(Zz? ’f

Inrelligent Automation and Soft Computing, Vol. 2, No. I, pp. 1-14, 1996 -
Copyright © 1996 AutoSofi® Press
Printed in the USA. All rights reserved

G 4

A VIRTUAL MANUFACTURING WORKCELL
FOR AUTOMATED ASSEMBLY"

AKIHIRO SATO
Prodiction Engineering Development Laboratory
NEC Corporation
Kawasaki, Kanagawa, Japan

ANTHONY A. MACIETEWSKY
Purdue Universiry

West Lafayette, Indiana, USA

cells for the manufacwure of different products, particularly when they involve the cooperation of multiple
robot manipulators. ’

Key Words: virtual environment, automated assembly

1. INTRODUCTION

The introduction of robots into assembly lines has resulted in a significant improvement in both the
speed and quality of automated assembly. However, the goal of using multiple robots and ancillary

of the fact that robots are by definition adaptable machines, the human effort required to reprogram
- workcells for different tasks has been considerable., The advent of programming languages for manufac-
) turing and automation was one step in addressing this issue.! The utility of adding a graphical simulation
component to these programming languages was quickly realized >3-4 Recently, the graphical interaction
associated with assembly planning has been enhanced to provide virtual environments for planning
automated assembly.567 It is this progression of interaction with a prospective product design to assess
its manufacturability that motivates the work described here. e '
Since the human designer has the most knowledge concerning the assembly of a prospective product,
the focus of this work is to glean from him/her the necessary knowledge for automating the assembly
process. We are particularly interested in three pieces of information that are trivial for the desi gnerand
yet very difficult to automatically calculate given only the product geometry. These are: (1) the desired
order of assembly, (2) stable grasp configurations for the components, and (3)afine-motion strategy that

t This work was supported by the NEC Corporation and in part by the National Science Foundation under grant CDR 8803017 to the Engineering
Research Center for Intelligent Manufacturing Systems. An earlier conference version of this work was presented at the 1994 IEEE International
Conference on Systems, Man, and Cybernetics, San Antonio, TX. October 2-5, 1994,

1

Intelligent Automation and Soft Computing

mechanism

spring reverse lock

Figure 1. This figure shows a VHS cassette tape assembly that is used as an lllustrative example throughout this work.

would allow a compliant robot to successfully complete the assembly.? The goal here is to make the task
of providing this desired assembly information as natural as possible for the human designer. Therefore,
the interface selected is one which provides a “virtual assembly environment” for the designer. The user
of this system can see their hands in a three-dimensional relationship with the graphical CAD/CAM
components of the assembly and “assemble” them together. Using this system, the user can concentrate
onthehigh-level tasks required to complete the assembly and let the computer transform those commands
into the motion of the specific robots in the workcell. This provides the designer with a natural and
intuitive interface for programming robot motions without requiring any knowledge of the specific robot
thatis to perform the assembly. In fact, we wish to explicitly avoid the representation of any specificrobot,
in direct contrast to telerobotic VR systems used for remote manipulation.? The goal is to obtain a generic
assembly strategy that is only a function of the product design which can be translated into a variety of
possible workcells that might contain robots, hard automation, and/or humans. This provides the designer
with immediate feedback regarding the manufacturability of his/her design as well as providing a tool for
evaluating different production lines.

The principals of the system described here are illustrated by using the simple example of the VHS
cassette tape shown in Figure 1. This is only an illustrative example in order to prevent the presentation
from being too abstract. The procedure is identical for any other generic assembly task. To illustrate the
difficuity in automatically computing an assembly strategy for even this simple assembly, consider the

