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ABSTRACT

ELECTRICAL IMPEDANCE TOMOGRAPHY WITH CALDERÓN’S METHOD IN TWO

AND THREE DIMENSIONS

Electrical impedance tomography (EIT) is a non-invasive imaging technique in which electrical

measurements on the electrodes attached to the boundary of a subject are used to reconstruct the

electrical properties of the subject. That is, voltage data arising from currents applied on the

boundary are used to reconstruct the conductivity distribution in the interior.

Calderón’s method is a direct linearized reconstruction method for the inverse conductivity

problem with the attributes that it can provide absolute images with no need for forward model-

ing, reconstructions can be computed in real-time, and both conductivity and permittivity can be

reconstructed.

In this three-paper dissertation, first, an explicit relationship between Calderón’s method and

the D-bar method is provided, facilitating a “higher-order" Calderón’s method in which a correction

term is included, derived from the relationship to the D-bar method. Furthermore, a method of

including a spatial prior is provided. These advances are demonstrated on tank data collected with

the ACE1 EIT system.

On the other hand, it has been demonstrated that various EIT reconstruction algorithms are very

sensitive to the measurement and incorrect modeling of the boundary shape. Calderón’s method

has been implemented with correct boundary shape, but the exact location of the electrodes are

disregarded as they are assumed to be spaced uniformly in angle. In the second body of work,

Calderón’s method is implemented with a new expansion technique which enables the use of the

correct location of the electrodes as well as the shape of the boundary resulting in improved ab-

solute images. We test our new algorithm with experimental data collected with the ACE1 EIT

system.
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Finally, the first implementation of Calderón’s method on a 3-D cylindrical domain with data

collected on a portion of the boundary is provided. The effectiveness of the method to localize

inhomogeneities in the plane of the electrodes and in the z-direction is demonstrated on simulated

and experimental data.
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Chapter 1

Introduction

1.1 What is EIT?

Electrical Impedance Tomography (EIT) is an imaging modality that aims to recover the imped-

ance of a body by making use of electrical measurements on the surface of the body. Electrodes are

placed on the surface of the body and low-frequency currents are applied on the electrodes. The

currents then induce voltage distributions on the electrodes which are measured. These current-

voltage distributions on the surface of the body are the data for the recovery of the impedance.

The mathematical equation that governs the EIT problem can be obtained from Maxwell’s

equation [55]. The equation is often called the conductivity equation which is in the form of the

generalized Laplace equation:

∇ · [(σ(x) + iωǫ(x))∇u(x)] = 0, (1.1)

where x is the spatial variable, i is
√
−1, ω is the angular frequency of the alternating current, σ is

the conductivity, ǫ is the electric permittivity and u is the electric potential. The forward problem

is to determine u(x) when σ, ǫ, and either the current or voltage distribution on the boundary of

the body is given. The inverse problem is then to determine σ and ǫ when the current to voltage

data on the boundary is given.

1.2 Applications

EIT has several advantages over other imaging modalities. It is cost-effective, portable, non-

ionizing, and the fast electronics enable the monitoring of a time-varying object. EIT has many

applications in different environments. It is used to construct tomographic images of the flow of a

1



(A) (B) (C)

Figure 1.1: (A): EIT data collection from the subject. (B): The EIT system in CSU. (C): The reconstructed
image showing the heart and two lungs.

fluid in the pipeline, concrete structures, and detection of leaks from buried pipes [42]. EIT is also

used for geophysical prospection.

EIT is also applicable for medical imaging since human organs and tissues have very different

electrical properties [44]. Compared to the CT-scan, EIT is free of radiation, low cost, and portable.

The application to the early detection of breast cancer can be found in [19,38,45,50,67,72,83]. In

mammography, there are a lot of false positives due to the microcalcifications: 80% of biopsies turn

out to be benign. On the other hand, cancerous breast tissue is two to four times more conductive

than the healthy breast tissue, [43, 44, 69, 73]. It is shown in [66] that the combination of EIT with

X-ray tomography enhances the sensitivity and specificity of the detection of breast cancer.

One of the most promising medical applications of EIT is pulmonary imaging. The conductiv-

ity of lung tissue with air in it is about 0.4 mS/cm. It is considerably less conductive than other

tissue such as the heart(2.3-6.3 mS/cm), spine(0.05 mS/cm), and blood(6.07 mS/cm). See [32,55].

The existence of tumors or fluid in the lung changes the conductivity in that region consider-

ably. This enables EIT to be used for imaging pulmonary ventilation [29–31, 40, 81], perfu-

sion [11, 53, 70, 77] and cardiac imaging [63, 64].

Figure 1.1 shows how the EIT systems produdes a thoracic image. The images are taken at the

EIT laboratory in CSU. (A) is the picture of data collection from a subject. (B) is the ACE1 EIT

system in CSU. (C) is the reconstructed image showing the heart (blue region in the middle) and

two lungs (red region on both sides).
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1.3 Modeling of EIT

1.3.1 The Dirichlet-to-Neumann map

With equation (1.1), we consider two boundary conditions on the boundary ∂Ω of the body Ω

in R
2 or R3. The application of a voltage distribution f on the boundary corresponds to

u(x) = f(x), x ∈ ∂Ω. (1.2)

This is called the Dirichlet condition and equations (1.1) and (1.2) constitute a Dirichlet problem

in the case when the impedance γ(x) = σ(x) + iǫ(x) is known. We measure the induced current

density distribution j on the boundary and this corresponds to

j(x) = γ(x)
∂u

∂ν
(x), x ∈ ∂Ω, (1.3)

where ν denotes the unit outer normal to ∂Ω. This is called the Neumann boundary condition, and

equations (1.1) and (1.3) constitute the Neumann problem in the case when γ(x) is known. In the

absence of current sources or sinks in the body, by the conservation of charge, the current density

is conserved over the boundary: ∫

∂Ω

γ
∂u

∂ν
ds = 0,

where ds denotes surface measure. The Dirichlet-to-Neumann (DN) map takes the Dirichlet con-

dition to the Neumann condition. Because of the practical implication of the data, this mapping is

also called the voltage-to-current density map and is denoted by Λγ ,

Λγ : u|∂Ω−→ γ
∂u

∂ν

∣∣∣∣
∂Ω

.
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If γ ∈ L∞(Ω) is strictly positive almost everywhere in Ω, it is shown in [41] that there is a constant

C that depends only on ∂Ω and γ such that, for all f ∈ H
1
2 (∂Ω),

‖Λγ(f) ‖H− 1
2 (∂Ω)

= inf
‖ g ‖

H
1
2 (∂Ω)

=1

∣∣∣∣
∫

∂Ω

γ
∂u

∂ν
gds

∣∣∣∣ ≤ C‖ f ‖
H

1
2 (∂Ω)

,

which means that the linear operator Λγ is bounded between the following Sobolev spaces:

Λγ : H
1
2 (∂Ω) −→ H− 1

2 (∂Ω).

Knowing Λγ is equivalent to knowing the current density on the boundary arising from any given

voltage distribution on the boundary.

1.3.2 The Neumann-to-Dirichlet map

Let u ∈ H1(Ω) be the unique solution of (1.1) with the application of the current density j on

the boundary

γ
∂u

∂ν
= j on ∂Ω, (1.4)

satisfying the choice of ground condition
∫
∂Ω
uds = 0. The Neumann-to-Dirichlet (ND) map takes

the given current-density distribution to the voltage distribution. This mapping is also called the

current-density-to-voltage map and is denoted by Rγ ,

Rγ : γ
∂u

∂ν

∣∣∣∣
∂Ω

−→ u|∂Ω.

Rγ : H̃− 1
2 (∂Ω) → H̃

1
2 (∂Ω) is bounded where H̃s is the space of Hs functions with mean value

zero. The ND map Rγ is self-adjoint, smoothing, and compact.

1.3.3 Nonlinearity of EIT

For practical applications, EIT is a difficult problem mainly because it is ill-posed [1] and

nonlinear. While the DN map is a linear operator because the governing conductivity equation is

4



linear, the forward map γ 7→ Λγ is nonlinear. To show this, we consider the weak form of the

DN map as follows. Let uγ,f denote the weak solution in H1(∂Ω) of the differential equation

∇ · (γ∇uγ,f ) = 0 with uγ,f |∂Ω= f . We define a linear functional Λγf defined on g ∈ H
1
2 (∂Ω) by

an inner product on ∂Ω as

〈Λγf, g〉 =
∫

Ω

γ∇uγ,f · ∇vdx, (1.5)

where v ∈ H1(Ω) is any function such that v|∂Ω= g in the trace sense. This gives a weak definition

of the map Λγ on functions f ∈ H
1
2 (∂Ω) and it is well defined since if we let v′, v ∈ H1(Ω)

be two functions such that v′|∂Ω= v|∂Ω= g, then v′ = v + φ for φ ∈ H1
0 (∂Ω), and therefore

∫
Ω
γ∇uγ,f ·∇v′dx =

∫
Ω
γ∇uγ,f ·∇vdx+

∫
Ω
γ∇uγ,f ·∇φdx =

∫
Ω
γ∇uγ,f ·∇vdx by the definition

of the weak solution. If Ω has C∞ boundary and γ ∈ C∞(Ω), then the map Λγ restricts to a linear

map from C∞(∂Ω) to C∞(∂Ω) which satisfies for f ∈ C∞(∂Ω), Λγf = γ∂νuγ,f |∂Ω. To this end,

let f be a function in C∞(∂Ω). Then by the regularity theorem for the elliptic differential operator,

uγ,f is now a C∞(Ω) function so that we can think of γ ∂uγ,f

∂ν
in ∂Ω in the strong sense. Let g be

any function in H1
0 (Ω). By integration by part,

〈Λγf, g〉 =
∫

Ω

γ∇uγ,f · ∇vdx =

∫

∂Ω

γ
∂uγ,f
∂ν

gds.

Since g is arbitrary in C∞(∂Ω), this shows that Λγf = γ∂νuγ,f |∂Ω for f ∈ C∞(∂Ω). From the

definition of the DN map Λγ in (1.5), we consider the quadratic form Qγ for the DN map Λγ as a

linear functional on f ∈ H
1
2 (∂Ω),

Qγ(f) = 〈Λγf, f〉 =
∫

Ω

γ|∇uγ,f |2dx. (1.6)
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Qγ(f) represents the power necessary to maintain an electrical potential f on ∂Ω and knowing Qγ

is equal to knowing Λγ . Since for fixed f , uγ,f depends on γ,

Qγ1+γ2(f) = 〈Λγ1+γ2f, f〉 =

∫

Ω

(γ1 + γ2)|∇uγ1+γ2,f |2dx

=

∫

Ω

γ1|∇uγ1+γ2,f |2dx+
∫

Ω

γ2|∇uγ1+γ2,f |2dx

is not equal to

(Qγ1 +Qγ2) (f) = Qγ1(f) +Qγ2(f)

= 〈Λγ1f, f〉+ 〈Λγ2f, f〉

=

∫

Ω

γ1|∇uγ1,f |2dx+
∫

Ω

γ2|∇uγ2,f |2dx.

Therefore the forward map γ 7→ Λγ , or equivalently γ 7→ Qγ is not linear. This means that

for a fixed applied voltage distribution, the measured current density is a nonlinear function of the

conductivity distribution in Ω. This is in contrast to the X-ray tomography and makes EIT difficult.

1.4 Theory of Calderón’s method

In [12], Calderón posed EIT problem for the first time and proved the solvability of the lin-

earized problem by making use of certain complex exponential harmonic functions which are now

known as Complex Geometrical Optics (CGO) solutions. This motivated the construction of CGO

solutions [74, 75], and their usage. A review of CGO solutions can be found in [76]. The D-bar

method of which the name comes from the use of the ∂ operator also uses CGO solutions. The

comprehensive details of the theory and numerical implementations of this method can be found

in [55]. While Calderón’s method is a linearized method, the D-bar method solves the full nonlin-

ear inverse problem directly. It was shown in [46] that Calderón’s method is a linearization of the

D-bar method.
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Calderón considered the following problem. Let Ω be a bounded domain in R
n, n ≥ 2, with

Lipschitz boundary ∂Ω, and γ be a real bounded measurable function in Ω with a positive lower

bound. Let the differential operator Lγ be

Lγ(ω) = ∇ · (γ∇w),

acting on functions of H1(Ω), and the quadratic form Qγ(φ) be

Qγ(φ) =

∫

Ω

γ|∇ω|2dx,

where φ is the trace on ∂Ω of a function ω ∈ H1(Rn) with Lγ(ω) = 0 in Ω. Then, as explained in

(1.6), knowing the quadratic form Qγ is equivalent to knowing the DN map.

The forward problem is then to solve the differential equation Lγ(ω) = 0 with the coefficient

function γ and either the Dirichlet or Neumann boundary condition is given. The associated inverse

problem is to find γ when Qγ is given. More specifically, Calderón considered two problems: Is γ

uniquely determined by Qγ? If that is the case, can γ be expressed by Qγ?

To formulate this problem mathematically, he introduced the following norms in the space of

functions φ on ∂Ω and in the space of quadratic forms Qγ ,

‖φ ‖2 =

∫

Ω

|∇u|2dx ; u|∂Ω= φ, △u = 0 in Ω

‖Qγ ‖ = sup
‖φ ‖≤1

|Qγ(φ)|.

Consider the map

Φ : γ → Qγ.

This forward map is bounded and analytic on the subset of L∞(Ω) consisting of functions that are

real and have a positive lower bound.

The uniqueness question is equivalent to whether the map Φ is injective or not. Instead of

proving the injectivity of Φ, he proved that the Fréchet derivative dΦ|γ=const. is indeed injective,
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that is, if γ(x) = γ0 + δ(x) where ‖ δ(x)‖ L∞ is sufficiently small and γ0 is a constant, then γ can

be nearly determined by Qγ .

Let us sketch the proof of the injectivity of dΦ|γ=const.. We assume γ0 = 1 for simplicity of the

proof. Express the solution of the equation

Lγ(ω) = ∇ · (γ∇ω) = 0, ω|∂Ω= φ, γ = 1 + δ

as ω = u+ v, where △u = L1u = 0, u|∂Ω= φ. Then

Lγ(ω) = L1+δ(u+ v) = L1(v) + Lδ(v) + Lδ(u) = 0.

Let G be a bounded inverse of L1 : H
1(Ω) → H−1(Ω). Then from the above equation,

v +GLδv = −GLδu.

