the same vertical velocity field 7).

2.5.2 Diagnosis of the vertical velocity

In this subsection we describe the diagnosis of the vertical velocity that is
consistent with the above treatment of the vertical coordinate. As the vertical velocity
has multiple roles to play, it is best to subdivide it into separate components. The
broadest distinction of the roles is between: 1) the “target seeking” component which

maintains the relationship (2.58) (as in KA97) or relaxes the system back toward this

relationship, which we designate as 7)., and 2) the “smoothing” component which is
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responsible for smoothing the geopotential height field, which we designate as 7). Note

that this second component appeared in equation (2.64). The total vertical velocity is

expressed as

n=n,+1n,. (2.70)

2.5.2.1 “Target-seeking” component of the vertical velocity
First we consider the tendencies of 6 and o due to 7. Applying the chain rule of

differentiation to equation (2.64), letting 1, =0, we have

0 OF | 00 (O0F | do n-F(6,0)
—| F,0)=| —| —+| — | —=—"—"—. 2.71
(atl (6:0) (ael ar+[aol ot T @)

Combining equations (2.47), (2.49), (2.50), (2.55) and (2.56) in (2.71), and solving for

the vertical velocity, we get

- _(orY'[(oF) (2_ . F N (w_ 1 o), F6.00-1
() (56 (8vowo 3] (3= ovo e H02 o

where

oF _06[dF ) 1 09fdF ) 2.73)
an  danld0 ) ~ gH an\do ),
and
H=z -z, (2.74)

is the height of the model column. Note that dF/dn is equal to unity when F
meets its target value, i.e., for F=17. However, when the target value is not met, it is

possible for this term to equal zero in the case of F'= 6, and neutrally static environments
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where d0/0n=0. In this case the vertical velocity becomes infinite. (A physical

interpretation for the case of a passing gravity wave, in which isentropes are nearly
vertical, is that the vertical velocity tries to become infinite in order to vertically advect z
fast enough to keep the level “stuck” to its target isentrope.) Therefore, we must modify
the expression for the vertical velocity given by (2.72) to avoid the existence of such a
singularity. We have considerable freedom in such a modification, so we can choose to

have it effect the vertical velocity to position isolines of constant 1 in a particular
manner. A straightforward choice is to “freeze” the isolines in space, such that d¢/d¢=0,
as d0/dn approaches zero and for 06/0n<0. In other words, the coordinate becomes a

stationary, Eulerian coordinate in regions of negative static stability. The value of the

vertical velocity which maintains d¢/d¢=0, which we will use for dF/0n<0, is given by

(28] (e or
T’T_(anj (wg-v Vo) for anSO. (2.75)

For 0F/dn= 3 we use equation (2.72), where 8 has a value, which we choose, between 0
and 1. For the transition zone where 0<dF/dn< 3, we use a linear combination of (2.75)

and (2.72) evaluated with 0F/on=,, i.e.,

1 OF 1 oF oF
n,= [1 — ——j(r.h.s. eqn. (2.74)) + ——{r.h.s. eqn. (2.72) for — = ﬁj

for 0 <8_F <p.
an

This gives
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+ﬁzan{[ael[n VveHaGl[H gHVV¢j+ : }(2.77)

2.5.2.2 “Smoothing” component of the vertical velocity

The vertical velocity field required to smooth the geopotential height fields, per

the criteria described in subsection 2.5.1, can be calculated from

, 0z 0z on

|| = - — 2.78

s [[az] ) +(8t] | ]az’ (&78)
smoothing,/ smoothing,v

where the two terms in brackets are the geopotential height tendencies due to horizontal
and vertical smoothing respectively.
We quantify the horizontal smoothing tendency in the form of a “del-4” diffusion

equation

(%j | =—(max{o,xh“V“z‘—(V“z)max}}sgn(v“Z)), (2.79)

where k; is a constant diffusion coefficient. This equation differs from typical diffusion

equations in that diffusion acts not to eliminate the fourth-spatial derivative, but instead
to limit its absolute value at a specified amount. Unlike He (2002) and Zangl (2007),
diffusion only occurs where it is a necessary. In regions where the target vertical
coordinate is isentropic, this allows the coordinate to be almost exactly isentropic as long

as isentropes are reasonably smooth in the horizontal. The choice of V* over V?* for the
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horizontal diffusion follows from traditional numerical smoothing methods where higher
order diffusion is used to selectively remove noise at the smaller scales.

The vertical smoothing tendency is described similarly, except second-order
diffusion is used instead. In this case, the lower order-diffusion provided better results.

We express the tendency as

0z
— =max0,x
ot _

smoothing,v

where K is a constant diffusion coefficient. Vertical diffusion only acts when the

0%z
aZ an? 822
-— a—; sgn[—} , (2.80)
n

max

absolute value of the ratio of the second and first derivatives of z with respect to 1

exceeds the specified limit.

2.6  Vertical flux of horizontal momentum in a generalized vertical
coordinate

The interaction of atmospheric waves with the mean flow has important
implications in weather and climate. Waves transport energy and momentum vertically
throughout the atmospheric column. For example, the drag imparted by a mountain
range on the airflow can be transported, via gravity waves, through the tropopause and
into the stratosphere (and beyond) influencing the strength of the zonal flow (i.e.,
x-component winds) at these heights. In their influential paper, Eliassen and Palm (1960)
analyzed linear wave-mean flow interactions and proposed a theory which determines
conditions in which waves will or will not influence the mean flow.

In this section we perform a nonhydrostatic analysis of the vertical momentum

transport in a generalized vertical coordinate. In the process, we derive a generalized
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form of the Eliassen-Palm (EP) flux. The divergence of the EP flux is an important term
in the tendency equation for the mean zonal flow. This will illustrate the different
mechanisms in which momentum is transported vertically in the Eulerian (z-coordinate)

versus the quasi-Lagrangian (8-coordinate) frameworks. In the former, it is transported

through the vertical eddy mass flux, while in the latter it is through the pressure form
drag on isentropic (material) surfaces. Our work follows that of Andrews (1983) who
derived the EP flux in isentropic coordinates for quasi-static flow.

In Chapter 5, we will use the expression for the EP flux, derived here, to diagnose
the vertical momentum flux in two-dimensional (x-z) mountain wave model simulations.
Such model simulations are useful in developing gravity wave drag parameterizations in
general circulation models (e.g., Kim 1992, Kim and Arakawa 1995). Performing these
experiments using a quasi-Lagrangian vertical coordinate provides a new view of the
phenomenon which may be useful for GCM’s based on such a coordinate.

We begin by writing the zonal momentum equation. Combining (2.14), (2.17),

(2.23) and (2.55) we have

Ju Ju Ju Ju | 0 0z 0 0z
NSNS DU P20 I I T X 3|
at+u(,9x+vay+nan fv m{ ax(panJ+an(paxﬂ+ ) (2.81)

where F is the zonal component of the friction force. Combining equation (2.81) with

the continuity equation (2.19), the zonal momentum equation in flux form can be written

as

2(mu) + i(muu) + i(muv) + i(mm']) — fmy =
X dy on

ot d
(2.82)
_i a_Z +i % +mF
o\ Pan ) ol P ox w
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The next step is to take the zonal average of the above equation. The zonal average of a

given property a is defined as
1 L/2

a=— [ adx (2.83)

-L/2

where L is the length of the horizontal domain. Applying (2.83) to equation (2.82) we

have
%(%ﬁ%(%ﬁ%(%)—ﬂn—v:%[pg—i}m_@. (2.84)
Here we used
9 ()=0. (2.85)
ox

In a similar manner, the zonally averaged continuity equation (2.19) is

%Zw%(%ﬂ%(m_n):o. (2.86)

Each fluid property can be divided into a mean and perturbation component. That

is
a=a+ad, (2.87)
where the prime notation represents perturbations from the mean. Under Reynolds

averaging, the zonal mean of the perturbation quantities are zero, i.e.,

a=0. (2.88)

This results in the relation

ma=ma+ma’ . (2.89)

Applying (2.89) to the combination of equations (2.84) and (2.86), and rearranging terms,

we can write the following expression for the tendency of the zonal momentum:
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u

m

- — (2.90)
%[%(mv)’u’ + %[p’ (—;i - (m?'])’u’:l - %(m’u’)] +

It is useful to introduce the “residual” mean velocities, defined as the mass-weighted

means
v =Y (2.91)
m
and
n="1 (2.92)
m
Using these relations, equation (2.90) is then written as
- _(a- —9- 1 mF.
9av | L plaen Lz Livo g~y |+ M (203

where F= [O,F(”)y, Fm rz] is the EP flux vector in generalized vertical coordinates, which

has the meridional and vertical components

F(")y =(mv)u’ (2.94)

and

(mn)'u’, (2.95)

0z’
FM — = _

=P ox
respectively. Equation (2.93) shows that the EP flux is non-divergent for steady-state,
uniform, frictionless flow.

The vertical component of the EP flux given by (2.95) is the vertical flux of

horizontal momentum. In z coordinates, the first term on the right-hand side is zero,
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which leaves the eddy flux term —(pw)'u” as the means of vertical momentum transport.
In 6 coordinates, for adiabatic conditions, 7’=6 =0, which means the vertical

momentum transport occurs through the first term on the right-hand side of (2.995), i.e.,

the pressure form drag term.

2.7 Summary

The nonhydrostatic, compressible Eulerian equations of fluid motion were

transformed from z coordinates to a generalized vertical coordinate 7. From these

governing equations, we demonstrated various conservation properties such as the
conservation of mass, total energy and the vertically integrated circulation of momentum
about a closed contour of topography. In the following chapter these integral constraints
will guide in the design of the vertical discretization scheme.

The vertical coordinate is terrain-following near the surface and transitions

smoothly to 8 with height. In the diagnosis of the generalized vertical velocity 17, a

special contribution is calculated and included in the vertical advection terms; its purpose
is to maintain smoothness of the coordinate surfaces. In this “smoothing” process, the
values of geopotential and potential temperature on the coordinate surfaces deviate from
their defined “target” values. However, these values are returned back to their target
values through a Newtonian relaxation term.

The vertical flux of horizontal momentum and its effect on the mean flow was

analyzed with the generalized vertical coordinate. In the 6 coordinate, a quasi-

Lagrangian interpretation is provided in which the vertical momentum flux is a result of
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the horizontal component of pressure forces on material coordinate surfaces. This feature

will be shown in the results of a mountain wave simulation in Chapter 5.
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Chapter 2 CONTINUOUS EQUATIONS

2.1 Introduction

This chapter describes the compressible Eulerian equations of fluid motion in a
generalized vertical coordinate on which the model is based. We develop the
nonhydrostatic equations starting in z coordinates, and transform them to the generalized
vertical coordinate following the work of Kasahara (1974) for the quasi-static equations.
The integral constraints that will form the basis of the vertical discretization scheme are
then derived. The vertical coordinate is presented, along with the method for diagnosing
the generalized vertical velocity. Finally, we will analyze the vertical flux of horizontal
momentum in the generalized vertical coordinate, and derive an expression for the

Eliassen-Palm flux in this coordinate.

2.2 Governing equations

We start with the governing equations in z-coordinates. The laws of momentum,
energy and mass conservation make up the prognostic equations. The horizontal
momentum equation is

D 1
“V i fkxv=——V p+F, @.1)
Dt p

20



where V is the horizontal gradient operator, F is the horizontal friction force, and D/Dt is

the material time derivative given by

£=(E+V-V) +w3. (2.2)
Dt . 0z

The subscript z on the differential operators denotes derivatives at constant geopotential

height. The vertical momentum equation is

1
Dw_ 19 o \p. 2.3)
Dt p 0z :
where F'_is the vertical component of the friction force.
Mass conservation is given by
a_p +V -(pv)+3(pw):0. (2.4)
ot . : 0z

The first law of thermodynamics for quasiequilibrium, frictionless processes can be

expressed as

Do _9Q
Dt I’ 23)

where Q is the rate of diabatic heating and IT is the Exner function defined below.

The diagnostic equations that close the system are the ideal gas law,
p=pRT, (2.6)

the definition of the Exner function,

M=c, [ﬁj : 2.7)

and the definition of potential temperature,
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0=t (2.8)

To transform these equations to a generalized vertical coordinate i we use the

following chain-rule identities:

) _(2) () 2
&) 33 2

d
V. = Vn +Vzn%, (2.10)
8_71 :_8_17 % (2.11)
ot ). oz \ ot n, '
an
Vzn:—a—ZVnz, (2.12)
and
0 dn ad
—=——. 2.13
dz dz dn -13)

Applying equations (2.9) - (2.13) in equations (2.1) - (2.4) gives the governing equations
in the generalized vertical coordinate 7). First, the horizontal momentum equation
becomes

&+fk><v:—lv p+la—pV z+F. (2.14)
Dt p " mon "

Note that the horizontal pressure gradient force has become a two-term expression, and a

new quantity is introduced — the pseudo-density (m) given by

mEp% (2.15)

on’
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This is the analog of the conventional density, referred to the generalized vertical
coordinate, i.e., the amount of mass per unit volume of the generalized space. Using the

expression

4

. _Dn (on on
_bn_fon Vv a 2.16
=" (azl” S (.16

where 7] is the generalized vertical velocity, the material time derivative becomes

D 0 d
—=|—+Vv-V| +1—. 2.17
Dt ( ot l 1 oan (@17)
The vertical momentum equation is
D 1
Dw_ 1% oip. (2.18)
Dt m on :

Finally, the flux form of the mass continuity equation is written as

om 0 i
(E]n +Vn -(mv)+%(mn)=0, (2.19)
where we used
Dz 0z Jz
=—=| = -V 11— 2.20
w D [at+v zl+nan ( )

At this point, it is illustrative to consider these equations in the framework of
some commonly used vertical coordinate systems, and to briefly discuss the formulation
of the generalized vertical velocity in each. For the z-coordinate (1 =z), the original
governing equations are recovered, as equation (2.15) becomes m = p, and the vertical
velocity, as given by (2.16), becomes?)=w. In this system, the vertical velocity is

simply the prognostic quantity governed by (2.18). This is in contrast to the diagnosis of
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w in the z-coordinate, quasi-static system of equations, which is quite complicated
(Richardson 1922).

In pressure coordinates (717 = p), the vertical velocity 1= p is not straightforward

to calculate in the nonhydrostatic system. In the quasi-static system, it can readily be
diagnosed from the vertically integrated horizontal divergence (Sutcliffe 1947;
Eliassen 1949). The reason for the complication in the nonhydrostatic system is that
pressure is no longer tied to the mass through the hydrostatic equation. Also, the

continuity equation is prognostic instead of diagnostic as in the quasi-static system.

In isentropic coordinates (7= 6), the vertical velocity is 7=, which is

diagnosed from the diabatic heating rate through equation (2.5). In 6-coordinates the
vertical velocity diagnosis is the same in both the nonhydrostatic and quasi-static
systems.

In summary, the vertical velocity calculation in the nonhydrostatic system is
simple with z-coordinates, while in the quasi-static system it is simpler to use the

p-coordinate. For the 6-coordinate, the vertical velocity diagnosis is the same in both the

nonhydrostatic and quasi-static systems.

2.3 Integral constraints

The equations numerical models solve are approximations of the continuous
governing equations. Usually there is sufficient freedom in the finite difference
approximations of the governing equations to not only satisfy the convergence criterion,
i.e., that as the grid size becomes infinitely small the equations converge to the

continuous form, but also to satisfy certain integral properties of the continuous
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equations, such as conservation of the global sum of mass, potential temperature,
vorticity and total energy. An example of this “mimetic” method can be found in
Arakawa and Lamb (1977). This section describes the integral constraints that our
numerical scheme will be designed to mimic.

The upper and lower boundaries are assumed to be impermeable; therefore, the
boundary conditions are that the vertical mass flux is zero at these boundaries. The
generalized vertical coordinate, as well as the generalized vertical velocity, are left
undefined in the derivation of the integral properties. The mathematical expression for
the impermeable upper and lower boundary conditions will be presented in the following
analysis of mass conservation. (Note that in the following derivations, the time and

horizontal derivatives will be on constant 77-coordinate surfaces, so the subscript 77 will

be omitted from the differential operators unless otherwise necessary.)

