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Abstract

A Framework for Real-time, Autonomous Anomaly Detection over

Voluminous Time-Series Geospatial Data Streams

In this research work we present an approach encompassing both algorithm and system

design to detect anomalies in data streams. Individual observations within these streams are

multidimensional, with each dimension corresponding to a feature of interest. We consider

time-series geospatial datasets generated by remote and in situ observational devices. Three

aspects make this problem particularly challenging: (1) the cumulative volume and rates of

data arrivals, (2) anomalies evolve over time, and (3) there are spatio-temporal correlations

associated with the data. Therefore, anomaly detections must be accurate and performed in

real time. Given the data volumes involved, solutions must minimize user intervention and

be amenable to distributed processing to ensure scalability.

Our approach achieves accurate, high throughput classifications in real time. We rely

on Expectation Maximization (EM) to build Gaussian Mixture Models (GMMs) that model

the densities of the training data. Rather than one all-encompassing model, our approach

involves multiple model instances, each of which is responsible for a particular geographical

extent and can also adapt as data evolves. We have incorporated these algorithms into

our distributed storage platform, Galileo, and profiled their suitability through empirical

analysis which demonstrates high throughput (10,000 observations per-second, per-node)

and low latency on real-world datasets.
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CHAPTER 1

Introduction

The primary focus of this work is the detection of anomalous data in multidimensional

datasets. An anomaly may constitute an irregular event, inconsistent sensor readings, or

other types of situations that result in data points outside of the expected norm. These

points are n-dimensional tuples with each dimension representing a feature of interest. Ex-

amples of such features include temperature, pressure, humidity, etc. Features may also have

linear or non-linear relationships with each other; for instance, there may be a relationship

between temperature and precipitation at certain geographic locations. Ultimately, these

relationships result in a classification of either anomalous or normal by our framework.

The datasets we consider are composed of streams that continually generate readings from

observational devices. Some of these observational devices, such as radars and satellites, can

remotely sense features of interest while other features may require in situ measurements by

devices such as piezometers and barometers. The measurements are reported as observations

in discrete packets that comprise a stream.

This thesis presents a framework for scalable and real time detection of anomalies in

streaming data. Anomaly detection is a precursor to the discovery of impending problems

or patterns of interest. Timely detection of anomalies is critical in several settings. Often

such detection needs to be made in real time to be able to detect potential emergencies. Our

specific problem relates to voluminous data streams and anomaly detection that accounts

for evolution of the feature space over time. Also, given the rate of data arrivals and the

volumes involved, human intervention is rendered infeasible.
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The range of values that each feature takes may be rather large and simple checks for

breaching upper and lower bounds are generally not viable. Other dimensions such as lo-

cation and time may determine whether a particular feature value is considered anomalous.

For example, temperatures at nighttimes are often lower than daytimes for a particular lo-

cation. Also, in the case of geospatial data, what is considered normal will vary by region

and anomaly classifications must account for this as well.

Given the data volumes involved, observations must be stored over a collection of re-

sources. However, disk I/O operations should also be reduced so as to not preclude real

time classification. In-memory data structures must be compact to avoid page-faults and

thrashing that may occur. To cope with scaling issues, viable solutions must be able to take

advantage of increases in the number of resources available to the system.

1.1. Research Challenges

There are several challenges involved with the proposed research:

(1) Streams have no preset lifetimes, and readings arrive continually. The data can thus

be voluminous, making it infeasible to inspect all previous records when making a

classification.

(2) Multidimensional data. Individually, feature values (i.e.values along a dimension)

may be normal, but when collectively accounting for all the dimensions, the tuple

may be anomalous.

(3) There are spatial and chronological dimensions associated with feature values. How

features evolve is spatiotemporally correlated. What is considered normal for a par-

ticular geographical extent would be considered anomalous for another. Anomaly

classifications must take these properties into account.
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(4) What is considered anomalous evolves over time. A good exemplar of this is tem-

perature readings. Over the past several years, average temperatures at various

geographic locations have been trending higher overall but fluctuate from year to

year.

(5) The combination of legitimate feature values is very large. Building a singular model

of what constitutes anomalous data is infeasible and impractical.

(6) Anomaly detection must be done in real time despite the constant feature space

evolution and data volumes involved.

1.2. Research Questions

In this research we explore the following research questions:

(1) Given that human intervention is infeasible in this work, how can we adapt au-

tonomously to changes in the data?

(2) Since classifications will evolve over time, how can we autonomously tune the de-

tection thresholds?

(3) How can we achieve timeliness without compromising the accuracy of the classifica-

tions?

(4) How can we account for spatio-temporal properties associated with features, and

what are the implications for system design in such cases?

(5) How can we scale to assimilate a large number of machines?

1.3. Approach Summary

Our approach provides a configurable framework for anomaly detection over continuous

data streams. Since anomalies evolve over time, our approach focuses on online adaptation
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of our models. The framework allows for domain-specific behavior to handle changes in the

data that must be treated as normal rather than anomalous, a feature that can be turned

on or off at any time.

We rely on a probabilistic model to detect anomalies. Specifically, we use Expectation

Maximization (EM) to build Gaussian Mixture Models (GMMs) that model the densities of

the training data by using different combinations of Gaussian distributions. EM is an itera-

tive method and aims to maximize log-likelihood by modifying GMMs parameters. Within

each iteration, the log-likelihood is improved by fitting Gaussian distributions to the given

data. The iterative process is stopped when no significant improvement can be achieved. EM

improves a given model but does not build it from scratch, so we use K-means and K-fold

cross-validation to build an initial model that can be used by EM. Also, in order to support

continuous adaptation, the GMMs parameters are modified in online fashion to capture any

changes in data behavior.

To deal with spatial properties in the dataset, we partition the incoming streams based

on geographical extents. We then initialize an instance of our anomaly detection model for

the geographic regions, each of which continually adapts based on observations recorded for

the region. Depending on the data volumes involved and the number of resources available

within the system, geographic boundaries and the number of model instances can be tuned.

In our approach, the determination of whether an observation is anomalous or not does

not require specification of thresholds by the user. Observations are tagged as normal or

anomalous based on their fitness to the underlying models and their locations within a

d-dimensional space. Two factors determine whether an observation is anomalous or not:

fitness scores and distance measures. The fitness score represents how well an observation

fits the current model. Its calculation produces positive values for normal observations and
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negative values for anomalous or suspect observations. The distance measure is calculated

based on the distance between the observation and the cluster centroid to which the obser-

vation was assigned. Distance measures are normalized so that observations that are close

to a cluster centroid will have distance values less than one and that those that exist outside

a cluster will have values greater than one. The product of the distance and fitness scores

associated with an anomaly will always have a value less than -1.

Our proposed framework is decentralized, scalable, and capable of achieving high through-

put. We incorporated our anomaly detection implementation into the Galileo [1], [2] data

storage system. Galileo provides support for multidimensional, time-series geospatial datasets,

and is organized as a distributed hash table (DHT). Each storage node in Galileo manages

a geographic subset of the incoming data streams, and passes the information on to the

anomaly detection framework.