)
H

A Virtual Manufacturing Workcell for Automared Assembly - 3

tape locking mechanism shown in the close-up. To assemble the tape locking mechanism the lock release
component can only be inserted after the spring and both the forward and reverse lock components are
in place. Also, the lock release component must be manipulated to provide a horizontal force simulta-
neously against both locking components, thus compressing the spring, while being vertically inserted.
Note that this assembly procedure requires the specification of an assembly sequence, a stable grasp, and
a fine-motion strategy that are trivial for the mechanism’s designer; but would be exceedingly difficult
for the most state-of-the-art algorithm for geometric analysis. The three-dimensional path that the lock
release component must take is provided by the physical interaction of the designer’s hands with the
graphical CAD/CAM modet of the VHS cassette assembly in a virtual environment. The sequential set
of three-dimensional paths for the components are then used as desired trajectories for the end effector
of the robot that is to perform the actual assembly. The control of a specific robot’s joints is automatically
calculated by using a combination of global path planning for guaranteeing collision-free trajectories and
Jacobian control for fine-motion planning. , ’
The remainder of this article is organized as follows. Section I gives an overview of the entire -

experimental testbed, including both the equipment to implement the virtual assembly environment as
well as the real assembly workcell, Section III gives a brief description of the CAD/CAM database used
to describe the components of an assembly and their relationship to one another. Section IV presents an
account of the interaction that occurs between the designer and the virtual assembly environment during
the specificationof an assembly. A description of how these high-level assembly commands are then
converted into specific low-level robot joint trajectories is provided in Section V. This section also
discusses the software available to allow the designer to preview the resulting robot motion control
commands before sending them to the actual robot. Finally, the conclusions of this work are presented
in Section V1. » -

2. OVERVIEW OF EXPERIMENTAL SETUP

The system described here was implemented and evaluated on the experimental testbed shown in
Figure 2. The testbed can be functionaily divided into two main components, namely, the virtual assembly
environment and the actual robot workcell. The virtual assembly environment provides the interface for
the designer to interact with and evaluate his/her prospective product design while the actual robot
assembly workcell provides a means of validating the efficacy of the assembly operations generated by
the system. ‘ :

The virtual assembly environment is centered around a SPARC ZX graphics workstation that is
responsible for generating stereo images of the CAD/CAM models of the components in the assembly.

- These stereo images are viewed by the user through a pair of liquid crystal eyeglasses that are shuttered

at 114 HZ in synchronization with the workstation. The glasses contain ultrasonic sensors to track head
position/orientation and thus allow the system to appropriately modify the images generated by the
workstation to improve the three-dimensional illusion. The user interacts with the component models by
using an ultrasonic 6D mouse and the electromagnetic Polhemus Fastrack system, both of which provide
the position/orientation of the user’s hands. The Polhemus system provides a higher degree of resolution
and accuracy, however, the 6D mouse simplified the specification of discrete events, €.g., grabbing or
releasing an object. . , S

The real robot assembly workcell is centered around a five-axis Adept-I manipulator that performs the

. actual assembly of the components into the finished product. The Adept-Lis outfitted with an XGS vision

system, 2 tool changer, and a parallel jaw gripper. It is controlled using the standard V+ robot control
language which is downloaded to the robot from the workstation via a serial link. A PUMA. 560 robot
which is controlled in the same manner is also available in the workcell for evaluating coordinated robot
motion in multiple cooperating robot workcells. It should be emphasized that the successful completion
of automatically assemblying the product from the generic fine-motion strategy that isextracted from the

4 Intelligent Automation and Soft Computing

. PUMA 560

Figure 2. Thisfigure shows a photograph of the experimental testbed forthis system. The virtualassembly environment consists
of a SPARC ZX workstation for image generation, 3D shuttered glasses with head tracking for sterec viewing, and a 6D mouse
and Polhemus Fastrack system for hand tracking and interaction. The robot workceil consists ot an Adept- robot with an XGS
vision system, tool changer, and parallel jaw gripper for performing the actual assembly. The PUMA 560 robot is available for
testing cooperative assembly in multiple robot workcells. : .

the human designer is dependent on having some method of controlling the forces of interaction between
the components being assembled. In other words, the specified trajectory is really a compliant-motion
strategy as first introduced by Lozzano-Perez, et al.? In our testbed workcell we are unable to actively
control the compliance since the robots are not currently outfitted with force/torque sensors so that we
rely on a passive compliance scheme using an RCC device.

It is important to note that the virtual assembly environment with which the designer interacts is
completely independent of the actual physical robot workcell that is to perform the assembly. The high-
level assembly operations generated from the user’s interactions with the component models are
analogous to high-level computer language statements that are then compiled to machine code fora
particular computer. Likewise, the system’s software provides the “compilation” of the high-level
assembly operations intothe specific workeell platform regardless of the type or number of robots present.
This feature provides portability of the high-level assembly commands and allows a comparative
evaluation of various different possible platforms for the actual assembly.

