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ABSTRACT

SIMULATION-BASED TSUNAMI EVACUATION RISK ASSESSMENT AND

RISK-INFORMED MITIGATION

Earthquake-induced tsunami can be very destructive involving significant loss of life. Evacu-

ation to safety zones is regarded as one of the most effective ways to save lives from the tsunami

strike due to the limited effectiveness of structural countermeasures. However, it is extremely chal-

lenging to successfully evacuate many people under the multi-hazard environment within a con-

densed time frame, especially under the near-field tsunami. Proper evacuation planning is crucial

to support effective evacuation and reduce casualty. For effective evacuation planning, it is im-

portant to better understand the complex evacuation behavior for recommending proper response

and behavior in an emergency. Also, it is important to have a clear picture of evacuation risk (e.g.,

measured in terms of expected casualty rate within a certain time frame) for informing policy and

decision-making. Furthermore, it is important to identify effective pre-event mitigation strategies

for effective risk reduction.

Important limitations exist in current research on the above aspects. Tsunami evacuation simu-

lation using the agent-based model has been used to investigate the complex evacuation behavior;

however, existing agent-based evacuation models usually neglect or simplify many important fac-

tors and/or mechanisms associated with the evacuation. The neglect or simplification would make

the evacuation simulation less realistic and hence a good understanding of evacuation behavior

challenging. For the quantification of tsunami evacuation risk, a systematic framework that can

address complex evacuation models and uncertainty (including aleatory and epistemic uncertain-

ties) models is needed; however, no such framework has been developed for the quantification of

tsunami evacuation risk. Also, some important uncertainties such as that in the seismic damage to

the bridge are usually neglected or the uncertainty quantification is simplified. In this case, it would
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be difficult to assess the evacuation risk accurately and provide a clear picture of the evacuation

risk. For effective pre-event evacuation risk mitigation, the effectiveness of different mitigation

strategies needs to be quantitatively evaluated to identify more effective strategies. However, the

effectiveness of the mitigation strategy is usually evaluated more qualitatively than quantitatively.

Furthermore, the evaluation is typically conducted without systematically considering various un-

certainties, which makes the identified strategies not robust to uncertainties. In tsunami evacua-

tion risk assessment and mitigation, risk evaluation using general stochastic simulation techniques

(e.g., Monte Carlo simulation) typically entails significant computational challenges. Efficient

algorithms are needed to alleviate such computational challenges and facilitate such tasks.

To bridge the above knowledge gaps, this research proposes a generalized framework for

simulation-based tsunami evacuation risk assessment and risk-informed mitigation. The frame-

work is built layer by layer through integrating tsunami evacuation simulation using agent-based

modeling (ABM) technique, simulation-based evacuation risk assessment, sensitivity analysis of

evacuation risk, and risk-informed evaluation of mitigation strategies. An improved agent-based

tsunami evacuation model is developed for more realistic tsunami evacuation simulation by incor-

porating many of the typically neglected or simplified but important factors and/or mechanisms in

the evacuation. Using the proposed agent-based evacuation model, a simulation-based framework

is proposed to quantify the evacuation risk, in which various uncertainties (including aleatory and

epistemic uncertainties) associated with the evacuation are explicitly considered and modeled by

proper selection of probability distribution models. Sensitivity analysis of evacuation risk with

respect to the epistemic uncertainty is performed, and the sensitivity information can be used to

guide effective epistemic uncertainty reduction and hence for more accurate risk assessment. Also,

sensitivity analysis is performed to identify critical risk factors, and the sensitivity information can

be used to guide effective evacuation modeling and selection of candidate risk mitigation strategies.

Risk-informed evaluation of different types of candidate mitigation strategies (including infrastruc-

tural and non-infrastructural strategies) is conducted to identify more effective strategies that are

robust to uncertainties. Efficient sample-based approaches are developed to alleviate the computa-
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tional challenges in evacuation risk assessment, sensitivity analysis, and risk-informed evaluation

of mitigation strategies. As an illustrative example, the proposed framework is applied to tsunami

evacuation risk assessment and risk-informed mitigation for the coastal community of Seaside,

Oregon.
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Chapter 1

Introduction

1.1 Motivation

Earthquake-induced tsunamis are disasters that threaten coastal communities all over the world.

A tsunami historical outlook around the globe since the year 1600 BC is shown in Fig. 1.1, in which

a larger circle indicates a greater earthquake and the color of the circle represents the tsunami

intensity. An earthquake-induced tsunami occurs with relatively low frequency but is usually

very destructive causing extensive damages to infrastructure and enormous loss of life worldwide

(Aguirre-Ayerbe et al. 2018; Løvholt et al. 2019), especially for the low-lying coastal communities

threatened by near-field tsunamis. Extreme numbers of casualties have been demonstrated in the

ten worst tsunamis in history, as shown in Table 1.1.

Figure 1.1: A tsunami historical outlook around the globe (SMS Tsunami Warning 2018).

The significant loss of life caused by the earthquake-induced tsunami mainly results from (1)

limited effectiveness of structural countermeasures to protect the coastal community from extreme

tsunamis. Structural countermeasures (e.g., breakwaters, seawalls, etc.) might be used to reduce

the loss of life; however, such countermeasures have not been widely used outside Japan (León
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Table 1.1: Casualties in the ten worst tsunamis in history (Australian Geographic 2011).

Date Location Casualties
December 26, 2004 Sumatra, Indonesia 230,000
March 11, 2011 North Pacific Coast, Japan 18,000
November 1, 1755 Lisbon, Portugal 60,000
August 27, 1883 Krakatau, Indonesia 40,000
September 20, 1498 Enshunada Sea, Japan 31,000
October 28, 1707 Nankaido, Japan 30,000
June 15, 1896 Sanriku, Japan 22,000
August 13, 1868 Northern Chile 25,000
April 24, 1771 Ryuku Islands, Japan 12,000
January 18, 1586 Ise Bay, Japan 8,000

and March 2016). More importantly, it is difficult to save human life from devastating tsunamis

using only structural countermeasures (Cabinet Office 2011; Suppasri et al. 2013; Takabatake et al.

2017); (2) condensed time frame to evacuate to the safety zone (illustrated in Fig. 1.2(a)). Due to

the destructive power of the earthquake-induced tsunami, evacuation to safety zones is regarded

as one of the most effective ways to save lives from the tsunami strike (Takabatake et al. 2017).

However, the tsunami is expected to arrive in a very short time after the earthquake, especially the

near-field tsunami (within minutes, e.g., 10 to 30 minutes) (Applied Technology Council 2009;

Raskin et al. 2011). It is very challenging to successfully evacuate a large number of people in

such a short time frame; (3) evacuation delays due to damaged evacuation environment caused by

the earthquake (illustrated in Fig. 1.2(b)). The destructive tsunami is typically produced by a large-

magnitude earthquake (i.e., magnitude 7.6 and greater) (USGS 2020c). The destructive earthquake

can cause severe damage to bridges (Mostafizi et al. 2019b) or buildings, and the debris from

damaged buildings might block nearby roads (Stern and Sinuany-Stern 1989). The traffic capacity

of a transportation network may be significantly reduced due to the bridge damage (Jacob et al.

2014) or the road blockage (Stern and Sinuany-Stern 1989; Murakami et al. 2014; Jacob et al.

2014). The reduction in traffic capacity could delay the evacuation and ultimately lead to more

casualties.

Proper evacuation planning is crucial to support effective evacuation and reduce casualty. To

produce an effective evacuation plan, many issues need to be taken into account and several impor-
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Figure 1.2: Illustration of (a) the condensed time frame to evacuate under the near-field tsunami (adapted
from USGS (2020b)), and (b) the damaged evacuation environment due to the earthquake.

tant ones must be well addressed, including (1) a good understanding of the evacuation behavior.

The complex evacuation behaviors need to be investigated (typically through evacuation simula-

tion) and well understood such that proper response and behavior can be recommended for effective

evacuation planning; (2) accurate quantification of evacuation risk (e.g., the expected proportion

of the number of casualties to the population within a given time frame). The level of risk can be

used to inform policy and decision-making for effective risk management within the evacuation

plan (UNESCO 2007); (3) identification of effective risk mitigation strategies for more effective

risk reduction.

1.1.1 Tsunami evacuation simulation

For effective tsunami evacuation planning, the evacuation process (especially the evacuation

behavior) needs to be well investigated. Evacuation simulation is commonly used to investigate the

evacuation behavior due to the difficulty of conducting evacuation drills (Takabatake et al. 2017).

Many evacuation modeling techniques have been applied to tsunami (or flood) evacuation simu-

lation, such as geographic information system (GIS)-based model (CRATER 2005; Dewi 2012;

Wood et al. 2016; Benchekroun and El Mouraouah 2018), distinct element method (DEM)-based
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model (Gotoh et al. 2004, 2009; Rahman et al. 2014; Abustan 2013), cellular automata (CA) model

(Li et al. 2019b), and agent-based model (Usuzawa et al. 1997; Fujioka et al. 2002; Lämmel 2011;

Wijerathne et al. 2013). In addition, the system dynamics (SD) model (Ahmad and Simonovic

2000a; Simonovic and Ahmad 2005; Berariu et al. 2016) that has been used for flood management

might also be applied to tsunami evacuation simulation.

An proper evacuation model needs to be selected to capture the complex and dynamic evac-

uation process (especially the evacuation behavior). In particular, the evacuation decision and

behavior would be very complex (e.g., irrational behavior such as the following behavior) in the

damaged evacuation environment due to the large earthquake as well as within the condensed time

frame, especially under the near-field tsunami. In this context, out of these models, the models

other than the agent-based model typically lack the capacity to capture the complexity of evac-

uees’ decision and behavior and hence the dynamics of emergency evacuation (Mas et al. 2015).

More specifically, the GIS approach uses a static setting and does not simulate the dynamic evac-

uation process and complex evacuation behaviors (Benchekroun and El Mouraouah 2018). The

DEM employs physical laws such as Newton’s second law of motion to simulate the evacuee’s

motion in a crowd, which makes it difficult to model the evacuation behavior involving psycho-

logical factors such as a sudden change in moving direction (Mas et al. 2015). In the CA model,

many components are not described accurately because the model is built on discrete space-time

and relatively simple motion rules (Li et al. 2019a). Therefore, applying the CA model to tsunami

evacuation simulation would entail challenges such as how to accurately describe the environment

under the seismic and tsunami hazards. The SD model lacks spatial complexity (e.g., the popula-

tion distribution) and requires many assumptions about the evacuation system when being applied

to simulate the evacuation process (Mas et al. 2015).

As an alternative, the agent-based model is preferred for tsunami evacuation simulation due

to its capability of capturing the emergent phenomena through characterizing the natural and hu-

man system dynamics and modeling the individual-level interactions among agents as well as the

agent’s interactions with the environment (Mas et al. 2012; Wang et al. 2016). Agent-based evacu-
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ation modeling (ABM) is an evacuation modeling technique to simulate the behaviors of a system

of autonomous decision-making entities named agents as well as the interactions between them

and with the environment (Bonabeau 2002). Since one of the first agent-based tsunami evacua-

tion models was introduced using a network evacuation modeling approach that is widely used for

evacuation simulations of other natural hazards such as hurricanes, floods, nuclear disasters, and

fires in buildings (Usuzawa et al. 1997), many tsunami evacuation models have been developed

using ABM (Mas et al. 2015).

In existing agent-based evacuation models, however, many important factors or mechanisms

associated with the tsunami evacuation are usually neglected or simplified for modeling conve-

nience or due to computational challenges. For instance, modeling of seismic damages to bridges

is typically simplified as fail or safe rather than modeling different damage states and reducing

the traffic capacity accordingly. Similarly, the impact of debris caused by damaged infrastructure

on the traffic capacity of the road is usually neglected. In the modeling of evacuation behaviors,

some important interactions such as the pedestrian-vehicle interaction in the multimodal evacua-

tion (e.g., evacuation on foot and by car) are typically neglected (Takabatake et al. 2017). However,

the pedestrian and vehicle might interact with each other (Jacob et al. 2014), e.g., share the path

between the walkway and lane. Also, some interactions between individuals (pedestrians or cars)

such as the following behavior are usually neglected, although some evacuees may panic and sim-

ply follow others in an emergency. In addition, usually only a small population (i.e., maybe much

smaller than the actual population) is considered in evacuation due to increasing computational

effort as the population size (and accordingly the number of agents) increases (Mostafizi et al.

2019b). Considering the highly nonlinear nature of the evacuation, results from simulations using

a smaller than actual population may not be able to give a good indication of the actual evacuation

performance. The above neglects or simplifications would make it difficult to better understand the

complex evacuation behavior and also may lead to inaccurate estimation of evacuation risk.
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1.1.2 Tsunami evacuation risk assessment

Tsunami evacuation risk assessment is vital to policy-making, determining the nature and level

of response for risk mitigation within the evacuation planning (UNESCO 2007). The risk needs

to be accurately assessed to provide valuable information for effective planning such as enhancing

the public awareness of the risk and improving the preparedness for potential disaster, promoting

effective evacuation risk mitigation to reduce the casualty, etc.

To accurately assess the tsunami evacuation risk, various uncertainties associated with the evac-

uation need to be considered and properly quantified. The uncertainties may be the aleatory un-

certainty that corresponds to the natural and inherent variability of the evacuation process and is

irreducible (Der Kiureghian and Ditlevsen 2009; González et al. 2009). The uncertainties may be

the epistemic uncertainty which corresponds to a lack of knowledge and is reducible when more

data is collected (Der Kiureghian and Ditlevsen 2009; González et al. 2009). In terms of sources,

various uncertainties exist in tsunami evacuation (illustrated in Fig. 1.3), related to the seismic and

tsunami hazards (Wood and Schmidtlein 2013; Park and Cox 2016; Muhammad et al. 2017), the

population size and spatial distribution (Fraser et al. 2014; Mostafizi et al. 2017), the evacuation

decision and behavior (Wang et al. 2016; Mostafizi et al. 2017), etc.

For existing research on tsunami evacuation risk quantification, many important uncertainties

are either neglected or considered in a simplified way. For example, the uncertainty in the seis-

mic damage to the bridge is usually not probabilistically considered (e.g., by simply removing the

damaged bridges from the network, essentially assuming complete damage all the time while ne-

glecting the uncertainty in the damage states and residual traffic capacity of bridges) (Jacob et al.

2014; Mostafizi et al. 2017). Also, some of the uncertainties in the evacuation decision and be-

havior are usually neglected. Also, usually epistemic uncertainties are not incorporated in the risk

quantification (i.e., only consider the aleatory uncertainty but neglect the epistemic uncertainty)

(Wang and Jia 2021). The neglect of uncertainty and/or simplification of uncertainty quantification

might result in inaccurate evacuation risk quantification. In addition, a systematic framework that

can address complex evacuation models and uncertainty models is needed for the quantification of
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Figure 1.3: Illustration of sources of uncertainty associated with tsunami evacuation. The sources of the
figures are: “Multiple hazards” adapted from USGS (2020b), and “Tsunami evacuation” (Vallarta Daily
News 2017).

tsunami evacuation risk. However, no such framework has been developed for tsunami evacuation

risk quantification.

Furthermore, the evacuation risk could be more accurately assessed by reducing the epistemic

uncertainties (Post et al. 2009; Jelínek et al. 2012) (e.g., through collecting more data (Der Ki-

ureghian and Ditlevsen 2009; González et al. 2009)). To prioritize such data collection, it is critical

to identify the epistemic uncertainties that have a high impact on the variability in the evacuation

risk. Sensitivity analysis could be used for such a task. To the best of our knowledge, however,

no sensitivity analysis of tsunami evacuation risk has been performed to evaluate the impact of

various epistemic uncertainties on the variability in the evacuation risk and identify those having

relatively high impacts.

In risk assessment and sensitivity analysis, typically many simulations are required. Direct use

of general stochastic simulation techniques such as Monte Carlo simulation (MCS) (Robert and

Casella 2004) for risk assessment and sensitivity analysis would entail significant computational

challenges, especially in the context of tsunami evacuation since the tsunami evacuation model
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could be expensive to run. To alleviate the computational challenges, efficient algorithms are

needed.

1.1.3 Tsunami evacuation risk mitigation

The pre-event mitigation is regarded as an effective way to reduce evacuation risk (UNESCO

2007). Both infrastructural and non-infrastructural strategies have been considered. For example,

Fig. 1.4 shows one infrastructural strategy, bridge retrofit, and one non-infrastructural strategy,

tsunami preparedness education using the evacuation map. For an effective evacuation risk re-

duction, more effective (or optimal) mitigation strategies need to be identified out of all candidate

strategies. In this context, the effectiveness of different mitigation strategies needs to be quanti-

tatively evaluated for comparison. For the limited research on the evaluation of different types of

evacuation risk mitigation strategies, most of them evaluate the strategies qualitatively (Priest et al.

2016) or semi-quantitatively (Aguirre-Ayerbe et al. 2018) rather than quantitatively. As for the

candidate mitigation strategies for evaluation, typically they are selected based on feasibility but

not necessarily based on quantitative analysis of whether they are promising or not in reducing the

evacuation risk (Okumura et al. 2017; Aguirre-Ayerbe et al. 2018). Moreover, the mitigation strat-

egy should be robust to various uncertainties associated with the evacuation. However, in existing

research, the effectiveness of mitigation is typically not evaluated based on risk with systematic

consideration of various uncertainties, and hence the identified mitigation strategies may not be

robust to uncertainty. Furthermore, the effective strategy is usually identified by exhaustive enu-

meration (e.g., identify critical links by repetitive removal of each link and comparing the impacts

of the failure of each link (Mostafizi et al. 2017)), which typically entails significant computa-

tional challenges. To devise more effective or optimal mitigation strategies, efficient algorithms

are needed.
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Figure 1.4: Illustration of (a) infrastructural mitigation strategy, bridge retrofit (Buckle et al. 2006), and
(b) non-infrastructural mitigation strategy, tsunami preparedness education using the evacuation map (The
Oregon Department of Geology and Mineral Industries 2013).

1.1.4 Summary: Knowledge gaps in tsunami evacuation risk assessment

and mitigation

Overall, there are several knowledge gaps in tsunami evacuation risk assessment and mitiga-

tion in existing research. The tsunami evacuation needs to be simulated more realistically to better

understand the complex evacuation behavior, and provide the basis for risk assessment and miti-

gation. The agent-based model is preferred for tsunami evacuation simulation; however, existing

agent-based tsunami evacuation models usually neglect or simplify many important factors and/or

mechanisms associated with the evacuation process. In tsunami evacuation, various uncertainties

(including aleatory and epistemic uncertainties) exist, e.g., related to multiple hazards, evacuation

behavior, etc. These uncertainties need to be considered and properly quantified for risk assess-

ment. In existing research, however, some important uncertainties are usually neglected or the

uncertainty quantification is simplified. Overall, a systematic framework that can address com-

plex evacuation models and uncertainty models is needed for risk quantification; however, no such

framework has been developed for the quantification of tsunami evacuation risk. For effective

evacuation risk mitigation, the effectiveness of different mitigation strategies needs to be evalu-

ated. However, existing evaluations of the mitigation strategies are usually more qualitative than

quantitative. Also, the effectiveness of mitigation strategies is typically not evaluated with sys-
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tematic consideration of various uncertainties (e.g., not risk-based) and the identified mitigation

strategies may not be robust to uncertainty. Approaches for quantitative evaluation of different

mitigation strategies with consideration of various uncertainties are needed. In risk assessment and

mitigation, risk evaluation using general stochastic simulation techniques (e.g., MCS) typically

requires huge computational efforts. Efficient algorithms are needed to alleviate the computational

challenge and facilitate the assessment of tsunami evacuation risk and the evaluation and selection

of risk mitigation strategies.

1.2 Objectives and scope of research

Motivated by the above knowledge gaps in tsunami evacuation risk assessment and mitigation

for effective evacuation planning, this research develops a generalized framework and uses it to

perform simulation-based tsunami evacuation risk assessment and risk-informed mitigation. The

framework is built layer by layer through integrating tsunami evacuation simulation, simulation-

based evacuation risk assessment, sensitivity analysis of evacuation risk, and risk-informed evalu-

ation of mitigation strategies. In particular, the following four objectives will be accomplished.

• Objective 1: Simulate tsunami evacuation using ABM

Develop an improved agent-based tsunami evacuation model for a more realistic simulation

of the tsunami evacuation by incorporating many of the important factors and mechanisms

associated with evacuation. Apply the developed model to a coastal community subject to

near-field earthquake-induced tsunami to better understand the complex evacuation process

and evacuation performance.

• Objective 2: Develop a generalized simulation-based framework for tsunami evacua-

tion risk assessment

Develop a simulation-based framework for tsunami evacuation risk quantification that is

capable of addressing complex evacuation models and uncertainty models (for quantification

of various uncertainties, including aleatory and epistemic uncertainties).
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• Objective 3: Sensitivity analysis of tsunami evacuation risk

Use probabilistic sensitivity analysis to investigate the impacts of various risk factors and

associated uncertainties on the evacuation risk. Sensitivity analysis with respect to epistemic

uncertainty will also be carried out. Efficient augmented sample-based approaches will be

developed to facilitate the sensitivity analysis.

• Objective 4: Risk-informed evaluation of different mitigation strategies

Use sensitivity analysis results to guide the selection of candidate mitigation strategies, and

evaluate the effectiveness of the different candidate mitigation strategies (including infras-

tructural and non-infrastructural strategies) based on tsunami evacuation risk reduction.

1.3 Organization of research

The remainder of this dissertation is to accomplish the above objectives for simulation-based

tsunami evacuation risk assessment and risk-informed mitigation. Chapter 2 presents the proposed

overall framework for simulation-based tsunami evacuation risk assessment and risk-informed mit-

igation, which integrates tsunami evacuation simulation, evacuation risk assessment, sensitivity

analysis, and evacuation risk mitigation. In later chapters, the components of the proposed frame-

work are presented and the use of each component is illustrated by taking the tsunami evacuation

in Seaside, Oregon as an example. Chapter 3 develops an improved agent-based model for tsunami

evacuation simulation by incorporating many of the important factors and mechanisms associated

with evacuation. The developed model is used to better understand the complex evacuation process

and evacuation performance. Chapter 4 develops a generalized simulation-based framework for

the quantification of tsunami evacuation risk. The improved agent-based evacuation model is used

within the framework for tsunami evacuation simulation. Various uncertainties (including aleatory

and epistemic uncertainties) related to the evacuation process are considered and quantified by the

proper selection of probability models. The evacuation risk under different scenarios (e.g., differ-

ent population sizes, different times of the day, etc.) is comprehensively investigated. Chapter 5
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conducts sensitivity analysis of evacuation risk with respect to the epistemic uncertainty to inves-

tigate the impacts of various epistemic uncertainties on the variability in the risk. An augmented

sample-based approach is developed to efficiently perform the sensitivity analysis. The sensitivity

analysis results can be used to prioritize the data collection for epistemic uncertainty reduction and

further for more accurate risk assessment. Chapter 6 performs probabilistic sensitivity analysis to

identify critical risk factors associated with evacuation that have high impacts on the evacuation

risk. The sensitivity analysis is efficiently performed using an augmented sample-based approach

extending from the one proposed in Chapter 5. Based on the critical risk factors identified by

the probabilistic sensitivity analysis in Chapter 6, candidate risk mitigation strategies (including

infrastructural and non-infrastructural strategies) are effectively selected in Chapter 7. Then the

risk-informed evaluation of different candidate mitigation strategies is conducted to identify more

effective strategies that are robust to uncertainties. The risk-informed evaluation of mitigation

strategies is illustrated through an example, in which strategies including route widening, bridge

retrofit, building vertical shelters, preparedness education, and evacuation drills are evaluated and

compared quantitatively based on evacuation risk reduction. Chapter 8 concludes this research

work and discusses future directions.
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Chapter 2

Framework for simulation-based tsunami evacuation

risk assessment and risk-informed mitigation

This chapter provides an overview of the overall proposed framework for simulation-based

tsunami evacuation risk assessment and risk-informed mitigation (shown in Fig. 2.1). The frame-

work consists of four major components: tsunami evacuation simulation, simulation-based evacu-

ation risk assessment, sensitivity analysis, and risk-informed mitigation.

An improved agent-based model is developed for more realistic tsunami evacuation simulation

by incorporating many important factors and mechanisms that are usually neglected and/or simpli-

fied in existing agent-based models. The proposed evacuation model consists of three sub-models,

i.e., evacuation environment model (EEM), evacuation decision and behavior model (EBM), and

evacuation performance model (EPM). In the EEM, the evacuation environment is modeled, in-

cluding the multiple hazards (i.e., earthquake and earthquake-induced tsunami) as well as seismic

damages to the bridge, etc. The EBM includes models for the individual decision and behavior,

individual-level interactions among evacuees, and the evacuees’ interactions with the environment.

The probabilistic evacuation performance is modeled in the EPM. The proposed agent-based model

is used to simulate the tsunami evacuation and better understand the complex evacuation process

and evacuation performance. The evacuation simulation is used to support evacuation risk assess-

ment, sensitivity analysis, and risk-informed evaluation of mitigation strategies.

The improved agent-based evacuation model is used within the proposed simulation-based

framework to quantify tsunami evacuation risk. Various uncertainties associated with the evacua-

tion (including aleatory and epistemic uncertainties) are explicitly considered. Probability models

are used to quantify the aleatory uncertainty in input random variables in the evacuation simulation

while the epistemic uncertainty is quantified through modeling the uncertainty in the distribution

parameters of the selected probability models. The evacuation risk (e.g., the expected proportion
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Figure 2.1: Framework for simulation-based tsunami risk assessment and risk-informed mitigation.

of the number of casualties to the population within a given time frame) is then quantified by

propagating all the uncertainties.

14



For more accurate risk assessment, epistemic uncertainty can be reduced by additional data

collection, and to support this, risk sensitivity analysis is performed to identify the impacts of the

epistemic uncertainties on the variability in the evacuation risk. In addition, sensitivity analysis

is performed to identify the critical risk factors with aleatory uncertainties (i.e., input random

variables) that contribute more to the evacuation risk. The sensitivity results can be used to guide

effective evacuation modeling and effective selection of candidate risk mitigation strategies. The

above sensitivity analyses are efficiently performed using the proposed augmented sample-based

approach based on the simulations/samples for evacuation risk assessment. So there is a seamless

integration between evacuation risk assessment and the sensitivity analyses.

Then the simulation-based evacuation risk assessment framework is used to quantitatively eval-

uate the evacuation risk under different mitigation strategies to enable risk-informed mitigation.

The critical risk factors identified in the sensitivity analysis are used to guide the selection of can-

didate risk mitigation strategies. Efficient simulation-based approaches are developed to enable

efficient evacuation risk assessment under different infrastructural and non-infrastructural mitiga-

tion strategies. Based on the level of risk reduction, the effectiveness of each candidate mitigation

strategy is evaluated and ultimately more effective strategies are identified.

The overall proposed framework can be used to support tsunami evacuation risk assessment

and risk-informed mitigation for effective evacuation planning.
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Chapter 3

Tsunami evacuation simulation using ABM

3.1 Introduction

It is extremely difficult to successfully evacuate a large population from a disaster in a short

time. Proper planning such as pre-event evacuation risk mitigation is crucial for a successful evac-

uation. To make effective plans, it is vital to better understand the evacuation process, especially

the evacuation behavior (e.g., evacuate on foot or by car under tsunami). An evacuation drill might

be conducted to investigate the evacuation behavior. However, it is challenging, resource-intensive,

and even dangerous to realistically conduct evacuation drills due to the complexity, which requires

multi-agency coordination involving physical, psychological, and socioeconomic factors (Taka-

batake et al. 2017). Due to various uncertainties associated with the disaster, evacuation decision

and behavior, etc., it is even more challenging or infeasible to repeat evacuation drills multiple

times under different scenarios. As an alternative, evacuation simulation can comprehensively in-

vestigate the evacuation behavior under different scenarios, which is much cheaper and safer com-

pared to evacuation drills (Helton et al. 2013; Abustan 2013; Zsifkovits and Pham 2017; Jumadi

et al. 2017).

Many modeling techniques have been employed in evacuation simulation (Hu 2017; Li et al.

2019a). Here, five candidate models are summarized that either have been applied or have the

potential to be applied to tsunami evacuation simulation, including geographic information system

(GIS)-based model, distinct element method (DEM)-based model, cellular automata (CA) model,

system dynamics (SD) model, and agent-based model.
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3.1.1 Existing models for tsunami evacuation simulation

Geographic information system (GIS)-based model

GIS is a computer-based technology and methodology that is capable of capturing and ana-

lyzing spatial and geographic data for a wide range of applications. One important application is

to evaluate, display, send, and receive the spatial information for crisis response (e.g., evacuation

from disaster) through integration with the simulation model for an emergency.

GIS has been widely applied in evacuation simulation, particularly associated with: (1) shel-

ters such as evaluating the site suitability (Dalal et al. 2007; Kar and Hodgson 2008; Elheishy

et al. 2013), and assessing the coverage area (Mallick 2014); (2) routes such as route selection

(Dunn and Newton 1992; Wilson and Cales 2008; Ma et al. 2012; Billah et al. 2018); (3) decision-

support systems for evacuation planning (De Silva and Eglese 2000; De Silva 2001; Kwan and

Lee 2005). For example, a GIS-based model was proposed to select suitable shelters based on

distance, capacity, and the availability of life requirements (Elheishy et al. 2013). A GIS-based

model was developed for evacuation route planning with the shortest route to shelters for a coastal

community (Billah et al. 2018). GIS was integrated with a simulation model to develop a spatial

decision-support system for evacuation planning (De Silva and Eglese 2000).

In recent years, GIS has been used in tsunami evacuation simulation. Several programs were

developed to select evacuation routes. For example, ETR (Evacuation Route Tools) was developed

and applied in Thailand (CRATER 2005). “Route Finder” was developed in MapInfo GIS platform

and has been widely applied such as in French Riviera (Sahal et al. 2013) and Martinique (Péroche

et al. 2014). “CASPER” (Capacity Aware Shortest Path Evacuation Routing) was developed for

ArcGIS Network Analyst (Shahabi and Wilson 2014). A method using GIS tools was developed to

select the most effective evacuation routes in a tsunami-prone area (Dewi 2012). Network analysis

and various GIS techniques were used to determine the location and capacity of potentially suitable

evacuation shelters and the most effective evacuation routes. The least-cost-distance (LCD) model

implemented in ArcMap by taking into account the slope and land cover of an area was developed

and applied in the U.S. Pacific Northwest (Wood et al. 2016). GIS-based evacuation modeling was
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applied to find the most effective routes taking into account the shortest travel time to evacuate

out of hazard zones under tsunami (Benchekroun and El Mouraouah 2018). Fig. 3.1 illustrates

the selected locations of shelters and the most effective evacuation routes in a tsunami-prone area

using the GIS-based model. The red cross represents the identified shelter and the black arrow is

the most effective evacuation route.

Figure 3.1: Identified evacuation shelters and routes using GIS-based model (Dewi 2012).

Distinct element method (DEM)-based model

DEM is a numerical modeling approach to simulate a large number of rigid or deformable bod-

ies or particles. In DEM, particles are first assigned spatial orientations and initial velocities. Then,

the forces (e.g., physical repulsive force and psychological repulsive force, shown in Fig. 3.2(a))

acting on each particle are calculated based on initial data, relevant physical laws, and contact

models (e.g., spring-dashpot model shown in Fig. 3.2(b)). The forces acting on each particle are

summed up and Newton’s equation of motion is used to compute the acceleration, velocity, and

displacement of each particle. The new positions are used to update the forces for the next time

step (Abustan 2013). The pioneer of DEM was originally developed to solve problems in rock
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mechanics (Cundall and Strack 1979). Today DEM is becoming extensively accepted in various

research areas such as geology, chemistry, and engineering, etc..

