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Abstract— This research investigates the problem of robust
resource allocation for a large class of systems operating on
periodically updated data sets under an imposed quality of
service (QoS) constraint. Such systems are expected to function
in an environment replete with uncertainty where the workload is
likely to fluctuate substantially. Determining a resource allocation
that accounts for this uncertainty in a way that can provide a
probabilistic guarantee that a given level of QoS is achieved
is an important research problem. First, this paper defines a
methodology for quantifiably determining a resource allocation’s
ability to satisfy QoS constraint in the midst of uncertainty
in system parameters. Uncertainty in system parameters and
its impact on system performance are modeled stochastically.
Second, the established stochastic model is employed to develop
greedy resource allocation heuristics. Finally, the utility of the
proposed stochastic robustness metric and the performance of
the heuristics are evaluated in a simulated environment that
replicates a heterogeneous cluster-based radar system.

Index Terms— heterogeneous distributed systems, resource al-
location, stochastic optimization, greedy heuristics.

I. INTRODUCTION

This paper investigates the problem of robust resource allo-
cation for a large class of distributed heterogeneous computing
(HC) systems operating on periodically updated data sets. The
example systems include surveillance for homeland security,
monitoring vital signs of medical patients, and automatic
target recognition systems. Fig. 1 schematically illustrates
such systems where sensors (e.g., radar, sonar, video camera)
produce data sets with a constant period of Λ time units. Due
to the changing physical world, the periodic data sets produced
by the system sensors typically vary in such parameters as
the number of observed objects present in the radar scan and
signal-to-noise ratio. Suppose that each input data set must
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be processed by a collection of N independent applications
that can be executed in parallel in an HC system composed of
M compute nodes. Unpredictable changes in input data sets
result in variability in the execution times of data processing
applications. This makes the problem of resource allocation
(i.e., allocation of resources to applications) rather challenging,
especially in situations when the system experiences workload
surges or loss of hardware resources, as the total processing
time for any given data set must not exceed Λ. Specifically, a
produced resource allocation must be robust, i.e., it guarantees
(or has a high probability) that the imposed timing quality of
service (QoS) constraint Λ is satisfied despite uncertainties
in application execution times. Furthermore, in many systems
of the considered class, it is highly desirable to minimize the
period Λ between subsequent data updates, e.g., more frequent
radar scans are needed to identify an approaching target in
military applications.

The major contribution of this paper is the design of
resource allocation techniques based on a greedy approach
methods to address the problem of minimizing Λ while provid-
ing a certain level of probabilistic guarantee that a given QoS
constraint is achieved in the system. The mapping problem
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Fig. 1. Major functional units and data flow for a class of system that operates
on periodically updated data sets. The aij ’s denote applications executing on
machine j. Processing of each data set must be completed within Λ time
units.



has been shown, in general, to be NP-complete in HC systems
[6], [9], [29]. Thus, the development of heuristic techniques
to find near-optimal solutions is an active area of research,
e.g., [5], [10], [17], [18], [21]. Additional contributions of this
research include quantifying a metric for stochastic robustness,
modeling the intended distributed HC system, and evaluating
the relative performance of the developed heuristics in the
simulated environment.

The remainder of this work is organized in the following
manner. Section II develops a model of the distributed HC
system operating on periodic data sets, presents a quantitative
measure of stochastic robustness of a given resource allocation
along with the methods to compute it, and formulates the per-
formance goal. Four heuristics designed to solve the resource
allocation are described in Section III, each determining the
lowest achievable value of the QoS constraint (i.e., Λ) for
the required level of stochastic robustness. The parameters
of the simulation setup are discussed in Section IV along
with the simulation results and evaluation of the heuristics’
performance. A sampling of some related work is presented
in Section V. Section VI concludes the paper. A glossary of
notation used in this paper is given in Table I.