3. DESCRIPTION OF CAD/CAM DATABASE

The majority of the information required by the virtual assembly environment is available from the
component models stored in any typical CAD/CAM package. In particular, the virtwal assembly

e 1 e b e i 2 8

R

PRy

AN IR ARSSrs i smeers L i b e e AV s

A Virtual Manufacturing Workcell for Automated Assembly

lock release

forward lock

;. reverse lock

screw :
l screw
_ . instances
(case lock release) forward lock) (reverse lock) « screw) : screw) (Screw)
! ! o
! o

! i -
i LT
i _case ilock release {forward lock)) (reverse lock) « screw) classes -

\

e \ - o
\\%~~~ \\ \\ R

s
(_VHS cassette tape /

R e

Figure 3. The upper part of this figure shows an expioded view of the CAD/CAM mode! for the VHS cassette tape. The lower part
shows a tree representing the class hierarchy for selected companents of the VHS cassaette tape. (Not al! parts are inciuded in
order to simplify the diagram.) :

environment must have geometric information concerning the shape and location of every component in
the assembly. Since many assemblies contain multiple instances of the same component, it is useful to
impose a class hierarchy onto their models. As a particular example, consider the VHS video cassette
shownin Figure 1. Anexploded view of the CAD/CAM model for this cassette is given in Figure 3. Note
that there are three identical screws, i.e. they have the same shape, but they are obviously located in
different positions in the final assembly. Thusitislogical to specify a class called “screw” which contains
the information common to all screws and then to specify instances of this class forinformation that is
specific to an individual screw, such as its position. This class hierarchy of components is illustrated in
the bottom half of Figure 3.

The information required by the virtual assembly environment that is common to all classes is primarily
graphical information consisting of component geometry and material properties required to generate
realistic images. All geometric information is specified relative to a unique class coordinate frame but
is parameterized by attributes that are specific to individual instances of this class.

The particular CAD/CAM modeling package that we use is called TWIN, which is a feature-based
solid modeler that uses a hybrid B-rep/CSG representation.!® The format for its representation of

6 Intelligent Automation and Saft Computing

A Component

~,
N
N

A

Figure 4. The CAD/CAM solid model used to define the components is a hybrid B-rep/CSG representation. Face contact
information is contained between all faces, both within and between components, along with pointers to the face origin in the
CSG model.®

component geometry is schematically illustrated in Figure 4. This representation is particularly useful
for our application because it allows us to use constructive solid geometry to model the components while
also maintaining a boundary representation for efficient display. The two representations are linked by
pointers that identify the CSG primitive from which each boundary face originated. The CSG portion of
the representation is the mechanism by which we impose the class structure. All members of a particular
class must, by definition, have the same CSG tree structure. Variations between members are obtained
by specifying different values for the parameters that define the CSG primitives at the leaves of the tree.

Individual instances of a class inherit all of the general characteristics of their parent class, however,
specific information such as a component’s position/orientation relative to the world coordinate frame is
also required. The initial positions/orientations for different instances of the same class may or may not
have identical values. For example, if all of the components for the VHS cassette are provided to the
workcell in a parts kit then the individual screws will have different positions. However, if the screws
are introduced to the workcell from a parts feeder then the initial position and orientation of all instances
will be identical and arc initialized as a property of this class.

4 b mhtban Gt e A

i

A Virtual Manufacruring Workcell for Automared Assembly 7

It is important to note that there is one other very important piece of information available from the
CAD/CAM model of an assembly, i.e., the final relative position/orientation of each component in the
finished assembly. This is important because it allows the system to correctly interpret the user’s
manipulation of the components within the virtual assembly environment. In particular, consider a user’s
insertion of a pin into a shaft. If the system’s interpretation of the assembly operation were to rely strictly
on user input, then the user would have to insert the pin to precisely the correct depth at precisely the
correct orientation. However, by knowing the ultimate destination of the user’s intended insertion, the
actual trajectory provided by the user can be much less precise because it can be automatically post-
processed by the system as discussed in Section V. This provides the user with a natural manipulation
interface without the fatigue associated with specifying extremely precise motions.