Figure 3.2: Illustration of (a) the forces acting on each particle, and (b) spring-dashpot model (Abustan
2013) in DEM-based model.

One of the first research on evacuation simulation integrated with DEM can be found in Kiyono

et al. (1996), where the DEM-based model was used to simulate the behavior of a crowd evacu-

ation during an emergency disaster. The proposed DEM-based model was modified such that it

can simulate collision avoidance (Kiyono et al. 1998). A crowd modeling program named Crowd-

DMX was developed based on DEM for crowd dynamic simulation (Langston et al. 2006). The

CrowdDMX was further developed to tackle the contraflow problem (Smith and Mccarty 2009).

Also, the CrowdDMX was extended to study the subgroup behavior in crowd dynamics simulation

(Singh et al. 2009). A DEM-based crowd evacuation simulator developed in Gotoh et al. (2004)

was improved by introducing the self-evasive action to study the contraflow of pedestrian move-

ment (Gotoh et al. 2012), in which collision avoidance or the alignment behavior between adjacent

pedestrians are considered.

In recent years, the DEM has been applied in tsunami evacuation simulation. An evacuation

process simulator was developed based on DEM to investigate the crowd evacuation process from

tsunami attack (Gotoh et al. 2004). The DEM-based crowd evacuation simulator was used to a

town planning against tsunami inundation (Gotoh et al. 2008). The DEM-based simulator was
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further used to select appropriate evacuation places for tsunami evacuation planning (Gotoh et al.

2009). The DEM-based crowd evacuation simulator introduced in Gotoh et al. (2004) was extended

to incorporate group behavior by introducing in-group and out-group interactions (Rahman et al.

2014). The DEM-based crowd evacuation simulator developed in Gotoh et al. (2004, 2012) was

used to investigate how the accumulative population that complete evacuation changes over time

under different scenarios (Abustan 2013).

Cellular automata (CA) model

CA are dynamic systems with discrete space and time. The space of CA is divided into a regular

grid of cells with initial states. The states of all cells (or behaviors) are updated synchronously in

a discrete-time step according to some local, identical interaction rules (Sipper and Tomassini

1998). The state of each cell is determined by adjacent cells at the previous time step (Yuan

and Tan 2009, 2011). The first system of CA was developed for calculating liquid motion in

the late 1950s (Bialynicki-Birula and Bialynicka-Birula 2005), in which a liquid was considered

as a group of discrete units and the motion of each unit was calculated based on its neighbors’

behaviors. Nowadays CA is being applied in various areas such as physics, theoretical biology,

and engineering, etc.

Various CA models have been developed to simulate crowd evacuation under different situa-

tions (Zheng et al. 2009). These CA models are based on interactions either among pedestrians

or between pedestrians and environments. For the CA models based on the interaction among

pedestrians, they are typically used to study friction effects of pedestrian behavior (Kirchner et al.

2003a,b; Schultz et al. 2007) or the bi-direction pedestrian behavior (Fang et al. 2003; Li et al.

2005) or herding behavior (Nishinari et al. 2006). For instance, a CA model was proposed for

pedestrian dynamics with friction to simulate competitive behavior in emergency egress from an

aircraft (Kirchner et al. 2003a). A CA model was presented to simulate the bi-direction pedestrian

movement in a corridor (Li et al. 2005). A stochastic CA model was proposed to investigate the fol-

lowing behaviors of pedestrians in building evacuation (Nishinari et al. 2006). For the CA models

based on interactions between pedestrians and environments, they are usually used to investigate
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the impact of the exit width or obstacle on pedestrian movement. For example, a two-dimensional

CA model was proposed to study the exit dynamics of occupant evacuation (Zhao et al. 2006). A

two-dimensional CA model was used to simulate the pedestrian evacuation in a room with fixed

obstacles (Varas et al. 2007). A CA model without step back was presented to simulate the pedes-

trian counter flow in a channel (Yu and Song 2007). Fig. 3.3 illustrates the simulation of building

evacuation due to fire using the CA model, where (a) shows the room on fire and (b) demonstrates

one time step of the evacuation.

Figure 3.3: Simulation of building evacuation due to fire using the CA model with (a) the room on fire, and
(b) one time step of the evacuation.

Although a lot of CA models exist for the building evacuation simulation, few CA models have

been developed to simulate flood evacuation or tsunami evacuation. A model was proposed to

simulate crowd evacuations in flood disasters by combining CA and a multi-agent system (Li et al.

2019b). When an earthquake occurs, many people have to leave the coast as soon as possible for

avoiding the tsunami. The traffic network is not designed well for such a situation. To improve net-

work performance for tsunami evacuation, a CA model for traffic network optimization developed

in Tamaki et al. (2004) was applied to perform the traffic network design (Kita et al. 2015).

System dynamics (SD) model

SD is a methodology and mathematical modeling technique to understand the dynamic be-

havior of complex systems. The SD model solves the problem of simultaneity by updating all
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variables in small time increments with positive and negative feedback and time delays structuring

the interactions and control. SD was first introduced to understand strategic problems in complex

dynamic systems (Forrester 1961). Since then, SD has been widely used to model social, natural,

management, and engineered systems (Ahmad and Simonovic 2001). Some engineering applica-

tions of SD are river basin planning (Palmer et al. 1993), long-term water resources planning and

policy analysis (Simonovic et al. 1997; Simonovic and Fahmy 1999), management of scarce water

resources (Fletcher 1998), and reservoir operation (Ahmad and Simonovic 2000b).

Figure 3.4: Illustration of (a) the interactions between different variables, and (b) dynamic change of pop-
ulations over time tracked by the SD model.

In recent years, the SD model has been used for disaster management. For example, an SD

model that captures dynamic interactions between different components of the flood management

system was presented in Ahmad and Simonovic (2000a). The model was used to evaluate the

consequences of various policy alternatives for flood management. SD was used in Gillespie et al.

(2004) to understand the natural and social systems involved in disasters for designing safe sys-

tems. An SD model was developed in Simonovic and Ahmad (2005) to capture human behav-

ior during flood emergency evacuation. The interactions between different variables are modeled

(shown in Fig. 3.4(a)) and the dynamic behavior of evacuation system is tracked (illustrated in

Fig. 3.4(b)). Ultimately, the model is able to evaluate the effectiveness of different flood emer-
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gency management procedures. In Peng et al. (2014), an SD model was proposed to analyze the

behaviors of disrupted disaster relief supply chains for post-seismic supply chain risk manage-

ment. An SD model that covers the complexity of decision-making processes in times of floods

was developed for training decision-makers in flood response (Berariu et al. 2016).

Agent-based model

Agent-based modeling (ABM) is a modeling technique to simulate the behaviors of a system of

autonomous decision-making entities named agents as well as the interactions between them and

with the environment (Bonabeau 2002). One of the earliest agent-based models in concept was

a segregation model (Schelling 1971), which presented the basic concept of agent-based models

as autonomous agents interacting with an observed aggregate, the emergent outcome in a shared

environment. However, the agent-based model did not become widespread until the appearance of

modeling software such as NetLogo in the 1990s because the agent-based model is computation-

intensive. The agent-based model has found wide applications in many areas such as biology,

business, and engineering, etc.

Due to the capability of capturing emergent phenomena, providing a natural description of a

system, and being flexible (Munadi et al. 2012), the agent-based model has been used to simulate

various evacuation processes. For example, an agent-based model was used to emulate human

movement patterns in the built environment based on Gibson’s approach (Turner and Penn 2002).

An agent-based model was used to investigate the impact of individual actions and their interdepen-

dence on the performance of a metro system under a tunnel fire (Zarboutis and Marmaras 2004).

An agent-based model based on CA was proposed to simulate pedestrian dynamics, in which dif-

ferent pedestrian characteristics such as gender, speed, herding behavior, and obstacle avoidance

behavior are considered (Toyama et al. 2006). A multi-agent-based framework was presented to

simulate human and social behaviors such as competitive behavior, queuing behavior, and herding

behavior during emergency evacuations (Pan et al. 2007). The crowded evacuation process under

terrorist bomb attacks was simulated by introducing the Virtual Reality (VR)-based Belief, Desire,

and Intention (BDI) software agent (Shendarkar et al. 2008). An agent-based crowd simulation
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system was developed to investigate the impact of intra-group structure and inter-group relation-

ships on crowd behavior (Qiu and Hu 2010). An agent-based public decision support system was

presented to model emergency evacuation of individuals with disabilities in terms of speed, ability

to negotiate the environment, etc. (Manley and Kim 2012). The impact of a hurricane storm surge

flooding on the number of fatalities was evaluated using a dynamic agent-based model (Lumbroso

et al. 2017). Integrating building information modeling (BIM) technology and ABM, a simula-

tion model for offshore oil and gas platforms were proposed to evaluate different evacuation plans

(Cheng et al. 2018).

Figure 3.5: Illustration of tsunami evacuation simulation in Seaside, Oregon using the agent-based model.

One of the first agent-based tsunami evacuation models was introduced in Usuzawa et al. (1997)

using a network modeling approach that is widely used for evacuation simulations of other natu-

ral hazards such as hurricanes, floods, nuclear disasters, and fires in buildings. Since then, many

tsunami evacuation models have been developed using ABM (Mas et al. 2015). For example, a

multi-agent-based tsunami evacuation model was introduced to simulate more complex human be-
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haviors in tsunami evacuation (Fujioka et al. 2002). The agent-based tsunami evacuation model

presented in Katada et al. (2004) started the application of tsunami evacuation simulations for

tsunami mitigation, particularly for disaster education. The tsunami evacuation model used Multi-

Agent Transport Simulation (MATSim) to implement large-scale agent-based simulation (Lämmel

2011). The tsunami evacuation model was developed with finer levels of details with the develop-

ment of high-performance computing (HPC) (Wijerathne et al. 2013). An agent-based modeling

framework was developed for a multimodal near-field tsunami evacuation simulation (Wang et al.

2016). Fig. 3.5 illustrates one tsunami evacuation simulation in Seaside, Oregon using the agent-

based model, where different types of agents are modeled, including the road, shelter, pedestrian,

car, tsunami, etc.

3.1.2 Comparison of different models for tsunami evacuation simulation

Each of the above five models has its advantages and limitations in the application. A key to

select the proper model for tsunami evacuation simulation is whether the model can simulate the

tsunami evacuation as expected. In this research, the model is expected to be capable of capturing

the tsunami evacuation in an uncertain situation, especially the complex evacuation behavior in the

multi-hazard environment within the condensed time frame (e.g., irrational behavior). Also, the

model should be able to naturally describe the evacuation system such as the multi-hazard environ-

ment, individual behaviors of evacuees, and interactions among agents as well as between agents

and the environment. Furthermore, the model should be flexible enough such that it adjusts to

different factors and mechanisms in evacuation such as the population size, evacuation behaviors,

etc.

GIS approach is a top–down method that uses aggregate descriptions of a system. It has a

static setting and the advantage of not dealing with the dynamics of the evacuation process and the

complexity of evacuation behaviors (Benchekroun and El Mouraouah 2018). However, this also

means the GIS-based model is not well suited to track the dynamics of the evacuation process and

the diversity of evacuation behaviors (Astle and Crooks 2006) unless it incorporates micro-scale
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components provided by other simulation models such as agent-based model (Johnston 2013).

Therefore, the GIS-based model is typically used to identify the optimal location of the shelter

and/or select the most effective evacuation route for the aggregated population in each block of the

coastal community under a tsunami. Generally, it is unable to track the change of the populations

that are under threat, become the casualty, and reach shelters over time because the limit of tsunami

run-up rather than the time-history of inundation is typically used in the simulation.

DEM applies physical laws (e.g., Newton’s second law of motion) to the evacuees who evacu-

ate in a crowd. The DEM-based model may provide a good description of crowd behavior through

tracking individual behaviors and the interactions between individuals as well as between individ-

uals and the obstacle. However, it is not suitable to simulate the herding or queuing behavior that

is common in tsunami evacuation. Also, using physical laws such as Newton’s second law of mo-

tion is difficult to model some important evacuation behaviors such as a sudden change in moving

direction due to psychological factors (Mas et al. 2015).

In the CA model, the time, space, and state are discrete, and the spatial interaction only exists

between adjacent cells. Due to these characteristics, the CA model can simulate the evacuation

process with a small computational effort and especially suitable for simulating the crowd evacua-

tion process (Li et al. 2019a). However, the description of the environment, human behavior, and

human position and velocity are typically inaccurate because the CA model is based on discrete

space-time and relatively simple motion rules are set (Li et al. 2019a). It would pose significant

challenges when applying the CA model to simulate tsunami evacuation, e.g., how to accurately

describe the environment subject to earthquake and tsunami, capture complex human behaviors,

and characterize the human position and velocity. Therefore, the CA model is typically used to

simulate crowd behaviors in building evacuation rather than in tsunami evacuation.

The SD model allows to track the dynamic behavior of the evacuation system as well as un-

derstand the interactions between different variables. However, it lacks spatial complexity and

requires many assumptions about the system when being applied to simulate the evacuation pro-

cess (Mas et al. 2015). Therefore, the SD model is typically used to evaluate different emergency
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policies for disaster management, e.g., flooding evacuation planning. Generally, it is not used to

simulate the complex evacuation process, especially complex evacuation behaviors.

The agent-based model typically consists of sub-models that are capable of simulating the en-

vironment, agents, decision-making, learning rules, and interactions between agents as well as

between agents and the environment. The agent-based model has been widely applied to simulate

the evacuation process due to multiple benefits it provides: (1) it captures emergent phenomena; (2)

it provides a natural description of a system; and (3) it is flexible (Bonabeau 2002; Mas et al. 2015).

For tsunami evacuation simulation, the agent-based model can model irrational behaviors such as

following others (herding behavior). The agent-based model can naturally describe the evacua-

tion system including the environment under seismic and tsunami hazards, numerous agents with

complex evacuation decisions and behaviors, and the individual-level interactions among agents

and the agents’ interactions with the environment. The agent-based model is capable of tuning the

complexity of agents associated with population size, evacuation behavior, degree of rationality,

and rules of interactions (Abustan 2013). Note that the agent-based model is generally more com-

putationally intensive than the other four models (Zheng et al. 2009); however, such a challenge

can be addressed by HPC.

3.1.3 Limitations in existing agent-based tsunami evacuation models

Each agent-based tsunami evacuation model has its characteristics, while a sophisticated one

typically models the evacuation environment (including modeling of seismic and tsunami hazards,

transportation network, tsunami shelters, and population distribution), the evacuation decision and

behavior (e.g., departure time, evacuation mode, evacuation behavior, etc.), and the evacuation per-

formance (e.g., the casualty rate) (Mostafizi et al. 2019b). Different agent-based models might have

different focuses; however, it is critical to understand the nature of earthquake-induced tsunami as

well as the complexity of the evacuation decision and behavior such that the evacuation environ-

ment, evacuation decision and behavior, and evacuation performance could be modeled realisti-

cally.
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For the earthquake-induced tsunami, especially the near-field one, two important characteris-

tics in terms of time and space need to be better understood for evacuation simulation (illustrated

in Fig. 1.2), i.e., (1) the condensed time frame to evacuate (i.e., time), and (2) the damaged evacu-

ation environment due to the earthquake (i.e., space). As for (1), under the near-field tsunami with

a condensed time frame for evacuation (only minutes of forewarning and to evacuate), the appro-

priate evacuation decision and behavior is crucial for the successful evacuation (León and March

2016; Nakaya et al. 2018). However, the evacuation decision and behavior would be very complex

within the condensed time frame (Tsushima et al. 2011; Priest et al. 2016). Before evacuation,

evacuees need to decide when to evacuate (i.e., departure time), how to evacuate (i.e., evacuation

mode, on foot or by car), and where to evacuate (i.e., use evacuation routes or search the shortest

path). In the evacuation, evacuees would have complex individual behaviors as well as interac-

tions with each other and with the hazardous environment. For the individual behavior, evacuation

speed would adjust according to the traffic density some distance ahead. For interactions, (1) some

pedestrians (or cars) might have the following behavior in emergency (Takabatake et al. 2017)

and collision is avoided with each other by adjusting the speed; (2) for multimodal evacuation on

foot and by car, the pedestrian-vehicle interaction would exist, e.g., use the shared path between

the sidewalk and lane, or pedestrians can jump into cars in the evacuation; (3) evacuees would

change the direction (re-route) when the road is blocked or the bridge collapses or the road/bridge

is congested; pedestrians would accelerate when the inundation comes closer. Furthermore, some

evacuees might behave irrationally such as simply following others in a panic (Takabatake et al.

2017). As for (2), people evacuate under a hazardous environment. The large-magnitude earth-

quake can severely damage bridges and buildings, and building debris may block nearby roads

(León and March 2016; Mostafizi et al. 2019b). The traffic capacity of a transportation network

would reduce due to the seismic damage to the bridge (Jacob et al. 2014) or due to the road block-

age caused by the debris from damaged infrastructure (Stern and Sinuany-Stern 1989; Murakami

et al. 2014; Jacob et al. 2014). The reduction in traffic capacity could lead to a significant increase

in evacuation time and thus life loss (Jacob et al. 2014; Mostafizi et al. 2017). Moreover, the traffic
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information on the seismic damage to bridges and debris on roads may be available or unavailable,

which would impact the evacuation behavior (e.g., the selection of evacuation path) and hence the

evacuation performance.

Besides the above considerations about the multi-hazard evacuation environment and evacua-

tion decision and behavior under a short time, some other important factors or mechanisms need

to be considered realistically in the simulation. For instance, the variability in pedestrian speed

would exist due to the different characteristics of pedestrians. The population size might be much

larger than the residential population in the peak season when a large number of tourists visit the

coastal community (Mostafizi et al. 2019b). All of these may have a high impact on the evacuation

performance and therefore need to be taken into account in the simulation.

Table 3.1: Important factors or mechanisms that are usually neglected or simplified in existing agent-based
evacuation models.

Simulation Typically neglected or simplified factors or mechanisms in evacuation
Uncertain seismic damages to bridges and debris effect on roads

Environment Traffic information such as the accessibility of the bridge and road
Population mobility (i.e., change of population due to factors such as tourism)
Evacuation path selection, e.g., the shortest path, the evacuation route, etc.
Variability in the pedestrian speed

Behavior Speed adjustment according to traffic density ahead
Interaction between evacuees, e.g., following behavior, pedestrian-vehicle interaction, etc.
Interaction between evacuees and the environment, e.g., reroute behavior

However, existing agent-based evacuation models usually neglect or simplify many of the

above important factors or mechanisms, which are summarized in Table 3.1. In the simulation

of the evacuation environment, (1) the seismic damage to bridges is usually neglected or the quan-

tification of the uncertainty in seismic damages is simplified by removing damaged bridges from

the network (e.g., in Jacob et al. (2014); Mostafizi et al. (2017)), which is unrealistic. Moreover,

the impact of debris from damaged infrastructure on road traffic is usually neglected; (2) it is typ-

ically assumed that the above traffic information (i.e., the accessibility of the bridge and road) is

available in the simulation. However, the traffic information might be unavailable within a short

time after the earthquake; (3) usually a relatively small number of evacuees (e.g., smaller than the

29



actual population) are considered while the population mobility is neglected (Goto et al. 2012; Ima-

mura et al. 2012; Takabatake et al. 2017; Mostafizi et al. 2019b). The number of evacuees might

be much larger in some peak seasons. Considering the highly nonlinear nature of the evacuation,

results from simulations using a smaller than actual population may not give a good indication of

the results under more realistic, large populations.

In the simulation of the evacuation decision and behavior using existing agent-based evacua-

tion models, (1) it is usually assumed that evacuees search the shortest path in terms of distance or

time and follow the shortest path to shelters in evacuation; however, some evacuees might follow

evacuation routes to evacuate when such routes exist or some evacuees might behave irrationally

such as simply follow others in a panic (Takabatake et al. 2018), especially for those who are unfa-

miliar with the evacuation (e.g., tourists); however, such irrational behavior is typically neglected

in evacuation simulation, which is unrealistic because many people might not respond rationally

within a short time frame, and evacuation simulation with bounded rationality such as evacuat-

ing only through the evacuation route or shortest path may not be able to capture the complex

evacuation behavior; (2) for the evacuation on foot, usually all pedestrians are assigned the same

pedestrian speed or they are classified into several groups based on the characteristics such as

age and each group is assigned a certain pedestrian speed (Takabatake et al. 2017, 2018). How-

ever, variability exists in the pedestrian speed due to different characteristics of pedestrians; (3)

the pedestrian speed is usually assumed to be constant throughout the evacuation while the speed

adjustment according to the traffic density is neglected (Takabatake et al. 2017); (4) the interaction

between individuals (pedestrians or cars) such as the following behavior is typically neglected. In

the multimodal evacuation on foot and by car, usually, no interaction is considered between the

pedestrian and car (Takabatake et al. 2017; Mostafizi et al. 2019b). This neglect is unrealistic be-

cause the pedestrian and nearby car might interact with each other (Jacob et al. 2014), e.g., both

the pedestrian and car can use the shared path between the walkway and lane while it is usually

assumed that they just travel within their own road spaces. Another type of interaction between

the pedestrian and car is the pedestrian can jump into the nearby car in the evacuation, which is
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typically not simulated; (5) the interactions between evacuees and the multi-hazard environment

are usually neglected. For example, the traffic capacity reduction of the damaged bridge may cause

traffic congestion and then slow down the evacuee’s traveling speed, which would in turn impact

the traffic congestion level of the damaged bridge. Moreover, typically evacuees would reroute if

there is traffic congestion ahead (Goto et al. 2012; Takabatake et al. 2017), which would in turn

impact the traffic congestion level. In addition, pedestrians would accelerate when they are told

the inundation reaches the shoreline or when they see that the water comes closer, which would in

turn impact the traffic congestion level of the link.

Also, various uncertainties associated with the evacuation need to be incorporated in simulation

for a realistic simulation (Mostafizi et al. 2019b) and a more accurate evacuation risk assessment.

However, many of them are usually neglected. For example, one approach to model the departure

time is to assume an “all together” evacuation in which all evacuees start evacuating at a certain

time (e.g., 0 min or 5 min) after the tsunami warning (Post et al. 2009); however, such a scenario

has never occurred in past tsunami events.

3.2 Proposed agent-based tsunami evacuation model

To address the above limitations in the tsunami evacuation simulation, an improved agent-

based tsunami evacuation model is developed by extending an agent-based modeling framework

for a multimodal near-field tsunami evacuation simulation proposed in Wang et al. (2016) through

incorporating the typically neglected or simplified but important factors and mechanisms. These

improvements would better characterize the nature and dynamics of the evacuation system. Also,

the improvements enable better modeling of the evacuee’s decision and behavior, individual-level

interactions among evacuees, and the evacuees’ interactions with the damaged environment under

the condensed time frame, especially under the near-field tsunami.

The proposed model (shown in Fig. 3.6) consists of the evacuation environment model (EEM),

evacuation decision and behavior model (EBM), and evacuation performance model (EPM). In the

EEM, (1) The uncertainties in the seismic damage to bridges and the road blockage due to debris
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Figure 3.6: Illustration of the proposed agent-based tsunami evacuation model.

from damaged buildings are modeled; (2) the traffic information on the bridge damage due to the

earthquake and road blockage caused by debris is considered to be available since such informa-

tion is important and needs to be collected for guiding effective evacuation; (3) different population

sizes are used to model the population mobility and capture the non-linearity of a tsunami evacua-

tion. In the EBM, (1) the pedestrian speed variability, and speed adjustment for both the pedestrian

and car according to traffic density are concurrently considered in the multimodal evacuation (i.e.,

evacuation on foot and by car); (2) different selections of evacuation path are considered, including

following the evacuation route, searching the shortest path, and following behavior that is used to

model the irrational behavior in the condensed time frame as well as the interaction between indi-

viduals (pedestrians or cars); (3) besides the speed adjustment and following behavior, two other

interactions between evacuees are modeled, i.e., the pedestrian-vehicle interaction that is modeled

by traffic stage transition determined by the volume ratio of the pedestrian and vehicle, and the

pedestrian could jump into the nearby car in an evacuation; (4) the interactions between evacuees

and the multi-hazard environment are modeled. The traffic capacity reduction of the damaged

bridge would cause traffic congestion and hence slow down the evacuee’s traveling speed, which
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would in turn impact the traffic congestion level of the damaged bridge. Evacuees may change

direction when the traffic congestion occurs ahead, which in turn impacts the traffic congestion

and hence evacuees’ traveling speeds. Pedestrians are expected to accelerate when they are told

the inundation reaches the shoreline as well as when they see the inundation from some distance

away, which would in turn impact the traffic congestion of the link and hence the pedestrian speed;

(5) besides the uncertainty in seismic damages to bridges and road blockage due to debris from

damaged buildings, various other uncertainties associated with the evacuation are explicitly taken

into account.

To better use modern data with a high level of detail, capture the emergent phenomena, and tune

the complexity of the agent’s behavior, the agent-based tsunami evacuation model is developed in

an integrated agent-based modeling environment (NetLogo) (Wilensky 2001). Fig. 3.7 shows a

snapshot of the agent-based tsunami evacuation model interface in NetLogo.

Figure 3.7: The agent-based tsunami evacuation model interface.

3.3 Modeling details

This section discusses the modeling details for EEM, EBM, and EPM as well as the general

applicability of the proposed model.
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3.3.1 Evacuation environment model (EEM)

The EEM simulates the earthquake-induced tsunami, transportation network, tsunami shelters,

and population distribution.

Modeling earthquake-induced tsunami

For earthquake-induced tsunami, multiple hazards are considered, including the seismic and re-

sulting tsunami hazards. As for the seismic hazard, either probabilistic or scenario earthquake can

be considered (McGuire 2001; Adachi and Ellingwood 2010). The spatially distributed ground-

motion intensities can be estimated by using proper ground-motion models (Campbell and Bo-

zorgnia 2008; Abrahamson et al. 2018) and correlation models for the intensity measures (Loth

and Baker 2013; Weatherill et al. 2015). The predicted intensity measures at each site will be used

as inputs to estimate the probability of damage states for the corresponding bridges and buildings

(FEMA 2009). As for the earthquake-induced tsunami, either probabilistic or scenario tsunami can

be considered (Park and Cox 2016). The tsunami inundation is simulated using ComMIT/MOST,

which is the tsunami model of NOAA Center for Tsunami Research (NCTR) and capable of sim-

ulating three processes of tsunami evolution: generation, propagation, and inundation (Titov and

González 1997). In the model, three series of nested grids (A, B, and C) can be used to optimize

the simulation for the three tsunami processes. The inundation model provides time histories of

flow depth and speed at different locations of the area under investigation.

Transportation network

The transportation network used for evacuation is extracted from OpenStreetMap and saved

as a shapefile in which intersections and road segments (or bridges) are represented by nodes and

links (the number of the link is denoted as n), respectively. The characteristics of the transportation

network such as the coordinates of intersections, cross-sections of roads, bridge types are included

in the shapefiles.

The traffic capacity of the damaged link would reduce due to the seismic damage to the bridge

as well as the road blockage caused by the debris from damaged buildings. Instead of simply
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removing the damaged bridge from the network, its residual capacity is modeled and used for

evacuation simulation. In particular, the fragility functions of bridges and buildings are used to

estimate the corresponding probability of damage states (e.g., none, slight, moderate, extensive,

and complete) (FEMA 2009). For bridges, different residual rates can be defined and used to

estimate the residual traffic capacity based on different levels of seismic damage (Wang and Jia

2019a, 2020b), e.g., 100% (none/slight), 75% (moderate), 50% (extensive), and 25% (complete).

For roads, the debris effect is considered and simulated based on the study in Feng et al. (2020).

The main ideas in Feng et al. (2020) are: (1) the debris effect is only considered when the roadway

is within 10 m of a building which is higher than 25 m and severely damaged (e.g., complete

damage in FEMA (2009)) by the earthquake; (2) the probability of road blockage on one lane due

to debris increases linearly with the height of the building: 0% and 100% for the height of 25 m and

over 75 m, respectively; (3) the length of the debris-affected region of the roadway is considered

to be equal to the frontage of the building along the road. Then, the residual traffic capacity of the

debris-affected road is calculated by (Feng et al. 2020)

Cw = C0 ·
rs · lw +NL · (l − lw)

l
· rV R (3.1)

where C0 is the traffic capacity of the road without debris effect; l is the road length and lw is the

total length of the weaving area; NL represents the number of lanes; rs denotes the lane correction

coefficient, i.e., 0.3, 1.8, 2.6, 3.4 and 4.0 for the road with 1, 2, 3, 4, and 5 lanes, respectively;

rV R is the volume ratio correction coefficient (Roess et al. 2011). Ultimately, the residual rate

of the traffic capacity of the debris-affected road (i.e., Cw/C0)) is obtained. Based on Cw/C0,

here the traffic capacity reduction is simulated by proportionally reducing the road width used by

pedestrians and the traffic jam density for the pedestrian and car, respectively.

Considering the importance and feasibility of collecting the traffic information on the bridge

damage due to the earthquake and road blockage caused by damaged buildings, it is assumed that

this information is available for evacuees in the evacuation.
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Tsunami shelter

Both horizontal and vertical evacuation shelters are regarded as effective to reduce the number

of casualties (Mostafizi et al. 2019b). Typically, all the shelters are assumed to be capable of

withstanding earthquake and tsunami hazard (Applied Technology Council 2019). For the capacity

of the shelter, either a limited or an unlimited capacity can be used depending on the shelters

(Mostafizi et al. 2019b; Goto et al. 2012).

Population distribution

The population distribution throughout the community can be of high spatiotemporal variability

in terms of types (e.g., residents and tourists), genders, or ages (Mostafizi et al. 2017). Existing

research usually considers a relatively small population in evacuation simulation (e.g., in Mostafizi

et al. (2017); Priest et al. (2016)), which might be unrealistic. We consider population mobility and

use different populations in simulation to investigate the impact of the population size (denoted ne)

on evacuation risk. For the evacuation by car, the evacuees are usually assumed to be in cars when

evacuation starts (Mas et al. 2012), or change their classifications to cars after reaching the link

of the transportation network (Wang et al. 2016), which might also be unrealistic. To simulate the

evacuation by car more realistically, some parking lots are placed in the areas where cars are not

likely to be accessed in seconds and simulate the process of evacuees reaching their cars on foot

first and then evacuating by car. For the distribution scenario, normal and uniform distributions are

used to simulate the uncertainty in the population distribution over the study regions.

3.3.2 Evacuation decision and behavior model (EBM)

In the EBM, the evacuation decision and behavior are simulated. The evacuation decision

includes the departure time, evacuation mode, and evacuation path selection. The evacuation be-

havior consists of individual behavior, interactions between evacuees and between the evacuee and

environment, and irrational behavior.
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Evacuation decision-Departure time

The Rayleigh distribution suggested in Wang et al. (2016) is adjusted to characterize the uncer-

tainty in departure time in which the probability of action for each evacuee is considered by

P (t) =















0, 0 < t < t0 + τ

1− e−(t−τ)2/(2σ2
t ), t ≥ t0 + τ

(3.2)

where t is the departure time after receiving the tsunami warning (unit: min); t0 is the time when

being notified the tsunami warning after the earthquake ground shaking (unit: min); τ is the delay

time after receiving the tsunami warning (unit: min); σt is the scale parameter.