Each instance of the anomaly detector tunes itself autonomously based on the data

distributions it has observed. The instances are executed in a thread pool, which allows us

to calibrate the degree of concurrency in the system to better exploit available cores and

execution pipelines. Our performance benchmarks show that each node in the system can

evaluate more than 10,000 data stream packets per second.

1.4. Thesis Contributions

This thesis describes our approach for detecting anomalies in large, multi-dimensional

datasets. The work presented herein includes the following contributions:

(1) Our approach scales with increases in data volumes and the number of machines

available.
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(2) Our approach efficiently exploits the available distributed computational capabilities

without producing hot spots.

(3) Our model instances tune themselves autonomously based on observations. This

allows us to account for spatio-temporal evolution of the feature space. Our anomaly

detections are thus specific to particular geographical extents.

(4) Since we support model instances that tune themselves autonomously for different

geographical regions, partitioning of workloads in a distributed setting is straight-

forward. The fact that these model instances do not interact with each other and

classify observations independently also serves to ensure scalability.

(5) Since model instances tune themselves autonomously based on the data available to

them, we can cope with variability in the density and availability of readings from

different geospatial locations.

(6) We can fine tune the specificity of the classifications by controlling the geographical

scope associated with the classification models.

Our empirical evaluations with diverse datasets and across different volumes of infor-

mation confirm the suitability of our approach. Our benchmarks also demonstrate that we

can perform these classifications in real time, processing 10 observations per millisecond (or

10,000 observations per second) at each node.

1.5. Thesis Organization

This thesis is organized as follows. The next Chapter provides background information

on the models and methods used in this work, followed by Chapter 3 with an overview of

the design of the system itself. Chapter 4 explains our online adaptive anomaly detection

6



algorithm, followed by Chapter 5 which includes extensive performance evaluation and ex-

perimental results. Finally, Chapter 6 reviews related work from the literature, and Chapter

7 concludes the thesis.
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CHAPTER 2

Background Information

To provide some intuition on how our adaptive Gaussian Mixture Models with Expecta-

tion Maximization strategy works, we present a brief overview of the algorithms and tech-

niques used to derive the desired functionality [3]

2.1. Multivariate Data

In many applications, multivariate data could be defined as N samples or events. Each

individual sample represents measurements that form an observation vector containing d

elements. The elements in vector are often called features, readings, or attributes. The N

samples can be seen as N individual identically distributed observations.

In a climate dataset, for example, each sample could contain readings taken at particular

time in a particular location. These readings could be surface temperature, air pressure,

relative humidity, and so forth.

In some applications, multivariate analysis is needed to represent the data in a small

number of parameters, which are typically the means and the variances (or covariance ma-

trix). N samples of d readings can be represented by two vectors of size d, where one contains

the means (µ1, µ2, .., µd) of each feature and the another contains the variances (σ1, σ2, .., σd).

In case of clustering the data into groups, mixture model could be used.

2.2. Gaussian Mixture Model

The Gaussian Mixture Model(GMM) is a parametric probability method to model a

density of observations using a combination of different Gaussian component densities [4].
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The assumption made in GMM is that the observations X are generated by a finite number of

Gaussian distributions. Each Gaussian density N (X|µk,Σk) is a component of the mixture

and formed by mean µk and covariance matrix Σk [5].

The GMMs are frequently used as a classification method in supervised learning problems

or as a clustering technique in unsupervised learning. Each Gaussian component can be

used to form a cluster (group) of data in the d-dimensional space and then the appropriate

component for new data samples can be determined using a Bayesian classifier. In order

to place data samples into their respective clusters, the probability of membership to each

Gaussian component is calculated, and the component with the highest probability will be

responsible for the sample.

max(P (θk|x))

Where

P (θk|x) is the probability of data sample x belonging to component k

x is a given data sample that consists of d features

θk represents the parameter(µk, Σk) of the Gaussian component k

k = 1, 2, 3,..,K

K is the number of Gaussian components(clusters)

The computation of P (θk|x) ultimately determines which component will be responsible

for each sample x. Based on Bayes Rule [5] the conditional probability P (θk|x) can be

computed from the equation:

P (θk|x) =
πkP (x|θk)
P (x)

(2.1)

9



Where

πk is a mixing coefficient of the component k which can be computed by:

πk =
Nk

N
(2.2)

Where Nk is the sum of the observations’ properties of belonging to Gaussian component k.

And satisfies the conditions:

0 ≤ πk ≤ 1 (2.3)

K∑
j=1

πj = 1 (2.4)

The probability density function (PDF ) of x across the Gaussian components can be

computed as follows:

P (x) =
K∑
j=1

πjP (x|θj) (2.5)

Each P (x|θj) expresses the probability that the data sample x is generated using the Gaussian

component j, which has its own mean µj and covariance Σj.

By substituting P (x) in the Formula (2.1) with its corresponding expression in For-

mula (2.5), we can rewrite the Formula (2.1):

P (θk|x) =
πkP (x|θk)∑K
j=1 πjP (x|θj)

(2.6)
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Since the Gaussian Mixture assumes that the data is a Gaussian distribution with mean

µk and covariance Σk, then the d-dimensional normal distribution (P (x|θk)) can be computed

as follows:

P (x|θk) =
1

2πd/2|Σk|1/2
e−

1
2

(x−µk)T Σ−1
k (x−µk) (2.7)

Where mean µk is a d-dimensional column vector and the covariance matrix Σk is a d × d

symmetric matrix.

Once the P (x|θk) is computed for each Gaussian component k using equation 2.7, the

results can be used to solve Formula (2.6) and find P (θk|x). Having calculated P (θk|x) for a

given sample x, x’s appropriate cluster is that which is equivalent to the Gaussian component

with the largest value from P (θk|x).

2.3. Maximum Likelihood of GMM

Suppose we have N observations represented in N × d matrix X = x1, x2, .., xN . Each

of its rows xi represents one observation, which is a vector containing d features. The

observations are modeled using mixtures of Gaussians that can be defined with a density

function p(X|θ) where θ represents the means µ and the covariances Σ of K Gaussian

distributions. By assuming that the data vectors (samples) x1, x2, .., xN are independently

drawn from identical distribution, then the likelihood function `(θ|X) which is the density

of the data samples is given by:

`(θ|X) = p(X|θ) =
N∏
i=1

p(xi|θ) (2.8)
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In the Formula (2.8) `(θ|X) = p(X|θ), we can state that the likelihood of K parameter

values, θ, given N samples is the product of the probabilities of those observed samples given

the K parameter values, θ. By applying different parameter values θ to the same samples

X, different likelihood values are obtained. Each likelihood value expresses how probable

X is for the used Gaussians’ parameters θ [5]. By comparing the different likelihood values

obtained, we can distinguish which model’s parameters θ (µ , Σ) best represent the data; the

best model’s parameters θ produce the largest likelihood value. Therefore, maximizing the

values of `(θ|X) leads to the best Gaussian parameters that represent the observed samples.