2.3.1 Conservation of mass (“Constraint 0”)

The global conservation of mass is easy to demonstrate when the flux form of the

continuity equation given by (2.19) is used. The goal is to show that%J‘de: 0,
14

where )V is the total volume of the domain, and d}=dA dn is a differential volume

element in n-space. Using the Leibniz integral rule we can write

d 't om an on
— |mdV = —dn+ L—m —|dA, 2.21
dt-)[m -[ Iat T T 2

A\ ng
where the subscripts S and 7 represent the bottom and top boundaries respectively.

Applying equation (2.19), this becomes
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%de)/ =-[v -sz(mv)dndA (2.22)

v A N
on,

+
[

The first term on the right-hand side of (2.22) vanishes when integrated over any closed

: an .
+v.-Vn. —nTJdA—JmS[a—tervS -V, —ns]dA.
A

surface or any horizontal domain in which there is no horizontal mass flux at the
boundaries. The integrands of the second and third terms on the right-hand side are the
vertical mass fluxes at the top and bottom boundaries respectively. We consider that
there is no mass flux across the top and bottom boundaries, so these terms are zero, and

therefore we have proven that mass is conserved.

2.3.2 Vertically integrated momentum circulation constraint on the HPGF
(“Constraint 1)

The horizontal pressure gradient force term of the horizontal momentum equation
is the largest contributor to the momentum tendency on many scales of atmospheric
motion. Therefore its accurate representation in numerical models is important. As will
be shown in Section 2.3.3, the HPGF plays an important role in total energy conservation
through the conversion term between thermodynamic and kinetic energy. In the design
of the discrete system of equations, while we have limited control over the accuracy of
the HPGF at a given location, we can express the HPGF in a form which mimics the
continuous form in its satisfaction of integral constraints. This is especially important for
two-term expressions of the HPGF in the generalized vertical coordinate, as in equation

(2.14), in which the error between the opposition of the two large terms with opposite
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sign can be large. We now discuss the effect of surface topography, through the HPGF,
on the vertically integrated circulation of momentum about a closed contour.

Following Arakawa and Lamb (1977), we wish to derive a useful expression for
the HPGF that will facilitate the calculation of the vertically integrated momentum
tendency. The horizontal pressure gradient force is represented by the first two terms on
the right-hand side of the horizontal momentum equation (2.14). Using (2.15) we can

express it in the form

1 ) 3 (2.23)
e L5 o]

where ¢g=gz is the geopotential. Now multiply (2.23) by m and integrate across the

vertical domain to get
Nr U a¢
| maPGF)dn=-V | [ﬂa—) dn-p\Vz,, (2.24)
2\ 8 9T

Ns

where we neglected the upper boundary and used the identity

0z

Vz,, = (VZ)S’T + {%j v, (2.25)
ST

When the line integral of the tangential component of (2.24) is taken along any closed
curve, the first term on the right-hand side has a zero contribution because it is a gradient
vector. The only contribution to the vertically integrated circulation of momentum comes
from the last term, which is called the “mountain torque” term. When the closed curve is

a contour of surface topography, it is zero. Also, for p;=ps(z;), the contribution to the

line integral is zero.
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2.3.3 Conservation of total energy (“Constraint 11”)

In the absence of diabatic heating and friction the total energy of a fluid system is
constant. Total energy is defined as the sum of mechanical and internal energy.
Mechanical energy is the sum of the kinetic energy associated with the macroscopic
motion of the fluid (i.e., the wind) and the gravitational potential energy. Internal energy
is the energy associated with the molecular motion of the fluid. Various conversions can
take place between the forms of energy. The rate at which these conversions take place
appear in the derivation of the total energy equation as “conversion” terms which cancel
out to keep the total energy constant. A method to conserve total energy in a numerical
model is to ensure that the discrete analogs of these conversion terms cancel. In the
formulation of the discrete equations, which will be shown in the following chapter, the
energy conversion terms will be analyzed. For now we derive the continuous form of the

energy equations.

2331 Kinetic energy equation

The kinetic energy associated with the three-dimensional bulk motion of the air is

K:%(V-V+w2). (2.26)

In the nonhydrostatic system, the vertical velocity w contributes to the kinetic energy, so
we must include the work done by the vertical pressure gradient force (VPGF) in our

analysis. From the vertical momentum equation (2.18) we can write

VPGF=—L % (2.27)

mon
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Note that in the hydrostatic approximation VPGF = +g.

In the development of the vertical discretization, we will consider alternate forms
of the HPGF and VPGF expressed in terms of the Exner function instead of pressure.

Using the definition of the Exner function given by equation (2.7), we can write

art="2 4, (2.28)

p

Using (2.6) and (2.8), the vertical pressure gradient force then becomes

vpGF = - (2.29)
m on

Similarly, the horizontal pressure gradient force may be written

HPGF = —oviT+ L LMy (2.30)
gm adn

The flux form of the kinetic energy equation is derived from the momentum
equations by taking the dot product of mv and (2.14), and adding mw times (2.18) which,

using the notation above, gives
0 %) ]
g(mK) + V. -(mvK)+ a—(mnK) = mv - (HPGF)+mw(VPGF)—mwg, (2.31)
n

where we have neglected friction. The first two terms on the right-hand side represent
the kinetic energy generated by the pressure gradient forces. These terms deserve special
focus as they have an important role in the consistency of the energy conversion terms in
the discretization scheme. The last term on the right-hand side is the rate of energy
conversion between kinetic and geopotential energy.

Now we analyze the work done by the pressure-gradient force. From equations

(2.15), (2.20) and (2.23) we get
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p 99 p 0o
-(HPGF)=- —_—, 2.32
mv - (HPGE) = —mow == [g azJ ar(ganj””an (2.32)

where

Dp

0=—:.
Dt

(2.33)

From equation (2.27), the work done by the vertical pressure gradient force is simply

mw(VPGF)=— wa—p . (2.34)
an

Adding equations (2.32) and (2.34) we get the work done by the pressure gradient force

as

_ p o9 p 99
mv - (HPGF)+mw(VPGF) = —mow — an(g Y j+ at[ e j (2.35)

Plugging (2.35) into (2.31), the kinetic energy equation becomes

9 9 o~ 2| P99 p 99
(mK)+V (mVK)+ (mnK)— Mo an(g 8t]+8t(ga j mwg .(2.36)

As will be seen shortly, the first term on the right-hand side is the conversion term
between thermodynamic and kinetic energy, and the last term on the right-hand side is

the conversion term between kinetic and geopotential energy.

2332 Internal energy equation

The processes that directly affect the internal energy of a fluid parcel are heating
and work done by the parcel through expansion. The first law of thermodynamics states

that the rate of change of the internal energy is equal to the difference between the heat
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added to the parcel and the work done by the parcel. For quasiequilibrium, frictionless

processes this is expressed as

—=0-p—. (2.37)

where « is the specific volume. Here e is the internal energy which can be expressed as
¢, T, where ¢ _is the specific heat at constant volume. Equation (2.37) can be converted
to a flux form by multiplying by the pseudo-density m, applying equations (2.15), (2.19),

and the product rule of differentiation to get

i(me) +V - (mve)+ i(mf]e) =mQ + mow
ot on

_Q[B%J_v.(gaﬁv]_i(za_fﬁﬁ)
ot\ g on g on an\ g an

Note that the second term on the right-hand side is the conversion term between

(2.38)

thermodynamic and kinetic energy which now appears with the opposite sign as in
equation (2.36). Equation (2.38) can be rewritten in terms of enthalpy, defined as

h = e+ pa, for which dh=c,dT. It becomes

21} ¥- (e, ) e ) -mQ w230

Finally, it can be shown that the internal energy equation can be written as the
potential temperature prediction equation (2.5), which is the form of the thermodynamic

energy equation used in the model. This is done by using the relation de= c¢,dT in

equation (2.37), and using the ideal gas law po=RT and the definition of potential

temperature 0 =T ( Dy / p)K , which gives equation (2.5).
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2.3.33 Geopotential energy equation

The rate of change of a fluid parcel’s geopotential is calculated by multiplying

mg by equation (2.20) and using the continuity equation (2.19) to get
d J ,
—(m)+V-(mvo)+—(mne)=mwg . (2.40)
ot on

Now note the energy conversion term between kinetic energy and geopotential energy

mwg which appears with the opposite sign as in equation (2.36).

2334 Total energy equation

The total energy equation is obtained by adding equations (2.36), (2.38), and

(2.40), and canceling terms to get

o 9 p 99 d a¢ 90
(m8)+V (mV8)+ (mne) mQ—-V- [ganvj 377[ (at anﬂ ,(2.41)

where e=c,T+K+ ¢ is the total energy. The last two terms on the right-hand side are flux

divergence terms that represent the spatial redistribution of energy. When integrated over
the domain, they contribute nothing to the global total energy budget except for
contributions from the boundaries. The time rate of change of the global mass-weighted
integral of total energy for an adiabatic atmosphere is obtained by integrating (2.41) over
the domain and requiring that no mass cross the upper and lower boundaries. A

necessary identity is

az”: 21 L& ans’f. (2.42)
ot ot or on o7 ot

The result is
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E'V[medV=—'[V- [ (mveyanda-[v- j[gﬁvjdnd/l

A Ng A Mg

(2.43)
oz, oz
- —dA —5 dA.
{p " ot +—/[p S ot

For a closed surface, the first two terms are identically zero. The last two terms are the
work done by the pressure force at the upper and lower boundaries. These terms would
have a contribution over the ocean where waves keep the lower boundary in motion, but
we will assume that the boundaries are fixed, so these terms are zero. Therefore, we have

proven that for an adiabatic, frictionless atmosphere, the global total energy is conserved.

2.4 A summary of the continuous system of equations

Here we summarize the governing equations in the generalized vertical coordinate
as well as the boundary conditions. We discuss system closure and begin to introduce the

specification of the generalized vertical coordinate 1 and diagnosis of the generalized
vertical velocity 1. From this point forward we will assume that the top and bottom
boundaries are generalized vertical coordinate surfaces, i.e., 7,=constant and
ng=constant.  Therefore, from equation (2.22), the impermeable upper and lower

boundary conditions are expressed as

(), = (nm), =0. (2.44)

Continuity equation:

aa—’?+V-(mv)+%(mﬁ) =0. (2.45)
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Horizontal momentum equation:

1 1
&+fk><v:——Vp+—a—sz+F, (2.46)
Dt p mon
where
D_9, v vin 2. (2.47)
Dt ot on
Vertical momentum equation:
Dw_ 1% oip. (2.48)
Dt m on :
Thermodynamic energy equation:
Do = Q : (2.49)
Dt 11
Geopotential equation:
D¢
—=wg. 2.50
o "8 (2.50)
Ideal gas law:
p=pRT. (2.51)
Definition of the Exner function:
M=c, [ﬁ] . (2.52)
10
Definition of potential temperature:
0= il (2.53)
=1 :

Definition of pseudo-density:
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-l

, (2.54)
g on
Relation between geopotential and height:
O=gz. (2.55)
We introduce a normalized height variable:
z—Zz
o= 5 (2.56)
Zr T2

This is a terrain-following variable which has the value 6=0 at the surface and o=1 at
the model top. It is based on the pressure-based o coordinate of Phillips (1957), and is
similar to the z-based terrain-following coordinate of Gal-Chen and Somerville (1975).

Finally, we introduce the definition of the vertical coordinate in terms of a

relationship between 0 and o to be specified in the next subsection:

n= f(6,0). (2.57)
Equations (2.45), (2.46), and (2.48)-(2.57) represent a system of 12 equations in

12 unknowns, i.e., the dependent variables:v,w,m,0,9,z,p,p,T,11,0,1. The
independent variables are the three spatial coordinates x, y and 7, and time 7. In the
present dynamical analysis we do not consider the heating (Q) and friction (F and F)) to

be unknowns as these are obtained from physics parameterizations.

2.5 Specification of the vertical coordinate and diagnosis of the
vertical velocity

Up to this point, we have not specified the form of the vertical coordinate 7, other

than prescribing the upper and lower boundaries as coordinate surfaces. In this section
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we describe how it is defined in the model and explain the method for diagnosing the

vertical velocity 7).

2.5.1 The vertical coordinate

The starting point for designing our vertical coordinate is the work of Konor and
Arakawa (1997), hereafter KA97. As with various hybrid vertical coordinate models,

they take advantage of the quasi-Lagrangian nature of the 6-coordinate as much as
possible in the free atmosphere. Near the surface, the coordinate is terrain-following to
avoid coordinate intersections with the lower boundary. Also, since 8 may have a
vertically constant value due to a mixed layer, the o coordinate provides vertical
resolution for resolving boundary layer processes. Like KA97, the basis for our vertical
coordinate is a prescribed function (equation (2.57)) of 6 and the terrain-following
height-based coordinate o defined in equation (2.56).

In the free atmosphere, on the fine scales that we wish to resolve with our
nonhydrostatic model, localized turbulence can develop in which the vertical profile of
is highly nonmonotonic. Although the vertical coordinate of KA97 can remain
monotonic for such cases, it does so at a significant expense to the quasi-Lagrangian
quality of the coordinate throughout the domain. Therefore, we have generalized their
method to accommodate localized static instabilities, i.e., where J6/0z<0, while

elsewhere retaining the coordinate as pure 6. Our method includes techniques similar to

the arbitrary Lagrangian-Eulerian (ALE) scheme of Hirt et al. (1974), and is influenced

by the adaptive vertical coordinate approach of Zangl (2007).
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Before fully describing the method, we briefly review the vertical coordinate
developed by KA97. (Note that we denote the coordinate by 7 in place of their
designation of {). KA97 defines the vertical coordinate as

n=F(,0)= f(o)+g(0)o, (2.58)

where the functions f(0) and g(o) are chosen such that

8(0) =0, °= GS}. (2.59)

f(o)—>0, g(o)—1] c—0,
They also must facilitate the condition that the coordinate increase monotonically with
height, that is

M. (2.60)

00

The monotonicity requirement (2.60) can be achieved if /(o) and g(o) satisty the relation

£+d—g9. +g 8_9 =0, (2.61)
do do ™ Jdo -

where g(0) is chosen as a monotonically increasing function of 0, and 6_. and (d6/do)_._

are suitably chosen constants representing the lower bounds of the potential temperature
and static stability, respectively. Equation (2.61) is solved for the function f(o). The
form of g( o) that we use in the model is

g(o)=1-(1-0)", (2.62)
where 7 is a constant greater than unity. This choice satisfies (2.59), and the thickness of

the o-like domain near the surface can be controlled by the value of » — the larger its

value, the nearer the surface the coordinate becomes fully isentropic. In KA97, the
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function g(0o) is expressed in terms of an exponential function. The power function we

use in (2.62) achieves basically the same result.
In KA97 the derivation of the vertical mass flux diagnosis is based on the

requirement that the value of F given by (2.58) remain constant on level surfaces, that is
d
— | F(6,0)=0. (2.63)
or ),

This maintains the monotonicity of the vertical coordinate 7 in time.
In our generalized method, we allow F(6,0) to deviate from 7, as needed, to allow
the vertical profile of 77 to remain monotonic for non-monotonic /. We do so by

employing an adaptive vertical grid technique similar to He (2002) and Zangl (2007),
which allows the coordinate to be fully isentropic except where isentropes tend to

overturn or become irregularly distributed horizontally. The vertical coordinate 1 is
therefore a “target value” for the function F(6,0), instead of its specification. The

starting point for diagnosing the vertical mass flux, corresponding to equation (2.63), is

(ﬁj F(QQG):L(G’G)_ﬁSa_F’ (2.64)
ot . T an

where 7 is a relaxation time constant, and 7 is the vertical coordinate, which behaves as
the target value for F(6,0). The first term on the right-hand side serves to relax the value

of F toward the target value. The second term on the right-hand side acts to force F away

from 7 in order to maintain coordinate monotonicity. The specification of 7)., which is

the “smoothing” portion of the total vertical velocity 77, will be described below. When
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the target has been met, and 7, =0, then the right-hand side of (2.64) is zero and we

have equation (2.63). The system is then equivalent to KA97.

We now discuss the mechanisms by which F(6,0) is forced away from .