Evacuation decision-Multimodal evacuation

In the modeling of the multimodal evacuation (including on foot and by car), the proportion

of evacuation by car (denoted pc) is treated as uncertain considering that in an emergency the

individual selection of evacuation mode (i.e., choose to evacuate on foot or by car) may vary for

each evacuee. It is assumed that pc follows the normal distribution with uncertain mean µc and

constant standard deviation σc, and lies within some selected range.

In the simulation, variability is assigned to the pedestrian speed vp to consider the uncertainty

in the pedestrian’s characteristics such as age and physical condition (Wang et al. 2016). vp is

assumed to follow a truncated within (0.75, 3.83) (unit: m/s) normal distribution with mean µp and

standard deviation σp (Wang et al. 2016; Goto et al. 2012). Here, vp = 0.75 m/s is considered as

the lowest pedestrian speed (slow walk) and 3.83 m/s is considered as the highest pedestrian speed

(fast run) (Web Marketing Associates 2010). Note that the pedestrian speed could be modeled

using the probability distribution based on the actual age groups (including residents and tourists)

when such data is available.
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Evacuation decision-Evacuation path selection

Three types of evacuation path selection are considered, i.e., using the evacuation route, search-

ing the shortest path, and following behavior. Considering the selection of the evacuation path

might vary in an emergency, the proportion of each type is modeled as uncertain.

As for the evacuation using the evacuation route, evacuation routes are typically identified

based on the evacuation map and verified by Google Street View imagery (Lonergan et al. 2015).

Evacuation zones throughout the community are created such that the evacuees in the same evacu-

ation zone can use the same evacuation route to evacuate. Some considerations about the creation

and use of evacuation zones are: (1) the centroids of the two zones on opposite sides of some route

almost have the same distance to the route; (2) in each evacuation zone, the evacuees who decide to

use evacuation routes would first move to the closest route and then follow the route to the shelter;

(3) if the bridge on the route collapses, the evacuees who plan to use the route directly search the

shortest path rather than use the route.

For the evacuation using the shortest path, the closest shelter in terms of distance is searched

using the shortest path algorithm such as the A* algorithm (Anguelov 2011).

Some evacuees may panic and have the following behavior in evacuation under the condensed

time frame, especially for those who are unfamiliar with the tsunami evacuation (e.g., tourist)

(Takabatake et al. 2017). It is assumed that a small percentage of evacuees (both on foot and by

car) respond in this manner, i.e., the pedestrian and car would simply follow the pedestrian and car

ahead, respectively. The details of this irrational behavior will be presented later.

Evacuation behavior-Individual behavior

Speed adjustment for both the pedestrian and car according to the traffic density ahead is in-

corporated in the multimodal evacuation model. The pedestrian speed vp adjusts according to the

surrounding pedestrian density ρp (Goto et al. 2012). Based on the speed-density relationship in

Goto et al. (2012), we introduce a pedestrian speed adjustment model which is shown in Fig. 3.8.

Unlike Goto et al. (2012) where the pedestrian speed ranges from the slow walk (i.e., 0.75 m/s)

to normal walk (i.e., 1.5 m/s), here the pedestrian speed covers slow walk, normal walk, and fast
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run (i.e., 3.83 m/s). Also, here the speed-density relationship is considered to be linear rather than

nonlinear due to the lack of data.

Figure 3.8: The relationship between the pedestrian speed and pedestrian density ahead (adjusted from
Goto et al. (2012)).

In the model, vp0 represents the preferred pedestrian speed, and ρp denotes the pedestrian den-

sity 4 m ahead along the evacuation path. According to the model, the pedestrian speed will reduce

as the pedestrian density increases.

Car speed vc is adjusted according to the car density ρc within the free run-length ahead of it.

Here, the well-known Greenshields’ model of speed and density (Greenshields 1935) is used to

approximate the car speed adjustment

vc = vcm

(

1− ρc
ρcm

)

(3.3)

where vcm is the maximum speed limit and ρcm is the maximum density (i.e., jam density).

Evacuation behavior-Interaction

Interactions between evacuees The interaction between pedestrians or cars is simulated by the

speed adjustment, which was discussed in the individual behavior, and by the irrational behavior

(i.e., following behavior), which will be presented later.

Two types of interactions between the pedestrian and car are simulated in the EBM. One type

is explicitly simulated by introducing dynamic traffic stage transitions based on the volume ratio of
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the pedestrian and car. Here the dynamic traffic stage transition model is established by adjusting

the model in Mauro et al. (2014) to make it more general. Compared to the model in Mauro

et al. (2014), which only uses one variable to represent the total road width, the adjusted model

introduces several other variables to represent the different widths and the number of lanes to make

the model applicable to different types of roads. The adjusted model has the following form

Vp/Vv ≤ T1 → wp = wwmin ; wv = w − wwmin

T1 < Vp/Vv ≤ T2 → wp = ww ; wv = w − ww

Vp/Vv > T2 → wp = w − wr × nl ; wv = wr × nl

(3.4)

where Vp and Vv represent the pedestrian volume and vehicle volume (unit: person) on the same

link, respectively; for comparison, one vehicle can be assumed to be equivalent to some number

of pedestrians based on the average space occupied; wp and wv represent the road widths occupied

by the pedestrian and vehicle (unit: m), respectively; w is the total road width (unit: m); wwmin is

the minimum road width used by the pedestrian (unit: m); ww is the road width that can be used

by the pedestrian, including sidewalks, multi-use path, and roadway shoulders (unit: m); wr is the

width of vehicle lane (unit: m); nl is the number of vehicle lanes occupied by the vehicle, which

are typically smaller than the total number of vehicle lanes in the car-dominated stage; T1 and T2

are the thresholds for different traffic stages.

The other type of pedestrian-vehicle interaction is the pedestrian jumps into the nearby car

(e.g., within 10 m) after walking and then evacuates by car. This interaction is considered to occur

when: (1) the pedestrian dominates the traffic; (2) no traffic congestion exists for the car; (3) there

is at least one car traveling on the road link. It is assumed that no more than one pedestrian can

jump into the same car.

Interactions between the evacuee and the environment Under the multi-hazard environment,

evacuees would interact with the environment. Here, three types of such interactions are modeled,

i.e., (1) the traffic capacity reduction of the damaged bridge due to seismic damage or the road
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blockage would cause traffic congestion and hence slow down the evacuee’s traveling speed, which

in turn impacts the traffic congestion level of the damaged bridge; (2) evacuees would change

direction (reroute) when the bridge collapses due to the seismic damage, the road is blocked by

debris from the damaged building, or the road/bridge is congested (it is assumed that the sight

distance is 50 m during daytime based on the study in Jacob et al. (2014); Aguilar et al. (2017,

2019)). The reroute behavior due to the traffic congestion would in turn change the nearby traffic

congestion level and further impact evacuees’ traveling speeds; (3) pedestrians are considered to

accelerate when the tsunami inundation comes closer. The pedestrian acceleration would impact

the traffic such as the congestion level of the link, which would in turn impact the pedestrian

speed. For (2), the evacuees that use the evacuation route or the shortest path would search the

new evacuation path which excludes the collapsed bridge, the blocked road, and the congested

links. Once the evacuation path is determined, they would evacuate following the new path. The

evacuees with the following behavior would reroute to other passable links and continue following

others to evacuate. For (3), pedestrians are considered to accelerate when the inundation reaches

the shoreline and further accelerate when they see the inundation from 200 m far away if they

evacuate in the daytime. The acceleration is simulated by scaling the preferred pedestrian speed

(i.e., vp0) by a constant that is greater than 1 (denoted ρa) in the pedestrian speed-density model.

It is assumed that the scaling factor is 1.2 (denoted ρa1 = 1.2) and 1.4 (denoted ρa2 = 1.4) for the

above two accelerations, respectively.

Evacuation behavior-Irrational behavior

As mentioned in the evacuation path selection, some evacuees may behave irrationally and have

the following behavior to evacuate rather than evacuate with purposeful behaviors (i.e., using the

evacuation route or the shortest path) in the condensed time frame. Considering the tsunami evac-

uation program and/or evacuation drill are commonly held for the residents in the tsunami-prone

community and the tsunami evacuation knowledge (e.g., evacuation map) is typically provided to

the tourists, it is assumed a small uncertain proportion of evacuees (including residents and tourist)

evacuate by simply following others. As for the following behavior, two rules are adjusted and
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used in our model based on the study in Takabatake et al. (2017). The evacuees with the following

behavior would count the number of evacuees of the same type (evacuation on foot or by car) on

each road when they reach an intersection and choose the road taken by the largest number of

evacuees of the same type (no congestion), i.e., “following other individuals”. When no evacuee

exists on each road, the evacuees with the following behavior would choose the road that can lead

them inland, i.e., “going inland”. Note that, the evacuees with the following behavior might ac-

tually follow the evacuees using the evacuation route or the shortest path or follow each other, or

just follow the road that can lead them to the inland. Ultimately, the evacuees with the following

behavior might reach the shelter or higher land.

3.3.3 Evacuation performance model (EPM)

The evacuation performance can be measured using different quantities of interest such as

casualty, evacuation time, etc. Typically, the evacuation performance indicator associated with

the loss of life such as the casualty rate (i.e., the proportion of casualties to the total number of

evacuees) is used. The flow characteristics such as depth and velocity determine the casualty

through impacting the human body (Lind et al. 2004; Jonkman et al. 2008), while many other

factors including evacuee’s age, gender, and mental and physical state also have an impact on the

casualty in tsunami inundation (Yeh 2010). Usually, critical water depth is used to approximate the

casualty without considering other factors (Wang et al. 2016; Mostafizi et al. 2017), or the casualty

probability is estimated as a function of depth and velocity, which are limited to given intervals

(Mas et al. 2012). In this research, the evacuee is considered to be a casualty when the water depth

is larger than the given critical depth of hc. The uncertainty in hc is modeled to consider the varied

characteristics of evacuees.
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3.3.4 General applicability of the proposed agent-based model for tsunami

evacuation simulation

The proposed agent-based tsunami evacuation model is developed with a modular program-

ming paradigm and sub-models (i.e., the EEM, EBM, and EPM) including components in each

sub-model. These components are general and can capture the nature of tsunami evacuation

through characterizing the evacuation system dynamics and modeling the individual-level inter-

actions among evacuees and the evacuees’ interactions with the multi-hazard environment. Due

to the above characteristics, the proposed agent-based evacuation model is general, and each sub-

model can be adapted to different settings by changing/updating the EEM, EBM, and EPM ac-

cordingly. For example, for a different site, we can update the EEM by using the seismic hazard

model for the site to simulate the earthquake, using numerical models such as ComMIT/MOST

along with topography for the site to simulate tsunami generation and propagation, by using the

corresponding ground motion prediction equations and fragility functions of roads and bridges to

estimate and update the seismic damages, and by updating the transportation network, shelters,

and the population distribution throughout the community. When modeling the departure time,

evacuation mode, and evacuation speed in the EBM, different distributions of evacuation model

parameters could be updated to model the uncertainties in the evacuation decision and behavior

based on the characteristics of the population. In the EPM, depending on the performance of in-

terest, besides the casualty rate, other performance quantities could be also used to measure the

evacuation performance. Therefore, the proposed agent-based tsunami evacuation model can be

used in different geographic locations for tsunami evacuation simulation.

3.4 Illustrative example: Simulation of tsunami evacuation in

Seaside, Oregon using the proposed agent-based model

The proposed agent-based evacuation model is applied to tsunami evacuation simulation for

Seaside, Oregon.
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Figure 3.9: Illustration of (a) Cascadia Subduction Zone (CSZ) (USGS 2020a), and (b) Seaside, Oregon.

3.4.1 Study area

The coastal community Seaside, Oregon (shown in Fig. 3.9(b)) is selected as the study area, on

which many tsunami evacuation studies have been focused (Wang et al. 2016; Mostafizi et al. 2017,

2019b). Seaside is regarded as one community with a high tsunami evacuation risk considering:

(1) its high risk to the seismic and near-field tsunami hazards due to the proximity to the Cascadia

Subduction Zone (CSZ, shown in Fig. 3.9(a)) (González et al. 2009; Priest et al. 2016; Mostafizi

et al. 2017); (2) its high vulnerability to tsunami inundation due to the fairly flat topography with

two rivers flowing through the city, the relatively far shelters (more than 1.5 km), and the bottle-

necks in the transportation network (road network in this case) caused by the ten bridges over the

two rivers (Mostafizi et al. 2017).

3.4.2 Agent-based tsunami evacuation model details

The agent-based model for tsunami evacuation simulation in Seaside, including evacuation

environment, evacuation decision and behavior, and evacuation performance, will be discussed in

the following sections. Also, the proposed improvements to each component will be described in

detail.
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Evacuation environment

We consider the seismic hazard and earthquake-induced tsunami generated from the 1000 km

long CSZ. The CSZ stretches from northern Vancouver Island to Cape Mendocino in northern

California. The last great seismic event on the CSZ is full-rupture and occurred on January 26,

1700, with a moment magnitude (Mw) estimated between 8.7 and 9.2, and a slip of 19 m (Satake

2003). The average return period for the full-length CSZ event is 530 years. Despite low levels

of seismicity since the last megathrust earthquake, it was reported that partial rupture events on

the north or south margins of the CSZ became more frequent (Goldfinger et al. 2012; Atwater

and Griggs 2012; Park et al. 2017). There is a 9.0 Mw earthquake with about 10% probability

of occurrence at the CSZ over a 35-year time frame (Goldfinger et al. 2012). In this research, the

historical seismic event in 1700 is used as the hypothetical hazard scenario, under which Mw = 9.0

and the focal depth of 40 km are considered.

The road network consists of 700 nodes and 896 links (i.e., n = 896 roads and bridges).

Fig. 3.10 shows the existing road network. The road cross-section standards corresponding to the

federal functional classification of roads throughout Seaside (Clatsop County 2019) can be found

in the typical design of streets in Clatsop County City of Seaside (2010). Table 3.2 summarizes the

parameters used to determine the road widths occupied by the car and pedestrian for the existing

road network (City of Seaside 2010). In the modeling of the pedestrian-vehicle interaction, it is

assumed that one car is equivalent to ten pedestrians in terms of space.

Table 3.2: The parameters used to determine the road widths occupied by the car and pedestrian for the
existing road network.

Functional class w wwmin ww wr nl

Principle Arterial 12.80 4.49 5.49 2.75 2
Minor Arterial 10.97 2.66 3.66 2.75 2
Major Collector 10.36 2.66 3.66 2.75 2
Local Road 7.32 1.22 1.22 2.75 2

Following the approach in Lonergan et al. (2015), evacuation routes are identified based on the

evacuation map (The Oregon Department of Geology and Mineral Industries 2013) and official
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Figure 3.10: The existing road network in Seaside, Oregon.

shapefiles (Claptsop County 2008). In the evacuation map (The Oregon Department of Geology

and Mineral Industries 2013), no exact evacuation routes are provided but only black arrows are

used to indicate the evacuation direction. Evacuation routes are defined in the shapefiles (Claptsop

County 2008), although the data might not be up-to-date. We identify the evacuation route by

combining the evacuation direction with the evacuation routes from the shapefiles. Note that one

additional evacuation route in the downtown is added that goes through the bridge over the river

considering that the nearby evacuees would intuitively choose this route to go across the river (Neis

et al. 2015). The identified evacuation routes are shown in Fig. 3.11.

Inspired by the evacuation map (The Oregon Department of Geology and Mineral Industries

2013) and the beat-the-wave evacuation map for tsunami hazards in Seaside (Priest et al. 2016),
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Figure 3.11: Tsunami evacuation routes and zones in Seaside, Oregon.

the evacuation zone and evacuation direction are created throughout the community (shown in

Fig. 3.11) to determine the selection of the evacuation route by evacuees in each zone as well as

the evacuation flow direction in the evacuation model. Note that in The Oregon Department of Ge-

ology and Mineral Industries (2013) no evacuation zone is provided and therefore the evacuation

direction is not designed for any specific evacuation zone. In Priest et al. (2016), both evacua-

tion zone and the corresponding evacuation direction are created where the evacuation zones have

complex shapes (determined from the calculation of so-called least-cost distance). In the current

study, both the evacuation route and corresponding evacuation direction are established, but they

are established in a way that is different from The Oregon Department of Geology and Mineral In-

dustries (2013) and Priest et al. (2016). In particular, from the point of view of capturing the more

possible selection and use of the evacuation route, the current study takes into account the follow-

ing considerations about the creation of the evacuation zone and use of the evacuation route: (1) the
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region located between two main evacuation routes is divided into two evacuation zones such that

the distance between each zone (centroid) and the adjacent route is close; (2) in each evacuation

zone, the evacuees who decide to use evacuation routes will first move to the closest evacuation

route and then follow the route to the shelter; (3) when the bridge on some route collapses, the

evacuees who plan to use the evacuation route would search the shortest path for evacuation.

To consider the impact of the earthquake-induced damage to bridges and road blockage due to

debris from damaged buildings on evacuation, the fragility functions of bridges and buildings in

HAZUS (FEMA 2009) are used to estimate the probabilities for seismic damages to bridges and

buildings, respectively. In HAZUS, spectral acceleration (Sa) and spectral displacement (Sd) are

used as intensity measures in the fragility curves for bridges and buildings, respectively. Since Sd

can be calculated when Sa and the structural period is known (FEMA 2009), here only Sa needs to

be estimated for bridges and buildings using the corresponding fragility curves. Based on Stewart

et al. (2015), the ground-motion prediction equations (GMPEs) in Campbell and Bozorgnia (2008)

are selected to estimate the Sa at each bridge site and building site, respectively. According to

HAZUS FEMA (2009), five damage states (i.e., none, slight, moderate, extensive, and complete)

are defined for the bridge. Except for the bridges with complete damage, the reduction of traffic

capacity of links due to the seismic damage is considered only for the car since evacuation by

car is more likely to be affected by the damage of links compared to evacuation on foot. The

residual traffic capacity of the bridge is assumed to be 100% (none/slight), 75% (moderate), 50%

(extensive), and 0% (complete) of that without the seismic damage. The traffic capacity reduction

of the damaged bridges for the car is modeled by reducing the jam density in the speed adjustment

model.

For the shelters, we adopt the eight horizontal shelters outside the inundation zone identified

by the Oregon Department of Geology and Mineral Industries (Priest et al. 2013), which are shown

in Fig. 3.9(b). It is assumed that all the shelters can hold the evacuees that reach them.

We use the population density model in Mostafizi et al. (2017) to simulate the population dis-

tribution throughout the study area, which corresponds to the noontime of some weekends in the
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summer. The evacuees including residents and tourists are distributed across the beach, downtown,

and residential area with a proportion of ρ1 = 40%, ρ2 = 30%, and ρ3 = 30%, respectively. Both

the populations on the beach and in the downtown are assumed to distribute following the nor-

mal distribution around the corresponding centroid of each region. The population is distributed

uniformly throughout the residential area. Note that the population distribution throughout some

sub-area (e.g., residential area) could be modeled through estimating the number of people that

live in each building when the relevant information is available (Wang et al. 2021). As for the

population size, the up-to-date residential population of Seaside is 6795 in 2018 according to U.S.

Census (U.S. Census Bureau 2018); however, the net daytime residential population can decrease

to around half of the population (Sleeter and Wood 2006) while the number of tourists can be up

to 10,000 per day in the peak summer (Mostafizi et al. 2017), i.e., population mobility exists. We

select ne = 5000 that corresponds to the early summer to illustrate the tsunami evacuation simula-

tion using the proposed agent-based model. The impact of population mobility on evacuation will

be considered in evacuation risk assessment in Chapter 4.

To simulate the evacuation by car more realistically, one parking lot is placed beside each

subregion of the beach, which is used to park for some of the evacuees on the beach (denoted as

the pedestrian II). For the evacuation by car in the two regions other than the beach, cars with four

evacuees per car are distributed throughout the regions considering the easier access to their cars

for the evacuees in these two regions. The classification of different regions and corresponding

population distributions are shown in Fig. 3.12.

Evacuation decision and behavior

For the modeling of the departure time described in Eq. (3.2), t0 is considered to follow the

uniform distribution on the interval [3, 10] (unit: min) for the local tsunami (U.S. Indian Ocean

Tsunami Warning System Program (US IOTWS) 2007); τ and σt are considered to follow the

uniform distribution on the interval [0, 5] (unit: min) and [1, 5], respectively.

In the modeling of the multimodal evacuation, the uncertainty in pc is modeled by assuming it

follows a truncated within (0, 1) normal distribution with mean µc and standard deviation σc. It is
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Figure 3.12: Population distribution in Seaside, Oregon at the noontime of some weekends in the summer.

further assumed that µc follows the uniform distribution on the interval [0, 1] and σc = 0.15. As

for the evacuation by car, it is assumed that four passengers take one car. In the calculation of the

pedestrian volume and car volume, one car is assumed to be equivalent to ten pedestrians in terms

of space occupied.

The pedestrian speed vp is considered to follow the truncated within (0.75, 3.83) (unit: m/s)

normal distribution with uncertain mean µp and uncertain standard deviation σp. It is assumed

that µp follows the uniform distribution on the interval [1.22, 2.68] (unit: m/s), where 1.22 m/s

corresponds to the moderate pedestrian speed (Langlois et al. 1997) and 2.68 m/s the moderate

running speed (Web Marketing Associates 2010). Due to the variability in the population distribu-

tion, σp might vary significantly. For example, σp is 0.05 ∼ 0.4 m/s in Yosritzal et al. (2018) and

0.18 ∼ 0.78 m/s in Fraser et al. (2014) for the walking speed. For the running speed, σp is 1.02

m/s in Fraser et al. (2014). Based on the above research, σp is considered to follow the uniform
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distribution on the interval [0.05, 1] (unit: m/s). Note that the exact probability distributions con-

sidering the actual age groups (including residents and tourists) could be used to model vp and the

corresponding distribution parameters (i.e., µp and σp) when the data on the age group is available.

As for the evacuation path selection, it is assumed that a small proportion of evacuees (denoted

pf ) have following behaviors and pf is uniformly distributed on the interval [0.1, 0.3]. The pro-

portion of evacuees that use the evacuation route (denoted pr) follows the uniform distribution on

the interval [0.3, 0.6]. The evacuees with a proportion of ps = 1− pf − pr use the shortest path to

evacuate.

To model the evacuation by car more realistically, instead of directly modeling the evacuees as

car agents, the evacuation on foot before the evacuees reach their cars is also modeled. Essentially,

the evacuees first walk to their cars at the assigned waking speeds, and then, the evacuation is

modeled by the cars’ movements once they arrive at their cars. For the maximum car speed limit

in the well-known Greenshields’ model that is used to simulate the car speed adjustment, here

vcm = 40, 35, 30, and 25 (unit: mph) for “Principle Arterial”, “Minor Arterial”, “Major Collector”,

and “Local Road” (Oregon Department of Transportation 2020), respectively; ρcm = 200 veh/km

is considered for the links without traffic capacity reduction based on the study in Mostafizi et al.

(2017, 2019b).

Evacuation performance

The fixed critical depth hc is usually used to approximate the casualty in previous research,

e.g., hc = 0.5 m (Sugimoto et al. 2003), hc = 1 m (Goto et al. 2012), or hc = 2 m (Yeh 2014).

To model the uncertainty in hc for evacuation performance evaluation (i.e., casualty estimation),

hc is considered to follow a uniform distribution on [0.5, 2] (unit: m), which is applicable to both

evacuation on foot and by car.

3.4.3 Evacuation simulation

We consider that the evacuation lasts for one hour starting from the occurrence of the earth-

quake. The tsunami evacuation simulation using the proposed agent-based model is implemented
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in NetLogo (run from R using the package “RNetLogo” (Thiele 2014, 2017)). The proposed

agent-based evacuation model is run with a time step of one second (i.e., 3600 time steps for each

simulation).

Table 3.3: Key continuous uncertain model inputs in the tsunami evacuation simulation.

Input Distribution Parameter 1 Parameter 2
t0 Uniform 3 10
t Rayleigh [0, 5] [1, 5]
pc Truncated Gaussian [0, 1] 0.15
T1PA

Uniform 1.00 1.53
T2PA

Uniform 2.30 4.19
T1MA

Uniform 0.59 0.97
T2MA

Uniform 1.64 3.14
T1Mac

Uniform 0.59 0.97
T2Mac

Uniform 1.53 2.79
T1LR

Uniform 0.27 0.38
T2LR

Uniform 0.54 1.04
vp Truncated Gaussian [1.22, 2.68] [0.05, 1]
pf Uniform 0.1 0.3
pr Uniform 0.3 0.6
hc Uniform 0.5 2

Table 3.3 presents the key continuous uncertain model inputs in the tsunami evacuation simula-

tion, where T1PA
, T2PA

, T1MA
, T2MA

, T1Mac
, T2Mac

, T1LR
, and T2LR

denote the thresholds in Eq. (3.4)

and respectively correspond to the road class “Principle Arterial”, “Minor Arterial”, “Major Col-

lector”, and “Local Road”. For uniform distribution, “Parameter 1” and “Parameter 2” correspond

to the lower bound and upper bound, respectively. For Rayleigh distribution, “Parameter 1” and

“Parameter 2” represent τ and σt, respectively. For Truncated Gaussian distribution, “Parameter

1” and “Parameter 2” are the mean and standard deviation of the corresponding normal distribu-

tion, respectively. pc and vp lie within (0,1) and (0.75,3.83) (unit: m/s), respectively. In addition,

uncertain model inputs include those associated with seismic damages to bridges and buildings,

intensity measures at bridge sites and building sites, and the location of the population.

In this example, one single simulation with 5000 evacuees is run, in which the mean value of

each uncertain input is selected.
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3.4.4 General tsunami evacuation process simulated using the proposed agent-

based tsunami evacuation model

Figure 3.13: The general tsunami evacuation process simulated using the proposed agent-based tsunami
evacuation model at (a) t = 0 min, (b) t = 12 min, (c) t = 28 min, (d) t = 38 min, (e) t = 45 min, and (f)
t = 55 min.
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The general tsunami evacuation process simulated using the proposed agent-based tsunami

evacuation model is shown in Fig. 3.13. At the end of the initial strike of the earthquake (i.e., t = 0

min) shown in Fig. 3.13(a), the evacuees including pedestrians and cars are distributed throughout

the community. The pedestrian I represented by the orange point evacuates on foot. The pedestrian

II marked by the grey point is only distributed on the beach and first walks to the car in the parking

lot, then evacuates by car. The car is represented by the violet point. Fig. 3.13(b) shows that many

of the evacuees have started evacuation after 12 min. Around t = 28 min, shown in Fig. 3.13(c),

the tsunami inundation almost goes across the beach. Most of the evacuees are on the way to

their destinations, while some of the evacuees have arrived at the shelters, and these evacuees are

represented by green points. Fig. 3.13(d) shows the tsunami starts to inundate the city after 38

min. The casualties represented by red points occur when the inundation depth exceeds the critical

depth. Fig. 3.13(e) shows that the tsunami inundation crosses the Necanicum River and is moving

further inland after 45 min when more evacuees become casualties. At t = 55 min, shown in

Fig. 3.13(f), the tsunami inundation reaches the run-up limit and most of the evacuees reach the

shelters.

3.5 Summary

An improved agent-based evacuation model is developed for more realistic tsunami evacuation

simulation after introducing the benefits of the ABM over other modeling techniques (i.e., GIS,

DEM, CA, and SD) and the limitations of existing agent-based models. The proposed model

consists of the evacuation environment model (EEM), evacuation decision and behavior model

(EBM), and evacuation performance model (EPM). Compared to existing agent-based models,

the proposed model incorporates some typically neglected or simplified but important factors and

mechanisms in evacuation, including (1) the traffic capacity is reduced by the bridge damage due

to the earthquake or by the road blockage due to the debris from damaged buildings; (2) several

different population sizes are used to model the population mobility and capture the non-linearity

of tsunami evacuation; (3) a multimodal evacuation model is proposed that explicitly considers
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the pedestrian speed variability, speed adjustment for both the pedestrian and car according to

traffic density, and the pedestrian-vehicle interaction that is modeled by traffic stage transitions;

(4) different evacuation path selections are considered, including following the evacuation route,

searching the shortest path, and following behavior that is used to simulate the irrational behavior

in the condensed time frame as well as the the interaction between individuals (pedestrians or cars);

(5) in addition to the speed adjustment, following behavior, and pedestrian-vehicle interaction, the

pedestrian could jump into the nearby car is used to model the interactions between evacuees;

(6) the interactions between the evacuee and multi-hazard environment are modeled. The traffic

capacity reduction of the damaged bridge would induce traffic congestion and hence slow down the

evacuee’s traveling speed, which would in turn impact the traffic congestion level of the damaged

bridge. Evacuees would change direction when the traffic congestion occurs ahead. Pedestrians

accelerate when they are told the inundation reaches the shoreline as well as when they see the

inundation from some distance away; (7) various uncertainties associated with the evacuation such

as that in seismic damages to bridges and road blockage due to debris from damaged buildings are

explicitly considered. These improvements would better characterize the nature and dynamics of

the evacuation system, model the individual-level interactions among evacuees, and the evacuees’

interactions with the environment. The general tsunami evacuation process simulated using the

proposed agent-based tsunami evacuation model was illustrated through the simulation of tsunami

evacuation in Seaside, Oregon.
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Chapter 4

Simulation-based tsunami evacuation risk

assessment

4.1 Introduction

Tsunami evacuation risk assessment plays an important role in evacuation planning, e.g., deter-

mining the nature and level of response for risk mitigation (UNESCO 2007). To provide valuable

information for effective evacuation planning, evacuation risk needs to be assessed accurately.

There are significant sources of uncertainties associated with the tsunami evacuation, related to the

multiple hazards (i.e., cascading hazards of earthquake and tsunami) (Park and Cox 2016; Muham-

mad et al. 2017), the population size and spatial distribution (Fraser et al. 2014; Mostafizi et al.

2017), and the evacuation decisions and behaviors of the population (Yazici 2010) (e.g., when to

evacuate (Priest et al. 2016; Makinoshima et al. 2018), how to evacuate (on foot or by car, e.g.,

pedestrian speed (Fraser et al. 2014)), where to evacuate (using the evacuation route, searching

the shortest path, or following behavior)). To accurately assess the tsunami evacuation risk (e.g.,

the expected proportion of the number of casualties to the population in the community within a

given time frame), various uncertainties associated with the evacuation (including the aleatory and

epistemic uncertainties) need to be quantified.

For the tsunami evacuation risk quantification in existing research, many uncertainties asso-

ciated with the evacuation are neglected or the uncertainty quantification is simplified. The loss

of life is usually estimated based on the run-up limit rather than the time-history of the tsunami

inundation, i.e., not based on tsunami evacuation simulation. For example, the hazard assessment

map was produced based on running the tsunami run-up scenario and casualties were calculated

based on the coastal community’s physical properties such as the water level for every building

(El-Barmelgy and Hamed 2017). The casualty was estimated based on the time required for evac-
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uation and the arrival time of the tsunami (Wood and Schmidtlein 2013; Okumura et al. 2017).

Since the life loss is not estimated based on tsunami evacuation simulation, many uncertainties

associated with the evacuation are neglected, especially those in evacuation decision and behavior

such as departure time. For evacuation risk quantification based on tsunami evacuation simulation,

typically some important uncertainties associated with the evacuation process are neglected. For

example, the uncertainty in the seismic damage to the bridge is usually neglected. The pedestrian

speed of the population and delay time were modeled by assigning deterministic values (Okumura

et al. 2017), and associated uncertainties were neglected. Furthermore, uncertainty quantification

is usually simplified by selecting the simplified probability model or neglecting the epistemic un-

certainty (deterministic values instead of probability models are used). For example, the quantifi-

cation of the uncertainty in the seismic damage was simplified by removing damaged bridges from

the transportation network (Jacob et al. 2014; Mostafizi et al. 2017). The population density was

modeled using the triangular distribution with a constant lower limit, upper limit, and mode in Post

et al. (2009). The constant instead of uncertain scale parameter was used to define the Rayleigh

distribution to model the departure time (Solís and Gazmuri 2017). A normal distribution with

constant mean and the standard deviation was used to model the agent’s speed while the variabil-

ity was neglected (Makinoshima et al. 2018). The neglect of uncertainty in evacuation simulation

and/or simplification of uncertainty quantification may lead to inaccurate risk quantification.