Then, our aim is to find θ that maximizes `(θ|X), which we find with:

argmax
θ

(`(θ|X)) (2.9)

Since the natural logarithm is monotonically increasing function, then the parameters θ

that maximize `(θ|X) are the same values that maximize log(`(θ|X)). In the most applica-

tions involving likelihood functions, the natural logarithm of the likelihood function, called

the log-likelihood, is used in place of likelihood function because it is easier to analyze and

often more convenient to work with.

In the machine learning community, it is known that the negative log of the likelihood

function can be used as an error function. The value of the error function can be minimized by

maximizing the log-likelihood value. In other words, choosing of parameters that maximize

the log-likelihood reduces the value of the error function [5]:

argmin
θ

(−log(`(θ|X))) = argmax
θ

(`(θ|X)) (2.10)
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Finding the desired parameters depends on the form of the Gaussian mixture distribu-

tions. While the values of the parameters can be found easily in single Gaussian distribution

by setting the derivative of log(`(θ|X)) to zero and solving the formula for µ and Σ, it more

complex for mixtures of Gaussian distributions because finding such a solution would not be

possible. One powerful and widely-used solution to maximize the log-likelihood is a general

iterative technique, called expectation maximization [6] [5].

2.4. Expectation Maximization (EM) for GMM

Expectation Maximization(EM) is iterative refinement technique used for estimating

maximum likelihood of parameters in probabilistic models. For Gaussian Mixture mod-

els, EM is used to find the best means µ and covariance matrix Σ, representing Gaussian

distributions (Gaussian components) in Mixture for a given set of multidimensional data

samples [6].

The conventional EM algorithm for GMM starts with initial values of µ = µ1, µ2, .., µk and

σ = σ1, σ2, .., σk for k Gaussian components and iteratively performs two steps, expectation

(E) and maximization (M). The algorithm is complete when a difference between the last

and the current likelihood value is zero or close to zero (less than user defined value).

In the expectation (E) step, the current estimate of the parameters (µ, σ) will be used in

Formula 2.1 to compute how much each Gaussian component is responsible for each sample

in the training data. This process will produce a matrix of size N × K, where N is the

number of the samples used to train the model and K is the number Gaussian components.

The ith row in this matrix will contain a vector of size K that includes the responsibilities

of each Gaussian component for the ith sample. This also means that each data sample in

the training set will have its own weights vector containing the membership weights that
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show the sample’s likelihoods of belonging to each Gaussian component. The responsibility

of the Gaussian component k for the data sample x can be denoted by γk(x) and computed

through γk(x) = P (θk|x) = πkP (x|θk)
P (x)

In the maximization (M) step, the membership weights and the data samples are used to

compute new estimates of likelihood parameters (µ, σ) for each Gaussian component. The

new value of mean and covariance matrix for each Gaussian component k can be computed

through:

µk =
1

Nk

N∑
i=1

γk(xi)xi (2.11)

Σk =
1

Nk

N∑
i=1

γk(xi)(xi − µk)(xi − µk)T (2.12)

Where Nk represents the number of samples assigned to Gaussian component k and can be

computed as:

Nk =
N∑
i=1

γk(xi) (2.13)

Our implementation of EM is based on the EM implementation of WEKA software [7].

Algorithm 1 shows a high level pseudo code of the standard EM.

2.5. K-Means

The K-means algorithm is a popular clustering method that assigns n data samples

into k clusters. Samples are clustered based on their proximity to cluster centroids, and

most implementations of the algorithm use hard assignment, where each sample belongs to

only one cluster. The algorithm starts with an initial set of clusters,and their centroids are

updated as new samples arrive. This also means that samples may be reassigned to different

clusters over time.
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Algorithm 1 The standard EM algorithm for GMM

initialize Gaussian components
repeat

/*E-Step: use (µk, σk) of each Gaussian component k to compute membership weights
of each sample for all clusters*/

for (each sample i in the training set) do
for (each cluster k) do

compute weightsi[k] using xi, µk, and σk
end for

end for

/*M-Step: use the data samples and their membership weights to compute new Gauss-
ian parameters (µk and σk) for each cluster k*/

for (each cluster k) do
for (each sample i in the training set) do

compute µk and σk using xi and weightsi[k]
end for

end for
until (log-likelihood of the estimated parameters converges)

The algorithm continues until no changes occur in the clusters, with the resulting set of

clusters minimizing the distance between related samples. For this purpose, the K-means

algorithm attempts to minimize the value of its objective function, the minimum squared

sum of Euclidean distances:

argmin

k∑
i=1

n∑
j=1

(xj − ci)2

Where:

xj is the sample j that belongs to the cluster i and ci is the mean of the cluster i.

Despite the simplicity of K-means algorithm, its objective function is NP-complete prob-

lem [8]. Also, specifying the correct number of clusters needed before the algorithm is applied

can often prove to be problematic.
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2.6. K-Fold Cross Validation

In both data mining and machine learning, cross-validation is widely used to evaluate

a learned model’s performance. K-fold cross-validation randomly partitions the data being

used by the model into k equally-sized segments. One of the segments is chosen to be the

validation set for testing the model, while the remaining segments are used as training data.

The process is repeated k times, with each segment being used as the validation set once.

Next, the resulting error values are averaged to provide an overall evaluation of the model’s

performance. One disadvantage associated with K-fold cross-validation is the model must

be built k times, where k is commonly 10 for machine learning applications [9]. In this work,

K-means and K-fold cross validation are used to bootstrap the EM algorithm with an initial

model.
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CHAPTER 3

System Overview

Our anomaly detection system was designed to be integrated with a distributed storage

framework to exploit parallelism and ensure scalability. For this study, we used Galileo [1], [2],

which was tasked with supplying new data to the anomaly detector as it was streamed into

the system for storage. When an anomaly is found, offending records are flagged for further

analysis. Figure 3.1 illustrates the integration of the detection framework and Galileo.

Figure 3.1. Anomaly detection framework integration with Galileo. Compo-
nents include the storage nodes, detection coordinators, and anomaly detectors
(AD).

3.1. Galileo

Galileo is a high-throughput distributed storage framework designed for managing mul-

tidimensional data. The systems network design is modeled as a hierarchical distributed

hash table (DHT), which allows incremental assimilation of storage resources and the use of

multi-tiered hash functions to enable development of novel partitioning schemes. By focusing
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on spatio-temporal datasets, Galileo provides functionality that is generally not provided by

standard DHTs, such as expressive query support [2], time series analysis capabilities, and

polygon- or proximity-based geospatial retrieval functions [10]. Galileo is completely decen-

tralized and composed of a network of storage nodes, which facilitate data management.

3.2. Storage Node

Each storage node in Galileo manages a single anomaly detection coordinator that is used

to classify incoming observations in an online manner. Based on the classification output

by the framework, the storage node can take a appropriate action which may vary across

problem domains. The storage node does not need to wait for the result of each evaluated

observation, and will assume the observations are normal until informed otherwise.