II. STOCHASTIC SYSTEM MODEL

For the system illustrated in Fig. 1, let Sj be the set of
nj applications assigned to compute node mj , i.e., Sj =
{a1j , a2j , ...., anjj}. Let random variable Tij denote the ex-
ecution time of each individual application aij on compute
node mj . The random variables Tij serve as the inputs to the
system model that characterize the uncertainty in execution
time for each of the applications in the system and will be
referred to as the uncertainty parameters. The performance
of the considered system is measured based on the makespan
value (total time required for all applications to process a given
data set) [5] achieved by a given resource allocation, i.e., a
smaller makespan equates to better performance. The system
performance ψ referred to as the performance characteristic,
is an output of the mathematical model of the system. The
functional dependence between the uncertainty parameters and
the performance characteristic in the model can be expressed
mathematically as

ψ = max{
n1∑
i=1

Ti1, ...,

nM∑
i=1

TiM}. (1)

Due to its functional dependence on the uncertainty parame-
ters Tij , the performance characteristic ψ is itself a random
variable.

As discussed before, the QoS constraint in the system is
given by the time period Λ between sequential data sets lim-
iting the acceptable range of possible variation in the system
performance, i.e., ψ ≤ Λ. The stochastic robustness metric is
the probability that the performance characteristic of the
system does not exceed Λ, i.e., P[ψ ≤ Λ]. For a given
resource allocation, the stochastic robustness quantitatively
measures the likelihood that the generated system performance
will satisfy the stipulated QoS constraint. Clearly, unity is the

TABLE I
GLOSSARY OF NOTATION.

ai ith application in the system
mj jth compute note in the system
Tij execution time of ai on mj

Λ time period between sequential data sets
ψ performance characteristic
ψj local performance characteristic on mj

P[ψ ≤ Λ] stochastic robustness metric
Λ(ai,mj) result of PMR call when ai is added to mj

FFT Fast Fourier Transform method
PMR Period Minimization Routine
BASIC two-phase basic heuristic
CR two-phase conflict resolution heuristic
HI→LO applications ranked in descending order of averages
LO→HI applications ranked in ascending order of averages
ARBITRARY applications ranked randomly
ITERATIVE iterative version of a one-phase heuristic

most desirable stochastic robustness metric value, i.e., there
is zero probability that the system will violate the established
QoS constraint.

In the model of compute node mj , the functional de-
pendence between the set of local uncertainty parameters
Tij | 1 ≤ i ≤ nj and the local performance characteristic ψj

can be stated as ψj =
nj∑
i=1

Tij . Assuming no data dependency

exists among executing applications aij on different compute
nodes, the random variables ψ1, ψ2, ..., ψM are mutually in-
dependent. As such, the stochastic robustness in a distributed
system can be expressed as the product of the probabilities
of each compute node meeting the imposed QoS constraints.
Mathematically, this is given as

P[ψ ≤ Λ] =
M∏
j=1

P[ψj ≤ Λ]. (2)

If, in addition, the execution times Tij of applications
mapped on a compute node mj are mutually independent (e.g.,
this assumption is valid when there is no multitasking, as is
commonly done in the literature [5], [8], [14], [17], [25]), then
P[ψ ≤ Λ] can be computed using an nj-fold convolution of
probability density functions (pdfs) fTij (ti) [15]

P[ψj ≤ Λ] =
∫ Λ

0

fTij
(t1) ∗ ... ∗ fTnjj

(tnj
)dt. (3)

Often in practical implementations the probability mass
functions (pmfs) fTij

(ti) are derived from the empirical obser-
vations obtained as a result of past executions of application
ai on compute node mj . The discrete form of pmfs allows
the Fast Fourier Transform (FFT) method [20] to be applied
to efficiently compute the n-fold convolution given in (3). A
more detailed discussion about the FFT method can be found
in [22].

In contrast to convolution, which is applicable only when
the performance characteristic is a sum of independent ran-
dom variables, the bootstrap method [26] to approximate
P[ψj ≤ Λ] can be applied to various forms of functional
dependence between local uncertainty parameters Tij and the



local performance characteristic ψj , making it very useful in
many practical implementations. For example, if the execution
of applications assigned to a compute node is done in a
parallel multitasking fashion, then there exists a complex
functional dependence between the time required to process
an application and a number of currently executing threads,
amount of CPU utilized by each thread, etc [21].