To address the above limitations in tsunami evacuation risk assessment, a generalized simulation-

based framework is proposed for the quantification of evacuation risk. The framework can address

complex evacuation models and uncertainty models (including the aleatory and epistemic uncer-

tainties). In particular, the improved agent-based tsunami evacuation model introduced in Chap-

ter 3 is incorporated in the framework to simulate the complex tsunami evacuation process. Then

the tsunami evacuation risk is assessed by propagating the various uncertainties. Next, the frame-

work is described in detail.
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4.2 Proposed simulation-based framework for tsunami evacu-

ation risk quantification

A generalized simulation-based framework (shown in Fig. 4.1) is proposed for the quantifi-

cation of tsunami evacuation risk. The developed agent-based tsunami evacuation model is used

to simulate the evacuation, and various uncertainties associated with the evacuation are explicitly

considered in the framework. Imprecise probability models are used to quantify both the aleatory

and epistemic uncertainties (Sankararaman and Mahadevan 2013; Hurtado 2013; Schöbi and Su-

dret 2019; Wei et al. 2019a,b), i.e., probability models are used to model the aleatory uncertainty

in input random variables while epistemic uncertainty (for the selected probability model) is quan-

tified through uncertainty in distribution parameters (i.e., hyperparameters for the distributions).

Propagating all considered uncertainties leads to the quantification of evacuation risk.

Figure 4.1: Framework for quantification of tsunami evacuation risk.
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4.2.1 Uncertainty quantification

Let x = [xe,xb,xp] ∈ X represent all the input random variables in the space of X , where xe,

xb, and xp denote the input random variables in the evacuation environment model (EEM), evacua-

tion decision and behavior model (EBM), and evacuation performance model (EPM), respectively.

We can use the probability model p(x|θ) to quantify the uncertainty in x, which corresponds to

the probability density function (PDF) for continuous variables or the probability mass function

(PMF) for discrete variables. Here θ = [θe,θb,θp] ∈ Θ represents distribution parameters that

define the probability model p(x|θ), where Θ represents the space of possible values of θ. Simi-

larly, the probability distribution p(θ) is used to quantify the uncertainty in θ if θ is uncertain. The

uncertainties in θ can be used to represent epistemic uncertainties in the probability models for x.

To quantify the tsunami evacuation risk, all the uncertainties in x and θ (if any) need to be consid-

ered. These uncertainties include those associated with the multiple hazards (i.e., the seismic and

tsunami hazards), the damages to the infrastructure (e.g., transportation network), the population

size and spatial distribution, and the evacuation decisions and behaviors of the population (e.g.,

departure time), etc.

4.2.2 Risk consequence measure

Based on tsunami evacuation simulation, evacuation performance can be evaluated. Let h(x)

represent the performance measure of the evacuation system for given x. We can define h(x) as the

risk consequence measure. Depending on the quantity of interest, metrics such as the evacuation

time needed to get a certain proportion of the population in the community to the safety zone,

the number of people evacuated within a certain time frame, and the number of casualty within a

certain time frame could be selected as the evacuation risk consequence measure.

4.2.3 Risk quantification

When h(x) corresponds to the risk consequence measure, propagation of the uncertainties in x

then leads to the quantification of evacuation risk. The evacuation risk under the given value of the
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distribution parameter θ (i.e., conditional evacuation risk, denoted H(θ)) can be written as

H(θ) = Ex|θ[h(x)] =

∫

X

h(x)p(x|θ)dx (4.1)

where Ex|θ[.] denotes the expectation over the input random variables x and probability model

p(x|θ). This evacuation risk corresponds to the expected value of the selected risk consequence

measure under the given value of θ.

When θ is uncertain, further propagation of the uncertainties in θ gives evacuation risk H

H =

∫∫

X,Θ

h(x)p(x|θ)p(θ)dxdθ (4.2)

This evacuation risk corresponds to the expected value of the selected risk consequence measure.

4.3 Tsunami evacuation risk assessment

Using stochastic simulation (e.g., Monte Carlo simulation (MCS) (Robert and Casella 2004))

with N samples from some proposal density q(x,θ), H is approximated as

Ĥ =
1

N

N
∑

k=1

h(xk)
p(xk|θk)p(θk)

q(xk,θk)
(4.3)

where [xk,θk] represents the kth sample of the input random variables and distribution parameters

generated from q(x,θ). As N → ∞, Ĥ → H . However, Eq. (4.3) gives a good estimation for the

risk integral for a relatively large N . The quality of the estimate can be assessed by the coefficient

of variation (CoV) δCoV

δCoV =
1√
N

√

√

√

√

1
N

∑N
k=1 h

2(xk)p
2(xk|θk)p2(θk)

q2(xk,θk)

Ĥ2
− 1 (4.4)

which is inversely proportional to
√
N . To improve the accuracy and efficiency for the estimate, a

proper proposal density q(x,θ) can be selected (e.g., corresponding to the idea of importance sam-
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pling) (Robert and Casella 2004). Eq. (4.3) corresponds to direct MCS when the prior probability

distribution p(x,θ) is selected as q(x,θ).

4.4 Illustrative example: Simulation-based tsunami evacuation

risk assessment for Seaside, Oregon

The proposed framework is used for tsunami evacuation risk quantification for Seaside, Ore-

gon. The details on Seaside and the proposed agent-based tsunami evacuation model can be found

in Chapter 3 unless modifications are made, which will be presented in this application.

Since the computational time increases with the number of agents (or population size) and

the number of simulations, to speed up the simulation, parallel computing is implemented on the

Summit High-Performance Computing (HPC) system, a joint activity of Colorado State University

(CSU) and the University of Colorado Boulder (CU). This allows us to run the evacuation model

with a large number of agents as well as a large number of simulations for uncertainty propagation.

For the evacuation simulation, cases with different considerations of important factors and

mechanisms are defined for comparison to investigate the impact of these factors and mechanisms

on the tsunami evacuation risk as well as highlight the advantages of the proposed agent-based

tsunami evacuation model. The factors and mechanisms include (1) seismic damage to bridges

and debris on roads, (2) traffic information on the road blockage due to debris or bridge damage

due to the earthquake, (3) car and pedestrian speed adjustment, (4) pedestrian-vehicle interaction,

and (5) following behavior. The cases are listed in Table 4.1 where C0-C5 represent the six cases,

“Yes” means considering the corresponding factor while “No” means neglecting the corresponding

factor. C0 corresponds to the proposed agent-based tsunami evacuation model while other cases

(i.e., C1-C5) neglect or simplify some important factors and mechanisms in the evacuation. Note

that the pedestrian-vehicle interaction is invalid in C3 that neglects the car and pedestrian speed

adjustment. Note the evacuation is assumed to occur at noontime of some weekend in summer

except the nighttime scenario. The evacuation is considered to last one hour starting from the

occurrence of the earthquake.
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Table 4.1: Definition of simulation cases.

Cases (1) (2) (3) (4) (5)
C0 Yes Yes Yes Yes Yes
C1 No Yes Yes Yes Yes
C2 Yes No Yes Yes Yes
C3 Yes Yes No Yes Yes
C4 Yes Yes Yes No Yes
C5 Yes Yes Yes Yes No

Under the simulation-based framework for risk quantification, for input random variables,

xe = [xdi ,xIMi
] with i = 1, 2, ..., nd and xdi = DSj with j = 1, 2, ..., 5, where xdi

represents the seismic damage to the bridge and building, nd denotes the number of bridges

and buildings, and xIMi
is the intensity measure at each bridge site or building site; xb =

[t0, t, pc, T1PA
, T2PA

, T1MA
, T2MA

, T1Mac
, T2Mac

, T1LR
, T2LR

, vp, pf , pr, ps]; xp = [hc]. For distribu-

tion parameters, θb = [τ, σt, µc, µp, σp]. The key continuous input random variables and associated

distributions for C0-C5 can be found in Table 3.3 (for the daytime scenario), in which “Input” rep-

resents the key continuous input random variable and the uncertain “Parameter 1” or “Parameter

2” denotes the distribution parameter. For C5, due to no following behaviors, the proportions of

the evacuees who follow the evacuation route or search the shortest path are considered to increase

compared to C0-C4. More specifically, pf = 0, pr ∈ [0.35 0.75] and ps = 1 - pr - pf = 1 - pr.

Moreover, the thresholds that determine the traffic stage transitions (e.g., T1PA
) are applicable for

the cases expect C4.

All the six cases (i.e., C0-C5) are implemented under ne = 5000 which is used to represent the

population during the early summer. Considering the high population mobility in the study area

as discussed in Section 3.4.2, C0 is also run under different population sizes (i.e., ne = 10, 000

and ne = 15, 000) to investigate the impact of the population size on the evacuation risk. Here,

ne = 15, 000 is used to represent the population in peak summer, and ne = 10, 000 represents the

population between the early summer and peak summer. Note that all the above simulations are

run under the daytime scenario (i.e., noontime of some weekends). Besides, C0 is also run under

the worst-case scenario for population (i.e., ne = 15, 000) and nighttime scenario to investigate the
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impact of the time of day on the evacuation risk. Depending on the model input (e.g., population

size), the runtimes for each simulation under different cases are different. However, overall the

runtime for each simulation under C0 takes the longest time compared to other five cases (i.e.,

C1-C5), i.e., the runtime is up to 3, 10, and 24 hours of CPU time under ne = 5000, ne = 10, 000,

and ne = 15, 000, respectively.

Here, we use the casualty rate (i.e., the proportion of the number of casualties to the total pop-

ulation) in the community within a given time frame (no longer than one hour in this study) as the

risk consequence measure h(x) and three types of casualty rates are defined for the multimodal

evacuation, i.e., the total casualty rate (TCR), pedestrian casualty rate (PCR), and car casualty rate

(CCR). The TCR is calculated by total casualties including both casualties on foot and by car di-

vided by the population. The PCR is the proportion of the casualties on foot to the population. The

CCR is the proportion of the casualties by car to the population. In this context, the evacuation risk

corresponds to the expected PCR, CCR, and TCR for the pedestrian, car, and total, respectively.

To assess evacuation risk, Eq. (4.3) is used with q(x,θ) = p(x|θ)p(θ). N = 2000 tsunami

evacuation simulations are used for each case under the corresponding scenario. The selection of

q(x,θ) and N = 2000 leads to high accuracy estimates for the expected total casualty rates (TCRs)

at the end of the tsunami evacuation simulation (i.e., one hour), with δCoV below 2% for all cases.

As for results, Section 4.4.1 discusses the overall evacuation risk in terms of different risk

measures (e.g., casualty rate) for C0-C5 under ne = 5000. Section 4.4.2 investigates the impact

of considered factors and mechanisms (i.e., corresponding to C0-C5) on tsunami evacuation risk

under ne = 5000. Section 4.4.3 examines the impact of population size (i.e., ne = 5000, ne =

10, 000, and ne = 15, 000) on tsunami evacuation risk under C0 (i.e., the proposed agent-based

model). Section 4.4.4 discusses the impact of the time of day (i.e., daytime and nighttime) on

tsunami evacuation risk under ne = 5000 under C0 (i.e., the proposed agent-based model). Note

the evacuation risk is defined in terms of casualty rate (i.e., PCR, CCR, and TCR) in Section 4.4.2,

Section 4.4.3, and Section 4.4.4.
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4.4.1 Overall evacuation risk under different cases

This section investigates the overall probabilistic evacuation performance over time using the

cases under ne = 5000. The mean predictions of three important risk performance measures (i.e.,

the expected total danger rate (TDR), expected total safety rate (TSR), and expected total casualty

rate (TCR)) and their variations over time are shown in Fig. 4.2(c). Note that “Danger” is defined

as the situation in which evacuees are under the threat of a tsunami strike while “Safety” is the

situation once evacuees reach shelters. The total rate includes contributions from the pedestrian

and car. Similarly, we can define the expected danger rate, expected safety rate, and expected

casualty rate for the pedestrian and car. Their variations are shown in Fig. 4.2(a) and Fig. 4.2(b),

respectively.

Figure 4.2: The variations of evacuation risk in terms of danger rate, safety rate, casualty rate over time
under different cases, where (a) shows the expected pedestrian rate, (b) shows the expected car rate, and (c)
shows the expected total rate.
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From Fig. 4.2(c), overall the changes of the three rates over time under all six cases are consis-

tent with the general tsunami evacuation process simulated using the proposed agent-based tsunami

evacuation model discussed in Section 3.4.4. At t = 0 min, the TDR is 100% while the TSR and

TCR are zero due to the definition that all evacuees are in danger facing the coming tsunami in-

undation. As time goes by, as expected the TDR decreases while the TSR and TCR increase. On

average, after around 10 min, some of the evacuees would reach the shelter (i.e., reach safety),

from which point on the TSR is not zero anymore and starts increasing. On the other hand, on

average, before around 28 min, the TCR is still zero; afterwards, casualty starts occurring and the

TCR starts increasing over time. Note that the TCR might reach the peak at some point before

the end of the evacuation simulation and stop increasing. For the current simulations, on average,

the TCR reaches the largest value (e.g., around 14% for C0) at around 50 min, which might cor-

respond to the time when the tsunami inundation reaches the run-up limit. However, there might

be evacuees still traveling towards the shelter through the road network between the run-up limit

points and the shelter. Therefore, the TDR would keep decreasing with the increase of TSR until

the end of the simulation.

From Fig. 4.2(a) and (b), overall the variation of the mean values of the three rates for the

pedestrian and car show similar trends to the total rate. When comparing the results for the pedes-

trian and car, the following interesting observations are made. First, although the evacuation on

foot and by car is almost half by half (based on the selection of the distribution for pc in this ex-

ample), the safety rates for the pedestrian and car show different variations over time. Around 10

min after the earthquake, both the pedestrian safety rate (PSR) and car safety rate (CSR) are not

zero due to successful evacuation for both on foot and by car; however, the increase of the PSR

is much slower than that of the CSR for the following 20 min, e.g., for C0, the PSR is only about

11.2% while the CSR is about 28.7% when t = 30 min. Between t = 30 min and t = 60 min, for

C0, the PSR increases from around 11.2% to around 30.3%, which shows a much faster increase

than the CSR that increases from around 28.7% to around 29.2%. With the increase of time, the

PSR keeps increasing although the increase becomes slower while the CSR increases very slowly.
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The above differences between the changes of the PSR and CSR should be attributed to different

characteristics of evacuation on foot and by car. Compared to evacuation on foot, evacuation by

car is more likely to cause severe traffic congestion as more cars are driving on the same link with

the increase of time, which would reduce the car speed significantly and thus delay the evacuation.

Therefore, the CSR would increase very fast when the cars can travel at free-flow speed before the

occurrence of traffic congestion and would increase very slowly once there is traffic congestion.

In addition, due to the reasons that cause the difference in variation of the PSR and CSR, the

variation of casualty rates for the pedestrian and car over time is also different. The variations will

be discussed in detail in the next section.

Furthermore, due to the differences in variations of the safety rate and casualty rate for the

pedestrian and car, the pedestrian danger rate (PDR) and car danger rate (CDR) also show different

variations over time. For example, between 10 min and 30 min, the decrease of the PDR is much

lower than that of the CDR while the opposite trend shows between 30 min and 40 min. Also, the

PDR keeps decreasing till the end of the evacuation simulation while the CDR stops decreasing

about 10 min before the end once both the safety rate and casualty rate stop increasing.

4.4.2 The impact of considered factors and mechanisms on tsunami evacu-

ation risk

Under the population of 5000, the variations of evacuation risk in terms of casualty rate for the

pedestrian, car, and total over time under all the six cases are shown in Fig. 4.3(a)-(c), respectively.

Pedestrian casualty rates (PCRs) Comparing the variation of PCRs among different cases

shown in Fig. 4.3(a), the following differences can be observed.

(1) Overall, C1, C3, and C5 give lower PCRs while C3 gives the lowest PCR at the end of

evacuation than C0 which incorporates all the considered important factors and mechanisms asso-

ciated with evacuation. More specifically, the PCR is 3.6% for C0 while 2.4%, 1.1%, and 3.3% for

C1, C3, and C5, respectively. Consideration of the seismic damage to bridges and the debris on

66



Figure 4.3: The variations of evacuation risk in terms of casualty rate for (a) pedestrian, (b) car, and (c)
total over time under different cases.

roads from damaged buildings would lead to a reduction in the traffic capacity of the damaged or

blocked link, which could slow down the evacuation and increase the casualty rate. However, C1

neglects these impacts and therefore underestimates the PCR. C3 neglects the speed adjustment

and evacuees can evacuate at their preferred speed or free-flow speed by neglecting the potential

speed reduction due to traffic congestion, which leads to a lower PCR. For C5, no pedestrians

with the following behavior in evacuation means they either use the evacuation route or search the

shortest path to evacuate. In this case, the pedestrian would evacuate efficiently rather than waste

time searching the evacuation path when simply following others. Therefore, C5 results in a lower

PCR.

(2) Compared to C0 (i.e.,3.6%), C2 and C4 give higher PCRs while C4 gives the highest PCR,

i.e., 4.5% and 4.6%, respectively. For C2, when no traffic information on the road blockage and

bridge damage is available, evacuees would have to reroute once when they find the road/bridge is
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impassable. Compared to C0 in which the evacuees can avoid the above impassable road/bridge,

searching the new evacuation path is likely to cause the evacuation delay and hence a higher ca-

sualty rate. For C4, neglecting the pedestrian-vehicle interaction means the pedestrian cannot take

advantage of more road space if the pedestrian dominates the road when the pedestrian congestion

is more likely to occur. Therefore, C4 gives a higher PCR.

(3) Based on the above discussions on the impacts of different factors and mechanisms associ-

ated with the evacuation on the PCR, the speed adjustment and pedestrian-vehicle interaction have

higher impacts on the PCR in this case.

Car casualty rates (CCRs) Comparing the variation of CCRs among different cases shown in

Fig. 4.3(b), the following observations can be made.

(1) Compared to the CCR for C0, which is 10.64%, the CCRs are lower for C1 (with the CCR

of 8.2%) and C3 (with the CCR of only 0.1%), while the CCR for C4 (which is 10.57%) is close to

that of C0. As discussed for the PCR, no evacuation delay is considered due to the traffic reduction

caused by the seismic damage/debris and traffic congestion in C1 and C3, respectively. These

neglects would also cause fewer casualties for evacuation by car. Note that C3 gives a very low

CCR in this case, which significantly underestimates the CCR. The PCRs for C4 and C0 are very

close for any given time after the earthquake. This can be explained by the way that pedestrian-

vehicle interaction is modeled. Based on Eq. (3.4), pedestrian-vehicle interaction is considered

by changing the road width that can be used by the car according to the traffic stage transition.

However, based on the car speed-density model in Section 3.3.2, the change of road width would

not affect the car speed. This is because the car speed is adjusted according to the car density

some distance ahead on the same lane where the car density per lane is measured by the average

number of cars that occupy some distance (usually one mile or one kilometer) on the lane and is not

affected by the road width. Therefore, considering pedestrian-vehicle interaction or not does not

affect the evacuation by car. The small difference of the CCR between C0 and C4 might be caused

by that the pedestrian can jump into the nearby car when the pedestrian dominates the traffic stage.
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(2) Compared to C0 (i.e., 10.64%), C5 gives a higher CCR and C2 gives a little lower CCR, i.e.,

11.5% and 10.6%, respectively. Unlike evacuation on foot, evacuation by car by simply following

others is more likely to cause traffic jams and hence delay the evacuation. Therefore, C5 gives a

higher CCR. For C2, when the evacuation by car has to reroute once some link is impassable due

to the road blockage or bridge failure, this delay might not affect the evacuation much due to the

higher traveling speed. Ultimately, the CCR given by C2 is slightly lower than that by C0.

Comparison between PCRs and CCRs Comparing the PCR and CCR, the CCR is much higher

than the PCR for all cases except C3. The highest PCR corresponding to C4 is only around 4.6%

while the corresponding CCR for C4 is about 10.6%. These observations are based on the particular

distributions of µc and pc which are defined in Section 3.4.2. For the current selection, the average

proportion of evacuation on foot or by car is around 50%, which can be seen in Fig. 4.2(a) and

(b). The comparison indicates that evacuation by car might lead to higher evacuation risk than

evacuation on foot. Note that for C3 the CCR (which is 0.1%) is much lower than the PCR (which

is 1.1%). This is because evacuation by car is much faster than evacuation on foot when the

potential traffic congestion is neglected for both the pedestrian and car.

Total casualty rates (TCRs) From Fig. 4.3(c), the following observations can be made regarding

the TCRs.

(1) For all cases except C3, the variations of the mean of the TCRs show similar trends to CCRs

while the variation of the mean of the TCR has a similar trend to the PCR for C3.

(2) Out of all cases, C3 has the lowest TCR (i.e., 1.2%), while C4 has the highest TCR (i.e.,

15.2%). This is because C3 has the lowest casualty rate for both pedestrians and cars while C4

has the highest PCR and a relatively high CCR. Based on the above observation as well as the

definitions of C3 and C4, neglecting the pedestrian speed adjustment might lead to underestimation

of evacuation risk while neglecting pedestrian-vehicle interaction might lead to overestimation of

evacuation risk.
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(3) According to the definition of simulation cases, C0 corresponds to the proposed agent-based

tsunami evacuation model while each of the other cases neglects one important factor/mechanism

associated with tsunami evacuation. The TCR for C0 is around 14.3%. Treating C0 as the refer-

ence value, the overestimation is 0.8%, 0.9%, and 0.5% for C2, C4, and C5, respectively, while

underestimation is 3.7% and 13.1% for C1 and C3, respectively. The smallest difference in the

estimation of casualties still corresponds to around 25 casualties (0.5% × 5000), while the largest

difference corresponds to around 654 casualties (13.1% × 5000). Note that the results would also

depend on the population size, whose impact will be investigated and discussed in Section 4.4.3.

4.4.3 The impact of population size on tsunami evacuation risk

Based on the tsunami evacuation simulation using the proposed agent-based model (i.e., C0),

this section investigates the impacts of population size on the evacuation risk in terms of the casu-

alty rate. As mentioned earlier, three population sizes are considered in simulation, i.e., ne = 5000,

ne = 10, 000, and ne = 15, 000. The variations of evacuation risk in terms of casualty rate for the

pedestrian, car, and total over time under the three selected population sizes are shown in Fig. 4.4.

Pedestrian casualty rates (PCRs) Overall, the variations of the PCRs over time for ne = 10, 000

and ne = 15, 000 show similar trends to that for ne = 5000, i.e., initially the rate has a slow increase

that lasts for a while (around 17 min), and then the rate has steep increase that only lasts for several

minutes, after which the PCR almost does not increase anymore. One important observation from

Fig. 4.4(a) is that for ne = 10, 000 and ne = 15, 000 the estimated PCRs are much higher than

that of ne = 5000. These differences can be explained by the fact that a larger population is more

likely to cause more severe pedestrian congestion, which causes more casualties under the same

tsunami inundation. The results verify the nonlinear nature of the evacuation. The comparisons

highlight that simulations using smaller than actual population size may significantly underestimate

the casualty rate.
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Figure 4.4: The variations of evacuation risk in terms of casualty rate for (a) pedestrian, (b) car, and (c)
total over time under different population sizes.

Car casualty rates (CCRs) Overall, the variations of the CCRs over time for ne = 10, 000 and

ne = 15, 000 show similar trends to that for ne = 5000. In terms of the values of the CCRs,

similar to the PCRs, for ne = 10, 000 and ne = 15, 000 the estimated CCRs are higher than that

of ne = 5000. This is because more car casualties occur for larger ne due to more severe traffic

congestion.

Comparison between PCRs and CCRs Comparing the casualty rates for the pedestrian and

car, as the population size increases the PCR has a much larger relative increase than the CCR.

The CCR is 10.6%, 19.4%, and 25.2% for ne = 5000, 10,000, and 15,000, respectively, while

the corresponding PCR is 3.6%, 11.1%, and 15.9%, respectively. This may be attributed to the

fact that there might already be severe traffic congestion for ne = 5000 and further increasing the

population might not significantly increase the severity of traffic congestion. On the other hand,

with a larger population, the pedestrian might face more severe pedestrian congestion.
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Total casualty rates (TCRs) Stemming from increases in both PCRs and CCRs, as population

size increases, the TCRs increase significantly, i.e., 14.3%, 30.5%, and 41.1% for ne = 5000,

10,000, and 15,000, respectively. Therefore, for more accurate evacuation simulation and risk

assessment, the actual population is recommended to be used. The estimation based on a smaller

than actual population may lead to a significant underestimation of evacuation risk.

4.4.4 The impact of the time of day on tsunami evacuation risk

This section compares the evacuation risks between the daytime and nighttime scenarios to

investigate the impact of the time of day on evacuation risk. For comparison, the same population

size is considered for both scenarios, and the worst-case scenario for population ne = 15, 000 is

selected. Compared to the daytime, due to many factors such as the low lighting conditions, being

tired, etc. during the nighttime, evacuees may make different decisions and behave differently,

e.g., more people have the following behavior (Jacob et al. 2014), late to start the evacuation,

the pedestrian speed is slower (Aguilar et al. 2019), etc. Also, the population distribution across

the three sub-areas (i.e., the beach, downtown, and residential area) would be different due to the

difference of the time. This example aims to investigate the impact of the time on evacuation risk

rather than model the night scenario, therefore only the main characteristics of the night scenario

will be modeled.

The nighttime evacuation is assumed to occur during a summer festival and two possible worst

nighttime scenarios (denoted Nighttime1 and Nighttime2) are defined in terms of different lighting

conditions for comparison. The comparison of the lighting condition and its impact on evacuation

between daytime and nighttime scenarios are summarized in Table 4.2. According to Jacob et al.

(2014), two lighting conditions are considered to define Nighttime1 and Nighttime2. For both

nighttime scenarios, it is assumed the street light fails due to the earthquake. The emergency

lighting of 15 lux is available in the space of 30 m in Nighttime1 and the night with a full moon

(lighting of 0.2 lux) is assumed for Nighttime2.
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Table 4.2: The comparison of the daytime and nighttime scenarios.

Characteristics Daytime Nighttime1 Nighttime2
Lighting condition (lux) direct sunlight 15 0.2
Sight distance-evacuee (m) 50 30 15
Sight distance-tsunami (m) 200 50 25
Preferred pedestrian speed (m/s) vp0 0.8vp0 0.5vp0
ρa1 1.2 1.1 1.1
ρa2 1.4 1.3 1.2
pf U (0.1, 0.3) U (0.2, 0.4) U (0.3, 0.5)
pr U (0.3, 0.6) U (0.2, 0.5) U (0.15, 0.45)
ρ1 0.4 0.1 0.1
ρ2 0.3 0.5 0.5
ρ3 0.3 0.4 0.4

Due to the poor visibility caused by the low lighting condition at night, the following differ-

ences are considered between the daytime scenario and Nighttime1: (1) the evacuee’s sight dis-

tance (i.e., sight distance-evacuee in Table 4.2) decreases from 50 m to 30 m (Aguilar et al. 2019)

and the distance within which the pedestrian can see the tsunami inundation (i.e., sight distance-

tsunami in Table 4.2) decreases from 200 m to 50 m; (2) the effect of the poor visibility is also

modeled by decreasing the preferred pedestrian speed (i.e., vp0) to 80% of that in daytime based on

the study in Ouellette and Rea (1989). In the pedestrian speed-density model shown in Fig. 3.8, the

three speeds, i.e., 0.75, 1.5, and 3.83 (unit: m/s) decrease to 0.6, 1.2, and 3.06 (unit: m/s); (3) the

two scaling factors (scaling the preferred pedestrian speed in the pedestrian speed-density model,

i.e., ρa1 and ρa2) used to simulate the pedestrian’s acceleration when the inundation reaches the

shoreline as well as when they see the inundation from 50 m far away decrease, i.e., from 1.2 and

1.4 to 1.1 and 1.3, respectively; (4) due to smaller sight distance, more evacuees are considered to

have following behaviors (Jacob et al. 2014) while less people use the evacuation route or search

the shortest path to evacuate, i.e., pf ∈ U(0.2, 0.4), pr ∈ U(0.2, 0.5), and ps = 1− pf − pr.

Similarly, Nighttime2 has the following differences from the daytime scenario: (1) the evac-

uee’s sight distance decreases from 50 m to 15 m (Aguilar et al. 2019) and the distance within

which the pedestrian can see the tsunami inundation decreases from 200 m to 25 m; (2) the pre-

ferred pedestrian speed decreases to 50% of that in daytime based on the study in Ouellette and
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Rea (1989). In the pedestrian speed-density model shown in Fig. 3.8, the three speeds, i.e., 0.75,

1.5, and 3.83 (unit: m/s) decrease to 0.375, 0.75, and 1.92 (unit: m/s); (3) the two scaling factors

used to simulate the pedestrian’s acceleration decrease from 1.2 and 1.4 to 1.1 and 1.2, respec-

tively; (4) more evacuees have following behaviors (Jacob et al. 2014) while less people use the

evacuation route or the shortest path to evacuate, i.e., pf ∈ U(0.3, 0.5), pr ∈ U(0.15, 0.45), and

ps = 1− pf − pr.

In addition, the population distribution across the three sub-areas is different during the night,

i.e., a larger proportion of evacuees are distributed in downtown and the residential area while

fewer people are on the beach. The population proportion for both night scenarios is assumed to

be 0.1, 0.5, and 0.4 on the beach, in the downtown, and in the residential area, respectively (i.e.,

ρ1 = 10%, ρ2 = 50%, and ρ3 = 40%).

The variations of evacuation risk in terms of casualty rate for the pedestrian, car, and total over

time under the daytime and two nighttime scenarios are shown in Fig. 4.5.

Figure 4.5: The variations of evacuation risk in terms of casualty rate for (a) pedestrian, (b) car, and (c)
total over time under the daytime and two nighttime scenarios.
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Pedestrian casualty rates (PCRs) Overall, as shown in Fig. 4.5(a), the variations of the PCRs

over time for the nighttime scenarios show similar trends to that for the daytime scenario, i.e.,

initially the rate increases slowly and lasts for a while (around 12 min), and then increases fast but

only lasts for several minutes, after which the PCR almost does not increase much. In particular,

three important observations are: (1) Nighttime1 gives a lower PCR over time. For Nighttime1, the

pedestrian speed is assumed to decrease (i.e., to 80% of that during daytime) due to the poor visi-

bility at night, which would delay the evacuation on foot; however, the population is overall closer

to the shelter, which would save the evacuation time for some pedestrians and hence decrease the

casualty. Ultimately, the PCR for Nighttime1 is lower than the daytime scenario in this example;

(2) The PCR for Nighttime2 is higher than Nighttime1, which should be attributed to the lower

pedestrian speed for Nighttime2 due to the poorer visibility under the worse lighting condition;

(3) Compared to the daytime scenario, Nighttime2 gives a lower PCR before around 45 min and

gives a higher PCR after around 45 min. For Nighttime2, more pedestrians can reach the shelter

due to the closer distance to the shelter in the short time after the inundation reaches the shoreline;

however, as the tsunami inundates, more casualties are caused by the slow evacuation on foot for

pedestrians who are initially far from the shelter. The comparisons show that the lighting condition

at night can significantly affect the evacuation performance, which may cause more casualties than

the daytime evacuation.