Basically the coordinate system and vertical mass flux diagnosis follows KA97 until
either the geopotential height on coordinate surfaces becomes horizontally irregular, i.e.,

when

\V“z\ >(Viz) (2.65)

max

or when the “relative vertical curvature” of the z-profile becomes large, i.e., when

& 82
on’ | _| o

S| 9 2.66
> 2 (2.66)
% ar’ max

The (), values in the above equations are specified maximum limits. Equation (2.65)

describes the “horizontal smoothness” criterion, and is designed to limit the existence of
sharp horizontal gradients and their associated truncation errors in the discrete model.
Equation (2.66) is the “vertical smoothness” criterion which eliminates the possibility of

z and therefore 1 from becoming non-monotonic (overturning) with height, and in the

discrete model, it prevents the relative difference in thickness of adjacent layers from
becoming too large. It basically serves to keep the distribution of layer thicknesses in a
model column evenly distributed.

The mathematical form of the “vertical smoothness™ criterion of equation (2.66)
is derived from the above statement about the relative difference in thickness of adjacent

layers in a discrete model. Figure 2.1 shows a representative continuous relationship
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between z and 1. Three points are shown along the curve which represent discrete model

locations. The relative difference in thickness of adjacent layers is expressed by the

nondimensional parameter

5_225(23—22)—(22—21)
0z l(

, (2.67)

where the & operator refers to the difference operator 6 recursively applied twice.

Applying a Taylor series expansion to (2.67) we get

5z ;(g;il[(&v); +(5n)j}+(§j7j [(6n), ~(6n), ]+

= 2 ) (2.68)

(2 o), fon) 1+ 5[ 22 [t (o0, -

where the subscript “2” denotes continuous derivatives at the discrete point “2”,

(ém),=n,—n, and (6n),=n,—n,. For (én),=(n), =(6n), and truncating the Taylor

series, we have

Figure 2.1:  Three discrete points along a continuous profile of z as a function of 7.
Used to derive the mathematical form of the “vertical smoothness
parameter”.
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5z (o2

()

which is the mathematical representation of the “vertical smoothness” parameter.

(6n). (2.69)

As mentioned in Chapter 1, one of the reasons for spatially smooth the coordinate
isolines is to limit the magnitude of spatial gradients in the prognostic variable fields.
This is to avoid large truncation errors associated with the representation of sharp
gradients in the model’s numerical schemes. We speculate that this is the root cause of

problems with the model run with pure 6 coordinates in regions where isentropes are

about to overturn. Figure 2.2 shows model results of a two-dimensional mountain wave

experiment to be presented in Chapter 5. The pseudo-density field is plotted in

Without coordinate smoothing With coordinate smoothing
Max 38.27 Min 0.23 Max 19.01 Min 0.72

eta (K)

x (km)

4 12 20 28 36

Figure 2.2:  Pseudo-density (kgm>K™) at time /=78 minutes in a region of wave-
breaking from the 11 January 1972 Boulder, Colorado windstorm
simulation to be presented in Chapter 5. Panel (a) shows results without
coordinate smoothing, and panel (b) is with coordinate smoothing applied.
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n-coordinate space, with and without coordinate smoothing applied, in a region where
gravity waves are about to break in the 8-coordinate domain. The spatial gradients in the

field are reduced as a result of coordinate smoothing. Therefore, we expect that the
numerical accuracy of processes such as mass advection to be improved.

We point out here that the smoothing applied to the geopotential height field does
not affect the governing equations, and therefore, the representation of physical processes
in the model. That is, we are not adding artificial terms to the geopotential equation
(2.50). Instead, we adjust the fields through the appropriate values of vertical velocity
and the associated vertical advection. The method of calculating the vertical velocity is
the topic of the following subsection. Also, we point out that in smoothing the
geopotential we break the relationship given by (2.58), yet the vertical coordinate could

still be expressed as some function (f) of 8 and o, as in (2.57), to mathematically close

the system. However, it is not necessary to formally calculate this relationship since the

equations are self-consistent and they share the same vertical velocity field 7).

2.5.2 Diagnosis of the vertical velocity

In this subsection we describe the diagnosis of the vertical velocity that is
consistent with the above treatment of the vertical coordinate. As the vertical velocity
has multiple roles to play, it is best to subdivide it into separate components. The
broadest distinction of the roles is between: 1) the “target seeking” component which

maintains the relationship (2.58) (as in KA97) or relaxes the system back toward this

relationship, which we designate as 7)., and 2) the “smoothing” component which is
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responsible for smoothing the geopotential height field, which we designate as 7). Note

that this second component appeared in equation (2.64). The total vertical velocity is

expressed as

n=n,+1n,. (2.70)

2.5.2.1 “Target-seeking” component of the vertical velocity
First we consider the tendencies of 6 and o due to 7. Applying the chain rule of

differentiation to equation (2.64), letting 1, =0, we have

0 OF | 00 (O0F | do n-F(6,0)
—| F,0)=| —| —+| — | —=—"—"—. 2.71
(atl (6:0) (ael ar+[aol ot T @)

Combining equations (2.47), (2.49), (2.50), (2.55) and (2.56) in (2.71), and solving for

the vertical velocity, we get

- _(orY'[(oF) (2_ . F N (w_ 1 o), F6.00-1
() (56 (8vowo 3] (3= ovo e H02 o

where

oF _06[dF ) 1 09fdF ) 2.73)
an  danld0 ) ~ gH an\do ),
and
H=z -z, (2.74)

is the height of the model column. Note that dF/dn is equal to unity when F
meets its target value, i.e., for F=17. However, when the target value is not met, it is

possible for this term to equal zero in the case of F'= 6, and neutrally static environments
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where d0/0n=0. In this case the vertical velocity becomes infinite. (A physical

interpretation for the case of a passing gravity wave, in which isentropes are nearly
vertical, is that the vertical velocity tries to become infinite in order to vertically advect z
fast enough to keep the level “stuck” to its target isentrope.) Therefore, we must modify
the expression for the vertical velocity given by (2.72) to avoid the existence of such a
singularity. We have considerable freedom in such a modification, so we can choose to

have it effect the vertical velocity to position isolines of constant 1 in a particular
manner. A straightforward choice is to “freeze” the isolines in space, such that d¢/d¢=0,
as d0/dn approaches zero and for 06/0n<0. In other words, the coordinate becomes a

stationary, Eulerian coordinate in regions of negative static stability. The value of the

vertical velocity which maintains d¢/d¢=0, which we will use for dF/0n<0, is given by

(28] (e or
T’T_(anj (wg-v Vo) for anSO. (2.75)

For 0F/dn= 3 we use equation (2.72), where 8 has a value, which we choose, between 0
and 1. For the transition zone where 0<dF/dn< 3, we use a linear combination of (2.75)

and (2.72) evaluated with 0F/on=,, i.e.,

1 OF 1 oF oF
n,= [1 — ——j(r.h.s. eqn. (2.74)) + ——{r.h.s. eqn. (2.72) for — = ﬁj

for 0 <8_F <p.
an

This gives
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L oFfoF) (O oF V(w_ 1 . £(0.0)-n
+ﬁzan{[ael[n VveHaGl[H gHVV¢j+ : }(2.77)

2.5.2.2 “Smoothing” component of the vertical velocity

The vertical velocity field required to smooth the geopotential height fields, per

the criteria described in subsection 2.5.1, can be calculated from

, 0z 0z on

|| = - — 2.78

s [[az] ) +(8t] | ]az’ (&78)
smoothing,/ smoothing,v

where the two terms in brackets are the geopotential height tendencies due to horizontal
and vertical smoothing respectively.
We quantify the horizontal smoothing tendency in the form of a “del-4” diffusion

equation

(%j | =—(max{o,xh“V“z‘—(V“z)max}}sgn(v“Z)), (2.79)

where k; is a constant diffusion coefficient. This equation differs from typical diffusion

equations in that diffusion acts not to eliminate the fourth-spatial derivative, but instead
to limit its absolute value at a specified amount. Unlike He (2002) and Zangl (2007),
diffusion only occurs where it is a necessary. In regions where the target vertical
coordinate is isentropic, this allows the coordinate to be almost exactly isentropic as long

as isentropes are reasonably smooth in the horizontal. The choice of V* over V?* for the
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horizontal diffusion follows from traditional numerical smoothing methods where higher
order diffusion is used to selectively remove noise at the smaller scales.

The vertical smoothing tendency is described similarly, except second-order
diffusion is used instead. In this case, the lower order-diffusion provided better results.

We express the tendency as

0z
— =max0,x
ot _

smoothing,v

where K is a constant diffusion coefficient. Vertical diffusion only acts when the

0%z
aZ an? 822
-— a—; sgn[—} , (2.80)
n

max

absolute value of the ratio of the second and first derivatives of z with respect to 1

exceeds the specified limit.

2.6  Vertical flux of horizontal momentum in a generalized vertical
coordinate

The interaction of atmospheric waves with the mean flow has important
implications in weather and climate. Waves transport energy and momentum vertically
throughout the atmospheric column. For example, the drag imparted by a mountain
range on the airflow can be transported, via gravity waves, through the tropopause and
into the stratosphere (and beyond) influencing the strength of the zonal flow (i.e.,
x-component winds) at these heights. In their influential paper, Eliassen and Palm (1960)
analyzed linear wave-mean flow interactions and proposed a theory which determines
conditions in which waves will or will not influence the mean flow.

In this section we perform a nonhydrostatic analysis of the vertical momentum

transport in a generalized vertical coordinate. In the process, we derive a generalized
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form of the Eliassen-Palm (EP) flux. The divergence of the EP flux is an important term
in the tendency equation for the mean zonal flow. This will illustrate the different
mechanisms in which momentum is transported vertically in the Eulerian (z-coordinate)

versus the quasi-Lagrangian (8-coordinate) frameworks. In the former, it is transported

through the vertical eddy mass flux, while in the latter it is through the pressure form
drag on isentropic (material) surfaces. Our work follows that of Andrews (1983) who
derived the EP flux in isentropic coordinates for quasi-static flow.

In Chapter 5, we will use the expression for the EP flux, derived here, to diagnose
the vertical momentum flux in two-dimensional (x-z) mountain wave model simulations.
Such model simulations are useful in developing gravity wave drag parameterizations in
general circulation models (e.g., Kim 1992, Kim and Arakawa 1995). Performing these
experiments using a quasi-Lagrangian vertical coordinate provides a new view of the
phenomenon which may be useful for GCM’s based on such a coordinate.

We begin by writing the zonal momentum equation. Combining (2.14), (2.17),

(2.23) and (2.55) we have

Ju Ju Ju Ju | 0 0z 0 0z
NSNS DU P20 I I T X 3|
at+u(,9x+vay+nan fv m{ ax(panJ+an(paxﬂ+ ) (2.81)

where F is the zonal component of the friction force. Combining equation (2.81) with

the continuity equation (2.19), the zonal momentum equation in flux form can be written

as

2(mu) + i(muu) + i(muv) + i(mm']) — fmy =
X dy on

ot d
(2.82)
_i a_Z +i % +mF
o\ Pan ) ol P ox w
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The next step is to take the zonal average of the above equation. The zonal average of a

given property a is defined as
1 L/2

a=— [ adx (2.83)

-L/2

where L is the length of the horizontal domain. Applying (2.83) to equation (2.82) we

have
%(%ﬁ%(%ﬁ%(%)—ﬂn—v:%[pg—i}m_@. (2.84)
Here we used
9 ()=0. (2.85)
ox

In a similar manner, the zonally averaged continuity equation (2.19) is

%Zw%(%ﬂ%(m_n):o. (2.86)

Each fluid property can be divided into a mean and perturbation component. That

is
a=a+ad, (2.87)
where the prime notation represents perturbations from the mean. Under Reynolds

averaging, the zonal mean of the perturbation quantities are zero, i.e.,

a=0. (2.88)

This results in the relation

ma=ma+ma’ . (2.89)

Applying (2.89) to the combination of equations (2.84) and (2.86), and rearranging terms,

we can write the following expression for the tendency of the zonal momentum:
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u

m

- — (2.90)
%[%(mv)’u’ + %[p’ (—;i - (m?'])’u’:l - %(m’u’)] +

It is useful to introduce the “residual” mean velocities, defined as the mass-weighted

means
v =Y (2.91)
m
and
n="1 (2.92)
m
Using these relations, equation (2.90) is then written as
- _(a- —9- 1 mF.
9av | L plaen Lz Livo g~y |+ M (203

where F= [O,F(”)y, Fm rz] is the EP flux vector in generalized vertical coordinates, which

has the meridional and vertical components

F(")y =(mv)u’ (2.94)

and

(mn)'u’, (2.95)

0z’
FM — = _

=P ox
respectively. Equation (2.93) shows that the EP flux is non-divergent for steady-state,
uniform, frictionless flow.

The vertical component of the EP flux given by (2.95) is the vertical flux of

horizontal momentum. In z coordinates, the first term on the right-hand side is zero,
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which leaves the eddy flux term —(pw)'u” as the means of vertical momentum transport.
In 6 coordinates, for adiabatic conditions, 7’=6 =0, which means the vertical

momentum transport occurs through the first term on the right-hand side of (2.995), i.e.,

the pressure form drag term.

2.7 Summary

The nonhydrostatic, compressible Eulerian equations of fluid motion were

transformed from z coordinates to a generalized vertical coordinate 7. From these

governing equations, we demonstrated various conservation properties such as the
conservation of mass, total energy and the vertically integrated circulation of momentum
about a closed contour of topography. In the following chapter these integral constraints
will guide in the design of the vertical discretization scheme.

The vertical coordinate is terrain-following near the surface and transitions

smoothly to 8 with height. In the diagnosis of the generalized vertical velocity 17, a

special contribution is calculated and included in the vertical advection terms; its purpose
is to maintain smoothness of the coordinate surfaces. In this “smoothing” process, the
values of geopotential and potential temperature on the coordinate surfaces deviate from
their defined “target” values. However, these values are returned back to their target
values through a Newtonian relaxation term.

The vertical flux of horizontal momentum and its effect on the mean flow was

analyzed with the generalized vertical coordinate. In the 6 coordinate, a quasi-

Lagrangian interpretation is provided in which the vertical momentum flux is a result of
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the horizontal component of pressure forces on material coordinate surfaces. This feature

will be shown in the results of a mountain wave simulation in Chapter 5.
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Chapter 3 VERTICAL DISCRETIZATION

3.1 Introduction

The design of the model’s vertical discretization scheme includes determining the
optimal arrangement of the prognostic variables on the grid and determining the
vertically discrete governing equations. Our design goals for the vertical staggering are
to avoid the existence of computational modes and to facilitate the accurate
representation of wave motion. These goals are met through a normal mode analysis of
the linearized system of discrete equations. A detailed analysis along these lines is
provided in Thuburn and Woollings (2005), whose results we use as a guide.

The principal criterion for the formulation of the vertically discrete governing
equations is that they satisfy certain integral properties found in the continuous system of
equations discussed in Chapter 2. The integral constraints we seek to satisfy are
conservation of mass (Constraint 0), conservation of the vertically integrated circulation
of momentum about a closed contour of topography (Constraint I), and conservation of
total energy (Constraint IT). At that point, no degrees of freedom will remain; it turns out
that the conservation of potential temperature (Constraint IIT) will not be met. The

methods we follow include those developed by Arakawa and Lamb (1977), Simmons and
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Burridge (1981), Hsu and Arakawa (1990), Arakawa and Konor (1996) and KA97 for
quasi-static models.

As is often the case in numerical model design, it will turn out not to be possible
to meet all of the design criteria simultaneously. We will derive two alternative schemes

— the first scheme, which we refer to as the “n-scheme”, satisfies integral Constraints 0, I,

and II for any form of the generalized vertical coordinate, but has a computational mode
involving the thermodynamic variables;, the second scheme, referred to as the
“z-scheme”, supports no computational mode, but integral Constraints 0, I, and II are
satisfied only for the case of non-sloping coordinate surfaces, i.e., z-coordinates. In both
schemes, however, the mass conservation constraint is satisfied. The discretization we
actually decided to implement in the model is the z-scheme. This was to achieve
integrations free of computational modes, which we considered to be more important

than unconditionally satisfying the integral Constraints I and II.