Consider L1 and Lδ as linear map from H1(Ω) to H−1(Ω) such that for u ∈ H1(Ω),

< Lδu, v >=

∫

Ω

δ∇u · ∇vdx,

for any v ∈ H1
0 (Ω). Here, < ·, · > represents the pairing between H−1(Ω) and H1

0 (Ω). Then by

the Cauchy-Schwartz inequality,

∣∣∣∣
∫

Ω

δ∇u · ∇vdx
∣∣∣∣ ≤ ‖ δ ‖L∞(Ω)‖u ‖H1(Ω)‖ v ‖H1(Ω),

and this implies that ‖Lδu ‖H−1(Ω)≤ ‖ δ ‖L∞(Ω)‖u ‖H1(Ω), and therefore ‖Lδ ‖L(H1(Ω),H−1(Ω))≤

‖ δ ‖L∞(Ω). Let ‖ G‖ L(H−1(Ω),H1
0 (Ω)) = A. Then ‖ GLδ‖ ≤ A‖ δ‖ L∞ . We also note that since

u satisfies L1u = 0 in Ω and u|∂Ω= φ on ∂Ω, by the theory of elliptic differential equations,

‖u ‖H1(Ω)≤ C‖φ ‖H1/2(Ω) for some constant C that depends only on Ω. Therefore, if A‖ δ‖ L∞ ≤
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1, the Neumann series

v = −
[ ∞∑

0

(−1)j(GLδ)
j

]
(GLδu)

converges and

‖ v‖ H1(Ω) ≤
A‖ δ‖ L∞‖ φ‖H1/2(∂Ω)

1− A‖ δ‖ L∞(Ω)

. (1.7)

Expand the map Φ near 1 by using the Fréchet derivative of Φ at γ = 1 in the direction δ so that

Φ(γ) = Φ(1) + dΦ|γ=1(δ(x)) + o(‖ δ‖ L∞).

Let the map D : L∞(Ω) → H− 1
2 (∂Ω) be a linear map such that for δ ∈ L∞(Ω) and φ ∈ H

1
2 (∂Ω),

[D(δ)] (φ) =

∫

D

δ|∇u|2dx, where u|∂Ω= φ, △u = 0, u ∈ H1(Ω).

Then D(δ) is a bounded map and

‖Q1+δ −Q1 −D(δ) ‖
H− 1

2 (∂Ω)

= sup
‖φ ‖

H
1
2 (∂Ω)

=1

|[Q1+δ −Q1 −D(δ)] (φ)|

= sup
‖φ ‖

H
1
2 (∂Ω)

=1

∣∣∣∣
∫

Ω

γ|∇w|2−|∇u|2−δ|∇u|2dx
∣∣∣∣

= sup
‖φ ‖

H
1
2 (∂Ω)

=1

∣∣∣∣
∫

Ω

(1 + δ)|∇w|2−|∇u|2−δ|∇u|2dx
∣∣∣∣

= sup
‖φ ‖

H
1
2 (∂Ω)

=1

∫

Ω

(1 + δ)(2∇u · ∇v + |∇v|2)dx

= sup
‖φ ‖

H
1
2 (∂Ω)

=1

∫

Ω

(2δ∇u · ∇v + γ|∇v|2)dx

= sup
‖φ ‖

H
1
2 (∂Ω)

=1

2‖ δ ‖L∞‖∇u ‖L2(Ω)‖ v ‖H1(Ω)+‖ γ ‖L∞(Ω)‖ v ‖2H1(Ω)
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≤ sup
‖φ ‖

H
1
2 (∂Ω)

=1

{
2C‖ δ ‖L∞(Ω)‖φ ‖H 1

2 (Ω)

A‖ δ‖ L∞‖ φ‖
H

1
2 (Ω)

1− A‖ δ‖ L∞(Ω)

+ ‖ γ ‖L∞(Ω)

(
A‖ δ‖ L∞(Ω)‖ φ‖ H

1
2 (Ω)

1− A‖ δ‖ L∞(Ω)

)2




= 2C‖ δ ‖L∞

A‖ δ‖ L∞(Ω)

1− A‖ δ‖ L∞(Ω)

+ ‖ γ ‖L∞(Ω)

{
A‖ δ‖ L∞(Ω)

1− A‖ δ‖ L∞(Ω)

}2

= o(‖ δ ‖L∞(Ω)).

Therefore, D is the desired Fréchet derivative

dΦ|γ=1: δ → dΦ|γ=1(δ).

To show that dΦ|γ=1 is injective, it is enough to show that δ = 0 if
∫
D
δ|∇u|2dx = 0 for all u with

△u = 0. To this end, assume
∫
D
δ|∇u|2dx = 0 for all harmonic function u. Note for the two

harmonic functions

u1 = eπik·x+πa·x and u2 = eπik·x−πa·x, (1.8)

where a, k ∈ R
n with k · a = 0 and |k|= |a|, that

∇u1 · ∇u2 = (iπk + πa)u1 · (iπk − πa)u2 = −2π2|k|2e2πik·x.

Since u1 + u2 is also harmonic,

0 =

∫

Ω

δ|∇(u1 + u2)|2dx

=

∫

Ω

δ(|∇u1|2+2∇u1 · ∇u2 + |∇u1|2)dx

= 2

∫

Ω

δ(∇u1 · ∇u2)dx

= −4π2|k|2
∫

Ω

δ(x)e2πik·xdx.

10



Since k is arbitrary, this implies δ(x) = 0.

Now, to express γ in terms of Qγ , we set again γ = 1 + δ and introduce the bilinear form

B(φ1, φ2) =
1

2
[Qγ(ω1 + ω2)−Qγ(ω1)−Qγ(ω2)] (1.9)

and setting ωj = uj + vj , j = 1, 2, △uj = 0, uj|∂Ω= φj , we obtain

B(φ1, φ2) =

∫

Ω

(1+δ)(∇u1·∇u2)+δ [(∇u1 · ∇v2) + (∇u2 · ∇v1)]+(1+δ)(∇v1·∇v2)dx. (1.10)

As the notation already suggests, we use the special harmonic functions u1 and u2 in (1.8). Substi-

tuting u1 and u2 into equation (1.10), we get

γ̂(k) = F̂ (k) +R(k)

where γ̂(k) is the Fourier transform of γ extended to be zero outside Ω, that is,

γ̂(k) =

∫

Rn

γ(x)χΩ(x)e
2πix·kdx

and

F̂ (k) = − 1

2π2|k|2B
(
eiπ(k·x)+π(a·x), eiπ(k·x)−π(a·x))

which is known in terms of Qγ as in equation ( 1.9) or in terms of the DN map Λγ , because

B(φ1, φ2) =
1

2

∫

Ω

γ|∇(ω1 + ω2)|2−γ|∇ω1|2−γ|∇ω2|2dx

=
1

2

∫

Ω

2γ(∇ω1 · ∇ω2)dx

=

∫

∂Ω

ω1γ
∂ω2

∂ν
ds =

∫

∂Ω

φ1Λγ(φ2)ds.
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From the inequality (1.7), we can estimate

|R(k)|≤ C‖ δ ‖2L∞e2πr|k|,

provided that A‖ δ ‖L∞≤ 1 − ǫ, where C depends only on Ω, ǫ and the radius r of the smallest

sphere containing Ω. Notice that this bound for the remainder term R(k) grows exponentially

as |k| gets large, so that taking the inverse Fourier transformation of F̂ (k) with large |k| values

would not be a good approximation of γ(x). That is, since large |k| values correspond to the high-

frequency nature of γ(x), including values of F̂ (k) for large |k| would result in highly oscillatory

reconstructions for γ. Therefore, we need to use only the values of F̂ (k) within a certain bounded

region. In order to obtain this threshold, pick α, such that 1 < α < 2, then for

|k|≤ 2− α

πr
log

1

‖ δ ‖L∞

, (1.11)

the error term has a bound, as in [8],

|R(k)| ≤ C‖ δ ‖2L∞e
2πr 2−α

2πr
log 1

‖ δ ‖∞

= C‖ δ ‖2∞elog (
1

‖ δ ‖∞
)
2−α

= C‖ δ ‖2∞‖ δ ‖α−2
∞

= C‖ δ ‖α∞.

This enables us to conclude that F̂ (k) is a good approximation for γ̂(k) in the region (1.11) when

‖ δ ‖∞ is small.

As we assume that γ is only a measurable function with a positive lower bound and a small

perturbation from a constant in the L∞ norm sense, it does not necessarily have to be a smooth

function. Therefore, in order to avoid the Gibbs phenomenon in the reconstruction, introduce a
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mollifier η such that η̂ ∈ C∞, supp(η̂) ⊂ {|k|≤ 1} , η̂(0) = 1, and let ηt(k) = tnη(tk). Then

γ̂(k)η̂

(
k

t

)
= F̂ (k)η̂

(
k

t

)
+R(k)η̂

(
k

t

)
, (1.12)

and taking the inverse Fourier transform gives

(γ ∗ ηt) (x) = (F ∗ ηt) (x) + ρ(x), (1.13)

where * denotes convolution, and a bound for ρ is

|ρ(k)|≤ C‖ δ ‖αL∞

[
log

1

‖ δ ‖L∞

]n
,

which converges to zero as ‖ δ ‖L∞ goes to zero. This bound implies that for small ‖ δ ‖L∞ , the

inverse Fourier transform of F̂ (k)η̂(k/t) is a good approximation for γ ∗ ηt. Also, if ‖ δ ‖L∞ is

small then t is large and ηt has a narrow and high peak at the origin so that γ ∗ ηt itself is a good

approximation for γ.

The practical implementation of Calderón’s method was first done in [8] with experimental

data collected on a circular tank. The implementation of this method on elliptic domain was first

done in [56]. The implementation of this method on subject-specific domains including exper-

imental data collected on a chest shaped tank and human data was first done in [58]. In [14],

electrical admittivities in 2-D circular domain was recovered with Calderón’s method and two-

terminal/electrode excitation strategies. Reconstruction of complex conductivity by Calderón’s

method on subject-specific domains can be found in [57].

1.5 Overview of Papers

This dissertation comes in the form of three papers. In the first paper, I developed and im-

plemented a method to include a priori information about organ locations and conductivities in

Calderón’s method. I developed the second order Calderón’s method based on a study of the
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connection between Calderón’s method and the D-bar method. These methods are tested with ex-

perimental tank data. In the second paper, I developed a numerical technique for including the

correct location of the electrodes in Calderón’s method and tested this method on experimental

tank data. In the third paper, I developed a three dimensional Calderón’s method on the cylindrical

geometry and tested the algorithm on both simulated and experimental tank data.

1.5.1 Paper 1: A second order Calderón’s method with a correction term

and a priori information

The goal of this paper is to develop an improved two dimensional Calderón’s method with a

second order correction term and a prior information. Also included is a technique for improving

the absolute image. We first study the explicit relationship between Calderón’s method and the

D-bar method and explain how Calderón’s method linearizes the D-bar method. From the relation-

ship, we find one second order correction term to Calderón’s method toward the D-bar method and

suggest the second order Calderón’s method. For the inclusion of prior information, we first as-

sume that we know the approximate location of inclusions and approximated constant conductivity

for each inclusion. By using that information, we construct a spatial prior. The technique basically

consists of appending the Fourier transform of the spatial prior to F̂ (k), and then taking the inverse

Fourier transform of the appended F̂ (k). In order to reduce the Gibbs phenomena in the absolute

image, we suggest a technique of subtracting the Fourier transform of the background constant

conductivity from F̂ (k). We test our algorithms for many experimental tank data including com-

plex valued admittivity targets and demonstrate that the algorithms improve the reconstruction.

1.5.2 Paper 2: Calderón’s method with the correct electrode location for the

absolute image

The goal of this paper is to implement the exact location of electrodes to Calderón’s method.

While Calderón’s method has been implemented with experimental non-circular tank data [56–58],

the exact location of electrodes was ignored by assuming that they are spaced uniformly in angle.
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In this paper, we propose a new technique of computing F̂ (k) by expanding the CGO solutions

directly to the applied current and measured voltage data. With this new approach, we are able

to make use of the exact location of electrodes to Calderón’s method. We test our algorithm on a

chest shaped tank data demonstrating that our algorithm improves the absolute image significantly.

1.5.3 Paper 3: Three dimensional Calderón’s method for EIT on the cylin-

drical geometry

The goal of this paper is to develop the three dimensional Calderón’s method on the cylindrical

geometry. We make use of the same expansions of CGO solutions as the expansions in paper

2. The geometry of the body of the object is the cylinder having multiple layers of electrodes

and the approach is fully three dimensional, not stacking two-dimensional reconstructed images

together. We test our algorithm on various simulated data with or without noise having two or

four layers of electrodes. This is the first direct 3D reconstruction algorithm to be implemented in

the cylindrical geometry on experimental or simulated data. The only other direct 3D algorithm

to have been implemented on experimental data is the implementation of Calderón’s method for

the mammography geometry [10]. With simulated data, we see that the algorithm is capable of

locating the targets not only horizontally but also vertically. We also test our algorithm with the

experimental cylinder tank data with two layers of electrodes. In this paper, the simulated data was

provided by Sanwar Uddin Ahmad using his finite element code. The formulation and numerical

solution of the inverse problem was developed and programmed by the author.
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Chapter 2

Paper 1: A second order Calderón’s method with a

correction term and a priori information

Calderón’s method is a direct linearized reconstruction method for the inverse conductivity

problem with the attributes that it can provide absolute images with no need for forward model-

ing, reconstructions can be computed in real time, and both conductivity and permittivity can be

reconstructed. In this work, an explicit relationship between Calderón’s method and the D-bar

method is provided, facilitating a “higher-order" Calderón’s method in which a correction term is

included, derived from the relationship to the D-bar method. Furthermore, a method of including a

spatial prior is provided. These advances are demonstrated on tank data collected with the ACE1

EIT system.

Keywords: electrical impedance tomography, inverse problems, Calderón’s method.

Submitted to: Inverse Problems

2.1 Introduction

Calderón’s 1980 paper On an inverse boundary value problem [12] has inspired several decades

of research on the inverse conductivity problem. In this work, he proved that the linearized prob-

lem has a unique solution and proposed a direct method of reconstruction. Electrical impedance

tomography, or EIT, is the primary application of the inverse conductivity problem, with appli-

cations in medical imaging, geophysics, and nondestructive testing. Calderón’s proof and recon-

struction method utilized special harmonic functions, now known as complex geometrical optics

(CGO) solutions that have been generalized in the D-bar family of direct reconstruction algorithms

for EIT. Calderón’s method has, however, been slow to find its way to practical implementation in

EIT. The first numerical implementation for Calderón’s method was in [8] for experimental EIT

data collected on a saline-filled tank and on a healthy human subject reconstructed on a circular
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domain. This implementation was extended in [56] to account for non-circular but symmetric do-

mains, demonstrating the effects primarily on elliptical domains and was implemented in real time

in 2-D on subject-specific domains in [57, 58]. However, as is the case with most reconstruction

algorithms in EIT, due to the severe ill-posedness of the inverse problem, the reconstructions are

low resolution and sensitive to noise in the data. One approach to improve the low-resolution

blurred images characteristic of EIT is to include prior information in the reconstruction algo-

rithm. This has proved successful in iterative methods [6, 7, 21, 22, 24–26, 71, 78] and in the D-bar

method [2–5]. In the D-bar method, an effective means of including a priori spatial information

about the unknown conductivity is to append the scattering transform computed from the data with

a scattering transform computed from the conductivity prior.

In this work, we derive an explicit connection between Calderón’s method and the D-bar

method, beyond what was shown in [46], motivating the addition of a weighted higher order term

to Calderón’s method, which is both easy to compute and improves the spatial resolution and ac-

curacy of the reconstructed conductivity values. Although the second order term is derived from

the 2D D-bar method based on [60], the terms in the second order method are well-defined for

complex-valued conductivities, and so we include examples from simulated and experimental data

with a permittivity component illustrating its effectiveness. D-bar methods for reconstructing a

complex conductivity are based on 2 × 2 elliptic systems of first-order PDE’s [27, 36, 37], and

therefore the derivation would be quite different from the method presented here, which makes

use of the already established connection between the real-valued D-bar method and Calderón’s

method [46]. We invite others to consider such an approach.