Car casualty rates (CCRs) Overall, the variations of the CCRs over time for the nighttime

scenarios show similar trends to that for the daytime scenario (shown in Fig. 4.5(b)). In terms

of the values of the CCRs, the estimated CCRs for Nighttime1 and Nighttime2 are lower than

that for the daytime scenario. This is because evacuation by car is not assumed to be affected

by the lighting condition at night due to the illumination of headlights. On the other hand, the

population that evacuates by car is overall closer to the shelter during the night, which would save

the evacuation time and result in fewer causalities.
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Comparison between PCRs and CCRs Comparing the casualty rates for the pedestrian and car

for the two nighttime scenarios, the CCRs for Nighttime1 and Nighttime2 are very close while the

PCRs have a larger difference between Nighttime1 and Nighttime2. The CCR is 22.0% and 22.4%

for Nighttime1 and Nighttime2, respectively, while the corresponding PCR is 14.6% and 19.7%,

respectively. This is because different lighting conditions at night have a high impact on evacuation

on foot but not on evacuation by car. Note that the CCRs for Nighttime1 and Nighttime2 are not

the same. This should be attributed to the influence of the interactions between the pedestrian and

car, i.e., pedestrian-vehicle interactions in terms of the traffic stage transition, the pedestrian can

jump into the nearby car.

Total casualty rates (TCRs) Due to the differences of the PCRs and CCRs between the daytime

and nighttime scenarios, as shown in Fig. 4.5(c), Nighttime1 has a lower TCR than the daytime

scenario while the TCR for Nighttime2 is lower than the daytime scenario before around 48 min

but is higher than the daytime scenario after around 48 min. This indicates the lighting condition

can affect the evacuation behavior at night and the night evacuation might lead to more casualties

than the daytime evacuation. For evacuation planning purposes, the worst nighttime scenario might

be investigated to guide the evacuation planning. For more accurate night evacuation simulation

and risk assessment, factors such as the lighting condition need to be taken into account.

4.5 Summary

A systematic simulation-based framework was proposed for the quantification of tsunami evac-

uation risk. Under the proposed simulation-based framework, the improved agent-based tsunami

evacuation model is used for evacuation simulation in which various uncertainties (including the

aleatory and epistemic uncertainties) associated with the evacuation are explicitly considered. Im-

precise probability models are used to quantify both types of uncertainties, i.e., probability models

are used to model the aleatory uncertainty in input random variables while the epistemic uncer-

tainty (for the selected probability model) is quantified through the uncertainty in the distribution
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parameter. The evacuation risk is quantified by propagating the uncertainties in input random

variables and distribution parameters.

The proposed simulation-based framework was applied to the tsunami evacuation risk assess-

ment in Seaside, Oregon. The variations of the overall evacuation risks over time in terms of the

danger rate, safety rate, and casualty rate are consistent with the overall evacuation performance.

Compared to the evacuation risk based on the simulations using the proposed agent-based model,

neglect of important factors and mechanisms in evacuation might overestimate or underestimate

the evacuation risk. The neglect of seismic damage to bridges and debris on roads from dam-

aged buildings or speed adjustment might underestimate evacuation risk. The unavailability of the

traffic information (i.e., on the bridge damage and road blockage) or the neglect of the pedestrian-

vehicle interaction or the following behavior might overestimate evacuation risk. The evacuation

risk would increase with the increase in population size. Evacuation risk is also impacted by the

time of day when evacuation occurs and the night evacuation might result in a higher evacuation

risk than the daytime evacuation.
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Chapter 5

Sensitivity analysis of tsunami evacuation risk with

respect to epistemic uncertainty

5.1 Introduction

Under the simulation-based framework proposed in Chapter 4, imprecise probability models

are used to quantify the aleatory and epistemic uncertainties in tsunami evacuation risk quantifica-

tion. The epistemic uncertainty is quantified through the uncertainty in the distribution parameters.

For given value of distribution parameters, the corresponding evacuation risk can be assessed. Ap-

parently, the epistemic uncertainty in the distribution parameters would lead to variability in the

evacuation risk. Considering the epistemic uncertainty is reducible when additional data is avail-

able (Der Kiureghian and Ditlevsen 2009; González et al. 2009), evacuation risk could be more

accurately assessed through the reduction of the epistemic uncertainty (Post et al. 2009; Jelínek

et al. 2012), i.e., reduce the variability in the risk assessment. However, data collection (partic-

ularly the up-to-date data) typically requires many resources, especially for the complex tsunami

evacuation process involving many physical, social, and psychological factors (Jelínek et al. 2012;

Wood and Schmidtlein 2013; Alabdouli 2017). Therefore, the prioritization of data collection is

crucial, i.e., where to devote limited resources to collecting more high-quality and important data.

In this case, it is critical to identify the epistemic uncertainties that have higher impacts on the

variability in the evacuation risk. For this purpose, sensitivity analysis can be used.

Sensitivity analysis examines how the uncertainty in the system input impacts the system out-

put or performance quantity of interest (i.e., identification of the importance of system inputs)

(Saltelli 2002). For sensitivity analysis, different global sensitivity measures have been proposed

and used (Iooss and Lemaître 2015), mainly including variance-based sensitivity analysis such as

Sobol’ index (Homma and Saltelli 1996; Sobol 2001; Sudret 2008), entropy-based sensitivity in-
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dices (Liu et al. 2004, 2006; Jia and Taflanidis 2014), and distribution based sensitivity indices

(e.g., moment independent sensitivity indicator) (Borgonovo 2007; Liu and Homma 2009; Yun

et al. 2018). Sobol’ index is one of the most commonly used sensitivity measures, especially when

we are interested in the sensitivity analysis in terms of variance of the output.

To examine the sensitivity of the variability in the evacuation risk to the epistemic uncertainty in

the distribution parameters, the performance quantity of interest corresponds to some probabilistic

performance (or risk), and the so-called risk sensitivity (Wang and Jia 2020a) can be defined. To the

best of our knowledge, no research has been conducted on the full sensitivity analysis of tsunami

evacuation risk to evaluate the impact of various epistemic uncertainties on the variability in the

evacuation risk and identify those that have relatively high impacts. For risk sensitivity analysis

with respect to the epistemic uncertainty in distribution parameters, compared to typical global

sensitivity analysis, there is an additional layer of integration, corresponding to the risk integral

for any given value of the distribution parameter (Tang et al. 2016; Nannapaneni and Mahadevan

2016; Chabridon and Gayton 2018; Au 2005). Direct estimation (e.g., using MCS) of the risk

integral requires repeated evaluation of the system model. When combined with the computational

challenges in evaluating the sensitivity index itself (e.g., Sobol’ index), the overall computational

effort for risk sensitivity analysis is even higher.

To address the above computational challenges, an augmented sample-based approach is pro-

posed for efficient sensitivity analysis of tsunami evacuation risk with respect to the epistemic

uncertainty in the distribution parameter. An augmented problem is first defined in the space of

both distribution parameters and input random variables. Then samples are generated from a joint

auxiliary density that is proportional to the integrand of the augmented risk integral. Based on

the corresponding marginal samples, the marginal auxiliary densities for distribution parameters

can be efficiently approximated using KDE. The marginal auxiliary density is then used to directly

approximate the conditional expectations in Sobol’ index, which are used to support the calcula-

tion of Sobol’ indices. Using only one set of simulations, the augmented sample-based approach

can estimate Sobol’ index for all distribution parameters (including the first-order indices/main
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effect and higher-order interactions). Then, the importance ranking of distribution parameters is

identified based on the sensitivity index values.

As an illustrative example, the importance ranking of various distribution parameters associated

with the tsunami evacuation risk of Seaside, Oregon is identified using the proposed augmented

sample-based approach. The results can be used to guide the data collection prioritization for an

effective epistemic uncertainty reduction, which can be further used for more accurate evacuation

risk assessment, and more effective evacuation planning.

5.2 Sensitivity analysis of tsunami evacuation risk with respect

to epistemic uncertainty

5.2.1 Sensitivity of tsunami evacuation risk to epistemic uncertainty

Let θ denote the distribution parameters with θ = [θ1, . . . , θi, . . . , θnθ
] ∈ Θ where θi is the ith

distribution parameter and nθ is the total number of the distribution parameter. For given value of

θ, using evacuation risk measure and propagating the uncertainties in the input random variable

x, the corresponding evacuation risk can be established using Eq. (4.1) in Chapter 4, i.e., H(θ) =

Ex|θ[h(x)] =
∫

X
h(x)p(x|θ)dx.

For sensitivity analysis of tsunami evacuation risk with respect to the epistemic uncertainty in

distribution parameters, we are interested in how the uncertainty in each of the distribution param-

eters in θ (i.e., θi) impacts the variability in evacuation risk H(θ). This is illustrated in Fig. 5.1

where µH and VH represent the mean and variance of H(θ), respectively. Compared to typical

global sensitivity analysis, for sensitivity analysis of tsunami evacuation risk, the output H(θ) cor-

responds to some probabilistic performance measure (i.e., evacuation risk). The evaluation of the

probabilistic performance integral for a given value of θ introduces another layer of integration

(i.e., double-loop integration for calculation of global sensitivity measures, as will be shown later)

and additional computational challenges besides the computational challenges of typical global

sensitivity analysis. Note that when h(x) corresponds to the indicator function IF (x), which takes
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the value of 1 when the failure occurs where failure can be defined as when the evacuation per-

formance does not meet some performance threshold (e.g., when casualty rate exceeds a certain

threshold) and 0 otherwise, the evacuation risk H(θ) corresponds to the failure probability PF (θ)

(i.e., probability of having unacceptable evacuation performance). Sensitivity of evacuation risk

then corresponds to the failure probability or reliability sensitivity. In terms of sensitivity mea-

sures, this research selects the commonly used variance-based measure, the Sobol’ index. This

selection is made considering (1) we are interested in investigating the sensitivity of the variability

in evacuation risk to the epistemic uncertainty, and (2) among various variance-based sensitivity

analysis methods, Sobol sensitivity analysis is regarded as one of the most general and powerful

techniques (Brevault et al. 2013; Zhang et al. 2015) due to its advantages, e.g., converging to the

exact relative contributions to the model inputs and their interactions to the output variability.

Figure 5.1: Illustration of sensitivity analysis of tsunami evacuation risk with respect to epistemic uncer-
tainty.

5.2.2 Global sensitivity measure: Sobol’ index

The first-order Sobol’ index Si for θi (also referred as the main effect of θi) is defined as (Sobol

2001)
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Si =
Vi

VH

=
Ei[ξi(θi)

2]− µ2
H

VH

(5.1)

where Vi represents the expected reduction in variance VH due to fixing θi, and

ξi(θi) = E∼i[H(θ)|θi] =
∫

Θ
∼i

H(θ∼i, θi)p(θ∼i|θi)dθ∼i (5.2)

where θ∼i represents the remaining of the distribution parameter vector excluding θi. Here, the

conditional density p(θ∼i|θi) is used to represent the most general case that the distribution pa-

rameters could be dependent (i.e., dependence between θ∼i and θi). For example, the distribution

parameters might be dependent when they are inferred from the same data for the random variables

x. When θ∼i and θi are independent, p(θ∼i|θi) reduces to p(θ∼i). Here µH is equal to H that is

expressed by Eq. (4.2), i.e., µH = Eθ[H(θ)] =
∫

Θ
H(θ)p(θ)dθ =

∫∫

X,Θ
h(x)p(x|θ)p(θ)dxdθ.

VH is given by

VH = Eθ[(H(θ)− µH)
2] =

∫

Θ

H(θ)2p(θ)dθ − µ2
H

=

∫

Θ

(
∫

X

h(x)p(x|θ)dx
)2

p(θ)dθ − µ2
H

(5.3)

Besides the first-order Sobol’ index, Sobol’ index for higher-order interaction, as well as the

total sensitivity index can be also defined (Homma and Saltelli 1996; Sobol 2001).

5.2.3 Computational challenges in the calculation of risk-based Sobol’ in-

dices

Plugging the expression for ξi(θi) in Eq. (5.2) into the term Ei[ξi(θi)
2] for the calculation of Si

leads to

Ei[ξi(θi)
2] =

∫

Θi

[

∫

X,Θ
∼i
h(x)p(x|θ∼i, θi)p(θ∼i|θi)dζ

]2

p(θi)dθi (5.4)

where the integration in the bracket corresponds to the expanded version of ξi(θi) = E∼i[H(θ)|θi]

and is with respect to ζ = [x,θ∼i]. This is different from the typical sensitivity analysis where
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the integration would be with respect to θ∼i alone. Here to evaluate the conditional expectation

E∼i[H(θ)|θi], the integration with respect to x is additionally needed.

As can be seen, evaluation of every Si requires knowledge of Ei[ξi(θi)
2], which involves

a double-loop integration. The outer loop corresponds to the calculation of the expectation

Ei[ξi(θi)
2] with respect to θi, and the inner loop corresponds to calculation of the conditional ex-

pectation ξi(θi) = E∼i[H(θ)|θi] or more specifically the expectation with respect to vector [x,θ∼i].

To calculate Sobol’ index for higher-order interaction, the integration in Eq. (5.4) needs to be re-

peated for different parameter combinations and parameter values. To evaluate the double-loop

integral, the general approach is MCS (Sobol 2001). However, direct adoption of MCS entails

significant computational burden, especially for systems with expensive evacuation models (i.e.,

calculation of h(x) for given x is expensive, which is the case for the tsunami evacuation model)

and a large number of inputs (nx is large) and distribution parameters (nθ is large).

5.3 Efficient sensitivity analysis of tsunami evacuation risk us-

ing the augmented sample-based approach

To address the above challenges, an augmented sample-based approach is proposed for efficient

sensitivity analysis of tsunami evacuation risk with respect to the epistemic uncertainty in distri-

bution parameters. The augmented sample-based approach extends on the sample-based approach

in Jia and Taflanidis (2016) for efficient estimation of Sobol’ index. The proposed augmented

approach first defines an augmented problem in terms of [x,θ]. Then, we define a joint auxiliary

distribution π(x,θ) with respect to [x,θ], which is proportional to the integrand of the augmented

evacuation risk integral for µH ,

π(x,θ) =
h(x)p(x|θ)p(θ)

µH

∝ h(x)p(x|θ)p(θ) (5.5)

The augmented sample-based approach relies on generating samples from the joint distribution

π(x,θ) to efficiently estimate the conditional expectation ξi(θi) and further the Sobol’ index.
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5.3.1 Calculation of first-order Sobol’ indices

Based on the joint auxiliary PDF π(x,θ), the marginal auxiliary distribution for θ can be

written as

π(θ) =

∫

X

π(x,θ)dx

=
p(θ)

∫

X
h(x)p(x|θ)dx
H

(5.6)

Similarly, the marginal auxiliary density for θi, i.e., π(θi), can be established by integrating out x

and θ∼i (i.e., ζ),

π(θi) =

∫

X,Θ
∼i

π(x,θ)dζ

=
p(θi)

∫

X,Θ
∼i
h(x)p(x|θ)p(θ∼i|θi)dζ

µH

=
p(θi)

µH

ξi(θi)

(5.7)

This means the conditional expectation ξi(θi) can be written as a function of two marginal PDFs

for θi as

ξi(θi) =
π(θi)

p(θi)
µH (5.8)

From the derivation of Eq. (5.7), it is clear that π(θi) corresponds to the marginal auxiliary

density for θi of the joint auxiliary density π(x,θ). Therefore, samples can be first generated

from the joint auxiliary density π(x,θ), and the θi component of the samples would correspond

to samples from the marginal auxiliary density π(θi). Compared to directly sampling from π(θ)

where the evaluation of π(θ) for each θ requires evaluation of the integral
∫

X
h(x)p(x|θ)dx, if we

sample from the joint auxiliary density π(x,θ), based on Eq. (5.5), to evaluate π(x,θ) for given

value of [x,θ], then only the evacuation model h(x) needs to be evaluated, which is much more

efficient than evaluating the integral
∫

X
h(x)p(x|θ)dx.
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To sample from π(x,θ), first, a set of candidate samples {[xk,θk], k = 1, . . . , N} are gener-

ated from some joint proposal density q(x,θ), and the corresponding h(x) are evaluated, and then

stochastic sampling algorithm is used to obtain nπ samples from the joint PDF π(x,θ), denoted

{[xk
π,θ

k
π], k = 1, . . . , nπ}. The detailed stochastic sampling procedure is presented in Appendix A.

More importantly, the stochastic sampling can be seamlessly integrated within the sample-based

evaluation of the system risk by leveraging the information from the risk assessment (i.e., the can-

didate samples generated for {[xk,θk], k = 1, . . . , N} and the corresponding risk measure h(x)

calculated). Since these samples will be used within KDE to approximate the underlying density,

independent samples are needed. Any stochastic sampling algorithms that can provide indepen-

dent samples can be used, e.g., the standard accept-reject method (Robert and Casella 2004). To

improve sampling efficiency and thus the performance of the proposed approach, an appropriate

proposal density q(x,θ) needs to be selected. To improve sampling efficiency, advanced stochas-

tic sampling techniques can be used. For example, adaptive kernel sampling density (AKSD) has

been proposed to build better proposal density with the explicit objective of maximizing the sam-

pling efficiency (Jia et al. 2017). When the risk measure h(x) corresponds to the indicator function

IF (x), taking advantage of the property of indicator function (i.e., taking values of either 0 or 1),

modified Metropolis-Hastings algorithm (Au and Beck 2003) and modified rejection sampling (Jia

et al. 2017) have been used to reduce the number of unnecessary model evaluations during the

sampling process. Also, for rare events or low failure probability, when directly generating sam-

ples is not efficient, sequentially and adaptively generating samples (e.g., in the context of subset

simulation (Jia et al. 2017; Au and Beck 2003)) could significantly improve sampling efficiency as

well. Since it is not the focus of this research, exactly which stochastic sampling algorithm to use

will not be discussed here in detail.

Using Eq. (5.1) and Eq. (5.8), the first-order Sobol’ index Si can be written as
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Si =
µ2
H

VH

(

∫

Θi

[

π(θi)

p(θi)

]2

p(θi)dθi − 1

)

=
µ2
H

VH

(
∫

Θi

[

π(θi)

p(θi)

]

π(θi)dθi − 1

)

(5.9)

Based on the marginal samples from π(θi), kernel density estimation (KDE) (Karunamuni and

Zhang 2008; Jia and Taflanidis 2016) (illustrated in Appendix B.1) can be used to efficiently ap-

proximate π(θi) for any value of θi (denoted π̃(θi)) and then ξi(θi) through Eq. (5.8). To address

bounded distribution parameters, which are frequently encountered in various engineering applica-

tions, instead of regular KDE, which has boundary bias problem for density with large weights near

the boundaries, the boundary-corrected KDE in Jia and Taflanidis (2014, 2016) (see Appendix B.2)

can be used to establish more accurate estimations of the density. Due to the curse of dimensional-

ity for KDE and the estimation errors, in general, sample-based estimation of densities for higher

dimensionality (e.g., larger than four) should be avoided (Jia and Taflanidis 2016).

Ultimately, the first-order Sobol’ index Si in Eq. (5.9) can be approximated by Monte Carlo

Integration (MCI) as

Ŝi ≈
(

1

nπ

nπ
∑

k=1

π̃(θkπi
)

p(θkπi
)
− 1

)

µ̂2
H

V̂H

(5.10)

The coefficient of variation (CoV) for MCI approximation can be conveniently calculated and

used as the statistical error of the estimator. As can be seen, the estimation accuracy of Si relies on

the accuracy of KDE. Since the accuracy of KDE improves as the number of samples increases,

it is expected that using more samples (i.e., a larger value of nπ) would lead to a more accurate

estimation of Si. Based on Eq. (4.3), the unbiased estimator of µH = H can be established directly

using MCI based on all the candidate samples from the proposal density q(x,θ). As for VH , it

involves double-loop integration; direct estimation would involve first generating for example Nθ

samples for θ and then for each θ, generating for example Nx samples for x and evaluating the

corresponding h(x). It would require total of Nθ ×Nx model evaluations.
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Instead of repeating the model evaluations as required by direct estimation of the double-loop

integration, here the same set of simulations for the N candidate samples {[xk,θk], k = 1, . . . , N}

and the corresponding N model evaluations h(x) are used to efficiently estimate VH . This approach

uses the concept of importance sampling where the same proposal density is used to estimate the

integral
∫

X
h(x)p(x|θ)dx under different p(x|θ) through re-weighting the same set of samples

(Wang and Jia 2019b, 2020b). The joint proposal density can be rewritten as q(x,θ) = q(x|θ)q(θ).

q(θ) can be used as proposal density for the outer loop (i.e., integration with respect to θ), and use

q(x|θ) as proposal density for the inner loop (i.e., integration with respect to x). For given θ value

(e.g., θ = θk), the integral H(θk) =
∫

X
h(x)p(x|θk)dx can be estimated using the candidate

sample pairs of {[xj,θj], j = 1, . . . , N},

Ĥ(θk) ≈ 1

N

N
∑

j=1

h(xj)
p(xj|θk)

q(xj|θj)
(5.11)

where xj is generated according to proposal density q(xj|θj). A special case would be q(xj|θj) =

q(xj) where the proposal density for x does not depend on θ. Using Eq. (5.11), the same candidate

sample pairs of {[xj,θj], j = 1, . . . , N}, can be used for evaluation of H(θk) for different θk.

In the end, using information in the same set of N simulations used for generating samples from

the joint auxiliary density, the unbiased estimator of VH can be established through the following

equation,

V̂H ≈ 1

N

N
∑

k=1

[

1

N

N
∑

j=1

h(xj)
p(xj|θk)

q(xj|θj)

]2

p(θk)

q(θk)
− µ̂2

H (5.12)

In the end, Eq. (5.10) can be used to estimate Si. Note that the statistical errors of the estimator

µ̂H and V̂H are assessed using the CoVs for the corresponding MCI approximations. The steps

to efficiently calculate the first-order Sobol’ index using the augmented sample-based approach is

summarized in Fig. 5.2.
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Figure 5.2: The steps to efficiently calculate the first-order Sobol’ index using the augmented sample-based
approach.

5.3.2 Calculation of higher-order Sobol’ indices

Besides first-order sensitivity indices, using the same set of samples, the augmented sample-

based approach can be directly used to estimate sensitivity indices for higher-order interactions.

Let S[ij] represent the second-order sensitivity index for the interaction between θi and θj , and Sij

represent the joint second-order sensitivity index for the subset θij = [θi, θj]. Sij can be estimated

using Eq. (5.10) by changing θπi
to θπij

and the KDE needs to use the corresponding multivariate

KDE. More specifically, Sij can be estimated by

Ŝij ≈
(

1

nπ

nπ
∑

k=1

π̃(θk
πij
)

p(θk
πij
)
− 1

)

µ̂2
H

V̂H

(5.13)
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Based on the relationship S[ij] = Sij − Si − Sj , S[ij] can be estimated by

Ŝ[ij] = Ŝij − Ŝi − Ŝj (5.14)

Besides second-order interaction, other higher-order sensitivity indices can be established similarly

(Jia and Taflanidis 2016).

As can be seen, by projecting the samples from π(x,θ) to the subsets of interest, the corre-

sponding Sobol’ indices can be evaluated efficiently, including both first-order and higher-order

indices. Compared to the direct evaluation of Sobol’ index, which requires rerunning simula-

tions for each index of interest, the augmented sample-based approach only requires one set of

simulations or samples to estimate all sensitivity indices, corresponding to high efficiency. This

high efficiency is important and desirable since the agent-based tsunami evacuation model is quite

expensive to run (as discussed in Section 4.4). The accuracy and efficiency of the augmented

sample-based approach in the evaluation of Sobol’ index have been validated by several bench-

mark problems (Wang and Jia 2020a).

Once the sensitivity index (i.e., Sobol’ index) values (including the first-order/main effect and

higher-order interactions) are obtained, they can be used to compare the importance of each distri-

bution parameter θi on the variability in the tsunami evacuation risk. Then, the importance ranking

information can be used to guide the data collection prioritization for more effective epistemic un-

certainty reduction and further for more accurate evacuation risk assessment, and more effective

evacuation planning.

5.4 Illustrative example: Sensitivity analysis of tsunami evacu-

ation risk with respect to epistemic uncertainty for Seaside,

Oregon

We consider the example in Chapter 3; however, here uncertain population size and popu-

lation proportions throughout different sub-areas with epistemic uncertainties are considered to
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investigate the sensitivity analysis of tsunami evacuation risk with respect to various epistemic un-

certainties. The epistemic uncertainty in the standard deviation of the population proportion that

evacuates by car is also incorporated for a more comprehensive investigation. Table 5.1 presents

the continuous input random variables x and associated parameters including uncertain ones (i.e.,

distribution parameters θ).

Table 5.1: Continuous input random variables and associated parameters in tsunami evacuation.

xi Distribution Parameter 1 Parameter 2
t0 Uniform 3 10
t Rayleigh [0, 5] [1, 5]
ne Truncated Gaussian [4000, 15,000] [3000, 7000]
ρ1 Truncated Gaussian [0.2, 0.6] [0.05, 0.25]
ρ3 Truncated Gaussian [0.25, 0.35] [0.05, 0.25]
pc Truncated Gaussian [0, 1] [0.05, 0.25]
T1PA

Uniform 1.00 1.53
T2PA

Uniform 2.30 4.19
T1MA

Uniform 0.59 0.97
T2MA

Uniform 1.64 3.14
T1Mac

Uniform 0.59 0.97
T2Mac

Uniform 1.53 2.79
T1LR

Uniform 0.27 0.38
T2LR

Uniform 0.54 1.04
vp Truncated Gaussian [1.22, 2.68] [0.05, 1]
pf Uniform 0.1 0.3
pr Uniform 0.3 0.6
hc Uniform 0.5 2

For continuous input random variable xi, ne represents the population; ρ1 and ρ3 denote the

population proportion on the beach and in the residential area, respectively. The population pro-

portion in the downtown (denoted ρ2) can be obtain using ρ2 = 1− ρ1 − ρ3. For the xi following

truncated Gaussian distribution, ne, ρ1, ρ3, pc, and vp lie within (4000, 15,000), (0.2, 0.6), (0.25,

0.35), (0, 1), and (0.75, 3.83) (unit: m/s), respectively.

Here, θ includes τ and σt that define the Rayleigh distribution to model t where τ ∼ U(0, 5)

represents the delay time after receiving the tsunami warning (unit: min) and σt ∼ U(1, 5) is the

scale parameter, and the mean and standard deviation of the Gaussian distribution of ne, ρ1, ρ3,
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pc, and vp, i.e., µe and σe, µ1 and σ1, µ3 and σ3, µc and σc, µp and σp. Each of the above means

and standard deviations follows the uniform distribution on the interval that is presented under

“Parameter 1” and “Parameter 2”.

In terms of evacuation risk consequence measure h(x), two cases are considered. Case 1: h(x)

is defined as the total casualty rate (TCR) in the community within one hour and the risk H(θ)

corresponds to the expected total casualty rate. Case 2:h(x) is defined as the indicator function, i.e.,

h(x) = IF (x), where IF (x) = 1 if the casualty rate exceeds a certain threshold and 0 otherwise,

and the risk H(θ) corresponds to the failure probability PF (θ) (i.e., the probability of the casualty

rate exceeding a certain threshold).

5.4.1 Results and discussions: Case 1

To calculate the risk sensitivity indices, nπ = 2000 samples for [x,θ] are generated from the

auxiliary PDF π(x,θ) by selecting the the prior density as the proposal density (i.e., q(x,θ) =

p(x|θ)p(θ)). This selection leads to a sampling efficiency of around 40%, i.e., around 5000

tsunami evacuation simulations are used to generate these auxiliary samples. Table 5.2 presents the

sensitivity analysis results, including the first-order Sobol’ indices for all distribution parameters

and higher-order Sobol’ indices for some cases of interest (greater importance). The results are the

average values over 50 different runs where each run only involves repeating the stochastic sam-

pling part (to generate the auxiliary samples) and does not require running additional evacuation

simulations (i.e., still using the same set of 5000 simulations for the stochastic sampling). Note the

coefficient of variation (CoV) for each MCI approximation in the estimation of Sobol’ indices is

below 1%.

Based on the first-order sensitivity results, µc has the greatest importance followed by µe and

σt while other distribution parameters have much smaller importance. µc has greater importance

indicates the epistemic uncertainty in µc has a higher impact on the variability in evacuation risk.

Compared to evacuation on foot, evacuation by car is more likely to cause severe traffic congestion,

which would delay the evacuation and cause more casualties. As µc increases (i.e., more cars and
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Table 5.2: Sensitivity indices for the tsunami evacuation risk: Case 1.

Parameters Indices Parameters Indices
First-order sensitivity indices

τ 0.0021 σt 0.0133
µe 0.0415 σe 0.0026
µ1 0.0057 σ1 0.0025
µ3 0.0037 σ3 0.0019
µc 0.1446 σc 0.0047
µp 0.0031 σp 0.0032

Second-order sensitivity indices
σt, µc 0.0198 µe, σe 0.0164
µ1, σ3 0.0150 µ3, σc 0.0149
τt, µc 0.0147 σt, µ3 0.0145
µe, µc 0.0143 σ1, µ3 0.0142
µc, σc 0.0138 µ3, µc 0.0135
τt, µp 0.0132 µe, µ1 0.0132
σ1, µp 0.0131 µ1, µp 0.0131
µ3, σp 0.0127 µ1, µ3 0.0127
µc, σp 0.0126 µe, σp 0.0126
σe, σc 0.0125 τt, σ3 0.0123

fewer pedestrians), the car casualty rate would increase and the pedestrian casualty rate would

decrease. However, the increase of the car casualty rate is much larger than the decrease of the

pedestrian casualty rate, which makes the total casualty rate increases significantly with an increase

of µc (Wang and Jia 2021). On the contrary, the total casualty rate would decrease significantly with

a decrease of µc (Wang and Jia 2021). The relatively greater importance of µe can be explained

similarly, i.e., traffic congestion is sensitive to the population, which ultimately leads to the large

sensitivity of the total casualty rate to the population. On one hand, the larger population (i.e.,

the larger value of µe) tends to induce more severe traffic congestion or even traffic jam, which

would delay the evacuation and lead to a higher evacuation risk (Wang and Jia 2021). On the

other hand, the smaller population results in a lower evacuation risk (Wang and Jia 2021). σt

represents the spread of the distribution of the departure time, which could have a big impact on

the evacuation. The overall evacuation performance (i.e., casualty rate) can be easily affected by

the delay of evacuation (e.g., larger σt leads to more delays), especially under the near-field tsunami
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that can reach the shoreline less than half an hour. Therefore, σt has a relatively high impact on the

variability in evacuation risk as well.

As for the second-order sensitivity results, relatively strong interactions exist related to the

distribution parameters corresponding to pc, ne, and t. For example, the strongest interaction is

observed between µc and σt, which is even larger than the first-order index value for σt (i.e.,

0.0198 > 0.0133). As discussed in the first-order sensitivity results, µc and σt, respectively, have

the largest and third-largest individual importance, and the strong interaction occurs related to them

is anticipated. Another relatively strong interaction exists between µe and σe. This is because µe

has the second-greatest importance individually as well as µe and σe correspond to the popula-

tion size, which has a high impact on evacuation risk. Other top-ranked second-order sensitivity

indices have very close values. For example, the Sobol’ index value for the third-highest interac-

tion [µ1, σ3] and 20th interaction [τt, σ3] is 0.0150 and 0.0123, respectively. This indicates these

interactions have close importance in terms of their interaction on the variability in evacuation risk.