The storage node considers the detection coordinator to be a black box, but can control

some of its behavior. It cooperates with the coordinator asynchronously to detect anomalies

without knowledge of the particular detection algorithm being used. In addition to starting

or stopping the coordinator, the storage node can ask the coordinator to turn its adaptive

behavior on or off. It can also change the adaptation rate to control the speed of the

adaptation process. Moreover, the storage node can modify the size of the geospatial area

the coordinator will assign to each anomaly detector instance.

3.3. Geospatial Data Partitioning

Data partitioning in Galileo is done based on the observed Geohash [11] prefixes of in-

coming records. Figure 3.2 shows how a destination node can be specified based on Geohash

computed from an observation’s latitude and longitude. The Geohash algorithm is a geocod-

ing scheme that divides the earth into a hierarchy of spatial bounding boxes referenced by
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Figure 3.2. Data partition based on Geohash.

Base-32 strings. For instance, the latitude and longitude of coordinates of N 28.8927, W

81.9796 would map to the Geohash string djjsqeb2. Longer strings result in higher preci-

sion coordinates, and two Geohash strings with the same length 6 prefixes will be located

in a similar geographic region. The prefix length used for partitioning is configurable, and

specifies the size of the regions that will be processed by an anomaly detector instance. The

default prefix length is 4, which indicates that each anomaly detector will be assigned to an

area with a size of 39.1 km x 19.5 km.

This partitioning method allows us to control the number of anomaly detector instances,

the amount of data processed by an instance, and the size of the regions involved. As a

result, classification accuracy can be increased by lengthening the prefix string used for par-

titioning. This decentralized strategy also provides independence between detector instances,

increasing classification throughput, scalability, and performance.

3.4. Detection Coordinator

The main job of the detection coordinator is creating and managing anomaly detector

instances. The coordinator receives observations from the storage node and then forwards
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them to the appropriate detector based on the Geohash associated with each observation,

or creates a new instance if one did not already exist. Figure 3.3 shows the interactions

between coordinator and anomaly detectors.

Figure 3.3. The coordinator at a node is responsible for orchestrating anom-
aly detection.

Each anomaly detector created by the coordinator implements an interface that enables

it to use an independent anomaly detection algorithm, if necessary. Because of the loose

coupling between the coordinator and detectors, any changes made to either component

will not require corresponding changes in the other. The detector implementation uses a

Gaussian Mixture Model (GMM) built using the Expectation Maximization (EM) technique

to detect anomalies. More information about the implementation is provided in Chapter 4.

The coordinator can run in one of two modes: training or classification mode. In training

mode, an anomaly detector instance will be created when the coordinator receives an obser-

vation whose Geohash prefix has not yet been seen. In classification mode, the coordinator

will create one anomaly detector instance for each model. Once the models have been loaded

and their instances have been created, incoming observations will be passed to appropriate

instance based on Geohash strings.
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When the coordinator starts, it creates and launches a thread pool with a configurable

size. Each instance will receive a reference to the thread pool from the coordinator in order to

submit anomaly detection tasks. Additionally, the coordinator may receive an administrative

command from a client that will start the training process at any anomaly detector that has

not yet created a model. Finally, based on instructions provided by the storage node, the

coordinator can turn the adaptation feature on or off for particular detector instances at any

time.

3.5. Anomalies Detector

The primary task of the anomaly detector is to accept data from a particular geospatial

area, build a model for it, and then use the model to detect samples whose behaviors are

outside the observed norm. A general interface is used for implementing both the anomaly

detection algorithm and interacting with the coordinator, which helps ensure a loose coupling

of the components in the system.

The detector supports several features that can be accessed by the coordinator. First, it

has the ability to detect anomalies in an online manner, wherein observations are evaluated

on the fly without keeping them all in main memory. Further, the detector can adapt to

natural changes that occur over time. For example, temperature values at a particular region

that were unusual thirty years ago may be considered normal in recent years. In such a case,

the detector should adapt to these changes and not deem such data anomalous. However, the

detector also offers the ability to turn this feature off to handle situations where adaptation

is not beneficial; for example, heart rate measurements do not need to be adapted because

they will not change over time. Finally, the detector can serialize and deserialize its model
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to and from disk to allow migration of the model to other systems and to cope with failures

or planned outages.

Each anomaly detector operates in three phases. In the collecting phase,the detector will

store any samples received in a buffer until it reaches a specified size or receives a command

from the coordinator to begin training. When a training command has been received or

the required amount of training data has been collected, the detector will transition to the

training phase, where no further inspection of the buffer will be performed. In the training

phase, the model for anomaly detection is built and trained. While the model is training,

any new samples will be placed in a classification queue. Once the model is ready, it will be

serialized to disk for future use and the detector will transition to its final phase, classification.

In the classification phase, the model is used to classify any observations that arrive in the

classification queue.

3.6. Anomalies: Group and Experts Approach

The anomaly detector instances managed by the coordinator at a storage node work

independently on different geospatial data, but can also cooperate with one another to achieve

a consensus in situations where classifications may be suspect. Since observations from

bordering geospatial regions should have similar behavior, instances operating on nearby

regions are consulted to confirm suspect classifications. If a detector instance receives an

outcome indicating a suspect anomaly, it informs the coordinator, which forwards the suspect

outcome to detector instances in nearby geographic regions. In this situation, the observation

is considered anomalous if a majority of detectors confirm the anomaly.

Using different detection algorithms is another scenario in which a group of experts ap-

proach proves to be useful. In such a case, the coordinator passes data samples to multiple
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anomaly detectors that implement different anomaly detection algorithms. The final clas-

sification for the observation is then made based on the results coming from each anomaly

detection instance, where the observation is deemed anomalous only if more than the half of

the instances confirm the anomaly.

3.7. Parallel Anomaly Detection: The Thread Pool

Our approach ensures available cores and execution pipelines are used efficiently by man-

aging a thread pool to facilitate parallel detection activities. During initialization, the co-

ordinator creates a thread pool of a configurable size, and provides each anomaly detector

instance with a reference to the pool. Since the detectors maintain a classification queue,

items in the queue can be used to create thread pool tasks for execution.

The thread pool will not run conflicting tasks because of the separation of processing

concerns and data partitioning orchestrated by the coordinator. Each anomaly detector

receives one sample at a time, and all operations pass through the coordinator. However, the

actions taken by the coordinator are lightweight so as to not become a processing bottleneck

and ensure the thread pool will provide a net performance gain.

3.8. Storage Framework Decoupling

To enable our anomaly detection scheme to be applied in a broad range of problem

domains, we designed interfaces that were not strongly coupled to the underlying storage

system. Integrating the anomaly detector with a storage framework requires only two key

features: (1) event- or trigger-based functionality to submit new data points to the detector as

they are stored, and (2) the capability to flag records as anomalous during post-processing.
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These requirements essentially create a low-latency feedback loop that avoids expensive

polling operations.