Also introduced here is a method for including a priori information in the reconstruction al-

gorithm, inspired by the technique proposed in [4] for the D-bar method. This is the first time

a prior has been included in Calderón’s method, and we apply it to the second-order method for

both real and complex-valued conductivities. A method of including a priori spatial information

for complex-valued conductivities in the 2-D D-bar method based on [27, 36, 37] was introduced

in [3].
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(A) Case (i) (B) Case (ii) (C) Case (iii)

(D) Reference (i) (E) Reference (ii) (F) Reference (iii-R) (G) Reference (iii-I)

Figure 2.1: The three experimental data sets and reference images. Case (i): an agar heart and lungs in a
saline bath with a copper pipe in one lung. Case (ii): an agar heart and lungs in a saline bath with a PVC
pipe in one lung. Case (iii): three slices of cucumber in a saline bath. Figure (D) is a reference image for
Case (i), Figure (E) is a reference image for Case (ii). Figure (F) and Figure (G) are the real part and the
imaginary part reference images for Case (iii). Those reference images are used for the SSIM measures
later.

Also included in this paper is a technique to minimize the effect of the Gibb’s phenomena in

the reconstruction of absolute images. The results of the higher order Calderón’s method with a

spatial prior are demonstrated on EIT data collected on a saline-filled tank with agar and cucumber

targets as shown in Figure 2.1.

The paper is organized as follows. Section 2.2 includes the mathematical model for the inverse

conductivity problem, the equations of Calderón’s method, and the 2-D D-bar method for real-

valued conductivities based on the constructive uniqueness proof in [60] that has been developed as

a practical reconstruction algorithm (see [55,68] and references therein). The relationship between

Calderón’s method and the D-bar method and the derivation of the second order Calderón’s method

are found in Section 2.3. Calderón’s method with a spatial prior is introduced in Section 2.4.

Finally, the experimental results and discussion are found in Section 2.5.
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2.2 Background

2.2.1 Governing equations

The inverse problem of electrical impedance tomography is modeled as follows. Let Ω ∈ R
2

be a bounded domain. The electrical potential u(x) and electrical admittivity distribution γ(x)

defined on Ω satisfy the generalized Laplace equation

∇ · (γ(x)∇u(x)) = 0, x ∈ Ω, (2.1)

where γ(x) = σ(x) + iωǫ(x), where σ is the conductivity, ω is the frequency of the applied

alternating current, and ǫ is the permittivity of the medium. The application of a current density

distribution j on the boundary corresponds to the Neumann boundary condition,

γ(x)
∂u

∂ν
(x) = j(x), x ∈ ∂Ω,

where ν denotes the outward normal to ∂Ω. The voltage f that arises on the boundary of Ω

corresponds to the Dirichlet boundary condition,

u(x)|∂Ω= f(x), x ∈ ∂Ω.

The current-density to voltage mapping is known as the Neumann-to-Dirichlet map. However, in

the mathematical literature, it is typically the Dirichlet-to-Neumann, or voltage-to-current density

map, that is used in proofs and algorithm development. Denoted by Λγ , it is given by

Λγ : u|∂Ω→ γ
∂u

∂ν

∣∣∣∣
∂Ω

,

and the inverse problem is to find the unknown γ(x) based on the knowledge of Λγ . Note that in

practice, the boundary conditions in the model are usually replaced with conditions that take into

account the discrete nature of the electrodes on the boundary and their interaction with the medium
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known as contact impedance. The reader is referred to [17, 18, 55] for the derivation, study, and

implementation, respectively, of the Complete Electrode Model for EIT. Here, as in Calderón’s

method, we utilize Λγ as described above.

2.2.2 Calderón’s method

Calderón assumes that the admittivity is of the form γ(x) = 1 + δ(x) where ‖ δ ‖L∞(Ω) is

small. The CGO solutions are given by φ1(x; k, a) = exp [πi(x · k) + π(a · x)] and φ2(x; k, a) =

exp [πi(x · k)− π(a · x)], where k, a ∈ R
2 are nonphysical frequency variables such that |k|= |a|

and k · a = 0 that enable the two functions be harmonic, that is, △φ1 = △φ2 = 0. Calderón’s idea

is to use these two harmonic functions and the fact that when ‖ δ ‖L∞(Ω) is small, the potentials

arising from applied voltages φi(i = 1, 2) are small perturbations from φi in H1(Ω). Calderón

defines

ωi = ui + vi in Ω, ωi|∂Ω= φi on ∂Ω, ui ∈ H1(Ω), vi ∈ H1
0 (Ω)

for i = 1, 2, where ui = φi. By the definition of Λγ , integration by parts, and the conductivity

equation,

∫

∂Ω

φ1Λγφ2ds(x) =

∫

∂Ω

w1γ
∂ω2

∂ν
ds(x)

=

∫

Ω

γ∇ω1 · ∇ω2dx

=

∫

Ω

γ∇u1 · ∇u2 + δ(∇u1 · ∇v2 +∇u2 · ∇v1) + γ∇v1 · ∇v2dx.

= −2π2|k|2
∫

Ω

γ(x)exp [2πix · k] dx+ Ẽ(k),

where Ẽ(k) is the last three terms in the third line. By dividing by −2π2|k|2, we get

∫

Ω

γ(x)exp [2πix · k] dx = − 1

2π2|k|2
∫

∂Ω

φ1Λγφ2ds(x) +
Ẽ(k)

2π2|k|2 . (2.2)
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Thus, neglecting the remainder term E(k) = Ẽ(k)
2π2|k| , we get

γ̂(k) ≈ − 1

2π2|k|2
∫

∂Ω

φ1Λγφ2ds(x) ≡ F̂ (k), (2.3)

where γ̂ denotes the Fourier transform of γ. Inverting equation (2.3) is the main idea behind

Calderón’s method. However, one can also seek to solve directly for the perturbation as follows.

By the same argument, when γ = 1,

∫

∂Ω

φ1Λ1φ2ds(x) = −2π2|k|2
∫

Ω

exp [2πix · k] dx. (2.4)

Subtracting this from equation (2.2) results in

∫

∂Ω

φ1(Λγ − Λ1)φ2ds(x) = −2π2|k|2
∫

Ω

(γ − 1)exp [2πix · k] dx+ Ẽ(k).

Denote

D(k) ≡
∫

∂Ω

φ1(Λγ − Λ1)φ2ds(x).

Then,

δ̂(k) = − D(k)

2π2|k|2 + E(k), (2.5)

and it is shown in [12] that E(k) is bounded by C‖ δ ‖2L∞exp [2πr|k|], where r is the radius of the

smallest sphere containing Ω and C some constant. However, it is also shown in [12] that choosing

α, 1 < α < 2, for |k|≤ 2−α
2πr

log 1
‖ δ ‖L∞

,

|E(k)|≤ C‖ δ ‖α∞. (2.6)

Now let η be a mollifier whose Fourier transform η̂ ∈ C∞, η̂(0) = 1, and let ηt(x) ≡ tnη(tx),

where t is a mollifying parameter. Then η̂t(k) = η̂(k/t) acts as a low pass filter, and multiplying
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equation (2.5) by η̂t(k), we have,

δ̂(k)η̂

(
k

t

)
= − D(k)

2π2|k|2 η̂
(
k

t

)
+ E(k)η̂

(
k

t

)
.

Taking the inverse Fourier transform,

(δ ∗ ηt)(x) = −
∫

R2

D(k)

2π2|k|2 η̂
(
k

t

)
exp [2πix · k] dk + ρ(x),

where ∗ denotes the convolution, and ρ the error term, which is the term that depends on the data

Λγ − Λ1 nonlinearly. It was shown in [12] that ρ(x) has a bound

|ρ(x)|≤ C‖ δ ‖αL∞

[
log

1

‖ δ ‖L∞

]2

which converges to zero as ‖ δ ‖L∞ goes to zero. In the practical implementation, we also truncate

D(k) to a region |k|< R1 for some constant R1. Therefore, we take

δappR1
(x) ≡ −

∫

|k|<R1

D(k)

2π2|k|2 η̂
(
k

t

)
exp [2πix · k] dk (2.7)

as an approximation to δ(x). In this paper, we will call (2.7) the first order Calderón’s method. We

note that the reconstruction process

Λγ − Λ1 −→ D(k) −→ δappR1
(x)

is linear and holds for real or complex-valued γ.

2.2.3 The D-bar method background

We now review the D-bar method based on the constructive global uniqueness proof by A.

Nachman [60]. As in [60], now assume that γ ∈ C2(Ω) is a real-valued conductivity bounded

away from zero, and without loss of generality that γ(x) ≡ 1 for x in a neighborhood ∂Ω. For
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consistency with Calderón’s method, further assume that γ is of the form γ = 1 + δ. Define the

potential q =
△√

γ√
γ

, and make the change of variables ũ =
√
γu. Then (2.1) is transformed to the

Schrödinger equation

(−△+ q)ũ = 0 in Ω. (2.8)

Smoothly extend γ ≡ 1 and q ≡ 0 outside Ω and consider (2.8) in the entire plane. Introduce a

complex parameter k = k1 + ik2 and identify it with k = (k1, k2) ∈ R
2, depending on the context.

The spatial variable x = (x1, x2) ∈ R
2 is also identified as x = x1 + ix2. Further introduce two

harmonic functions eikx and eikx that satisfy (2.8) when q = 0. It is shown in [60] that there exist

CGO solutions ψ(x, k) to

(−△+ q)ψ(·, k) = 0

satisfying the asymptotic condition

e−ikxψ(x, k)− 1 ∈ W 1,p̃(R2) (2.9)

for any 2 < p̃ <∞. Note that if γ = const., so that q ≡ 0, then ψ(x, k) = eikx. Let

µ(x, k) ≡ e−ikxψ(x, k),

and define the scattering transform t(k) of q(x) by

t(k) ≡
∫

R2

eikxq(x)ψ(x, k)dx,

or equivalently,

t(k) :=

∫

R2

ek(x)q(x)µ(x, k)dx,

where

ek(x) ≡ exp
[
i(kx+ kx)

]
= exp [−i(−2k1, 2k2) · (x1, x2)] .
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The function µ satisfies

(−△− 4ik∂)µ(x, k) = −q(x)µ(x, k). (2.10)

Therefore, for a fundamental solution gk(x) satisfying

(−△− 4ik∂)gk(x) = δ(x),

where δ(x) only in this line indicates the Dirac delta function, the function µ satisfies, with the

asymptotic condition (2.9), the Lippmann-Schwinger-type integral equation

µ = 1− gk ∗ (qµ). (2.11)

Applying the ∂k operator to (2.11) results in the ∂ equation

∂

∂k
µ(x, k) =

1

4πk
t(k)e−k(x)µ(x, k), k ∈ C\0, x ∈ R

2,

which is equivalent to the weakly singular Fredholm integral equation of the second kind

µ(x, k) = 1 +
1

(2π)2

∫

R2

t(k′)

(k − k′)k′
e−x(k

′)µ(x, k′)dk′1dk
′
2. (2.12)

Taking the small k limit as k → 0 in (2.10), and recalling that q(x) =
△
√

γ(x)√
γ(x)

,

△µ(x, 0) = △
√
γ(x)√
γ(x)

µ(x, 0). (2.13)

It is a direct substitution to check that µ(x, 0) =
√
γ(x) satisfies (2.13) and the asymptotic condi-

tion (2.9). Therefore, we can recover γ(x) from (2.12) by

γ(x) = µ(x, 0)2. (2.14)
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A key step in the D-bar method is to connect the data Λγ − Λ1 to the scattering transform t(k)

and to solve (2.12). This is done by first solving

ψ(x, k) = eikx
∣∣
∂Ω

−
∫

∂Ω

Gk(ζ − x)(Λγ − Λ1)ψ(ζ, k)ds(ζ), (2.15)

where Gk(x) = eikxgk(x). The scattering transform t(k) is related to the data as, by [60],

t(k) =

∫

∂Ω

eikx(Λγ − Λ1)ψ(·, k)ds(x). (2.16)

In the case of γ ∈ L∞, the existence and uniqueness of solutions to (2.12) and (2.15) is proven

in [48]. However, (2.15) is very sensitive to noise in Λγ −Λ1 and so are (2.16) and (2.12). In [68],

approximating ψ(x, k) by its asymptotic behavior eikx is suggested and

texp(k) ≡
∫

∂Ω

eikx(Λγ − Λ1)e
ikxds(x) (2.17)

is introduced as an approximation of (2.16). In terms of the integral equation (2.15), this approxi-

mation amounts to ignoring the scattering of the incident wave eikx at the boundary ∂Ω. Replacing

ψ(ζ, k) on the right hand side of (2.15) by eikζ can also be considered as a Born approximation.

The approximation texp was further studied with simulated noisy data Λγ − Λ1 in [54]. While

texp(k) and (2.10) remain stable for large |k| for simulated noise-free data, texp(k) with noisy data

blows up to infinity exponentially as |k| gets large. This has been overcome by truncating t(k) to

a bounded region |k|< R1 for some R1 constant [54]. Therefore, in the practical implementation,

the integral equation (2.12) is solved in the region |k|< R1.
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2.3 Relationship between Calderón’s method and the D-bar

method and the second order Calderón’s method

A connection between Calderón’s method and the D-bar method was first shown in [46].

Based on [46], we provide explicit correction terms to Calderón’s method and suggest a modi-

fied Calderón’s method with one of the correction terms.

We first note the similarity of the CGO solutions that are used in both methods. Let k = (k1, k2)

and a = (k2,−k1). We also identify k = k1 + ik2 and a = k2 − ik1, depending on the context. By

simply changing the notation from vectors in R
2 to complex variables,

φ1(x; k, a) = eπ(ik·x−a·x)

= eπ(i(k1,k2)·(x1,x2)−(k2,−k1)·(x1,x2))

= eπ(i(k1x1+k2x2)−k2x1+k1x2)

= eiπ(k1x1+k2x2+i(k2x1−k1x2)

= eiπkx,

and similarly, φ2(x; k, a) = eiπkx. Therefore, the functions eikx, eikx in the D-bar method and

φ1, φ2 are the same kind except for the π factor in the exponent and the fact that the variable k

being complex conjugated. That is,

D(k) =

∫

∂Ω

eiπkx(Λγ − Λ1)e
iπkxds(x) = texp(πk). (2.18)

Since D holds for complex-valued conductivities by (2.3), texp is also well-defined for complex-

valued conductivities. Now, from (2.5),

δ̂(k) = − 1

2π2|k|2 t
exp(πk) + E(k). (2.19)
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By neglecting E(k), multiplying a mollifier, taking the inverse Fourier transform, and then with

a simple change of variables, we arrive at the same conclusion as in [46]. In [46], starting from

(2.17), Calderón’s method is re-derived with texp(k) instead of D(k), and presented as

δapp(x) = −
∫

R2

texp(k)

2π2|k|2 η̂(k/t)e−x(k)dk1dk2, (2.20)

and it is concluded that Calderón’s method is a three-step linearized D-bar method. See section 6.1

of [46] for the full derivations. In the practical implementation, we truncate texp(k) to a bounded

region |k|< R1 and denote the reconstructed perturbation by

δappR1
(x) = −

∫

|k|<R1

texp(k)

2π2|k|2 η̂(k/t)e−x(k)dk1dk2, (2.21)

which is equivalent to (2.7). Note that the truncation radius in this paper differs by the factor π

from the truncation radius in other D-bar papers due to the relation (2.18). We further explicitly

formulate the difference between Calderón’s method and the D-bar method and connect them.