The above first-order and second-order sensitivity information (importance) can be used to

prioritize the data collection for more effective epistemic uncertainty reduction, which can further

support more accurate risk assessment and more effective evacuation planning. For example, the

data collection on the distribution parameters corresponding to pc especially µc has a top priority

considering the epistemic uncertainty in µc dominates the variability in evacuation risk in this

case. Besides µc and σc, the data on the distribution parameters associated with ne and t are

recommended to be collected in priority due to the individual importance of µe and σt, and the

relatively strong interactions related to these parameters (i.e., µe, σe, τ and σt). Once sufficient

data on the important distribution parameters are available, the epistemic uncertainty is expected

to be reduced effectively and the evacuation risk would be assessed more accurately.

5.4.2 Results and discussions: Case 2

In this case, the performance threshold for failure is selected such that the average failure

probability (i.e., µH) is around 10%. Similar to Case 1, the prior density is selected as the proposal
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density to generate the candidate samples, which are then used to obtain the samples from π(x,θ)

through stochastic sampling. This leads to nπ = 500 samples being generated from around 5000

tsunami evacuation simulations with a sampling efficiency of 10% (i.e., equal to µH). Note that

here no special effort is spent in building better proposal density that will lead to higher sampling

efficiency; however, for small failure probability (i.e., µH is small), to reduce the total number

of simulations, more advanced sampling techniques with well-designed proposal density can be

used (e.g., using the approach in Jia et al. (2017)). Table 5.3 presents the first-order Sobol’ indices

for all distribution parameters and second-order Sobol’ indices for some cases of interest (greater

importance). The CoVs for all MCI approximations in the estimation of Sobol’ indices are below

5%.

Table 5.3: Sensitivity indices for the tsunami evacuation risk: Case 2.

Parameters Indices Parameters Indices
First-order sensitivity indices

τ 0.0041 σt 0.0382
µe 0.0413 σe 0.0048
µ1 0.0055 σ1 0.0033
µ3 0.0015 σ3 0.0030
µc 0.3480 σc 0.0012
µp 0.0029 σp 0.0005

Second-order sensitivity indices
σt, µc 0.0438 µe, µc 0.0413
µc, σc 0.0398 τt, µc 0.0226
µe, σe 0.0220 µ1, µc 0.0190
σt, µe 0.0139 σ1, µc 0.0125
σ3, µc 0.0122 σe, µc 0.0115
µe, σp 0.0108 σt, µ3 0.0104
σc, µp 0.0102 τt, σt 0.0097
σt, σc 0.0092 µe, σ3 0.0092
σt, σ3 0.0088 τt, σ1 0.0088
σ3, µp 0.0087 µc, σp 0.0082

The first-order sensitivity results show similar trends to Case 1, e.g., µc is the dominant distri-

bution parameter followed by µe and σt while other distribution parameters are of negligible im-

portance. However, the Sobol’ index value for µc in Case 2 (i.e., 0.3480) is much larger than that
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in Case 1 (i.e., 0.1446). Since the Sobol’ index values for µe are close for both cases (i.e., 0.0413

in Case 2 and 0.0415 in Case 1), the much larger value of µc in Case 2 indicates even higher impact

of µc compared to µe. This is because the relative importance of µc is enlarged in Case 2 due to

the lower average tsunami evacuation risk (µH = 10%) than that in Case 1 (µH = 28.9%).

By looking at the second-order sensitivity results, some similarities to Case 1 can be found. For

instance, most of the strong interactions are related to the distribution parameters corresponding to

pc, ne, and t. In comparison to Case 1, the second-order sensitivity results in Case 2 demonstrate

one interesting difference. In Case 2, µc dominates the strong interactions. For the ten strongest

interactions (i.e., Sobol’s index values between 0.0115 and 0.0438), eight of them are related to µc.

This should be attributed to the dominance of the impact of the epistemic uncertainty in µc on the

variability in evacuation risk.

Once the importance of all considered distribution parameters is identified based on the risk

sensitivity analysis results, they can be used to guide the data collection prioritization for more

effective epistemic uncertainty reduction. In this case, the efforts on the data collection are rec-

ommended to be put in the distribution parameters corresponding to pc (especially µc) with a high

priority rather than other distribution parameters considering the epistemic uncertainty in µc dom-

inates the variability in the evacuation risk.

According to the calculation of the first-order Sobol’ index for the distribution parameter θi, we

know that the risk sensitivity with respect to θi can also be seen qualitatively from the comparison

between p(θi) and π(θi). The larger difference between the two distributions indicates the greater

importance of the distribution parameter. Fig. 5.3(a)-(d) show the samples for µc and µe from the

corresponding marginal auxiliary densities (i.e., π(µc) and π(µe)), the distributions approximated

based on the corresponding samples using the boundary corrected KDE and the corresponding

prior distributions (i.e., p(µc) and p(µe)). As can be seen from Fig. 5.3(c), π(µc) changes signif-

icantly compared to p(µc), which clearly demonstrates why µc has a great importance. Similarly,

the comparison between π(µe) and p(µe) (shown in Fig. 5.3(d)) demonstrates qualitatively the

relatively great importance of µe. The difference between the marginal auxiliary distribution and
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Figure 5.3: Illustration of (a) samples from π(µc), (b) samples from π(µe), (c) π(µc) estimated using
boundary corrected KDE, (d) π(µe) estimated using boundary corrected KDE, (e) variation of the integrand
π2(µc)/p(µc) in calculation of Si for µc, and (f) variation of the integrand π2(µe)/p(µe) in calculation of
Si for µe. All results are for Case 2.

the corresponding prior distribution for µc is much larger than that for µe, meaning µc has a much

greater importance than µe (as also verified by their sensitivity index values as shown in Table 5.3).

To provide an additional understanding of the sensitivity analysis results, Fig. 5.3(e) and

Fig. 5.3(f), respectively, show the variation of the integrand in the calculation of the first-order
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Sobol’ index (i.e., Si in Eq. (5.9)) for µc and µe. Fig. 5.3(e) shows that the integrand increases with

µc, and it increases much faster under relatively large values of µc. Overall, the integrand has much

larger values when µc is large. This indicates that relatively larger values of µc contribute more to

the first-order sensitivity index value or the variability in the evacuation risk is more sensitive to

the change of car use when a relatively large number of cars are used in the evacuation. Compared

to the case when a relatively small number of cars are used, any change of the car number (either

decrease or increase) could have a higher impact on the traffic congestion level when a relatively

large number of cars are used. The larger variability in the traffic congestion level would ultimately

lead to a larger variability in the casualty (evacuation risk) due to the evacuation delay caused by

the traffic congestion. Fig. 5.3(f) for µe shows similar trends to Fig. 5.3(e) for µc, e.g., the inte-

grand increases with µe and relatively larger values of µe contribute more to the variability in the

evacuation risk.

5.5 Summary

This chapter investigated the sensitivity of tsunami evacuation risk with respect to various

epistemic uncertainties in the distribution parameters where these parameters define the probability

distributions of the input random variables in the proposed agent-based tsunami evacuation model.

The variance-based sensitivity index, i.e., Sobol’ index, was used as the sensitivity measure to

quantify the importance of each distribution parameter and their interactions on the variability in

the tsunami evacuation risk. An augmented sample-based approach was developed and used for

the efficient calculation of the Sobol’ index for all distribution parameters (including first-order

and second-order indices) in the risk sensitivity analysis using only one set of simulations.

As an illustrative example, the sensitivity analysis of tsunami evacuation risk was efficiently

performed for Seaside, Oregon under two different cases (i.e., different definitions of the risk

measure) using the proposed augmented sample-based approach. The importance ranking of the

distribution parameters associated with the evacuation process was identified for each case. The

sensitivity analysis results show that the distribution parameters corresponding to the proportion of
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the evacuees that use the car, population size, and departure time (especially the proportion of the

evacuees that use the car) have greater importance than those associated with other input random

variables. However, the exact importance ranking of various distribution parameters can vary with

cases depending on the interested risk performance measure. The above risk sensitivity information

on the importance of distribution parameters can be used to prioritize the data collection for an

effective epistemic uncertainty reduction and further for a more accurate risk assessment, and

more effective evacuation planning.
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Chapter 6

Identification of critical risk factors using sensitivity

analysis

6.1 Introduction

It is important to identify the critical risk factors that contribute more to the tsunami evacua-

tion risk, which can be used to guide effective evacuation modeling and the search for effective

risk mitigation strategies (Okumura et al. 2017). On one hand, for a more realistic simulation

of the tsunami evacuation, many factors and mechanisms associated with the evacuation need to

be considered and modeled as realistically as possible, especially important factors and mecha-

nisms. Considering that critical risk factors have higher impacts on the evacuation risk, we can

pay more attention to the modeling of the factors and mechanisms those closely related to critical

risk factors for more effective modeling. On the other hand, after being informed about the level

of evacuation risk by risk assessment, the decision-maker needs to know further about the relative

contributions of different risk factors to the risk (i.e., importance ranking of risk factors or identi-

fication of critical risk factors). Such information can be used to guide the search for effective risk

mitigation strategies, i.e., explore more effective risk-reduction strategies that are more associated

with critical risk factors to achieve the acceptable risk level (Okumura et al. 2017).

As mentioned in Chapter 5, sensitivity analysis is typically used to examine the importance of

the system input to the system output or performance quantity of interest (Saltelli 2002). Therefore,

the sensitivity analysis can be performed to investigate the importance of various risk factors in

affecting the evacuation risk. Under the simulation-based framework for the risk quantification

proposed in Chapter 4, the input random variable with the aleatory uncertainty can represent the

risk factor (e.g., the proportion of the evacuees that use the car, i.e., pc). In this context, we

are interested in identifying the importance of various input random variables in affecting the
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evacuation risk to identify critical risk factors in tsunami evacuation. However, there has been

limited research on sensitivity analysis associated with tsunami evacuation. Typically, they conduct

the parametric study rather than perform full sensitivity analysis. The parametric study examines

the sensitivity of the model output to the uncertainty of a single random variable while keeping

other random variables constant each time (e.g., demographic-sensitivity analyses (Wood et al.

2015), model sensitivity to land cover and path direction (Schmidtlein and Wood 2015), model

sensitivity to the individual random variable associated with the evacuation behavior (Fraser et al.

2014; Wang et al. 2016; Mostafizi et al. 2017, 2019b)). In this case, the parametric study can

not take into account the uncertainty in other random variables. Moreover, repeating the analysis

for different variables also entails significant computational challenges, which typically limits the

parametric study to several selected cases/parameters.

To address the above limitations and computational challenges, the probabilistic sensitivity

analysis in Taflanidis and Jia (2011) (which was proposed for identification of critical risk factors)

is used to investigate the importance of various risk factors in affecting the evacuation risk, based on

which critical risk factors are identified. To investigate the variation of the sensitivity of risk factors

with the key distribution parameter, the augmented sample-based approach proposed in Chapter 5

is extended to efficiently perform the sensitivity analysis under different values of the distribution

parameter. Because only one set of samples is needed, the approach has great efficiency and

simultaneously provides sensitivity information for all input random variables under different given

values of the distribution parameter.

The sensitivity analysis of the tsunami evacuation risk in Seaside, Oregon is performed using

the augmented sample-based approach. The established sensitivity information can be used to

guide effective evacuation modeling, and effective selection of candidate risk mitigation strategies

and hence identification of more effective strategies (as shown later in Chapter 7).
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6.2 Sensitivity analysis for identifying critical risk factors

The probabilistic sensitivity analysis in Taflanidis and Jia (2011) and Jia and Taflanidis (2014)

is used to quantify the importance of risk factor (i.e., each input random variable in x) in af-

fecting the evacuation risk H . The probabilistic sensitivity analysis is defined by introducing

an auxiliary PDF that is proportional to the integrand of evacuation risk integral, i.e., π(x) =
∫

Θ
h(x)p(x|θ)p(θ)dθ/H .

The sensitivity of the ith input random variable xi is quantified by the relative entropy that

measures the difference between the marginal auxiliary distribution π(xi) and the prior probability

distribution p(xi),

D (π(xi) ‖ p(xi)) =

∫

Xi

π(xi) log

[

π(xi)

p(xi)

]

dxi (6.1)

where π(xi) =
∫

X
∼i
π(x)dx∼i and p(xi) =

∫

X
∼i
p(x)dx∼i, where x∼i represents the rest of x ex-

cluding xi. The reason that such difference indicates the sensitivity of H with respect to xi can be

explained as follows. For the marginal distribution π(xi), based on definition, it can be expanded as

π(xi) =
∫

X
∼i
π(x)dx∼i = p(xi)

∫∫

X
∼i,Θ

h(x)p(x∼i|θ)p(θ)dx∼idθ/H = p(xi)H(xi)/H , where

H(xi) represents the evacuation risk H when fixing xi at particular value. Therefore, the ratio of

π(xi) to p(xi) is directly related to the value of the evacuation risk H . This is why the difference

between the marginal distribution π(xi) and the prior distribution p(xi) indicates the sensitivity of

H with respect to xi. Larger value of relative entropy indicates higher sensitivity/importance of the

input random variable. However, it is challenging to directly evaluate π(xi) (e.g., use MCS), which

corresponds to multi-dimensional integral. The above relative entropy can be efficiently calculated

using the sample-based approach in Taflanidis and Jia (2011) and Jia and Taflanidis (2014), i.e.,

approximate π(xi) and p(xi) using kernel density estimation (KDE) based on the generated sam-

ples (i.e., nπ samples from π(x)). To obtain the samples from π(x), the same sampling process as

the augmented sample-based approach in Chapter 5 can be used. The only difference here is that

we are interested in the marginal samples for x rather than marginal samples for θ.
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For the sensitivity analysis of the discrete input random variable xi, suppose xi can take values

in {ǫj, j = 1, ...,mi}, the relative entropy between Π(xi) and P (xi) can be expressed as (Jia et al.

2014; Wang and Jia 2020b)

D (Π(xi) ‖ P (xi)) =

mi
∑

j=1

Π(xi = ǫj) log

[

Π(xi = ǫj)

P (xi = ǫj)

]

(6.2)

where Π(xi = ǫj) can be estimated by counting the number of samples that satisfy xi = ǫj out of

all nπ samples for xi and dividing this number by nπ. Similarly, P (xi = ǫj) can be estimated by

counting the number of samples that satisfy xi = ǫj out of all N samples for xi and dividing this

number by N .

6.3 Variation of the sensitivity of risk factors with key distribu-

tion parameters

The sensitivity analysis in Section 6.2 corresponds to the case when the uncertainties in the dis-

tribution parameters are fully propagated (assuming that the distribution parameters are uncertain).

When there is less or no uncertainty in the distribution parameters or subsets of the distribution

parameters (e.g., when there is good knowledge on the values of the distribution parameters, hence

good knowledge on the distribution of the input random variables), how the sensitivity of the risk

factors would vary also provides important insights on the overall sensitivity of the evacuation risk.

Therefore, this section investigates the variation of sensitivity of risk factors with some key dis-

tribution parameters. Mathematically, we are interested in the sensitivity analysis under different

values of some key distribution parameters.

Let θs represent some key distribution parameters of interest, which is a subset of all distribu-

tion parameters θ. Note that θs can be a scalar or vector. The evacuation risk under the given value

of θs (i.e., conditional evacuation risk) can be expressed as

H(θs) =

∫∫

X,Θ∼s

h(x)p(x|θs,θ∼s)p(θ∼s|θs)dxdθ∼s (6.3)
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where θ∼s represents the rest of θ excluding θs in the space of Θ∼s.

Here the sensitivity analysis is used to quantify the importance of each input random variable

xi in affecting the conditional evacuation risk H(θs). The sensitivity analysis is defined by in-

troducing an auxiliary PDF π(x,θ∼s|θs) that is proportional to the integrand of the conditional

evacuation risk integral. Then the marginal PDF π(x|θs) for x can be written as

π(x|θs) =

∫

Θ∼s
h(x)p(x|θs,θ∼s)p(θ∼s|θs)dθ∼s

H(θs)
(6.4)

The sensitivity of the ith input random variable xi under the given value of θs is quantified by

the relative entropy between the marginal auxiliary distribution π(xi|θs) and the prior probability

distribution p(xi|θs),

D (π(xi|θs) ‖ p(xi|θs)) =

∫

Xi

π(xi|θs) log

[

π(xi|θs)

p(xi|θs)

]

dxi (6.5)

where π(xi|θs) =
∫

X
∼i
π(x|θs)dx∼i and p(xi|θs) =

∫

X
∼i
p(x|θs)dx∼i, where x∼i represents the

rest of x excluding xi. Larger value of relative entropy indicates higher sensitivity/importance

of the input random variable. However, it is challenging to directly evaluate π(xi|θs) (e.g., use

MCS) for any given value of xi, which corresponds to multi-dimensional integral. Therefore,

direct evaluation of Eq. (6.5) is challenging for one input random variable, not to mention for

all input random variables. When θs takes some fixed value, the above relative entropy can be

efficiently calculated using the sample-based approach in Taflanidis and Jia (2011) and Jia and

Taflanidis (2014), i.e., approximate π(xi|θs) and p(xi|θs) using KDE based on the corresponding

samples. However, here we are interested in sensitivity under different values of θs, for which

direct application of the above sample-based approach would entail huge computational challenges

due to the need to repeat the approach for different values of θ.

To address the above challenges, the augmented sample-based approach proposed in Chapter 5

is extended for efficient sensitivity analysis under any given value of θs. To estimate the relative

entropy in Eq. (6.5) for xi, conditional distributions π(xi|θs) and p(xi|θs) need to be estimated.
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To facilitate this, an augmented problem is first defined in terms of [x,θ], in which θs is artificially

treated as uncertain with distribution p(θs) over the domain of interest. Typically, uniform dis-

tribution is assumed for θs for calculation convenience, since it has constant PDF value. Then, a

set of candidate samples {[xk,θk], k = 1, . . . , N} are generated from some joint proposal density

q(x,θ), and the corresponding h(x) are evaluated by running the evacuation simulation. Then,

stochastic sampling algorithm (e.g., the accept-reject method (Robert and Casella 2004)) is used

to obtain nπ samples from the joint PDF π(x,θ), denoted {[xk
π,θ

k
π], k = 1, . . . , nπ}. Note that

although samples from the joint distribution π(x,θ) are available, samples directly from the con-

ditional distribution π(xi|θs) are not available. To make use of the samples, using the definition of

conditional distribution (i.e., π(xi|θs) = π(xi,θs)/π(θs)), Eq. (6.5) is rewritten as

D (π(xi|θs) ‖ p(xi|θs)) =

∫

Xi

π(xi,θs)

π(θs)
log

[

π(xi,θs)

π(θs)p(xi|θs)

]

dxi (6.6)

where π(xi,θs) is the joint auxiliary PDF for [xi,θs] and π(θs) the marginal auxiliary PDF for θs.

By projecting the joint samples to the space of [xi,θs], samples from π(xi,θs) can be established.

Based on these samples, KDE can be used to establish an approximation, denoted π̃(xi,θs). In the

end, the relative entropy for xi conditional on any value of θs can be calculated efficiently by

D (π(xi|θs) ‖ p(xi|θs)) =

∫

Xi

π̃(xi,θs)

π̃(θs)
log

[

π̃(xi,θs)

π̃(θs)p(xi|θs)

]

dxi (6.7)

which can be calculated using numerical integration or MCI.

For the sensitivity analysis of the discrete input random variable xi conditional on θs, suppose

xi can take values in {ǫj, j = 1, ...,mi}, the relative entropy between Π(xi|θs) and P (xi|θs) can

be expressed as (Jia et al. 2014; Wang and Jia 2020b)

D (Π(xi|θs) ‖ P (xi|θs)) =

mi
∑

j=1

Π(xi = ǫj|θs) log

[

Π(xi = ǫj|θs)

P (xi = ǫj|θs)

]

(6.8)

To estimate Π(xi = ǫj|θs) using the nπ samples from π(x,θs), Bayes’ theorem is used in

combination with KDE. Using Bayes’ theorem, Π(xi = ǫj|θs) can be written as
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Π(xi = ǫj|θs) =
π(θs|xi = ǫj)Π(xi = ǫj)

π(θs)
(6.9)

where Π(xi = ǫj) can be estimated by counting the number of samples that satisfy xi = ǫj out of

all nπ samples for xi and dividing this number by nπ. π(θs|xi = ǫj) for any θs can be estimated

using KDE based on those marginal samples from π(θs) that satisfy xi = ǫj . Therefore, using the

same set of nπ samples, Π(xi = ǫj|θs) can be estimated, which can be plugged into Eq. (6.8) to

calculate the relative entropy for discrete input random variable xi conditional any value of θs.

Overall, the sensitivity analysis under different values of some of the key distribution parame-

ters of interest can be performed efficiently using the extended augmented sample-based approach,

which only requires one set of samples/simulations and has great computational efficiency.

6.4 Illustrative example: Identification of critical risk factors

using sensitivity analysis for Seaside, Oregon

The above two cases of sensitivity analysis are performed to identify critical risk factors as-

sociated with the tsunami evacuation in Seaside, Oregon. Previous studies have shown that the

proportion of the evacuees that use the car for evacuation (i.e., pc) has a high impact on evacua-

tion performance. Therefore, for the sensitivity analysis under different values of the distribution

parameter, we are interested in investigating how the probabilistic sensitivity with respect to input

random variables varies with the mean value of pc (i.e., µc). More specifically, the sensitivity anal-

ysis conditional on different values of the distribution parameter µc is considered, i.e., θs = [µc].

Since we are interested in µc within [0, 1], θ is artificially treated as uncertain with uniform distri-

bution on [0, 1] (i.e., p(µc) = 1).

As for the evacuation simulation, the daytime scenario with 15,000 evacuees (i.e., ne = 15, 000,

corresponding to the worst daytime scenario) under C0 (i.e., the proposed agent-based model) in

Chapter 4 is considered for the two cases of sensitivity analysis. To obtain more insights, the

sensitivity analysis in Section 6.2 is also performed under the daytime scenario with a population
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size of ne = 5000 and under the nighttime scenario (i.e., Nighttime1 defined in Section 4.4.4) with

a population size of ne = 15, 000.

6.4.1 Sensitivity analysis

For each of the daytime and nighttime scenarios with 15,000 evacuees, around nπ = 1200

samples are generated from π(x,θ) based on N = 2000 tsunami evacuation simulations. For the

daytime scenario with 5000 evacuees, around nπ = 600 samples are generated from π(x,θ) based

on N = 2000 tsunami evacuation simulations. For each scenario, all the sensitivity results reported

next are obtained efficiently using the corresponding set of 2000 simulations with low CoVs for

all MCI approximations (i.e, below 1% for the cases with ne = 15, 000 and below 2% for the

case with ne = 5000) and the risk consequence measure corresponds to the total casualty rate (i.e.,

TCR) in the community within one hour.

The daytime scenario with 15,000 evacuees

The relative entropy values for continuous input random variables and the damage state of the

top five ranked bridges are presented in Table 6.1. In the table, i1, i2,..., i5 represents the link

IDs for the top five ranked bridges; T1PA
, T2PA

, T1MA
, T2MA

, T1Mac
, T2Mac

, T1LR
, and T2LR

denote

the thresholds in Eq. (3.4) and, respectively, correspond to the road class “Principle Arterial”,

“Minor Arterial”, “Major Collector”, and “Local Road”. Based on the relative entropy values for

the individual input random variable, it is evident that the population proportion of evacuation by

car pc has the greatest importance followed by the proportion of the evacuees that use evacuation

routes (i.e., pr) as well as the top-ranked bridges while others have smaller influence. The group

input random variables associated with pc even have larger relative entropy values than pc, e.g.,

0.0469 for [pc, pr] is larger than 0.0358 for pc. The greater importance of car use is expected since

it is more likely to cause traffic congestion and delay the evacuation when more people evacuate

by car. Based on the importance ranking, pc is the most critical risk factor, which can be used for

guiding effective evacuation modeling and the selection of candidate risk mitigation strategies. For

example, car use and associated aspects (e.g., speed adjustment for the car) need to be modeled as
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realistically as possible. The evacuation by car should be discouraged in some cases (e.g., a large

proportion of car use) or the road (especially the evacuation route) can be widened to alleviate the

potential traffic congestion caused by car use in the evacuation.

Table 6.1: Relative entropy values for continuous input random variables and the damage states of the top
five ranked bridges under the daytime scenario with 15,000 evacuees.

xi or [xi, xj ] D xi or [xi, xj ] D xi or [xi, xj ] D
i1 0.0029 pf 0.0002 T2LR

0.0013
i2 0.0028 ps 0.0025 [pc, t0] 0.0401
i3 0.0014 T1PA

0.0025 [pc, pr] 0.0469
i4 0.0014 T2PA

0.0021 [pc, pf ] 0.0419
i5 0.0011 T1MA

0.0012 [pc, ps] 0.0461
pc 0.0358 T2MA

0.0008 [T1PA
, T2PA

] 0.0099
t0 0.0006 T1Mac

0.0011 [T1MA
, T2MA

] 0.0072
hc 0.0004 T2Mac

0.0004 [T1Mac
, T2Mac

] 0.0065
pr 0.0053 T1LR

0.0013 [T1LR
, T2LR

] 0.0058

Figure 6.1: Relative entropy ranking for the damage state of bridges under the daytime scenario with 15,000
evacuees.

The relative entropy ranking (importance ranking) for the damage state of all the 12 bridges

is shown in Fig. 6.1. Based on the relative entropy values, link 116 has the highest rank followed

107



by link 399 and other links while link 2 has the lowest rank. This means links 116 and 399 are

more critical to evacuation risk than other bridges while link 2 is the least critical in this case. To

have a better understanding of the above sensitivity analysis results, the relative entropy values of

the damage state of all the 12 bridges with the link ID are shown in Fig. 6.2. On one hand, based

on Fig. 6.2 and Fig. 3.9, links 116 and 399 located over one river form bottlenecks in the road

network, and most of the evacuees would travel through these two bridges to the shelter. In this

context, links 116 and 399 could be more critical to the tsunami evacuation and the corresponding

seismic damages are more important to the evacuation risk. On the other hand, most of the evacuees

would not use link 2 due to its location, and the seismic damage of link 2 would have the lowest

impact on the evacuation risk. The above importance ranking of bridges can be used to guide the

search for effective risk mitigation strategies, e.g., select critical bridges as the candidates to search

the optimal bridge retrofit strategy such that evacuation risk is most effectively reduced.

The daytime scenario with 5000 evacuees

The relative entropy values for continuous input random variables and the damage state of

the top five ranked bridges under the daytime scenario with 5000 evacuees are summarized in

Table 6.2. Overall, the results show similar trends to the case with the relatively large population

size (i.e., ne = 15, 000 shown in Table 6.1). For example, in terms of the importance of individual

input random variable, the population proportion of evacuation by car pc is the most important,

followed by the proportion of the evacuees that use evacuation routes (i.e., pr) and the top-ranked

bridges while other input random variables are less important. Overall, the critical risk factors are

similar under the two population sizes in this example.

The relative entropy ranking of the damage state of all the 12 bridges under the daytime sce-

nario with 5000 evacuees is shown in Fig. 6.3. This ranking shows some similarities to the case

with 15,000 evacuees, e.g., link 2 is the least important bridge. Under the two cases with different

considered population sizes, however, the importance ranking of bridges are different. For exam-

ple, links 399 and 116 are the most critical bridge under ne = 5000 and ne = 15, 000, respectively.

This is because the evacuation dynamics (e.g., change of the traffic congestion level on bridge link
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Figure 6.2: Relative entropy of the damage state of bridges under the daytime scenario with 15,000 evac-
uees.

Table 6.2: Relative entropy values for continuous input random variables and the damage states of the top
five ranked bridges under the daytime scenario with 5000 evacuees.

xi or [xi, xj ] D xi or [xi, xj ] D xi or [xi, xj ] D
i1 0.0268 pf 0.0025 T2LR

0.0062
i2 0.0138 ps 0.0163 [pc, t0] 0.4832
i3 0.0086 T1PA

0.0080 [pc, pr] 0.4976
i4 0.0064 T2PA

0.0076 [pc, pf ] 0.4987
i5 0.0062 T1MA

0.0090 [pc, ps] 0.4757
pc 0.4609 T2MA

0.0063 [T1PA
, T2PA

] 0.0422
t0 0.0044 T1Mac

0.0012 [T1MA
, T2MA

] 0.0271
hc 0.0007 T2Mac

0.0113 [T1Mac
, T2Mac

] 0.0265
pr 0.0280 T1LR

0.0025 [T1LR
, T2LR

] 0.0243

over time) would be different under the cases with different populations. Based on different im-
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Figure 6.3: Relative entropy ranking for the damage state of bridges under the daytime scenario with 5000
evacuees.

portance rankings of bridges under the cases with different populations, different critical bridges

may be retrofitted.

The nighttime scenario (Nighttime1) with 15,000 evacuees

The relative entropy values for continuous input random variables and the damage state of

the top five ranked bridges under the nighttime scenario (Nighttime1) with 15,000 evacuees are

presented in Table 6.3. The results show some similarities to the case under the daytime scenario

with the same population size (shown in Table 6.1). For example, the population proportion of

evacuation by car pc has the greatest importance. Compare to the daytime scenario, however, the

input random variables associated with the pedestrian-vehicle interaction (e.g., T2MA
) instead of the

proportion of the evacuees that use evacuation routes (i.e., pr) have the relatively great importance

following pc. This indicates the critical risk factors may be different under the cases with different

times of the day (i.e., daytime and nighttime).

The relative entropy ranking of the damage state of all the 12 bridges under the nighttime sce-

nario (Nighttime1) with 15,000 evacuees is shown in Fig. 6.4. The sensitivity analysis results show

some similarities to the case under the daytime scenario, e.g., link 2 has the smallest importance.
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Table 6.3: Relative entropy values for continuous input random variables and the damage states of the top
five ranked bridges under the nighttime scenario (Nighttime1) with 15,000 evacuees.

xi or [xi, xj ] D xi or [xi, xj ] D xi or [xi, xj ] D
i1 0.0052 pf 0.0002 T2LR

0.0037
i2 0.0025 ps 0.0012 [pc, t0] 0.0657
i3 0.0018 T1PA

0.0039 [pc, pr] 0.0514
i4 0.0016 T2PA

0.0046 [pc, pf ] 0.0521
i5 0.0016 T1MA

0.0013 [pc, ps] 0.0514
pc 0.0461 T2MA

0.0101 [T1PA
, T2PA

] 0.0174
t0 0.0033 T1Mac

0.0101 [T1MA
, T2MA

] 0.0125
hc 0.0001 T2Mac

0.0046 [T1Mac
, T2Mac

] 0.0190
pr 0.0008 T1LR

0.0022 [T1LR
, T2LR

] 0.0070

Figure 6.4: Relative entropy ranking for the damage state of bridges under the nighttime scenario (Night-
time1) with 15,000 evacuees.

However, the importance ranking of bridges under the nighttime scenario is different from that

under the daytime scenario. For instance, under the nighttime scenario, the second most critical

bridge is link 683 rather than link 399. Under the considered different times of the day, differences

in the evacuation environment (e.g., lighting condition) and the evacuation behavior (e.g., pedes-

trian speed) exist. In this context, the evacuation dynamics (e.g., change of the traffic congestion

level on bridge link over time) would be different, leading to different importance of the seismic

damage of some bridge to the evacuation risk.
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In summary, the population proportion of evacuation by car pc has the greatest importance and

overall the seismic damages of the top-ranked bridges have relatively great importance. These are

true under the cases with different population sizes and with different times of the day. However,

the importance ranking of risk factors (e.g., the seismic damage of the bridge) may be different un-

der the cases with different population sizes and with different times of the day. The corresponding

critical risk factors under the particular case need to be used when guiding effective modeling and

selection of candidate mitigation strategies.