3.2 Vertical grid

The vertical staggering of the prognostic variables in the model is based on the
Charney-Phillips (CP) grid (Charney and Phillips 1953). With this grid, the potential
temperature is staggered with respect to the horizontal velocity (see Figure 1.3). The
other commonly used staggering is the Lorenz (L) grid (Lorenz 1960) in which the
potential temperature is carried at the same levels as the horizontal velocity (see
Figure 1.3). The advantages of the CP grid over the L grid have been analyzed in various
papers (e.g., Arakawa and Moorthi 1988; Arakawa and Konor 1996). These advantages

pertain to quasi-static models based on the pressure coordinate and they involve the
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avoidance of a computational mode in the 0 field seen in the L grid, but not the CP grid.

In the following analysis we show that these advantages carry over to nonhydrostatic
z-coordinate models, which are relevant to the lower domain of our model. We also

analyze the grid staggering for the 6-coordinate domain of the model.

3.2.1 Linearized, steady-state equations

We now test various vertical staggerings for the existence of zero-frequency
computational modes in order to justify the use of the CP grid. The equations of motion
are linearized with respect to a hydrostatic, horizontally homogeneous basic state at rest.
Since steady-state solutions are sought, we can ignore partial time derivatives. The
steady-state vertical momentum equation in generalized vertical coordinates can be

obtained from equation (2.18). It is the hydrostatic relation given by

9

P mg. (3.1)
on

We will refer to this as the “p-form” hydrostatic relation. We will also consider an

alternate “I'l-form”, written in terms of the Exner function. It is obtained from equations

(2.15) and (2.29), and is written as
—O0—=g—. (3.2)

Expressing the dependent variables as the sum of the basic state and perturbation values,

the linearized form of the p-form hydrostatic relation (3.1) is

’

dp
on

=-m'g, (3.3)
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where the prime notation refers to the perturbation values. Here we used the hydrostatic

relation on the basic state given by

— =-mg, (3.4)

where the overbars represent the basic state. Similarly, the linearized form of the I1-form
hydrostatic relation (3.2) is

dll oIl 0z’

_6’_ — 0 = R 3.5
an an g an (3.5)
where we have neglected products of perturbation variables.
The linearized diagnostic pseudo-density equation (2.15) is
dz _odz
m=p —+p—, 3.6
p an p an (3.6)
where we have used the following expression for the basic state pseudo-density:
_dz
m=p—. 3.7
p an (3.7)
The linearized equation of state (2.6) is
’ ’ TI
r_pP, (3.8)
p p T

The linearized expression for the potential temperature, given by the combination of (2.7)

and (2.8), is

==-K=. 3.9)

The linearized definition of the Exner function, given by equation (2.7), is

fi
=" (3.10)

p
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In (3.9) and (3.10) we used the linear approximation(l +p'/ 13)“ =1+xp’/p.

3.2.1.1 Discrete linearized equations in z coordinates

In height coordinates, =z, m=p and, by definition, z’=0. We use these
expressions in the vertically discrete forms of the linearized equations (3.3)-(3.10). In
our analysis, we consider both the CP and L grids, each using the p-form and Il-form
hydrostatic relations. The resulting discrete equations for the four combinations are
presented below:

(CP grid + p-form hydrostatic relation)

PPy _ —
+6Z __E(pk+]+pk)g’
Do _Puy e (3.11)
pk pk k
1 1 TI p/
T—(O’ +6 )::"—K—"-
k+1/ k-1/ -
k2 1/2 1/2 . pk

(CP grid + Il-form hydrostatic relation)

wIL g,
Sz _52 k+1/2°
k
1 1 pk pk kT’ p’ (3.12)
——(6],,,+6,_,,)==-k=t
k+1/ k=1/ —
9k2 1/2 1/2 : pk
, kIl
I, =—p’
Py
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(L grid + p-form hydrostatic relation)

Sz = P
PP, T
p, b T,
9 _T, P
6 I, B’

(L grid + I'T-form hydrostatic relation)

’

H;+1_H:c _ 8 1(

62 9k22 k+1
b_p,T
Py pk Tk
AR,
o T, D

, kIl
Hk:—_pk’
Py

+9,:),

(3.13)

(3.14)

The subscripts k are whole number indices representing layer centers where mass and

horizontal velocity are located. The half-integer indices are layer interfaces. Note that

the CP and L grids are distinguished by differing 6 grid indices. Note that the hydrostatic

relations are defined at layer interfaces where the vertical velocity w resides. Arithmetic

means are used to interpolate physical variables to levels where they are undefined. We

assume that the grid spacing 9z is constant. In each system of equations, the prognostic

variables are € and p. The variables p, T and I, which reside at layer centers, are

obtained from the prognostic variables through the diagnostic equations.

The discrete systems of equations (3.11)-(3.14) can be used to check for the

existence of computational modes. This is done by considering the pressure field to be
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unperturbed, i.e., p’=0 at all levels. In z coordinates (z’=0), the physical solution, given
by the continuous equations (3.3)-(3.10), is that the remaining thermodynamic fields are
also unperturbed, ie., 8’=p'=I1"=T"=0. (Similarly, in € coordinates (6’=0), the
solution is that the remaining thermodynamic fields are unperturbed, i.e.,
z’=p'=II"=T"=0.) Therefore, solutions in which any of these fields are not identically
zero are nonphysical computational modes. In general, these computational modes tend
to appear as “zigzag” patterns in one or more of the thermodynamic fields.

Figure 3.1 summarizes the computational mode analysis for each of the four
systems of equations shown above. With the L grid there are zero-frequency
computational modes in both the perturbation density and potential temperature fields.
With the CP grid, the existence of a computational mode depends on the form of the
vertical pressure gradient force — there is no computational mode when the Il-form is
used. This appears to be due to the absence of interpolated variables in the hydrostatic
relation. Therefore, the use of the CP grid to avoid computational modes in z coordinates

is justified, as long as the Il-form of the vertical pressure gradient force is used in the

vertical momentum equation.

3.2.1.2 Discrete linearized equations in 8 coordinates

In isentropic coordinates, n=6, and, by definition, 8’=0. We use these

expressions in the vertically discrete forms of the linearized equations (3.3)-(3.10). Asin
the z-coordinate analysis, we consider both the CP and L grids, each using the p-form and

[I-form hydrostatic relations. In 6 coordinates, the vertical thermal structure is
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Figure 3.1:  Analysis of zero-frequency computational modes in z coordinates. The

CP and L grids are compared (rows), as well as the effect on the form of
the discrete vertical pressure gradient (columns).

determined by the height field (z). Therefore, we define an analogous CP grid in 6

coordinates which carries z at layer edges (i.e., staggered with respect to horizontal

velocity), and an analogous L grid which has z located at layer centers. The resulting

discrete equations for the four combinations are shown below:
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(CP grid + p-form hydrostatic relation)
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(L grid + I'T-form hydrostatic relation)
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The computational mode analysis is summarized in Figure 3.2. With the 6
coordinate, there appear to be computational modes associated with p’=0 which involve
the perturbation pseudo-density and height fields. Note that the computational mode in z’
for the “CP grid + Il-form hydrostatic relation” combination is a result of the 2Az
difference in z’ of the hydrostatic relation in (3.16). With the CP grid, we speculate that

the computational modes may be suppressed by the upper and lower boundary conditions

Z/=0. This is not the case with the L grid because z is defined at layer centers where the

boundary conditions do not apply. In the model we will use the CP grid in the

0-coordinate domain.

3.2.1.3 Closing remarks

In the previous analysis, we linearized the forms of the governing equations that
are used in the model. These are based on the integral constraint analysis presented in the

following section. There are other forms of the equations, not analyzed here, that might
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p-form hydrostatic relation | II-form hydrostatic relation
Starting from m'’ z' Starting from m'’ z' R
equation set ¢ k% equation set ¢ k+
- : | \\ " . | A\
(3.15): q---——§—— k+1 (3.16): q---——§—— k+1
+ ‘I I‘ + | I‘
i ks
! v ‘I l v ‘l
1 k-1 ) k-1
CP Grld m, +m = i Al [ Zn;z_:mv:o A N
ﬂ=(£\ " Zral _:A'—l -':-____lt__‘k-] ﬁ={d-:\ I:A,f+| _21:12-.:-____|t__ k-1
m, L JA 560 —l—L‘.—k-3/’? lﬁh LdHJA 50 _|_|_‘._ k-3h
0 0 0 0
Computational mode in m"and z’ Computational mode in m'and z’
Starting from m'  z Starting from m' z
equation set ——k+¥% equation set k+35
o] . | o] .
("*]7)‘ i kit ] (J'ig)' PP
|
’
— 1 1
pr =0 ——— k+' P =0 k+Y5
! -9 Q- &k | - Q- &
L GI‘ld my +m =0 ——‘I‘— k-1 Zia _jA =0 k-1
m (dzy nz,-zn L m (dZ\ 1z,-z, L 1
m lae) 2 e TETTTVE LG Ta), 2 e TTE e A
_— k—3/3 ! _— k—3/3
m,\'—O—){:;H z,,=0 0 0 z, =0 0 0
m; =
Computational mode in z’ No computational mode
Figure 3.2:  Analysis of zero-frequency computational modes in @ coordinates. The

CP and L grids are compared (rows), as well as the effect on the form of
the discrete vertical pressure gradient (columns). We speculate that the
CP grid computational modes may be suppressed by the upper and lower
boundary conditions z’=0.

avoid computational modes. Potentially, these could satisfy the integral constraints as

well. For example, in 6 coordinates, the hydrostatic relation can be expressed in terms of

the Montgomery potential (M) as dM/d6=I1, where M = cpT +¢. Alternative forms of the

equations, such as these, deserve future consideration.
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3.2.2 Model grid

Figure 3.3 shows the vertical staggering of the prognostic variables used in the
model for the three coordinate domains — a) z-based sigma coordinates, b) isentropic
coordinates, and c) the hybrid coordinate. These staggerings are based on the CP grid.
This places 6 and z together at layer edges — the appropriate location for the hybrid
vertical coordinate which is a function of these two variables. The indexing convention
used in the discretization is the same as that used in the linearized analysis, i.e., layer

centers are numbered by whole integers k and layer edges by half-integers. The

Vertical
Index (a) o-coordinate (b) O-coordinate (¢) hybrid-coordinate
K+ Z w, 9; o Z w, ¢, 9 Z w, 99 gb)’?
) G —— %0 /7 J | 77— v, m
K-V w, 0,6 w, ¢, 0 w, 0, ¢, 1
k+3% w, 0, 6 w, ¢, 0 w, 0,0, n
S VoM mmmmmmeee VoM o v, m
k+15 w, 0, ¢ w, ¢, 0 w, 0,0, n
k= mmmmmmmmm——- V, M —mmmmmmo - V, M e v, m
k-1 w, 9, o w, ¢, 0 w, 99 ¢, 77
k-1 =========m-- VoM —mmmmmmmmen VoM mmmmmmmmmmo v, m
k-3 w, 9, o w, ¢, 0 w, 99 ¢, 77
3% w, 0, ¢ w, @, 0 w, 0, P, n
1 === V, M mmmmmmmmmee- V, M mmmmmmmmmeee v, m
VA /W,Q,O" /W,¢,9 /W:Qagb”.?

Figure 3.3: Layer indexing and vertical staggering of prognostic variables and
diagnosed vertical velocities for (a) o-coordinate, (b) 6-coordinate and (c)
hybrid coordinate discretizations.
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numbering of the K layers is from bottom to top.

3.3 Governing equations

3.3.1 Continuity equation

The discretization of the continuity equation is straightforward and is written for

the mass at layer centers as

om
ot

k4vy. (mv) + (mﬁ)k+l/2 B (mﬁ)k—l/z =0

(8n),
(3.19)
for k=1,2,---, K.

Note that the vertical velocity 77 is defined at layer edges, and that for vertical
coordinates in which the top and bottom boundaries are coordinate and material surfaces
Ny =M., =0. (3.20)
Mass conservation (Constraint 0) is guaranteed due to the flux form of equation (3.19).
Following Arakawa and Konor (1996), hereafter AK96, a flux form continuity

equation can be written in terms of mass interpolated to layer edges. This facilitates

developing conservation properties of layer-edge quantities. The equation is

m +V- (mv)k+1/2 + (mf’)kﬂ B (mn)k _

at (Sn)kﬂ/z
(3.21)
for k=1,2,---, K—1,
%W-(mv) - (), =0 (3.22)
ot 1/2 (57-,)1/2 ’ )

and
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o, (mn)
%—FV'(’”V)KH/Z_ —=0, (3-23)

where the interpolated masses are

(577)k m, + (617)“1 m .,
(6n)k+1/2

1
mn = 5

(3.24)
for k=1,2,---, K—1,
and
m1/2 = ml" mK+1/2 = mK' (325)
The horizontal mass flux interpolated to layer edges is
(mv)k+1/2 = l (6n)k (mv)k + (5n)k+1 (mv)k+1
2 (6n)k+l/2
(3.26)
for k=1,2,---, K—1,
and
(mv)l/2 = (mv)1 , (mV)KH/2 = (MV)K. (3.27)
The vertical mass fluxes at layer centers is
. 1 . .
(mit), =5 ()., + (o),
(3.28)
for k=2,3,---, K—1,
and
. L, . . 1, .
(mn)l = _(mrl)uz ’ (mn)g = _(mn)x—l/z ’ (3.29)

2 2

Finally, the layer thicknesses defined at layer edges are
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(8n),,,, =5 [(6n), +(an),,,]

(3.30)
for k=1,2,---, K—1,

and

(677)1/2 = %(&7)1 ’ (677)1<+1/2 = %(677)1< ’ (3.31)

As stated in AK96, it can be shown that the vertical sum of the continuity

equation (3.19), for m at layer centers, times (1), is equivalent to the vertical sum of the

continuity equations (3.24) and (3.25), for m at layer edges, times (67), ., ,-

3.3.2 Pressure gradient forces

In nonhydrostatic models, the discretized form of the vertical pressure gradient
force (VPGF) requires attention in an analogous manner as the discrete hydrostatic
equation in hydrostatic models. In such models the vertical velocity w is predicted and its
contribution to the kinetic energy is accounted for. As with hydrostatic models, the
horizontal pressure gradient force (HPGF) has a role in both the total energy conservation
and the vertically integrated momentum circulation conservation integral constraints. We

now analyze the pressure gradient forces.

3.3.2.1 Vertical pressure gradient force

The VPGF, expressed at the internal layer edges, is obtained from equation (2.29)

as
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IT,  -1II

—_ Piii2 0 k+1 k
k+1/2 k+1/2

Moo 7 (00), (3.32)
for k=1,2,---, K—1,

(VPGF)

where p, ,, is the value of density at layer edges. The upper boundary condition on the

vertical velocity is w = 0, and, therefore, it is not necessary to compute the VPGF at

K172
the top edge. Doing so would provide a diagnostic relation for the pressure that the
model top. However we would like to know what the surface pressure is, so we will need

a diagnostic for the VPGF at the lower boundary. We write

(VPGF) . = — /31/2 0 Hl — H1/2

/2 m,, 1/2 (577) > (3-33)

A

where II  is the surface Exner function, from which the surface pressure can be
calculated.
3.3.2.2 Horizontal pressure gradient force

We discretize the HPGF, as given by equation (2.30), at layer centers to give

gl m on (3.34)

for k=12,---,K,

(HPGF), = —ékvn,grl[ﬂ a—HVq)J
k

where the tildes represents layer-edge variables interpolated to layer centers. The
coefficient in parentheses is a layer-center interpolation of the VPGF times the

geopotential gradient, the form of which will be determined later.
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3.3.3 Horizontal momentum equation
From equation (2.14) the horizontal momentum equation is written for layer
centers as

Dv,
+ fkxv, =(HPGF), +F,
¢

(3.35)
for k=1,2,---, K,

where the horizontal pressure gradient force is given by (3.34).

3.3.4 Vertical momentum equation
From equation (2.18) the vertical momentum equation is written for layer edges

as

M—(VPGF) -g+(F)
Dt - k2~ & zJia12 (3.36)

for £k=0,1,---, K—1,

where the vertical pressure gradient force is given by (3.32) and (3.33).

3.3.5 Thermodynamic energy equation

The vertically discrete form of the potential temperature equation will be

determined from the total energy conservation constraint derived in the next section.