Note that from (2.12), by simply putting k = 0, (2.14) can be written formally as

γ(x) = 1− 1

2π2

∫

R2

t(k)

|k|2 e−x(k)µ(x, k)dk1dk2 +

{
1

(2π)2

∫

R2

t(k)

|k|2 e−x(k)µ(x, k)dk1dk2

}2

,

or equivalently,

δ(x) = − 1

2π2

∫

R2

t(k)

|k|2 e−x(k)µ(x, k)dk1dk2 +

{
1

(2π)2

∫

R2

t(k)

|k|2 e−x(k)µ(x, k)dk1dk2

}2

.(2.22)

Note that this line is from the D-bar method while (2.21) is Calderón’s method. Now we explicitly

provide the connection between them. For ‖q(x)‖∞ small, let ψ̃(x, k) be a small perturbation from

eikx and write

ψ(x, k) = eikx + ψ̃(x, k).
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Then µ(x, k) ≡ 1 + µ̃(x, k), and

t(k) =

∫

∂Ω

eikx(Λγ − Λ1)ψ(x, k)ds(x)

=

∫

∂Ω

eikx(Λγ − Λ1)(e
ikx + ψ̃(x, k))ds(x)

= texp(k) +

∫

∂Ω

eikx(Λγ − Λ1)ψ̃(x, k)ds(x)

= texp(k) + t̃(k),

where t̃(k) and µ̃(x, k) are also small perturbations if ‖q(x)‖∞ is small. We derive the second

order Calderón’s method as follows. Recall, the definition of the norm on W 1,p̃:

‖u||W 1,p̃= ‖u‖Lp̃+‖∇u‖Lp̃ (2.23)

Lemma 4.1 in [59] states the following.

Theorem 1. Fix p ∈ (1, 2), k ∈ C\{0}, and q0 ∈ Lp(R2). Let 1
p̃
+ 1

p
= 1

2
. Suppose that

R(q0) := (I − Sk(q0))
−1

exists as a bounded operator from W 1,p̃(R2) to itself. There is a number r > 0 and a constant

c(p, k, q0) so that for all q ∈ Lp(R2) with ||q0 − q||p≤ r, the estimate

||µ(·, k, q)− µ(·, k, q0)||W 1,p̃≤ c(p, k, q0)||q − q0||p (2.24)

holds.

Let KR = {k ∈ C : |k|≤ R1}. Note that in Theorem 1, p̃ ∈ (2,∞). For γ = 1, q0 = 0 and

µ(·, k, q0) = 1, the theorem implies

||µ̃(·, k, q)||W 1,p̃(KR)≤ c(p,R)||q||p≤ c′(p,R,Ω)||q||∞. (2.25)
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Corollary 1. Under the assumptions of Theorem 1,

‖ψ̃(·, k)‖W 1,p̃(KR)≤ C(p,R,Ω)||q||∞.

Proof:

‖ψ̃(·, k)‖W 1,p̃(KR) = ||eikxµ̃(·, k)||W 1,p̃(KR)

=

{∫

KR

|eikxµ̃(x, k)|p̃dk
}1/p̃

+

{∫

KR

|∇(eikxµ̃(x, k)|p̃)dk
}1/p̃

≤ C‖µ̃(·, k)||Lp̃(KR)+

{∫

KR

|∇(eikx)µ̃(x, k) + eikx∇µ̃(x, k)|p̃)dk
}1/p̃

≤ C‖µ̃(·, k)||Lp̃(KR)+C̃‖µ̃(·, k)||Lp̃(KR)+C‖∇µ̃(·, k)||Lp̃(KR)

= C‖µ̃(·, k, q)||W 1,p̃(KR)+C̃‖µ̃(·, k)||Lp̃(KR)

= C1‖µ̃(·, k, q)||W 1,p̃(KR)

≤ C2(p,R)||q||p

≤ C2(p,R)(area of Ω)||q||∞.

where the third inequality follows from Minkowski’s inequality and the fifth inequality from (2.25).

�

Corollary 2. Under the assumptions of Theorem 1, t̃(k) ∈ W 1,p̃(KR) and

‖t̃(k)‖W 1,p̃(KR)≤ C(p,R,Ω)‖q‖∞

Proof:

‖t̃(k)‖W 1,p̃(KR) =

{∫

KR

|eik̄x̄q(x)ψ̃(x, k)|p̃dk
}1/p̃

+

{∫

KR

|∇(eik̄x̄q(x)ψ̃(x, k))|p̃dk
}1/p̃

≤ C‖q‖∞‖ψ̃(x, k))‖Lp̃(KR)+‖q‖∞
{∫

KR

|∇(eik̄x̄ψ̃(x, k))|p̃dk
}1/p̃

≤ ‖q‖∞(C‖ψ̃(·, k, q)||W 1,p̃(KR)+C̃‖ψ̃(·, k, q)||Lp̃(KR))
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≤ C ′‖q‖∞‖ψ̃(·, k, q)||W 1,p̃(KR)

≤ C(p,R,Ω)‖q‖∞,

where the second inequality follows from Minkowski’s inequality and the remainder by the analo-

gous argument as in Corollary 1. �

Then, expanding the integrands in (2.22) and folding out the square in the second term, one

sees that compared to (2.20), (2.22) has three more first order terms and 16 more second order

terms which depend on the data Λγ − Λ1 nonlinearly. All integrals in practice are over KR, and

δ(x) = −
∫

KR

texp(k) + t̃(k)

2π2|k|2 e−x(k)1 + µ̃(x, k)dk

+

{
1

(2π)2

∫

KR

texp(k) + t̃(k)

|k|2 e−x(k)1 + µ̃(x, k)dk

}2

= −
∫

KR

texp(k)

2π2|k|2 e−x(k)dk −
∫

KR

texp(k)

2π2|k|2 e−x(k)µ̃(x, k)dk (2.26)

−
∫

KR

t̃(k)

2π2|k|2 e−x(k)dk −
∫

KR

t̃(k)

2π2|k|2 e−x(k)µ̃(x, k)dk (2.27)

+

{
1

(2π)2

∫

KR

texp(k)

|k|2 e−x(k)dk

}2

+

{
1

(2π)2

∫

KR

texp(k)

|k|2 e−x(k)µ̃(x, k)dk

}2

(2.28)

+

{
1

(2π)2

∫

KR

t̃(k)

|k|2 e−x(k)dk

}2

+

{
1

(2π)2

∫

KR

t̃(k)

|k|2 e−x(k)µ̃(x, k)dk

}2

+ 2

{
1

(2π)2

∫

KR

texp(k)

|k|2 e−x(k)dk

}{
1

(2π)2

∫

KR

texp(k)

|k|2 e−x(k)µ̃(x, k)dk

}

+ 2

{
1

(2π)2

∫

KR

texp(k)

|k|2 e−x(k)dk

}{
1

(2π)2

∫

KR

t̃(k)

|k|2 e−x(k)dk

}

+ 2

{
1

(2π)2

∫

KR

texp(k)

|k|2 e−x(k)dk

}{
1

(2π)2

∫

KR

t̃(k)

|k|2 e−x(k)µ̃(x, k)dk

}

+ 2

{
1

(2π)2

∫

KR

texp(k)

|k|2 e−x(k)µ̃(x, k)dk

}{
1

(2π)2

∫

KR

t̃(k)

|k|2 e−x(k)dk

}

+ 2

{
1

(2π)2

∫

KR

texp(k)

|k|2 e−x(k)µ̃(x, k)dk

}{
1

(2π)2

∫

KR

t̃(k)

|k|2 e−x(k)µ̃(x, k)dk

}

+ 2

{
1

(2π)2

∫

KR

t̃(k)

|k|2 e−x(k)dk

}{
1

(2π)2

∫

KR

t̃(k)

|k|2 e−x(k)µ̃(x, k)dk

}
.

(2.29)
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Assume ‖q‖∞ is sufficiently small so that ||µ̃(·, k, q)||W 1,p̃(KR)≤ 1 and ‖t̃(k)‖W 1,p̃(KR)≤

‖texp(k)‖W 1,p̃(KR). Note [54] that |texp(k)|≤ C|k|2 for k ∈ KR and |e−x(k)|= 1. Then texp(k)/|k|2

∈ Lr(KR), r = 2 − ε, where here ε is a small value less than 1, and r is the Hölder conjugate

of p̃. Thus, by Hölder’s inequality, the following shows that the first term in (2.26) dominates the

second term:

∣∣∣∣
∫

KR

texp(k)

2π2|k|2 e−x(k)µ̃(x, k)dk

∣∣∣∣ ≤
{∫

KR

∣∣∣∣
texp(k)

2π2|k|2
∣∣∣∣
r

dk

}1/r {∫

KR

∣∣∣µ̃(x, k)
∣∣∣
p̃

dk

}1/p̃

≤ ||µ̃(·, k, q)||W 1,p̃(KR)

{∫

KR

∣∣∣∣
texp(k)

2π2|k|2
∣∣∣∣
r

dk

}1/r

≤
{∫

KR

∣∣∣∣
texp(k)

2π2|k|2
∣∣∣∣
r

dk

}1/r

.

Also since ‖t̃(k)‖W 1,p̃(KR)≤ ‖texp(k)‖W 1,p̃(KR), the first term in (2.27) is smaller than the first

term in (2.26), and likewise, the second term in (2.27) is smaller than the first term in (2.26).

Thus, among the first order terms in the expansion of δ(x), the first term is dominant. Analogous

arguments show that the first term in (2.28) is larger than all subsequent second order terms.

Therefore, we suggest a modified Calderón’s method by adding the known second order term

and define

δapp,secR1
(x) = δappR1

(x) +
(
βδappR1

(x)
)2
, (2.30)

where β is a weighting parameter for the second order term. One can change the value β to adjust

the impact of the second order term. For the results in Figure 2.3, we chose β = 0.5, and for all

the other examples we chose β = 0.7. We will call (2.30) the second order Calderón’s method,

and compare the reconstructions with (2.30) to the first order Calderón’s method (2.7). Since we

use (2.7) for the first order Calderon’s method, from the equation (2.18), the truncation radius R1=

1.5, for example, in our paper is equivalent to the truncation radius 1.5·π ≈ 4.712 for the D-bar

method with texp(k) in other papers. Note that since δappR1
(x) is well-defined for complex-valued
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conductivities, the second order method can be applied to complex-valued data arising from such

conductivities, even though the derivation of the method is based on the real-valued case.

In Figure 2.2, we illustrate the effect of the second order term in the second order Calderón’s

method on reconstructions for case (i). Figure 2.2 shows the absolute images for the case (i),

where (A) and (C) depict the image with the first order Calderón’s method, and (B) and (D) depict

the images with the second order Calderón’s method, with the truncation radius R1 = 1.125 and

R1 = 1.35, respectively, with no prior inclusion. Compared to (A) and (C), the organs are more

sharper and the artifacts near the boundary are reduced in (B) and (D). To quantify the quality

of the reconstructions, we use Structural Similarity (SSIM) index. See [82]. The resultant SSIM

value is a decimal number between -1 and 1. SSIM index is 1 when an image is identical to the

reference image, and 0 when an image has no similarity to the reference image. We use Figure 2.1

(D) as the reference image for SSIM values given below each reconstruction. SSIM values support

our claim too. This kind of improvement was observed in all examples to varying degrees. In

order to test the validity of the second order Calderon’s method for complex valued admittivity, we

simulated data with complex valued admittivity thoracic example, Figure 2.3. To generate the data,

we solved an associated forward problem by the Finite Element Method (FEM). The admittivity

of the heart, lungs, and the background are 2 + iω(0.88 × 10−6), 0.5 + iω(0.22 × 10−6) and

1 + iω(0.55 × 10−6), respectively, where ω = 2π × 28.8. The results show that the second order

Calderón’s method improves the reconstruction. Therefore, in the results section, we only present

the reconstructions by the second order Calderón’s method, whether or not those are absolute

images, difference images, images without a prior or images with a prior.

2.3.1 Computational considerations

The results shown in this work are on experimental data and so the assumption of Calderón’s

method that the conductivity distribution is a small perturbation from the background conductivity

1 is violated by our phantoms. This is overcome by rescaling as follows in an approach also taken

in [39]. Let γ(x) = γ0 + δ(x), where γ0 > 0 is the background constant conductivity and δ(x) is
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R1 1st order 2nd order

1.125
(A) 0.5388 (B) 0.6267

1.35
(C) 0.4902 (D) 0.5993

Figure 2.2: Absolute images for Case (i) with R1 = 1.125 for (A) and (B), R1 = 1.35 for (C) and (D).
(A) and (C) are the images by the 1st order Calderón’s method. (B) and (D) are the images by the 2nd order
Calderón’s method. The values that are provided are the SSIM measures.

the perturbation from γ0. Scale γ by γ0 and denote

γ̃ =
γ

γ0
= 1 +

δ

γ0
.

Since Λcγ = cΛγ for c constant, Λγ̃ = 1
γ0
Λγ . We use this map to compute the scaled perturbation

δ̃ = δ
γ0

. Once we reconstruct δ̃, we obtain δ = γ0δ̃ and γ. An approximation of γ0 was obtained

by first reconstructing γ(x) without any scaling of the DN map, and then choosing an appropriate

value in the region of background in the images. In the following lines, we simply denote Λγ̃ by

Λγ for the simplicity of the notation.

Most of the images in this paper are absolute images. That is, they are computed using only one

experimental data set, without an experimental reference. Difference images show the conductivity

change from a reference image, which in this paper is the homogeneous tank containing only saline.
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(A) Real part (B) Imaginary part

R1
real part imaginary part

1st order 2st order 1st order 2st order

1.125
0.65612 0.69923 0.65831 0.7076

1.35
0.66664 0.71949 0.66986 0.70162

1.575
0.68402 0.71773 0.68475 0.6934

Figure 2.3: The high contrast complex valued admittivity example where the admittivity of the heart, lungs,
and the background are 2+ iω(0.88×10−6), 0.5+ iω(0.22×10−6) and 1+ iω(0.55×10−6), respectively,
where ω = 2π × 28.8. (A) is the real part ground truth, (B) is the imaginary part ground truth. R1 is
1.125, 1.35 and 1.575 from the top row to the bottom row. 1st column is the real part of the first order
reconstruction. 2nd column is the real part of the second order reconstruction. 3rd column is the imaginary
part of the first order reconstruction. 4th column is the imaginary part of the second order reconstruction.
The values that are provided are the SSIM measures.
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For the difference images, D(k) is replaced by Ddif defined by

Ddif(k) ≡
∫

∂Ω

φ1(Λγ − Λref )φ2ds(x), (2.31)

where Λref is the DN map computed from the reference data.