4. VIRTUAL OBJECT MANIPULATION

When a user provides the system with the CAD/CAM model of a particular product, the virtual
assembly environment is initialized with the individual components of the assembly scattered throughout
the virtual workspace. Itisthen the user’s responsibility to grasp individual components and to assemble
them into the final product. The grasping operation is performed by a virtual parallel-jaw gripper whose
motioniscontrolled by the sensed motion of the user’s righthand. The usermay also directly graspobjects
and manipulate them with his/her left hand. The process of mating two components or sub-assemblies into
asingle sub-assembly is described by the following ei ght step process where the object grasped with the
right hand is denoted A and the object grasped with the left hand is denoted B.

(1) Approach Component A In this step the user identifies for the system the sequential order
in which components are to be assembled by selecting the next component to be added to the
current sub-assembly. The actual trajectory that the user follows to arrive near component A
is not important, only the position/orientation of the gripper at the approach point is stored by
the system. This point marks the transition from gross-motion planning, which is automati-
cally done by the system, and fine-motion planning for which user input is utilized.

(2) Grasp Component A Since a component’s shape may be too complicated to automatically
determine a suitable grasp configuration, i.e., one that is stable and collision free, the system
extracts this information from the human designer.

(3 Designate Departure Point Here the user lifts the grasped component A to a point where it
is no longer necessary to capture the user’s motion of the object for fine-motion planning.
The actual path of component A to its position specified in step 5 will later be automatically
determined by the global motion planner described in the following section.

(4) Grasp Component B (optional) The left hand is used to grasp and manipulate component
: B. This allows the user to specify the preferred orientation of part B to the system for the
assembly process. Ideally, part B would never need to be manipulated in the actual workceil.
but would be placed in the preferred orientation when originally introduced to the workcell.

(5) Specify Approach Point (A to B) This step is similar to step 2 in that the user brings
component A to a point near component B where the actual user movement will start being
stored in order to assist in fine-motion planning.

(6) Assemble Component A with B The user manipulates component A in close proximity or
contact with B to arrive at the final mated configuration. The exact trajectory of thg user’s
hands is stored and post-processed to specify the fine motion of the robot which ultimately

Intelligent Automation and Soft Computing

performs the assembly. This step concludes with the user releasing component A.

(7) Designate Departure Point The system continues to store the trajectory of the user’s hands
as they extract the virtual parallel-jaw gripper from close proximity with the sub-assembly
(A+B). In the above process, the approach and departure points are stored as 4 x 4 homoge-
neous transformations with respect to the appropriate local component coordinate frame with
the fine-motion trajectories additionally including velocity information.

From the above desc:iption of the manipulation interface, it should be clear that the motions can be
broadly separated into two categories, namely fine motion and gross motion. The fine motion requires
deljcate movements in a relatively localized area, such as in steps 2,3,6, and 7, whereas the gross motion
is characterized by rather large movements across the entire virtual workspace, as in steps 1,4, and 5. To
deal with the conflicting requirements of these two types of motion, the system provides the user with two
modes of interaction with the objects, namely position control and velocity control. .

The position control method is suitable for specifying the fine motion associated with actual assembly
operations because it is intuitive for the user. The component that the user is grasping will move in the
same manner as his/her hand moves thus giving the impression that he/she really is grasping the
component. The drawback of this intuitive control method is that it is limited by the range of the user’s
physical reach. While increasing the scale factor between the real and the virtual world can alleviate this
problem to some extent, doing so reduces the intuitiveness of the interface as well as the resolution of the
motion. To address these issues, the system switches to velocity control whenever gross motion
across large regions of the virtual workspace are desired. In this mode a constant displacement of
the user’s hand will create a constant velocity of the virtual gripper. It is important to note that the
views generated in the virtual environment are automatically adapted to deal with these two different
modes. Inparticular, for fine motion under position control, the view angle is automatically reduced
to provide a close-up view of the assembly whereas it is automatically increased to ultimately inciude
the entireworkspace for gross motion.