3.3.6 Geopotential tendency equation

We obtain the vertically discrete version of the geopotential tendency equation

from equation (2.20), which is
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a¢k+1/2 : q;kﬂ — ¢~)k _
ot + (V ' V¢)k+1/2 T e (5n)k B =8Win (3.37)

for k=1,2,---, K—1.
We chose the simple, centered form of the vertical advection term to facilitate the

diagnosis of the generalized vertical velocity, which will be discussed in the following

chapter. For the bottom layer edge d¢/0f =0 and 7=0 so we can write

(V'V(p)l/z = 8- (3-38)

The form of the horizontal advection terms, as well as the geopotential interpolated to

layer centers, will be determined later.

3.3.7 Diagnostic relations

The diagnostic equation for temperature at layer centers is obtained from equation

(2.8), and is based on the potential temperature interpolated to layer centers. We have

T = Ay for k=1,2,---,K. (3.39)

The state variables in the ideal gas law are expressed at layer centers and are

related by
po,=RT  for k=12,---,K. (3.40)
The Exner function is
I, = cp(&] for k=12-K. (3.41)
Py

The density at layer centers is diagnosed from the pseudo-density and

geopotential using
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_ mkg(&‘[)k

=
¢k+1/2 - ¢k—1/2

for k=12,---, K. (3.42)

3.4 Integral constraints for the generalized vertical coordinate 7:
The “n-scheme”

There is freedom left in the discretization to satisfy some of the integral
constraints described at the beginning of this chapter. We have already shown above that
the vertical scheme conserves total mass (Constraint 0) through the use of the flux form
of the continuity equation. The discrete analysis of the remaining integral constraints will
be analogous to the continuous analysis in Chapter 2.

As will be shown in following derivations, the “n-scheme” satisfies Constraints 0,
I and II. However, this requires the use of the “p-form” of the vertical pressure gradient
term in the vertical momentum equation. As shown in Section 3.2, this leads to the
existence of a computational mode in the potential temperature (see Figure 3.1). This is

not a desirable outcome; therefore, in the next section we will modify the “7-scheme” to
use the Il-form of the vertical pressure gradient in order to avoid the computational

mode. The tradeoff is that with the resulting “z-scheme”, Constraints I and II will only be

satisfied for the special case of z coordinates.

3.4.1 Work done by the pressure gradient forces: Part [

We now perform a preliminary analysis of the work done by the pressure gradient

force, which will lead to the discrete form of the energy conversion term between
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thermodynamic and kinetic energy as seen in the kinetic energy equation. Using (3.39)-

(3.41) in (3.34), we can write the work done by the horizontal pressure gradient force as

[mv-(HGPF)| =-ma,v, -Vp, + l(mv)k .(B a_HW,]
g m
k

an (3.43)

for k=1,2,---, K.

Multiplying w by equations (3.32) and (3.33) gives the work done by the vertical

k+1/2

pressure gradient force

ﬁk+1/2 Hk+1 — Hk
mw - (VGPF) =—(gw,, 0.,
I: :|k+1/2 ( k 1/2) g k+1/2 (677)“1/2
(3.44)
for k=1,2,---, K—1,
and
/31/2 Hl — ﬁ1/2
mw-(VGPF) | =—(gw 0 (3.45)
I: ]1/2 ( 1/2) g 1/2 (57,’)1/2
Note that we have not written an equation for the top boundary because w =0 and

K172
there is no contribution to the kinetic energy. Now multiply equations (3.44) and (3.45)

by (617),(+1 ,, and combine with (3.37) and (3.38) to obtain

3 A
I:mw ) (VGPF):IkH/Z (5n)k+l/2 - _%Meﬂm (Hk“ B Hk)

_(V ' V¢)k+1/2 %Okﬂ/z (Hk+1 - Hk)

o NS IT, —1II
_ﬁk+l/2 (¢k+l - ¢k) pk;/z 0k+1/2 (;1) : (3.46)

k+1/2

for k=1,2,---, K—1,

and
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[mw-(VGPF)] ()  =—(v V¢)l/2%91/2(n1—ﬁm). (3.47)

Since the energy conversion term, which comes from the work done by the
pressure gradient forces have, has contributions from both layer centers and edges, we
must satisfy the constraint in a global (column integrated) sense. The vertical sum of the

work done by the pressure gradient forces times the layer thickness is

g[mv-(HGPF)]k(%) +Z[mw (VGPF)], . (6n) =

k+1/2
k=0

K K- . oy I -1
_kZ: moov, - Vpk ( ) z e 9k+1/2 (¢k+1 - ¢k )nk+l/2 -~ -
=1

k=1 (671)k+1/2 (3 48)
99,0, P ! Py, |
k=1 gfl/z kgl/2 ekH/Z( e Hk)+ kz—}g(mV)k {m an VQ)Jk( )k
K-1 0 A

(V'ng)k“/z%ekﬂ/z(nkﬂ_Hk) ( V¢)1/2 g 1/2(1_I Hl/z)'

k=1
The last three terms on the right hand side of (3.48) are analogs of terms that
cancel out in the continuous equations. We require that they cancel out in the discrete

system by setting

£l p oM.
> —(mv), [m an%}( ),
K (3.49)

K1 A A

Py Py ~
_Z(V‘Vq))kH/Z&ekﬂ/Z (HkH _HA) ( V(p)l/z 91/2 (Hl H‘/z): 0
k=1 g g
If we define the horizontal geopotential advection term as

(mv)

k+1/2 V¢k+1/2

k+1/2

(V . V(l))k-f—l/Z =

(3.50)
for k=0,1,---, K,
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and use equations (3.26), (3.27), (3.31) and V¢, ,= 0 in (3.49), then, after adjusting the

limits of the summations and rearranging terms, we obtain

E p oll_ .
kzz‘;g(mV)k-[ﬁ %V¢]k(&7)k

[ 5 -1
pk+]/2 9 k+1 k V¢k+1/2 +

k+1/2
M1 (6n)k+1/2

/A)kfuz Hk — Hk—l V¢
k—1/2

k=172
M1 (6n)k—1/2

A

(5’7)k (3.51)

5 TL-T 5 M -1 ]
- l(mv)l l P, 93/2 2 1 V¢3/z + P 91/2 1 1/2 V¢l/2 577)1 —0.
g 2 m,, (577)3/2 m,, (577)1/2 ]

P—

We can satisfy this equation by requiring each coefficient of (mv) (6m), to be zero,

which gives us the form the layer-centered interpolation of the vertical pressure gradient

force times the horizontal geopotential gradient as

poe ) 1 A, M0 Prang M-Il
(; %V‘p] :E[ﬁekﬂ/z WV%HQ + mk - 0,112 ((]; ) : IV¢k—1/2
. +1/2 N)...» k-1/2 M)

for £k=2,3,---, K,

and

b ol 5 I, - 11 b, , T, —T1
[BGB—HV(P} _ l P 93/2 2 1 V¢3/2 + P 91/2 1 1/2 V¢l/2 ] (3.53)
m an 2| my,, (677)3/2 2 (677)1/2

So (3.52) and (3.53) guarantee that equation (3.49) is satisfied.
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L )
Now use (3.49) in (3.48), then add and subtract kaak%(&])k to the right
k=1

hand side, combine with (3.42), apply the product rule of differentiation in #, and

rearrange terms to obtain

>~

-1

Y [mv-(HGPF)] (8n) + Y [mw-(VGPP)]  (on)

k=1

SR

e k(_w vpk](an)k

- /5 . N | A
o 012 (¢k+1 -0, )nk+1/2 e+ (3.54)

=8 (6n)k+1/2

k=19

2 ¢k+1/2 pk+1/2 0k+1/2( N 1_Hk)

o ot g

Py 9 &9
_;p—_(d’kﬂ/z _¢k—1/2)+28t|: p ((Dsz (N )}

Comparing equations (3.54) and (2.35), we identify the energy conversion term as

5 () (o) = Smes | B, 5, o)

K-1 A I I
Piiin z 7\ K+l Tk

+ 0,0 =) T
p k 1/2( k+1 k) k+1/2 (5n)k+1/2

(3.55)

3.4.2 Vertically integrated momentum circulation constraint on the HPGF
(Constraint 1)

As discussed in Chapter 2, we can design the discrete form of the horizontal
pressure gradient force to mimic the constraint on the vertically integrated momentum
circulation. This can limit the effects of the inevitable numerical error by eliminating the

development of artificial circulations associated with surface topography. In the previous
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I1
subsection, we determined the required form of the interpolated term (p Og—Vq)J
n
k

which satisfies kinetic energy conservation. The following analysis will lead to the

required form of the interpolated termp, .

The layer mass-weighted HPGF can be obtained using equations (3.39)-(3.42) in

(3.34) which gives
(e an), =] (6,6, .

+&(V¢k+l/2_v¢k—l/2) [P aHVQ)J( ) (3.56)
g g\m L

for k=12,---,K.
Following the derivation in the continuous equations, analogous to equation (2.24), we
require that the last two terms of (3.56), when summed over the column, equal the

“mountain torque” term. That is

£ p Smy(p ol P
;j(v¢k+l/2_v¢k—l/2) ;j(ﬂ on ]k(&])k__ §2V¢1/2' (3.57)

Using (3.24), (3.25), (3.31), (3.52) and (3.53) in equation (3.57), along with V¢, =0,
we get

[131/2 —pt 151/291/2 (Hl _ﬁl/z)}V(bl/z
N . (3.58)
+k:1 I:pk =Pt Prnbiinn (Hk+1 - Hk):|V¢k+l/2 =0

This sum can be satisfied by requiring that each term in the summation equal zero. Then

solving for p,_  , we have
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1 P~ P
Hk+1 _Hk

Prip = 0

k+1/2

(3.59)
for k=1,2,---, K—1,

and

A 1 pl_ﬁl/z

p, =——t fl2 (3.60)
v 91/2 1_[1 - Hl/z

Note that if we deﬁne(ﬂ] E;, then (3.59) and (3.60) are discrete
k+1/2

p pk+1/2 k+1/2

. dll I . ) : .
analogs of the relation— = K—. Finally, using (3.57) in (3.56), the vertical sum of the

dpp

mass-weighted HPGF is

[ m(HPGF)] (on), = —VZ{%@M - ¢Mz)}— G

k=1
which is analogous to equation (2.24). As in the continuous case, the only contribution to
the vertically summed circulation of momentum is due to the last term, which is the
“mountain torque” term. When the closed curve is a contour of surface topography, it is

Z€1O0.

3.4.3 Conservation of total energy (Constraint Il)

In the vertically discrete system of equations, total energy can be conserved
through consistent forms of the energy conversion terms. Using the results of the
vertically integrated momentum circulation conservation constraint on the HPGF in the
previous subsection, we can derive the discrete form of the conversion term between

thermodynamic and kinetic energy as given by the kinetic energy equation.
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343.1 Work done by the pressure gradient forces: Part 11

We have determined the form of the horizontal and vertical pressure gradient
forces in subsections 3.4.1 and 3.4.2. We now complete the analysis of the work done by
these forces. What remains to be shown is that the third and fourth terms on the right
hand side of equation (3.54) do not contribute to the vertical sum of the production of
kinetic energy by the pressure gradient forces. This is analogous to the vertical integral
of the second term on the right hand side of equation (2.35) being equal to zero for non-

moving upper and lower boundaries. That is, we require

K-1

99,..,, P,. - P 9
sz gtl/z kgl/z 6k+1/2( k+ Hk)+ ;jg(‘psz - ¢k—1/2) =0, (3.62)

for non-moving boundaries. Using equation (3.59) in (3.62), the sums of the internal

terms cancel out and the result is the expression

k=19
¢k+1/2 pk+1/2 0k+1/2 (Hk+1 _ Hk)

k= (3.63)

P Py 99,.,, D, 00
z kat((pkﬂ/z ¢k 1/2) gK gtl/Z El a;/z’

which is identically zero ford¢, . / ot=09¢,, / dt=0. So the required form of p _ .

given by (3.59), which is consistent with Constraint I on the HPGF, is also consistent

with kinetic energy conservation.

3432 Thermodynamic energy equation

We are free to specify the thermodynamic energy equation, in the form of the
potential temperature tendency equation, such that total energy is conserved. This is

done by using the form of the energy conversion term between kinetic and
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thermodynamic energy which we derived in subsection 3.4.1. We start by writing the

vertically discrete form of the vertically integrated enthalpy tendency equation (2.39) as

i%(mcpT)k ((Sn)k +iV~(mvcpT)k(5n)k +i[(m77€pT)kH/2 —(mflcpT)k_l/J

= (maa) (&n), + 2 (m0),,., (én), ..

k=1

(3.64)

Note that we have defined the diabatic heating Q to be located at layer edges. This is
consistent with the “N grid “of Konor and Arakawa (2000), who showed that there is an
advantage of carrying condensational heating at levels carrying the vertical mass flux.
Using (3.55) in (3.64) and applying mass continuity equation (3.19), the diagnostic

relations (3.39) and (3.41), and rearranging terms, we get

K 30, < P : :
;mknk ? TV Vek (577)k B geknk [(mn)k+1/2 B (mn)k—1/2:|
K-

~ ~ . H K
2 kel/2 9k+1/2(¢k+1—¢k)m+1/2 (&7) 2(;( )k+1/2( )k+1/2'
k+1/2

k=1

(3.65)

Now we have an expression with the appearance of a prediction equation for potential
temperature, however, some work needs to be done to get into a useable form which is a

prediction equation for @ at the layer edges. First we choose the form of the potential

temperature interpolated to layer centers to be

-1
6, = 5(9““2 +6, ,,) for k=1,2,-K. (3.66)

Using this relation and (3.20) in equation (3.65), and rearranging terms, we can write
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1 00
EH1|:mla—;/2+(mV) 1/2:|(57])
1 00
o L[ (o), <11, (o), |2

- 1
. +5[Hk (mv)k (677)k + 1_Ik+1 (mv)k+1 (6n)k+1 :| ’ V0k+1/2

1 00
+EHK|:mK#U2+(mV)K Vo 1<+1/2:|(5n) 367
[)k+1/2 ékﬂ — (f)k
- 0 _|» -116
K1 kal | Tke32 l: EMy1)n (6n)k+1/2 ] o :
+25 ) ) 5 (mn)kﬂ/z
k=1 ol Py i =9, ~1le -0
, EM s (5n)k+1/2 B
K
= (mQ)k+1/2 (517)“”2-
k=0

Now we can write a potential temperature tendency equation which satisfies equation

(3.67), which is the requirement for total energy conservation, level by level as

80k+1/2 + (mnvsn)k+1/2 Vo + %(nﬂ?) — (szn)k+1/2
ot (mH5n)k+l/2 kel (Wlnérl)kﬂ/z e (mn6n)k+1/2
., (3.68)
for k=1,2,---, K—1,
%Jr(m v) ve,, = 2n, (3.69)
ot m, I,
and
a91<+1/2 + (mV)K V@ — QK+1/2 (3 70)
o m, K+1/2 HK ’ )
where
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(mrtn),.,, =3[ (m), (6n), + (1), (3),. ]

(3.71)
for k=1,2,---, K—1,
1
(mnvan)kﬂ/z = E[Hk (mv)k (577)/( + Hk+1 (mv)k+l (5n)k+l:|
(3.72)
for k=12,---,K—1,
and
| Prn B8,
Hk+l 9k+3/2 -2 £-1 6k+1/2
gm .y (0N
(H50)k+1/2 E% . A k 1/2((5 )k+;~:2
Prin P — 9
11 <[ 2 -11(6 -0
+ k ] gm_ (5n)k+1/2 k+1/2 k-1/2
(3.73)

for k=1,2,---, K—1.

This form of the thermodynamic energy equation is similar to that of KA97. In
fact, the horizontal advection and diabatic heating terms are the same. This is to be
expected because their discretization is also based on the CP grid. The vertical advection
term differs from theirs, however, because our model is nonhydrostatic and the pressure
is calculated at layer centers instead of at the edges. In equation (3.73), there is an
unusual looking coefficient which involves the geopotential. From equation (2.15), it can

be seen that in the continuous limit the coefficient is

P Piein 9 — 9 -1|—>1 as on—0. (3.74)
EMyi1i (5n)k+1/2

Therefore, in the continuous limit, equation (3.73) becomes
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ﬁ o+ & + _$
Hzm 9k+3/2 —| 2 £-1 0k+1/2
1 EMy s (677)k+1/2
> - - — 11d6
Pivis D=9
+Hk 22 g l £-1 9k+1/2 _ek—l/z
L &My ( 7”)lm/z

(3.75)
as on — 0.