For practical computation of the absolute images, first write

D(k) =

∫

∂Ω

φ1(Λγ − Λ1)φ2ds(x) =

∫

∂Ω

φ1Λγφ2ds(x)−
∫

∂Ω

φ1Λ1φ2ds(x). (2.32)

Now, let x|∂Ω= Reiθ, where R is the radius of the tank. Then, by using the Taylor expansion of

the exponential function, we get the Fourier type expansion of φ1, φ2 as

φ1 = eiπkx =
∞∑

m=0

am(k)e
−imθ, φ2 = eiπkx =

∞∑

n=0

bn(k)e
inθ,

where am(k) =
(iπkR)m

m!
and bn(k) =

(iπkR)n

n!
. Let L be the number of electrodes, θl = 2πl

L
be the

angle of the center of the lth electrode, and let mth trigonometric current pattern on lth electrode

be

Tm
l =





M cosmθl, m = 1, . . . , L
2
− 1,

M cos πl, m = L
2
,

M sin((m− L/2)θl), m = L
2
+ 1, . . . , L− 1,

where M is the amplitude of the current pattern, and let the normalized current pattern tm =

Tm

||Tm||L2
. Define an inner product (u(·), w(·))L2 =

∑L
l=1 u(θl)w(θl). Let L be the discretized DN

map with entries Lm,n =

(
tml ,
(

Rγ

A

)−1

tnl

)

L2

. We model the current density j on the boundary by

the ave-gab model as

jm(x) =





Tm
l

Al
, x ∈ el,

0, x /∈ el,
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where el denotes the lth electrode. Then,

∫

∂Ω

φ1Λγφ2ds(x)

≈ R

L−1∑

m=1

L−1∑

n=1

ambn

∫ 2π

0

e−imθΛγe
inθdθ,

= R

L−1∑

m=1

L−1∑

n=1

ambn

∫ 2π

0

(cosmθ − i sinmθ)Λγ(cosnθ + i sinnθ)dθ

=
R∆θ

A

L−1∑

m=1

L−1∑

n=1

ambn

{(
cosm·,

(
Rγ

A

)−1

cosn·
)

L2

+ i

(
cosm·,

(
Rγ

A

)−1

sinn·
)

L2

− i

(
sinm·,

(
Rγ

A

)−1

cosn·
)

L2

+

(
sinm·,

(
Rγ

A

)−1

sinn·
)

L2

}

=
R∆θ

A





L/2∑

m=1

L/2∑

n=1

ambn

(
Lm,n + LL

2
+m,L

2
+n + i

(
Lm,L

2
+n − LL

2
+m,n

))

+
√
2

L/2−1∑

n=1

aL
2
bn

(
LL

2
,n + iLL

2
,L
2
+n

)
+
√
2

L/2−1∑

m=1

ambL
2

(
Lm,L

2
− iLL

2
+m,L

2

)

+ 2(−1)
L
2 aL

2
bL

2
LL

2
,L
2

}
.

Here ∆θ = 2π
L

is the angle between the center of electrodes. For the difference image,
∫
∂Ω
φ1Λrefφ2ds(x) is computed by the same way as above. On the other hand, from (2.4),

∫
∂Ω
φ1Λ1φ2ds(x) = −2π2|k|2

∫
Ω
e2πix·kdx, and we compute the integral

∫
Ω
e2πix·kdx by using a

quadrature rule. Note that this differs computationally from the methods of [8, 56–58] where γ

is approximated by computing the inverse Fourier transform of F̂ (k) from (2.3). The reason why

we include this second term, while one can simply ignore it and reconstruct γ directly from the

first term only (which is F̂ (k)), is to compensate for the artifact along the boundary caused by the

Gibbs phenomena. This method improves the absolute images significantly, as illustrated in Figure

2.4 on the first order Calderón’s method.

36



No subtraction With subtraction

(A) 0.5298 (B) 0.5388

Figure 2.4: The absolute images for Case (i) with R1 = 1.125. Image (A) is the reconstruction without sub-
tracting the synthesized homogeneous term. Image (B) is the reconstruction with subtracting the synthesized
homogeneous term. The values that are provided are the SSIM measures.

Figure 2.4 illustrates the absolute images for Case (i). (A) is the images computed from F̂ (k)

and (B) is the images with the subtraction of the synthesized homogeneous term. The truncation

radius is R1 = 1.125 for both images. As seen in Figure 2.4, the subtraction of the synthesized

homogeneous term reduces the artifact along the boundary and therefore gives a better reconstruc-

tion.

2.4 Calderón’s method with a spatial prior

We introduce a method of inclusion of a priori information to the first and second order

Calderón’s methods in the same spirit as [4] for the D-bar method. We assume that we know

the approximate location of the inhomogeneous inclusions in Ω and approximate constant conduc-

tivity for each inclusion. We denote this a priori information by δpr(x) of which we will make use

as follows. Denote Ĥ(k) = − 1
2π2|k|2D(k)η̂

(
k
t

)
and define

ĤR1,R2(k) :=





Ĥ(k), |k|≤ R1,

δ̂pr(k)η̂(k/t), R1 < |k|≤ R2,

0, |k|> R2,

(2.33)
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by appending δ̂pr(k)η̂(k/t) to the outer region of |k|< R1 and inside of |k|= R2 for some R1

and R2 . Since δ̂pr(k)η̂(k/t) is numerically stable, and it decreases to zero as |k| tends to infinity,

the outer truncation radius R2 can be far bigger than R1, giving more weight to the prior as R2

increases or as R1 decreases. Therefore, by taking the inverse Fourier transform of (2.33), we

define

δappR1,R2
(x) = F−1

(
ĤR1,R2(k)

)
(x).

Since the inverse Fourier transform is a linear operation, this can be written as

δappR1,R2
(x) = δappR1

(x) +

∫

R1<|k|<R2

δ̂pr(k)η̂(k/t)e
2πik·xdk. (2.34)

Therefore, we can think of δappR1,R2
(x) as the Calderóns method with a high pass filtered prior. We

call (2.34) the first order Calderon’s method with a prior. We apply this idea to (2.30) also and

define

δapp,secR1,R2
(x) = δapp,secR1

(x) +

∫

R1<|k|<R2

δ̂pr(k)η̂(k/t)e
2πik·xdk,

and call it the second order Calderon’s method with a prior.

2.5 Experimental results and discussion

2.5.1 Cases (i) and (ii)

The experimental tank data for Cases (i) and (ii) were also used in [5], and are included here

for the purpose of comparison with the D-bar method. It should be noted that the results in [5]

are difference images, and here we include both difference and absolute images. The data was

collected using the ACE1 EIT system at Colorado State University [52] on a circular tank with

diameter 30 cm. The electrodes were 2.54 cm wide, and the level of saline bath was 1 cm. Adjacent

current patterns were applied at 125 kHz with amplitude 3.3 mA. The phantoms are made of agar

with a “heart" with conductivity 0.238 S/m, and right and left “lungs” with conductivity 0.136 S/m,

and a saline bath of conductivity 0.190 S/m. Case (i) includes a copper pipe 1.6 cm in diameter
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inserted in the right lower lung region, and Case (ii) is the same agar targets with a PVC pipe 2.2

cm in diameter inserted in the same place as in Case (i).

Spatial priors without the pipes were constructed and used in the algorithm. To construct a

prior conductivity γpr, we open the photo of Case (i) in Matlab, click points along the boundary

of the heart and lungs to generate boundary data, assign approximate conductivity values to each

organ and apply a mollification by using convolution to have a smooth prior. Since we never know

the accurate conductivity distribution in practical applications, we assign rather incorrect values

for each organ. We used a prior with conductivity values 0.323, 0.190, 0.123, and 0.123 for the

heart, background, left lung, and right lung, respectively.

2.5.2 Results and discussion for Cases (i) and (ii)

The absolute and difference images computed by the second order Calderón’s method with

and without a prior for Cases (i) and (ii) are found in Figures 2.5 and 2.6. The first column

shows the absolute images without a prior, the second column shows the absolute images with a

prior, the third column shows the difference images without a prior, and the last column shows the

difference images with a prior. It is important to note that the prior does not include the pipes in

the lung, mimicking the case of an unknown pathology in the lung. The inner truncation radius

R1 for each row is 1.125, 1.35, and 1.575 from the top to the bottom row, and for the mollification

function η̂(k/t) in (2.33), we used exp(−π|k|2/t), where t is 500, 50, and 5 for each row. As we

increased the truncation radius R1, we also increased the degree of the mollification which results

in more suppression on Ĥ(k) for high frequency |k|. Otherwise, Ĥ(k) blows up very quickly as

the truncation radius increases.

The outer truncation radius R2 is 3 for all reconstructions. Because we fixed R2, within which

almost all of the practical information is included, a larger R1 means that relatively more informa-

tion from the measurement data is used and the influence of the prior is smaller. Therefore, there

is a trade off between the measured data and the prior with increasing R1. With R1 = 1.125 in

the second column in Figure 2.5, the heart and lung regions are almost perfect, and we still can
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see the copper pipe. With bigger truncation radius R1, the copper pipe appears more clear. Note

that the information of the copper pipe is included in the measured data only, but not in the prior.

At the same time, with bigger R1, there are more artifacts in general as expected. The use of a

prior with bigger R1 doesn’t dramatically reduce the artifacts since the influence of the prior is

reduced as R1 increases. On the other hand, with moderate R1 values, the effect of the inclusion

of a prior is significant. Even though the conductivity values for each organ differ in the prior from

the true values and don’t include the pipes, the use of the prior sharpens the organ boundaries and

reduces the artifacts, and even helps to see the presence of the pipe. Therefore, choosing the right

value for R1 is of importance. For SSIM values, we used Figure 2.1 (D) and (E) as the reference

images. SSIM values for Figure 2.5 indicate that reconstructions with a prior are closer to the the

reference image Figure 2.1 (D) than reconstructions without a prior. This is the same for the SSIM

values of the first two columns of Figure 2.6. However, the SSIM values of the last two columns

of Figure 2.6 demonstrate that the images with a prior are not closer to the reference image. This

could be because the reference image Figure 2.1 (E) depicts the PVC pipe too sharply, while in

the reconstructed images, the sharply contrasted conductivity inclusion, the PVC pipe in this case,

appears very blurred.

2.5.3 Case (iii)

We also test our method on experimental tank data with three pieces of cucumber in the tank.

The picture of the tank is shown in Figure 2.1 (C). Each slice of cucumber is about 4.9 cm in diam-

eter. The data was collected using the ACE 1 system at 125 kHz with adjacent current patterns with

amplitude 3.3 mA. The level of saline bath was 1.6 cm. Since cucumber has a cellular structure,

and therefore a nonzero permittivity, γ(x) = σ(x)+ iωǫ(x) is now complex valued, and we recon-

struct both the conductivity and the permittivity distributions at the same time. The conductivity

of the saline bath was 0.180 S/m, but we had no information about the true conductivity and the

permittivity of the cucumbers since our independent measurement device is for 1 kHz.
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(A) Case (i)
: Copper pipe

(B) Conductivity prior
with no pipe

R1
Absolute image Difference image

w/o a prior with prior (B) w/o prior with prior (B)

1.125
0.6267 0.8131 0.7926 0.8760

1.35
0.5993 0.7097 0.8343 0.8491

1.575
0.5629 0.6606 0.7860 0.8009

Figure 2.5: The reconstructed images of Case (i). (A) is the picture of the case (i), (B) is the prior, which
does not include the presence of the pipe. R1 is 1.125, 1.35 and 1.575 from the top row to the bottom row.
R2 = 3 for all cases. 1st column is 2nd order absolute images without a prior. 2nd column is 2nd order
absolute images with a prior. 3rd column is 2nd order difference images without a prior. 4th column is 2nd

order difference images with a prior. The values that are provided are the SSIM measures.
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(A) Case (ii)
: PVC pipe

(B) Conductivity prior
with no pipe

R1
Absolute image Difference image

w/o prior with prior (B) w/o prior with prior (B)

1.125
0.8401 0.8677 0.8593 0.8325

1.35
0.8175 0.8363 0.7927 0.7818

1.575
0.7120 0.7442 0.8761 0.8648

Figure 2.6: The reconstructed images of Case (ii). (A) is the picture of the tank, (B) is the prior, which
does not include the presence of the pipe. R1 is 1.125, 1.35 and 1.575 from the top row to the bottom row.
R2 = 3 for all cases. 1st column is 2nd order absolute images without a prior. 2nd column is 2nd order
absolute images with a prior. 3rd column is 2nd order difference images without a prior. 4th column is 2nd

order difference images with a prior. The values that are provided are the SSIM measures.
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2.5.4 Results and discussion for Case (iii)

Second order difference images of the cucumber data are shown in Figure 2.7. The real part

of the prior is depicted in (B) and the imaginary part is in (C). The first two columns are for the

real part of the reconstructions without and with a prior, respectively. The last two columns are

the imaginary part of the reconstructions without and with a prior, respectively. We used the prior

(B) and (C) as the reference images for the SSIM values. The effect of a prior inclusion can be

interpreted as the same way as in the other cases.

2.6 Conclusions

We have presented a higher order Calderón’s method based on its relationship to the D-bar

method that is easy to compute. Its improvement over the original Calderón’s method is demon-

strated on experimental data. Furthermore, a method of including a priori spatial information is

introduced and demonstrated on experimental tank data with complex conductivities. The methods

and results provide new insight into Calderón’s method and suggest that the higher order method

with a prior could be a competitive alternative to existing direct and iterative methods for the com-

putation of absolute images in electrical impedance tomography.
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(A) Case (iii) (B) Real prior (C) Imaginary prior

R1
Real part Imaginary part

w/o prior with prior w/o prior with prior

1.125
0.40035 0.4383 0.5781 0.6950

1.35
0.52792 0.7504 0.6257 0.7130

1.575
0.58512 0.6865 0.6739 0.6975

Figure 2.7: The 2nd order difference images of Case (iii) with and without a prior. (A) is the picture of Case
(iii), (B) is the real part of the prior and (C) is the imaginary part of the prior. R1 is 1.125, 1.35 and 1.575
from the top row to the bottom row. R2 = 3 for all cases. 1st column is the real part of the images without a
prior. 2nd column is the real part of the images with a prior. 3rd column is the imaginary part of the images
without a prior. 4th column is the imaginary part of the images with a prior. The values that are provided
are the SSIM measures.
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Chapter 3

Paper 2: Calderón’s method with correct electrode

location for the absolute image

Electrical impedance tomography (EIT) is a non-destructive imaging technique in which elec-

trical measurements on the electrodes attached to the boundary of a subject are used to reconstruct

the electrical properties of the subject. It has been demonstrated that various EIT reconstruction

algorithms are very sensitive to the measurement and incorrect modeling of the boundary shape.

Calderón’s method is the seminal reconstruction algorithm that is direct, linearized, and fast,

which uses a special type of harmonic functions. Calderón’s method has been previously imple-

mented with correct boundary shape, but the exact location of the electrodes have been disregarded

as they are assumed to be spaced uniformly in angle. In this paper, we implement Calderón’s

method with a new expansion technique which enables the use of the correct location of the elec-

trodes as well as the shape of the boundary resulting in improved absolute images.

2010 Mathematics Subject Classification : Primary 35J65, 35J25; Secondary 65N21.

Keywords: Electrical impedance tomography, Calderon’s method, Inverse problems.

3.1 Introduction

Electrical impedance tomography (EIT) is an imaging modality that is not invasive and safe

for living subjects. Mathematically, it is governed by the inverse conductivity problem which is a

kind of the Cauchy problem in which the goal is to find some parameters (variable coefficients) in

the given partial differential equation by using the knowledge of the boundary information. The

typical situation in EIT is to apply some patterns of current through a finite number of electrodes

attached to the boundary of a subject and measure the arising voltage distribution at the same

time and reconstruct the electrical conductivity by using the measurement. Applications of EIT

include medical imaging, such as detection of breast tumors and monitoring of pulmonary and
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lung functions, geophysical applications, and nondestructive testing. For a comprehensive list of

applications, see [55] and references therein.