The bootstrap method is based on the following principles.
Let T ∗

ij denote one draw from the execution time distribution
fTij

(ti). Let ψ∗
j be a bootstrap replication whose computation

is based on a known functional dependence between the set
of drawn T ∗

ij and ψj , i.e., ψ∗
j = g(T ∗

1j , ..., T
∗
njj

). In the
bootstrap simulation step [26], B bootstrap replications of
ψ̂∗
j are computed: ψ∗

j,1, ..., ψ
∗
j,B . If F̂(B)ψj

(t) represents a
sample cumulative density function (cdf) of ψj derived from
these bootstrap replications, then the probability for the local
characteristic function ψj can be approximated as

P[ψj ≤ Λ] ≈ F̂(B)ψj
(Λ). (4)

The approximation in Equation (4) becomes a strict equality
should the existence of a monotone normalizing transforma-
tion be assumed for the ψj distribution, which is based on a
proof of bootstrap percentile confidence interval [26]. An exact
normalizing transformation will rarely exist, but approximate
normalizing transformations may exist—the latter causes the
probability that ψj is less than or equal to Λ to be not exactly
F̂(B)ψj

(Λ). For additional information related to the accuracy
of the bootstrap approximations refer to [22].

This research assumes that an acceptable level of stochastic
robustness P[ψ ≤ Λ] is specified for the considered system.
Thus, the performance goal for the mapper is to find resource
allocations for a given set of N applications on M machines
that allows for the minimum period Λ between sequential data
sets while maintaining a given level of stochastic robustness.

III. RESOURCE ALLOCATION TECHNIQUES

A. Overview

Four greedy heuristics were designed for the problem of
finding a resource allocation with respect to the performance
goal stated in Section II. Greedy techniques have been adapted
in many systems, e.g., [5], [10], [18], [19], as they perform
well and are capable of generating solutions relatively fast
as compared to time-consuming evolutionary algorithms [25],
[27], [28]. The four heuristics can be categorized based on the
amount of stochastic information that each of them uses. The
first two of the proposed heuristics utilize the entire spectrum
of stochastic information at each stage of the decision process,
as opposed to the third heuristic, that uses deterministic mean
values in the sorting stage, and the fourth heuristic that
operates using deterministic values only. All the heuristics
employ the Period Minimization Routine that is described
next.

Period Minimization Routine: The PMR procedure deter-
mines the minimum possible value of Λ for a given resource
allocation and a given level of stochastic robustness. As a first

step, the results of nj-fold convolutions are obtained with
the FFT or bootstrap methods for each compute node cor-

responding to the completion time (i.e.,
nj∑
i=1

Tij) distributions

expressed in a pmf form. The completion time pmf on compute
node mj is comprised of Kj impulses, where every impulse
is specified by the time tkj | k ∈ [1,Kj ], and the probability
pkj | k ∈ [1,Kj ] for tkj to occur.

As a second step, the minimum Λ is determined recursively
as the smallest value among tkj | {1 ≤ k ≤ Kj , 1 ≤ j ≤M},
such that the specified level of stochastic robustness is less than

or equal to
M∏
j=1

Kj∑
k=1

pkj × 1(tkj ≤ Λ), where 1(condition) is

1 if condition is true; 0 otherwise. The PMR procedure is
summarized as follow.

lo = t1 ← min{tkj | 1 ≤ k ≤ Kj , 1 ≤ j ≤M};
hi = t2 ← max{tkj | 1 ≤ k ≤ Kj , 1 ≤ j ≤M};
P ← specified level of P[ψ ≤ Λ];
while ∃ tkj ∈ (lo, hi) | {1 ≤ k ≤ Kj , 1 ≤ j ≤M}