6.4.2 Variation of sensitivity of risk factors with the key distribution param-

eter

Based on N = 2000 tsunami evacuation simulations, around nπ = 1200 samples are gener-

ated from π(x,θ). The augmented sample-based approach presented in Section 6.3 is applied to

establish the probabilistic sensitivity information for x of interest under any given value of the

distribution parameter µc. All the sensitivity results reported next are obtained efficiently using the

same set of 2000 simulations with low CoVs for all MCI approximations (i.e., below 1%) and the

risk consequence measure corresponds to the TCR in the community within one hour.

Figure 6.5: Relative entropy values for pc conditional on different values of µc.
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For the sensitivity results, overall under any given value of µc, pc has the largest relative entropy

value and thus greatest importance (the most critical), followed by the seismic damage of the top-

ranked links while the continuous parameters other than pc have relatively small relative entropy

values. Considering its much larger value, the variation of the relative entropy for pc as a function

of µc is shown in Fig. 6.5 separately. While the relative entropy values for the continuous risk

factors of interest other than pc and the damage state of the top five ranked bridges are shown in

Fig. 6.6 for three values of µc (i.e., 0.1, 0.5, and 0.9).

As µc increases, the variation of the relative entropy value for pc shows a clear trend of first

decreasing and then increasing. As µc (i.e., when µc < 0.5) becomes smaller, more people evacuate

on foot (i.e., smaller pc) and the traffic congestion would get more severe for pedestrians, which

leads to a faster increase in the casualty rate. Similarly, the traffic congestion would become more

severe for cars and a faster increase would be caused in the casualty rate as µc becomes larger (i.e.,

when µc > 0.5). This aligns with the first decreasing and then increasing relative entropy value

and importance of pc observed in Fig. 6.5. The fact that pc has a much larger relative entropy value

than other parameters indicates that pc (i.e., car use) has much greater importance to evacuation

risk than other parameters.

From Fig. 6.6, for input random variables other than pc, the seismic damages of some bridges

might have relatively large relative entropy values, which means evacuation risk is more sensitive

to the seismic damages of those bridges than the other continuous input random variables (i.e., the

ones other than pc). Note that the relative entropy value corresponds to the seismic damage of the

individual bridge and it is expected that the seismic damage of all bridges collectively would have

a high impact on evacuation risk. For the continuous input random variables other than pc, the

relative entropy values are relatively small (e.g., the largest value is only 0.018 corresponding to pr

when µc = 0.9). The importance ranking of these input random variables varies with the value of

µc; however, overall pr has relatively great importance. This information can be used for guiding

evacuation risk mitigation, e.g., investigate the effectiveness of the evacuation route usage (i.e., pr)

and mitigate evacuation risk by using the evacuation route effectively.
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Figure 6.6: Relative entropy values for continuous input random variables of interest, and the damage state
of the top five ranked bridges conditional on different values of µc.

As for the probabilistic sensitivity results of the seismic damage of bridges, overall, the top-

ranked bridges correspond to larger relative entropy values than the continuous input random vari-

ables other than pc as shown in Fig. 6.6; however, the importance ranking of bridges might be

different under the different value of µc. The top five ranked bridges indices (i.e., i1, i2..., i5)

shown in Fig. 6.6 are reported in Table 6.4. Based on the sensitivity results, the importance rank-

ing of bridges under the given value of µc could be identified to guide the selection of the optimal

evacuation risk mitigation strategy (e.g., retrofit the critical bridges to reduce evacuation risk most

effectively). The augmented sample-based approach can be used for such a purpose considering

the high efficiency of establishing the probabilistic sensitivity information under any given value

of µc using only one set of simulations.

Table 6.4: The link IDs for the top five ranked bridges corresponding to different µc values.

µc i1 i2 i3 i4 i5
0.1 786 404 399 308 426
0.5 789 6 681 308 404
0.9 789 6 457 308 681
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The above sensitivity results (importance ranking of risk factors) can be used to guide effective

evacuation modeling and the search for effective evacuation risk mitigation strategies. Considering

the dominant importance of car use in the evacuation, for example, the modeling of car use and

associated aspects (e.g., speed adjustment, pedestrian-vehicle interaction, etc.) need to be paid

more attention to for more effective evacuation modeling. In the search for effective evacuation risk

mitigation strategies, we can consider discouraging the large proportion of car use through tsunami-

preparedness education to alleviate the potential traffic congestion and further reduce evacuation

risk. The critical bridges (top-ranked) can be used as a candidate to search for effective evacuation

risk mitigation strategies, i.e., which group of bridges to retrofit in priority such that evacuation

risk is reduced most effectively.

6.5 Summary

Probabilistic sensitivity analysis was performed to identify critical risk factors associated with

the tsunami evacuation. The variation of the sensitivity of risk factors with some key distribution

parameters was also investigated. The augmented sample-based approach proposed for efficient

sensitivity analysis of evacuation risk with respect to the epistemic uncertainty was extended to

efficiently perform the sensitivity analysis.

Overall, the results showed that the proportion of the evacuees that use the car has the greatest

importance, and the seismic damage of the top-ranked bridges as well as the proportion of the

evacuees that use evacuation routes have relatively great importance while other risk factors have

relatively small importance. However, the importance ranking of risk factors may be different

under different cases, e.g., in terms of different population sizes and different times of the day.

The sensitivity analysis results under different values of the key distribution parameter showed

that the importance ranking of risk factors varies with car use. The critical risk factors identified

by sensitivity analysis can be used to guide effective evacuation modeling and the selection of

candidate risk mitigation strategies.
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Chapter 7

Risk-informed evaluation of mitigation strategies

7.1 Introduction

For effective evacuation planning, pre-event mitigation is usually implemented to reduce the

tsunami evacuation risk (UNESCO 2007). To effectively reduce the evacuation risk, effective or

even optimal risk mitigation strategies need to be identified among potential strategies.

Various strategies being classified into different types have been proposed for mitigating

tsunami risk in literature. For example, structural measures such as seawalls and breakwaters

and non-structural measures of hazard map and evacuation were mainly discussed in Koshimura

and Shuto (2015). In León and March (2016), strategies for coping with tsunami risk were summa-

rized into three main types, including extensive civil-engineered defenses (e.g., breakwaters, sea

gates, seawalls, control forests), land use and built environment measures (e.g., zoning, building

codes and design recommendations), and emergency readiness systems (e.g., education, warning

systems and especially population evacuation preparedness). In Aguirre-Ayerbe et al. (2018), four

main strategies for risk reduction were presented, including prevention, preparedness strategies in

the pre-event stage, emergency response, and recovery in the post-event phase. Many of the above

strategies have been practiced for evacuation risk reduction around the world (Løvholt et al. 2019).

For example, tsunami warning systems and evacuation-related education and exercise programs

have become common since 2004. Evacuation routes and refuges are designed and applied in the

U.S., Japan, and New Zealand. Tsunami defenses (breakwaters and coastal barriers) are widely

implemented in Japan.

In terms of evaluation of the evacuation risk mitigation strategy, most of the research investi-

gates a particular strategy. For example, road widening as a strategy to improve the road traffic

condition in the evacuation was evaluated in Takada et al. (2013). Retrofitting critical bridges

has been used to reduce the impact of seismic damage on the traffic capacity reduction (Mostafizi

116



et al. 2017). The effectiveness of the escape building for vertical evacuation has been evaluated in

Haiqal et al. (2019). The suitable sites of vertical shelters were identified through geospatial, multi-

criteria decision analysis in Wood et al. (2014). In addition to the above infrastructural strategies, a

particular non-infrastructural strategy such as tsunami disaster education is widely recommended

to be carried out for school children, their teachers and parents to better prepare for the potential

tsunami evacuation. For example, the role of disaster education in the national tsunami hazard

mitigation program was discussed in Dengler (2005). Tsunami disaster education was carried out

for elementary school children and their parents to encourage the development of a family plan

for tsunami evacuation (Katada and Kanai 2008). Pedagogical theories have been applied to help

train teachers to teach disaster-related topics (Sharpe and Kelman 2011). The effectiveness of the

curriculum-based disaster education program was evaluated in Adiyoso and Kanegae (2012). In

Ronan et al. (2015), research on disaster preparedness for children and families was reviewed, with

a focus on disaster preparedness and prevention education programs. Besides tsunami disaster edu-

cation, the tsunami evacuation drill has been gaining more attention. The so-called “single-person

drill” with emphasis on individual behaviors has been proposed to shift tsunami risk reduction

from the community level to the individual level (Sun 2014). In Kawai et al. (2016), a tsunami

evacuation drill system using motion hazard map and smart devices was introduced. The effective-

ness of tsunami drills in guiding evacuation behavior was investigated after the onset of the Great

East Japan Earthquake (Nakaya et al. 2018). A mobile application prototype was developed to be

used as an educational tool in a drill exercise to enhance the traditional evacuation drill (Leelawat

et al. 2018). Augmented reality technology has also been investigated to realize a game-based

evacuation training system (Catal et al. 2020).

To identify more effective or even optimal risk mitigation strategies in a given area, the ef-

fectiveness of different candidate risk mitigation strategies needs to be evaluated quantitatively

for comparison. When people select the candidate strategies to evaluate, typically they select the

strategies based on feasibility but not necessarily based on quantitative analysis of whether the

candidate strategies are promising or not in reducing the evacuation risk (Okumura et al. 2017;
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Aguirre-Ayerbe et al. 2018). For the limited research on the evaluation of different types of

evacuation risk mitigation strategies, most of them evaluate the strategies qualitatively or semi-

quantitatively rather than quantitatively. For instance, three types of mitigation strategies were

recommended in Priest et al. (2016) to establish optimal configurations, including bridge retrofit,

street widening, and building tsunami refuges. However, these strategies were evaluated qualita-

tively rather than quantitatively. A method was proposed to prioritize the most suitable pre-event

risk reduction measures based on the risk analysis and site-specific conditions (Aguirre-Ayerbe

et al. 2018). However, the effectiveness of considered strategies was measured semi-quantitatively

in terms of risk reduction, i.e., indicator-based (priority scores) rather than simulation-based.

In addition, the effectiveness of mitigation is typically not evaluated based on risk with sys-

tematic consideration of various uncertainties and hence the mitigation may not be robust to un-

certainty. For instance, the effectiveness of road widening was evaluated in terms of a decrease in

traffic congestion level in Takada et al. (2013). Different risk mitigation strategies such as vertical

evacuation have been evaluated based on the reduction of risk defined in terms of the loss of life

(Okumura et al. 2017). However, the risk was estimated based on the static model rather than

dynamic evacuation simulation, i.e., estimate the mortality through simply comparing the arrival

time of the tsunami and the time required for evacuation rather than running evacuation simulation

under the time-history of tsunami inundation. In this case, many important uncertainties associated

with the evacuation were neglected.

Furthermore, the effective mitigation for a particular type of strategy is usually identified by

exhaustive enumeration, i.e., compare all combinations of mitigation design to identify the most

effective one. This usually entails significant computational challenges due to the need to evaluate

a large number of combinations of evacuation models, especially when the evacuation model is

expensive to run. To devise more effective or optimal mitigation strategies, efficient algorithms are

also needed.

To address the above limitations and challenges, risk-informed quantitative evaluation of dif-

ferent types of mitigation strategies (including infrastructural and non-infrastructural strategies)
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is conducted to identify effective mitigation strategies that are also robust to uncertainties. Crit-

ical risk factors identified by sensitivity analysis are used to guide the effective selection of the

candidate mitigation strategies. The evacuation risk under different candidate mitigation strate-

gies is quantified and assessed using the proposed simulation-based framework, in which vari-

ous uncertainties associated with the evacuation are explicitly quantified and the proposed agent-

based model is used for tsunami evacuation simulation. The concepts of importance sampling and

sample-based approach are used to efficiently evaluate the risk under different candidate strate-

gies by leveraging existing simulations. Then, the effectiveness in the risk reduction of different

candidate mitigation strategies is evaluated to identify more effective strategies. As an illustra-

tive example, the risk-informed evaluation of mitigation strategies is conducted for the tsunami

evacuation in Seaside, Oregon.

7.2 Sensitivity-based effective selection of candidate evacua-

tion risk mitigation strategies

To reduce the tsunami evacuation risk, various mitigation strategies might be implemented,

including the infrastructural and non-infrastructural strategies. For the infrastructural mitigation

strategy, typically the existing infrastructure is modified to protect them from being damaged by the

seismic and tsunami hazards or to improve the traffic condition, or new infrastructure is built such

that evacuation risk is mitigated. The infrastructural mitigation strategy includes strategies such as

building tsunami defenses such as seawalls and breakwaters (Koshimura and Shuto 2015; León and

March 2016; Løvholt et al. 2019), building new bridges or retrofitting existing bridges (Mostafizi

et al. 2017), widening road or evacuation route (Takada et al. 2013; Takabatake et al. 2017; Løvholt

et al. 2019), and building shelters (vertical and horizontal) or retrofitting existing buildings as shel-

ters (Raskin et al. 2011; Priest et al. 2016; Okumura et al. 2017; Løvholt et al. 2019). The non-

infrastructural mitigation strategy involves the program or activity that aims to improve people’s

awareness of tsunami disaster and knowledge of tsunami evacuation. The non-infrastructural mit-

igation strategy involves tsunami warning system (León and March 2016; Løvholt et al. 2019),
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tsunami preparedness education (Adiyoso and Kanegae 2012; León and March 2016; Aguirre-

Ayerbe et al. 2018; Løvholt et al. 2019), evacuation drills (León and March 2016; Kawai et al.

2016; Oregon Office of Emergency Management 2017; Løvholt et al. 2019), and actual exercise

(Murata et al. 2010; Løvholt et al. 2019).

To identity more effective ones among various mitigation strategies, some strategies can be

selected as candidate strategies for evaluation and comparison rather than evaluating all the possi-

ble strategies. Candidate mitigation strategies can be effectively selected based on the critical risk

factors associated with tsunami evacuation that are identified by sensitivity analysis in Chapter 6.

As presented in the sensitivity analysis, critical risk factors that contribute more to evacuation risk

have been identified. Evacuation risk would be reduced more effectively through the mitigation

that targets those critical risk factors. More specifically, the strategy that is more closely related

to the critical risk factor (directly or indirectly) is considered as the candidate strategy with a high

priority. For instance, sensitivity analysis results in Chapter 6 have shown that car use is one of

the critical risk factors and in general, more car use would lead to higher evacuation risk in the

context of the considered example (especially when the proportion of evacuation by car is large).

In this context, the strategy directly associated with car use such as discouraging the evacuation

by car can be selected as the candidate non-infrastructural strategy. On the other hand, evacuation

route widening (i.e., candidate infrastructural strategy) that is indirectly related to car use is also

expected to mitigate evacuation risk, since the route widening can effectively alleviate the traf-

fic congestion caused by car use (Takada et al. 2013). Note that the selection of risk mitigation

strategies in a given area is usually influenced by coastal topographic characteristics and societal

demands (Okumura et al. 2017). Here, we focus on the selection of candidate mitigation strategies

based on critical risk factors and assume these candidate strategies meet criteria such as societal

demands.
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7.3 Risk-informed evaluation of mitigation strategies

Once candidate mitigation strategies are selected, the effectiveness of each strategy in terms

of evacuation risk reduction needs to be evaluated for comparison to identify the more effective

strategies. Fig. 7.1 illustrates the risk-informed evaluation of candidate mitigation strategies. Let

H0 represent the evacuation risk before mitigation and Hsi denote the updated evacuation risk

under the mitigation design of the ith candidate strategy (denoted Si). Then the risk reduction

(denoted δHi) can be calculated for each strategy, based on which the effectiveness of candidate

mitigation strategies is evaluated. The more risk reduction (larger δHi) means a more effective

mitigation strategy. Note that one key step to evaluate the effectiveness of each candidate strategy

is to calculate the evacuation risk under each strategy, i.e., calculation of Hsi . Also, the optimal

Hsi might need to be identified under the ith candidate strategy. The calculation of the evacuation

risk under candidate mitigation strategies will be discussed next.

Figure 7.1: Illustration of risk-informed evaluation of candidate mitigation strategies. The sources of the
figures are: S1 (City of Seaside 2010), S2 (Buckle et al. 2006), S3 (Applied Technology Council 2019), S4

(The Oregon Department of Geology and Mineral Industries 2013), and S5 (Banse 2012).
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7.3.1 Calculation of evacuation risk under the mitigation strategy by modi-

fying the tsunami evacuation model

For some candidate mitigation strategies, the agent-based evacuation model developed in Chap-

ter 3 needs to be modified to simulate the mitigation. This is usually applicable for the calculation

of the evacuation risk under the infrastructural mitigation strategy. For example, to simulate evacu-

ation route widening, the components of the evacuation model associated with the evacuation route

need to be modified, such as the road width and the thresholds that are used to determine the traffic

stage transition. Then, evacuation simulations are run using the updated model and the evacuation

risk is estimated based on the new simulations using Eq. (4.3).

7.3.2 Calculation of evacuation risk under the mitigation strategy using ex-

isting simulations

Besides modifying the evacuation model and rerunning simulations, for some candidate miti-

gation strategies, the evacuation risk can be efficiently estimated based on the existing simulations,

e.g., the simulations used for estimating the risk before mitigation (i.e., H0). Typically, when the

mitigation leads to a change in the value or distribution of the input random variables, the concepts

of importance sampling (or reweighting samples) and sample-based approach can be leveraged

to efficiently evaluate the updated risk using existing simulations. These two efficient computa-

tional approaches are introduced next in the context of calculation of updated evacuation risk under

different mitigation strategies.

The evacuation risk under the candidate mitigation strategy (especially the non-infrastructural

strategy) might be efficiently calculated based on the augmented sample-based approach that is

developed for sensitivity analysis of evacuation risk with respect to the epistemic uncertainty in

Chapter 5. For the non-infrastructural mitigation strategy, the critical risk factor typically corre-

sponds to the continuous input random variables. For example, if discouraging car use in evac-

uation through tsunami evacuation drills is considered as the mitigation strategy, the critical risk

factor corresponds to the population proportion that evacuates by car (i.e., xi = pc). In such
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cases, the evacuation risk under any mitigation design corresponds to the conditional evacuation

risk H(xi). The above conditional evacuation risk can be efficiently calculated using the proposed

augmented sample-based approach. Here, the process in the context of risk mitigation is simply

reviewed while the details can be found in Chapter 5.

For the risk mitigation under any given value of the critical risk factor represented by the

continuous variable xi (e.g., pc), the corresponding evacuation risk H(xi) can be expressed by

H(xi) =

∫∫

X
∼i,Θ

h(x∼i, xi)p(x∼i|θ)p(θ)dx∼idθ (7.1)

where x∼i denotes the remaining of the input random variables excluding xi.

This conditional evacuation risk can be estimated efficiently using the proposed augmented

sample-based approach and KDE without the need to run additional evacuation simulations. More

specifically, based on the joint auxiliary PDF π(x,θ), the marginal auxiliary distribution for xi can

be written as

π(xi) =

∫∫

X
∼i,Θ

π(x,θ)dx∼idθ

=
p(xi)

∫∫

X
∼i,Θ

h(x)p(x∼i|θ)p(θ)dx∼idθ

H
=

p(xi)H(xi)

H

(7.2)

Based on which, H(xi) can be written as

H(xi) =
π(xi)

p(xi)
H (7.3)

Then KDE or boundary-corrected KDE is used to efficiently estimate π(xi) based on the corre-

sponding marginal samples for xi. Since both H and p(xi) are available, the conditional risk for

any value of xi is efficiently estimated using

Ĥ(xi) =
π̃(xi)

p(xi)
Ĥ (7.4)
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based on only one set of simulations (e.g., using the same simulations that are used to estimate the

evacuation risk before mitigation, i.e., H0).

Besides the above approach, when the mitigation only leads to a change in the distribution of

the input random variables, the concept of importance sampling can be leveraged to efficiently

evaluate the updated risk using existing simulations. One example is bridge retrofit. In such

context, effective bridge retrofit strategies (e.g., which groups of bridges should be retrofitted in

priority such that the evacuation risk can be reduced more) can be efficiently identified with minor

computational efforts rather than rerun the evacuation model for each mitigation strategy (differ-

ent combinations of bridges to retrofit). To achieve this, the tsunami evacuation risk under each

mitigation strategy is assessed efficiently by reweighting existing samples using the concept of

importance sampling (Wang and Jia 2019b, 2020b). Here, the key steps for the efficient update of

evacuation risk are briefly described.

In the context of evacuation risk mitigation by retrofitting bridges (i.e., related to the seismic

damage to bridges), the general form of evacuation risk (i.e., Eq. (4.2)) can be further expanded as

H =

∫∫∫∫

Xd,XIM ,X
∼dIM ,Θ

h(x)p(xd|xIM)p(xIM)p(x∼dIM)p(θ)dxddxIMdx∼dIMdθ (7.5)

where xd = [xd1 , ..., xdi , ..., xdn ], and xdi represents the seismic damage for the ith bridge out of

n bridges in the transportation network; xIM = [xIM1
, ..., xIMi

, ..., xIMn
], and xIMi

represents the

intensity measure at the ith bridge; x∼dIM denotes the input random variables excluding xd and

xIM. Here, p(xd|xIM) denotes the PMF for damage states conditional on given vector of intensity

measures. For the ith bridge, we have p(xdi |xIMi
) under given intensity measure IMi, and when

considering nD possible damage states, then p(xdi |xIMi
) = P (xdi = DSj|xIMi

) where DSj for

any j = 1, 2, ..., nD. And p(xIM) = p(xIM|EQ) is the joint PDF for xIM under the earthquake

scenario EQ.

For mitigation planning purpose, suppose we want to retrofit m bridges out of the total n

bridges. Let rm = [r1, ..., rm] denotes the indices for the m selected bridges that will be retrofitted

and xdr = [xdr1 , ..., xdrm ] the corresponding vector of random damage states, and xd∼r represents

124



the rest of x excluding xdr. After retrofitting, the fragility of the corresponding bridges will change,

i.e., p(xd|xIM) will change (e.g., to ps(xd|xIM)), and the marginal distribution for xd, i.e., p(xd)

will change accordingly (e.g., to ps(xd)), which will affect the evacuation. The updated PDF

ps(xd) can be written as ps(xd) =
∫

XIM
ps(xd|xIM)p(xIM)dxIM where ps(xd|xIM) can be further

written as ps(xd|xIM) = p(xd∼r|xIM∼r)
∏m

j=1 ps(xdrj |xIMrj), i.e., only p(xdi |xIMi
) for those

retrofitted bridges need to be updated.

In the above context, the evacuation risk (denoted Hsb(rm)) under the candidate strategy de-

fined by rm = [r1, ..., rm] needs to be calculated for comparison. Using the existing samples

{[xk,θk], k = 1 . . . N} from the proposal density q(x,θ) that are used to estimate the risk H0,

Hsb(rm) can be efficiently estimated as

Ĥsb(rm) =
1

N

N
∑

k=1

h(xk)p(xk
d∼r|xk

IM∼r)p(x
k
IM)p(xk

∼dIM
)p(θk)

q(xk,θk)

m
∏

j=1

ps(x
k
drj

|xk
IMrj

) (7.6)

which can be further written as

Ĥsb(rm) =
1

N

N
∑

k=1

h(xk)p(xk
d|xk

IM)p(xk
IM)p(xk

∼dIM
)p(θk)

q(xk,θk)

m
∏

j=1

ps(x
k
drj

|xk
IMrj

)

p(xk
drj

|xk
IMrj

)

=
1

N

N
∑

k=1

R(xk
d,x

k
IM ,xk

∼dIM
,θk)

m
∏

j=1

ps(x
k
drj

|xk
IMrj

)

p(xk
drj

|xk
IMrj

)

(7.7)

Because R(xk
d,x

k
IM ,xk

∼dIM
,θk) = h(xk)p(xk

d|xk
IM)p(xk

IM)p(xk

∼dIM
)p(θk)/q(xk,θk) has been

calculated for all {xk,θk} when evaluating the initial evacuation risk H0, to estimate Hsb(rm)

for different strategies rm, based on Eq. (7.7) only the ratio ps(x
k
drj

|xk
IMrj

)/p(xk
drj

|xk
IMrj

) needs to

be updated for all the selected bridges in rm. This ratio can be easily calculated for any selected

strategy and does not involve any additional simulations of the evacuation model (i.e., calculation

of h(xk)).
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As for rm, the top m ranked bridges can be directly selected based on the importance ranking

that is identified by sensitivity analysis. This way, we only need to update the evacuation risk one

time, which is more efficient than estimating the risk for all combinations of any m out of n bridges.

While individually each of the top m ranked bridges has a relatively high impact on evacuation risk,

jointly the top m ranked bridges may not be the optimal combination. But since individually each

of the top m ranked bridges is important, retrofitting these m bridges is expected to be relatively

good as well, especially when the impact of the interaction between different bridges on evacuation

risk is not strong. Considering the high efficiency of the reweighting approach, the optimal retrofit

strategy might be searched by exhaustive enumeration when the number of combinations is not

large.

7.4 Illustrative example: Risk-informed evaluation of different

mitigation strategies for Seaside, Oregon

The risk-informed evaluation of different mitigation strategies is performed for Seaside, Ore-

gon. As for the evacuation simulation, one existing scenario in Chapter 4 is considered to obtain

the evacuation risk (i.e., H0) before mitigation. The same set simulations are used to efficiently

update the evacuation risk (i.e., Hsi) for some strategies as presented in Section 7.3.2. Here, the

daytime scenario with 15,000 evacuees corresponding to C0 in Chapter 4 is considered. For the

mitigation simulation that needs to rebuild the agent-based evacuation model, the modifications on

the evacuation model and/or simulation will be presented later. The details on the study area and

evacuation simulation can be found in Chapter 4.

Here, the candidate mitigation strategies are effectively selected based on the critical risk fac-

tors identified by the sensitivity analysis in Section 6.4.1. The sensitivity analysis results showed

that the proportion of evacuation by car (i.e., pc) has the greatest importance followed by the pro-

portion of evacuees who use the evacuation route (i.e., pr), and followed by the seismic damages

(corresponding to the damage sate, i.e., DS) of top-ranked bridges. Car use (i.e., pc) dominates

the evacuation risk, and this is because that car use tends to cause traffic congestion, which will
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Figure 7.2: Illustration of the candidate evacuation risk mitigation strategies selected based on critical risk
factors.

significantly delay the evacuation and increase casualty. Infrastructural and non-infrastructural

countermeasures can be used to limit the evacuation by car and to help alleviate the potential traf-

fic congestion (Takada et al. 2013). Two infrastructural countermeasures are considered here as

candidates, including evacuation route widening and building a vertical shelter in the area with

a high population density. Evacuation route widening aims to increase the road capacity and al-

leviate traffic congestion. Building vertical shelters is expected to decrease car use over long

distances and reduce the potential traffic congestion. However, only infrastructural countermea-

sures might not solve the problem in the evacuation by car perfectly and it is necessary to consider

non-infrastructural countermeasures (Takada et al. 2013). Therefore, discouraging car use in evac-

uation (lower value of pc, which can be accomplished for example by evacuation drills) is selected

as another candidate strategy. Due to the relatively great importance of the evacuation route usage
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(i.e., pr) to the evacuation risk, we consider the tsunami evacuation preparedness education aiming

at increasing the effectiveness of the evacuation route usage as one candidate mitigation strategy.

The seismic damage to bridges would reduce the traffic capacity and hence delay the evacuation.

To reduce such impact caused by the seismic damage, bridge retrofit is considered as the candidate

mitigation strategy. Ultimately, we select five candidate strategies including three infrastructural

and two non-infrastructural strategies for evaluation in this example. The three infrastructural

strategies are evacuation route widening (denoted S1), bridge retrofit (denoted S2), and building

vertical shelters (denoted S3). The two non-infrastructural strategies are tsunami preparedness ed-

ucation (denoted S4) and evacuation drills (denoted S5). The five candidate mitigation strategies

are illustrated in Fig. 7.2. It is assumed that the above five candidate strategies satisfy the coastal

topographic characteristics and societal demands in Seaside.

7.4.1 Candidate infrastructural mitigation strategies

Evacuation route widening (S1)

It is assumed all existing evacuation routes (i.e., the ones designated on the evacuation map) are

widened (illustrated in Fig. 7.2). The road class for the evacuation route does not change (shown

in Fig. 3.10). The route width after being widened is set to be the same as that as designed in the

Seaside transportation system plan (City of Seaside 2010). The parameters used to determine the

road width of the evacuation routes occupied by the car or pedestrian after widening the evacuation

route are presented in Table 7.1. In the modeling of pedestrian-vehicle interaction (see Eq. (3.4)),

the thresholds used to determine the traffic stage on the widened evacuation routes are presented

in Table 7.2. In the table, T1PA
, T2PA

, T1MA
, T2MA

, T1Mac
, T2Mac

, T1LR
, and T2LR

, respectively,

correspond to the road class “Principle Arterial”, “Minor Arterial”, “Major Collector”, and “Lo-

cal Road”. “Parameter 1” and “Parameter 2” correspond to the lower bound and upper bound of

the uniform distribution, respectively. Note that the parameters used to determine the road widths

occupied by the car and pedestrian for the existing transportation network (road network) can be

found in Table 3.2. Let Hs1 denote the evacuation risk after widening evacuation routes. Hs1 is es-
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timated based on the evacuation simulations using the modified agent-based evacuation model with

evacuation routes being widened. The details on the risk assessment can be found in Chapter 4.

Table 7.1: The parameters used to determine the road widths of the evacuation routes occupied by the
car and pedestrian after widening evacuation routes (shown based on the functional class of the evacuation
route).

Functional class w wwmin ww wr nl

Principle Arterial 17.68 3.99 5.49 2.75 3
Minor Arterial 15.85 7.53 8.53 2.75 2
Major Collector 14.63 6.32 7.32 2.75 2
Local Road 12.19 1.55 3.05 2.75 3

Table 7.2: The thresholds used to determine the traffic stage on widened evacuation routes.

Input Distribution Parameter 1 Parameter 2
T1PA

Uniform 0.59 0.97
T2PA

Uniform 1.78 3.61
T1MA

Uniform 1.69 2.47
T2MA

Uniform 3.39 5.94
T1Mac

Uniform 1.41 2.10
T2Mac

Uniform 2.95 5.24
T1LR

Uniform 0.23 0.47
T2LR

Uniform 0.84 1.51

Bridge retrofit (S2)

There are 12 bridges in the road network in Seaside, and it is assumed to retrofit up to eight

bridges (i.e., m ranges from one to eight) considering the limited resources (e.g., budget). The opti-

mal strategy is identified by comparing all potential combinations of any m bridges (i.e., exhaustive

enumeration) considering the relatively small number of combinations and the high efficiency of

the reweighting approach for updating the evacuation risk for each combination (see Section 7.3.2).