MongoDB [12] is a distributed document store that supports clustering and horizontal

scalability through sharding. The system also provides range query functionality and can

orchestrate MapReduce computations across computing resources. While MongoDB does not

provide pre-storage processing hooks or the triggers often featured in relational databases,

it does maintain an oplog that is updated during each storage event. Combined with a

tailable cursor instance, which enables the latest changes to a data collection to be read,

new information can be immediately passed to the anomaly detector as it is stored. When an

anomaly is detected, the relevant document in MongoDB is flagged by updating its associated

record. MongoDB is particularly effective in use cases that involve JSON, JavaScript Object

Notation, or JSON-like documents; while integrating it with the anomaly detector, we simply

converted files in our NOAA, National Oceanic and Atmospheric Administration, dataset

from NetCDF to JSON and then streamed the records into the system.
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CHAPTER 4

Online Adaptive GMM and EM

This section introduces the online adaptive algorithm that is used by anomaly detectors

to adapt GMMs’ parameters to the changes occurred in data and to classify the data streams

received by Galileo.

4.1. Adaptive Algorithm

Since we are dealing with continuous data streams, our goal is to allow adaptive behavior

without affecting performance. This is achieved through a configurable adaptation speed that

can be changed at run time. The adaptation speed determines how often cluster parameters

should be updated. There are two constraints to be considered during the update process:

(1) only the cluster densities and their locations can be changed, and (2) each cluster should

be affected based on its density and responsibility fraction.

To meet constraint (1), only the mixing coefficient (πk) and the mean (µk) of the clusters

are updated. For constraint (2), we use the responsibility fraction γk(x) of each cluster for

new data samples xi to update cluster parameters (πk,µk, NK). In the adaptation process,

we solve Equation 2.11 for sumk (
∑N

i=1 γk(xi)xi) to recompute the previous sum of data

samples in each cluster k using the previous Nk and mean µk.

sumk = µk ∗Nk

Include new observation xi in the sum:

sumk = sumk + γk(xi) ∗ xi
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Compute new Nk :

Nk = Nk + γk(xi)

Compute new mean µk :

µk =
sumk

Nk

Compute the new mixing coefficient (πk):

πk =
Nk

N

4.2. Anomaly Detection without Threshold Specification

We designed our anomaly detection framework with three primary goals in mind: (1)

real time classification, (2) avoiding human intervention, and (3) domain neutrality, allowing

the system to be used for different problems without extensive adjustment. While achieving

real time classification is largely a function of the efficiency of our algorithms, avoiding

user-defined thresholds was a key factor in achieving goals (2) and (3).

Choosing thresholds to enable efficient classification of normal or anomalous data can

often be challenging [13], [14]. For instance, certain classes of problems may exhibit edge

cases that cannot be easily captured with a threshold. Additionally, many applications must

cope with a fluid definition of abnormality, requiring an infeasible amount of thresholds to be

specified by the user given the data volumes being dealt with. Even if an optimal threshold

can be found offline, it may not remain valid as the incoming data evolves. Finally, threshold

specification would require domain experts to provide input for each specific application our

framework was applied to.
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Statistically, log-likelihood is a good measurement of how likely a model matches an ob-

servation. A higher log-likelihood value means the likelihood of a match is higher. However,

the log-likelihood alone varies based on the particular features being inspected and their

densities. This means that log-likelihood is a good fit for situations where it can be used as

a point of comparison.

The log-likelihood of a GMM is the average of the log-likelihood values observed in the

training data. Since the training data represents features with normal behavior, the log-

likelihood of the GMM could be used as a reference for normal observations and is helpful

when specifying a baseline value that could be used when deciding whether an observation

is anomalous or not. Observations with log-likelihood values that are equal or greater to the

GMM’s loog-likelihood will not be tagged as anomalous.

Even if a baseline threshold has been found, comparing the log-likelihood of an ob-

servation with the threshold will not lead to accurate outcomes for all cases because the

log-likelihood of the observation is affected by cluster densities and positioning in the d-

dimensional space. Figure 4.1 contains a visualization of 8 clusters that were built for two-

dimensional data using GMM and EM. Visually, points a and b lie within the range of normal

observations, with point c representing a potential anomaly. However, consider a threshold

of -2.50 for classification: `(a) = 0.22 would be considered normal, while `(b) = −2.94 and

`(a) = −2.94 would be classified as anomalous. To correct the classification of point b, the

threshold could be adjusted to −2.95, but this would cause observation c to also be classified

as normal. This phenomenon occurs because c is near clusters with a higher density than

those near b, resulting in both points having the same log-likelihood.
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Figure 4.1. GMM built on synthetic data with 8 clusters. The log-
likelihoods for the GMM and points a, b, and c are -1.73, 0.22, -2.94, and
-2.94, respectively

To overcome this problem, we must not only compare the log-likelihood of observations,

but also consider their distance from their assigned cluster centroids. The values associated

with the observations should increase as their distance to the cluster centroids decrease,

and vice versa. Additionally, this process should only affect suspect observations with log-

likelihood values smaller than the models log-likelihood. Our proposed solution involves

computing fitness scores, fscore, using the following form:

fscore =
obsllk −modelllk
|modelllk|

Where

obsllk is the log-likelihood of an observation

modelllk is log-likelihood of the model
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fscore will always be positive for normal observations because its log-likelihood will be

greater than the models log-likelihood (modelllk). Positive scores will not be affected by

the distance between observations and their clusters. However, negative scores must be

adjusted by multiplying them by a distance factor Xdist which increases the score value as

the observation’s distance to the centroid of the assigned cluster decreases. Xdist always has

a positive value and can be computed using the following formula:

Xdist =

√∑d
i=1(xi − µi)2

d

Where

d is number the observation’s features

xi is value of feature i of the observation X

µi is the mean of Gaussian distribution that models the feature density in space i

Xdist represents the euclidean distance between an observation and its assigned cluster

centroid divided by the total number of dimensions. The value of Xdist will decrease as

long as the distance from an observation to its cluster decreases, and vice versa. The final

resulting value obtained from fscore × Xdist will be less than -1 for anomalous observations

and greater than -1 for those that will be classified as normal.
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4.3. Evaluation Datasets

To evaluate the efficiency of the proposed anomaly detection metric, we have used six

classification datasets sourced from the UCI Machine Learning Repository [15]. These partic-

ular datasets have been chosen from different application domains and have varying amounts

of data samples and attributes.

Each dataset includes several different classes. For each of the datasets, we considered

data from the largest class as non-anomalous and used it for training. The test data includes

samples taken from a class that is randomly chosen from the remaining classes plus the

same amount of samples randomly taken from the training data. Table 4.1 summaries the

important information of the used UCI datasets and the following sections provide detailed

descriptions of each dataset.

Cardiac Arrhythmia Dataset. This dataset includes multivariate data with 452

instances. Each contains 279 attributes, 206 of which are linear valued and the rest are

nominal. The data contains 16 classes of beat phases, where some arrhythmias are potentially

very dangerous for the patient. Class 1 refers to normal, classes 2 to 15 are different types

of arrhythmia, and class 16 refers to unclassified observations. The training data was taken

from Class 1, including 245 instances, and the test data was taken from Class 3, including

15 instances plus 15 instances randomly taken from the training data.