The vertical advection of @ in the thermodynamic equation (3.68) involves the

vertical mass flux at just one level, i.e., the level at which potential temperature is
predicted. This is a result of using the CP grid instead of the Lorenz grid. As pointed out
by AKO96 this has the advantage of allowing conservation of quasigeostrophic potential
vorticity as in the vertically discrete equations of Charney and Phillips (1953). In our
nonhydrostatic model, this conservation is not relevant for small-scale motion, but it may
still be a factor for large-scale motion. A disadvantage of (3.68)-(3.73) is that the mass-
weighted potential temperature is not globally conserved, and as in AK96, the vertical

advection of 8 does not vanish for an isentropic atmosphere.

The use of the discrete vertical potential temperature advection term in (3.68)
leads to large dispersion errors in high-resolution simulations, because it is centered in
form. Such dispersion error can be reduced by using upstream-weighted schemes, e.g.,
Takacs (1985). This is not as much of an issue for large-scale flow, where vertical
motions are small, but on the small-scale where vertical advection of potential
temperature is significant, these errors can be reduced with the upstream-weighted

schemes. Figure 3.4 shows the reduction in dispersion error in the perturbation 6 field

resulting from using the upstream-weighted scheme of Takacs (1985) versus a simple

centered scheme. The simulation is a 2D rising thermal in a neutrally buoyant
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Max 3.956 Min -2.656 Max 1.824 Min -0.128

Upstream-weighted
advection scheme

Height (km)

Figure 3.4:  Perturbation potential temperature at time z=1000seconds for a rising
thermal experiment performed with an early o-coordinate version of the

model using (a) a centered advection scheme, and (b) an upstream-
weighted advection scheme (Takacs 1985) for the potential temperature.

environment using o coordinates and is based on Bryan and Fritsch (2002). Upstream-

weighted advection schemes typically require the mass flux at multiple levels. Therefore,
the appearance of the vertical mass flux at one level, as in equation (3.68), does not
facilitate the use of such schemes.

We wish to use an upstream-weighted potential temperature advection scheme in
order to reduce dispersion error. Therefore, we need to derive an alternate form of the
potential temperature prediction equation which uses the vertical mass flux at multiple
levels in the vertical advection term. This alternate form will be required to conserve

total energy as in the original form. To derive the alternate 6-prediction equation, start

again from the total energy conservation requirement of equation (3.65). As before, use

(3.20) and (3.66), but rearrange the terms differently to arrive at
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1 00
EHI [mla—;‘/z+(mv)1 .VOI/Z}(&])I
1 a6
o | o[ M (0n) +11, m,, (6n), | |22

- 1
- +E[Hk (mv)k (6T])k +Hk+1(mv)k+1(5n)k+1:|'vek+l/2

1 aeKH/z
R )
+ [ (), (116), (), (116), ] (.76)

!KZjeim/z |:Hk+l(m17)k+l -, (mn)k:| ]
T'])1 +11, (éK - 01<+1/2)(m17)1<

& [ Pes B9,

+l'[1(91/2 — é1) m

(Hk+l —1II, )9k+1/2 (mﬁ)kﬂ/z

(
k=1 &My y)s (5n)k+1/2

= Z(mQ)kﬂ/z (6n)k+1/2'

k=0

The 6-tendency equation which satisfies (3.76) can be written as

a0/(-%—1/2 (mnvan)

k+1/2
(mH5n) VO,
(o), (11 ) () (M6), T, (om),, =T (),
(m 6n)k+1/2 i (mHén)kH/Z
_ ﬁ)k+1/2 élﬁ _ék _ I, —1I1, .
l:gmkﬂ/z (5771)k+1/2 Iil(ml_[én)kﬂ/z 6k+l/z(mn)k+1/2 (3.77)
_(mo3n),\,
(mnan)kﬂ/z

for k=12,---, K—1,

%+m,vq/2+(0 91/2)( n)l — QI/Z (3.78)

ot m m,,, (57])”2 Hl ’

1
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and

0., N (mV)K Ve N (9](+l/2 _ék)(mﬁ)K _ O , (3.79)

K+1/2
at mK mK+1/2 (517)](+1/2 HK

where (3.71) and (3.72) apply to (3.77). From equation (3.74) we can see that (3.77)-

(3.79) are finite-difference analogs ofd6/dt +v-V0 + 8(179)/871 —600n/on=0/11.

3433 Geopotential energy equation

We now derive a flux-form geopotential energy conservation equation and
determine whether the conversion term between geopotential and kinetic energy is
consistent with that derived from the kinetic energy equation. Multiplying equation

(3.36) by m we identify the energy conversion term, given by the kinetic

r12 W12

energy equation, as (—m gw,.,,,)- Now multiply the geopotential tendency equations

k+1/2

(3.37) and (3.38) by m and add ¢, , , times the layer-edge continuity equations

k172
(3.21)-(3.23). Using (3.50), the resulting geopotential energy equation is

) m - ’;7\75
g(mq))kﬂu +V- (mv¢)k+l/2 + ( ()g;;)kf/z )k =M 28Wk2 (3_80)

for k=1,2,---, K—1,

2 g
g(md))ln +V- (mv¢)1/2 + ((577)1/)21 =M,,8Wy (3.81)
and
2 g
g(mqb)l(_'_l/z + V : (mV¢)K+1/2 - ((677)—K+)11/: = mK+1/2gWK+1/2 > (382)
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where the vertical flux of geopotential energy at layer centers is defined as

— 1 ; .
(mn¢)k = E[(mn)k_l/z Ppn t (mn)k+1/2 ¢k—1/2J for k=12,---,K. (3.83)

In (3.83), note that the geopotential flux terms involve products of the mass flux and
geopotential at different levels. In deriving (3.80)-(3.82) we defined the geopotential

interpolated to layer centers as

~ 1
¢, = E(¢k+l/2 + ¢k—l/2) (3.84)
for k=1,2,---, K,

which is the final interpolated variable that needed to be defined. Equations (3.80)-
(3.82) are in flux-form, so that geopotential energy is internally conserved, and the

energy conversion term m ,,, , gWw

.1, appears with the same form but opposite sign as

that derived from the kinetic energy equation above, so total energy is conserved.

3.4.4 Implications of the “n-scheme”

It turns out that the vertical discretization just derived, which satisfies integral
Constraints I and II, leads to the “p-form” of the discrete vertical pressure gradient term,

as shown below. Therefore, a computational mode in the potential temperature field

exists as shown in Figure 3.1. This results from the form of p_  in equations (3.59)
and (3.60). Plugging these expressions into (3.32) and (3.33), the VPGF becomes

1 Pr — Py
M (O0),, (3.:85)
for k=12,---,K—1,

(VPGF)

k+1/2 T

and
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L pzhy (3.86)

(VPGF)
2 (517)1/2

V2 T

Equations (3.85) and (3.86) are direct discretizations of the continuous equation
(2.27), which is the “p-form” of the VPGF. The issue is that p, , , is not evaluated from
a discretized form of equation (2.15). If it were, then the VPGF would be expressed as a
direct discretization of the equation VPGF = —009I1/dz in which the computational mode
is not supported and the expression is in terms of the difference in Exner function. In the

following section, we derive a scheme using such an alternative specification of p, .,

which we use in the model. The result is a trade-off of the satisfaction of integral
Constraints 1 and II in generalized vertical coordinates for the avoidance of the

computational mode in 6.

3.5 Alternative scheme: The “z-scheme”
Using the scheme derived in the previous section as a starting point, we derive an
alternate scheme which turns out to satisfy integral Constraints I and II for n=z only.

The integral constraints are not satisfied for systems in which coordinate surfaces may

slant, such as @ and o, due to nonzero geopotential gradient terms. These terms are

assumed to be zero in the development of the present scheme.

In the following analysis we retain the designation of the vertical coordinate as n

with the understanding that it represents z. Likewise the vertical velocity w is now

synonymous with 7} and density p is synonymous with m. For simplicity we assume that

there is no topography so that the lower boundary is a constant-coordinate surface, with
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the boundary condition7); = w, =0. The basic difference in the present analysis is that

we ignore terms involving time derivatives and horizontal gradients of geopotential as ¢

1s constant on z-coordinate surfaces.

3.5.1 Vertically integrated momentum circulation constraint on the HPGF

For the z-coordinate, in which V@ =0, the horizontal pressure gradient force
expressed in equation (3.34) becomes
(HPGF), =-6, VII, for k=12, K. (3.87)

Using equations (3.39)-(3.42) in (3.87) we can write the layer mass-weighted HPGF as

[m(HPGF) ], (6n) = —V[%(%z —6 . )} . (3.88)

Since the right hand side of (3.88) is a pure gradient term, it generates zero circulation of
momentum when integrated about a closed curve, therefore, the vertically integrated

momentum circulation integral constraint is satisfied.

3.5.2 Conservation of total energy

3.5.2.1 Work done by the pressure gradient forces
Applying V@=0 to equation (3.43) the work done by the HPGF can now be
written as

[mv . (HGPF)]k =-mo v, -Vp,
for k=12,---,K.

(3.89)
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The work done by the VPGF is still expressed by equation (3.44), however, due to the

lower boundary condition, equation (3.45) becomes
[mw-(VGPF)] =0. (3.90)

After some rearrangement of terms as in the derivation of equation (3.54), the vertical

sum of the work done by the pressure gradient forces is

K-1

K
[ mv-(HGPF) |, (&n), + >, [ mw-(VGPR)], (o),
k=1 k=0
< < (3.91)
2| p,
=-$ ) (o0, + 321 2010
k=1 k=1 g
where the vertical sum of the energy conversion term is given by
K K apk
Z(m(xa))k (5n)k =) mo, E+ v, Vp, (577)k
! o (3.92)
+k_1 Wk+1/2/5k+1/29k+1/2 (Hk+l - Hk )
3.52.2 Thermodynamic energy equation

We use the energy conversion term given by (3.92) in the vertically summed

enthalpy tendency equation (3.64), which gives

K 9 K K ) .
gg(mcpT)k (5n)k * Z}V ' (I’I’lVCPT)k (5n)k * Z}[(mncpT)kﬂ/z B (mncpT)k—l/2:|
K 9 K-l A
= ,Z_fm"ak (% +v,-Vp, }(&7)/{ T kz_} Wia12PinOreir2 (Hk+1 B Hk) (3.93)
K
+]§6(mQ)k+1/z (6n)k+1/2'

Combining mass continuity equation (3.19), equations (3.20), (3.39), and (3.41) we get
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K

imknk[§+v vé ](5n)k “Sam,[(m),,..~(m),..]

k=1 | k=l (3.94)

K
Zwk+l/2pk+l/2 k+1/2( ) 2( )k+1/2( )k+1/2'

k=1 k=0
which is the requirement for total energy conservation. Note that up to this point we have
not been required to specify the form of p, ,, to satisfy the integral constraints.

Therefore we are free to specify it any way we wish. The most straightforward way is to

simply define it from equation (2.15) such that

. (6n)
Piirz =8My s ﬁ ) (3.95)
and
. (6n)
Puz =82 5 ¢ : (3.96)
which, for z-coordinates gives
Peors = M for k=0,1,---, K-1. (3.97)

Finally, using (3.20), (3.66) and (3.97) in (3.94) we get the requirement for total energy

conversion in terms of potential temperature at layer edges, which is
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1 00
EHI |:m1 a—lt/z + (mv)1 Ve, , :|(5T])l
! 90
< E[Hkmk (577)k +1I,, my, (577)k+1 :|—§;”2
m 1
. +5[H/‘ (mv)k (6n)k 1, (mv)k+1 (an)kﬂ :| . V0k+1/2

d
+%HK [mK %+(mv)l< -Vemz}(an)K (3.98)

) ;
+k:1 E[Hkn (9k+3/2 - 9k+1/2 ) +1T, (9k+1/2 - 9"‘”2 )](mn)sz

= Z(mQ)kH/z (6n)k+1/2

k=0
The potential temperature tendency equation which satisfies equation (3.98) is exactly the

same as equations (3.68)-(3.72), with

1
(Hae)k+1/2 = E[Hkﬂ (9k+3/2 =0 ) +IT, (0k+1/2 - ek—l/z)}

(3.99)
for k=1,2,---, K—1.

Note the simplified form of (3.99) compared to (3.73).
Equation (3.98) provides the “single vertical mass flux” form of the potential
temperature advection as in AK96. We can rearrange the summation terms differently to

rewrite (3.94) as
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1 200
In [m B ), ~ve1/2}(5n)l

00

1
+K—l E[Hkmk (577)k + Hk+1mk+1 (6n)k+1 }%
o1
- +E[Hk (mv)k (6n)k +II,, (mv)k+1 (677)“1 i| ' VO"“/Z
1 a0, .
+EHK[mK#m+(mV)K 'Ve“”z}(an)’f (3.100)
K-1 B ) -
+;[(mn)k+1 (He)k+1 N (mn)k (He)k}
K-1
k;esz |:Hk+1(m17)k+1 -1, (mn)k:| ]
+I1, (él N 91/2)(””7)1 — I, (9K+1/2 a éK )(mn)K
K
= gg(mQ)kH/z (6n)k+1/2'
The potential temperature tendency equation which satisfies equation (3.100) is
aek+]/2 (mHV5rI)k+l/2 .
at (mnan)k+l/2 Vekﬂ/z
) (18), (o) (18), 1 ), -1, )
(mn5rl)k+l/2 o (mHSn)kH/Z (3-100)
— (mQan)kH/Z
(mnan)kH/Z

for k=12,---, K—1,

and equations (3.78) and (3.79) still apply to the bottom and top layers respectively.

3523 Geopotential energy equation

The geopotential energy equation for 1=z is the same as in subsection 3.4.3.3. In

height coordinates, geopotential energy conservation is closely tied to mass continuity.
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3.5.3 Implications of the “z-scheme”

With the modified form of p, , , given by (3.95) and (3.96), the VPGF given by

equations (3.32) and (3.33) becomes

r{kﬂ _I:Ik
k+1/2 ¢k+1 _¢k (3102)
for k=12,---, K—1,

(VPGF),,,, =-g0

and

GF),, = g6, LT I
(VPGF),,=-¢ 1/2W' (3.103)
1~ Y2

The VPGF now has the “TI-form”, so the computational mode in potential temperature is
avoided (see Figure 3.1). As shown in Appendix B, this form of the VPGF leads to a
reduction in the truncation error. Again, the trade-off with using this scheme is that in
general, for n#z, integral constraints I and II are not satisfied. We consider the

avoidance of the computational mode to be more important than unconditionally

satisfying the integral constraints, and therefore use the z-scheme in the model.

3.6 Summary of the design features of the two vertical schemes

We have derived two vertical discretization schemes which mainly differ in their
specification of the vertical pressure gradient in the vertical momentum equation. In the
“n-scheme”, the discrete VPGF is expressed in terms of pressure, while in the
“z-scheme”, it is expressed in terms of the Exner function. We use the latter scheme in

the model, even though integral Constraints I and II are not generally satisfied. The

overriding benefit to the “z-scheme” is the avoidance of a computational mode in the
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potential temperature field. In addition, Thuburn (2006) and Toy and Randall (2007)
demonstrated that the representation of linear wave propagation is more accurate with the

Exner function form of the VPGF. Table 3.1 summarizes the main characteristics of the

two schemes.

Table 3.1: =~ Comparison of the characteristics of the “z-scheme” and the “n-scheme”.

(Note that the integral constraints refer to satisfaction for the generalized
vertical coordinate. The “z-scheme” satisfies Constraints I and II for the
specific case n=z.)

Discrete z-coord. Mass Momentum Conservation | Conservation of
form of | computa- | conservation | circulation | of total energy 0
the tional (Constraint 0) | constraint on | (Constraint IT) (Constraint I1I)
VPGF mode in the HPGF
0? (Constraint I)
oIl . . . .
z-scheme -0 5— No Satisfied Not satisfied Not satisfied Not satisfied
z
16p . . . .
n-scheme | —— 5 Yes Satisfied Satisfied Satisfied Not satisfied
m

3.7 Summary of the “z-scheme” vertically discrete governing
equations

This section summarizes the vertically discrete governing equations of the
“z-scheme” which the model is based on. The scheme was developed using centered
differences. In the actual model, we use upstream-weighted advection schemes for mass,
potential temperature, and geopotential. These are presented in Appendix A. The use of

these uncentered schemes means that the model equations do not formally satisfy the

integral constraints.
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Continuity equation:

om

(9 v (mv) + (mﬁ)kﬂ/z B (mﬁ)k—l/z ~0
ot

(o),

for k=1,2,---, K.
Boundary conditions:
171/2 = nK+1/2 =0.