For the retrofitted bridge, its fragility curve is updated by scaling the median of the fragility of an

as-built bridge (Padgett and DesRoches 2009). Here a scaling factor of 2.5 is used. Hs2 is used

to represent the evacuation risk after the bridge retrofit. Hs2 is efficiently calculated using the

reweighting approach presented in Section 7.3.2.
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Building vertical shelters (S3)

Previous studies on vertical evacuation (Raskin et al. 2011; Mostafizi et al. 2019a) show that

the vertical shelter located in highly populated and vulnerable areas such as the center of downtown

can be more effective in reducing casualty. In this example, one vertical shelter is considered to

be built in the centroid of the downtown area with the highest population density in this area. It

is assumed that only the evacuees using the shortest path on the beach and in the downtown will

consider evacuating to this vertical shelter. Out of these evacuees, the proportion of the evacuees

with such an action (denoted pv) is considered to follow the uniform distribution on the interval

[0,1]. Note that similar to the horizontal shelters no capacity limit is set for the vertical shelter

and the shelter is assumed to be capable of withstanding the seismic and tsunami hazards. Let

Hs3 represent the evacuation risk under building the vertical shelter. Hs3 is estimated based on

the simulations using the modified agent-based evacuation model with the inclusion of the built

vertical shelter.

7.4.2 Candidate non-infrastructural mitigation strategies

Tsunami preparedness education (S4)

Tsunami preparedness education can be conducted in many forms such as visiting tsunami

museums, recognizing evacuation routes, etc. (Adiyoso and Kanegae 2012). Considering the

importance of the proportion of evacuees using the evacuation route (i.e., pr) from the sensitivity

analysis, here the tsunami preparedness education focuses on the effective use of the evacuation

route. To better prepare people for effective use of the evacuation route in evacuation, we need to

investigate the effectiveness of the route usage, i.e., estimate the evacuation risk conditional on pr

(denoted Hs4) and search the optimal value of pr that minimizes Hs4 . Note that Hs4 is efficiently

calculated using the augmented sample-based approach presented in Section 7.3.2.

To investigate the variation of Hs4 with pr, we artificially treat pr as following a uniform dis-

tribution in the interval [0,1]. Then the augmented sample-based approach can be used to effi-

ciently estimate Hs4 conditional on different values of pr. The tsunami preparedness education
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with respect to effective use of the evacuation route is expected to improve the evacuation through

changing people’s evacuation decisions (e.g., encourage more people to use the evacuation route).

Correspondingly, the lower bound and upper bound for the proportion of evacuation with irrational

behavior (following others, i.e., pf ) are reduced from 0.1 and 0.3 to 0 and 0.2, respectively. The

proportion of evacuation using the shortest path is given by ps = 1− pr − pf .

Evacuation drills (S5)

Disaster evacuation drills play an important role in training evacuees to respond properly in

emergency (Leelawat et al. 2018). The people with tsunami evacuation drill experience are ex-

pected to make the decision and behave properly when a real tsunami arrives (Leelawat et al.

2018). Considering the dominant importance of the car use (i.e, pc) to the evacuation risk based on

sensitivity analysis, a tsunami evacuation drill can be designed such that evacuees can experience

the evacuation delay caused by a large amount of car use as occurred in historical tsunami evacua-

tions (Ohno et al. 2011; Murakami et al. 2014). Then, the proper evacuation mode (i.e., evacuation

on foot or by car) can be recommended, e.g., encouraging evacuation on foot instead of by car.

To investigate the impact of car use on the evacuation risk, the variation of the evacuation

risk with pc (denoted Hs5) will be examined. Based on the investigation, an optimal value of

pc under which the evacuation risk is minimum can be identified. Based on the simulations for

estimating H0, Hs5 is efficiently calculated using the augmented sample-based approach presented

in Section 7.3.2.

7.5 Result and discussions

7.5.1 Risk mitigation by each candidate strategy

The risk mitigation (updated risk Hsi) by each of the five candidate strategies is evaluated by

comparing to the baseline H0. Same as H0, the expected PCR, CCR, and TCR are used as Hsi .

To calculate the evacuation risk Hs1 for evacuation route widening and Hs3 for building vertical

shelters, N = 2000 tsunami evacuation simulations with the selection of q(x,θ) = p(x|θ)p(θ)
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are used for each case. Note that the evacuation is simulated by modifying the evacuation model

that is described in Section 3.4.2. The selection of q(x,θ) and N = 2000 leads to high accuracy

estimates for the PCR, CCR, and TCR at the end of the evacuation simulation (i.e., one hour), with

δCoV below 3% for both strategies.

For bridge retrofit, the updated risk Hs2 is efficiently calculated using the reweighting approach.

The same N = 2000 samples for the estimation of H0 are used. Such selection results in a below

5% δCoV for the estimate Ĥs2 (when all m = 8 bridges are retrofitted).

For tsunami preparedness education and evacuation drills, both the variation of Hs4 over pr and

the variation of Hs5 over pc are efficiently calculated using the augmented sample-based approach.

Based on the N = 2000 tsunami evacuation simulations used for estimating H0, around nπ = 1200

samples are generated from π(x,θ). All the risk results reported under S4 and S5 are obtained

efficiently using the same set of 2000 simulations with low CoVs for all MCI approximations (i.e,

below 2%).

Evacuation route widening (S1)

The comparison of the variations of evacuation risk in terms of casualty rate for the pedestrian,

car, and total over time before and after widening evacuation routes are shown in Fig. 7.3(a)-(c),

respectively. Overall, the variations of the PCRs over time under route widening show similar

trends to that without the evacuation route being widened (i.e., the baseline). However, the PCR

becomes lower than the baseline (i.e., 12.2 < 15.9%) for evacuation route widening, which indi-

cates route widening can effectively reduce the casualty for evacuation on foot. This is because

route widening provides a much wider space for pedestrians to travel on most of the evacuation

routes. Then route widening would effectively reduce the potential pedestrian congestion and ulti-

mately improves the evacuation on foot. By comparing the CCRs before and after widening routes,

the CCR when widening routes is only a little lower than the baseline (i.e., 24.1% < 25.2%). Un-

like evacuation on foot, evacuation by car is not impacted so much. This is because the increase

of the number of lanes for the car would increase the traffic capacity for the route and alleviate

the potential traffic congestion, which ultimately reduces the CCR. However, route widening only
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Figure 7.3: The variations of evacuation risk in terms of casualty rate for (a) pedestrian, (b) car, and (c)
total over time before and after widening evacuation routes.

increases the number of lanes for the routes that are classified as road class of “Principle Arterial”

and “Local Road” while for those that are classified as road class of “Minor Arterial” and “Major

Collector”, the number of lanes does not change (shown in Table 3.2 and Table 7.1). In this case,

route widening does not reduce the CCR much. Due to the change of the PCR and CCR when

widening routes, the TCR becomes lower compared to the baseline. Overall, route widening can

effectively reduce the evacuation risk.

Bridge retrofit (S2)

Fig. 7.4 shows the evacuation risk in terms of casualty rate for the pedestrian, car, and total

when m ranges from 1 to 8, where the results under the optimal selection of m bridges are shown.

Here the optimal selections are identified by comparing all potential combinations of m bridges.

As expected, all the expected PCR, CCR, and TCR decrease with an increase of m, showing that

as more bridges are retrofitted the evacuation risk reduces. For example, the TCR decreases from
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41.1% to 17.5% when eight bridges are retrofitted. Another observation is the decrease of the

expected PCR, CCR, or TCR becomes slower for a larger m. For example, the TCR decreases

from 41.1% to 18.9% when m = 7 while only decreases from 18.9% to 17.5% when one more

bridge is retrofitted (m = 8). When m is small, most of these m bridges are the most important

to the road network. Retrofitting these m bridges would significantly reduce the impact of the

traffic capacity reduction (caused by the seismic damage to these bridges) on the evacuation risk.

As m increases, more bridges of less importance are retrofitted, which would have less impact on

reducing the evacuation risk. Overall, the optimal bridge retrofit strategy can reduce the evacuation

risk effectively.

Figure 7.4: The evacuation risk in terms of casualty rate for the pedestrian, car, and total using the optimal
bridge retrofit strategy with different m values.

Building vertical shelters (S3)

The comparison of the variations of evacuation risk in terms of casualty rate for the pedestrian,

car, and total over time before and after building vertical shelters are shown in Fig. 7.5(a)-(c),

respectively. The comparison shows similar trends to that under evacuation route widening. For

example, both the PCR and CCR are lower when building vertical shelters compared to the base-
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Figure 7.5: The variations of evacuation risk in terms of casualty rate for (a) pedestrian, (b) car, and (c)
total over time before and after building vertical shelters.

line. Ultimately, the TCR becomes lower due to the reduction in the PCR and CCR when building

vertical shelters. However, one big difference between building vertical shelter and route widening

is the change of the CCR. For building vertical shelters, the CCR becomes much smaller than the

baseline (i.e., 18.7% < 25.2%). This is because evacuees can evacuate to the vertical shelter with

a much smaller distance compared to evacuating to the horizontal shelters. The building of vertical

shelters can have a big impact on the evacuation by car. The above comparisons indicate building

vertical shelters can effectively improve the evacuation and reduce the evacuation risk.

Tsunami preparedness education (S4)

Fig. 7.6 shows the variations of evacuation risk H(pr) for the pedestrian, car, and total over

different values of pr. As pr increases, the PCR first decreases (from 19.3% to 14.4%) for most

values of pr (when pr is smaller than around 0.8) and then does not change much for relatively

large values of pr (when pr is larger than around 0.8). This means overall following the evacuation
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Figure 7.6: The variations of evacuation risk H(pr) as a function of pr for the pedestrian, car, and total.

route could effectively reduce the PCR. Compared to using other roads that are overall narrower

than the evacuation route, following the evacuation route is less likely to cause severe pedestrian

congestion and hence fewer casualties due to the delay. However, note that the route usage would

become less effective in the reduction of the PCR when most of the pedestrians use the route. This

is because pedestrian congestion would occur or become more severe when most of the pedestrians

select several evacuation routes, which would delay the evacuation on foot and may cause more

casualties. The variation of the CCR with pr shows a similar trend to the PCR, i.e., the casualty

rate first decreases and then almost does not change much with the route usage. This indicates

overall following the evacuation route could effectively reduce the CCR. The variation of the CCR

should be attributed to a similar reason for the variation of the PCR with pr. Compared to the

PCR, however, the decrease of the CCR with the increase of pr is larger. More specifically, as pr

increases from 0 to 1, the CCR decreases from 29.1% to 22.9% while the PCR decreases from

19.3% to 15.5%. Typically, evacuation by car tends to cause more severe traffic congestion than

evacuation on foot. In this case, the alleviation of traffic congestion by following the evacuation

route could improve the evacuation more significantly for evacuation by car than on foot. Due to

the variations of the PCR and CCR with pr, the TCR first decreases significantly and then increases
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slightly as pr increases. More specifically, the TCR first decreases from 48.4% to the minimum

value of 36.4% when pr is around 0.8, and then increases to 38.4% when all evacuees use the

route (i.e., pr = 1). Overall, the evacuation route usage can effectively reduce the TCR. From

the perspective of improving the evacuation performance, evacuees are encouraged to evacuate by

following the evacuation route.

Evacuation drills (S5)

Fig. 7.7 shows the variations of evacuation risk H(pc) for the pedestrian, car, and total over

different values of pc. The PCR decreases from 45.0% to 0 as pc increases from 0 to 1 (i.e., more

car use). This decrease can stem from fewer pedestrians (i.e., the larger value of pc) and/or less

pedestrian congestion due to fewer pedestrians. To investigate the exact reason, another pedestrian

casualty rate (denoted PCR0) is also calculated and shown in Fig. 7.7, where PCR0 is defined as

the number of pedestrian casualties divided by the number of pedestrians (instead of by the total

population like the PCR). Like the PCR, PCR0 also decreases with the increase of pc. Theoreti-

cally, since PCR0 is defined by normalization with respect to the total number of pedestrians, as

fewer people evacuate on foot (i.e., larger pc), PCR0 would not decrease if the pedestrian con-

gestion is not alleviated. In this context, the decrease of PCR0 indicates there is less pedestrian

congestion when fewer people evacuate on foot, under which the evacuation on foot is less likely

to be delayed due to pedestrian congestion. In this case, the decrease of the PCR with the increase

of pc also results from less pedestrian congestion and ultimately from fewer pedestrians.

The CCR increases as pc increases, i.e., from 0 to 56.0% when pc increases from 0 to 1, which

means that the increase of car use would increase the CCR significantly. Similar to PCR0, CCR0

(i.e., the proportion of the number of casualties that evacuate by car to the number of the evacuees

using cars) is calculated to investigate the reason for the variation of the CCR, i.e., whether it is due

to the increase in the number of cars or due to the potentially more severe traffic congestion caused

by more car use or due to both. CCR0 first increases (i.e., from 0 to 58.6% when pc is around 0.9)

and then decrease a little (i.e., from 58.6% to 56.0%) as pc increases. As more people evacuate by

car, CCR0 would not increase if the traffic congestion does not become more severe due to more
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Figure 7.7: The variations of evacuation risk H(pc) as a function of pc for the pedestrian, car, and total.

car use. In this context, the increase of CCR0 indicates that more car use results in more severe

traffic congestion, which delays the evacuation by car and causes more casualties. However, as

more cars are used (i.e., pc > 0.9), the congestion level would not increase so much, which would

not delay the evacuation further. In this case, CCR0 decreases a little with the increase of car use.

Due to the variations of the PCR and CCR with pc, the TCR first decreases (i.e., from 45.0% to

35.0%) and then increases (i.e., from 35.0% to 56.0%) with the increase of pc. This means more

people evacuating on foot would cause more casualties when the car use is small (i.e., pc < 0.3)

and more casualties would result from evacuation by car when the car use is large (i.e., pc > 0.3).

Some value of pc (optimal) leads to the minimum TCR, i.e., TCR= 35.0% is minimum when

pc = 0.3 in this example. This indicates that some optimal proportion of evacuation by car could

lead to the minimum total evacuation risk.

7.5.2 Comparison of evacuation risk reductions for different strategies

Based on the total evacuation risk (i.e., expected TCR) at the end of evacuation simulation (i.e.,

one hour), the risk reductions by all five candidate strategies are compared. Considering that the

evacuation risk varies with values of the critical risk factors for the non-infrastructural strategies,
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the optimal value of the updated risk is used for comparison. The comparison of evacuation risk

reductions for the candidate mitigation strategies is shown in Fig. 7.8.

Figure 7.8: Comparison of evacuation risk reductions for considered mitigation strategies.

As can be seen, all five strategies can effectively reduce the expected TCR. However, different

strategies demonstrate differences in the level of risk reduction. Bridge retrofit (S2) leads to the

maximum risk reduction (i.e., 23.6%) while the minimum risk reduction is given by the prepared-

ness education (S4) (i.e., 4.7%) in this example. The risk reductions by the other three strategies

fall between these two extreme reductions. More specifically, building vertical shelters (S3), evac-

uation drills (S5), and route widening (S1) result in a risk reduction of 12.4%, 7.4%, and 4.8%,

respectively. Overall, bridge retrofit and building vertical shelters are more effective in risk reduc-

tion than the three other strategies in this case. To effectively reduce the evacuation risk, bridge

retrofit and building vertical shelters can be implemented in priority if the resource is available.

However, other strategies such as the two non-infrastructural ones (especially the evacuation drill)

can also effectively reduce the evacuation risk. Therefore, the combinations of several mitigation

strategies might be considered in evacuation planning.
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7.6 Summary

The risk-informed evaluation of evacuation risk mitigation strategies was conducted to quanti-

tatively identify more effective strategies. The candidate mitigation strategies (including infrastruc-

tural and non-infrastructural strategies) were selected based on the critical risk factors identified

by sensitivity analysis. For each candidate strategy, the evacuation risk was either estimated based

on modifying the proposed agent-based model and rerunning simulations or efficiently calculated

using existing evacuation simulations. Based on the risk reduction, the effectiveness of each can-

didate strategy was evaluated and more effective strategies were identified.

As an illustrative example, the risk-informed evaluation of evacuation risk mitigation was con-

ducted for Seaside, Oregon. Based on the critical risk factors identified by sensitivity analysis, five

candidate mitigation strategies including the infrastructural strategy (i.e., route widening, bridge

retrofit, and building vertical shelters) and non-infrastructural strategy (i.e., disaster preparedness

education and evacuation drills) were considered. The evaluation of the effectiveness of the mit-

igation strategy showed that bridge retrofit can lead to more risk reduction followed by building

vertical shelters, evacuation drills, and route widening while preparedness education in terms of ef-

fective use of the evacuation route results in the least risk reduction among the candidate strategies

in this case. The above evaluation of the effectiveness can be used to guide effective evacuation

planning.
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Chapter 8

Conclusions and future directions

8.1 Conclusions

In this dissertation, simulation-based tsunami evacuation risk assessment and risk-informed

mitigation were performed under a proposed generalized framework. The proposed framework

integrated tsunami evacuation simulation, simulation-based evacuation risk assessment, sensitivity

analysis of evacuation risk, and risk-informed mitigation. An improved agent-based model was

first developed for more realistic tsunami evacuation simulation. A simulation-based framework

that can address complex evacuation models and uncertainty (including aleatory and epistemic

uncertainties) models was proposed for the quantification of evacuation risk. Then, sensitivity

analysis of evacuation risk with respect to the epistemic uncertainty was performed to investigate

the impact of various epistemic uncertainties on the variability in the risk. Sensitivity analysis

was also performed to investigate the impact of various risk factors and associated uncertainties

on the evacuation risk. Ultimately, risk-informed evaluation of different types of mitigation strate-

gies was conducted to identify more effective strategies that are robust to uncertainties. Efficient

sample-based approaches were developed to address the computational challenges in the risk as-

sessment, sensitivity analysis, and risk mitigation. Using the proposed generalized framework, the

simulation-based tsunami evacuation risk assessment and risk-informed mitigation were performed

for Seaside, Oregon.

Chapter 2 proposed a generalized framework for simulation-based tsunami evacuation risk

assessment and risk-informed mitigation. The framework was built layer by layer by integrating

tsunami evacuation simulation, simulation-based evacuation risk assessment, sensitivity analysis

of evacuation risk, and risk-informed evaluation of mitigation strategies. The tasks in subsequent

chapters were conducted under this proposed framework, which can be used to support effective

evacuation plan-making and management.
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Chapter 3 developed an improved agent-based model for a more realistic tsunami evacuation

simulation. The proposed model consists of the evacuation environment model (EEM), evacua-

tion decision and behavior model (EBM), and evacuation performance model (EPM). Compared

to existing agent-based models, the proposed model incorporates many of the typically neglected

or simplified but important factors and mechanisms associated with the evacuation. For EEM,

the traffic capacity reduction of the link due to bridge damage or debris from damaged buildings,

the availability of traffic information on route passability, and the population mobility were all

considered. For EBM, a multimodal evacuation model was proposed to concurrently consider the

pedestrian speed variability, speed adjustment for both the pedestrian and car according to traf-

fic density, and the pedestrian-vehicle interaction (which is modeled by traffic stage transitions).

Different evacuation path selections were considered, including following the evacuation route,

searching the shortest path, and following behavior. Different other aspects were also included

to better simulate the complex evacuation decisions and behaviors. Also, various uncertainties

associated with the evacuation were explicitly considered. These improvements would better char-

acterize the nature and dynamics of the tsunami evacuation system, model the individual-level

interactions among evacuees, and the evacuees’ interactions with the environment. The tsunami

evacuation process in Seaside, Oregon was investigated using the proposed agent-based tsunami

evacuation model.

Chapter 4 proposed a simulation-based framework for the quantification of tsunami evacuation

risk. Under the proposed simulation-based framework, the proposed agent-based tsunami evacu-

ation model was used to simulate the evacuation and various uncertainties (including the aleatory

and epistemic uncertainties) associated with the evacuation were considered. Imprecise probabil-

ity models were used to quantify both types of uncertainties, i.e., probability models are used to

model the aleatory uncertainty in input random variables while the epistemic uncertainty (for the

selected probability model) is quantified through the uncertainty in the distribution parameter. The

evacuation risk is quantified by propagating the uncertainties in input random variables and distri-

bution parameters. Using the proposed simulation-based framework, the tsunami evacuation risk
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in Seaside, Oregon was assessed and investigated under different scenarios in terms of different

population sizes, different times of the day, etc.

Chapter 5 conducted the sensitivity analysis of the tsunami evacuation risk with respect to the

epistemic uncertainty (so-called risk sensitivity analysis) to investigate the impact of the epistemic

uncertainty on the variability in the risk. The variance-based sensitivity analysis (i.e., using Sobol’

index as the sensitivity measure) was efficiently performed by a proposed augmented sample-

based approach. The sensitivity indices for all distribution parameters (including both first-order

main effects and higher-order interactions) were estimated based on only one set of simulations.

The sensitivity analysis of tsunami evacuation risk with respect to the epistemic uncertainty was

performed for Seaside, Oregon under two different risk definitions using the proposed augmented

sample-based approach. The risk sensitivity analysis results (i.e., the importance of distribution pa-

rameters) can be used to prioritize the data collection for effective epistemic uncertainty reduction

and further for more accurate risk assessment.

Chapter 6 performed the probabilistic sensitivity analysis to identify the critical risk factors that

have high impacts on the evacuation risk. Sensitivity analysis was also performed to investigate

the variation of the sensitivity of risk factors with some key distribution parameters. This sensi-

tivity analysis was efficiently conducted using an augmented sample-based approach by extending

the one proposed in Chapter 5. Sensitivity analysis of tsunami evacuation risk was performed to

identify critical risk factors for Seaside, Oregon. The identified critical risk factors can be used to

guide effective evacuation modeling and selection of candidate risk mitigation strategies.

Chapter 7 conducted a risk-informed evaluation of different candidate risk mitigation strate-

gies (including infrastructural and non-infrastructural strategies) to identify more effective strate-

gies that are robust to uncertainties. The candidate mitigation strategies were effectively selected

based on the critical risk factors identified by sensitivity analysis in Chapter 6. For each candi-

date strategy, evacuation risk was either estimated based on evacuation simulations by modifying

the proposed agent-based model or efficiently estimated based on existing simulations. Based on

the risk reductions, the effectiveness of each candidate strategy was evaluated and more effec-
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tive strategies were identified. The risk-informed evaluation of risk mitigation strategies including

route widening, bridge retrofit, building vertical shelters, preparedness education, and evacuation

drills was conducted for Seaside, Oregon. More effective mitigation strategies were identified,

which can be used to guide effective evacuation planning.

8.2 Future directions

The proposed agent-based tsunami evacuation model incorporates many of the important fac-

tors and mechanisms in the evacuation with the goal to simulate the evacuation process more

realistically. However, some assumptions on the evacuation decision and behavior were made due

to the lack of empirical data from historical events, evacuation drills, etc. Also, people’s evacua-

tion behavior could be quite complex in the multi-hazard environment within the condensed time

frame. The availability of empirical data could support to more realistically capture the complex

evacuation behavior and model the evacuation process using the proposed evacuation model. This

motivates the development of methodologies to collect data for the validation and training of the

proposed evacuation model.

In addition, some potentially important factors and mechanisms other than the considered ones

can be incorporated into the proposed evacuation model to more comprehensively investigate the

complex evacuation behavior. For example, destructive tsunami waves/flow can carry debris (e.g.,

logs, vehicles, etc.) when the tsunami propagates inland. The tsunami debris can block the road

and potentially place high impact loads on the pedestrian or car in evacuation. Depending on the

direction of the tsunami, location of the shelters, and the evacuation routes (e.g., when evacuees

are more likely to go through the inundation, while which is less likely to occur in the study area in

this research), the road blockage due to water-borne debris may become important and may need

to be explicitly modeled. The modeling of water-borne debris and its impact on the evacuation

environment, behavior, and performance can be incorporated into the corresponding sub-model of

the proposed evacuation model. In the EEM, the model for the generation of water-borne debris

can be incorporated and the impact of the debris on the traffic capacity of the corresponding road
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can be modeled (e.g., reduce the traffic capacity according to the level of the road blockage due

to the tsunami debris). In the EBM, the modeling of the evacuation under the blocked road due

to the tsunami debris can be incorporated, e.g., reroute when the road is heavily blocked by the

tsunami debris. In the EPM, when approximating the evacuation performance (i.e., casualty) using

the factors such as the evacuees’ characteristics and flow characteristics, the impact loads on the

pedestrian or car due to tsunami debris can be incorporated.

The generalized framework for simulation-based tsunami evacuation risk assessment and risk-

informed mitigation was applied under one of the worst-case multi-hazard scenarios (i.e., historical

event). The results on risk assessment and mitigation under such extreme scenarios could provide

valuable information for evacuation planning and management. However, the proposed framework

can be used to perform the simulation-based tsunami evacuation risk assessment and risk-informed

mitigation under probabilistic multi-hazard scenarios, and guide effective evacuation planning and

management accordingly. Furthermore, the proposed generalized framework can be extended to

different regions or hazards (e.g., hurricane) or evacuations (e.g., building evacuation). These are

all future research areas of interest.

The risk-informed evaluation of different types of risk mitigation strategies was conducted

to identify more effective strategies. Due to the challenges of pricing some of the strategies (e.g.,

evacuation drills), the cost of each strategy was not taken into account in the evaluation. To provide

more comprehensive information for decision-making, the cost-benefit analysis can be conducted

for each strategy to identify more effective strategies considering that the resource (e.g., budget)

for risk mitigation is usually limited. Also, the optimal combination of different strategies can be

identified through optimization (e.g., optimizing the objective function in terms of the cost and

benefit of each mitigation strategy) such that the evacuation risk can be reduced most effectively.
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Appendix A

Stochastic sampling

In the proposed sample-based approaches, e.g., in Chapter 5, samples are required to be gener-

ated from a joint auxiliary PDF π(x,θ) that is proportional to the integrand of the risk integral,

π(x,θ) =
h(x)p(x|θ)p(θ)

H
∝ h(x)p(x|θ)p(θ) (A.1)

Samples from π(x,θ) can be generated using a stochastic sampling algorithm such as the

accept–reject algorithm (Robert and Casella 2004). If directly running accept-reject algorithm, it

works as follows. First, some joint proposal density qs(x,θ) is selected, e.g., selected the same as

the prior distributions qs(x,θ) = p(x|θ)p(θ) or using techniques such as adaptive kernel sampling

density (AKSD) (Jia et al. 2017). Then, independent samples are generated as follows,

(1) Simulate candidate sample [xk,θk] from qs(x,θ), and uk from uniform (0,1).

(2) Accept [xk,θk], if

h(xk)p(xk|θk)p(θk)

M · qs(xk,θk)
> uk;where M > max

[

h(xk)p(xk|θk)p(θk)

qs(xk,θk)

]

(A.2)

(3) Return to (1) otherwise.

The above process is repeated until the required number of samples {[xk
π,θ

k
π], k = 1, . . . , nπ}

are obtained. The sampling efficiency can be calculated as the number of trials required to obtain

one sample but ultimately determined by the selection of proposal density qs(x,θ) (Robert and

Casella 2004) and M .

The above stochastic sampling can be seamlessly integrated within the sample-based evaluation

of the system risk in Eq. (4.3) as shown in Fig. A.1. More specifically, from the risk assessment,

there are already N candidate samples {[xk,θk], k = 1, . . . , N} generated with the corresponding

risk measure h(x) calculated. Such information can be directly used in the stochastic sampling to
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generate samples from π(x,θ). In particular, for all the candidate samples, check the following

condition

h(xk)p(xk|θk)p(θk)

M · qs(xk,θk)
> uk (A.3)

If it is satisfied, then the sample [xk,θk] is accepted as a sample from π(x,θ). In the end, a total

of nπ samples are generated.

Figure A.1: Integration of stochastic sampling with risk assessment to generate samples from π(x,θ).
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Appendix B

Kernel density estimation

In the estimation of the conditional risk, Sobol’ index, and relative entropy using the proposed

simulation-based approaches in this research, kernel density estimation (KDE) is used to efficiently

approximate the marginal auxiliary density based on the marginal samples.

B.1 Regular KDE

Based on samples, a non-parametric approximation to the underlying PDF can be obtained

using KDE. This is established by centering over each of the samples, a smooth, symmetric Kernel

with some chosen bandwidth, defining the spread of the Kernel (the region over each sample

that the Kernel ultimately impacts). For example, consider the scalar distribution parameter θ

with corresponding PDF π(θ), based on nπ samples {θk}, k = 1, . . . , nπ from π(θ), the KDE

approximation of π(θ) can be established as

π̃(θ) =
1

nπ

nπ
∑

k=1

1

wopt
K

(

θ − θk

wopt

)

(B.1)

where K(.) is the chosen kernel (e.g., Gaussian kernel or Epanechnikov kernel), wopt is the band-

width parameter. The regular KDE for an example π(θ) is illustrated in Fig. B.1, where the samples

from π(θ) is shown in Fig. B.1(a) and the approximation established by regular KDE (i.e., KDE

without boundary correction) is shown in Fig. B.1(b).

B.2 Boundary corrected KDE

The regular KDE underestimates the PDF values near the boundaries, especially when the

PDF has large values near the boundaries. As can be seen in Fig. B.1, it is obvious that regular

KDE significantly underestimates the PDF values near the boundaries. To address this, boundary
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Figure B.1: Illustration of KDE and boundary corrected KDE (Jia 2014)

corrected KDE instead of regular KDE is used for a more accurate estimation of the relevant PDFs

as well as the conditional risk, Sobol’ index, and relative entropy.

A boundary corrected KDE based on reflection of samples is adopted (Karunamuni and Zhang

2008). However, the one in Karunamuni and Zhang (2008) is for scalar variable. To address the

need of KDE for multivariate variables, the boundary corrected KDE in Karunamuni and Zhang

(2008) was extended in Jia and Taflanidis (2016) to accommodate multivariate variables. The

boundary corrected KDE for multivariate variables in Jia and Taflanidis (2016) is briefly described

next. Consider a m-dimensional multivariate variable represented by θ = [θ1, . . . , θi, . . . , θm] with

corresponding joint PDF π(θ), based on nπ samples {θk}, k = 1, . . . , nπ from π(θ), the multi-

variate boundary corrected KDE can be established as follows. The correction is implemented for

each component of the θ vector independently, and the joint PDF for the entire vector is obtained

by the product kernel rule, which is a common methodology for developing multivariate KDEs.

This ultimately leads to the following KDE expression (Jia and Taflanidis 2016)

π̃(θ) =
1

nπ

nπ
∑

k=1

m
∏

i=1

{

1

wopt
i

[

K

(

θi − θki
wopt

i

)

+K

(

θi − θli + g(θki − θli)

wopt
i

)

+K

(−θi + θui + g(−θki + θui )

wopt
i

)]}

(B.2)

where g(.) is a function to facilitate the reflection of samples in the boundary, θli and θui are the

lower and upper bounds of θi, respectively. For example, in Fig. B.1(a), the samples in green

correspond to the reflected samples for correction near both boundaries (i.e., regions near the lower
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and upper bounds). Compared to regular KDE, the boundary corrected KDE has two additional

terms. The second and third term within the brackets in Eq. (B.2) are introduced for addressing

reflection to the left and right, respectively, boundary for θi, and can be neglected for unbounded

parameters. More details about selection of g(.) can be found in Karunamuni and Zhang (2008).

For K(.) the Epanechnikov kernel is chosen here which has been shown to provide optimal results

for many applications whereas the bandwidth is chosen based on the recommendation in Jia and

Taflanidis (2016), leading to

K(t) = 3
4
(1− t2) if − 1 ≤ t ≤ 1

= 0 else
(B.3)

wopt
i =

[

25(
3

5
)2−m(2

√
π)m

]1/(m+4) [
4

(m+ 2)ns

]1/(m+4)

σi (B.4)

where σi corresponds to the standard deviation for the samples {θki } for θi. As can be seen from

Fig. B.1(b), the boundary corrected KDE (i.e., using Eq. (B.2) with m = 1 for scalar variable) gives

much closer approximation of the actual PDF near the boundaries while regular KDE significantly

underestimates the PDFs values near the boundaries.
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