5. ROBOT TRAJECTORY GENERATION

After the user has completed manipulating all of the components into the final desired assembly, the
systemn will have accumulated a sequential profile of alternating fine and gross motion data. The system
then processes this data into a form that can be used to control the robots that are to perform the actual
assembly. While the fine and gross motion data are processed differently, the output in each case is a set
of trajectories in joint space for each robot in the workeell that can be sent directly to the robot controller.

5.1 Fine Motion

The steps required to process the fine-motion data acquired from the human user’s hands into robot
joint angle trajectorieswill be illustrated through a specific example. Consider the insertion of the lock
release component shown in the close-up of Figure 1. This lock release component is shown at its
approach point in Figure 5 which is the start of a fine-motion phase. The actual motion data for the
assembly operation acquired from the user is shown in part (a) of the figure. Note that the general
characteristics required for a successful mating of the various components is clearly visible in the captured
trajectory. In particular, the motion starts with alowering of the lock release component inthe y direction
from the approach point, followed by a motion inz that puts it in contact with the forward and release lock
components, compressing the spring (see Figure 1), before it is completely lowered into its final position.
In addition to these desirable characteristics, however, there are several undesirable artifacts present as
well, primarily due to the jerky and inconsistent motion of the human.

To extract only those characteristics required for a successful assembly the raw motion data is first

L2 B L S eSS JAUPAAZ T (1 A= 2

A Virtual Manufacturing Workcell for Automated Assembly

Taw oata

2tm 0545 023
xim)

{a) (b)

2tm) 0345 0.) = 0848 0.3

)

(c) (d)

Figure5. This figurellustrates the post processing performedon fine-motiontrajectories obtained from directly tracking auser’s
manipulation of the virtual objects. This particular exampie is from the insertion of the lock releass component (see Figure 1),
which is shown at its approach point. In (a) the raw data obtained from the user’s hand motion is shown, Filtering of this data
resuits in the smoothed trajectory illustrated in (b). The trajectory is then compressed by identitying key locations along the
trajectory as illustrated in (c). The key locations can then be interpolated with any desirable velocity protile in order to meetthe
requirements of the specitic robot that is to perform that actual assembly (d).

filtered to remove the high frequency oscillations. This is done by applying an FFT to the data and then
applying a low-pass filter in the frequency domain. The cut-off frequency of this filter is variable to
accommodate different users (10Hz is used in Figure 5). The filtered signal is then transformed back into
the time domain by performing an inverse FFT. The resulting trajectory for this example is stiown in
Figure 5(b). : : :
The next step in processing the trajectory is to exiract the geometric properties of the fine-motion
strategy from the speed at which they were performed by the human. This is done by reparameterizing
the filtered hand motion to obtain an equal arc length representation of the path. This path is further
compressed by decreasing the number of locations as the radius of curvature increases. Our approach is
to vary the rate at which locations are stored from a minimum of 10% of the total arc length in areas of
infinite curvature, i.e., straight line motion, to a maximum of every 1% of the total arc length in areas of
minimum curvature. For the example in Figure 5(c) the total arc length for the fine-motion strategy is
approximately 4 cm so that in the straight portions of the trajectory key locations are separated by

10 Intelligent Auromarion and Soft Computing

approximately 4 mm and key locations are never closer than 0.4 mm. :

The required trajectory to perform this phase of the assembly is now available as a discrete set of n
homogeneous transformations for the gripper that is to carry the component, denoted x(k,) through x(k).
From this representation it is easy to calculate individual joint set points for any robot’s controller. In
particular, given a specific robot with a particular limit on its maximum tool velocity, the key points of

the trajectory are converted into a desired hand velocity x(t). The robot joint velocities 8 required to

achieve this trajectory are then calculated by solving
i=JO

wherevJ is the manipulator Jacobian for this particular robot. Integrating § and sampling at the control
cycle time of the robot being considered provides the joint positions 6(¢) that are used by the commercial
robot controller. Details of this inverse kinematics process are provided in Macijewski and Klein.!