Amazon Commerce Reviews Dataset. This dataset includes multivariate data with

1500 instances, each containing 10000 attributes. The data was acquired from customer

reviews on the Amazon Commerce website for authorship identification. The number of

reviews collected for each author is 30. Each data instance describes the authors linguistic

style, which includes the usage of digits, punctuation, words, sentence length, and word
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usage frequency. The training data is 30 instances from the Wilson class and the test data

was drawn from the Vision class, including 30 instances plus 30 more from the training data.

Wisconsin Diagnostic Breast Cancer (WDBC). This dataset includes multi-

variate data with 569 instances, each with 32 attributes. The data are computed from a

digitized image of a fine needle aspirate (FNA) of a breast mass. They describe character-

istics of the cell nuclei present in the image. Each instance includes an ID, diagnosis (M =

malignant, B = benign), and 30 input features. The training data was taken from diagnosis

B, which contained 357 entries. The test data was taken from diagnosis M, which contained

212 entries plus 212 more taken from the training data.

Cardiotocography Dataset. This dataset includes multivariate data with 2126 in-

stances, each contains 23 attributes. The data representing 2126 fetal cardiotocograms

(CTGs) were automatically processed and the respective diagnostic features measured. The

CTGs were also classified by three expert obstetricians and a consensus classification label

was assigned to each of them (N = normal; S = suspect; P = pathologic). The training data

was taken from class N (1655 entries) and the test data was taken from class P (176 entries

plus another 176 from the training data).

Seeds Data Set. This dataset includes multivariate data with 210 instances, each

contains 7 attributes. The data represents measurements of geometrical properties of kernels

belonging to three different varieties of wheat: Kama, Rosa and Canadian, 70 elements each,

randomly selected for the experiment. The training data was taken from class 1, including 70

instances, and the test data was taken from class 2, including 70 instances plus 70 instances

taken from the training data.
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Statlog (Shuttle) Data Set. This dataset includes multivariate data with 58000

instances, each contains 9 attributes. There are 7 classes and approximately 80% of the data

belongs to class 1 The training data was taken from class 1, including 43500 instances, and

the test data was taken from class 5 data, including 2458 instances plus 2458 instances taken

from the training data.

Table 4.1. UCI classification data set used to evaluate the efficiency of anom-
aly detection

Data set Instances Attributes
Amazon Commerce reviews 1500 10000
Arrhythmia 452 279
Breast Cancer Wisconsin 569 32
Cardiotocography 2126 23
Seeds 210 7
Statlog (Shuttle) 58000 9

4.4. Adaptive Algorithm Evaluation

After building the GMM with the training data from our subject datasets, we used it to

detect anomalies in the test data. We used two variants of our proposed algorithm: one that

was provided a best-case static threshold based on manual inspection of the log-likelihoods,

and one that was allowed to adaptively adjust its threshold over time.

Figure 4.2 shows the results of this evaluation across each of the UCI datasets. Each

subfigure contains an ROC [16] curve, the best-case comparison threshold used, and the

resulting classification accuracies. These results illustrate that our adaptive strategy can

outperform a best-case static threshold in several problem domains, and also bolsters our

decision to allow adaptivity to be toggled at run time.
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Figure 4.2. ROC curves and accuracies of both anomaly detection variants.
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CHAPTER 5

Experimental Results

This section outlines the experiments we conducted to evaluate the efficiency of our

proposed anomaly detection framework and its integration with Galileo. The experiments

attempt to answer the following questions:

(1) Can our anomaly detection framework operate in real time while processing contin-

uous data streams from Galileo?

(2) Can the framework detect anomalous observations efficiently without requiring user-

defined thresholds?

(3) Is the framework able to accurately adapt its models as the dataset evolves over

time?

(4) Can the framework detect anomalous observations whose features have usual values,

but a combination of some features values are unusual?

(5) Can anomalies be detected based on geospatial locations?

5.1. Building the Models: Test Dataset

This study uses real-world climate data obtained from the National Oceanic and Atmo-

spheric Administration (NOAA) North American Mesoscale Forecast System (NAM) [17].

The readings in this dataset are collected regularly from various weather and climate stations

and stored in the self-describing NetCDF [18] format. Each file contains spatiotemporal in-

formation as well as a wide array of climate feature readings that include surface pressure,

surface temperature, snow cover, snow depth, relative humidity, and wind speed. The par-

ticular data used in this study was collected over a ten-year period from 2004 to 2013. Each
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year is comprised of roughly 1,000,000,000 observations on average. Observations from the

first three years (2004 through 2006) were used as training data to build the initial models

that were used in the experiments outlined in this section.

5.2. Experimental Setup

Our framework was run on a 77-node cluster with 48 HP DL160 servers (Xeon E5620

CPU, 12 GB of RAM, 15000 RPM disk) and 29 HP DL320 servers (Xeon E3-1220 V2 CPU,

8 GB of RAM, 7200 RPM disk). Ten clients running on machines outside the cluster were

used to read the observations from the NOAA dataset and send them to Galileo, which

operated under the OpenJDK Java Runtime, version 1.7.0 51.

Each storage node maintains an anomaly detection framework instance that receives ob-

servations from the storage node. Incoming data is partitioned spatially using the Geohash-

based scheme described earlier, with a 4-character prefix used for these experiments to assign

a 39.1 x 19.5 km region to each anomaly detector. In these benchmarks, the number of anom-

aly detector instances created by all the framework instances was 60924 in total. The training

data that was used to build a model by each anomaly detector consisted of approximately

49241 observations on average.

5.3. Throughput Measurement

After building the models with our training data, we enabled adaptation mode and in-

structed the 77-node cluster to begin servicing storage requests. Our test clients streamed

readings to the cluster sequentially to simulate the passage of time and real-world operat-

ing conditions, which would also enable us to confirm that the adaptive functionality was

accounting for the gradual evolution of the dataset.
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We measured the throughput at each node in the system and also recorded its cumulative

throughput. We found that the 77-node cluster could process about 850,000 observations

per second in parallel. Figure 5.1 illustrates the scalability of the system by reporting the

cumulative throughput as additional resources are added to the cluster; the relationship

between active nodes and throughput is roughly linear.

Figure 5.1. Number of machines vs number of classified observations per second.

5.4. Non-Adaptive Anomaly Detection

In this experiment, we extracted a random observation from the training data that was

classified as normal. The particular observation in question was recorded in Washington DC

at 6:00 pm on April 22, 2005. We also used the detector instances for the Geohash prefix
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of dqcj covering Washington DC, and disabled the adaptation feature for this test. The

framework was then used to evaluate the observation 100 times, where each evaluation step

incremented the temperature of the observation. The initial temperature of the sample was

set to 240 K, and the final modified temperature was 340 K.