Vertical pressure gradient force:

(VPGF),,,, =—8g0,.,, I_Ekﬂ — I:Ik
¢k+1 - ¢k
for k=12,---, K—1,
and
GF) = ) Hl B ﬁuz
(VPGF),, =-¢g6, , (51 -9, )
where
~ 1
¢k = E(¢k+1/2 + ¢k—1/2)
for k=12,---,K.
Horizontal pressure gradient force:
- 1 p oM
(HPGF), = —ekvnk+—[£ a—wj
glm aJn
for k=12,---,K,
where
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p A, | _1 m, -, m 11
6—Vo g0, ==V, +80,_,=——=Vo
(m an }k |: k+1/2 ¢k+1 ¢ k+1/2 k—=1/2 ¢k o k—=1/2

(3.110)
for k=23, K—1,

p ol | 1 I, —II m, -1l
(m a V¢}l 2|:g93/2 é2_¢llv¢3/2+gel/2 é ¢1/2 V¢1/2 > (3111)

Py

p ol 1{ ., -1, m -T1
vy g KN Ky gp h_klye | (3112)
(m an }K 2 K+1/2 ¢K+1/2 _¢K K+1/2 k—1/2 ¢k - k—1/2

= 1
9k=5(9k+1/2+9k_1/2) for k=12, K, (3.113)

(8n),,,, =5 [(6n), +(an),,,]

(3.114)
for k=12,---,K—1,
and
1 1
(677)1/2 = 5(&7)1 i (677)1(+1/2 = 5(577)1( ’ (.115)
Thermodynamic equation:
aekﬂ/z + (mHV5rI)k+l/2 .
o (mmien) "
+ (mn)k+1 ( é)k+1 B (mn)k (Hé)k -0 Hk+1 (mf’)kﬂ B Hk (mn)k
( )k 1/2 o (mHSn)kH/Z (3.116)
— (mgan)kﬂ/z
(mnan)kﬂu

for k=1,2,---, K—1,

95



a0, (m), o (6-0,)0m) o,
ot m, 2 m]/z(&])”z I,

and

a91<+1/2 + (mV)K Vo n (9K+l/2 B éK)(mn)K _ QK+1/2

K+1/2 ?
at mK mK+1/2 (517)](+1/2 HK

where

(mrtn),.,, =3[ (m), (6n), + (1) (30),. ]

for k=1,2,---, K—1,

(mrtvén), == [T, (mv), (6n), +11,,,(mv),  (6n), ]

k+12 9

for k=12,---,K—1,

(), =2 ()., (i), ]

for k=2,3,---,K—1,

and

. 1, . . 1, .
(mn)l = E(mn)uz ’ (mn)g = E(mn)x—l/z ’
Geopotential tendency equation:

a¢k+1/2 n (mv) Tk
Jt M2 (5n)k+1/2

for k=1,2,---, K—1,

where
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(3.118)

(3.119)

(3.120)

(3.121)

(3.122)

(3.123)



(mv) = l (577)k (mv)k + (5n)k+1 (I’I’lV)kH
k+1/2
2 (6n)k+l/2
(3.124)
for k=1,2,---, K—1,
and
= 1 (677)/( m+ (an)kﬂ My
M1 = 5 (5 )
n k+1/2
(3.125)
for k=1,2,---, K—1.
Diagnostic equation for temperature:
éka
T = for k=1,2,---,K. (3.126)
CP
Equation of state:
p,=p,RT, for k=12,---,K. (3.127)
Diagnostic equation for density:
m,g(on
k:M for k=12, K. (3.128)
Driin =P
Relationship between Exner function and pressure:
I, = cp(&] for k=1,2,--. K. (3.129)
b,
Definition of the height-based, terrain-following coordinate o
Zis12 ~ ZS(x,y)
O = for k=0,1,---, K, (3.130)

Zr _Zs(xay)
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where zg is the surface height, and z, is the model top height (which we define as a

constant value).
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Chapter 4 VERTICAL VELOCITY DIAGNOSIS AND
ADVECTION IN THE DISCRETE
EQUATIONS

4.1 Introduction

In Chapter 2, we presented the vertical coordinate used in the model, along with
the diagnosis of the vertical velocity, 1], in the continuous framework. In this chapter we
describe the method for diagnosing the vertical velocity in the discrete system of
equations. As our handling of the generalized vertical coordinate is based mainly on
KA97, the vertical velocity diagnosis is similar to their technique. However, our method
differs as a result of our use of an adaptive grid and upstream-weighted, uncentered

vertical advection schemes in the prognostic equations for 6 and ¢ — the two variables
which are the basis of the vertical coordinate 7. To accommodate this, we will split the

“target-seeking” component of the generalized vertical velocity, introduced in equation
(2.70), into additional components and apply each one in either a centered or an
upstream-weighted advection scheme. We begin by developing the framework for

determining the appropriate scheme to use.
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4.2 A closer look at the advection of @ and z by the generalized
vertical velocity

An implicit fact regarding the vertical coordinate in a system of hydrodynamic

equations is that its value is constant in time, i.e., d17/0¢=0. This means that for systems

based on “pure” vertical coordinates based on a single property such as height, potential
temperature or pressure, an explicit prognostic equation for that property is not needed.
However, such an equation is implicitly satisfied by the specification of the vertical

velocity in each coordinate system. For example, in height coordinates, we could write

%ZOZW—V'VZ—Z'%. 4.1)

Since Vz=0 and dz/dz=1, this simply expresses the Lagrangian relationship z=w.

Similarly, in isentropic coordinates, we could write

20 0 .00
Z_0==2_v.Ve-6—= 4.2
ot n 20 (42)

Since VO=0 and 906/d60=1, this reduces to the Lagrangian form of the first law of

thermodynamics 6 = Q/I1.

In the framework of the hybrid vertical coordinate model, the coordinate is a
function of more than one property. In our case, these are the potential temperature and
geopotential height. As a result, prognostic equations for both of these properties must be
explicitly expressed. We showed in Chapter 2 that the main role of the generalized
vertical velocity is to maintain the constant value of the coordinate. In the following

discussion, we will show that the roles performed by the vertical advection terms in each

of the prognostic equations, i.e., 7dz/0n and 1706/9n, change in the vertical transition
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from z-based to O coordinates. This affects the way these terms are handled in the

vertically discrete equations — whether upstream-weighted or centered-difference

advection schemes are applied, for example.

4.2.1 The role of the vertical 0-advection term in the z-coordinate domain

The prognostic equation for potential temperature in height coordinates may be

written as

0 0 90
P_L_yve-wi?, 4.
o o "oz (4.3)

The vertical advection term (the last term on the right-hand side) physically represents
the O-tendency due to the advection of potential temperature across surfaces of constant
z. In the vertically discrete model, an upstream-weighted treatment of this term is
justified in order to reduce dispersion error as demonstrated in Figure 3.4. So, in the

discrete equations, we want

(na—ej — (na—ej for n—z. (4.4)
an fr1/2 N Jupstream

WEIGHTED

4.2.2 The role of the vertical 0-advection term in the 0-coordinate domain

As mentioned above, equation (4.2) shows that the role of the vertical advection
of potential temperature in isentropic equations is to cancel out the diabatic heating term
in order to keep 6 constant on coordinate surfaces. The way we achieve this in the model
is to specify a centered form of the vertical advection term in the limit of isentropic

coordinates, specifically
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66
[ng—eJ —>T7k+1/2—(5 )’””2 for n—0. (4.5)
M ( )k+1/2

Equation (4.2) is satisfied provided that 7, — (Q/ H) and (60), ,,,/(6m), ., ,~1

k+1/2
for n— 0. The vertical velocity diagnostic procedure developed in this chapter satisfies

the former requirement, while the latter is satisfied by equations (3.113) and (3.114).

4.2.3 The role of the vertical z-advection term in the 0-coordinate domain

The prognostic equation for geopotential height in isentropic coordinates may be

written as

oz . 0z
& v Vz-0Z 4.6
a VT %0 (4.6)

The vertical advection term physically represents the z-tendency due to the advection of

geopotential height across surfaces of constant 6. In the vertically discrete model, an

upstream-weighted treatment of this term is justified in order to reduce dispersion error in

a manner analogous to the advection of 8 in z-coordinates. Therefore, in the model, we

want

{T]a—z] %(na—zj for n—86. 4.7)
an i1/ N Jupstream

WEIGHTED

4.2.4 The role of the vertical z-advection term in the z-coordinate domain

As mentioned above, equation (4.1) shows that the role of the vertical advection

of geopotential height in z-coordinates is to cancel out the vertical velocity w in order to
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keep z constant on coordinate surfaces. The way we achieve this in the model is to
specify a centered form of the vertical advection term in the limit of height coordinates,

specifically

oz
[ng—zj —>ﬁk+l/2(5)¢ for n—z. (4.8)
Ly ( )k+1/2

Equation (4.1) is satisfied provided that 7, —w and (02), .,,,/(m),,,,—1 for

k+1/2
n—z. The vertical velocity diagnostic procedure developed in this chapter satisfies the

former requirement, while the latter is satisfied by equations (3.108) and (3.114).

4.2.5 Two components of the generalized vertical velocity

The way we vary the vertical advection of 6 and z between centered and

upstream-weighted schemes, as described above, is by splitting the generalized vertical
velocity into components and parceling these to the appropriate scheme. In the current

simplified analysis, there are two components to the vertical velocity — one is the

contribution from the “z-like” nature of the coordinate (7). ), and the other is the

contribution from the “6-like” nature of the coordinate (7),). The proportion of the

contributions from each of these components “automatically” vary with height as n

transitions from z to 8. The two components sum to the total vertical velocity 1, i.e.,

n=mn.+1n,, (4.9)

and they have the properties
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n.—-w, 1,0

772—>0, nea

0

for n—z

for n—~0 '

Letting n=F(0,z), and requiring (a/at)nF =0, we can write

d OF
[gl F(6,2)=0= (£

Applying the tendency equations for 6 and z in 1 coordinates,

and

0 _0

o TI

0z

99 [9F ) oz
ot 0z eat'

.00

v-VO-n—,

an

.0z

—=w-v-Vz—-n—,

ot

on

respectively, in equation (4.11) and solving for 17, we get

ﬁ:(aa—];l(W—v-Vz)+(

Here we used

%_

oF _(9F
96

z

oF 2—V~V9
00 ) \ 11 '

00 (8Fj oz
—+ =1.
an

o )on

Finally, comparing equations (4.9) and (4.14) we can write

and

These expressions satisfy (4.10).

z

0:

|

|

oF
o0

oF
_] (w
o ),

It
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—V'VO].

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)



Now, we can use these two components of the generalized vertical velocity to
define vertical advection schemes for 6 and z whose roles adapt in the manner described
above in Subsections 4.2.1-4.2.4. These are:

(@-advection)

06
590 = (1,) (30),.... o022 ; (4.18)
an 0/ k+1/2 (5n) : E)n UPSTREAM
k+1/2 k+1/2 WEIGHTED ;. 1/2
(z-advection)
0z
na_z E(ﬁz) w + 1792 (4.19)
o k+1/2 (577) on Juestream
k+1/2 k+1/2 WEIGHTED ;. 1/2

The above expressions accommodate the specific roles of the vertical advection terms

specified in equations (4.4), (4.5), (4.7) and (4.8).

4.3 Vertical velocity diagnosis and the advection of 6 and ¢ in the
model

In the previous section, we described the method of vertically advecting potential
temperature and geopotential height in a simplified framework of a vertical coordinate

based on 6 and z. In the model, the coordinate is based on 6 and the terrain-following o

coordinate, so the procedure is slightly more complicated, but the overall concept is the

same. In this section we outline the vertical velocity diagnosis, and the advection of 6

and ¢ in the model.
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4.3.1 Advection of 0 and ¢ by the “target-seeking” vertical velocity
component

Recall from Section 2.5 (equation (2.70)) that we broke the vertical velocity into

two components — 7., which is responsible for relaxing F'(6, o) toward and maintaining
its target value 77, and 7)., which involves the spatial smoothing of the coordinate surfaces

(and generally causes F'(60, 0) to deviate from its target value). Here F'(0, o) was defined

in equation (2.58). We examine the first component, expressed by equation (2.72), and

consider =F, so that dF/dn=1. The vertically discrete form is

(ﬁT )k+1/2 -

_ .(4.20
(18-l wee]
9 ¢ f Jo o\ gH T k+1/2

Similarly to the previous section, we break the vertical velocity into the following

components:
(ﬁr )k”/z - (ﬁr’“ )k+l/2 * (ﬁTﬂQ )k+1/2 * (ﬁTﬁ )k+1/2 * (ﬁTﬂR )k+1/2 ’ (4.21)
where
. oF 1
(nT’G)k+1/2 - {(%] :| g_H(Wg_V'V¢)k+1/2 > (422)
0 dk+1/2
- _|[9F Q
(nT,Q)k+1/2 - |:( 00 jo :|k+1/2(njk+l/2 » (423)
. oF
(nTﬂ )k+1/2 - _|:(£j :| (V ) Ve)k+1/2 ’ (4.24)
o lk+1/2
and
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. F(0k+1/2ao-k+1/2)_nk+l/2
(nT’R )k+1/2 a T ' e

Note that similarly to equation (4.10) the first three components have the following

properties:
777',0‘ - 6’ ﬁqu - 09 777-‘9 -0 for n—o
0 . (4.26)
Mo =0 Mo = o Mo —0 for n—6

Accordingly, we handle the vertical advection of 8 and ¢ by these components as

Y -
(4.27)
(T’ a_QJ + (n +7:, ) (69)k+1/2
O s R G
k+1/2
and
) ) Y
0. en0.13) -
4.28
(50),.,. % @2

2

(f’T’G)kH/Z S - |:(77T’Q +1‘7T’9)£ UPSTREAM

( )k+1/2 WEIGHTED | 1, |/

respectively.  Equations (4.26)-(4.28) assure that (d¢,,,/d)—0 for n—o, and

(@ /0t)— 0 for n— 6.

0k+1/2
When coordinate smoothing has taken place at a given model grid point, then

n#F(0,0) and, therefore, from equation (4.25) we have (ﬁT’ R) 7 0. The purpose of

k+1/

this vertical velocity component is to advect 8 and ¢ in such a way as to return F to its
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target value 77 through a relaxation process with time constant 7. In the model, we use

centered schemes, for simplicity, to advect 8 and ¢, in this process i.e.,

L . (66)
0.32) o foe

(5n)k+1/2

and

. a_¢ . (6¢)k+1/2
[nT,R on Jk+1/2 B (nT’R)kH/Z (577)k+1/2 '

(4.29)

(4.30)

A summary of the vertical advection schemes for 6 and ¢ associated with each of

the four components of the “target-seeking” vertical velocity is shown in Table 4.1. The

upstream-weighted advection schemes are based on Takacs (1985) and the details are

shown in Appendix A.

Table 4.1:  Type of scheme used for the discrete vertical advection of @and ¢
by each “target-seeking” vertical velocity component.

Vertical velocity 0 o
component
Mo Upstream-weighted Centered
77T,Q Centered Upstream-weighted
77”) Centered Upstream-weighted
77T, R Centered Centered

4.3.2 Advection of 0 and ¢ by the “smoothing” vertical velocity component

The purpose of the 7); component of the vertical velocity is to maintain the

“smoothness” criteria for the model coordinate surfaces. To do this, it has to force
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F(6,0) away from its target value, 1. The geopotential height tendency is directly

calculated from the “smoothness” criteria given by equations (2.79) and (2.80). When
these criteria are met, the results are used in the finite-difference form of equation (2.78)
to calculate the “smoothing” component of the vertical velocity. A simple centered form

of 011/ 0z is used, so that

‘ B azj [az] ] (6n)k+l/2
\ _[ree NES Nl 4.31)
( ’ )k+l/2 [{ at smoothing,/ at smoothing,v k+1/2 (5Z)k+1/2

This has the effect of vertically advecting ¢ with a simple centered scheme. The vertical
velocity values generated by this algorithm are then used to advect € in an upstream-

weighted scheme.