P[ψ ≤ Λ]←
M∏
j=1

Kj∑
k=1

pkj × 1(tkj ∈ [t1, hi]);

case P[ψ ≤ Λ] :
== P : return;
> P : hi← t2;
< P : lo← t2;

end of case
t2 ← tkj | {1 ≤ k ≤ Kj , 1 ≤ j ≤M}

closest to lo+ (hi− lo)/2;
end of while
Λ← hi;

After Ω steps, the PMR procedure reduces the uncertainty
range by the factor ≈ (0.5)Ω, which is the fastest possible
uncertainty reduction rate. This optimality becomes possible
due to the fact that P[ψ ≤ Λ] is strictly increasing as the
number of impulses considered for its computation grows. The
notation Λ(ai,mj) will be used to denote a PMR call that
returns the minimum value of Λ for the specified level of
stochastic robustness when application ai is added to compute
node mj .

B. Two-Phase Greedy Heuristics

Basic Heuristic: The BASIC heuristic is based on the
principles of the Min-Min algorithm (first presented in [10],
and shown to perform well in many environments [5], [17],
[18]). The heuristic traverses through N iterations resolving
an allocation of one application at each iteration. In the first
phase of each iteration, the heuristic determines the best
assignment (according to the performance goal) for each of
the applications left unmapped. In the second phase, it selects
which application to map based on the best result found in the
first phase. The BASIC procedure is summarized as follows.

while not all applications are mapped
for each unmapped application ai



find the compute node mj such that
mj ← argmin{Λ(ai,mj) | 1 ≤ j ≤M};
resolve ties arbitrarily;

from all (ai,mj) pairs found above
select the pair(s) (ax,my) such that
(ax,my)← argmin{Λ(ai,mj) | all (ai,mj)};
resolve ties arbitrarily;
map ax on my;

end of while

Contention Resolution Heuristic: The CR heuristic uses
the sufferage concept introduced in [17]. Like the BASIC
heuristic, in every iteration this heuristic first determines the
best assignment for each of the applications left unmapped.
Mapping decisions are finalized for those of applications
whose best choice compute nodes are unique, i.e., there are
no other applications competing for these nodes. In the second
phase, the most critical among the competing applications
gets allocated, determined as the application with the largest
difference between the minimum Λ values corresponding to
this application assignments to its best choice and the second
best choice compute nodes. The CR procedure is summarized
as follows.

while not all applications are mapped
for each unmapped application ai

find the first choice compute node m(1)
j as

m
(1)
j ← argmin{Λ(ai,mj) | 1 ≤ j ≤M};

for all (ai,m
(1)
j ) pairs found above

if m(1)
j is unique then map ai on m(1)

j ;

else find the second choice compute node m(2)
j as

m
(2)
j ← argmin{Λ(ai,mj) | (1 ≤ j ≤M

& mj 6= m
(1)
j )};

compute contention value C(ai) as
C(ai)← {Λ(ai,m

(2)
j )− Λ(ai,m

(1)
j )};

select unmapped application with maximum C(ai)
ax ← argmax{C(ai) | all unmapped ai};
resolve ties arbitrarily;
map ax on its first choice compute node;

end of while

C. One-Phase Greedy Heuristics

Sorting Heuristic: This heuristic inherits the concepts de-
veloped for the MCT algorithm that was observed to per-
form well adopted in multiple resource allocation schemes
designed for distributed systems [5], [17]. Initially, all N
applications considered for mapping are sorted based on the
average computed for each application across the mean values
µ(Tij) derived from execution time distributions of Tij | 1 ≤
j ≤ M . Three different orderings were considered in the
experiments. A HI→LO ordering contains applications ranked
in descending order of their averages; applications in LO→HI
ordering are ranked in ascending order of their averages;
and ARBITRARY ordering implies that N applications are

randomly shuffled. Once sorting is completed, applications
are fetched sequentially, each mapped on the compute node
selected to provide the minimum value of period Λ under
the imposed level of stochastic robustness. The heuristic’s
procedure is summarized as follows.