As seen in Figure 5.2, all observations whose temperature values fall in the interval [266,

318] have been considered normal because their classification outcomes are larger than the

fixed anomalous threshold (-1). Since the model has been built on training data from 2004,

2005, and 2006, then we can conclude that the normal temperature values for that time were

from 266 Kelvin to 318 Kelvin. This experiment shows that without threshold specification,

the framework is able to detect anomalous observations if they have values higher or lower

than the norm.

Figure 5.2. Outcomes obtained with adaptation disabled and gradually-
increasing temperature values being classified from 240 to 340 K. All observa-
tions below the red line (outcome = -1) are considered anomalous.
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5.5. Adaptive Anomaly Detection

In this experiment, we test how the framework copes with changes occurring in observed

behavior when the adaptation feature is turned on. We have used the same observation that

was used in the previous experiment, but in this experiment we created 300,000 copies of the

observation. In each copy, the temperature feature was set to a value generated randomly

between 330 and 360 Kelvin, which would constitute anomalous temperatures based on the

results obtained in the previous experiment. The adaptation speed was set to 100, which

means that adaptation will be performed once every 100 classifications. The framework

was then used to classify the 300,000 copies of the observation, followed by another 300,000

classifications with adaptation turned off.

The outcomes of two cases can be seen in Figure 5.3. In the figure, the x-axis represents

the evaluation steps and the y-axis represents the outcomes. As we can see, when the

adaptation feature was disabled, the observation outcomes shown in blue were not changed

over the 300,000 evaluation steps and were always below the anomalous threshold (-1), which

means these observations were always considered anomalous. However, when the adaptation

feature was enabled, the same observations were evaluated as anomalous early on in the

test but began being considered normal over time. Consequently, we can conclude that our

adaptation feature allows continuously-anomalous observations to eventually become normal

over time, whereas the nonadaptive model would not be able to handle such changes.
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Figure 5.3. Outcomes obtained by running the anomaly detection approach
twice, with and without the adaptation feature.

We also considered the experiments done in the previous section (see Figure 5.2) when

testing our adaptive models. With adaptation enabled and the temperature incremented

from 240 to 380 Kelvin this time, we can observe that the model can now cope with the

evolving data and reflects the changes in its classifications seen in Figure 5.4. We can also

observe that in the previous experiment the normal observations have temperature values in

the range from 266 Kelvin to 318 Kelvin, while in this experiment the normal observations

have temperature values in the range of 268 to 366 Kelvin.
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Figure 5.4. Outcomes obtained with adaptation enabled and gradually-
increasing temperature values being classified from 240 to 380 K. In this case,
the model adapts to accept a wider range of values as normal. All observations
whose temperature values are below the red line (outcome = -1) are considered
anomalous.

5.6. Feature Correlation

Each individual feature could have an unusual value that might justify classifying its

related observation as anomalous. These kind of anomalies have been well-tested in pre-

vious experiments with our framework. In this experiment, we aim to test for anomalous

observations that have valid feature values, but collectively as a tuple should be considered

anomalous. This means that the combination of values must also be considered by the

system, rather than only inspecting features individually; for instance, high temperatures

may be common in a particular region during the daytime, but at night one might expect

temperatures to drop.
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In this experiment, we investigated correlations between different features to determine

if the framework was able to detect anomalous observations that resulted from combinations

of usual feature values. We have chosen two normal observations from the Washington DC

region for this test, with some of the feature values displayed in Table 5.1. The last column

in table contains the evaluation outcomes that indicate both observations are normal. This

means that each individual feature has normal values and also the entire tuples are considered

normal as well.

Table 5.1. Some features of the chosen observations

Time Temp. Wind Humidity Surface Pressure Outcome
6-2-04, 6:00 pm 310 K 9 45% 101099 -0.22
6-7-04, 6:00 am 275 K 3 90% 101000 1.07

Based on the two test observations, we have created new observations including different

combinations of values of features that may be correlated.For each new created new observa-

tion, the month is June, the year 2004, the day is randomly selected, and the time is drawn

from [12:00 am, 6:00 am, 12:00 pm, 6:00 pm].

The evaluation outcomes of the first 11 days of June can be seen in Figure 5.5. The Figure

shows that some observations are classified as anomalous. Some of the anomalous observa-

tions with their outcomes are shown in Table 5.2. To find out which features combinations

cause that observations in table 5.2 are classified as anomalous, we plotted in Figure 5.6

average values of some observations’ features from training data for the first 10 days of June.

41



Figure 5.5. Outcomes of observations created from different feature combi-
nations of normal observations.

As we can see in Figure 5.6, the observations in training data have quite low temperature

and high humidity at 12:00 am, but the first and second observations have high temperature

and low humidity at that time. This clears why they are classified as anomalous. Also, we

can say that the reason why the last observation is anomalous might be that it has high

humidity and temperature although the training data shows that both features are inversely

proportional.

Table 5.2. The correlated features of observations created as combinations
from two chosen normal observations

Time Temp. Wind Humidity Surface Pressure Outcome
6-1-04, 12:00 am 310 K 3 45% 101000 -2.34
6-2-04, 12:00 am 310 K 9 45% 101000 -1.98
6-11-04, 6:00 pm 310 K 9 90% 101000 -1.04
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Figure 5.6. Average values of some observation’s features at different times
for the first 10 days in June.

5.7. Impact of Geospatial Scope on Model Accuracy

This experiment demonstrates the impact of the size of the geographic regions being

managed by anomaly detector instances. We trained two models, one built with observations

taken from Florida in the United States, and another built from data points belonging to

Hudson Bay in Canada. Figure 5.7 demonstrates the geographic differences between the

two locations. If geographic boundaries do not have an impact on classifications, then both

models should be able to accurately detect anomalous data.

Random observations were sampled from both regions and used to test the models. In

Table 5.3, observations in first three rows are taken from Hudson bay in Canada and have

Geohash prefixes of f4du. The last three rows are taken from Florida and have Geohash

prefixes of djjs. The evaluation outcomes of the four cases are shown in the last two columns.

The fourth column shows the outcomes from the model that was built with training data

from Florida, while the fifth column represents results obtained from the model that was built
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using data from Hudson bay. It is clear that the observations from Florida were flagged as

anomalous when they were classified with the model assigned to Hudson Bay, but classified

as normal when they were evaluated by their own model. This proves that each model

captures fine-grained details within its own spatial region, and reinforces our decision to use

multiple detection instances.

Figure 5.7. Two GMM models built with observations from two different
areas (Florida in the USA and Hudson Bay in Canada).

Table 5.3. Observations taken in January 2013 for both Hudson Bay (Geo-
hash: f4du) and Florida (Geohash: djjs).

Geohash Temp. Pressure Outcome at djjs Outcome at f4du
f4du 241 100711 -1.1E22 -0.5
f4du 244 101658 -1.1E22 -0.5
f4du 244 101659 -1.1E22 -0.4
djjs 306 101707 0.017 -538577
djjs 306 101692 -0.089 -708725
djjs 298 101461 0.007 -538253
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CHAPTER 6

Related Work

A class of problems referred to as conditional anomaly detection requires dividing ob-

servation attributes into environmental (context) and indicator attributes [19] [20] [21] [22].