Despite the fact that EIT is a safe measurement technique for the patients, inexpensive, and

portable, its practical application is still limited because the problem is very ill-posed in the sense

that the reconstructed images are very sensitive to the measurement and modeling error. For ex-

ample, it has been demonstrated that the use of the inaccurate boundary shape results in large

systematic artifacts in the reconstruction. See [47, 56, 58, 62], for example. EIT is also a nonlinear

inverse problem with respect to the measured data, and this makes the problem difficult to solve

directly.

Calderón’s method is a direct, linearized, and fast reconstruction algorithm. In [12], Calderón

proved the unique solvability of a linearized inverse conductivity problem by using a special kind of

harmonic functions, now known as Complex Geometrical Optic (CGO) solutions. His proof gives

a linearized reconstruction algorithm and has led to the study of the inverse conductivity prob-

lem and its applications in many areas. We call the method in his paper Calderón’s method. The

first computational implementation of Calderon’s method with simulated and experimental data

collected with a circular tank was done in [8]. Calderón’s method on a non-circular symmetric

domain was implemented in [56], and the effect of the boundary modeling was studied. Imple-

mentations of Calderón’s method on an asymmetric chest shaped domain, and for a human subject

data was done in [57,58] and the effect of the boundary modeling was studied. Yet, in [56–58], the

location of the electrodes is assumed to be spaced uniformly in angle, which is incorrect.

The study of CGO solutions has generalized to the family of the D-bar reconstruction algo-

rithms which solve the full nonlinear EIT problem directly. See [2–5,39,46,48,54,60,68] and [55]

and references therein. It has been shown in [46] that Calderón’s method is a three-step lineariza-

tion of the D-bar method.

The computational complexity of Calderón’s method and the D-bar method mainly comes from

the expression of CGO solutions in terms of the measured data. In [58] and most of the other

algorithms in the papers mentioned above, GGO solutions are expressed as a series of a set of
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trigonometric basis functions. Because many EIT systems are not able to apply the trigonometric

current patterns directly, the technique of the change of basis is used to synthesize the voltage that

would have been measured if we had applied the trigonometric current patterns.

In this paper, we implement an algorithm that takes into account the correct location of the

electrodes to Calderón’s method. To this end, we first extract the exact location of the electrodes

from a photograph of the experimental tank, then compute CGOs at the location of electrodes and

expand them with respect to the original current patterns and the measured voltage data directly,

avoiding the synthesis of the data with respect to the trigonometric current patterns. We compare

the results by using the exact location of electrodes with the results from the algorithm in [58]

in which the location of the electrodes are ignored as they are assumed to be spaced uniformly

in angle. We demonstrate that implementing the location of electrodes results in good absolute

images. This paper is organized as follows. In Section 3.2, the mathematical formulation of EIT

problem and Calderón’s method is explained. The technique for numerical implementation is

explained in Section 3.3. Experimental results are given in Section 3.4, and conclusions in Section

3.5.

3.2 Background

3.2.1 Modeling of EIT

Let γ(x) ≥ γ0 > 0 be the electrical conductivity with positive constant lower bound γ0, u(x)

be the electrical potential, and Ω ∈ R
2 be a bounded domain. Since ∇ · γ(x)∇u(x) is the source

of the current at each point x, and the body is current source free, the governing equation of EIT is

∇ · γ(x)∇u(x) = 0, x ∈ Ω. (3.1)

47



This equation can be derived analytically by using the Maxwell’s equations [55]. The applied

current density j on the boundary is then

γ(x)
∂u

∂ν
(x) = j(x), x ∈ ∂Ω, (3.2)

where ν is the outward normal vector to ∂Ω, and this is the Neumann boundary condition for (3.1).

We denote the voltage distribution on the boundary by f so that

u(x) = f(x), x ∈ ∂Ω, (3.3)

which is the Dirichlet boundary condition for (3.1). If γ(x) and one of the boundary conditions

(3.2) or (3.3) are given, the forward problem is to solve for u(x) in Ω. The inverse problem is

to find the unknown γ(x) provided that the two boundary conditions (3.2) and (3.3) are given.

In practical applications, in order to make the reconstruction algorithm robust, we apply a set of

current patterns through a finite number of electrodes and measure the arising voltage distributions

on all of the electrodes at the same time. Therefore, the data to be used is the Neumann-to-Dirichlet

(ND) map,

Rγ : γ(x)
∂u

∂ν
(x) −→ u(x), x ∈ ∂Ω,

which is also called the current density-to-voltage map. However, in most of the mathematical

literature, the theory is developed by using the Dirichlet-to-Neumann (DN) map

Λγ : u(x) −→ γ(x)
∂u

∂ν
(x), x ∈ ∂Ω, (3.4)

which is also called the voltage-to-current density map.

3.2.2 Calderón’s method

We summarize Calderón’s method in [12]. Calderón assumed that γ(x) is a small perturbation

from the background conductivity 1 so that γ(x) = 1+ δ(x), where δ(x) is a small perturbation in
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L∞(Ω). Calderón’s method uses the special type of harmonic functions

f(x; k, a) = eπi(k·x)+π(a·x), g(x; k, a) = eπi(k·x)−π(a·x),

where k, a ∈ R
2 are nonphysical frequency variables with |k|= |a|, k · a = 0. These constraints

for k, a are to make the two functions be harmonic, meaning that ∆f = ∆g = 0. These type

of functions are now known as Complex Geometrical Optic (CGO) solutions. The main idea of

Calderón’s method is that when we apply the voltages f and g on the boundary ∂Ω, the arising

potential distributions ωi(i = 1, 2) of the body are small perturbations from f and g provided that

||δ||L∞(Ω) is small. We denote ωi on Ω as

ωi = ui + vi in Ω,

where ω1 = f and ω2 = g on ∂Ω, ui ∈ H1(Ω), and vi ∈ H1
0 (Ω) for i = 1, 2. Here H1 denotes the

Sovolev space and H1
0 the Sovolev space with trace zero. Then, by (3.1) and integration by parts,

∫

∂Ω

f(x, k)Λγg(x, k)ds(x) =

∫

∂Ω

w1γ
∂ω2

∂ν
ds(x)

=

∫

Ω

γ(∇ω1 · ∇ω2)dx

=

∫

Ω

γ∇u1 · ∇u2 + δ(∇u1 · ∇v2 +∇u2 · ∇v1) + γ∇v1 · ∇v2dx

= −2π2|k|2
∫

Ω

γ(x)exp [2πix · k] dx+ R̃(k).

Therefore, from the first line and the last line of the above equations, we get

∫

Ω

γ(x)exp [2πix · k] dx = − 1

2π2|k|2
∫

∂Ω

f(x, k)Λγg(x, k)ds(x) +
R̃(k)

2π2|k|2 .
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When we assume γ(x) is constant outside of Ω. The left-hand side is the Fourier transform of γχΩ,

which we denote by γ̂(k). We denote the first term on the right-hand side by

F̂ abs
γ (k) = − 1

2π2|k|2
∫

∂Ω

f(x, k)Λγg(x, k)ds(x), (3.5)

and the last term by R̂(k). Calderón showed that when ||δ(x)||L∞(Ω) is small, |R̂(k)| is small

for small values of |k|. Since γ(x)χΩ is zero outside of Ω, |γ̂(k)| has to decrease to zero as |k|

gets large. Therefore, by multiplying a mollifying function η̂(k) such that η̂(0) = 1, η̂ ∈ C∞

and that decreases fast to zero as |k| gets large, F̂ abs
γ η̂ approximates γ̂, and it is shown in [12]

that the inverse Fourier transform of R̂(k)η̂(k) is negligible when ||δ||L∞ is small. The use of

the mollification accounts to passing F̂ abs
γ to a low-pass filter. This low-pass filtering can be done

alternatively by truncating F̂ abs
γ (k) into a disk of radius RT . We call RT the truncation radius.

Therefore, we get an approximation of γ(x) by

γ(x) ≈
∫

|k|≤RT

F̂ abs
γ (k)e−2πix·kdk. (3.6)

We call the reconstruction from (3.6) the absolute image of γ. By the similar calculation, we define

F̂ diff
δ (k) = − 1

2π2|k|2
∫

∂Ω

f(x, k)(Λγ − Λ1)g(x, k)ds(x), (3.7)

and we get an approximation of δ(x) by

δdiff(x) ≈
∫

|k|≤RT

F̂ diff
δ (k)e−2πix·kdk, (3.8)

and call it the difference image of δ. But the computation of the difference image requires knowl-

edge of Λ1, which we call the the homogeneous data. In practical applications such as medical

imaging, Λ1 cannot be measured. On the other hand, since
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∫

Ω

fΛ1gdx = −2π2|k|2
∫

Ω

e2πik·xdx,

(3.7) can be replaced by

F̂ abs
δ (k) = − 1

2π2|k|2
∫

∂Ω

f(x, k)Λγg(x, k)ds(x)−
∫

Ω

e2πik·xdx. (3.9)

We define

δabs(x) ≈
∫

|k|≤RT

F̂ abs
δ (k)e−2πix·kdk, (3.10)

and call it the the absolute image of δ. While one can compute γ(x) directly by using (3.6), the

reason why we use (3.8) or (3.10) is to avoid the Gibbs phenomena near ∂Ω. Notice that γ(x)χΩ

is sharply discontinuous along ∂Ω, and that introduces the Gibbs phenomena along ∂Ω in the

reconstructed images. On the other hand, since δ(x) can be assumed to be zero and therefore flat

near ∂Ω, there are no Gibbs phenomena in the reconstructed images. This Gibbs phenomena in the

absolute images of γ can be observed in [8] and also is demonstrated later in this paper. For the

computation of the inverse Fourier transform, we use the Simpson’s quadrature rule.

3.3 Numerical implementation

In this paper, we use data collected on a chest shaped tank described below. See Figure 3.1.

There are 32 electrodes on the boundary of the tank. We denote the number of electrodes by L

in the following lines. For i = 1, . . . , L − 1, l = 1, . . . , L, let T i
l denote the ith current pattern

on lth electrode and V i
l the measured voltage. We require that T i and V i satisgy

∑L
l=1 T

i
l =

∑L
l=1 V

i
l = 0. Let ti denote the normalized current ti = (T i)/(||T i||2) and vi the normalized

voltage vi = (V i)/(||T i||2), where ||T i||2=
√∑L

l=1(T
i
l )

2. In this paper, the adjacent current

51



patterns were applied on the electrodes and are given by

T i
l =





M, l = i,

−M, l = i+ 1,

where M is the amplitude of the current patterns. We model the current density j(x) on the

boundary by the gab model given by

j(x) =





Il
A
, x ∈ el,

0, otherwise,

where el denotes the lth electrode and A is the area of an electrode, which is assumed to be the

same for all electrodes. Let x|∂Ω= (x1(θ), x2(θ)) = r(θ)(cos θ, sin θ) be a parameterization of

the boundary by θ, and the line element s(θ)dθ =
√

(x′1)
2 + (x′2)

2dθ =
√
r2 + (r′)2dθ. Denote

the angle of electrodes by (θl)
l=L
l=1 and gab between them by ∆θl = θl+1 − θl. For functions

r, s of θ such that r, s : RL → R, let (r(·), s(·))L denote the discrete inner product defined by

(r(·), s(·))L =
∑L

l=1 r(θl)s(θl).We first obtain the location of the electrodes by using a photograph

of the tank, Figure 3.1, and compute f(xl, k) and g(xl, k) at those points for each k. Then, we

expand f(x;, k) and g(xl, k) with respect to the normalized current patterns and the measured

voltages as

f(xl, k) =
L−1∑

i=1

f i
kt

i
l, (3.11)

g(xl, k) =
L−1∑

j=1

gjk,γv
j,γ
l , (3.12)

and let fk = {f i
k}

L−1

i=1 and gk,γ =
{
gjk,γ
}L−1

j=1
denote the coefficient vectors, where the subscripts k

and γ indicate the dependence of the coefficients on the variable k and the conductivity γ. Since

the applied normalized current patterns and the measured voltages are not orthogonal in general,
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in order to compute fk and gk,γ , we need to solve systems of linear equations. By taking the

inner product with vi,γ (i = 1, 2, ..., L − 1) on both sides of (3.12), we get Vγgk,γ = ck,γ, where

Vγ(i, j) = (vi,γ, vj,γ)L and ck,γ(i) =
(
g(xl, k), v

i,γ
l

)
L

. Therefore, gk,γ = V−1
γ ck,γ . Similarly,

fk = T−1dk, where T(i, j) = (ti, tj)L and dk(i) = (f(xl, k), t
i
l)L. Now, with (3.11) and (3.12),

∫

∂Ω

f(x, k)Λγg(x, k)ds(x) =

∫ 2π

0

L−1∑

i=1

f i
kt

i(θ)

[
Λγ

L−1∑

j=1

gjk,γv
j,γ(·)

]
(θ)s(θ)dθ

=
L−1∑

i=1

L−1∑

j=1

f i
kg

j
k,γ

∫ 2π

0

ti(θ)
[
Λγv

j,γ(·)
]
(θ)s(θ)dθ

=
1

A

L−1∑

i=1

L−1∑

j=1

f i
kg

j
k,γ

L∑

l=1

tilt
j
l ew,

=
ew
A
fTk Tgk,γ,

where ew is the width of one electrode, where all are assumed to be equal, and fTk is the transpose of

fk. Notice that the coefficients fk and gk,γ encode the information about the location of electrodes

and therefore the boundary shape provided that we use the exact values of f(xl, k) and g(xl, k) in

(3.11) and (3.12). From (3.7), (3.9) and by the similar calculation,

F̂ diff
δ (k) = − ew

2π2A|k|2 f
T
k T(gk,γ − gk,1), (3.13)

and

F̂ abs
δ (k) = − ew

2π2A|k|2 f
T
k Tgk,γ −

∫

Ω

e2πik·xdx. (3.14)

3.4 Experimental results

We test the proposed algorithm with the data that is used in [58] in order to demonstrate the

improvement of the absolute images by comparing the results from the proposed algorithm with

the results from the algorithm in [58]. Figure 3.1 is the photo of the tank of which the perimeter

is 1.016 m, simulating the shape of a human subject. The tank is filled with saline of conductivity

of 0.2 S/m to a height of 0.0204 m, and three inclusions featuring two lungs of conductivity 0.09
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S/m and the heart of conductivity 0.45 S/m. The width of the electrodes is 0.254 m. From the

center of the tank, the electrodes are spaced non-uniformly in angle. For the homogeneous data for

the difference images of δ, a data set is collected with only saline in the tank. The data was taken

with the Active Complex Electrode (ACE1) system (see, [51,52]) in the EIT lab at Colorado State

University. The frequency of the system was 125 kHz and the current amplitude was 3.3 mA.

Figure 3.1: The chest shaped tank filled with saline bath and inclusions simulating two low conductive
lungs and the high conductive heart.