for each application ai
find the average A(ai) as

A(ai)←

[
M∑
j=1

µ(Tij)

]
/M ;

order applications based on their averages A(ai)
according to the selected type {HI→LO, LO→HI,
ARBITRARY};
while not all applications are mapped

fetch unmapped application ai from the sorted list;
find the compute node mj such that
mj ← argmin{Λ(ai,mj) | 1 ≤ j ≤M};
resolve ties arbitrarily;
map ai on mj ;

end of while

Mean Load Balancing Heuristic: This heuristic was devel-
oped based on the concepts of the OLB algorithm discussed
in [13], [17]. First, the N applications are sorted based on
average value, as in the sorting heuristic. Then, the applications
are mapped in the {HI→LO, LO→HI, ARBITRARY} order
where the compute node with the minimum mean of its
execution time distribution is selected for each allocation. The
heuristic’s procedure is summarized as follows.

for each application ai
find the average A(ai) as

A(ai)←

[
M∑
j=1

µ(Tij)

]
/M ;

order applications based on their averages A(ai)
according to the selected type {HI→LO, LO→HI,
ARBITRARY};
while not all applications are mapped

fetch unmapped application ai from the sorted list;
find the compute node mj such that
mj ← argmin{µ(Tij) | 1 ≤ j ≤M};
resolve ties arbitrarily;
map ai on mj ;

end of while

IV. SIMULATION EXPERIMENTS AND RESULTS

To evaluate the performance of the greedy heuristics de-
scribed in Section III for the considered class of distributed
HC systems operating on periodic data, the following approach
was used to simulate a cluster-based radar system environment
schematically illustrated in Fig. 1. The execution time distri-
butions for twenty eight different types of possible radar ray
processing algorithms on eight (M = 8) heterogeneous com-
pute nodes were generated by combining experimental data
and benchmark results. The experimental data, represented by



two execution time sample pmfs, were obtained by conducting
experiments on the Colorado MA1 radar [12]. These sample
pmfs contain times taken to process 500 radar rays of different
complexity by the Pulse-Pair & Attenuation Correction algo-
rithm [3] and by the Random Phase & Attenuation Correction
algorithm [3], both executed in non-multitasking mode on the
Sun Microsystems Sun Fire V20z workstation. To simulate
the effect of executing these algorithms on different platforms,
each sample pmf was scaled by a factor corresponding to the
performance ratio of a Sun Microsystems Sun Fire V20z to
each of eight selected compute nodes1 based on the results
of the fourteen floating point benchmarks from the CFP2000
suite [23]. Combining the results available from CFP2000 for
fourteen different benchmarks on eight selected compute nodes
and two sample pmfs provided a means for generating a 28×8
matrix where the ijth element corresponds to the execution
time distribution of a possible ray processing algorithm of
type i on compute node j.

A set of 128 applications (N = 128) was formed for each
of 50 simulation trials, where for each trial the type of each
application was determined by randomly sampling integers
in the range [1, 28]. The 50 simulation trials provide good
estimates of the mean and 95% confidence interval computed
for every heuristic.

The results of the simulation are presented in Fig. 2. Both
two-phase heuristics perform comparably and significantly
outperform the other heuristics. By utilizing the entire spec-
trum of stochastic information at each stage of the decision
process these two heuristics are able to outperform the others,
in terms of minimizing Λ.

All of the variants of the one-phase sorting heuristic (the
results for ARBITRARY ordering represent the average ob-
tained over 50 reshuffled application orderings) performed
consistently better than the mean load balancing heuristic
variants but worse than two-phase heuristics. Recall that the
sorting algorithm utilizes all of the available stochastic infor-
mation to select individual task machine pairings but relies on
deterministic information to order tasks for their selection. By
utilizing a task ordering process that relies on deterministic
information only, the number of required convolutions to
produce a mapping is drastically reduced but the quality of
the mapping is also affected. For example, the first two-phase
heuristic required approximately 66,000 1-fold convolutions to
produce a mapping, whereas the one-phase sorting heuristic
required only 1024 1-fold convolutions to construct a map-
ping. This difference in the number of convolutions directly
translated into a roughly 30 times reduction in the execution
time of a simulation trial using the latter heuristic.