Solutions to this problem attempt to detect anomalies within specific contexts where a feature

value (within a multidimensional observation) could be normal in one context and anoma-

lous in another. An anomalous observation in this case is one that has an unusual indicator

value at a specific environmental value. Correlated attributes have to be specified by a user

or detected by performing additional processing. This correlation specification or processing

step is unnecessary in our case because we model data using GMMs which are able to capture

the correlations between attributes or dimensions within the data item [23] [24] [5].

Approaches have also performed anomaly detection by comparing the log-likelihood value

of an observation with a sorted list containing log-likelihood values of the training data [19].

An observation is tagged as anomalous if its log-likelihood is less than the threshold specified

by the user. Unlike our approach, this approach requires human intervention in the detection

of anomalies including specification of the context and indicator variables. Some approaches

tend not to be generic and require specification of a threshold. For example, Catterson et

al. [21] use an approach similar to the one described by Song et al. [19] to monitor aging

power transformers, where both environmental and indicator values are known in advance.

Approaches attempt to circumvent user invention by automatically discovering con-

text [20]. However, this approach requires polynomial time to return the outcomes as a
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list containing anomalous scores that need interpretation. The time-complexity of the algo-

rithm precludes its use in real time anomaly detection. Our approach is amenable for use in

real time settings with the model updates being performed in an online fashion.

Several approaches perform anomaly detection based on the nearest neighborhood ap-

proach [25] [26] [27] [28]. The underlying hypothesis in these approaches is that normal

observations exist in dense neighborhoods, while anomalous observations tend to be quite

distant from their closest neighbors [29]. Breunig et.al. [28] compute a local outlier factor for

each instance in the dataset. The local outlier factor value can be used as an anomaly score

dependent on the local density of the observations neighborhood. Zhang et.al. [25] provide

an approach that computes a local distance-based outlier factor that shows the degree of

deviation of an observation from its neighborhood and then returns n observations with the

highest outlier scores that are then tagged as anomalous. A refinement proposed in [26] tries

to alleviate the computation overheads by reducing the number of observations involved for

computing distance-based outlier scores. Others have relied on ranking each observation

based on the sum of the distances from the k-nearest neighbors [27]. Despite the accuracy of

results, all distance-based solutions are very compute-intensive making then unsuitable for

high-throughput, online anomaly detection.

Clustering is an unsupervised learning technique used to group data items into clusters

based on similarities [30] that are measured in terms of distances to a clusters centroid. This

has motivated several efforts in cluster-based anomaly detection. K-means [31] [32] [33] [34]

is a widely used clustering approach to detect anomalies. The hypothesis in clustering-

based approaches is that anomalies are observations that either belong to small clusters or

are quite distant from any other clusters. These approaches start with an initial number

of clusters and then perform an iterative refinement step that tries to find the optimal
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clusters that minimize the squared sum of Euclidean distances between observations and the

centroid of their cluster. Despite the simplicity of k-means, finding clusters that minimize

the aforementioned objective function is an NP-complete problem [8]. Also, specifying the

optimal number of clusters and their initial centroids is very difficult.

Clustering-based statistical techniques can be used to detect anomalous observations [29].

These employ Gaussian mixture models with expectation maximization to cluster data into

groups based on densities. Some approaches build GMM on noisy training data with the

assumption that the number of items tagged as normal will outnumber those tagged as

anomalous [29]. A test sample is anomalous if adding it to the distribution causes the

distribution’s log-likelihood to change by a predefined threshold. The process that requires

computing the distribution’s log-likelihood with and without the test sample is unneeded

in this case because the process is equivalent to comparing the log-likelihood of the test

sample with a threshold. Some approaches [35] compare a threshold with the likelihood that

anomalies are found, while others [36] compute anomaly scores for an observation based on

GMM. These approaches require human intervention the former approach requires threshold

specification, while in the latter approach the anomaly scores need to be interpreted by the

user.

There are solutions [37] [38] [14] that attempt to adapt the underlying model based on

observed data. Hasan and Gan [37] provide an approach similar to our own which modifies

the GMM parameters (µk,Σk,Nk) in an online manner to adapt the GMM components.

In this solution where GMM is used for classification, the values of variances stored in

Σk will always increase, which leads to increasing the sizes of clusters that will cover the

entire dataset, both the new and old. Increasing the size of clusters produces overlapping

clusters. However, both increasing the clusters sizes or overlapping between clusters produce
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inaccurate classification results. To address this, a refinement of the approach tries to detect

cluster overlaps retrain the model which in turn affects the online classification process.

Approaches also rely on user-feedback to achieve adaptation [14]. Here, the threshold

that is used to classify whether an observation is anomalous or not changes over time. Based

on feedback obtained from the end user the system adjusts the threshold to reduce false

classifications. However, this approach is not suitable for online adaptation of models and

requires extensive human intervention.
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CHAPTER 7

Conclusion

In this thesis we presented our approach encompassing algorithms and system design

for scalable detection of anomalies in multidimensional data streams. We used Expectation

Maximization (EM) to build Gaussian Mixture Models (GMM) that model the densities

of the training data by using different combinations of Gaussian distributions. The fea-

sibility of this approach for anomaly detection in multi-dimensional datasets was verified

with well-known datasets. The ROC curves in our empirical evaluations over these datasets

demonstrate the suitability of our approach.

Given the data volumes, along with the dimensionality and the rates at which data

arrive, it is infeasible to employ human-intervention in the anomaly classification process.

Our approach does not require human intervention for either the establishment or adjustment

of anomaly detection thresholds.

Since anomalies evolve over time, it is important for the underlying model to account for

this evolution. Our model continually adapts itself based on the data observed by the model

i.e., both the adaptation and the classification are performed concurrently. Our empirical

benchmarks demonstrate both the efficiency (per-packet classifications) and accuracy of these

adaptations.

To deal with observations that are spatio-temporally correlated, our model instances

are responsible for a particular geographical extent and account for timestamps as one of

the dimensions associated with each data point. Each model instance tunes itself inde-

pendently based on the data it observes. This allows each model instance to account for

spatio-temporal correlations accurately. Rather than have a singular model that attempts
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to preserve such correlations, model instances that span smaller geographical extents reduce

both the complexity of the detection and improve the accuracy. This approach works well

in situations where there is variability in the density of data streams available for particular

geographical extents: the geographical extents can be adaptively refined with corresponding

addition of model instances. Ultimately, our approach allows finetuning of the specificity

of the classifications by controlling the geographical scope associated with the classification

models.

Having model instances associated with particular geographical extents results in a scal-

able design i.e. we can scale with increases in data volumes and the number of machine

available. Having multiple model instances is amenable to dispersion, with model instances

executing on multiple machines, which allows for concurrent, distributed classifications as

data streams corresponding to observations from multiple locations arrive. At a particular

node, our approach involves having multiple model instances managed using a thread pool,

which allows for concurrent classifications of data streams. Our empirical results validate the

scalability and throughput of our approach at both the individual nodes and in a distributed

cluster as well.
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