Figure 3.2: Reconstructions without modeling the location of electrodes. Top left: An absolute image of
γ. Top middle: An absolute image of the homogeneous tank from the homogeneous tank data. Top right:
A difference image of δ. Bottom middle: A synthesized image of homogeneous tank. Bottom right: An
absolute image of δ.
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Figure 3.2 depicts reconstructions with the algorithm suggested in [58] in which the location

of electrodes is assumed to be spaced uniformly in angle. The top left image is an absolute image

of γ. The top middle image is a reconstruction of the saline-filled homogeneous tank using the

measured homogeneous data. The top right image is the difference of the previous two images,

the difference image of δ. The bottom middle image is a synthesized background conductivity by

using a quadrature rule for the second term in (3.14) and taking the inverse Fourier transform of

that. The bottom right image is the difference of top left and bottom middle images, an absolute

image of δ.

The first thing to notice is that, since the conductivity distribution is discontinuous along the

boundary, the three leftmost images show the Gibbs phenomena along the boundary as there ap-

pear blue rings along the boundary, and these low conductive artifacts severely deteriorate the

reconstructions. Second, there are artifacts due to incorrect electrodes modeling. In the top mid-

dle figure, there are two big red blobs on both sides of the image. Since it is the reconstruction

from the homogeneous tank data, it should look like the bottom middle figure. But, the one red

region across the tank in the bottom middle figure is separated into two big blobs in the top middle

figure. These are the artifacts as a result of the incorrect modeling of the electrode location. That

artifact seems to appear in the top left, making the region of low conductive lungs appear as high

conductive. Consequently, these artifacts in the first two images in the top row get subtracted in

the top right image, the difference image of δ. In that difference image, we see two lungs and the

heart quite clearly. On the other hand, the same kind of artifact doesn’t appear in the synthesized

background conductivity distribution in the bottom middle image, consequently, the artifact in the

top left is not subtracted effectively in the bottom right image, resulting in a poor absolute image of

δ. The truncation radius is 1.4 for all images. The same situation happens with different truncation

radius and we are not able to get a reasonable absolute image without using the correct location of

electrodes.

Figure 3.3 depicts the difference images of δ and the absolute images of δ with correct electrode

modeling suggested in this paper, i.e., the exact location of the electrodes is used in the reconstruc-
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Figure 3.3: Reconstructions with modeling the location of electrodes. Top row: Differences images of δ.
Bottom row: Absolute images of δ. The truncation radius are 1, 1.1 and 1.2 for each column from the left
to the right.

tion. The top row shows the difference images of δ with the truncation radius 1, 1.1, and 1.2 from

the left to the right. The bottom row shows the absolute images of δ with the same truncation

radius as the top row, respectively. With correct electrodes modeling, we get good absolute images

of δ as we can see in the bottom row: the two lungs and the heart appear clearly in the images, and

this is no worse than the difference images at the top row.

3.5 Conclusions

With incorrect modeling of the electrodes, there are inevitable artifacts in the absolute image of

γ, and these artifacts cannot be removed by subtracting the synthesized background conductivity

which makes it impossible to get a reasonable absolute image. On the other hand, the same kind of

artifact doesn’t appear with the correct electrode modeling, and we can get good absolute images

by subtracting the synthesized background conductivity. In this case, the absolute images of δ are

no worse than the difference images of δ.
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Chapter 4

Paper 3: Three dimensional Calderón’s method for

EIT on the cylindrical geometry

Electrical impedance tomography (EIT) is an imaging modality in which voltage data arising

from currents applied on the boundary are used to reconstruct the conductivity distribution in the

interior. Calderón’s seminal paper on the inverse conductivity problem provided equations for

a direct linearized inversion method. This paper provides the first implementation of Calderón’s

method on a 3-D cylindrical domain with data collected on a portion of the boundary. The ef-

fectiveness of the method to localize inhomogeneities in the plane of the electrodes and in the

z-direction is demonstrated on simulated and experimental data.

2010 Mathematics Subject Classification : Primary 35J65, 35J25; Secondary 65N21.

Keywords: Partial differential equations, Calderon’s method, electrical impedance tomography,

finite element method, inverse problems.

4.1 Introduction

Electrical impedance tomography (EIT) is a non-invasive, non-ionizing imaging technique in

which the conductivity distribution in the interior of the body is reconstructed from measurements

of surface voltages resulting from the application of an AC current. The most widely developed

application of EIT is for pulmonary imaging for which several commercial systems existing world-

wide are used for monitoring patients receiving mechanical ventilation in the ICU. The reader is

referred to the articles [28, 49, 61] for comprehensive reviews on EIT for lung imaging.

The typical electrode configuration for pulmonary imaging with EIT is a belt or ring of elec-

trodes placed around the circumference of the patient’s chest, and the conductivity is reconstructed

in the plane of the electrodes as a single cross-sectional image. This approach has several well-

known shortcomings, however. First, the flow of current is not confined to the plane of the
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electrodes and as a result, objects that are out-of-plane are projected into the in-plane image

[9,23,35,65]. Indeed, by adding a single electrode ring and using 3-D current patterns, the artefact

from an out-of-plane target can be reduced from 35% to 10% of the target value [9]. Studies com-

paring two row to single row electrode configurations on tidal ventilation in a horse support this

finding [34]. Second, a 2-D slice has no resolution in the caudocranial direction, and so patholo-

gies may be masked or superimposed in the image, and their exact location and volume cannot be

determined.

There are several iterative approaches to 3-D reconstruction on a torso, usually modeled as a

cylinder as is done here. The ToDLeR algorithm [9] takes a linearized one-step approach inspired

by the 2-D NOSER algorithm [16], and [79] uses a one-step Gauss-Newton iteration with gener-

alized Tikhonov regularization. Gauss-Newton reconstructions on a chest-shaped domain can be

found in [13, 49]. In this work, we introduce an implementation of Calderón’s method, which is

a direct (non-iterative) linearized method, to compute the conductivity in a cylindrical domain on

two to four rings of electrodes. Calderón’s seminal paper [12] has inspired a wealth of mathemat-

ical research on the inverse conductivity problem. Not only has the tool of special exponentially

growing solutions known as complex geometrical optics (CGO) solutions helped find answers to

questions of global uniqueness and stability, it has inspired the creation of a new family of direct

methods for EIT known as D-bar methods. The reader is referred to [55] for more information

about D-bar methods.

The two dimensional (2-D) Calderón’s method was first implemented on a circle for experi-

mental data in [8]. The artefacts caused by approximating an elliptical domain by a circle were

quantified in [56]. The 2-D method was implemented for human data on a subject-specific domain

in [58]. Reconstruction of the complex valued admittivity can be found in [14,15,57]. The only im-

plementation of Calderón’s method in three dimensions is in the mammography geometry [10,20].

This is the first paper to provide a version of Calderón’s method for data measured on a portion

of the boundary of a cylinder. For this novel implementation, we focus on the case of a real-valued

conductivity, although the method is extendable to γ(x) ∈ C. The method is tested on simulated
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data with two and four rows of electrodes and is demonstrated to be robust in the presence of

noise, which is further seen from reconstructions of data collected on a saline-filled tank. The

purpose of this paper is to present the algorithm and demonstrate that it is effective for identifying

reconstructions in the plane of the electrodes with resolution in the z-direction that improves as

the number of rows of electrodes increases. A study of the robustness to modeling errors and a

comparison to other algorithms is a topic of future work.

4.2 Background

4.2.1 Governing equations

Let γ(x) be the electrical conductivity, u(x) be the electrical potential and Ω ⊂ R
3 be a

bounded domain with Lipschitz boundary ∂Ω. Then since γ(x)∇u(x) is the current and we as-

sume the body itself is current source free, the governing equation of the electrical impedance

tomography problem is

∇ · γ(x)∇u(x) = 0, x ∈ Ω. (4.1)

We denote the class of admissible conductivities as

Q = {γ ∈ L∞(Ω)|γ(x) ≥ γ0 > 0, for x ∈ Ω and γ0 ∈ R}.

The applied current density j on the boundary is then

γ(x)
∂u

∂ν
(x) = j(x), x ∈ ∂Ω, (4.2)

where ν is the outward normal vector to ∂Ω, and this corresponds to the Neumann boundary

condition. Equations (4.1) and (4.2) are known as the continuum model for EIT. The induced
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voltage f by the application of the current density j on the boundary ∂Ω is

u(x) = f(x), x ∈ ∂Ω, (4.3)

and this corresponds to the Dirichlet boundary condition. In practical implementation, it is the

current density-to-voltage map, also called the Neumann-to-Dirichlet map, that is used to find

γ(x). However, in most of the mathematical literatures for the inverse conductivity problem, it is

the Dirichlet-to-Neumann map, or voltage-to-current density map

Λγ : u|∂Ω→ γ(x)
∂u

∂ν

∣∣∣∣
|∂Ω

,

that is used for the theoretical development. The inverse conductivity problem is to find the un-

known γ(x) provided that Λγ is known.

4.2.2 Complete Electrode Model

In practice, the continuum model is not a good model for experimental data [18], and the

complete electrode model (CEM) was developed to account for discrete electrodes and the elec-

trochemical effect between the electrodes and the body. We use the CEM for the simulated data in

this work and briefly summarize it here.

Suppose L electrodes have been fixed around the surface of an object. In an EIT experiment, a

basis of current patterns is applied on the electrodes, and the resulting voltage is measured on all

of the electrodes. Equation (4.1) is used to solve for the electric potential on the electrodes and

inside Ω given an applied current I .

In practice, the current density j at the electrodes is unknown, but
∫
El
γ ∂u

∂ν
dS = Il is known,

where ν is the unit outward normal to Ω, El is the surface area of the lth electrode and Il is the
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current injected into El. Then the Neumann condition (4.2) can be rewritten as

∫

El

γ
∂u

∂ν
dS = Il for l = 1, 2, ..., L, (4.4)

γ
∂u

∂ν
= 0 on ∂Ω/∪L

l=1El, (4.5)

since the current density is 0 on the boundary off the electrodes. Since the electrodes themselves

provide a low-resistance path for the current to pass, the potential on each electrode is modeled as

constant: Ul = constant. This property is known as the shunting effect, which is represented by

u = Ul, on El, for l = 1, 2, ..., L. (4.6)

The electrochemical effect referred to above is due to the formation of a thin and highly resistive

layer between the electrodes and the body. Electrical impedance from this layer, zl, is called the

effective contact impedance or surface impedance at El. This effect changes (4.6) to

u+ zlγ
∂u

∂ν
= Ul on El for l = 1, 2, ..., L. (4.7)

The CEM consists of (4.1), (4.4), (4.5) and (4.7), together with the following conditions.

L∑

l=1

Il = 0 (conservation of charge)

L∑

l=1

Ul = 0 (choice of a ground)

In [17], it is shown that the accuracy of the CEM can closely match the measurement precision

of experimental measurements. Existence and uniqueness of a solution to the CEM can be shown

using the Lax-Milgram theorem [17], which shows that (u, U) satisfies (4.1), (4.4), (4.5) and (4.7)
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if and only if,

b((u, U), (v, V )) = g(v, V ), for all (v, V ) ∈ H1(Ω)⊕ R̃
L,

where R̃
L = {x ∈ R

L :
∑

i xi = 0}, b((u, U), (v, V )) is a bilinear form defined as,

b((u, U), (v, V )) =

∫

Ω

γ∇u · ∇vdx+
L∑

l=1

1

zl

∫

El

(u− Ui)(v − Vi)ds,

and g(v, V ) =
∑L

l=1 IlVl.

In order to solve the inverse problem, we need to solve the forward problem, i.e., given the

parameter γ, find (u, U). We use the finite element method (FEM) for solving the forward model.

4.2.3 FEM discretization of CEM

Let T = {T1, ..., T|T |} be the triangularization of Ω, which has n mesh points for the finite

dimensional subspace Hn of H1(Ω). Any ũ ∈ Hn is represented by

u(x) ≈ ũ(x) =
n∑

i=1

αiφi(x), for αi ∈ R,

where φi(x) are the basis functions of Hn satisfying φi(xk) = δik for i, k = 1, . . . , n and xk ∈

Hn(Ω). The electric potential on the electrodes is given by

U ≈ Uh =
L−1∑

k=1

βkζ = Gβ,

where βk ∈ R, ζk, k = 1, . . . , L − 1, comprise the basis for R̃L and G ∈ R
L×(L−1). We want to

determine the coefficients αi and βk in this formulation. Choosing v = φi and V = ζk when the

set of test functions is of the form (φ1, 0), ..., (φn, 0), (0, ζ1), ..., (0, ζL−1) results in the following
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system of equations in matrix form:

Aθ = q,

where θ = (α, β)T ∈ R
n+L−1, the matrix A is the standard FEM system matrix (see [80] for

details), and the right hand side q is given by

qi =





0 for i = 1, . . . , n

IT ζi−n for i = n+ 1, . . . , n+ L− 1.

4.2.4 Current patterns

For the input current pattern, we use the current patterns derived in [9, 33] as the analytical

solution to the forward problem (1), (2) with the continuum model. These patterns ensure that

current flows between the rows of electrodes in 3-D. We follow the notations in [9]. Let J be the

number of layers of electrodes and K be the number of electrodes in each layer. Then the total

number of electrodes is given by L = JK. For i = 1, . . . , L, let

I il,lz =





Mi cos(kθl), for k = 1, . . . , K
2
;

Mi cos(kθl) cos
(
jπ
b

(
zlz − z0 +

b
2

))
, for k = 1, . . . , K

2
; j = 1, . . . , J − 1;

Mi cos
(
jπ
b

(
zlz − z0 +

b
2

))
, for j = 1, . . . , J − 1;

Mi sin(kθl), for k = 1, . . . , K
2
− 1;

Mi sin(kθl) cos
(
jπ
b

(
zlz − z0 +

b
2

))
, for k = 1, . . . , K

2
; j = 1, . . . , J − 1;

here, θl = 2πl
K

, zlz is the distance from the bottom of the tank to the center of the lthz layer, I il,lz is

the ith current pattern applied to the lth electrode of the lthz layer, b is the height of the vertical span

of the electrodes; distance from the bottom of the lowest layer to the top of the uppermost layer,

and Mi is the normalizing constant with which ‖I il,lz‖L2= 1. We denote the corresponding voltage

distribution on the boundary due to the conductivity distribution γ by U i,γ
l,lz

.
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4.2.5 Calderón’s method

Calderón’s method is based on the linearization of the inverse problem with the assumption

that γ(x) = 1 + δ(x), where δ(x) is a small perturbation from the background conductivity 1.

Calderón used the special family of harmonic functions

ψ1(x, k, a) = eiπ(x·k)+π(a·x), (4.8)

ψ2(x, k, a) = eiπ(x·k)−π(a·x), (4.9)

where k, a ∈ R
3 are nonphysical frequency variables that are related as |k|= |a|, k · a = 0.

These conditions guarantee that ∆ψ1 = ∆ψ2 = 0. We consider the cases of applying potential

distributions (4.8) and (4.9) on the boundary ∂Ω, and denote the resulting potential distributions

on Ω as

ωi = ui + vi in Ω,

where ui = ψi on Ω, and vi ∈ H1
0 (Ω) for i = 1, 2. Here H1 denotes the Sobolev space and H1

0 the

Sobolev space with trace zero. Note that

∇u1 · ∇u2 = (iπk + πa)u1 · (iπk − πa)u2

= (−π2|k|2−π2|a|2)exp [2πix · k]

= −2π2|k|2exp [2πix · k] .