Finally, the one-phase mean load balancing heuristic con-
sistently performed the worst because it ignores the available
stochastic information about task execution times. This results
in ignoring the impact of machine heterogeneity on the com-

1The eight compute nodes selected to be modeled were: Altos R510, Dell
PowerEdge 7150, Dell PowerEdge 2800, Fujitsu PRIMEPOWER650, HP
Workstation i2000, HP ProLiant ML370 G4, Sun Fire V65x, and Sun Fire
X4100.

pletion time distributions, which is reflected in a high Λ value.
Because the one-phase mean load balancing heuristic only
operates with the means of execution time distributions during
the mapping process, this heuristic avoided time-consuming
convolution calls. This enabled OPMLB to finish in a small
fraction of the time required for either two-phase heuristic to
generate a mapping.

Once the simulation results had been collected for the
developed heuristics, it was noticed that there was a large
discrepancy in the amount of computation required to produce
each of the various mappings, i.e., two-phase heuristics re-
quired tens of thousands of convolutions to produce a mapping
as opposed to one-phase techniques required 1024 or less.
Consequently, two new variants of the one-phase algorithms
that use multiple iterations, denoted in Fig. 2 as ITERATIVE,
were created to increase the number of evaluated solutions
to the level of BASIC and CR, i.e., enable these variants to
utilize roughly the same amount of computation to produce a
mapping.

In both iterative variants, a random restart step was intro-
duced so that after a mapping is produced a new random
ordering is generated and the heuristic is executed again. Upon
completion of each iteration the resultant mapping is compared
against the best mapping found so far by previous iterations.
If the new mapping is an improvement on the best mapping,
then it is retained as the new best mapping, otherwise it is
discarded.

The results of the iterative variants are plotted in Fig. 2.
As can be expected, the results of both iterative approaches
demonstrated some improvement over their non-iterative ver-
sions. However, the iterative version of the sorting heuristic
performed worse than the BASIC heuristic (the confidence
intervals of the two do not overlap) but is a marked im-
provement over the corresponding non-iterative version. The
average Λ over 50 trials of the BASIC heuristic was 542.5
msec.; whereas the average Λ over 50 trials of the iterative
version of the sorting heuristic was 569.7 msec.—each had a
confidence interval of 7 msec. The performance demonstrated
by the iterative version of the mean load balancing heuristic
was still significantly worse than the performance of the other
heuristics.

V. RELATED WORK

Often, modern parallel and distributed computing systems
must operate in an environment replete with uncertainty while
providing a required level of QoS. This reality inspired an
increasing interest in robust resource allocation design in such
systems and called for a foundation of a universal robustness
framework.

The latter issue was first addressed in [1], where the
authors proposed a four-step FePIA procedure to derive a
robustness metric for a given resource allocation in a dis-
tributed system. The framework was based on deterministic
estimates (e.g., current or nominal values) for each of the
considered system parameters. As a measure of robustness,
the ”minimum robustness radius” was used that indicates the



distance from the current (or nominal) state of the system
in a multidimensional space of perturbation parameters to
the nearest point where a QoS violation occurs. Assuming
no a priori information available about the relative likelihood
or magnitude of change for each perturbation parameter, the
minimum robustness radius implies a deterministic worst-case
analysis. In our stochastic model, more information regard-
ing the variation in the perturbation parameters is assumed
known. Representing the uncertainty parameters of the system
as stochastic variables enables the robustness metric in the
stochastic model to account for all possible outcomes for the
performance of the system. An example comparison analysis
between the stochastic robustness metric and deterministic one
is given in [22]. The stochastic robustness metric requires more
information and, in general, is far more complex to calculate
than its deterministic counterpart.