5.2 Gross Motion ,

Each fine-motion trajectory that is performed is preceded by a gross motion that positions the robot’s
gripper at the appropriate approach point (see steps 1 and 5 in Section IV). The data obtained from the
user of the virtual assembly environment for a gross motion phase consists only of a starting homogeneous
transformation for the gripper S, and a goal homogeneous transformation G, corresponding to an approach
point. Itisimportant to appreciate why these gross motion trajectories are not directly obtained from the motion
of the human user as he moves the virtual gripper throughout the virtual assembly environment. The firstreason
is that the virtual assembly environment is intentionally made independent of the actual robot workeell that is
toperformthe assembly. Thus the user has no knowledge of any ancillary equipment that may be located within
the real workcell with which collisions must be avoided. The advantages of this approach are that the usercan
intuitively assemble the product and then later evaluate different realizations of possible workcells without
repeating the virtual assembly process. Second, it is very difficult for a human to manually determine a
collision-free trajectory for an articulated robot. :

To deal with the issue of generating a collision-free robot joint angle trajectory &(z) from only a start

and goal configuration, a global path planning algorithm based on the approach presented in Maciejewski -

and Fox'? is used. This algorithm takes all of the physical objects present in the workcell of the real robot
and transforms them into the joint space coordinates of the robot, also commonly referred to as
configuration space. The algorithm then analyzes the configuration space to determine which portions
of it are connected, which physically represents all possible collision-free paths within the workcell.
When the algorithm receives a start and goal configuration for a gross motion trajectory, it simply maps
these configurations into their representations in the robot’s configuration space, validates that these two
configurations are actually connected, and then generates a collision-free joint angle trajectory 6(¢) that
can be used by the real robot’s joint controller. This process is perhaps best illustrated through an exampie.
Consider the bottom half of Figure 6 which shows the top view of the Adept-I robot in a workcell that
consists of four polyhedral obstacles. The top half of Figure 6 is a map of the configuration space for the
Adept-I in which every point represents a unique configuration of the robot. Once the obstacles in the
workspace. are mapped into the configuration space the process of determining a collision-free gross
motion is reduced to connecting the start configuration § with the goal configuration G without
intersecting any of the obstacles. One such path that was automatically generated by the system is shown
in the top half of Figure 6 using a dotted line, with the resulting robot motion shown in the workcell. The
average total time for calculating such collision-free motions on the SPARC ZX is on the order of a few
milliseconds.

5.3 Preview and Robot Control ‘
Robot joint angle trajectories, 8(r) , are the output from processing both the fine and the gross motion
segments. After processir: 2 all of the motion segments successive joint angle trajectories are concatenated

v

3 e Aty SRR SN P 5 v Ly e

et by b

vbrbinin f

L s ks e ARl

A Virtual Manufacturing Workcell for Auromated Assembly 11

CONFIGURATION SPACE
82=mn

0l =—x

Vmmccw e w s ———

R2=-x

WORK SPACE

Figure 6. This figure illustrates the algorithm used to automatically caiculate collision-free gross motions for a robot. The bottom
haif of the figure shows the top view of the Adept-! robot in a workcell containing four polyhedral obstacles. The top half shows
the configuration space for this robot along with the desired start (S) and goai (G) configurations. The algorithm automaticaily
determines the robot motion, shown with a dotted line, that avoids collisions with the four obstacles that have been transtormed
into configuration space. The motion of the robot represented by the dotted-line path is shown in the workcell.

12 Intelligent Automation and Soft Computing

into a single robot joint motion profile for the entire assembly. This can be done because the gross and
fine motion components are designed to be continuous at their transitions, i.e., the approach and departure
points. If multiple robots are used, each robot will have its own respective joint motion profile which is
synchronized with the others to avoid collisions. These robot motion profiles can now be previewed in
a graphical simulation of the virtual workcell to validate the resulting robot motions.!! At this peint the
user can modify the virtual workcell to change or add robots in order to evaluate the efficiency of different
workeell configurations by simply rerunning the trajectory generation software. Once the designer is
satisfied with the motions of the robots within the virtual workcell, the robot joint angle trajectories are
translated into the robot’s programming langunage. The control of the gripper motion, identified by the

discrete events in step 2 and 6 of the object manipulation process, is provided by a call to either the open
or close gripper subroutines. ' :