Then,

∫

∂Ω

ψ1(Λγ − Λ1)ψ2ds(x) =

∫

∂Ω

(
w1γ

∂ω2

∂ν
− u1

∂u2
∂ν

)
ds(x)

=

∫

Ω

(γ∇ω1 · ∇ω2 −∇u1 · ∇u2) dx

=

∫

Ω

{δ(∇u1 · ∇u2 +∇u1 · ∇v2 +∇v1 · ∇u2) + γ∇v1 · ∇v2} dx

= −2π2|k|2
∫

Ω

δ(x)exp [2πik · x] dx+ R̃(k),
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where R̃(k) is the last three terms in the third line of equation above. Dividing the first line and

the last line in the above equations by −2π2|k|2, we get

∫

Ω

δ(x)exp [2πix · k] dx = − 1

2π2|k|2
∫

∂Ω

ψ1(Λγ − Λ1)ψ2ds(x) +
R̃(k)

2π2|k|2 ,

of which the left term is the Fourier transform of δ(x). We denote the Fourier transform of δ(x) by

δ̂(k), the first term on the right-hand side equation by F̂ (k), and the last term by R̂(k). Calderón

showed that R(x), which is the inverse Fourier transform of R̂(k)η̂(k), where η̂(k) is a Gaussian

low pass filter, is negligible provided that ‖δ‖∞ is small. In this paper, instead of multiplying by

η̂(k), we truncate the F̂ (k) to a sphere of radius RT , and adopt the notation F̂RT
(k). This has the

regularizing effect of smoothing the reconstruction; decreasing RT results in increased smoothing.

Therefore, by neglecting R̂(k) and taking the inverse Fourier transform of the truncated F̂RT
(k),

we get an approximation of the perturbation δ(x) by

δ(x) ≈ F−1
(
F̂RT

(k)
)
(x). (4.10)

4.3 Computational considerations

For functions f and g of θ and z such that f, g : RK ×R
J → C, let (f(·, ·), g(·, ·))L denote the

discrete bilinear form defined by

(f(·, ·), g(·, ·))L =
J∑

lz=1

K∑

l=1

f(θl, zlz)g(θl, zlz).

We expand ψ1 and ψ2 on the boundary ∂Ω with respect to I il,lz and U i,γ
l,lz

by letting

ψ1(θl, zlz ; k) =
L−1∑

i

aikI
i
l,lz , (4.11)

ψ2(θl, zlz ; k) =
L−1∑

j

bjk,γU
j,γ
l,lz
, (4.12)
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neglecting the constant terms in the expansion since they will be annihilated by Λγ in the expansion

of the integral. Since the current patterns {I i}L−1
i=1 are orthonormal, we can solve (4.11) for ak =

{aik}
L−1

i=1 by

aik = (ψ1, I
i)L.

On the other hand, taking the inner product with U i,γ on both sides of (4.12), we get

L−1∑

j=1

bjk,γ(U
i,γ, U j,γ)L = (ψ2, U

i,γ)L,

for i = 1, . . . , L − 1. Therefore, we get a system of linear equations for bk,γ =
{
bjk,γ
}L−1

j=1
in a

matrix form:

Uγbk,γ = ck,γ,

where Uγ(i, j) = (U i,γ, U j,γ)L and cik,γ = (ψ2, U
i,γ)L. Since Uγ is invertible, we get

bk = (Uγ)
−1

ck,γ.

Now, with (4.11) and (4.12),

∫

∂Ω

ψ1Λγψ2ds(x) =

∫

∂Ω

L−1∑

i=1

aikI
iΛγ

L−1∑

j=1

bjk,γU
j,γds(x)

= A
L−1∑

i=1

L−1∑

j=1

aikb
j
k,γ

(
I il,lz ,

[
ΛγU

j,γ
]
l,lz

)
L

≈
L−1∑

i=1

L−1∑

j=1

aikb
j
k,γ

(
I il,lz , I

j
l,lz

)
L
,

where A is the area of the electrodes. Note that in the ideal case, Λγu|∂Ω= j(x), but in the

discrete case with the CEM, it is an approximation to take ΛγU
j,γ ≈ Ijl,lz . Defining the matrix
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T ∈ R
L−1,L−1 by T(i, j) =

(
I il,lz , I

j
l,lz

)
L

, we get

∫

∂Ω

ψ1Λγψ2ds(x) = at
kTbk,γ.

Therefore, we approximate F̂RT
(k) by

F̂RT
(k) = − 1

2π2|k|2a
t
kT(bk,γ − bk,1). (4.13)

For the computation of the inverse Fourier transform, we use the Simpson’s quadrature rule. Note

that the computation of δ(x) is trivially parallelizable in x since the reconstruction is computed

independently for each value of x by invering (4.13).

4.4 Numerical results

In this section, reconstructions using Calderón’s method for simulated and experimental data

in the cylindrical geometry are presented. Reconstructions from data on a tank with two rows and

four rows of electrodes with targets at various vertical locations demonstrate the resolution of the

method in the z-direction. Reconstructions from data collected on a saline-filled tank demonstrate

that the method is effective in the presence of actual noise.

4.4.1 Forward model simulation

Data was simulated with the FEM for a cylindrical tank of radius 8 cm, and height 18.53 cm

with 2 and 4 rows of 2.54 cm by 2.54 cm electrodes around the circumference. In the case of two

rows of electrodes, the first layer of electrodes is centered at height z1 = 7.57 cm, and the second

layer at height z2 = 10.96 cm. For the case of four layers of electrodes, two layers of electrodes

are added above and below those of the two layer case at heights z4 = 14.35 cm and z1 = 4.18

cm, respectively. The vertical gap between two adjacent rows of electrodes is 0.85 cm. Voltage

measurements at the electrodes were simulated using the FEM on a mesh of 205,120 tetrahedrons

and 38,529 nodes for the case of 2 layers of electrodes and 221,416 tetrahedrons, 41,362 nodes for
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the case of 4 layers of electrodes. Gaussian noise was added to the simulated data independently

for each current pattern according to the formula

U j
a,γ = U j,γ +

a

100
||U j,γ||∞Z,

where U j,γ
a is the noisy data with noise level a%, U j,γ is the simulated data and Z is the standard

multivariate normal random variable. In each example, the conductivity of the background was 1.8

mS/cm, and the contact impedance was zl = 1.3 Ohm-cm2. The conductivities of the targets were

6 mS/cm and 0.5 mS/cm.

4.4.2 3D reconstruction examples

Reconstructions from simulated data with two rows and four rows are compared, demonstrating

the method’s ability to locate a target in the plane of the electrodes and the resolution in x, y, and

z. In each example, the displayed reconstructions are the perturbations δ(x), while the displayed

ground truth is γ(x). Reconstructions from data with and without noise are shown to illustrate the

effect of noise on the resolution. Finally, the method is demonstrated on tank data collected on a

3D tank with two layers of electrodes. In the figures, 3D rendered images are included composed

of 20 reconstructed slices that extend 1 cm above and 1 cm below the top and bottom rows of

electrodes, respectively.

Simulated data with 2 electrode layers

Figure 4.1 shows the reconstructions of δ(x) for one conductor located in the plane of the bot-

tom row of electrodes, and Figure 4.2 shows reconstructions for one conductor located just above

the plane of the top layer of electrodes. In both figures, the ground truth and the 3D image of the

target configuration are depicted in the first row. Throughout all figures, bars with ticks represent

the vertical locations of the centers of electrodes layers and the arrow represents the height of the

reconstructed slice depicted in the figure. The first column of reconstructions are from noise-free

data, while the second column is from data with 0.1% additive noise. The truncation radius in
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Figure 4.1: Reconstructions for simulated data with two electrode layers. Top row: Ground truth, a spherical
conductive target of diameter 2.5 cm. First column of reconstructions: Reconstructions from noise-free data
of one conductor located at the height of the bottom layer of electrodes. The truncation radius is 17. Second
column of reconstructions: Reconstructions from data with 0.1% additive noise. The truncation radius is
14. The arrow indicates the height of the reconstructed slice displayed. Last row is the 3D rendering of
20 reconstructed slices that extend 1 cm above and 1 cm below the top and bottom rows of electrodes,
respectively, for the corresponding columns.

formula (4.10) is 17 for noise-free data and 14 for noisy data. The last row of the figures contains

3D rendering of 20 slices of images starting from 1 cm below the bottom layer of electrodes to 1

cm above the top layer of electrodes.

Figures 4.1 and 4.2 demonstrate that an out-of-plane target is visible in the reconstruction, as

predicted and demonstrated in [9]. The resolution in both x, y and the z-axis is seen to be negatively

influenced in the presence of noise.

Simulated data with 4 layers of electrodes

Figure 4.3 shows reconstructions of δ(x) from simulated data with one conductor and one re-

sistive target at the heights of the third and second electrode layers, respectively. The first column

of reconstructions are from noise-free data, while the second column is from data with 0.1% addi-

tive noise. The truncation radius in formula (4.10) is 17 for noise-free data and 14 for noisy data.
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Figure 4.2: Reconstructions for simulated data with 2 electrode layers. Top row: Ground truth, a spherical
conductive target of diameter 2.5 cm. First column of reconstructions: Reconstructions from noise-free
data of one conductor located just above the top layer of electrodes. The truncation radius is 17. Second
column of reconstructions: Reconstructions from data with 0.1% additive noise. The truncation radius is
14. The arrow indicates the height of the reconstructed slice displayed. Last row is the 3D rendering of
20 reconstructed slices that extend 1 cm above and 1 cm below the top and bottom rows of electrodes,
respectively, for the corresponding columns.

In order to demonstrate the vertical resolution of the 3D algorithm, we consider reconstructions

of a dynamic target located at each of the four electrode layers. Reconstructions from noise-free

and data with 0.05% additive noise are found in Figures 4.4 and 4.5. The truncation radius in

formula (4.10) is 17 for noise-free data and 15 for noisy data. Last row is the 3D rendering of

20 reconstructed slices that extend 1 cm above and 1 cm below the top and bottom rows of elec-

trodes, respectively, for the corresponding columns. While there are some artefacts in the layers

with no target, the z-resolution is quite good in the noise-free case and deteriorates somewhat in

the presence of noise.

Experimental tank data with two layers of electrodes

Data was collected on a saline-filled tank of radius 15 cm using the ACE 1 EIT system [52].

The tank was constructed with two layers of electrodes with 32 electrodes per layer, but since ACE
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Figure 4.3: Reconstructions for simulated data with 4 layers of electrodes each layer having 8 electrodes
uniformly spaced. Top row: Ground truth, a spherical conductive target of diameter 2.44 cm and a resistive
target of diameter 2.6 cm. First column of reconstructions: Reconstruction from noise free data of one
conductor located at the height of second top layer of electrodes and one insulator located at the height
of second bottom layer of electrodes. The truncation radius is 17. Second column: Reconstructions for
the 0.1% noise data with the same target configuration. The truncation radius is 14. The arrow indicates
the height of the reconstructed slice displayed. Last row is the 3D rendering of 20 reconstructed slices that
extend 1 cm above and 1 cm below the top and bottom rows of electrodes, respectively, for the corresponding
columns.

1 has 32 channels, every second electrode in the layer was used for voltage measurement. ACE 1

is a bipolar active electrode system that applies current pairwise at 125 kHz on up to 32 electrodes

and measures the resulting voltages on all electrodes. Adjacent current patterns with amplitude

3.3276 mA were applied on the electrodes connected to the system and voltages were measured

while a plastic ball 3 cm in diameter placed at the height of the center of the two layers was moved

counter-clockwise around the tank. Reconstructions of δ(x) at four time snapshots are found in

Figure 4.6.

71



Figure 4.4: Reconstructions from noise-free simulated data for four different vertical locations of the target
with 4 layers of electrodes each layer having 8 electrodes uniformly spaced. The first row shows the ground
truth, a spherical conductive target of diameter 2.5 cm, and the vertical location of the conductor, for the
corresponding columns, with respect to the electrode layers. From the second column to the last column,
the target is located at different heights indicated in the first row. From the second row to the fifth row,
the images show the reconstructions taken at different heights described by the arrow in the first column.
Last row is the 3D rendering of 20 reconstructed slices that extend 1 cm above and 1 cm below the top and
bottom rows of electrodes, respectively, for the corresponding columns. The truncation radius is 17 for all
figures.

4.5 Conclusions

In summary, we have presented an implementation of Calderón’s method in three dimensions

with measurements on a portion of a cylindrical domain. The method has the advantage of being

trivially parallelizable, and able to compute reconstructions voxel-wise in a region of interest.

Results from simulated and experimental data show that the method is effective for distinguishing
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Figure 4.5: Reconstructions for four different vertical locations of the target with 4 layers of electrode
configuration with 0.05 % noise added to the data. The configuration of the figures is the same as Fig. 4.4.
The truncation radius is 15 for all figures.

in-plane and nearby out-of-plane inhomogeneities with good spatial resolution in the vertical z

direction. A study of the sensitivity to modeling errors and a comparison to other methods is a

topic of future work.
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Figure 4.6: Reconstructions from tank data with a plastic ball 3 cm in diameter moving counter-clockwise
at a height between the middle of the two electrodes layers. The first row of images shows the top slice and
the second row of images shows the bottom slices, and the third row is the 3D rendering of 10 reconstructed
slices starting 1 cm below the bottom layer to 1 cm above the top layer.
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Chapter 5

Conclusions

In this dissertation, we presented three papers about two and three dimensional Calderón’s

method. In the first paper, we presented a second order Calderón’s method suggested from the

study of its relationship to the D-bar method. We verified that the second order term that we sug-

gest is dominating the other second order terms that we are dropping. We also claim that the second

order strategy is applicable to the complex admittivity targets by testing the algorithm to simulated

data and experimental data. We also developed a method of including a spatial a priori informa-

tion to Calderón’s method. The results with experimental tank data show that the second order

term and the inclusion of a spatial prior improves the reconstruction over the original Calderón’s

method. We used the SSIM measures to support our claim. Approximating CGO solutions ψ(x, k)

and the integral equation for µ(x, k) by using the Born series is a topic of future work. In the

second paper, we proposed a new kind of expansion for the given harmonic functions. To this

end, we first extracted the locations of the electrodes and then computed the harmonic functions

at those locations. Then, we expanded the harmonic functions at the location of electrodes by the

measured voltages and the applied current patterns. With this new strategy, we were able to include

the location of electrodes to Calderón’s method. We demonstrated that including the location of

electrodes improves the absolute image significantly. The difference image with our method is no

worse than the original Calderón’s method. This method is easy to understand, direct, and can be

applied to more general experimental settings such as three-dimensional arbitrary domain shape.

An implementation of this method to data with different geometry including human subject data is

a topic of future work. In the third paper, we presented an implementation of Calderón’s method

on the cylindrical geometry with multiple layers of electrodes. In order to test our algorithm, we

generated simulated data by solving the forward problem by the Finite Element Method. Then,

by using the simulated data with two or four layers of electrodes, we showed that the method is

effective for locating the targets with good spatial resolution. We also tested our algorithm with
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cylinder tank data and showed that the method captures the dynamic changes of the subject effec-

tively. A study on various three-dimensional geometry and electrode configurations is a topic of

future work. Comparing this method with other three dimensional EIT algorithms is another topic

of future work.
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