In [4], the robustness of a resource allocation is defined
in terms of the schedule’s ability to tolerate an increase
in application execution time without increasing the total
execution time of the resource allocation. A resource alloca-
tion’s robustness implies system slack thereby the authors are
focusing their metric on a single very important uncertainty
parameter, i.e., variations in application execution times. Our
metric is more generally applicable, allowing for any definition
of QoS and able to incorporate any identified uncertainty
parameters.

Our methodology relies heavily on an ability to model
the uncertainty parameters as stochastic variables. Several
previous efforts have established a variety of techniques for
modeling the stochastic behavior of application execution
times [2], [7], [16]. In [2], three methods for obtaining proba-
bility distributions for task execution times are presented. The
authors also present a means for combining stochastic task rep-
resentations to determine task completion time distributions.
Our work leverages this method of combining independent
task execution time distributions and extends it by defining a
means for measuring the robustness of a resource allocation

against an expressed set of QoS constraints.

In [11], a procedure for predicting task execution times is
presented. The authors introduce a methodology for defining
data driven estimates in a heterogeneous computing envi-
ronment based on nonparametric inference. The proposed
method is applied to the problem of generating an application
execution time prediction given a set of observations of that
application’s past execution times on different compute nodes.
The model defines an application execution time random
variable as the combination of two elements. The first element
corresponds to a vector of known factors that have an impact
on the execution time of the application and is considered to
be a mean of the execution time random variable. A second
element accounts for all unmodeled factors that may impact
the execution time of an application and is used to compute a
sample variance. Potentially, this method can be extended to
determine probability density functions describing the input
random variables in our framework.

The deterministic robustness metric established for dis-
tributed systems in [1] was used in multiple heuristics ap-
proaches presented in [24]. Two variations of robust mapping
of independent tasks to machines were studied in that research.
In the fixed machine suite variation, six static heuristics were
presented that maximize the robustness of a mapping against
aggregate errors in the execution time estimates. The variety of
evolutionary algorithms, e.g., Genitor and Memetic Algorithm,
demonstrate higher performance as compared to the non-
iterative greedy heuristics. However, greedy heuristics required
significantly less time to complete a mapping. A similar trade-
off was observed for another variation where a set of machines
must be selected under a given dollar cost constraint that
will maximize the robustness of a mapping. In our study,
greedy heuristics applied in a stochastic domain experienced
a significant execution slowdown due to a substantial number
of calls for a convolution routine required at each step of a
mapping “construction” process. Although this indicate that
greedy heuristics may be inappropriate choices for systems
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where the time allotted to produce a mapping is strictly
limited, the application of a bootstrap approximation method
presented in Section II can alleviate such a problem in some
of those systems.

In [8], the authors present a derivation of the makespan
problem that relies on a stochastic representation of task
execution times. The paper demonstrates that the proposed
stochastic approach to scheduling can significantly reduce the
actual simulated system makespan as compared to some well
known scheduling heuristics that are founded in a deterministic
approach to modeling task execution times. The heuristics pre-
sented in that study were developed to minimize the expected
system makespan given a stochastic model of task execution
times. In contrast to [8] in our research, the emphasis was
to build resource allocations capable of maintaining a certain
level of probability to deliver on expressed QoS constraints by
applying greedy allocation techniques.

VI. CONCLUSION

This paper presents a set of greedy approaches for resource
allocation based on our stochastic robustness metric. The
stochastic robustness metric is suitable for evaluating the
likelihood that a resource allocation will perform acceptably,
i.e., satisfy imposed QoS constraints, despite an uncertainty
in system parameters. The stochastic robustness metric was
applied in a simulated environment to an example class of
systems operating with periodic data sets to demonstrate its
utility in evaluating the robustness of a resource allocation.

An extensive simulation study was conducted to evaluate the
performance of multiple greedy approaches to the considered
resource allocation problem. The goal of the simulation was
to minimize the required computation time to process periodic
sensor generated data. The two-phase heuristics demonstrated
great potential for practical implementations in this environ-
ment.
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