4.3.3 The final determination of the vertical velocity

KA97 diagnose the vertical velocity in two steps. First, all the processes which
affect 8 and o, except for vertical advection, are determined. These include horizontal
advection and diabatic heating. Generally, this will force F(6,0) from its target value, 7.

The second step is to determine, through an iterative procedure, the vertical mass flux
required to bring F(6,0) back to the target value.
We follow the same general procedure, except that in the first step, we include the

vertical advection of 8 and ¢, just presented, as an explicit forcing. Another difference is

that in our method, the target value for F(6, ) at a given time step is not

+1/2’O-k+1/2

necessarily 77, | ,, but instead is
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n—1

-F
Fr — ! + (Al‘) Neara k+1/2 , (4.32)
T

where n and n-1 refer to the current and previous time steps, respectively. This a time-

integration of equation (2.64) with 7). set to zero, i.e.,
-F
{ﬁ] F(6,0)= n-r.o) ) (4.33)
or ), T

Where in KA97, the vertical velocity determined by the iterative solution is the total

velocity, in our case, it is the residual required to exactly set F(6, )to F"

+1/2’O-k+1/2 k+1/2 at

the current time step.

In the first step of the iterative procedure, we find the tendency of ', ,due to the

processes of horizontal advection, diabatic heating, vertical displacements by w, and the

vertical advection by 7. This is done by calculating

Q—V-VO
I

£

00 06
0, 0,.,,+tA —|N, — -\ _] @9
k+1/2 k+1/2 ( T anjuPSTREAM [ e on CENTERED

WEIGHTED

" an CENTERED . an CENTERED j41/2

and
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wg—v-Vo

o “=¢  +2 (77 aq)j (7'7 ad)}
k12 = Pk T 4 - . B 2 9n ’
! gH ' aT] CENTERED ' aT] %%Z%%
. 00 . 00
_(Tlr,ea_] _(TIT,R a_j
n UPSTREAM N ) cenrerep .

where the superscript * denotes perturbed values. From these values, we calculate

*

F = F(0

k+1/2 k+1/2 2

* *

Gk+1/2 )

We then define
(An)k+1/2 = Em/z - Fnk+1/2'

Finally, we determine 77 through iterations of

[( aF* ] ] (aekﬂ/z ] + {( aF* J ] [ao-kH/Z \J - _ (An)k+1/2
99 o di+1/2 o VERT’ do 0 lk+1/2 o VERT’ Al

until An, recalculated at each iteration, becomes sufficiently small. Note that

aek+1/2 — (69)k+1/2
a - nk+1/2 >
t VERT’ (5n)k+l/2

and

[ao-kﬂ/z \] = _1:]/ L (6¢)k+1/2 .
at VERT’ o gH (6n)k+1/2

The final value of )7, , is the cumulative value calculated in the iterations.
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4.3.4 Final forms of the vertical advection of 6 and ¢ and the vertical

velocity

In view of the previous subsections, the form of the vertical advection of 8 and ¢

are, respectively,

(.ae

%) -
an k+1/2

and

99

( .

|

+

+

2] -
M Jin

+(ﬁsa—¢

26

WEIGHTED

59 N JupstrREAM
WEIGHTED

. 0 .
2]
n CENTERED n

s

+(1‘1 8_(1)
1.0 N Jupstrean

WEIGHTED

]CENTERED

on

The total vertical velocity is given by

b2
e an CENTERED

=7

00
T,R%
(3)

(8m)

d¢

d¢
T,R %

B
o aTI UPSTREAM e an CENTERED

j CENTERED

UPSTREAM
WEIGHTED

jCENTERED

Mo = (1) +(75) s 000

where (nT)

k+1/2

prognostic variables, i.e., mass, momentum, and tracers.

schemes for these variables are given in Appendix A.
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dk+1/2

, (4.41)

(4.42)

(4.43)

is defined in (4.21). It is used for vertically advecting the remaining

Details of the advection



4.4 Summary

In this chapter, we developed a method for diagnosing the vertical velocity in the
hybrid vertical coordinate of the model. In the vertically discrete system of equations, the
diagnostic procedure is complicated by the fact that different vertical advection schemes

are used for @ and ¢, depending on the coordinate regime in which a given layer is

located. These schemes are designed to transition from centered-in-space to upstream-
weighted from one regime to the other. The method we chose to achieve this was to
partition the vertical velocity into separate components, each one allocated to the
appropriate advection scheme. The sum of these components is then used as a unit in the
vertical transport of the remaining prognostic variables in the model, i.e., mass,

momentum, and tracers.
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Chapter 5 RESULTS

5.1 Introduction

Model tests with various two-dimensional mountain wave simulations are
presented in this chapter. We compare the results of the model run with the Eulerian

o-coordinate versus the hybrid vertical coordinate. The first three tests are idealized

isothermal cases, and the fourth test is a simulation of the 11 January 1972 Boulder,
Colorado windstorm. Two of the idealized tests are linear cases whose results can be
compared to analytical solutions. The Boulder windstorm results are compared with
those of previous modeling studies. We will compare the two coordinate systems in
regard to processes such as vertical momentum and passive tracer transport, as well as

wave breaking, and point out the strengths and weaknesses of each system.

5.2 Mountain waves in an isothermal atmosphere
These experiments involve uniform flow over an isolated mountain. For

isothermal atmospheres, in which the Brunt-Viisidld frequency N = ( g/ 0)80/ 0z

(orN = g/ JcpT ) is constant, analytic solutions are readily obtained. Linear wave

theory applies when the mountain is small, that is, when NA/i<1, where & is the
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mountain height and i is the zonal wind speed. The overbar represents the horizontal-
domain average. Note that Ni/ii is the inverse Froude number. Linear mountain wave
analyses include Alaka (1960), Smith (1979), Holton (2004). Analytic studies of finite-
amplitude (non-linear) waves associated with taller mountains include Long (1953) and
Laprise and Peltier (1989a,b,c).

From linear wave theory (Eliassen and Kleinschmidt 1957; Eckart 1960), the

steady-state solution for compressible, isothermal, uniform flows can be as written as

—2 2.7 2.7
LI AL (5.1)
¢ ) ox 0z

(see Appendix C for a derivation of this equation) where w” = w’\/g is the perturbation

vertical velocity scaled by the square root of the basic-state density, cS2 = yRT is the

square of the speed of sound, and / is the Scorer parameter, an inverse length given by

N> 1 g
2
l :ﬁ—z—szfz . (52)
The solutions to (5.1) are waves of the form
W”(X,Z) — wei(kx+mz) (53)

where w is the complex amplitude, and k£ and m are the horizontal and vertical wave

numbers, respectively, which are related by the dispersion relation (see Appendix C)
u
m :lz—kz(l——z]. (5.4)

For low Mach number, m*=/*~k*. Equations (5.3) and (5.4) show that vertically

propagating internal waves are supported when m” > 0, which is the case for
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(5.5)

Otherwise, the waves decay in the vertical. Therefore, the Scorer parameter, which is a
property of the flow only, is an intrinsic spatial scale which approximates the upper limit
of the horizontal wave number in which vertically propagating waves are supported. It is
also the vertical wave number of hydrostatic mountain waves (Alaka 1960; Smith 1979).
As k is determined by the surface topography, this means that vertically propagating
waves are more likely to occur over broad mountain ranges where the dominant Fourier
components are associated with large wave numbers.

Since equation (5.1) has constant coefficients, it is evident that the amplitude of

the w” wave field is constant for vertically propagating waves. This means that the
amplitude of the actual perturbation vertical velocity field (w”) varies as the inverse

square root of the basic state density, which is an exponentially increasing function of
height. This is a consequence of wave-energy conservation. The phase lines of these
waves tilt upwind, as required by the radiative lower boundary condition. This ensures
that the group velocity is upward, away from the surface topography, i.e., the energy
source.

In our idealized experiments, the model is initialized with constant

temperature 7 = 287 K, and constant zonal wind speed #=20m/s. The reference
pressure (i.e., at z=0) is 1000 hPa. The buoyancy frequency is N=0.0183 s™', and the

characteristic wave length of the flow, as given by the Scorer parameter, is
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A,=2m/[=6890 m. The mountain profile is prescribed as a “witch of Agnesi” curve,
given by

ha’
zg(x) = R (5.6)

where z (x) is the surface height and a is the half-width. This profile has been used in

numerous studies (e.g., Queney 1948, Alaka 1960, Smith 1979), and lends itself to
Fourier analysis. The nature of the wave behavior which develops is strongly determined
by the values of mountain height and half-width.

The horizontal boundary conditions are periodic, and the domain size is
sufficiently large to minimize upstream contamination of the flow field near the mountain

for the time period under study. The model top is a rigid lid at z,=30 km. In the small-

amplitude wave simulations, a Rayleigh damping layer is used in the upper layers to
avoid wave-reflection off the upper boundary. The damping terms, which are added to

the right-hand sides of the zonal and vertical velocity tendency equations, are given by

D,(2)=v(z)(u~ 5)} 57

D (z)=v(z)w
Following Klemp and Lilly (1978), the inverse decay time v varies smoothly with height
according to the relation

0, for z<z

v(z)= — 5.8
2) vosinzl:g(l— 2 J:l, for z <z<z >-8)
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where v, is a constant with the value 0.025 s, and z,, 1s the height of the lower edge of
the absorbing layer. The layer thickness z. —z, is chosen to be 7 km, which is on the

order of the characteristic wavelength.
For the hybrid-coordinate runs, we use the following parameters for the vertical

coordinate: 6 . =270K, (00/do) . =0K, and r=64. As shown in Figure 5.1, this

mi
provides a rapid transition with height from the terrain-following coordinate to the

0-coordinate. Atz=3 km and above, the coordinate is basically isentropic.

Finally, the horizontal grid spacing for each experiment is based on the half-width

of the mountain, and is chosen as Ax=0.1a. There are 600 grid points in the horizontal,

30

— ot

theta

25

20 -

Geopotential Height (km)

0 I I I 1 I I 1 I 1 I
250 300 350 400 450 500 550 600 650 700 750 800
eta and theta (K)

Figure 5.1:  Vertical profiles of the hybrid vertical coordinate (black curve) and the
basic-state potential temperature (red curve) for the isothermal mountain
wave experiments. Coordinate is isentropic above ~3 km.
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which provides a horizontal domain length of 60a. We use 120 levels which, with the
model top height of 30 km, gives an average layer thickness of 250 m. The free-slip

boundary condition is applied at the surface.

5.2.1 Linear hydrostatic waves

Choosing the mountain height to be #=10 m gives Nh/ii=0.00915«1, so the

developing wave is approximately linear, and we can compare the numerical results to

the analytic linear solution. For broad mountains, in which Na/i>1, the vertical

acceleration is small, and the flow is approximately hydrostatic. Setting the mountain

half-width to a=20 km gives Na/it=18.3>1, which meets this criterion. Our horizontal
grid spacing is, therefore, Ax=2 km, and the domain length is L=800 km. We will

compare our model results to nonhydrostatic analytic theory which is discussed in
Appendix C. To obtain the analytical results, we included the first 90 Fourier modes in
the representation of the surface topography, which provides the lower boundary
condition for the vertical velocity. As expected, these agree well with the hydrostatic
analytic results (e.g., Queney 1948) presented in Durran and Klemp (1983) and He
(2002). A distinct feature of hydrostatic mountain waves is the vertical arrangement of
wave packets directly above the mountain top. This is due to the group velocity of
hydrostatic mountain waves having only a vertical component.

In order to compare with the steady-state analytic solution, the model is run until
an approximate steady-state is reached, which takes about 40 of the characteristic time
units given by a/ii. Figures 5.2 and 5.3 show the perturbation zonal and vertical

velocities, respectively, for the analytic solution, and the o-coordinate and hybrid-
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Analytical solution

Height (km)

20

40 60 80 100

X (km)

Figure 5.2:  Perturbation zonal wind (ms™") in the vicinity of the 10m high, 20 km
half-wide mountain from (a) the steady-state analytical solution, and from
model simulations at 7=40a/iz (11.1hours) with (b) the o vertical
coordinate and (c) the hybrid vertical coordinate. The horizontal axis
represents distance relative to the mountain center.

coordinate model runs. The portion of the domain in the vicinity of the mountain is
shown. The model solutions agree well with each other as well as with analytical theory.
While the first moments of the velocities are reasonably accurate, a more stringent

test of the model is to compare second moments of the velocity with theory. We
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Analytical solution

1 1 1 i ! | 1 1 1
9100 -80 -60 -40 -20 0 20 40 60 80 100

o coordinates Hybrid coordinates

Figure 5.3: Same as in Figure 5.2, except fields plotted are perturbation vertical
velocity (ms™).

therefore examine the vertical transport of horizontal momentum by the mountain wave.
This has significance in terms of the effect of surface topography on the mean flow at
upper levels via gravity wave drag. Following Eliassen and Palm (1960), the momentum

flux is written as
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L/2
M(z)= J puwdx=Lpuw . (5.9)

-L/2

Figure 5.4 shows the vertical distribution of the model’s diagnosed momentum flux,
given by (5.9), for each coordinate system at various nondimensional times ##/a. The
model profiles are compared to analytical results, both nonhydrostatic, and that calculated

from hydrostatic theory (Smith 1979), given by
H

M, = —%poNﬁhz, (5.10)

where p is the density at the surface. These two analytical profiles are in close

agreement which verifies that the flow is nearly hydrostatic. Also, the model results

o coordinates Hybrid coordinates
10 T T T T T 10 T T T T T T
I [ / | ! /

o (a) 4030 20 10 0 (b) 4030 20 10

sl . sl .

7t - 7t -

6 - 6 -
€ st 1E st |
5 5
o 4r 13 4 4
I I

3t . 3t .

2 - 2 -

1| - 1| .

O 35 @0 25 =20 5 0 5 o % B35 B0 25 20 45 0 5 0

M (kg 52) M (kg s2)

Figure 5.4:  Profiles of vertical flux of horizontal momentum in kgs™ at various
non-dimensional times (black curves) for the linear, hydrostatic mountain
wave experiment: (a) o vertical coordinate, and (b) hybrid vertical
coordinate. The analytical value for the nonhydrostatic system of
equations is shown by the red lines, and that for the hydrostatic system of
equations (M,) is shown by the green lines.  Labels indicate

nondimensional time units of a/i.
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agree well with the analytical values. They are nearly constant with height, as predicted
by theory.

It is interesting to contrast the form of the vertical momentum fluxes of the two
coordinate systems by diagnosing the actual, non-linear fluxes of the model. As

discussed in Section 2.6, with the Eulerian z coordinate, the transport is due to the eddy

flux (pw)’u”, while in the quasi-Lagrangian 0 coordinate, it is expressed as the form drag

on quasi-material layers, given by—p’0z’/dx. Recall that in the generalized vertical

coordinate, the vertical divergence of the 2D Eliassen-Palm flux, which determines the

tendency of the zonally averaged zonal flow, is

v L gm — %l: » ?;C - (mﬁ)'u':l . (5.11)

Define the “eddy-flux” component of the momentum flux as
L/2

M, (2)= [ (miyu dx=L(mi)u, (5.12)

-L/2

the “form drag” component of the momentum “flux” as

M= [ pEarerp® 5.13
FD(Z)Z_E'./ZP ax X=—LPp axa ( . )
and the surface drag as
M,=M, (z=0). (5.14)
For steady-state flow, the following relation should apply at all levels
M, (z)+ M, (z)= M, =constant . (5.15)

Figure 5.5 shows the vertical profiles of the eddy and form-drag contributions to the

momentum flux at time t=40a/ii. The sum of these, shown by the black curve,
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o coordinates Hybrid coordinates
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Figure 5.5:  Actual vertical fluxes of horizontal momentum diagnosed from (a) o

vertical coordinate, and (b) hybrid vertical coordinate runs for the linear,
hydrostatic mountain wave experiment at t=40a/ii (11.1hours). The blue

curves are eddy momentum fluxes M, the green curves are the form