6. CONCLUSION

This article has described a prototype system that has been implemented to assist design and
manufacturing engineers in automating the assembly process. The system provides a virtual assembly
environment that allows the design engineer to manipulate the CAD/CAM models of his/her prospective
design and then automatically preview the assembly of that product in a prospective robot workeell
and ultimately generate the robot controller commands for the real physical robot workcell. The
major contribution of this work is a technique for extracting a generic assembly plan based solely
on product geometry that specifies (1) a preferred order of assembly, (2) stable grasp locations for
all components, and (3) a fine-motion strategy that would allow a compliant robot to successfully
complete the assembly. . This procedure explicitly avoids the representation of any specific robot so
that the resulting assembly plan is generic and can be applied to a variety of possible workcells that
might contain robots, hard automation, and/or humans. This is in direct contrast to virtual environ-
ments applied to remote teleoperation.’®

The virtual assembly environment described here appears to be an intuitive interface for
generating assembly plans. Initial performance by human user’s did exhibit noticeable hesitance
during the many phases of the assembly process but this is attributable to the novelty of the interface.
Future planned improvements in the interface include a more sophisticated dynamic model for the
components as well as force feedback to the user,'* however, maintaining the rapid response time of
the system is of primary importance.

REFERENCES

1. Gruver, W.A., B.L' Soroka, I.J. Craig, and T.L. Turner, “Industrial robot programming languages: A comparative
evaluation.” JEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-14, no. 4, July/August 1984, pp. 1-7.

2. Liegeois, A., P. Borrel, and E. Dombre. “Programming, simulating and evaluating robot actions,” in H. Hanafusa and H.
Inoue, editors, Robotics Research: The Second International Symposium , MIT Press, 1985, pp. 309-316.

3. Homick. M., and B. Ravani. “Computer-aided off-line planning and programming of robot motion.” International Journal
of Robotics Research , Vol. 4, no. 4, Winter 1986, pp. 18-31.

4. Pertin-Troccaz, J. “Task level robot programming; On the HANDEY system,” in O. Khatib, J. I. Craig, and T. Lozano-
Perez , editors, Robotics Review 2, MIT Press, 1992, pp. 31-36.

5. Takahashi, T.. and H. Ogata. “Robotic assembly operation based on task-level teaching in virtual reality.” Proc. IEEE 1992
InternationalConference on Robotics and Automation (Nice, France), May 10-15 1992, pp. 1083-1088. .

6. Takahashi, T., H. Ogata, and S.Y. Muto. “A method for analyzing human assembly operations for use in automaucglly
generating robot commands.” Proc. IEEE 1993 International Conference on Robotics and Automation (Atlanta, Georgia),
May 2-6 1993, pp. 695-700. .

7. Ro,PL, and B.R. Lee, “An optimum path and posture planning for fixtureless assembly.” Proc. IEEE 1993 International
Conference on Robotics and Automation, (Atlanta, Georgia), May 2-6 1993, pp. 808-813.

{
i
{
'
t
i
;
i
i
1

b e et Ba Wy

i a

5% A A M IR LA/ 100 A NN A 0 K047t 8 o ASGSBAI ot 0 1m PEbD st da i P0g 451

A Virtual Manufacturing Workcell for Automated Assembly 13

12,

13.

Lozano-Perez, T.. M.T. Mason, and R.H. Taylor. “Automatic synthesis of fine-motion strategies for robots.” Inrernational
Journal of Roborics Research , Vol. 3, no. 1, 1984, pp. 3-23.

American Nuclear Society, ANS 61h Topical Meeting on Robotics and Remote Systems, Monterey, CA, February 5-10 1995,
Anderson, D.C.. and T.C. Chang. “Geometric reasoning in feature-based design and process planning,” Computers &
Graphics. Vol. 14, no. 2, 1990, pp. 225-235. S

Maciejewski, A.A., and C. A. Klein. “SAM~—Animation software for simulating articulated motion.” Computers &
Graphics, Vol. 9. no. 4, 1985, pp. 383-391.

Maciejewski, A.A., and J.J. Fox. “Path planning and the topology of configuration space.” [EEE Transactions on Robotics
and Automation, Vol. 9, no. 4, August 1993, pp. 444-456.

Burdea, G.C.. and N.A. Langrana. “Virtual force feedback: Lessons, challenges, future applications.” Proc, Advances in
Robotics, Annual Meeting of The American Society of Mechanical Engineers (Anaheim, CA), November 8-13 1992, pp.
41-47,

